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Abstract

This present research proposes a Brain-Computerfdoe (BCI) architecture
adapted to motor mental tasks and music imagery.tf&@t purpose the statistical
properties of the electroencephalographic sign&GQE were studied, such as its
probability distribution function, stationarity, welation and signal-to-noise ratio
(SNR), in order to obtain a minimal empirical andlMounded parameter system for
online classification. Stationarity tests were usedestimate the length of the time
windows and a minimum length of 1.28 s was obtairtealr algorithms for artifact
reduction were tested: threshold analysis, EEGerfily and two Independent
Component Analysis (ICA) algorithms. This analysisncluded that the algorithm
“fastICA” is suitable for online artifact removalhe feature extraction used the Power
Spectral Density (PSD) and three methods were de&ieautomatic selection of
features in order to have a training step indepeindkethe mental task paradigm, with
the best performance obtained with the Kullbackslazi symmetric divergence method.
For the classification, the Linear Discriminant Aysés (LDA) was used and a step of
reclassification is suggested. A study of four mateental tasks and a non-motor
related mental task is performed by comparing thpgriodograms, Event-Related
desynchronization/synchronization (ERD/ERS) and SNRe mental tasks are the
imagination of either movement of right and lefhtla, both feet, rotation of a cube and
sound imagery. The EEG SNR was estimated by a casopawith the correlation
between the ongoing average and the final ERD/ER&c¢in which we concluded that
the mental task of sound imagery would need apprataly five times more epochs
than the motor-related mental tasks. The ERD/ERSldcdoe measured even for
frequencies near 100 Hz, but in absolute amplitutiesenergy variation at 100 Hz was
one thousand times smaller than for 10 Hz, whiclplies that there is a small
probability of online detection for BCI applicat®m high frequency. Thus, most of the
usable information for online processing and BQisresponds to the/pu band (low
frequency). Finally, the ERD/ERS scalp maps shoat the main difference between
the sound imagery task and the motor-related meéswsiks is the absence of ERD at the
U band, in the central electrodes, and the presgnE&D at thex band in the temporal
and lateral-frontal electrodes, which correspondht auditory cortex, the Wernicke’s

area and the Broca’s area.
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Chapter 1 : Introduction

The research presented in this thesis studies ¢lrel@pment of a Brain-Computer
Interface (BCI) architecture based on the elecwephalographic signal (EEG) by
using motor related mental tasks as well as otheadigms like sound imagery. BCls
may use the voluntary modulation of the neuralv@gtio transmit information that can
be used for communication or control. The measunéraéthe self-controlled neural
activity can be performed invasively, e.g., by pearfing single-unit recordings, which
are the measure of single-neuron activity and lofield potentials using a
microelectrode system, by using the measure of iphiltneuron activity using
microelectrode arrays, or by using electrodes plateectly on the exposed surface of
the brain to record electrical activity from the redgral cortex, that is the
Electrocorticography (ECoG) (Lebedev & Nicoleli§05).

The measurement of the self-controlled neural agtsan be performed non-
invasively, e.g., by using functional Magnetic Remoce Imaging (fMRI),
Magnetoencephalography (MEG), Positron Emission dgnapphy (PET) and EEG
signal. Recent studies have succeeded in demangtthtit EEG-based BCIls may be
used to control robotic devices (del R. Millan et 2004; Ferreira et al., 2008; Muller
et al., 2013). For a detailed review about BCls(¥¢elpaw et al., 2002; Wolpaw, 2007,
Cincotti et al., 2008; He et al., 2013).

1.1 Motivation

BCls have been primarily conceived as a potenegal therapy to restore motor
control in severely disabled patients, particulatiyse suffering from devastating
conditions such as amyotrophic lateral sclerosisS) spinal cord injury, stroke and
cerebral palsy. As this technology advances, BClghimalso hold promise for
amputees, by controlling limb prostheses. BCIls ahdid to the restoration of
locomotion and speech are emerging applicationsgtlev & Nicolelis, 2006).

BCI applications are currently being used, e.gr; (0 assistance for patients
with severe motor disabilities; (ii) diagnosis osbrders of Consciousness (DOC); (iii)
entertainment applications; (iv) recognition of eafive or cognitive states and
rehabilitation therapy (v). Not only BCls are udedthe applications mentioned above,
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but also hybrid Brain-Computer Interfaces (hBCls¢ #eing used to increase the
reliability of standard BClIs. The development B@s disabled people should allow
them to use all their remaining functionalities amtrol possibilities and to use the
currently best available ones. For example, foljexib that can control the movement
of the eyes the Steady-State Visual Evoked Potg&#\EP)-based BCls can be used.

Indeed, Pfurtscheller et al. propose an hBCI tarcba hand orthosis, which is
composed of a single-switch BCI (ssBCl) based enntfotor imagery paradigm and a
SSVEP-based BCI. The ssBCI is used to activate deattivate the light-emitting
diodes (LEDs) of the SSVEP-based BCI, which costtbke orthesis via gazing at a 8
Hz LED to open it and gazing at a 13 Hz LED to elas(Pfurtscheller, et al., 2010).
Sometimes muscular activity would be available BB&Is may include different kinds
of biological signals like the electrocardiogranC(&) or the electromyogram (EMG)
(Leeb et al., 2010; Shahid et al., 2011).

(i) BCI applications for assistance are mostly clied to people in a situation
called total Locked-in SyndrorhéLIS), or pseudocoma. The next paragraphs widnth
briefly describe the types of LIS, which were thagimal motivation behind the
development of BCls. Bauer et al. (1979) subdivittesl syndrome on the basis of the
extent of motor impairment as “classical LIS”, dagerized by total immobility except
for vertical eye movements or blinking; “incomplétks”, in which there are remnants
of voluntary motion, and “total LIS” that consigit complete immobility including all
eye movements combined with preserved consciousness

Patients with incomplete and classical LIS may lHsenan Machine Interfaces
(HMIs) adjusted to their specific needs and thesacgs can be as simple as a head
pointer going up to electronic interfaces contmblley biological electrical signals such
as surface myoelectric (EMG) and electrooculogra@BOG) signals. The user, for
example, can control the interface through myoatesignals of muscle movements of
the face such as eye blinking, or through elecutmgraphic signals from eyeball
movement. But people with total LIS may only usel8® communicate their thoughts
to those around them by modulating their own neaelvity. The Association of
Locked-In Syndrome (ALIS) database shows that ssoneof HMI is used by 81% of
the LIS patients (Laureys, et al., 2005).

1 LIS was defined in 1966 by Fred Plum and Jeromen@oto describe the quadriplegia and anarthria
resulting from the disruption of corticospinal andrticobulbar pathways, respectively, in brainstem
damage.
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The most common causes of LIS are stroke or brevimanrhage, traumatic brain
injury, motor-neuron diseases or Medication oveeddsnong them, the most common
etiology of LIS is vascular pathology. Another innfamt cause of total LIS can be
observed in end-stage Amyotrophic Lateral Scler@&isS) and Duchenne Muscular
Dystrophy (DMD), i.e., motor-neuron diseases. BUS may be caused either by
brainstem tumor, encephalitis, Central Pontine hpdysis (CPM), vaccine reaction
and prolonged hypo-glycemia (Laureys, et al., 200dpst LIS patients, with
appropriate medical care, can return home and tiieilexpectancy is about several
decades. Once a person has medically stabilizetsifior more than one year, 10 year-
survival is 83% and 20 year-survival is 40% (Lawstest al., 2005). Even if the chances
of motor recovery are very limited, computer-basethmunication methods, HMIs or
BClIs, have substantially improved the quality dé lin chronic locked-in syndrome
(Laureys, Owen & Schiff, 2004).

Julia Tavalaro, Jean-Dominique Bauby and Philipjgald are good examples
of LIS patients who maintained an active and pradadife. In 1966, Julia Tavalaro
suffered two strokes and fell into a coma for 7 thenShe was misdiagnosed as being
in a vegetative state for 6 years, until being @ered to have LIS in 1973. She wrote
the book "Look Up for Yes" in 1997. In 1990, Phide Vigand had a vertebral artery
dissection and remained in a coma for 2 month2000, he wrote "Only the Eyes Say
Yes" and he has written his second book, “Dealinigh whe Menaced French
Ecosystem” in 2002. Jean-Dominique Bauby had anlsteém stroke in December of
1995 and remained in a coma for several weeks.rétaxl the Association of Locked-
In Syndrome (ALIS) and wrote the book “The Divilggll and the Butterfly”, which
became a best-seller. ALIS has registered 367 tbokepatients just in France
(Laureys, et al., 2005).

Regarding BClIs applied to severe LIS patients wqrthting the cases of Elias
Musiris and Erik Ramsey. In 2002, Elias Musirigpatient with chronic ALS was the
first total LIS person to regain some measure ghroonication through EEG-based
BCI, developed by neurological researcher Nieldo@&imer. In 1999, 16-year-old Erik
Ramsey suffered a brainstem stroke after a cahcréte remained in coma for three
weeks and was diagnosis with classical LIS. In 20@4had a microelectrode inserted
into the part of the motor cortex responsible fe& novements involved in speech and
the ground wire connected to the Dura mater, thermost of the three layers of the

meninges that surround the brain and spinal corde Electrode captured the
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extracellular electricity of about forty neuronsdahe signal was transmitted wirelessly
under the scalp to a computer to be decoded, &i@masland synthetized into single
vowels.

(i) A common pattern that can be observed in teepte described above is to
have undergone an early stage of coma. In factmisdiagnosis between Vegetative
State (VS) and Minimally Conscious State (MCS)rzuad 40%, which brings us to the
second kind of application using BCls, that is ngprove DOC diagnosis (Laureys,
2007; 2005; Gantner, et al., 2013; Decoder, 20IBg next paragraphs describe the
common progress of a victim of brain damage to gtiéynhow the VS and MCS arise
and are common misdiagnosed. Some emphasis is v role of the EEG in the
current diagnosis of brain death and the progrésssing this type of signal to build
BCls systems able to identify people that arefuisimally aware.

After a stroke or traumatic brain injury the patiesually remains in a coma. To
clearly distinguish a coma from syncope (faintinghncussion, or other states of
transient unconsciousness, a coma must persist feast 1 h. Then, a coma is a time-
limited condition leading either to brain death, gewative state, recovery of
consciousness or LIS, in rare cases. Brain deathbeadiagnosed with an extremely
high rate of probability within hours to days ofetloriginal injury. The diagnosis
performed with the EEG is the most validated test, decause of its wide availability,
preferred confirmatory test for brain death implebed in many countries’ guidelines.
The EEG in patients with brain death shows an aleseh electrocortical activity, and
the EEG signal becomes isoelectric, that is fla,liwhich is similar to a “functional
decapitation”. The EEG confirmatory test for brdeath has sensitivity and specificity
of 90% (Laureys, Owen & Schiff, 2004).

The term Vegetative State was defined in 1972 hyaBrdennett and Fred Plum
for patients with “wakefulness without awareneskthemselves or their environment.
One month after the occurrence of brain damage,vdgetative state is declared
persistent, but does not mean that it is irrevésibhe term Permanent Vegetative State
was defined in 1994 by the US Multi-Society Taskdeoon Persistent Vegetative State
(PVS) and does imply that the patient will not nemo The VS may arbitrary be
regarded as a Permanent VS three months afterteanoratic brain injury and twelve
months after a traumatic injury and does imply tha patient will not recover.
However, after being in the VS the patient can ghsogress to the Minimally

Conscious State (MCS), which is an intermediatee diatween full awareness, as found
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in LIS patients and no awareness at all, as foarttieé VS patients (Laureys, Owen &
Schiff, 2004; Laureys, 2005).

An important difference is that patients who haamained in the MCS for years
still have a chance of recovery. In a much pubdidizase, Terry Wallis, who was
considered to be in a VS since a road acciden9841was actually in MCS for 19
years and started talking in 2003. Wallis also iregrh some ability to move his limbs,
although he can not walk and still needs persistarg (Laureys, 2007; Gantner, et al.,
2013).

For example, in July 2005, a 23-year-old womanasnetl a severe traumatic
brain injury as a result of a road traffic accidestte remained comatose for more than a
week and then evolved to the VS during the fivéofeing months. Even though she
fulfilled all of the criteria for a diagnosis of V&ccording to international guidelines,
the investigators conducted a second study in wthiely asked her to perform mental
imagery tasks. When she was asked to imagine glagigame of tennis, the fMRI
scans showed activity in the Supplementary Mot@aA{SMA) of her brain. When she
was asked to imagine walking through the rooms ef ouse, the scans showed
activation of the network involved in spatial naatign. Despite the clinical diagnosis
that the patient was in a vegetative state, sheergtwbd the tasks and repeatedly
performed them and hence must have been consdiausefs, 2007; Owen, et al.,
2006; Gantner, et al., 2013).

Similar studies are being conducted with EEG-baB&ds, which have the
advantage of being cheaper, portable and possihied at the patient’s bedside. Monti
et al. (2010) demonstrated that a DOC patient vides 8@ use the modulation of his
brain activity to reliably answer ‘yes’ or ‘no’ ®imple questions, even though no signs
of communication had ever been found through bedsiiamination. EEG studies
measuring effective connectivity in tle(8-12 Hz) and3 (14-30 Hz) frequency bands
seem able to differentiate between VS and MCS migticEffective connectivity is a
measure of the causal relationship between braasarAdditionally, the EEG entropy
was shown to be able to differentiate acute undgonsness from MCS patients with
89% sensitivity and 90% specificity. However, thhegnostic value of this measure was
not high and hence can not be recommended as agstogtool (Gantner, et al., 2013).

The EEG is already very important to the confirmmatest of brain death and is
also becoming important as a paradigm for singleesmBCls that would improve the

reliability of VS and MCS diagnosis. Single-switBICIs are simpler BCls that operate
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with only two mental tasks, in which one of themtie absence of making any
particular mental task, as used by Monti et al1®0These simpler BCls are proving
useful to confirm the patient awareness. In fdatre is a recent European collaborative
project named DECODER (2010-2013) which aims tdalepsBCls for the detection
of consciousness in non-responsive patients andtlgrémprove DOC diagnosis.
DECODER project will use ssBCls based on EEG andrigrared Spectroscopy
(NIRS), which also can be applied at the patielésiside (Decoder, 2013).

The American Academy of Neurology (AAN) has pubdédha position
statement, in 1993, concerning that LIS patientgehihe right to make health care
decisions about themselves, including whether toepic or refuse life-sustaining
therapy, either by not starting it or not stopporge started (Gantner, et al., 2013). In
addition, through BCls these patients can finakpress their preferences in terms of
treatment planning, like pain management or enlif@fdecision-making (Laureys, et
al., 2005).

(i) Entertainment applications are a relativelgwnbranch in the field of BCls
that are intended for healthy people who want totrod games and devices through
BCIls. Some companies that are engaged in BCI ptedile interfaces, Software
Development Kits (SDK) and games are InteractivedBetlin€, OCZ Technolog,
Emotiv®, NeuroSky, Inc and PLX Devicgs

For a short review, in 2003 the Swedish Compangréutive Productlife
developed the game Mindballin which players compete to control a ball's nmeat
across a table by modulating their brain wavesoiméeg more relaxed or focused. The
manufacturer of computer hardware, OCZ Techndlpggeveloped in 2008 the
computer game controller, nigNeural Impulse Actuator), based on facial EMG and
EEG. The neuroengineering company Enfothas brought to market in 2009 a low
cost EEG interface called EP&@hat is able to play games specifically develofued
it, or use it to connect to a computer to play gsumecontrol devices. NeuroSky, Inc. is
a BCI company that in 2009 developed the EEG-basedset called Mindsetand the
compatible toys Mindfle and Star Wars Force Traiffein which players lift a ball by
concentrating. In 2011, NeuroSky, Inc. launchedew headset called Mindwateln
2011, PLX Device$ lauched the EEG-based headset XWave Soaicd the EEG-
based headband XWave Spofor EEG use and analysis in computer systems.

(iv) Affective Brain-Computer Interfaces (ABCls)eann approach of affective

computing directed to BCls. Affective computing asbranch of computer science
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which originated about 1995 related to the study development of systems that can
recognize, interpret, process, and simulate hurffanta. Affective computing may use

several kinds of features to perform the recognittd human affects, such as facial
image, body gesture image, blood volume pulse,agétvskin response, facial EMG

and EEG. The common basic emotions that are usagdognition are: anger, disgust,
fear, happiness, sadness and surprise.

ABCls usually use a more limited range of featutemn affective computing,
just taking the features that were previously usedhe BCI system. Often, these
features are only the EEG and the facial EMG. AbtuABCls intend to perform the
automatic recognition of attention or fatigue thatuld be used to adapt the BCI to the
user state and improve the success rate of thelB@ig the identification of the mental
tasks.

As exemplified in the preceding paragraphs, most &iplications are intended
for people with disabilities. As each individualshtheir own skills and preferences,
some mental tasks can be easily performed by someegoke a good pattern for
classification, while others may have difficulty o not evoke a pattern at all. Within
this context, the motivation for this Ph.D. Thesigo find new ways to control BCls
and also to propose a BCI with minimal empiricalgmaeters. The chance of finding a
better match between the user and the BCI incrdaseasing a wider variety of mental

tasks.

1.2 Objectives

The BCls are platforms that can be understood @sntiegration of two main
processes which are the signal acquisition andstgeal processing (Figure 1.1).
Regarding the signal acquisition it is importantd&dine a standard that is used for the
placement of the electrodes on the scalp and thelsa rate of the system. The signal
processing stage comprises the signal pre-procgdhia feature extraction, the pattern
classification and the translation of the mentakted commands for a BCI application.
The signal pre-processing stage is intended toceedhe amount of noise that
contaminates the EEG signal and it usually usesasfidters or High Order Statistical
Separation methods. The feature extraction stagesés on finding the main features
that differentiate the mental tasks, and this stagebe followed by a feature selection
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step to refine the search for the best featureenTthe EEG features are sent to a
classifier whose output is translated into commdoda BCI application.

This present research has four main objectives. fifeegoal is to study the
statistical properties of the EEG, like the EEGHatality Distribution Function (PDF),
the EEG stationarity, the correlation and the SigmdNoise Ratio (SNR), in order to
propose a system with minimal empirical and wellffded parameters for online
classification. This statistical analysis estimatesEEG sampling rate and the length of
the time windows used thenceforth, and then, cothexdirst stage of the BCI timeline

shown in Figure 1.1.

Signal

Pre-processing Signal Processing

Signal  |Digitized Spatial Feature

Acquisition | Signal Filters [~ | Extraction J Classification
I Translation

Selection

Commands

2N N
A . '
==
==
BCI Application

Figure 1.1 — BCI timeline.

The second objective is to make the BCI trainingpshon-supervised and
independent of the chosen mental task paradigmt BG4s use the motor imagery
paradigm, i.e., the user has to imagine the movermokthe hands, sometimes also
including the movement of the legs due to the pkioowledge of the physiological
aspects of motor related mental tasks (Blankertal.et2007). It is known that the
energy of specific bands of frequencies measureth@motor cortex undergo changes
during the imagination of movement, which is calle@vent Related
Synchronization/Desynchronization (ERD/ERS) (Ptthtdler et al.,, 1999). These
known patterns are, then, used for the identificatf motor related mental tasks. Other
studies have used non-motor tasks, such as thirddimgprds beginning with the same
random letter (Anderson et al. 2007) or repetifiubtraction (Obermaier et al. 2001).



9 h&pter 1: Introduction

There are classifiers, with or without the trainstgp, in which the training can
be non-supervised or supervised. However, most camMfCIs use some prior
knowledge of the physiological mental tasks tontras classifier either directly or
indirectly with supervised training. This secondagof making the BCI training step
non-supervised and independent of the chosen ganagould, then, allow the system
to be independent of some prior knowledge of thgsiahogy of the mental tasks. Most
physiological research report the average behdavamn subjects, then even if these
physiological characteristics related to mentaksaare known, the BCI would not be
suited to take into account individual bias. As pineposed method is based only on the
discriminative capacity of the EEG features, thel BOuld, then, be adapted for each
user. For this purpose methods for automatic seltecf features were studied so that
the BCI here developed could have automatic adgistnfior mental tasks of any
paradigm chosen by the user.

The third goal of this research is to study the afseon-motor mental tasks like
sound imagery, also called audiation (Zeki and Mad998; Gegenfurtner and Kiper,
2004) for BCI applications. Some recent effortsthis area were presented by Dr.
Schaefer’s group, comparing Evoked-Potentials (EBshg perception and imagery of
rhythms, and also the band (8-13 Hz) activity of the EEG during perceptiand
imagery of music (Schaefer, Vlek & Desain, 2011@11b). Dr. Schaefer’'s group was
able to identify perceived and imagined music thgiowffline single-trial EEG
classification (Schaefer et al., 2011c). On theeothand, Klonowski et al. (2009)
proposed a method to identify different inner tqor@simagined tones, by using high-
resolution EEG and analyzing the high-frequencycspen, and a comparison between
music and motor imagery can be seen in Sorianb GG1.3).

Then, in order to investigate the possibility ofemding the BCI to operate with
both, motor and sound imagery paradigms, five mié¢asks were used, which were the
imagination of the movement of right and left hgnafsboth feet, of rotation of a cube
and of music imagery. The traditional method toaobtthe ERD/ERS, suggested by
Pfurtscheller et al. (1999), was implemented andaaalysis of the EEG SNR was
performed. This analysis was performed in ordeestimate the number of epochs
necessary to observe the ERD/ERS pattern duringhéreal tasks with these two kinds
of paradigms, the motor and non-motor related nhd¢atks. As distinct mental tasks
activate different brain areas, the ERD/ERS pattértained over the scalp should vary
according to the mental task. The SNR and the réiffiees between ERD/ERS scalp
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maps of the five mental tasks are used here astarfan making a decision about
choosing new tasks to be used in the BCI.

The fourth goal of this thesis is to test algorighfior minimization of the
artifacts caused by eye blinks and eye movementsesd algorithms will be
implemented to work online in the BCI pre-procegssiep; therefore, some simple
methods like threshold analysis for artifact discand EEG filtering were compared to
a more complex method which is to perform Blind ®euSeparation (BSS) by using
High Order Statistical Separation (HOS) methods. thts purpose the Independent
Component Analysis (ICA) is tested for artifactuetion (Croft & Barry, 2000, Jung et
al., 2000, Jung et al., 2001, Ford et al., 2004eré& are two broadest definitions of
independence for the ICA, next, the most employgdrahms of each approach were
tested. Finally, the processing time of the techesqof artifact removal studied were
calculated in order to evaluate whether it is guesio adapt the algorithms to an online

approach.

1.3 Thesis structure

Chapters 2 and 3 comprise the electrophysiologdibabretical background.
Chapter 2 describes the human brain and Chaptes&itdes the genesis of the EEG
signal. The origin of the oscillatory activity atfte main EEG rhythms are described in
order to explain the ERD/ERS and the physiologasects of motor related mental
tasks. Chapter 3 explains the EEG acquisition ggecthe formation of the EEG
channels, the methods for avoiding and minimizirtgaets, the types of EEG records
and the EEG SNR. The examples in this chapter ase@dwn data and simulations to
verify the results from the literature.

Chapter 4 shows the results obtained with stagilstiests and simulations to
achieve the four main aforementioned objectivestedhniques were initially tested on
an EEG database available on the internet thdtaens in Chapter 4. Then, Chapter 5
shows the test protocol and the results of applyfregtechniques shown in Chapter 4
with our own data. Finally, Chapter 6 presents tbaclusion and suggestions for

further research.
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Chapter 2 : The human brain

The purpose of this chapter is to describe the Imubrain anatomically and
physiologically, so as to better understand soméefpatterns observed in the EEG
signal that are used to distinguish the distinchtaletasks that control the BCI.

The nervous system coordinates and monitors alsa@ons and unconscious
activity of body. It comprises the Central Nervdoigstem (CNS) and the Peripheral
Nervous System (PNS). The CNS consists of the baaeh spinal cord. The PNS
consists of nervésand gangli§ which are outside of the brain and spinal corj a
terminal organs (Bear et al. 2008). Upcoming sestideal with CNS and its main

constituent, the brain.

2.1 Section planes and reference points of the humdrain

The relative position of the brain structures isalied through section planes and
reference points. Then, this section will cover ederms used throughout the thesis to
locate and describe brain structures. The frontiggoiof the brain with respect to the
body is called the anterior portion, and the reatipn is called the posterior portion.
The top portion is called the dorsal portion anel blottom portion is called the ventral
portion. Figure 2.1 shows the directions and thmeelsection planes that are the sagittal,
coronal and horizontal planes. The structures se&mehe medial line are called medial
structures and structures furthest from the melii@ are called lateral structures.
Moreover, the structures that are on the same sfdéhe medial line are called
ipsilateral to each other, and the structures dnaton opposite sides of the medial line
are called contralateral to each other. Finallg $imilar structures that are on both
sides of the medial line are called bilateral.

The brain surface is composed of numerous circuatiools. The
circumvolutions are the evolutionary result of tirain's attempt to increase its cortical
area, being confined to the skull. The protrusiares called gyri and the grooves are
called sulci; very deep sulci are called fissuildge exact pattern of gyri and sulci may

? Groupings of axons in the PNS. Only one group ofSCa¥ons is referred to as a nerve, which is the
optic nerve (Bear, et al., 2008).

* From the Greek word “node”. Agglomerate cell bodiésieurons found outside the CNS (Bear et al.
2008).
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vary considerably from individual to individual, tommany features are common to all

human brains.

r

~
[ jesoye|

Joudjue

|esoyey
ejpows
Joudsod

)}

7 superior - dorsal e
coronal (frontal) — mid-sagittal
section } (medial) section

horizontal

section 3
lateral inferior - ventral 3

— lateral

iouejue
I
Joueysod

——

[

P

MUOA

medial

|esiop

jex

Jouajue
Joudnsod

lateral
lateral

Figure 2.1 — Section planes and reference pointiseofiuman brain (Russell, 2013).

By convention, the brain is divided into lobes, mamin relation to the
underlying skull bones (Figure 2.2 - Left). The ttahsulcus separates the frontal lobe
from the parietdllobe. The lateral sulcus, or Sylvian fissirgeparates the frontal lobe
and the tempor&lobe. The occipitdllobe is located on the caudal region of the brain,

and is surrounded by the parietal and temporalsidbegure 2.2 - Right) (Bear, et al.,
2008).

Central Parietal
sulcus lobe
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i Superior
Sagittal ==—— : temporal
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Occipital bone Temporal lobe Cerebelium

Figure 2.2 — Left: Skull bones; Right: Locationtbé four brain lobes (adapted from Bear, et al080

Lambdoid suture

* The term “parietal” is derived from Latinp4rietlis”, meaning walll.

® Assigned in tribute to Franciscus Sylvius (161426 who was a Dutch physician and scientist.

® The term temporal arises from Latitethpus meaning time. The word time was used for thisiaag
because it is typically on the sides of the skuikve hair first becomes gray, showing the ravagéme.
" The term occipital means something situated reatdcciput, which is derived from Latin prefixdb”

at the back of combined witltéput, head.
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The temporal lobe receives and processes auditboymation and it is related
to object identification and naming. The frontabdg including the motor, the premotor
and the prefrontal cortices, is involved in plamnerctions and movement, as well as
abstract thought. The parietal lobe is the primsgynatosensory cortex and receives
information about touch and pressure from the thak The occipital lobe receives and
processes visual information (Guyton & Hall, 2006).

The cerebral surface or corfes organized like a patchwork quilt. These areas
were first identified and numbered by BrodmarRigure 2.3 - Left). The main areas
related to the processing of the senses are: theagyr motor cortex, or M1 (area 4), the
Supplementary Motor Area (SMA) and Premotor AreW A (area 6) in the frontal
lobe; the primary somatosensory cortex, or S1 gafka?2 and 3), and the primary
gustatory cortex (area 43) in the parietal lobe;ghmary auditory cortex, or Al (areas
41 and 42) and the olfactory cortex in the templwiaé and the primary visual cortex,
or V1 (area 17) in the occipital lobe.

In the context of the mental tasks analyzed intbs®arch, the areas 4 (M1) and
6 (SMA and PMA) are related to motor mental taskd are especially important. The
areas 39 and 40 (Wernicke's area) and 44 and 4&4Brarea) are related to the tasks
of imagining/remembering words. The areas 41 and(AP) are related to music

imagery tasks and the area 17 (V1) is relatedgoalitasks (Figure 2.3 - Right).

I Areas of motor projection (M1, PMA)
[l Areas of motor association (SMA)
" M Areas of somatotopy projection (S1)
. Areas of somatotopy association (S2)
I Areas of auditive projection (A1)
I Areas of auditive association (A2, A3)
I Areas of vision projection (V1)
. [ Areas of vision association (V2, V3, V4, V5)

Figure 2.3— Left: Brodmann’s cytoarchitectonic n{Bgar, et al., 2008); Right: Main areas relateth®
processing of the senses.

8 The term “cortex” is derived from Latin meaningatk” (Bear, et al., 2008).

° Korbinian Brodmann (1868-1918) was a German negisi and psychiatrist responsible for the
subdivision of the cerebral cortex in 47 functions¢as, called Brodmann areas, which were numbered
according to the sequence in which he studied ttBaar, et al., 2008).
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2.2 Description of the S1, M1, Al, V1 areas, Wernicke’'area and Broca’s area

The primary motor cortex is directly responsibler fine coordination of
voluntary movements. The left side of Figure 2niréd) shows the somatotofiienap
of M1, which correlates some M1 areas with the idrmtf body parts. It is worth noting
that more than half of M1 comprises the area cdimgothe muscles of the hands and
the muscles of speech (Guyton & Hall, 2006).

The right side of Figure 2.4 (in blue) shows thenatotopic map of S1,
correlating areas of the somatosensory cortex thhsensitivity of various areas of the
body. Note that the somatotopical organizationhef human pre-central gyrus (M1) is
very similar to that observed in somatosensorysaoédhe postcentral gyrus (S1). This
research will be measuring, through EEG electroitheselectrophysiological changes in
areas corresponding to the movement of the handsfest in the pre-central gyrus,
since this same area in the postcentral gyrus sorels to the sensitivity of touch,

pressure and temperature of such members.

Figure 2.4 — Left: Somatotopic map of human prete¢mgyrus (M1); Right: Somatotopic map of human
postcentral gyrus (S1).

The premotor area (PMA) has the function of suppgrtthe movements
generated by the M1 cortices of both hemispherég fgremotor area, or premotor
cortex, performs the motor planning which is a ‘siation” of the muscular movement
to be performed. The signs associated with the matmning are directly sent from
PMA to M1 to excite multiple muscle groups relatedaccomplishment of the task
(Bear, et al., 2008).

Human studies performed by Danish Neurologist Pelaftl using Positron

Emission Tomography (PET) to track changes in calrtactivation patterns that follow

% The mapping of the body surface sensations ocomérol of body movement in a CNS area is called
somatotopy (Bear, et al., 2008).
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voluntary movements showed that performing fing@wements increases blood flow
in the following regions: somatosensory areas, gyst parietal cortex, portions of
prefrontal cortex and the areas M1, SMA and PMAIéRd, et al.,, 1980). When
participants were asked to just mentally imagireerttovement without actually moving
the fingers, area 6 (SMA and PMA) remained actwigiJe area 4 (M1) did not remain
active (Bear, et al., 2008).

Language processing, comprehension and speech ghi@uuoccur in the
Broca's area, while the association and interpogtadf information occur in the
Wernicke's area (Figure 2.5 - Left), which playsrery important role during the
chaining of the discourse. This area allows usnibeustand what others say and it also
provides the ability to organize the words in atagtically correct way. The Broca's

area is located in the left hemisphere in 95% o$qes (Guyton & Hall, 2006).

Primary motor

= e P
raad =i ﬁ

Maotor cortex

Motor control of RREOEoRt cortex Secondary
the mouth and lips | Angular mator cortex
) ;‘ gyrus Frontal

Broca's R oba
ravVve Lataral — s
area Z / sulr‘.ul.‘_'- " Thatamus —
N é | /
‘ Auditory

conex

Pri =
Y Thalamus ey

——| Secondary
L Tertlary

‘v/ y Auditary

cotax

Temporal lobe

Auditory
cortex  Wernicke's area

Figure 2.5 — Left: Location of Broca's area and Nitke's area (adapted from Bear, et al., 2008)hRi
primary, secondary, and tertiary auditory cortex.

The primary auditory cortex (Al) is the first codl region of the auditory
pathway, and it is directly connected with the raédeniculate nucleus of the thalamus
(MGN). It roughly corresponds with the Brodmannasrdl1l and 42, and it is located in
the temporal lobe. This cortex area is the neunax ©f hearing and, in humans, of
language and music. The right auditory cortex bag been shown to be more sensitive
to tonality, while the left auditory cortex has heshown to be more sensitive to minute
sequential differences in sound, such as in spéduh.auditory cortex is divided into
three separate parts: the primary, secondary, artéhry auditory cortices. These
structures are formed concentrically around ondhampwith the primary cortex in the
middle and the tertiary cortex on the outside (Fegi5 - Right).
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The primary auditory cortex is tonotopicdftyorganized, which means that
neighboring cells in the cortex respond to neightgpfrequencies forming a “frequency
map”. This area of the brain is thought to identlie fundamental elements of music,
such as pitch and loudness. The secondary auditotgx (A2) has been indicated in
the processing of harmonic, melodic and rhythmitepas. The tertiary auditory cortex
(A3) supposedly integrates everything into the alleexperience of music and
remembering a sound stimulus only faintly activdkestertiary auditory cortex.

The visual information processing begins with tkasstizing of photosensitive
cells in retina, which sends information througlke thptic nerve to the thalamus area
called the lateral geniculate nucléusr body (LG). The LG then modulates and
transmits visual information to the striate cortxthe primary visual cortex (V1).
Visual areas are subdivided into the V1, V2, V3,amtd V5 areas (Figure 2.6). The V5
area is also known as the visual area MT (middigpteral). The V1 projections extend
to V2, V3 and V5 areas. The V4 area is relatedhvéoperception of shape and color, and

the inferior temporal (IT) cortex is related towaé memory and recognition of human

faces.
Frontal lobe Parietal Iobe. .
Eye Lateral genicu(late)body — / Occipital lobe
. . 1G) . = !
ggﬂf ‘,1‘ A Opticnerve N/ :
/= a1 Optic chiasm /
LG—RULA 449 ,

\ ' 7? Optic radiation ({\
Qe Vi it

Functional

subdivisions

’\',f \\g,A (Motion) ‘ of the visual

~S K V3 g;oim) , I)Temporal/r§‘\'i‘* cortex

. PESS  \/2 elays signals L
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“._~V4 (Colorand Form) cortex (IT) Cerebellum
V8

Figure 2.6 — Visual information path from retinavisual cortex (adapted from Claffey, 2013).

M Tonotopy is the spatial arrangement of where sswidiifferent frequency are processed in the brain
Tones close to each other in terms of frequencyepeesented in topologically neighbouring regions
the brain. Tonotopic maps are a particular castopbgraphic organization, similar to somatotopy in
somatosensory areas and retinotopy in the visisaésy

2 The lateral geniculate nuclei are formed by speta of overlapping cells which curve around thécop
tract, as the articulation of a knee. From thig firives the name geniculatgehiculatus from Latin,
meaning "like a little knee" (Bear, et al., 2008).
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2.3 Pyramidal tract and the contralaterality of motor movements

This section will discuss the contralaterality obtor movements. This means
that the motor area in the right cerebral hemisplentrols the voluntary movements
of the left side of the body, conversely, the mawga in the left cerebral hemisphere
controls the voluntary movements of the right stdethe body. The imagination of
movement of the right hand is thereby being praees$s the primary motor cortex of
the left hemisphere.

The Somatic Motor System and Vegetative NervousteBys(VNS) are all
neural eferences of CNS. The brain sends signalsniascle control and receives
sensory information through 12 pairs of cranialvesrand 31 pairs of nerves in the
spinal cord (Figure 2.7 - Left). Axons that cartymulatory signals from the brain to
effector organs such as muscles and glands, throlghspinal cord, are primary
efferent® nerves of the somatic motor system. Primary effenerves enter the spinal
cord through ventral roots. Axons that carry infation from the sensory receptors of
the skin, muscles and joints to the brain, throtgl spinal cord, are the primary
afferent® nerves of the somatic sensory system. Primagyeif nerves enter the spinal
cord through dorsal roots. Thus, the two rootshefdpinal cord transmit information in

opposite directions (Bear, et al., 2008).

Motor homunculus on primary motor
cortex of left cerebral
- hemisphere

To the brain  From the brain Corticobulbar e
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. 4y skeletal o~
Splnal - ) - ') muscles g
§ COI’d - - Motor nuclrei\vr |
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Ventral roots —— _neves L~ peduncle
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Figure 2.7 — Left: Spinal nerves and spinal neoas (adapted from Bear, et al., 2008); Right: Rydal
system.

13 The term “efferent” is derived from Latin meanitwhich brings" (Bear, et al., 2008).
% The term “afferent” is derived from Latin meanitwhich leads" (Bear, et al., 2008).
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The path involving the transmission from the matortex to the muscles is
called the corticospinal or pyramidal trict Transmission occurs directly in the
pyramidal tract and indirectly through multiple assory pathways involving basal
ganglia, cerebellum, and several brainstem nu€lee pyramidal tract originates from
pyramidal neurons in layer V of the cerebral cortdxM1 (30%), PMA and SMA
(30%) and S1 (40%). The pyramidal tract is mainbymposed of motor axons,
constituting the volunteer component of the matyici he pyramidal pathways consist
of a single tract, originating in the brain, whishdivided into two separate tracts in the
spinal cord: the lateral corticospinal tract ane émterior corticospinal tract (Figure 2.7
- Right).

From all the fibers of the pyramidal tract, 80% ssdo the other side in the
decussatioff of pyramids in the Bufd (contralaterally), forming the lateral
corticospinal tract and 20% follow caudally to ladefuniculus of the spinal cord
(ipsilaterally), forming the anterior corticospinaact. The anterior corticospinal tract
also crosses to the other side, but only at theuitegdevel, where it makes a synapse
(Guyton & Hall, 2006). Therefore, the behavior loé tpyramidal pathways leads to the
conclusion that the voluntary motricity is 100% ssed, either at the bulbar level, or at

the spinal cord level (Bear, et al., 2008).

2.4 Neuronal circuits and oscillatory activity of he thalamocortical system

As mentioned in the Introduction chapter, mentsksarelated to motor imagery
are the most common choice to control BCls. In,péduis is due to the easiness of
performing motor imagery tasks compared to memtsks of mathematical calculation
or vocabulary association, and also due to the datlumented physiological features
of motor imagery like the Event Related Desynchration/Synchronization
(ERD/ERS) (Pfurtscheller & Lopes, 1999). Finallyptor imagery tasks provide an
intuitive way for controlling BCls associated t@etronic prosthetic limbs.

This section will discuss the physiological aspeitist cause the ERD/ERS

pattern, observed during the imagination of motasks. Subsequently, after the

!> Grouping of CNS axons that have common origin @estination (Bear, et al., 2008).

16 Axons crossing from one side to the other (Bea).e2008).

" The cross section of the medulla at the decussétieel shows that the corticospinal tract forms a
triangular protuberance, reason why this area Iedaulbar pyramid. For the same reason the
corticospinal tract is also called the pyramidatt(Bear, et al., 2008).
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presentation of the characteristics of the EEGaljghe ERD/ERS will be defined and
mathematically quantified.

Neurons that connect the nervous system with @iffielayers of the brain form
neuronal circuits. The neuronal circuits transmitoimation through excitatory and
inhibitory synapses. Excitatory synapses may beiated by the neurotransmitter
acetylcholine (ACo), dopamine (DA), noradrenalindAjf, adrenaline, serotonin,
glutamate (Glu) and glycine (Gly), while the inhdosly synapses are manly mediated by
the neurotransmitter gamma-aminobutyric acid (GABA)

In some neuronal circuits, the input signal cawme®xcitatory synapse in one
direction and one inhibitory synapse in anotheedtion (Figure 2.8 - A). In this Figure
the input fiber (sensory neuron) directly excitég theuron #1 and simultaneously
excites the intermediate inhibitory neuron (neut#@j), which secretes GABA to inhibit
neuron #3. This kind of circuit is important to peat excessive activity in many parts
of the brain (Guyton & Hall, 2006).

Oscillatory neuronal circuits are the most impottneuronal circuits of the
nervous system. Figure 2.8 - B shows a very singpleuit, consisting only of an
excitatory neuron, one inhibitory neuron and areewdl| constant afference, where an
excitatory cell (cell E) and an inhibitory cell {ch establish a synapse with each other.
As long as there is a constant excitatory condoabier the cell, which not have to be
rhythmic, the resulting activity of the set tendshe oscillating. A cycle of activity
across this network generates the firing patteawshn Figure 2.8 - C.
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Figure 2.8 — (A) Excitatory-inhibitory neuronal ciit (Guyton & Hall, 2006); (B) Two neurons
oscillator; (C) Firing pattern of the two neurorstitlator (adapted from Bear, et al., 2008).
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Oscillatory neuronal circuits can also be formed pgsitive feedback.
Consequently, once stimulated, the circuit can peederiodic stimuli for long periods.
The simplest oscillatory circuit is shown in Figze® - A. This circuit only has one
neuron whose part of its output extends to its adendrites to be re-stimulated. Figure
2.9 - B shows a circuit with additional feedbackiroms. Figure 2.9 - C shows a little
more complex circuit with facilitator and inhibitaeurons, and Figure 2.9 - D shows an

oscillatory circuit with multiple parallel neurof&uyton & Hall, 2006).

Input Output  Input ) ~ Output

O e

Facilitation B
Input ‘ S _\Output Input & Qutput
sﬂj Tl \\M
\&f//

—~—

C Inhibition D

Figure 2.9 — Oscillatory neuronal circuits (Guytiall, 2006).

Kevan Hashemi calculated that coherent neuronsdoood activate themselves
at a frequency much higher than 100 Hz. The aatimaif a single neuron takes roughly
2 ms for its rising and falling edges, and its aetory period, in which it can not be
reactivated, is about 10 ms. Thus, it will prevany neuron from firing at a much
higher frequency than 100 Hz (Hashemi, 2012). Ssnm@uronal circuits working with
negative (Figure 2.8 - B) or positive (Figure 2.8)-feedback will also be subject to
this same upper bound of the frequency.

The oscillatory activity can be measured in the Efghal, being an emergent
property of the thalamocortical system and the ioocbrtical system. In the
thalamocortical system the oscillatory neuronalcwis are formed between the
thalamus and the cortex and in the corticocorteatem the oscillatory neuronal
circuits are formed between the different layerthefcerebral cortex.

The human cortex is a laminar structure composediofistinct layer€ of
alternate white and grey laminae with differentddrof neurons. Figure 2.10 shows a

schematic representation of the cortical layershsas it appears in histological

18 The cortex layers were discovered in 1840 by thenéh physican Jules Baillarger. His name is
associated with the inner and outer bands of Bg#la which are two layers of white fibers of the
cerebral cortex. They are prominent in the senswoytical areas because of high densities of
thalamocortical fiber terminations.
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preparations stained by different methods (Mach280y7). Perpendicular to the layers
there are large neurons called pyramidal neurors¢hyvconnect the various layers
together and represent about 85% of the neurotiseirtortex (Guyton & Hall, 2006).
Corticocortical oscillatory circuits typically dooh involve a large number of cells
working in synchrony. Thus, the set does not induigh electrical amplitude activity

and is hardly measurable by electrodes on the sehlpgh contribute little to the EEG.

I - Molecular layer —————- | S e

II - External granular layer ~--*_—;'1":‘

III - External pyramidal Iayer._| JENG
_ External
Baillarger band

_Internal
Baillarger band

IV - Internal granular layer -

V - Internal pyramidal Iayer—~—‘ 2 = 3 = -

VI - Fusiform layer -—-—-————-- INEZ

Figure 2.10 — Cortical layers. (A) Golgi method;) (Bissl method; (C) Weigert method (adapted from
Machado, 2007).

Under certain conditions, thalamic neurons can iggeeprecise rhythmic
discharges of action potentials that reach theegorthe thalamus is located in the
center of the brain, connecting its different paatsd all information reaching the cortex
passes through it. Information from the sensoryesys are sent to the thalamus, which
redirects it to specific areas of the cerebraleqgrtvhile information about the control
of voluntary movement traverse the thalamus inagyeosite direction. The thalamus is
mainly composed of gray mattdrin which multiple cores are distinguished. Figure
2.11 - A shows the location of the thalamus inldren. Figure 2.11 - B shows the main
nuclei of the thalamus and Figure 2.11 - C showsctimnectivity of each nucleus with
the cortex. The information from M1 passes throtighVentral lateral nucleus (VL) of
the thalamus where it is directed to some crareaves (lll, IV, V, VII, IX, X, XI and
XIl) and to the spinal cord (Bear, et al., 2008).

To illustrate the process of information flow thgbuthe thalamus, the senses of
tasting, hearing, vestibular and somatosensory beliquickly covered. The gustatory

information from different regions of the tonguedasral cavity is led into the bulb by

¥ The gray matter consists of cell bodies of neurahde the white matter is formed by myelinated
axons.
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three cranial nerves (VII, IX and X) after rising the Ventral Posteromedial nucleus
(VPM) of the thalamus, and finally reaching thenmairy gustatory cortex (area 43)
(Figure 2.11 - C). Auditory information captured &yditory receptors of the cochféa
is driven by the auditory nerve (cranial nerve Yt the medial geniculate nucleus of
the thalamus (MG) from where it goes to the primaugitory cortex (Al) (Figures 2.3
and 2.11 - C).

Right Left Lateral
Band of Thalamus Thalamus Anterior nucleus (A) dorsal nucleus (LD)

myelinated axons erebellum Mediodorsal nucleus (MD)
p— o
¢

Centremedian
nucleus (CM)

Ventral lateral
nucleus (VL)

F £ Ventral N
posterolateral (VPL) L Y Lateral

Ventral posteromedial
B (VPM)

Lateral Medial geniculate nucleus (MG)
geniculate nucleus (LG)

A

Figure 2.11 — (A) Location of the thalamus in thaib; (B) Schematic representation of the main eiucl
of the thalamus; (C) connectivity of each nucleith the cortex (adapted from what-when-how, 2013).

The vestibular system, which gives information d&bdbe position and
movement of the head providing a sense of balanckiven by the auditory nerve to
the Ventral Posterolateral and Posteromedial ngof@&L and VPM) of the thalamus,
projecting axons to regions close to the represientaf the face between S1 and M1.
The somatic sensory system, which involves theeseaftouch, temperature, pain and
body position sends the information from the sepseceptors through the spinal cord,
which continues to the medulla, pons and midbraitil it reaches the VPL and VPM
nucleus, which projects axons to S1 (Bear, e28D8).

The thalamus has a particular set of neuronal tedisoperate as the circuits of

Figures 2.8 and 2.9, providing self-sustaining ihyic discharge, even in the absence

2 The term “cochlea” is derived from Latin meanirspéil” (Bear, et al., 2008).
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of an external afference. The rhythmic activitytiése circuits becomes synchronized
with many other thalamic cells that are projectethe cortex by thalamocortical axons.
Thus, a relatively small group of centered thalagetls can compel a much larger
group of spread out cortical cells to follow theldmic rhythm (Bear, et al., 2008).

When a neuron or a neuron mass starts to spikdatdadelay in response to periodic

input it is called phase-locking.

The large number of cortical cells working in syraty induces a high
electrical amplitude activity that can be measurgckelectrodes on the scalp. It, then,
provides a large contribution to the EEG and iselp related to the ERD/ERS patterns
observed in the EEG during the performance of ni¢asks (Pfurtscheller & Lopes da
Silva, 1999). Hereinafter, for a better understagdf what occurs during the mental
tasks, an example of a pattern observed in the H&&to thalamocortical rhythms
during the opening and closing of the eyes wilshewn.

The visual information captured in the retina iswawcted through the optic
nerve (cranial nerve Il) and proceeds by opticadts to the lateral geniculate nucleus of
the thalamus (LG), which projects axons to lay&sahd VI of V1. Thus, when the
eyes are open, the nerve impulses are continualtginitted to the visual cortex. While
activated, the neuronal circuits block the sendihdhythmic activity from the thalamus
to V1, which undoes the synchrony. Local brain\aigtiincreases greatly because the
neural masses of V1 are processing a lot of inftona but the synchronization
between each neuron becomes so small that thetingsuiduced electrical activity
measured in the scalp is almost null. The resullsEEG waves of small amplitude,
high frequency and irregular rhythm knownfagl4 - 30 Hz) rhythm (Guyton & Hall,
2006).

When the eyes are closed no impulses are beingntitted to the visual cortex.
Then, the neural circuits allow the sending of hinyic activity from the thalamus to
V1, which become synchronized, or phase-lockedhésame frequency band as the
thalamic pace. Local brain activity decreases, it neuronal circuits of V1 are
synchronized at nearby frequencies, resulting imgh-energy pace, the (8 - 13 Hz)
rhythm (Guyton & Hall, 2006).

The resulting pattern indicates that when the eyesopen the EEG signal
measured over V1 shows a small amplitude at tlgpi&ecies of the rhythm, since the
neural masses are desynchronized. When the eyekaesl the EEG signal measures a

large amplitude at the frequencies of thehythm, since the masses are synchronized
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with the thalamic pace. This same association batvigh information processing and
low energy at the frequencies of rhythncan also be seen over M1, SMA and PMA
during the imagination of motor tasks, being theysublogical basis for the
phenomenon known as ERD/ERS. In the next sectiembtor circuit will be analyzed
in the same way as the visual circuit to understama the ERD/ERS pattern occurs

during motor mental tasks.

2.5 Direct pathway of movement

This section will analyze circuits that are invalven motor activity, linking
different areas of the motor cortex. The choicanifiation of voluntary movements
engage areas in frontal, prefrontal and parietekgpwhich are connected to the basal
nuclef!, deep in the brain. The basal nuclei receive rabgteir input signals from the
cerebral cortex and return almost all of their attpignals to the cerebral cortex. In
each hemisphere the basal nuclei are formed byahdate nucleus, the putarffen
globus pallidu&’, subthalamic nucleus and the substantia fiignahich are located
around the thalamus, occupying a large portiorhefihside of both brain hemispheres
(Figure 2.12 - Left). The caudate and putamen twgedre called the striatum, which is
the target from the cortical afference to the basalei (Guyton & Hall, 2006).

The basal nuclei project an afference, called bathe ventral lateral nucleus
of the thalamus (VL). The VLo afference is a prtie of axons from the basal nuclei
through the VL to the SMA, which is intimately intennected with the M1 (Figure
2.12 - Right). Thus, there is a path on which infation will cycle from the cortex to
the basal nuclei and the thalamus, and it comels toathe cortex as follows (Bear, et
al., 2008):

Cortex (frontal, prefrontal and parietal) Striate— globus pallidus— VLo — Cortex (SMA)

2 Improperly called basal ganglia, as the term “dgiangs only used for neural cluster in the PNS
(Machado, 2007). See footnote 3.

2 The term “putamen” is derived from Latin “putare&aming “to prune, to think, or to consider”.

2 The term “globus pallidus” is derived from Latin améng “pale globe”.

4 The term “substantia nigra” is derived from Latieaning “black substance” (Bear, et al., 2008).
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Figure 2.12 - Motor circuit. Green synapses arekethiwith sign (+) and are excitatory, while black
synapses are marked with sign (-) and are inhipitadapted from Bear, et al., 2008).

This neuronal loop is known as the direct pathwhynovement. The direct
pathway originates with an excitatory connectiorcootical cells in the putamen. The
cells of the putamen establish inhibitory synapseseurons in the globus pallidus,
which in turn makes inhibitory connections with theells of the VL. The
thalamocortical connection from the VL to the SM# eéxcitatory, facilitating the
triggering of cells related to movements in the SNIAgure 2.12 - Right). The
functional consequence of cortical activation of fputamen is the excitement of the
SMA by the VL. This is because neurons in globulicaes at rest are spontaneously
active and thus inhibiting the VL.

The cortical activation (frontal, prefrontal or peal) excites neurons of the
putamen, which inhibit neurons of the globus pakidwhich in turn remove the
inhibition of the VL, allowing VL neurons to beconagtive. The activity in the VLo
drives the activity to the SMA. Thus, this parttbé circuit acts as a positive feedback
loop that can serve to focus the activation of elisp cortical areas to the SMA. It is
speculated that the signal to start the motor égtoccurs when activation of the SMA
is driven above some threshold for the activityt tteaches it through the basal nuclei
(Bear, et al., 2008).

There is a direct afference from thalamus to Mlictvimainly originates from
another part of the VL, which is called the VLc.eTWLc retransmits the information
from cerebellum. The information that comes frora terebellum is related to motor
learning and ballistic movements. The ballistic miments are movements executed so
fast that the feedback can not act to control tlewement. For these movements, the

cerebellum relies on predictions based on expegieand it compares what was
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intended with what happened, thus conducive tol&laening process (Bear, et al.,
2008).

The cerebellum has one tenth of the total volumthefbrain, but it has a high
density of neurons in the cortex, in fact more tb@fo of the total number of neurons
of the CNS. To clarify the importance of the ceikle, the path that connects the
cerebellum to other parts of the brain has 20 timese axons than the pyramidal tract
(Bear, et al., 2008). The path that connects thebedum to M1 forms another
important motor circuit. However, as the movemasustrolled by the cerebellum are
not related to motor imagination, only the direathway of movement will be
analyzed.

In brief, during the performance of a mental tasknmmtor imagination, the
initial cognitive activity that manifests the inteam of performing the task originates in
the frontal cortex. This activity propagates to tpetamen through excitatory
connections. The activation of the putamen inhiltiie globus pallidus, which is
spontaneously active. Then, the inactivation of tlebus pallidus stops it from
inhibiting the VLo. The VLo stays active and it cegtransmit the signals to specific
areas of the SMA. The neural masses of the SMAbeilWorking with different aspects
of a complex cognitive task. The neurons will ben§ quickly, but not simultaneously,
which results in a low synchrony. Conversely, when motor mental task is being
performed, there will be no transmission of infotimia from the frontal, prefrontal or
parietal cortices to the putamen. When the putaimenactive it does not inhibit the
globus pallidus which inhibits VLo. The inactivityf the VLo allows the SMA to
receive signals from the thalamic pacemaker neli@rzuits. The SMA is connected
to the M1 through the afferences that extend imtged V of M1. Therefore, the
influence of the thalamic pacemaker signal can lbeeved in pyramidal neurons of
layer V of M1, which will present a synchronous aeior (Bear, et al., 2008).

The large number of pyramidal neurons in layer \tfhef SMA, PMA and M1
working in synchrony induces a high electrical aimple activity that can be measured
by electrodes on the scalp. Then, when no motortahéssk is being performed, the
EEG signal measured over the SMA, PMA and M1 wibw a high amplitude at the
frequencies that are in synchrony. This frequemdgrval, about 8 to 13 Hz, was
measured empirically and is knownashythm (Pfurtscheller & Lopes, 1999). During
the performance of a mental task of motor imagomatthe neural masses of the SMA,

the PMA and the M1 will be desynchronized and itl widuce a low electrical
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amplitude activity over this area. Then, the EE® mieasure a low amplitude for tie
rhythm.

Thep rhythm lies almost on the same frequency inteagahe aforementioned
rhythm. The distinction between them is mostly tleeation at which they are
measured. The p rhythm is observed over the semstmi cortex and the rhythm is
observed almost over the entire scalp. Despitedifferent nomenclatures for this
frequency interval, both of them occur due the gotipn of the thalamic pace over the
cortex.

Finally, this section discussed the physiologicib&&hind a clear pattern that
occurs during motor mental tasks and can be mehdwethe EEG. Thet rhythm
presents a low amplitude relative to the rest gerduring the motor mental task. No

specific mental task is performed during the restqal.
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Chapter 3: The EEG signal

The purpose of this chapter is to describe the giena the EEG signal, the
acquisition process and the EEG main rhythms atith@s. The end of this chapter
deals with the EEG SNR, the movement-related piaterand the ERD/ERS pattern.

3.1 Electroencephalographic signal

The electroencephalogram is the recording of tleetetal activity of a large
population of neurons of the cerebral cortex measion the surface of the scalp using
electrodes. The noninvasive method is the mostlubloavever, neuronal activity can
also be obtained by introducing the electrode withe brain tissue (depth recording) or
by placing electrodes on the exposed surface of Wh&in, which is called
electrocorticogram (ECoG) (Geisinger, 2005).

The EEG recording is relatively simple: about twazen electrodes are fixed in
standard positions on the scalp and connected piifaan channels of record systems.
Small voltage fluctuations, usually a few tens a€navolts (uV) are measured between
selected pairs of electrodes and then amplifiedallys between 5 to 30 thousand times
(Davidson, et al., 2000). A typical EEG recordikgglre 3.1) is a set of many irregular
simultaneous tracings, indicating changes in veltagtween pairs of properly grounded
electrodes. Each output signal of the amplifiertcada a record pen or is stored in a

computer memory (Bear, et al., 2008).
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Figure 3.1 - Typical EEG record (adaptaded fromrBegal., 2008).
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The EEG mainly records the extracellular currengét arise as a consequence of
synaptic activity in dendrites of neurons in theeteal cortex. The extracellular electric
field is manly generated by the Post-Synaptic Ra@k(PSP) that may be excitatory
(EPSP) or inhibitory (IPSP). When the action pasr{ttOOmV) reaches post-synaptic
dendrites, it causes a current flowing, that entbrsugh the synapse to the post-
synaptic dendrites of the next neuron. This curientalled extracellular activation
current, being of around 3 nA and it causes thagipotential within the post-synaptic
membrane, that is the EPSP. The current enterpdsiesynaptic dendrites toward the
som&>. It goes out into the extracellular fluid by thembrane capacitance of the cell,
and then returns to the dendrites making a cirqoddin. This circular current is called
excitatory postsynaptic current (Hashemi, 2012yFe 3.2).

The neuron has a rest potential, about 65mV, liddes not produce an external
electrical field. The cell membrane is formed by am phospholipid bilayer closely-
approximated by the infinite parallel plate caparitith capacitance around 0.01 B/m
between the intracellular and extracellular fluithus the electric field outside the
capacitor is zero and the rest potential has rlaante on the EEG signal. In the same
way, during the activation for the propagation ofaction potential the interior of the
cell jumps up by 100 mV, but it does not induceedectrical field outside the cell

membrane (Hashemi, 2012).
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Figure 3.2 — Electric field generated by extradaleurrents in pyramidal cells (Bear, et al., 2008

% The word “soma” comes from the Greek meaning “Bodire soma of a neuron is often called the cell
body.
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As mentioned in section 2.4, the neurons of théegaaire divided into six layers
parallel to the surface. These neurons belong ¢tokinds: pyramidal (layers Ill, V) and
non-pyramidal (layers 1, Il, IV and VI). Glial delhave spherical symmetry, not having
a common direction for the propagation of the eleal signal. As consequence of this
symmetry the resulting electromagnetic field isl {ubpes, 2005). The postsynaptic
potential of neurons generates extracellular etectields that have a bipolar
distribution, then, neurons can be modeled likenalsdipole. The orientation of the
dipole depends on the type of PSP that is occuminige neuron (Luck, 2005).

For example, EPSP occurs in synapses mediated &ynéurotransmitter
glutamate. Glutamate activates the opening of eati@nnels, allowing the flow of Na
ions into the postsynaptic dendrite. The flow of Neakes the soma positive in relation
to extracellular fluid (Figure 2.15 - A). IPSP ocsun GABA-mediated synapses
allowing the flow of Clions into the postsynaptic dendrites. The flowCbfmakes the
soma negative in relation to extracellular fluide@, et al., 2008). Therefore the
orientation of dipoles of excitatory and inhibitargurons is opposite (Luck, 2005).

The dipole of an individual neuron is impossiblenieasure by electrodes on the
scalp, but under specific conditions, the dipolésnany neurons are added together,
generating a resulting field that can be measurethe scalp. The dipoles need to be
spatially aligned and the PSP should occur at aqptely the same time, so that the
dipole activity adds up. If the neurons are randoariented the positivity of a dipole
would be canceled by the negativity of the adjackmble. Furthermore, if a neuron is
stimulated by an excitatory neurotransmitter ané@jacent neuron is stimulated by an
inhibitory neurotransmitter, the dipoles will hagpposite orientations and will cancel
each other. However, if many neurons having singt&ntations and the same type of
neurotransmitter are stimulated at approximatety $ame moment, then, the dipoles
will be added together and their activity may beaswged on the scalp (Luck, 2005).

Non-pyramidal cells are mostly inhibitory, mediatbg the neurotransmitter
GABA, with the exception of interneurons that cam dxcitatory or inhibitory. These
cells have bipolar distribution and in majority llseommon neurotransmitter, however,
their random orientation cancels the electromagriid resulting from the dipoles.

Pyramidal cells are excitatory and use a commomrateunsmitter glutamate.
They have a resultant electric field with bipolanfiguration (Figure 3.3 - A) and are
spatially aligned perpendicularly in the cortexgiifie 2.10). Thus, they are the main

contributors to the formation of the electrical reats recorded as the EEG. Most
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pyramidal cells have their axons directed to thedaitmus and basal nuclei, so that the
soma which is relatively positive is below the pgs@aptic dendrites that are relatively
negative and closer to the surface of the corteguré 3.3 - B shows the bipolar
configuration of the electric field of pyramidalurens in an active cortical region, in
which the outer surface is negative and the inegion is positive. Figure 3.3 - C shows

the equivalent dipole resulting from this regiomu¢k, 2005).
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Figure 3.3 — (A) Bipolar configuration of the electfield of a pyramidal neuron during a PSP; (B)
Bipolar configuration of the electric field of a naynidal neurons of an active cortical region; (C)
Equivalent current dipole of the active corticadion (Luck, 2005).

Extracellular electric fields generated by neurans attenuated and scattered
when crossing the skull toward the scalp due toldkaeconductivity of the skull that
acts as a low pass spatial filter (Davidson, et2000). The skull thickness can vary
from 3.3 to 6 mm depending on its location, whiduses a variation of electrical
resistance (Tang, et al., 2008). Therefore, thépsdiatribution of the electric field is
mainly distorted by variations in the conductividi/the skull, but it is also affected by
the conductivity of the mening®sand the skin (Figure 3.2).

The EEG electrode is made of a very conductive nadte order to measure the
electrical potential difference induced by the desi electric field of the scalp, relative

to a reference point. However, only with the cdnmition of small voltages of thousands

% Meninges is the plural of meninx, from Greek “mesr®”. The meninges are the system of
membranes that envelope and protect the CNS (spamd| brainstem and brain) and it consists ofehre
layers: the dura mater, the arachnoid mater, amgitomater.
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of cells firing together can this signal be sufmily intense to be detected on the
surface of the scalp. This population of neurornsalted the neural mass and consists of
10" to 10 neurons (Azevedo, 2005). The joint activation efions in a neural mass is
called synchronism. If the synchronous excitatidnthes group of cells is repeated
several times the EEG will consist of large rhytbmaves (Bear, et al., 2008).

Figure 3.4 shows the generation of large EEG s&gbsl neural synchronous
activity. Figure 3.4 - A shows six pyramidal neusowherein the PSP is measured
between a pair of sensors at their extremitiese(gteiangles). In Figure 3.4 - B the
neurons are activated in irregular time intervald the summed PSP activity of all six
neurons has small amplitude. In Figure 3.4 - Cnigrons are activated synchronously,
and the summed PSP activity of all six neurons tigher amplitude (Bear, et al.,
2008).
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Figure 3.4 — (A) Pyramidal neurons beneath EEGtmde; (B) Unsynchronized neuronal activity; (C)
Synchronized neuronal activity (adapted from Beagl., 2008).

The silver electrodes wrapped in silver chlorideg/®gCl) were used until the
1980s, since silver is the best electricity conduamong the metals, with resistivity) (
of 1.59 x 16Qm. Recently, electrode caps, e. g., caps fromdhgpanies Electro-C&p
and MedCap, use tin electrodep 1,09 x 10Qm), a good conductor and also inert
to oxygen, thus, resistant to corrosion (Luck, 206%r a comparison, the white matter
resistivity is about 6.22m, the cortex (gray matter) resistivity is aboud 8&m, the

cerebro-Spinal fluid resistivity is about 0.6Xm and the skull resistivity is about 120
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Qm (Hashemi, 2012). Figure 3.5 shows the concespiwrical head model proposed
by Rush & Driscoll (1965) in which the brain, inding white matter, gray matter and
meninges have a resistivity of 2.28n, the skull has a resistivity of 1Z€Im and the

scalp has a resistivity of 2.22m (Malmivuo & Plonsey, 1995).

Scalp 2.22 Om
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Figure 3.5 — Concentric spherical head model pregpdy Rush & Driscoll (Malmivuo & Plonsey, 1995).

The internal impedance comprises the impedanceh@fwthite matter, gray
matter, cerebro-Spinal fluid, meninges and skullilevithe external impedance
comprises the contact impedance and the impedahadectrodes, wires and the
amplifier system. The model of the external impedamnly considers resistance,
because the effect of the brain's electrical pénnit and permeability is negligible at
EEG frequencies, therefore, a capacitor and anctoduare not included in the
equivalent circuit.

The electrodes are fixed to the scalp using a ged oonductive electrolytic
paste. This paste is intended to reduce the comgpetdance between the electrode and
the skin. Usually the value of this resistance maestiower than 5 ® (Luck, 2005,
Ford, et al., 2004). As the amplifiers of the EEGusition circuit have very high
impedances, typically in the range of 1Q0Q, ksariations in impedance of the electrodes
in the order of a few thousand ohms have negligdéfect on the measured voltage
(Davidson, et al., 2000).

By adopting the maximum value for the contact tasise lower than 5¢&, the
contact resistivity of a common disk tin electradéh 1 cm of diameter and roughly 0.5

cm of length can be calculated by:

R=p(L) o 50000 = p(—200™ Y, ) _7853080m.  (3.0)
A m(0.005m)?2
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wherel is the length of the electrode aAds area of the electrode. Then, the contact
resistivity is lower than the skull resistivity g by Kevan Hashemi (120m) what

assures a current flow into the electrode.

3.2 EEG acquisition

Regarding the naming and placement of the electrasethe scalp, in 1958
Herbert Jasper suggested a system which is now usmttiwide; it is called
“International 10-20 System” (BdOcker, et al., 199%) Figure 3.6 - A electrodes on the
edges of the scalp are located at 10% of the distaiovered along the curved
horizontal line connecting the nasion to the intbnough the preauricular point, in
which this percentage is related to the lengthhef ltne connecting the nasion to the
inion through the vertex. All electrodes are paosied with 20% of distance between
each other. Then the “10” and “20” numbers of theernational 10-20 System” refers
to these percentage values. The electrodes arednayree capital letter corresponding to
the initial of the brain lobe where they are plafeéd Frontal, C = Central, P = Parietal,
O = Occipital and T = Temporal), followed by an eveimber for the right hemisphere
and an odd number for the left hemisphere. Therlé&” is used for electrodes placed
in the ear (from “auricular”). For the electrodeaqged in the frontal lobe, near the
nasion, the letter "p" is added (Fp = Frontal polE)r the electrodes in the line
connecting the nasion to the inion, the letterrdated to "zero" is used rather than a
number, indicating the central division of the bhraemispheres (Figure 3.6 - B) (Luck,
2005). Figure 3.6 — C shows the International 1B¥6tem and it is worth noting that
the T3, T4, T5 and T6 electrodes of the 10-20 sydtave different names (T7, T8, P7
and P8, respectively) in the 10-10 system.

If the electrical potential of the scalp was meaduwith only one EEG electrode
relative to the ground of the acquisition circthig circuit would measure only the static
electricity difference between the scalp and threudi, which is much larger than the
neural activity. For comparison, the neural acfigenerates voltage changes in the
order of tens of microvolts while the average stalectricity of a human body is
around 4 to 35 thousand vdits

2" The average electrical resistance of a human Bobgtween 1.3 to 3(kand the average capacitance
is around a few hundred of picofarads. Further,ctqgacitance model of the human body, as defined by
the Electrostatic Discharge Association (ESDA) i$00 pF capacitor in series with a resistor ofkiR5
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T

Preauricular
point

Figure 3.6 — A) and B) International 10-20 Syst&pinternational 10-10 System (Malmivuo & Plonsey,
1995).

However, even using the voltage difference betwaenelectrodes in the scalp
to create an EEG channel (C), any noise that affdget ground or the power of the
acquisition circuit also would mask the neural\atti To solve this problem the EEG
amplifier system uses differential amplifiers witiree electrodes in order to create a

channel: an electrode called “acti¥eelectrode (A), one reference electrode (R), and a

charged with voltages from 4 to 35 kV. In this moa@eapacitor with initial voltage of 35 kV provisian
electrical current below 5 mA after 1,3. Thus, the high voltage acquired by static elg@ttrfrom the
human body provides currents above the thresholilinfan perception, which is around 5 mA, during
instants of time lower than 1,& and no electrical discharge is noticed.

% This electrode is called “active” to distinguigkeilf from the ground and reference electrodes,iand
measures passively the scalp potential. It shooldbe confused with active electrodes that actually
perform the signal amplification.
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ground electrode (G). The differential amplifier @ifies the voltage difference
between Vs and ke (C = Vac - Vre), and the common noise that affects the ground
of both measures is eliminated (Luck, 2005).

The ground electrode is usually positioned on tbhathl bone to minimize the
noise of muscular origin. Its potential is cancetbating differential amplification.
Therefore, its location is not as important as lthetion of the reference electrode.
There is no ideal “neutral” place to position tleéerence electrode, so it should be kept
in mind that the EEG signal from one channel alwafkects the contribution of both
active and reference electrodes. The referencérediecis usually attached to one ear
lobe or to both.

Figure 3.7 shows the ground electrode (G), thereafie electrode (R) and the
active electrode (A) on the scalp area of intetesmeasure the EEG. The ground
electrode is positioned in the frontal region; teierence electrode is positioned on the
left ear; and electrode (A) is positioned over dleeipital lobe of the left hemisphere in
order to create the channel O1. This figure alswshthe resulting dipole of an active
area of the cortex and its potential distributiorerothe scalp. In this exampleay is
lower than \kc and, therefore, the calculated potential for OlL va negative.

Figure 3.7 —Grounding electrode (G), the referegleetrode (R) and the active electrode (A) in otder
compose the occipital channel O1.

The EEG signal is represented by a number sequedeeed with respect to its
temporal evolution. The potentialh¥ (t) and \ke (t), and the channel O1 (t), are shown
in the text without reference to its time instamgtjfor simplicity. Thus, in this Thesis,
all operations involving variables without the timmeference are considered non-
recursive, being applied only to the same instanhee.

For the EEG acquisition with multiple locations hare three distinct ways of
electrode derivations in order to create the chiantégpolar method, unipolar method

(or common electrode/reference) and Common Averdagterence method (CAR).
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Figure 3.8 - A illustrates the bipolar method inietheach channel (T3, C3, C4 and T4)
is the difference of potential between two neiglvprelectrodes (Al, A2, A3, A4 or
A5). It may be noted that in this method there asfined reference electrode and the
number of channels is always smaller than the nunabeelectrodes. It must be
remembered that the grounding electrode is prdseatl three kinds of derivations.

T3 C3 C4T4 C3 Cz c4 C3 Cz C4 C3 cz C4

. _VrigtV _C3+Cz+C4
T3 =Vaie- Vaze C3 = Vasa- Ve PGS ﬂ;?ﬂG M = _3__

gi _ \\ﬁmz Y/‘“G Cz=Vams-Vre C3=Vaig-Vhes  C3'=C3-M

T4 = VA4G- VA3G C4 =Vase-Vre  Cz=Vax- Vke Cz'=Cz-M
A5G A4G C4=VASG-VhG C4'=C4-M
A B C D

Figure 3.8 — (A) Bipolar method; (B) Unipolar metho(uniauricular reference); (C) Unipolar method
(biauricular reference); (D) CAR method using tiéauricular reference.

Figure 3.8 - B shows the unipolar method, which &asference electrode (R)
common to all channels. The measured voltage islifference between any electrode
and the reference. Figure 3.8 - C shows the unipukthod with biaricular reference
electrodes (R1 and R2), in which the measured gelia the difference between any
electrode and the average values of the referdactales.

In the CAR method the signal is originally acquirey the unipolar method
(Figure 3.8 - B, channels C3, €2C4) and then channels C3’, @C4’ are formed by
subtracting the average reference potential (Minftbe unipolar potentials (Figure 3.8

- D). In general, consideringchannels,

1
C’i:Ci__'ZCi . (32)

where C; is the i-th channel, an@'; represents the i-th channel using the common
average reference. As the common average prigisignals that are present in a large

number of channels, the subtraction leads to tingredtion of these signals, working as
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a high-pass spatial filter, i.e., it emphasizes ponents with highly localized
distributions while eliminating components that acgnmon to most channels, such as
the biological external noise (Estébanez, 2003 yvAde, 2005).

Thus, a time-varying external noise, which equalffects all electrodes, is
theoretically eliminated by the CAR method. Suppibse there is a noise that affects
the grounding potential of the acquisition systeWfxs, and a biological noise
componentB from the human body that equally affects the padémif all electrodes

over the scalp, ¥, then the potential of the electrodes (A) andrexfee (R) will be,

{VAG = Vg + Vae + Ve (3.3)

Ve = Ve + Ve + Vi

where 7V represents the potential measured by the elecirodiee absence of noise.

Thus, the channel @alculated with the CAR method will be given by,

n

n n

, 1 1 1

Ci=Ci_£'zci=VAG_VRG_£'ZViG_VRG =VAG_£'ZViG(_)
i=1 i=1 i=1

n
N 1 N
c' :VAG+VBG+VXG_E'ZViG-I_VBG-I_VXG ©
i=1

C’=VAG_

Sl

n
'ZViG - C' = V. (3.4)
i=1

In equation (3.4) the channel C’ will be free alise X affecting the grounding
electrode and also the biological noiBethat ideally equally affects all electrodes.
Finally, assuming that the activity of the differdmain areas is uncorrelated and can be
considered random, it then follows that, as the Imemof electrodes increases, the

averaged reference (M) approaches zero. Thusuthe1$’n - " | Vrr can be discarded
and the potential measured in channel C' increfgibgcomes independent of the
fluctuations of the reference.

Figure 3.9 shows the decrease of the average nefer@gVl) amplitude as the
number of channels increases. It can be seen thahds to be a constant different than
zero. This is because the ideal assumptions tkeaadhvity of the measured brain areas

is uncorrelated and fully random and the biologieslernal noise equally affects all
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electrodes are not completely valid. This figureswabtained with the EEG of 60
repetitions of the motor mental task of imaginatmmovement of the right hand.
Details of the mental task experiments are mentidnechapter 5, section 5.1. This
figure shows that the reference amplitude decrefisps 26.3 £ 3.4 uV to 16.5 + 2.8
KUV by using 19 channels. The error bars are thedata deviation calculated from the

60 experiment repetitions.
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Figure 3.9 — Decrease of the average referencetanpls the number of channels increases.

A linear regression was performed (Figure 3.9)which the intercept (a) and
the slope (b) are 24.8 and -0.5, respectively. liffear regression gives estimation in
which for each added channel the reference amplitsdould decrease 0.5 pV.
Although those ideal assumptions can not be asswvid 50 roughly independent
channels, the reference amplitude potential shbeldhear to zero or at least smaller
than the actual potential.

3.3 Main EEG rhythms

The EEG signal has specific features in definedueacy bands. It is known
that the performance of some activities, such asepslrelaxation or mental effort is
related to specific frequency bands, which can dwennduced, blocked or changed
during a mental task (Pfurtscheller & Lopes, 199)e main frequency bands are
denoted by Greek letters; B, vy, 6, p and 6. Each band is generally observed at a
specific location and circumstance, such ashythm is observed in the frontal lobe
during deep sleep; rhythm is observed in the occipital lobe when ¢lyes are closed,
and p rhythm is observed in the motor cortex during trexformance of a motor
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activity. The normal oscillatory activity (Figurel®) is classified into infra-slow (0.02-
0.1 Hz), slow (0.1-15 Hz), fast (20-60 Hz) andafiist (100-600 Hz).
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Figure 3.10 — Coverage of the EEG frequency specfithalamocortical oscillations, 2013).

The most important EEG features are comprehendéeguencies that extend
to 30Hz. This frequency range is subdivided intougis or rhythmsg( 0, a, u andp)
related to the location of measurement and the bérficequencies, as shown in Table
3.1.

Table 3.1 - Frequencies occurring in the humambi@heein, 2005).

Banda Frequency (Hz) Amplitude (pV) Localization
Delta @) 1-4 <100 Variable
Theta 0) 4-8 <100 Variable

Alpha (@) 8-13 20 - 60 Occipital

Beta @) 14 - 30 20-30 Frontal and Parietal
Mu (w) 8-13 <50 Motor cortex
Gammat) 25-100 <50 Variable

Regarding the ultrafast activity (100-600 Hz), Keudashemi (2012) reported
that the highest frequency fluctuation observethe@nEEG is up to 120 Hz. He showed
that the High-Frequency Oscillations (HFO) and Vétigh-Frequency Oscillations
(VHFO) reported to exist in animal and human EEGnigny recent papers (e.g. see
Gonzales, et al., 2006) may be artifacts of barss-ffdgtering or a mismeasurement, i.
e., an artifact by electromyographic activity rethto other neural functions, such as
minute eye movemerfts

The activation period of a single neuron is abouing thus, the activation
frequency of a neuron can not be greater than 500THe refractory period of a single

neuron is of order 10 ms, which will prevent anyimo® from firing much faster than

% Minute eye movements, also known as saccade,aateefe movements of a few minutes of arc, in
which there is no conscious control of the speed.
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100 Hz. Because EEG is generated by large numbbersuoons acting coherently, it is

impossible for EEG to include a fundamental ostdla frequency much higher than

100 Hz. Finally, Kevan Hashemi asserts that hesesnno mechanism by which such

an oscillation could take place, neither in a grofipeurons acting coherently, nor in a

single neuron acting alone.

Because of this, the HFO and VHFO of the EEG wallnot investigated in this

Thesis and for all posterior analysis (describedhapter 3) a sampling rate of 200 Hz

will be used, that ensures the observation of taarfrequency bands.(, v, 8, u and

0). In what follows, the mental states associateth véiome frequency bands are

described.

& Rhythm: frequency band between 1 and 4 Hz. leggstered in individuals in
deep sleep, and also may appear related with sathelpgical states.

8 Rhythm: frequency band between 4 and 8 Hz. Theasigas higher amplitude,
in relation toa andp rhythms. It is found on the frontal region duringental
activities such as problem solving and in the terapand parietal regions
during emotions of stress, disappointment and riatist.

a Rhythm: the International Federation of Electrapialography and Clinical
Neurophysiology defines therhythm as the frequency band between 8 and 13
Hz occurring in awake people over posterior regiohthe brain, with typically
higher voltage over the occipital areas. The amgtis variable but it is almost
always below 5QuV in adults. It is more easily detected with eyéssed and
subject conditions of physical relaxation and miemactivity. It is blocked or
attenuated by attention, especially visual, andnaytal effort (Guyton & Hall,
2006). Also, the mental imagination of sound gelheklicits an increase of
band activity (Schaefer et al., 2011a).

1 Rhythm: frequency band between 8 and 13 Hz.dtrisythm associated with
motor activities and best acquired in the mototeparlt is blocked or attenuated
with movement or the intention to move. As previgumentioned in section
2.5, despite its frequency range and amplitudegosimilar to thex rhythm, the
u rhythm is topographically and physiologically @ifént from thea rhythm
(Estébanez, 2003; Azevedo, 2005).

B Rhythm: frequency band between 14 and 30 Hz, lesmer amplitude, and

usually caused by the opening of the eyes, being state of wakefulness or
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REM sleep (Rapid Eye Movement). It is blocked bytonactivity and tactile
stimulation (Guyton & Hall, 2006).

* vy Rhythm: frequency band between 25 and 100 Hz.ldWwey band (25 to 40
Hz) has been shown to be present during the péscept sensory events and
the process of recognition. In this Thesis, thighin will be especially studied
because the information about the mental task ofienimagery is not
consolidated yet. It is known that the mental taSknusic imagery only faintly
activates the tertiary auditory cortex (A3) andaiso could include high-
frequency activity.

Figure 3.11 shows the brain rhythms described alaonethe attenuation of
rhythm measured on the occipital lobe while theseyere open. The replacement of
thea rhythm for an asynchronoiisrhythm of small amplitude when the eyes are open

was exposed in section 2.4 and it shows the EEg¢dhsonization.

Apha  WWAAWWMIA A~ Theta WWV"’W[L./V\/’]JVW
geta WMWY D50 Deta NI AN T

1 sec 1 sec

—
Eyes open Eyes closed
Alpha WMMW 50 uv

1 sec

Figure 3.11— Brain rhythms o, B, 6 and 5. The EEG signal at the bottom shows the occipital
desynchronization measured when the eyes are apgapted from Guyton & Hall, 2006).

In general, the rhythms of low amplitude and higdgtiency are associated with
wakefulness and alertness or the stage of sleepich dreams occur. Rhythms of high
amplitude and low frequency are associated witlgestaof dreamless sleep and the
pathological state of coma. This is logical, beeawhen the cortex is more actively
involved in the processing of information, may #née brought by sensory afferents, or
generated by internal processes, the level of iactof cortical neurons is relatively
high, but also desynchronized. Each neuron or v seall group of neurons is heavily
involved in a slightly different aspect of a complognitive task, firing rapidly, but not
simultaneously in relation of its neighboring newsoThis leads to a low synchrony and
thus, the amplitude of the EEG is low ghchythm prevails (Bear, et al., 2008).
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In contrast, during deep sleep, cortical neuroesnat busy with the processing
of information, and most of them are excited ingghhy a slow and rhythmic afference.
This rhythmic signal or pacemaker originates in dseillatory neuronal circuits of
thalamus, which imposes itself on the neurons efdbrtex. Thus, the synchrony is
high, and therefore the amplitude of the EEG ie Aigh (Bear, et al., 2008).

3.4 Artifacts

The EEG signal is easily corrupted by other eleatrsignals, due to its small
amplitude. The noises found in biological signalsisas the EEG are called artifacts
that belong to two categories related to its saueehnical artifacts and physiological
artifacts (Azevedo, 2005). Technical artifacts @calue to external electrical
interference or malfunction of the EEG device (glmbes, wires, amplifiers, filters,
power supply).

The main kinds of technical artifacts are grid lemtifacts and fluctuations in
electrode impedance. The grid line artifacts anesed by magnetic interference from
sources of AC voltage. This artifact shows a typitaquency of 50 Hz or 60 Hz
depending on the frequency of the grid line (inAfra is 60 Hz). It can be removed by
the use of properly tuned filters without signifitdoss in the EEG signal information.
Alternatively, short wires can be used betweendleetrode and the amplifier, or the
measurements can be performed in a shielded romure~3.12 shows the frequency
spectrum of the EEG channels Fpl and C3 in whiehgtid line artifact is present in
the 60 Hz component. The phase spectrum shows efal usformation. These EEG
signals were acquired during the mental task ofgimation of movement of the right
hand, which occurred between 5 and 15 s. The wmipolethod with the reference
electrode on the left ear lobe and the ground mdet on the user’'s forehead was
adopted.
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Figure 3.12 — EEG signal with grid line artifactdagye blinks artifacts (the mental tasks experimang

mentioned in chapter 3, section 3.8).

The artifacts due to fluctuations in electrode ingo&ce are usually caused by
poor fixation of electrodes and by sweating. Theacfions skin-electrolyte and
electrolyte-electrode cause a DC level in the edelet This DC level reaches values
from 0.1 to 1.7 V, which is much higher than theG@&ignal. Therefore, it is necessary
to use high pass filters in the input of the anmld (Lopes, 2005). Traditionally the
EEG systems configure their high pass input filteysadjusting its time constant)(
between 0.32 - 0.08 s (0.5 - 2.0 &2)

The physiological artifacts originated from integiece of the EEG with other
biological signals, among which the main artifaats the artifacts from eye movement,
muscle artifacts and the electrocardiogram (ECG).

Artifacts from eye movement are due to eye movemaeavhich generate a
continuous potential difference between the coramed the retina that forms the
electrical dipole for each eye (Figure 3.13 - AheTCornea-Retinal Potential (CRP)
amplitude is between 10 to 30 mV. This potentiamiginly derived from the Retinal
Pigment Epithelium (RPE) and it changes in respdadeackground levels of retinal
illumination. The eye movement causes a rotatiothefdipole; and this signal, known
as electrooculogram (EOG), is measured by skintrelées placed near the inner and
outer canthi of the eye (Figure 3.13 - B). The ¢gbEOG amplitude is between 0.25 to

% The first-order high-pass filter cutoff frequen(@g) is given by: f, = 1/2m ,T=RC.
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1 mV, which is much higher than the EEG amplitudegh an essential frequency
content of 0 to 30 Hz and higher energy at low diesgcies (Marmor, et al., 2011). So,
the EOG propagates through the skin to closer relées causing an increase or
decrease in the EEG baseline, which mainly affée$ and6 bands (Figure 3.13 - C)

(Croft & Barry, 2000).

Left Right Left Right
a) AR " b)

Figure 3.13 — a) EOG schematic; b) EOG electrodeguhent (Duane, 2006); ¢) Ocular dipole rotation
affecting the EEG baseline.

Muscular artifacts are due to electrical signalstesl to muscle contraction
(electromyography - EMG), particularly due to mowsts of the head, neck or eye
blinks. Usually, the patient is asked to not mdwarteyes and not blink during the EEG
acquisition. It is known that electrodes at tempdf@, T4, TS5 and T6) and lateral-
frontal sites (F7 and F8) are particularly affedbgdfacial muscle artifacts, from tension
or jaw movements (Davidson et al., 2000). In gdnérantal and temporal electrodes
are more heavily contaminated by artifacts thentraeérscalp channels (Jung et al.,
2000). Eye blink artifacts are represented by afi@guency signal (< 4 Hz) with high
amplitude. It is a symmetrical activity mainly laed on the frontal electrodes (Fpl and
Fp2) with low propagation. Eye movements are abgmasented by a low frequency
signal (< 4 Hz) but with higher propagation (Gar&dseber, 2011).

Figure 3.12 - Left shows the raw EEG of channel,id Figure 3.12 - Right
shows the raw EEG of channel C3. Five eye bliniaats can be seen in the raw EEG

of channel Fp1, which are the major peaks obsearvédte EEG signal. It is important to
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mention that the signal from both channels, Fpl @Bdwere collected simultaneously
in the same experiment. The channel C3 did noteptesisible eye blink artifacts,
however, the frontal channel Fpl that was closeh¢oartifact source was much more
affected. From the graphics on the bottom of tigsire it can be noted that the eye
blink artifacts have low frequency components, Ugubelow 10 Hz. The bilateral
amplitude spectrum of channel Fpl shows that tiveflequencies of this channel have
higher amplitudes than the low frequencies of clea@3. There are prominent peaks at
approximately 10 Hz and 20 Hz in the bilateral atnde spectrum of channel C3, and
those peaks represent the pu @nbdand activity. As the channel C3 did not present
visible eye blink artifacts it could be erroneousbncluded that the EOG artifact has
little or no influence in channels that are distaiot the artifact source, which in this
case are the eyes.

But, the influence of the eye blink artifacts caa deen in the periodogram of
channel C3, where there is low frequency activigwring in the same instant in which
the blink artifacts occurs in the channel Fpl. FegB.14 - Left shows the raw EEG of
channel Fpl and its periodogram. The middle paRigdire 3.14 shows the raw EEG of
channel C3 and its periodogram and the right pathis figure shows the EEG of
channel C3 high pass filtered and its periodogram.

raw EEG -Fp1 raw EEG -C3 EEG -C3 (filtering)
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Figure 3.14 — Eye blink artifact on EEG. Left: EE&hd periodogram of channel Fpl heavily
contaminated with low frequencies from eye blinkifacts; Middle: EEG and periodogram of channel C3
contaminated with low frequencies from eye blinkifacts and the artifact from the power grid line;
Right: EEG and periodogram of channel C3 after dipglthe CAR method and a high pass filter with
cutoff frequency of 5Hz.
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The periodogram of the raw EEG of channel Fpl shtweslow frequency
activity, below 5 Hz, related to the eye blinks eBwvithout eye blink peaks in the time
course of the raw EEG of channel C3, its periodogshows some low frequency
activity related to the eye blinks. The periodografrchannel C3 also shows the grid
line artifact (60 Hz) that proportionally affectsid channel more than channel Fpl.
Finally the EEG on the right part of Figure 3.140wk the channel C3 after the
application of the Common Average Reference (CARJ a high pass filter with a
cutoff frequency of 5 Hz. The periodogram of tlileefed EEG highlights a peak of
activity at around 10 Hz, which is a feature ofenaist for the identification of the
mental task. Some methods for avoiding, detectimgj discarding or minimizing the
EOG and blink artifacts will be discussed in th&treection.

ECG artifact due to the cardiac electrical actiign also be recorded on the
scalp and affect the EEG. Figure 3.15 - A showkBG recording corrupted with ECG
and EOG artifacts. Figure 3.15 - B and C showeesgely real ECG and EOG signals.
The peak of the QRS compféxf the ECG can be seen in the EEG signal and @@ E
baseline fluctuations do influence the EEG basegldarcés & Leber, 2011). Another
ECG related artifact is the ballistocardiogram (BCThe BCG are micro-movements
generated due to the heart pulsations that affeet& EG electrodes and wires (Ford, et
al., 2004).
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Figure 3.15 — a) EEG signal corrupted with ECG &®@G artifacts; b) ECG signal; ¢) EOG signal
(Garcés & Leber, 2011).

31 Typically an ECG has five deflections, arbitranilgmed P, Q, R, S and T waves. The QRS complex is
a name for the combination of three of the graphdedlections seen on a typical ECG. It is usuétig
central and most visually obvious part of the tngciThe peak of the QRS complex occurs at the Rewav
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Beyond the interference from technical or physiaabartifacts, the EEG is
also affected by the electrical activity of theibraself. The EEG of an area of interest
is a mixture of unrelated signals from neighboricaytical areas that are scattered
around and attenuated by the skull and scalp. #ide considered a special type of
artifact, for which there are no exact solutions $eparating it from the EEG signal.
This problem is known as the inverse problem theditionally has infinite solutions,
due to the nature of its variables. A particulareirse solution using the calculation of
Local Field Potential (LFP) is called ELECTRA (Geaste Peralta et al., 2005). Another
solution uses the distribution of cortical extradar currents, known as Cortical
Current Density (CCD) (Cincotti et al., 2008).

3.5 Spatial filtering

Filtering methods are aimed to eliminate the fremyecomponents in which the
noise is present. For this purpose, high-pass,dass, band-pass or band-reject filters
are used. As mentioned in the previous sectiongtiieline artifact has a well-defined
spectral component around 50 or 60 Hz. Thus, ahnfiiter can be used to eliminate
this kind of artifact. The physiological artifac®jch as the ECG, EMG and EOG, have
overlapping spectral components with the EEG spettFigure 3.16 shows an analysis
of the coherence between the EEG signal of charffigland C3, measured by the
bipolar method (Figure 3.8), and the EMG signal sneed bilaterally in the deltoid
while performing extension movements of the finggsaimann, et al., 2002). It may
be noted that the spectra overlap throughout thgeraf frequencies (Figure 3.16 - B)
and that the higher coherence is obtained betwesmd6l6 Hz, completely corrupting
theao/p rhythm (Grosse, 2004).

Therefore, the filtering technique is not able empve all the interference from
the ECG, EMG and EOG signals. To minimize the actifthere are two classical
approaches: the spatial filtering and some metHmmised on high order statistical

separation (HOS).
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Figure 3.16 — (A) EEG (F3-C3) and EMG; (B) EEG a@BblG Amplitude spectrums; (C) Coherence
between EEG and EMG. The horizontal gray line s #%% confidence interval (Grosse, 2004); (D)
Deltoid muscle.

Spatial filtering is applied to the raw EEG in arde reduce the correlation
between channels caused by the spreading of thaldigm the cortical source to the
scalp and, therefore, improve the reliability oé tBCI. Four spatial filters, namely a
standard ear reference, a Common Average Refe(@#dR), a small Laplacian, and a
large Laplacian, will be discussed below. FigurE/3shows these four spatial filters in
relation to the electrode C3 (highlighted in reldpr CAR and Laplacian methods the

mean activity of black electrodes is subtractedhftbe activity recorded in C3.

Ear Small Large
Laplacian Laplacian

Reference

Figure 3.17 — Electrode location for the spatiiifs analyzed (McFarland et al., 1997).

As mentioned in section 3.2, the CAR method is thase the assumption that
external biological artifacts affect all EEG electes in approximately the same way,
due to the considerable distance from the noiseceow the electrodes on the scalp.
Therefore, the CAR method requires the subtracBample to sample, of the average
signals from the channels obtained from a commdereace, such as the ear. As the

common average prioritizes signals that are praseatlarge number of channels, the
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subtraction leads to the elimination of these sigrwrking as a high-pass spatial filter
(Estébanez, 2003; Azevedo, 2005).

The small Laplacian method requires the subtracsample to sample, of the
average signals from the channels in a neighborketiin a radius of 3 cm around the
analyzed channel, also obtained from a commonearéer, such as the ear. It also works
as a high-pass spatial filter. The large Laplacrethod works in the same way as the
small Laplacian, and requires the subtraction, sangsample, of the average signals
from the channels in a neighborhood within a raddiss cm around the analyzed
channel, also working as a high-pass spatial filter

The study of spatial filters presented by McFarlab@l. (1997) concluded that
the CAR and large Laplacian methods would be slaitdor BCls based on the
paradigm of motor imagination. The motor cortex hasdius of between 6 to 12 cm,
thus, Laplacian filters over the motor cortex wahradius smaller than 6 cm would
attenuate the information from the motor corteelftsin this Thesis motor and non-
motor related tasks were used, however, as thet exaz of the brain areas that are

active during the mental tasks is not known, thdRGAethod was adopted.

3.6 Methods for avoiding, discarding and minimizingartifacts

As the spatial filters can not eliminate all agifaomponents, some methods for
avoiding, detecting and discarding or minimizing tBOG and blink artifacts will be
discussed. The first consideration for avoiding H®G artifact is to provide a fixation
point during the mental tasks that help in avoidthg eye movement artifact. For
example, during our experiments subjects were uostd to observe a cross in the
center of the screen, such as done by Ford, €G04).

The simplest approach to deal with the remaininifaat is to perform a
threshold analysis. For example, whenever EEG Ednam selected frontal channels
exceed +5QuV , a 0.5 s time window centered around the EEk pédhese electrodes
will be discarded in all EEG channels; such as d@ase by (Croft and Barry, 2000;
Jung et al., 2000). Another simple alternative gghe threshold analysis is to replace
the identified artifact window by a filtered EEGorFexample, during our experiments
the identified artifact window was replaced bylgéefed window using a FIR equiripple
highpass filter set to 5 Hz, with a forward andenese order filtering algorithm in order

to cancel the effect of phase distortion.
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Figure 3.18 shows the same trial previously shawhigures 3.12 and 3.14 that
Is contaminated by five eye blink artifacts. Fig@t&8 shows the EEG of channels Fpl
and C3 and their periodograms for each signal. gémodogram was calculated by
using the Power Spectral Density (PSD) with Hammimgdows of 1 s overlapped by
25%. This figure shows the raw EEG, the applicatafnthe CAR method, the
discarding of artifacts by using the threshold gsialand the filtering method. It can be
seen that by only using the CAR method the lowuesgy artifacts of eye blink are
still present in the periodograms of both chanrgtd, and C3.
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Figure 3.18 — EEG of channels Fpl and C3 and theiiodograms during the application of the
following cases: raw EEG; CAR method; thresholdlgsia and filtering.

It can be seen that using the threshold approaehette blink artifacts are
completely annulled in channel Fpl and there islow frequency artifact in the
periodogram. It can be noted in channel C3 thatgughe threshold and the filtering
approaches a peak of activity around 10 Hz becawigent between 15 and 25 s, and
that peak of activity lasts longer for the filtegirapproach because the threshold
approach causes a loss of information. As aforeimeed, this peak of activity at
around 10 Hz represents an ERS occurring at thend &nd it is a feature of interest for
the identification of the mental task.

Some more complex approaches include performingdB$ource Separation
(BSS) using HOS methods as Independent Componeady#ia (ICA) (Croft & Barry,
2000, Jung et al., 2000, 2001, Ford et al., 200Msummary, the BSS problem is to
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perform the separation of a set of signals froretaoé mixed signals, without the aid of
information, or with very little information, abouhe source signals or the mixing
process. BSS relies on the assumption that thecsaignals are not correlated with
each other. Here, the mixed signals corresponchéo BEG signal mixed with an
unknown noise and the BSS problem is related tibpeing the separation of a set of
source signals, i.e. EEG artifact-free signalanftbe set of mixed signals.

ICA is a method for solving the BSS problem recoweiN independent source
signals,s, from N linear mixturesx, and it relies on the assumption that the source
signals are stationary and mutually statisticatigependent or decorrelated while their
mixtures are not. Statistical independence requirasall second-order and high order
correlations are zero, while decorrelation onlyksee minimize second-order statistics,
which are the covariance or correlation. The limaatture ofN sources wittM samples

each one, can be written as,

x1(k) =ayq-s1(k) +ayz-s,(k) + -+ ayy-syk)
: , k=12,---,M. (3.5
xy(k) =aynq-s1(k) +ay,-s(k) + - +ayy-sy(k)

or using matrix notation,

[x1(1) e x (M) [al, ] [51(1) Sl(M)]
(D) - x0n) laws () - sy(n)
x=A-s<—>s=A‘1-x<—>s=W-x. (3.6)

where, A is an unknown invertible matrix given by an ICAgatithm. OnceA is
known, the source signals can be found by invertirggmixing process, leading to the
“‘unmixing” or separating matrix W. The rows of the input matrix,
[x,(k),x,(k), -, xy(k)]T, are EEG signals recorded at different channedscalumns;
[x;(1),x;(2),---,x;(M)] are measurements recorded at different time poihte
columns of the source matris, contain the time course of ICA components. The
columns ofA, [a;1,a;2, -+, a;n], give the relative projection strengths of thepesdive
ICA components at each EEG site. These scalp weigipiresent the fixed scalp
topography of each ICA component, and provide ewde for the component
physiological origin. For example, the EOG and blamtifacts should project mainly to
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frontal sites, the ICA components with high weighdjected to the frontal sites, should
be related to this kind of artifact, which can als® verified in the time course of the
component (Vigario et al., 2000; Jung et al., 2Gm1).

The ICA components related to artifacts can thesdido zero and artifact-free
signals can be obtained projecting non-artifactG& components back onto the scalp.
The artifact-free EEG signalgg, can be obtained from the artifact-free sourcerimat
S, and the mixing matriA by xo = A - sy (Jung et al., 2000, 2001). Figure 3.19 shows
the ICA components and their fixed scalp topographyhe same trial analyzed in
Figures 3.12, 3.14 and 3.18. This experiment cpoeds to the mental task of
imagination of movement of the right hand, whiclturced between 5 and 15 s, and 19
electrodes positioned according to the internatid@8a20 system (Figures 3.5 - A and
B). Then the input matrix has 19 linear mixturesd @he ICA algorithm results in 19
independent components and 19 respective scalgrtaploies shown on the right side
of each component. In the scalp topography, thaivel strength of the ICA component
over the 19 scalp sites is shown in shades of gnayhich light shades are related to a
high strength value, positive or negative, and dstikdes are related to near zero

strength values.
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Figure 3.19 — ICA components obtained by “fastiG¥jorithm and their fixed scalp topographies.

In Figure 3.19, it can be seen that the first IG&nponent (ICA-1) is very

similar to the time course of the eye blink artifabhown in the EEG of channel Fp2 in
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Figures 3.12, 3.14 and 3.18. The scalp topographiie component is shown at its
right side, and it can be seen that its strengtiigker for frontal sites, in particular at
Fp2. This component can then be set to zero inrdodebtain a relative artifact-free
EEG. Figure 3.20 shows the minimization of eye lblamtifacts of the trial of figures

3.12 and 3.18 by using two ICA algorithms, whick #re “fastiCA” and the “runica”.

It can be seen that for both algorithms the eyekbdirtifacts are completely annulled in
channel Fpl and there is no low frequency artifiadhe periodogram. In channel C3
can be noted a peak of activity around 10 Hz, betw&5 and 25 s, although the

“runica” algorithm clearly distorted the originaEEs amplitude.
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Figure 3.20 — EEG of channels Fpl and C3 and theiiodograms during the application of the
following cases: raw EEG; “fastiCA” algorithm ancutica” algorithm.

The two mentioned ICA algorithms are based @entéto broadest definitions
of independence for the ICA that are the maximarabf the non-Gaussianity and the
minimization of the mutual information (MMI) (Cro& Barry, 2000, Jung et al., 2000,
Jung et al., 2001, Ford et al., 2004). The non-&aungy family of ICA algorithms,
which includes “fastICA” algorithm, is based on meeges of non-Gaussianity like
kurtosis and negentropy (Hyvarinen, 1999). As theu$sian distribution has above
second order cumulants equal to zero, the funcbéits third and fourth cumulants, as



55 ChapgeiThe EEG signal

the skewnes$ and kurtosi&, are also zero, and thus, they are used as a reefasu
non-Gaussianity. The negentrdfyor differential entropy, can also be approximaigd

a function of the first and fourth order cumulardasd therefore, it is also used as a
measured of non-Gaussianity. The “fastiCA” is aefix point algorithm which,
maximizing the absolute value of the kurtosis, te&al the identification of the non-
Gaussian sources (Vigario et al., 2000).

The MMI family of ICA algorithms, which includesé¢hrunica” algorithm, uses
measures like Kullback-Leibler Divergerite(Dx.) and maximum-entropy. The
“runica” performs ICA decomposition of input dataing the logistic “infomax”
algorithm described by Bell and Sejnowski in 199Be “infomax” is an optimization
principle in which a set of input values () areppad to a set of output values (O) that
are chosen, or learned, in order to maximize treragge Shannon mutual information
between the input and the output, H(O;l). The mutidormation can also be
understood as the expectation gf @f the conditional distribution of O given I,qii(),
and the univariate distribution of O,q)( Then,H(0; 1) = E[Dg.(p(o|i)||p(0))], and
the greater the difference in the distributionglip@nd p0), the greater the information
gain.

For more details, the conditional probability ispiined in section 4.6 of
chapter 4, when dealing with the classifier. Thelltkack-Leibler Divergence is
explained in section 4.5 during the feature sedectopic. In chapter 5, a comparison
between the average processing time of each mimghartifact method discussed here

will be presented regarding its utilization for iokel BCI operation.

3.7 EEG records and SNR

Diverse types of EEG record signals exist and eawh functions to show the
electrical behavior of the brain during differerdtiaities. Spontaneous potentials are
basic components of the EEG signal that may beeptethroughout the range of

*2 The measure of skewness of a probability distidouis given byy, = ks/(k3'*) , wherek is thei™
cumulant of the probability distribution.

% The kurtosis, from the Greek wokilirtos meaning curved, is a measure of flatness of haidty
distribution and it is given by, = k,/k% , wherek is thei™ cumulant.

% The negentropy, d), of a random variable can be approximated by(x) ~ (1/12) - [k; (x®)]? +
(1/48) - [y,(x)]?, wherek; is the first cumulant, i.e. the expected valug,d[x], andy, is the kurtosis.

% The Kullback-Leibler divergence, or informatiorveligence, is a non-symmetric measure of the
difference between two probability distributionsaRd Q, denoted,,(P||Q). For discrete probability
distributions P and Q, the K—-L divergence of Q frBris defined ady,(P||Q) = X;In(P({)/Q({)) - P(D).
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frequencies of the EEG signal and are not produmedensory stimulation. Event-

Related Potential (ERP) is the change of the EE@npial in response to a particular
event. Typically, the EEG recorded is referencethevent, i.e., the time is regarded
as the time of occurrence of the event. Thus, dmerding time before the event is
considered negative and the later time is consitipositive (Delamonica, 1984).

ERP has a much lower amplitude than spontaneoustycsuch that it can not
be recognized in the raw EEG signal. Thereforeramieg techniques are commonly
employed for detecting the ERP. In the averagimfrigjue the ERP is considered to
occur with an approximately constant delay in refato the event, and the spontaneous
activity is modeled as an additive random noisguyfg 3.21 - Left) (Rugg & Coles,
1996). The EEG recordings obtained by repeatingsdme experiment or trial, under
the same conditions, are called epochs, and asuhmber of epochd), used in the
calculation of the average increases, the timeddcictivity stresses, their signal-to-
noise ratio (SNR) increases, the spontaneous Bctidcreases and the ERP can be
observed (Luck, 2005).

10
C3 C3-Erb
EEG following : evoked + random 8 15
- = : : 22
stimulus signal noise
fv’\w N/— ""/\v' l oy 212 19
B 30  msec
(+) 1 J
. Filters : 30 Hz to 3 kHz
A Ap— AW T 512
Averaging | H : Stimulus lengthj 390 Msec
repetition : 4,1/sec
f\/\-w~ /\/b
Average Signal Average
EP noise Stimulus - median nerve

Figure 3.21 — Left: ERP observation by averagingsEEcordings (Rugg & Coles, 1996); Right: Normal
somatosensory evoked potential (adapted from Delaaap1984).

The signal-to-noise ratio (SNR) is defined as thigorof the average power in
the signal and the average power in the noise (&at®94). As more epochs are used,
the SNR of the time-locked event increases, allgwie observation of the ERP (Luck,
2005). In the ideal case it is assumed that thesared EEG signals(t,k) are made up
of a sequence of event-locked ERR¥ with invariable latency and shape, and the noise

n(t,i) that can be approximated by a zero-mean Gaussiadom process that is
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uncorrelatetf between trials and not time-locked to the evertiengi is the trial
number and is the time elapsed after tH2event. The signai(t) does not depend on a
specific trial k) while the noise does(t,k).

The average power of the ERP signal is given byekgected value of its
energy,E[s%]. When a signal is a stationdhstochastic process, its power is defined to
be the value of its correlation functign,,, at the origin. As the noise is supposed to be
a stationary zero-mean Gaussian random processe#s u,, and varianceg?, do not
vary with respect to timéuy, -, 4, = 0 and 6, ---, 62 = 02). The correlation function
at the origin,p, o, is then equal to its variancg?. The SNR between the ERP and the

noise of any trial is given by

E[s?]

o

SNR =

(3.7)

where E[-] is the expected value operator. Now SINR is estimated as the

average of EEG trials are taken. First, each EEGrded can be written as
x(t, k) = s(t) + n(t, k). (3.8)

the average dfl trials ofx(t, k) is given by,

N N N
ERP(t) = %(t) = %Z x(6,0) = %Z () + n(t, ) = s(t) + %Z n(t,0). (3.9)
i=1 i=1 k=1

The expected value of(t) is the signals(t) itself because the noise is
approximated by a zero-mean random process, anekjiscted value in any trial is

Z€ero,

% Two random variables X and Y are said to be uretated if their covariancey y is zero. If X and Y

are independent, then they are uncorrelated. Hawaweall uncorrelated variables are independent.

37 A random process is stationary if the joint dsitions of any set of samples does not dependen th
placement of the time origins. As the noise is aiss&@n random process, and the Gaussian probability
distribution only depends on the two first cumutatiiat are the mean and the variance, it implias th
they are time independent.
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N

= E[s(D)] + %Z E[n(t, )] = s(©). (3.10)
k

Zl
™M=

E[Z()] = E |s(t) + n(t, i)

k=1

Now let’s calculate the variance oft),

=]~

o = E[x@®) - E[x(®O])?] = E <S(t) +

N 2]
Z n(t, i)) 5@ | |
i=1 ]

1 N 2 1 N ]
0% = E <N2n(t, i)) = 72F Zn(t, 0+ Zn(t, D-nt )| o

i=1 i=1 i)
1 N
ok = 1 Z n(t, D]+ —E Zn(t, D -n(t, )| o
i=1 i#]
% = Z E[n(t, )] + —Z Eln(t, i) n(t )] . (3.11)
i#j

The second sum of eq. 3.11 represents the covar@mbinations between two
zero mean noise trials. As the noise signal is ustated between trials, then the
covariances, . ) n(,j) of a samplé between any two trials andj) is null and it can be

discarded,

Ontomey = El((t, 1) — E[n(t,D]) - (n(t,j) — E[n(E,)HD] =0 &
Onemey) = En(E D -nt D] =0. (3.12)

by substituting eq. 3.12 into eq. 3.11, it givestth

1
02 = NZZE [n(t, )] + NZZJH(“)”(“) NZZE [n(t,D?]. (3.13)

i#j

and as the noise is zero-mean, eg. 3.13 can béteswo,
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N N

N
1 1 1
TR = mz E[n(t,1)?] = mz E[(n(t,i) — E[n(t,D)D?] = mz O - (3.14)

i=1 i=1

then, since the variance of the sum of uncorrelaggthibles is additive and the

variance of the noise averaged durhgials is given by

N

N N
2 1 1 2 1 2
ORI Z On(ton(t)) = Z O T Z Ontint)) | = ﬁz Tn(ei)» (3:15)
=1

ij=1 i=1 %)
by substituting eq. 3.15 into eq. 3.14, the vamaotx(t) is given by

2 _ 1 2
O-)?(t) = N ' O-ﬁ(t) . (316)

Equation 3.16 shows that the variance of samlé the average signai(t)
across the trials decreases proportionally todted humber of trialsN. For this reason,
the noise amplitude of the averageNbirials is1/v/N times that of a single trial (Luck,
2005). And the SNR obtained for each new addebivinald be given by

E[s?] E[s?] E[s?]

2 2 .
O%(t) 07 On

SNR =

(3.17)

Then, equation 3.17 shows that the SNR of the BEie@Bases proportionally to
the number of trials and an excessive number otlepavill not result in significant
changes in the ERP curve (Luck, 2005). Based omeia¢ion found in equation 3.17 a
study comparing the ERP SNR of the motor ment& tdismagination of movement of
the right hand and the mental task of music imageitly be detailed in chapter 5,
section 5.8.

Event-related potentials (ERPs) were originallylezhlevoked potentials (EPS)
because they are electrical potentials that ar&kezl/dby stimuli, as opposed to the
spontaneous EEG rhythms. Concerning the terminoleigyb Vaughan, wrote in 1969
“Since cerebral processes may be related to valunteovement and to relatively

stimulus-independent psychological processes,dira evoked potentials is no longer
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sufficiently general to apply to all EEG phenomeelkated to sensorymotor processes.
Moreover, sufficiently prominent or distinctive g$wlogical events may serve as time
references for averaging, in addition to stimuld anotor responses. The term Event-
Related Potentials (ERP) is proposed to desigregegéneral class of potentials that
display stable time relationships to a definabference event.” (Luck, 2005).

Then, the ERP may be related to voluntary moveroemd relatively stimulus-
independent psychological processes, as the ntasta. Depending on the modality to
be studied, it can use a somatosensory, visualditagy stimuli and it has an important
clinical utility for detecting neural degeneratidiseases and traumatic pathologies
(Delamonica, 1984). EPs can be measured over gpaas of the cortex when certain
nuclei of the thalamus are stimulated. These nwaikeicalled specific thalamic nuclei.
Among them, e. g., are the Ventral Posterolataraelaus (VPL) of the thalamus and the
Medial Geniculate Nucleus of the thalamus (MGN)g(fFe 2.11), whose stimulation
evoke potentials, respectively, in the somatosensord auditory areas of the cortex
(Machado, 2007).

As previously mentioned, EPs and ERPs are obsdryedeans of hundreds of
EEG recordings made with the same type of stimuumder to eliminate the effect of
random noise and enhance the event-locked respArtsenporal pattern related to the
event then becomes evident in the average EEG.righepart of Figure 3.21 shows a
normal somatosensory evoked potential, wherein fire high-voltage negative
potential, with latency of 10ms, corresponds to #hation Potential (AP) of the
stimulated nerve. The numbers on the peaks oEf&urve indicate the latencies in
milliseconds. The number in the summation indic#éted the potential of the figure is
the result of the average of 512 EEG recordings$aibenica, 1984).

3.8 Movement-related potentials

The Movement-Related Potentials are ERPs measusxdite motor cortex that
have about 11V and are generated in response to an intentiompliion, to move a
limb (Azevedo, 2005). One kind of MRP is the Beselitaftspotentid? (BP), also called
Readiness Potential (RP) (Figure 3.22). The BPbearoughly identified in single-trial
measurements and it is widely used in BCI applicej so it will be described in more
detail. The BP is related to the pre-motor plagrohvolitional movement occurring in

¥ from German, “readiness potential”.
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the motor cortex (M1) and supplementary motor #8¥A). The BP amplitude is ten
to hundred times smaller than thehythm amplitude, therefore to observe it in detai
Is necessary to perform averaging. BP has two coes, the early one (BP1) lasting
from about -1.2 to -0.5 s, and the late componBR2] lasting from -0.5 to shortly
before 0 s.

The BP study has precipitated an interesting waddwdiscussion about free
will that lasts for almost 30 years. Benjamin Lilsétdied in the 1980s the relationship
between conscious experience of volition and thed@ he found that the BP started
about 0.35 s earlier than the subject's reportetsaious awareness of the desire to
make the movement. Libet's experiments suggesthbatue initiator of volitional acts
IS some unconscious processes in the brain. Therdiee will plays no part in their
initiation. Since the subjective experience of ttwmscious will to act preceded the
action by only 200 ms, this leaves consciousne$g H00-150 ms to veto an action
(Figure 3.22). This occurs because the final 50on to an act are occupied by the
activation of the spinal motor neurons by the prymaotor cortex. Libet concluded
that we have no free will in the initiation of oomovements, but, since subjects were
able to prevent intended movement at the last mgmendo have the ability to veto

these actions, sometimes called the “free wonitidt, 1985).

& premotor area

Bereitschaftspotential

A (Readiness Potential) POt
11

activity

BPY | BE? [ :
| 1 Time {ms)

Rise of BP -550 -1000
("Veto")

Awareness (W) —2‘3!'& T

of intention
@J: Action

Figure 3.22 — Bereitschaftspotential and the Libetperiment. At -550 ms: the rise of BP; at -208 m
the awareness of intention; at -100 ms: the pdagibf veto of the action; at 0 s: the action ségsing a
button.

Soon et al., in 2008, performed an experiment @@hight handed subjects that
could freely decide to move their left or right exdfinger at any time, while in the
meantime their brain activity was measured usirgy fiiRI. Most of the intentions
(88.6%) were reported to be consciously formedbgfere the movement and support-
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vector machines (SVMs) were trained with fMRI ddtam several brain areas to
predict the specific outcome of a subject’s motecision. The study showed that the
activity of the frontopolar and parietal corticedowed the prediction of the finger
laterality (left/right) 8 s before the action anilbaved the time prediction (when the
action would occur) 6 s before the action. Theyctahed that the earliest predictive
information is encoded in the frontopolar and patieortices, and not in the SMA,
suggesting that the subjective experience of freeano more than an illusion and that
our actions are initiated by unconscious mentatg@sees long before we become aware
of our intention to act (Soon et al., 2008). Relgeiians Helmut Kornhuber and Lider
Deecke, who first recorded and reported the BPBdladvocate that we have free will
for the initiation of our movements and actions, tere is no absolute freedom, which
would mean freedom from nature which is impossililes a relative freedom that was
referred to as freedom in “degrees of freedom”.

In contrast with most ERPs and BP, some brain sveraty not be observed in
the EEG signal by using a simple linear techniquehsas the average over the time.
Some events are restricted to certain EEG rhythmisase called phase-locked events.
The relative decrement and increment of energydbaeiirs in specific frequency bands
are called Event-Related Desynchronization (ERR) Bwent-Related Synchronization
(ERS), respectively (Pfurtscheller & Lopes, 1999)ring the mental task an ERD can
be observed, which is followed by an ERS when tleatal task is over. The events

related to an ERD/ERS and how they are measurd¢bevihe topic of the next section.

3.9 ERD/ERS

As aforementioned, the EEG measures the activityeofal masses working in
synchrony. Usually when a population of corticalmas is inactive, these neurons
receive a thalamic rhythmic afference that keegsntlsynchronized, thus, the sum of
these rhythmic signals has a large amplitude. Wénereural mass is activated by a
stimulus or an intention, cortical neurons recaiN&inct and specific signals, causing
loss of synchrony. The resulting sum of these desymized signals has a lower
amplitude which causes an ERD (Bear, et al., 2008).

The bottom signal of Figure 3.11 shows théhythm attenuation, observed over
V1, when the eyes are opened. The attenuatiarrioythm amplitude when the eyes are

open is an ERD, and the increase in the amplitdidaeonx rhythm when the eyes are
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closed is an ERS. As discussed in section 2.5nb#&r imagination inhibits the
synchronization of M1 with the rhythmic activity éfie thalamus, causing an ERD
similar to the ERD observed over V1. The p rhythmswdescribed by Jasper and
Andrews (1938, apud Beisteiner, et al., 1995) as“finecentrale rhythm”, because it
occurs under similar conditions to therhythm, but in the precentral area, over the
motor cortex. The electrodes on the precentral @&a Cz and C4) can then measure
an ERD in the EEG signal during motor mental tadksen subjects with limb
amputations present an ERD during the imaginatfonavement of the phantom limb.
The ERD generated during the performance of theomatental task of

imagination of movement of the hand is contraldtarad, therefore, the mental task
related to the right hand causes an ERD atthband of M1 in the left brain
hemisphere, which can be measured by the elect@8le The mental task of
imagination of movement of the left hand cause€RMD at theu band of M1 in the
right brain hemisphere, which can be measured é\etéctrode C4. While performing
the mental task of imagination of movement of thads, the M1 hand area is activated,
as well as the adjacent areas SMA and PMA (Fig2r@sind 2.12). R. Beisteiner et. al.
(1995) showed that the DC potential difference leetwthe electrodes C3 and C4 is
higher during the imagination of movement of thghti hand than during the

imagination of movement of the left hand (Figur23j.

10.3 uv

51 qu!
|

—— Right hand movement
i —--- Imagination of movement of the right hand
X o= Left hand movement
: Imagination of movement of the left hand

0 pvJ : 5
C3 C4

Figure 3.23 — DC potential of electrodes C3 and&tiapted from Beisteiner, et al., 1995).

The left hemisphere is involved with visual-spatrahgination that is activated
during the planning of both mental tasks, thusag dominant contribution on the motor
imagination. The left hemisphere is then somewktve for the mental tasks of both
hands and by imagining the movement of the rigimdhiis potential is summed with
the potential related to the activation of M1 tisaalso in the left hemisphere. While for
the imagination of movement of the left hand theik be a potential regarding the
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activation of left hemisphere and the activationMi from the right hemisphere,
therefor the potential difference between the ebelets C3 and C4 will be lower.

The classical method to measure the ERD/ERS isridesc by Gert
Pfurtscheller and Fernando H. Lopes da Silva (1,988¢ is similar to the process to
obtain an ERP, but it includes filtering and sqogrihe signal. Given a set with
multiple EEG recordings (epochs), the signals dteréd in the desired frequency
range, and then the signals are squared obtaihengignal energy. Then, the average
energy of all epochs is calculated in order toease the SNR, making it possible to
observe the ERD/ERS pattern. Here, the signal gnengsed to prevent the cancelation
of positive and negative EEG amplitudes during #werage process. The curve
obtained so far may be smoothed by using the maawegage technique. Finally, as the
ERD/ERS are measured as percentages, the averaggy esf a previous reference
period,R, is calculated. Thus, the relative signal enefgycan be measured in relation

to a reference period, as given by

@)1

Figure 3.24 shows the application of the classichoe for measuring the
ERD/ERS pattern. Our experiment to observe the HRS/ used 60 epochs in which
the subject performed the motor task of right handgination of movement. In this
experiment the subject was instructed to imagimentovement of the right arm and
hand in order to reach and grab an object placedtable in front of him at a distance
of 30 cm. The subject was instructed to repeatpdiyorm this imaginary movement,
at his own pace, from 5 to 15 s of the EEG record.

Figure 3.24 - A shows in gray the superimpositibthe EEG from channel C3
of the first, fifteenth, and thirtieth epochs, respvely, in black, dark and light gray.
The mental task lasted 10 s, occurring betweendslans of the EEG record, which
corresponds to the central area, not hatched ofdigrigure 3.24 - B shows the EEG
filtered at thep band. In this study we used a FIR equiripple basdgfilter with a
forward and reverse order filtering algorithm toceal the effect of phase distortion.
This figure also shows the superimposition of thikered EEG of the three
aforementioned epochs. The objective of this figisenot to show individual
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characteristics of the epochs, but just to empbkadimt the steps are performed
individually, for each epoch.

In this work, the reference period is the one betwg s and 3 s of the recording,
which is highlighted in Figure 3.24 - E as the mt shaded in dark gray. The
horizontal line stresses the null value of the nexfee period. In Figure 3.24 - E the
energy decrease of around 70 % occurring betweerand 15 s is the ERD, and the
energy increase of around 60 % occurring betweesm dd 20 s is the ERS. Therefore,
the ERD/ERS pattern can be observed mainly atreles$ placed over the scalp region

of the motor cortex during motor mental tasks.
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Figure 3.24 — ERD/ERS calculation method. The eafee period was taken between 1 and 3 s and the
motor mental task occurred between 5 and 15 sraf@EEG from channel C3 during the first, fiftegnt
and thirtieth epoch, respectively in black, darkl dight gray; (b) EEG from channel C3 filtered at
band; (c) channel C3 band energy (d) channel @3and average energy of 60 epochs; (e) channgl C3
band ERD/ERS.

As previously mentioned, the ERD/ERS patterns «fuai cortex can be
observed directly by electrodes O1 and O2 throudreguency analysis without the
need of averaging. The primary visual cortex (\&lloicated on the occipital lobe which
is in the posterior region of the brain, and roygkblated from other lobes. Thus, the
signals from V1 do not suffer much interferencarirsignals of other brain areas, and
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the ERD/ERS pattern can be observed with a singl& Eecording. However, the
motor cortex is at the center of the brain surr@aghdy the frontal, temporal and
occipital lobes thus the signals generated by eighg areas are mixed with signals
from M1 and the signal measured by electrodes @3ar@l C4 contain a mixture of
signals from different brain areas. Therefore, BRD/ERS pattern generated in M1
during a limb imagination of movement can not besasded with a single EEG
recording. So, it is necessary to calculate thaame over a number of epochs, as
described by G. Pfurtscheller and F. H. Lopes #a$%1999).

The procedure described above can not be used fonlane classifier because it
Is necessary to observe the ERD/ERS in only oneleposecond method for obtaining
the ERD/ERS is described by J. Kalcher and G. s¢bdller (1995). Often, evoked
potentials spontaneously occurring in the braimeisponse to external stimuli or noise
may mask any event-related desynchronization/symizaition. This occurs when the
EP activity is in the same frequency band as the®PMRhe “Intertrial Variance” (1V)
method was proposed to solve this problem. In ¥heméthod the variance is calculated

by
R IERY:
V) :—DZ(Xf(i,j)—Xf(j)) : (3.19)

WhereN is the total number of trialsy; ;) is thej-th sample of the-th trial of

the EEG filtered in the required frequency bandj zia;l(j) is the average of theth

sample of the signal over all filtered trials. Likise, the ERD and ERS are defined as
the percentage values of increment or decremamdation to a reference period. In this
case, the reference period is formed by the sangiances of a period preceding the
event, and th& parameter in equation 3.18 is the average ofdhgke variances in the
period.

Bianchi et. al. (1998) analyzed the relations dierence between EEG signals
of nine electrodes (F3, Fz, F4, C3, Cz, C4, PxamiP4) filtered at andp bands, and
also analyzed the description of the time versgsalifrequency of the EEG through an
autoregressive (AR) bivariate model. In this stildgy confirmed the activation flow
from the frontal area to the parietal area, throtigh direct pathway of movement,

during the preparation of the movement (Figure B.2he ERD/ERS was calculated
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from the average of 80 repetitions (epochs) of moa of the index finger of the right
hand and activation flow was obtained by analyzimg phase of the Power Spectral
Density (PSD).

Figure 3.25 — Activation and deactivation flow: (fyogramming phase; (B) execution phase; (C)
recovery phase (Bianchi, et al., 1995).

It may be noted in Figure 3.25 - A, during the ggeamming phase of the
movement, that the activation flow involves onlg tliontal and parietal lobes of the
left brain hemisphere, encompassing electrode F2l¢éstrode P3. It shows the
importance of using electrodes placed not only lea motor cortex, but also on the
frontal and parietal lobes.

This Chapter explains the EEG acquisition, the wwdthfor minimizing artifacts,
the EEG SNR and the ERD/ERS. The methods for maingiartifacts are tested and
compared in Chapter 5. The EEG SNR and the ERD/&RP maps are also compared
during motor mental tasks and music imagery in @rep

The mental tasks selected to control the BCI shaativate different brain areas
and the spatial activation pattern measured byetbetrodes should be sufficient to
distinguish between them. One way to verify théedénce between the mental tasks is
to calculate the ERD/ERS of all the electrodes amalyze the scalp maps obtained. As
the ERD/ERS involves the calculation of averages,HRD/ERS scalp maps can differ
greatly between mental tasks, and even then, betectdble in real-time by having a
low SNR. Therefore the SNR was estimated for alhtaletasks and analyzed together
with the ERD/ERS scalp maps in order decide thsilbday of using a specific mental
task.
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Chapter 4 : The proposed BCI

As the BCI applications and general processes wasntioned in the
introduction, this chapter will focus on the praatifeatures that compose a BCI. The
BCls are platforms that can be understood as tegration of two main processes: the
signal acquisition and the signal processing (Fgdrl). Regarding the signal
acquisition, this chapter first presents the teghes for estimating the parameters for
online processing and classification, such as déingpéing rate and size of the EEG time
windows. The feature extraction method and the ematassifier require that the signal
is at least Wide Sense Stationary (WSS), theretare,statistical hypothesis tests are
presented, which completes the first objective meetd in Chapter 1.

Regarding the signal processing stage, the featuraction method is described
and then, three possible methods for feature sefecre presented. The feature
selection adapts the classifier training step toaoa-supervised approach, which is
independent of the chosen mental task paradigm iand the second objective
mentioned in Chapter 1. Then, the classifier is@néed and the signal reclassification
is discussed. All techniques were initially testedan EEG database available on the
internet (Millan, 2004) and simulated using thetfolan MATLAB ©7.11.0 (R2010b) on
a computer with an Int8l Coré™ i7 processor with a clock speed of 2.10 GHz,
Random-Access Memory (RAM) of 8 GB and Hard DiskvBr(HDD) of 1 TB.

4.1 EEG Database

The EEG dataset was obtained from the BCI Compatili website. Dataset V
was provided by the IDIAP Research Institute (Seriend) (Millan, 2004). Dataset V
contains EEG signals from three normal subjectinduhree labeled sections (each 4
minutes long) without feedback. In each sectiom, shbject performed three mental
tasks (in random order) for about 15-20 secondsultiag in approximately 16
repetitions of each mental task. The mental tasksisted of repetitive self-paced left
or right hand movement imagery (respectively lathe?eand 3), and the thought of
words beginning with a given random letter (labelEEG signals were recorded with a
biopotential measurement system (ActiveTwo, Biosehe Netherlands) using a cap
with 32 integrated electrodes located at standasitipns of the International 10-10
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system (Fpl, AF3, F7, F3, FC1, FC5, T7, C3, CPK,¢H, P3, Pz, PO3, 01, Oz, 02,
PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, &AB2, Fz, Cz). The sampling
rate was 512 Hz. Signals were acquired at full DG.artifact rejection or correction
was employed and the EEG records were not subdivide epochs.

Figure 4.1 shows the EEG of the first session agheaubject in the black line,
which is related to the left axis. The label (2r37) of the continuous recorded mental
tasks is shown in the gray superimposed line amiriélated to the right axis. The left
part of the figure shows the raw EEG, and the rigdutt shows the EEG band pass
filtered from 1 to 32 Hz and preprocessed by theRGAethod. It can be seen that the
raw EEG has a DC component around 6 mV for thé $ession of subjects 1 and 2 and
around 2.5 mV for the first session of subjectr8tHe right part of this figure it can be

seen that the processed EEG has an amplitudeesi tehs of microvolts, as mentioned

in section 2.6.
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Figure 4.1 — Left: raw EEG of channel C3 from thstfsection of each subject; Right: EEG band pass
filtered from 1 to 32 Hz and preprocessed by thérGhethod.

4.2 Pseudo-online method

The EEG from the dataset was acquired with monoalan reference on the
right earlobe and the grounding electrode was positl on the user’s forehead. For all
tests, the EEG was filtered by using a notch fitembination set to 50, 100, 150, 200
and 250 Hz, in order to reduce the grid line actifaf the European system and its
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harmonics. Procedures of spatial filtering wereliedpto the raw EEG signals to reduce
the correlation between channels caused by thadimg of the signal from the cortical

source to the scalp. The EEG was spatially filtdsgdusing CAR or large Laplacian

methods (see section 3.5).

Small time windows of EEG with a fixed number ofrgdes,s, were taken to
simulate real-time classification, that is the mpieonline method (Benevides, et al.,
2010a-b). The time windows were continuously dispth by a sample (the sliding
window technique). Thus, after the first time wimdavas filled, each following
window was generated by displacing the current eandy one sample, preserving an
overlap ofs1 samples. The BCI classification rate is equaltite sampling rate.
Regarding the pseudo-online classification, theo@utelation function (ACF) is
performed to determine if the signal is oversampmedsubsampled. If the sampling
period,Ts, is too small, the data would be much more higlagrelated, which is called
the redundancy problem. On the other handgiis very large, the data may not have
any correlation, which is called the problem oélewvance. The sampling perioid, can

be chosen by the following heuristic rule (Aguirt®95),
Im o <M, (4.1)

In eq. 4.1 above, is the time instant of the ACF first minimum. TAEF was
performed with time windows of 1 s with a 75% owgrlfor the EEG signals of all
electrodes and sessions of the three subjectsATRewas averaged and smoothed over
all obtained time windows and channels. The left paFigure 4.2 shows the ACF of
each subect obtained by using the CAR method, lamdight part of Figure 4.2 shows
the ACF obtained by using the large Laplace metBath curves are very similar and
they present the first minimum obtained for char®@elfor a delay of 0,23 s{ = 0,23)
(Benevides et al., 2011a).

Then, substituting, in eq. 4.1, 0.011 s Ts < 0.023 s, or 44.524 HZ Fs <
89.2857 Hz. As a result, the signal was re-sampte@4 Hz, which corresponds to a

three-step decimation.
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Figure 4.2 — Left: averaged ACF obtained by usi#dRGnethod; Right: averaged ACF obtained by using
the large Laplace.

4.3 Feature extraction

The features used for identification of classdsictvin this case are the different
mental tasks, are the frequency components of B@ &stimated by the Power Spectral
Density (PSD). The PSD choice was motivated byewipus study performed by the
author during undergraduate (Benevides, 2007) aadgte (Benevides, 2009) courses.
The PSD coefficients, the energy and entropy of ¢befficients of the Wavelet
Transform and the mean, variance and high order entsnof the EEG in the time-
domain were tested as possible features. In canduke PSD coefficients associated
with several classifiers, as simple as decisioa kearning and Bayesian Classifiers up
to artificial neural networks, obtained resultgistecally similar. These results will not
be replicated in this thesis, but following thedimgs of this previous work, the PSD
coefficients were chosen as the features for tsndtion of several mental classes.

The PSD of the filtered EEG signals was calculatétout averaging in each 5
s time window of the sliding window technique. TR8D is the Fourier transform of
the ACF of a signal if it can be considered widasgestationary. It describes how the
signal power (defined as the squared value of theal is distributed in terms of
frequency. Since the EEG signal was resampled toH84 the signal maximum
frequency is 32 Hz. The PSD calculations were peréal with rectangular windows
and designed to return one coefficient for eachget value of frequency, resulting in
32 coefficients, excluding the DC component. Th8R, channels and 32 frequency
components were used, resulting in 1024 featurasdre concatenated into a vector
(Benevides, et al., 2011c).

To analyze the PSD in the feature space, data Wwatered in each class, to get

a low-dimensional representation. The k-means glgorwas used to cluster the data,
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with 10 centroids per class. Then, Sammon mappiras \werformed for low-
dimensional visualization (Sammon, 1969). Thus,dhginal feature space with 1024
dimensions is represented two-dimensionally in f&gd.3. This figure shows the
feature space of the training data for subject Hathset V, who obtained the best
discrimination between classes. Figure 4.3 - A shtve feature space of the filtered
EEG signals in the time domain. The features aeeBBEG amplitudes of each channel
concatenated into a vector. Figure 4.3 - B showsRB8D feature space using all PSD
components, and Figure 4.3 - C shows the featueeesfor some selected PSD
componentsg = 50%). In the feature space a better distributibolasses is observed
when frequency components are used rather thatemmgoral series (Benevides et al.,
2011b-c).
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Figure 4.3 — Low-dimensional visualization of tleature space; left: Sammon map of EEG signalsein th
time domain; center: Sammon map of PSD using efjifency components; right: Sammon map of PSD
using selected frequency componeiits 60%).

Figure 4.3 - A shows that time domain features amid overlap in the feature
space. It is thus very difficult for the classifir define regions for each mental task.
Figure 4.3 - B shows that PSD components have d semalency to occupy distinct
regions of the feature space, in which the tasthioking of words is mostly at the left
region of the figure, considering the center ascérger of mass of the features (x = -3.2
and y = -0.2)10°. The classifier can thus define rough regionsefach mental task.
Figure 4.3 - C shows that using some selected coergs of the PSD, the mental tasks
are in mostly distinct regions of the feature spadsing only these components, the
classifier can more precisely define the regiomsefrh mental task. These figures show
a progressive improvement in class separation,waifects classifier performance and

therefor, the BCI reliability.
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4.4 EEG stationarity

Some random processes have the property of statioméich means that the
nature of the randomness in the process does rastgehwith time. However, the
property of non-stationarity means that charadiessuch as the mean, u, the variance,
a2, or power spectra will change with time (Garci@94). Because of this, the EEG
time-windows used to calculate the PSD and alssstonate the mean and variance for
the Bayesian classifier have to be at least Wides&&tationary (WSS). If very small
time-windows are used, the random nature of EEGpnéivail and different values of p
anda? will be obtained for each new window analyzed. tB& other hand, large EEG
time-windows are avoided in real-time classificatibecause it may result in large
delays during the identification of class transiso The minimum size of the time-
windows in which the EEG can be considered statioma estimated by using two
statistical hypothesis tests. Finally, the sizethad time windows used in the sliding
window technique will be an interval in which thE& can be considered stationary.

A time series ofk discrete random variable$x;, x,, -, x;} obtained by
sampling the random process= x(t,{) at the timeg,,t,, -, t; is stationary if the
joint probability distribution function of any seff samples does not depend on the
placement of the time origin. Wheie represents the outcomes from some sample
space. Then, for all time shifts all k, and all choices of sample timés, t,, -, t;)
fr () = fre+n(x) = fr(x). This means that the joint PDF depends only ortithe
differences|t; — t,| (Garcia, 1994). Several studies that applied stiedl tests of
stationarity to EEG reported a variety of resultswhich the EEG can be considered
stationary from some seconds to several minuteen(®l et al., 1995).

For an EEG signal strict stationarity is almost asgible to achieve, therefor, a
less restrictive requirement called “weak statidggaror Wide-Sense Stationarity of
ordern is used. To obtain a WSS of orderonly the moments up to order are
constant and independent of time. If the signaleh@aussian PDF it can be completely
defined by the first two cumulank§ andKy, that are equal to the expected value p and
variances? (section 4.6.2). In this case, second order statity (n = 2) is enough to
assure complete stationarity (Garcia, 1994).

Figure 4.4 shows the ongoing average, |, and stérthviation,o, calculated
for every new sample of channel C3, during the Bession of subject one. It can be

noticed that when ranging from a few samples tHeesof yu andr tend to vary, i. e.,
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for small time-windows, the random nature of the(CErevails. However, using larger
time-windows, the random nature of EEG is approxatyacanceled and the values of u
and o tend to a constant. The left part of Figure 4.d4vwshthe ongoing average and
standard deviation from time-windows up to 10 sésoand it can be noticed that the
values of u and tend to stabilize from 5 s onwards. The right pdifEigure 4.4 shows

the ongoing average and standard deviation frora-tiimdows lasting up to 240 s and
it can be noticed that the values of p angemain approximately constant until the end
of the data. Then, Figure 4.4 shows that small tvmelows of an EEG can be non-

stationary as p amgl became unstable.
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Figure 4.4 — Left: The ongoing average u and stahdaviations calculated with time-windows up to 10
s; Right: The ongoing average p and standard tiewia calculated with time-windows lasting up to
240 s.

Large EEG time-windows, such as above 10 s, aradesoin real-time
classification because it may result in large deldyring the identification of class
transitions. On the other hand, small EEG time-wimsl can be non-stationary, in that
case, the minimum size of the time-windows in whtbe EEG can be considered
stationary is estimated here by using two staibhgpothesis tests.

These statistical hypothesis tests are based omtthmpt to reject an initial
hypothesis, called null hypothesisojHwhich typically proposes a general or default
position. The rejection of fHstates an alternative hypothesis\\HThe Kwiatkowski-
Phillips-Schmidt-Shin test (KPSS) is used for tagtia null hypothesis that an
observable time series is trend stationary whilgrhented Dickey-Fuller test (ADF) is
used for testing a null hypothesis that the sigaa non-stationary unit root process.
Then, these two tests may be used toghether iotmirmatory analysis (Kwiatkowski
et al., 1992).
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The statistical hypothesis test uses a test statisto make decisions about
whether to reject the null hypothesis or not. Témt statistic is a function of the sample
that is considered as a numerical summary of agsktahat reduces the data to one
value that can be used for comparative purposeen,Tthe distribution of the test
statistic under the null hypothesis is derived #ma significance levela is selected.
The significance level is a probability thresholdldw which the null hypothesis is
rejected. The observed value of the test statigj¢c is calculated from the data to be
analyzed. The p-value af,, is calculated and the rule is to reject the nyfidthesis if
and only if the p-value is less than or equal todignificance level.

The left p-value is the quantile of the value o€ ttest statistic, that is the
probability of occurrence of values less or eqghaldbserved test statist|t < t,;].
Figure 4.5 - A shows an example of a test statdistribution of a unilateral left sided
test. Then, the null hypothesis is rejected onlythié p-value oft,,, that is the
probability of obtaining values less than or eqoat,,, is less tham. The right-tailed
p-value is one minus the quantile, that is the @bdlty of occurrence of values equal to
or greater than the observed test statidtie, P[t > t,,5]. Figure 4.5 - B shows an
example of a test statistic distribution of a ut@fal right sided test. The null hypothesis
Is then rejected only if the p-value of,,, that is the probability of obtaining values at
least as extreme ag,., is less tham, while the two-tailed p-value is twice whichever
of these is smaller. Figure 4.5 - C shows an exaroph test statistic distribution of a
two-tailed test.

The KPSS test is used for testing the null hypashdgat an observable time
series is trend stationary while the ADF test iscifor testing a null hypothesis that the
signal is a non-stationary unit root process. & KPSS null hypothes is rejected, what
states H, and the ADF null hypothes is not rejected, it banconcluded that the signal
is a non-stationary unit root process. If the KRS8 hypothesis is not rejected and the
ADF null hypothesis is rejected, it can be conctitteat the signal is trend stationary. If
the null hypotheses of both tests are rejectedqorléy if neither is rejected, then,

nothing can be concluded. The possible resultswamemarized in Table 4.1.



76 Chapter 4eTProposed BCI

a
; — p-value
4 o 1= Pt > T
obs Tobs
Left tailed test Right tailed test
C
Oo~— —

reject region ’ reject region
two-tailed test

Figure 4.5 — A) left tailed test; B) right taileelst; C) two-tailed test.

Table 4.1 — Confirmatory analysis of KPSS and AB$ts. TSP: Trend Stationary Process; NSURP: Non
Stationary Unit-Root Process.

KPSS
Ho/Ha Ho Ha
ADF Ho ? NSURP
Ha TSP ?

The KPSS test is used for testing the null hypashdgat an observable time
series is trend stationdfyIn a trend stationary process the stochasticqidhe process
is stationary. The KPSS test assumes that thelsgjtize sum of a deterministic trend,

a random walk, and a stationary error,
x(t) =6(t) +e(t) + &(t), t=12,-,T. (4.2)
WhereT is the sample sizé,(t) corresponds to the deterministic treat) is

the stationary part of the process &d) is a random walk, i. e§(t) =&é(t—1) +

v(t). v(t) is assumed to be an independent and identicadlyildited (i.i.d.§° zero-

%9 Stationary around a deterministic trend.

0 A sequence of random variables is i.i.d. if eadom variable has the same probability distrilsutie

the others and all are mutually independent. Thathe occurrence of one event does not affect the
probability of the other and their covariance isoze
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mean random variable with varianeg.. If the variance is of the random walk is zero,
g2 =0, then,&(t) = &£(0) for all t andx(t) is stationary. The ordinary least squares

(OLS), or linear least squares regressionc@f) gives the estimated trend xoft):

y(t) =a+b-x(t) + e(t). (4.3)

wherea is the constant parameteéris the variable coefficient are(t) are the residuals
from the OLS regression. The residuals obtaineoh fitte OLS regression are related to
the random walk. The KPSS test is a unilateraltriggtied test based oH,: o), =
againstH,: o2 > 0 (Kwiatkowski et al., 1992). The test statistic thE KPSS is an

estimation of the random walk variance that is gilag

T t 2
1
Tkpss = 2.0 Z <Z e(s)) . (4.4)

t=1 \s=1

where ), is the long-run variance o#(t) calculated by using the Newey-West
Heteroscedastft and Autocorrelation Consistent (HAC) estimator {&tkowski et al.,

1992). The long-run variance is given by

o)

Q= Z V(). (4.5)

j:—OO

wherey, (j) denotes the j-th lagged autocovariance,of,(j) = E[(x(t) — E[x(t)]) -
(x(t —j) — E[x(t — j)]D] (Kwiatkowski et al., 1992). The Newey-West HACiexsttor
for Q is given by,

lmax

0 =7,(0) + 2 Z w(i,m) - 7 (),
j=1

“l Heteroscedasticity is the absence of homoscedwystid collection of random variables is
heteroscedastic if there are sub-populations tlae Hdifferent variances, covariances, or any other
measure of statistical dispersion from others. Phesible existence of heteroscedasticity is a major
concern in the application of regression analysis.
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In the Newey-West formula the lagged autocovariafigg), is weighted by the
Bartlett Kernel, w(j,m) =1 —[j/(m + 1)] for j < m andw(j,m) = 0 otherwise, to
ensure a positive semi-definite covariance maat{a & Du, 2012). In this research,
the maximum number of lags dff, lma Was calculated as recommended by

Kwiatkowski et al. (1992) in whichnaxis the nearest integer value of the square root of
the sample sizd, Ly, = int{T}. Where the operataint{-} is the nearest integer

value of a real number.

From the sampling distribution of the KPSS testistia, given by the normal
N(w Q)%2, the KPSS p-value can be obtained by P[typss = Tops]- Then, since
KPSS is a right tailed test, the null hypothesisejscted and the sequence is considered
not trend stationary if the p-value is less than

The ADF test is used for testing the null hypotbkdsiat the signal is a non-
stationary unit root proceSs The ADF test assumes that the signal is a sttichas
process modeled by an Autoregressive Model (ARE AR model specifies that the
output variable depends linearly on its own presioalues. By including lags of the
order p the ADF formulation allows for higher-order autgressive processes. This
means that the lag lengthhas to be determined when applying the test. ssiple
approach is to begin with a maximum lag, such asaitee recommended by Schwert
(1989), and then test down by assessing the stgnide of the coefficient of the largest
lagged change ir(t). The notation ARY) indicates an autoregressive model of ouler

and the model is defined as

14
x(®) = ¢ +Z(pi +x(t—10) + £(t). (4.7)
i=1

“2 Normal distribution: N(y, 62) = (1/v2m - ) - e"®~W*/20,

43 Characteristic equations are differential algebraguations used to model the time series of a
stochastic process. If the characteristic equdtama unique unit root, then, the stochastic psoiseson-
stationary, integrated of order ori€l), and the first difference of the process wal &tationary. If the
characteristic equation hagnultiples of unit roots, then, the stochastic psxis integrated of order

I(r).
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Where,p; are the parameters of the modelk a constant value ardt)is white
noisé. In this research, the maximum lag was calculatececommended by (Schwert,

1989) in which for small sample sizd5 € 250) the maximum lag is given by,

p = l, = int{4(T/100)*/*}. (4.8)
For large sample size% & 250) the maximum lag is given by,

p =l = int{12(T/100)*/4}. (4.9)

Some constraints are necessary on the values qiatiagneters of this model in
order that the model remains wide-sense statior@oy. example, processes in the
AR(1) model,x(t) = ¢ + ¢, + x(t — 1) + &(t), with |p;| > 1 are not stationary. More
generally, for an ARY) model to be wide-sense stationary, the roothefpolynomial
zP —YP_ ;- zP~" must lie within the unit circle, i. e., each rapmust satisfyZ| < 1.
The Dickey-Fuller tests whether a unit root is prégsin an autoregressive model.
Considering the AR(1) model, the unit root hypotbesorresponds tdi,:p; = 0
againstH,: ¢; < 1 (Schwert, 1989). Alternatively, the model can berfulated as

Vx()) =(p1 — D) x(t—1D)+et) =6 x(t—1) + (t). (4.10)

WhereV is the first difference operator. This model canestimated and tested
for a unit root and it is equivalent to testifig= 0 (whered = ¢, — 1). Then, the unit
root hypothesis translates iniy: 6 = 0 againstH,: 6 < 0, which is a left tailed test.
The statistic of the DF test is given by

(-1 6

Tpr = SE@)  SE@D) (4.11)

Where theSE denotes the standard errors of the least squatesators. The

statistictpr has a specific non-Gaussian distribution simplpvwin as the Dickey—

4 White noise is a random signal whose samples egarded as a sequence of serially uncorrelated
random variables with zero mean and finite variance
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Fuller table. Once a value for the test statiggicomputed it can be compared with the
critical values interpolated from the table for @edific significance level. If the test
statistic is less than the larger negative critiale, then the null hypothesisof O is
rejected and no unit root is present. The ADF iesin extended version of the DF test
to an ARp) model.

Here, a significance level of 5% was used(Q.05) and all tests were applied
with time windows from 0.1 to 5 s for all channalsd subjects. Figure 4.6 shows the
results of the tests taking the average resultl@hannels and sessions of each subject.
For all subjects, the p-value of the KPSS was highanao for all lenghts of the time
windows tested. Therefore, the null hypothesis thatsignal is stationary can not be
rejected. For subject 1 the p-value of the ADFoisdr thana for time windows larger
than 1.1 s indicating that for these time windohe null hypothesis that the signal is a
non-stationary unit root process can be rejectedskbject 2 the p-value of the ADF is
lower thana for time windows larger than 0.7 s and, for subjgcthe p-value of the
ADF is lower thano for time windows larger than 1.3 s. By using tleafomatory
analysis of the KPSS and ADF tests shown in talle éh the worst case the EEG
signal can be considered stationary for windowgdathan 1.3 s, which corresponds to
aproximately 84 samples, as the EEG signal wasamgked to 64 Hz. The nearest
power of two higher than 84 samples correspond$2® samples, therefore, time-
windows of 2 s were adopted. In Figure 4.6 the st@ationary intervals are highlighted
by the shaded area. In conclusion to this analyis&-windows of 2 s were adopted for
further processing with the EEG from the datasedrder to perform the pseudo-online

classification.

Subject 1 Subject 2 Subject 3

== = Significance level

p-Value [%]
p-Value [%]
p-Value [%]

01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
time-windows [s] time-windows [s] time-windows [s]

Figure 4.6 — Application of KPSS and ADF testsdach subject.
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4.5 Feature Selection

The aim of the feature selection procedure is tximize the distinction
between classes (mental tasks) to increase thsifeddadon success rate. The PSD
coefficients are the input features of the classifihe histograms of each frequency of
the PSD were calculated for each EEG channel,treguh 32 x 32 histograms for each
class, discarding the DC component. Then, a measfutiee discrimination between
classes, D, was used to compare the differencegebptthe histograms of each class
for the same frequency and channel. Figure 4.7 shbe channel x frequency matrix,
where each cell has the value of the discrimin@nt, calculated from the histogram of
each class;, C, andCs) (Benevides et al., 2011d).

Frequencies

32 Channel 9 (CP1)
. 12 Hz component

—

Histogram

Hez Hcs

Channels
Relative Frequency

0 1
Nomalized Amplitude

32

Figure 4.7 — Channel x frequency matrix;;HHc, and H:; are the histograms of the respective classes
C4, C,andCs.

Three methods for estimating the differences betwéhe histograms were
compared, which were the Discriminative Power (OR¢, Mean Squared Error (MSE)
between the histograms and the Kullback-LeiblerLjKsymmetric divergence (see
footnote 35).

The DP method uses only the extreme values of igtedgrams and it measures
the overlap of histograms without worrying abowt ghape. Therefore, it is not
necessary to calculate the histogram, but onlyrtagimum and minimum values of the
measured variables (Gonzalez et al., 2006). Supi{hadea variable, e. g. the 12 Hz
frequency of channel C3, has been repeatedly obdeturing two different conditions,
which are the mental task andC,. Then,ais the vector containing the set of values
corresponding to the conditio@;, andb is the vector containing the set of values
corresponding to the conditid@y. In the best case, if the maximum valuepiaxa),

is smaller than the minimum value lof min(b), then, there is no overlap between the
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histograms and the value of DP is 1 (Figure 4.8eft)L In the worst case, if the
minimum value ofa is greater than the minimum valuelénd the maximum value of
ais smaller than the maximum valuelpfthen, the histogram @fis fully contained in
the interval of the histogram &f the overlap between the histograms is complete an
the value of DP is O (Figure 4.8 - Right).

Histograms Histograms
Hco

He2

Heq

Relative
frequency

Relative

frequency

0'min(a) max(a) min(b) max(b) 1 0' min(b) min(a)  max(a) max(b) 1

Normalized amplitude Normalized amplitude
Figure 4.8 — Discriminative Power. Left: Histogramghout overlap (DP = 1); Right: Histograms with

complete overlap (DP = 0).

The calculation of the DP is given by,

card{a<min(b)}+card{b>max(a)}
card{a}+card{b}

DP = (4.12)

where card{.}, from cardinality, is the number of elements & set. The resultant
discriminant measure for the three histograms ésshm of the contribution of each

possible combination between pairs of histograntgchwis given by
Di,j = DPi,j(CL Cz) + DPi,j(CL Cs) + DPi,j(sz Cs) ) (4.13)

where the indexeis j correspond to the channeland frequenciegof the discriminant
matrix. The left part of Figure 4.9 shows the dieanant matrix D calculated for
subject 1, whose discriminant values are repredeanténe color scale on the right side
of the figure. The highest discrimination valuesravebtained for tuples (FC1 at 1, 3
and 10 Hz), (C4, P4 and CP2 at 9 Hz), (CP1 at H01&iMz), (CP6 at 10 and 20 Hz),
(P3 at 18 Hz) and (O2 at 10 Hz). Excluding char®2| all other channels highlighted
above are positioned approximately over the motortex. Most of frequency
components associated with these channels belong to B bands, which is in
accordance with the foreknowledge that motor metaisits affect pu anfl bands over

the contralateral motor cortex. The right part @fufe 4.9 shows in grayscale the total
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contribution of each channel and its relative int@ioce to the discrimination of classes,
in which white corresponds to a maximum contributiand black to a negligible

contribution. The total contribution of each chanisecalculated by summing up the
contribution of all the frequencies of the channel.

It can be observed that Fpl, Fcl and C4 are camsiddie most important
channels and that the occipital area is less importor the discrimination between
mental tasks, which is consistent with theory simiseial tasks or visual mental tasks
are not being performed. However, the contributidrthe channel Fpl is uncertain

because its location is greatly affected by bligkeimd eye movement artifacts.
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Figure 4.9 Left: Discriminant MatrixD of subject 1 obtained with DP method; Right: Taw@htribution

of each channel in relation to the discriminatietvieen the classes.

The mean squared error is a discriminant measuveeba the three histograms
of each class for the same frequency and chanhel.r@sultant discriminant measure
for the three histograms is the sum of the contidimuof each possible combination

between pairs of histograms, which is given by
Di,j = MSEi'j(Cl, CZ) + MSEi'j(Cl, C3) + MSEL'J'(CZ, C3) . (414)

The left part of Figure 4.10 shows the discriminauatrix D obtained with MSE
method for subject 1. The highest discriminatiotuga were obtained for tuples (F3,
FC1 and C3 at 10 Hz) and (CP1 at 9 and 10 Hz)cldinnels highlighted above are
positioned approximately over the motor cortex alhdrequency components related to
these channels belong to pfobands. The right part of Figure 4.10 shows in gcale
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the total contribution of each channel by summipghe contribution of all frequencies
of the channel. It can be noted that the channéts ligher contribution are over the

frontal, central, central-parietal and temporatexr
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Figure 4.10— Left: Discriminant MatrixD of subject 1 obtained with DP method; Right: Total

contribution of each channel in relation to thecdimination between the classes.

The K-L symmetric divergence was also used assaridiination measure
between the histograms. The K-L divergence betwden classesC; and C,,

Dy (C4]1Cy), is given by

max(H, (i), 5)> _ (4.15)

k
Dy (C11C2) = Z (O (max(Hz(i), 5)

Where H e H are the histograms &, e C,, discretized withk bins ands is a
small constant used to prevent the logarithm, erdivision, of zero (Benevides et al.,
2011e). Here$ was empirically taken as 0.001. The number of kin§the histogram

can be assigned by the Sturge’s rule,
k'=1+log, n. (4.16)
Wheren is the number of samples, and thers given by the nearest integer

abovek’ (, 1928). Implicit in Sturge’s rule is the assumptof a normally distributed
data set that is being well approximated by a bmabdistribution with probability 0.5,
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which gives a symmetric distribution. This is nopr@blem because, as will be shown
in sections 4.6.2, 4.6.3 and 4.7, the EEG signfalki® study can be modeled by normal
distributions. The symmetric version of K-L diverge, S}, is given by

SDg1,(C1||C2) = Dip,(Cy||C2) + Dip,(C,|[Cy) . (4.17)

In the same way, the resultant discriminant meagur¢he three histograms is
the sum of the contribution of each possible comtiam between pairs of histograms,

which is given by

D;; = SDgyij)(C1]|C2) + SDgy i jy(C1[IC3) + SDgy(;jy(C2[|C3) . (4.18)

The left part of Figure 4.11 shows the discriminaratrix D obtained with the
K-L method for subject 1. Here, all 3 sessionsha sub-sampled EEG of subject 1,
each one lasting approximately 4 minutes, are u3éek PSD is calculated for 2 s time
window with the sliding window technique and 15,28#mples are available for each
class. Therefore, the Sturge’s rule (eq. 4.16)redes thak’ = 14.8948 and 15 bins are
used to calculate the histograms of the K-L method.

The highest discrimination values were obtainedtémles (FP1, AF3, F3, Fz,
FC1, FC2, C3, C4, CP2, CP5 and P4 at 9 Hz) and (&Pd and 10 Hz), clearly
highlighting thep rhythm of the motor cortex to the detriment of estlirequency
components. The right part of Figure 4.11 showstdkted contribution of each channel
by summing the contribution of all the frequencadsthe channel. In contrast to the
other two methods tested, it can be seen that ¢heitg highlighted with the K-L
method is well focused in frequency components ¢batespond to thg band. Thus, it
having the best adaptation to highlight the expmketetivity of they band during the

motor mental task was the decisive factor for lisice over the other studied methods.
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Figure 4.11 — Left: Discriminant MatriX> of subject 1 obtained with K-L method; Right: Tiota

contribution of each channel in relation to thecdmination between the classes.

The feature selection can be made by setting armarinumber of features to
be used in the classification and selecting thaselwobtained the highest discriminant
values. Another approach of selection would besw aivariable number of features and
a threshold analysis, e. g., selecting all theufest that obtained discriminant values
above 60% of the highest value obtained. The weapercentage of the maximum
discriminant value will henceforth be representgdéb Another manner of selection
could be by identifying the maximum discriminantiue of a channel from an area
which we are aware is not related to any of thetald¢asks, e. g., the channel Oz. Thus,
only features with discriminant values higher thtwe value found for Oz will be
considered important and will be selected. Figudd 3hows the selected features by

using this last method.
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Figure 4.12 — Selection of features with discrimingalues higher than Oz maximum discriminant.
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4.6 Classifier

A Bayesian classifier was used for classificatibnis choice was motivated by a
previous study performed by the author during theéengraduate (Benevides, 2007) and
graduate (Benevides, 2009) courses. As previoulgtioned, several classifiers were
tested together with some feature extraction methikk the PSD, the Wavelet
Transform and high order moments of the EEG in tthee-domain. The classifiers
tested were: the decision tree learning, the Bape€ilassifiers in the case of Linear
Discriminant Analysis (LDA), Quadratic Discriminatnalysis (QDA), Regularized
Discriminant Analysis (RDA) and a backpropagatiatifiaial neural network (ANN)
with the Bayesian regulation backpropagation (tgitearning algorithm.

These studies showed that the LDA and the ANN obthiresults statistically
similar. Then, following these findings, the Bayesi classifier with a linear
discriminant function and a normal Probability Digngunction (PDF) was chosen for
the classification. The LDA was chosen rather ttiam ANN because its simplier
algorithm needs less processing time.

4.6.1 Bayesian Classifier

A Bayesian classifier was used for classificatitins a probabilistic approach
based on Bayes’ rule (eq. 4.19). The Bayes’ sk conditional probability relating the
posteriori probabilityP (C,|x) of occurrence of the everin a clasCy, with the priori
probability P(C;) of occurrence of a clasSx and the probability density function
P(x|Cy) (Garcia, 1994). In this equatioR(x) is only a scaling factor, given by the
total probability theorem, which ensures that tben ©f the posteriori probabilities is
equal to 1 (eq. 4.20).

P(x|Cy) - P(Cy)
P(x)

P(Cy|x) = (4.19)

L
P() = ) P(x|C)- P(C) (4.20)
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The sample spac§& is partitioned intoL classes (eq. 4.21), wherein the
probability of occurrence of clagd in S is its priori probabilityP(C;). Let's assume
that the sample space Mdsamples and each class Masamples. If samples of classes
can be considered random, then the priori proliglméin be estimated by the fraction of
each class irs (Friedman, 1989). Then, the priori probabilityaifcurrence of a class
Ck is the fraction of the number of sampleg of classCy and the total number of

samples in the sample spalieq. 4.22).

S = [C11C2r“'lck1"'rcL] (4‘21)
Ny
P(C) =+ (4.22)

The feature space can contain more than one fediemeg 2-dimensional if it
has 2 features, or 3-dimensional if it has 3 fesguFor the general case, in whighas
d features,S will be a multidimensional space withdimensions, i. e., a hyperspace.
Then, each clasS; (i = 1,2,::-,L) hasd features that were observed, or samphd,
times. Then, the classes are represented by nwtncghich the rows are the features,
or S dimensions, and the columns are the observatypns$each feature (eq. 4.23).
Y11 " Yin,

Vi1 o Yin, Vi1 0 Yung

C, = ,C, = o (4.23)

Yax1 ° Ydn, Ya1 ° Ydn, Yai ° Ydng
Let’s consider an observed evenof unknown class. The evexts a vector of
random variables, with length corresponding to an observation of thieatures irS.
The probability of occurrence of the claSg since the event was observed is the
posteriori probability P(C,|x). From the observation matrices of each class the
Probability Density Function (PDF) can be estimateat the general case, in which the
feature space has more than one dimension, joift iB2stimated. In most cases, the
PDF is approximated by a multivariate normal, oru€san distribution, given the
important statement of the central limit theorenay®sian classifiers that utilize the
multivariate normal distribution are called nornaddssifiers and they are a particular

case of the Bayesian classification.
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4.6.2 The normal distribution

The central limit theorem states that the mean siificiently large number of
samples of i.i.d. random variables, each descrilyedny PDF but with a well-defined
mean and well-defined variance, will be approxifyateormally distributed (Garcia,
1994). Thus, a variable may have a unique disiobutery different from the normal,
however, if many samples from this distribution taken, the histogram shape of the
sample means will resemble a normal curve. Thesefthe multivariate normal
distribution is commonly used and it is completegfined by its first and second order
cumulantsk; andk, (Fukunaga, 1990). The normal distribution of ad@n variable X

Is given by

1
fx(x|kq, ko) = Nx(ky, k) = m e~ (x—k1)?/2kz (4.24)
2

The cumulant-generating function of X, is related to the characteristic

function¥y by

Kx(t) = In(¥x(D)), (4.25)
where the characteristic function is given by
Py (t) = E[ett*] = f elt*. fi(x)dx, teR, i€C, (526)
wherei is the imaginary uni(i = \/—1). Then, using the McLaurin series expansion of

the exponential functione{* =1+i-x+ %(i - x)? + ;(i - x)3 +i(i -x)*-) and

substituting it into eq. 4.26, we obtain

i-t-X)? (i-t-X)3

( )+( )+___
2! 3!

iZ_ 2 3. +3

E[X?] +

Pe(t) =E[e"*X]|=E|1+i-t- X+

Ye(t) =E[1]+i-t-E[X]+ 5 T E[X3] + - =
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@ -o"

— (4.27)

W) =1+ Z E[X"]-

As the cumulant-generating function is the natloghrithm of the characteristic

2
function, the power series expansion of the logarifunction,In(1 + 2) = % —27 +
Z3

= Yoo _(—1)mtl % can be substituted into eq. 4.25 and, by sulbisiifLeq.

4.27 into eg. 4.25 the cumulant-generating functakes the following form:

s —1 m+1 s P, n m
Kx(t) = Zl% (Zl E[xn] . (l nf) ) =

Ky (D) = E[Xit — (E[X?] ~ E[X]) % — (E[X?] - 3E[X?|E[X] + 2E[X])iL + - . (4.28)

Then, cumulants can be extracted from eq. 4.28ubgessive differentiation in
Ky (t) equal to zero. That is, th€, cumulants are the McLaurin Series coefficients of

Ky (t), ignoring the imaginary component. The first foumulants are given by

K, = K} (0) = E[X] (expected value)

K, = K}'(0) = E[X?] — E[X]? = ¢ (variance)

K, = K[ (0) = E[X3] — 3E[X?]E[X] + 2E[X]?

K, = K}V (0) = E[X*] — 4E[X3]E[X] — 3E[X?]? + 12E[X?]E[X]? — 6E[X]*. (4.29)

Curiously, for the normal distribution, the expettealue, i. e., the first
cumulant, coincides with the arithmetic mean. #rtharen observations of the random
variable X, its arithmetic mean is given by,= (1/n) Y%, x;. This fact will be
demonstrated below. Takimgi.i.d. samples, the total probability of occurreraf those
n events will be the multiplication of the individu@robabilities, and the total
probability density function can be represented by,

1 >Tl _Z?:l(x_Kl)z
e

n
a2l K) = || el 1) = (—_ T (4:30)
i=1 27T " kz
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Equation 4.30 can be rewritten in a convenient wagxplain the ternt, i. e.,

given by

(O, (x-%)2)+n-(-K,)?

1 n
fx ey, x| Ky, Kp) = <—> e 2:K; ) (4.31)
27T - kz

The total probability fy (x4, -, x,,|K;, K,) is a constant value, therefore the
partial derivative offy regarding any term of the equation will be zermifrly, the

partial derivative ofin(fy) is also null. The partial derivative &d(fy) will be taken

91In(fx)

with respect tak;, Py
1

, which requires a lot simpler calculation thga(lﬁ, for this
1

demonstration:

d1n(fy) d 1 no (SR, (e=2)?)+n(x—Ky)?
X .
=0 —:|In||—] -e€ 2K =0
aKl aKl \/ 27T " kz

_ Qi (x =02 +n- (¥ — Ky)? _

(=)

d In(fx) _Z'n'(f—lﬁ)

aKl 2 - KZ

0

a—l(l' n-ln

n
1
=0=>(f—1<1)=0=>1<1=f=;zxi .(432)

i=1

So, the first cumulant of the normal distributios the arithmetic mean.
Similarly, the partial derivative dh(fy) is taken with respect t, to find an estimator

of the sample variancé?:

al 0 1 \" Ik
) e 9. 1<(_> R >]=o
aKz aKz lzn.kz

0 ol ( 1 > i -%)? 0

6_1(2 \/2T['k2 ZKZ
n
9 In(fy) n X (x—x)?2 1 N2 _ A2
3K, __E-I_K—ZZ_O:KZ_E Z(x—x) =d6°. (4.33)
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The normal distribution of a random variable X d¢hen be obtained with the
arithmetic meanx and the sample variancé?, fy(x|x,62). Considering the
multivariate case, the normal distribution of agea matrixX with d random variables,
is determined by the vect& of the arithmetic mean and the covariance maigx
Then, in the first example (eq. 4.21), the multiage normal distribution of each class
of the setS is fc, (x|X1,Z1), fc, (XX, E2), -+, fe, (X|Xp, Zge), -, fe, (x1Xp, Ep). For

example, the multivariate normal distribution@is given by

1 1, _ - -
fo, (KR i) = Ny (R By) = ————+ € 2670 %) (4 34y

(2m)2 - [Zx|2

where, the vectox, has the arithmetic mean of each random variabldasisC, and
the covariance matriZy is given byZ, = E[(x,, — E[x]) (X, — E[x,])T], and by the
result of eq. 4.32 the covariance matrix can berit@m to Xy = E[(X;, — X)Xy —

%,)T]. In whichx,, X,, and the estimateZj, are

x.l X _ 6f - G
Xp=|* | Xk = _ ,ZK = . (4‘35)
Xd Xd 6-d1 6’5

By the result of eq. 4.33 the varian@) and covariancé&i j) estimators of the

sample covariance matrix are given by
n n
. 1 _ _ 2 _ 1 =32
O-ij :z'Z(xi —xl-)(xj —x]) ,and 0; =;-Z(xl- —xl-) , (436)
i=1 i=1

where,i andj are random variables &f The resulting covariance matrix is then square
and symmetric. The vector of the sample mean amgblgacovariance matrix are called
sampling estimators (Fukunaga, 1990). The samplsrad from a normal distributed
population tend to fall into a single set in whitie center of the set is determined by
the mean vector and the set shape is determingtiebgovariance matrix. Constant
density samples are hyper-ellipsoids where the miadform (x — X)TEZ"1(x — X) is

constant. The main axes of these hyper-ellipsaidgyaven by thek eigenvectors, and
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its eigenvalues determine the size of these axesnieasure? = (x —X)TZ " 1(x — X)
is the Malahanobis distance fronto X. Thus, the contours of constant density are
hyper-ellipsoids with a constant Malahanobis disgafor X and the volume of such
hyper-ellipsoids measures sample dispersion owemigan (Duda, et al., 2000).

Figure 4.13 - Left shows a univariate normal dmttion of the random variable
X. In this figure the meai is represented by u, and the distribution is @efiby its
mean i and standard deviatien where 95% of the distribution is in the interval
|x — u| < 20. Figure 4.13 - Right shows the bidimensional femgpace of the random
variablesx; and x,. The bivariate normal curve would be representedaithree
dimensional space as a functionxgfx, and the probability Rf and centered about the
meanx. In this figure, the ellipses represent sectianpt at different heights from the
normal, which are the Mahalanobis distances thatvsbonstant probability density
lines (Duda, et al., 2000).

pP(x) X

X1

u-20 -G U U+0 U+20

Figure 4.13- Left: Univariate normal distribution; Right: Mahaobis distances from a bivariate normal
distribution (Duda, et al., 2000).

4.6.3 Normal classifier

The normal PDF is calculated for each class, ttlenposteriori probability that
a vector of observed variables,is contained in a certain class can be obtaired £q.
3.8. Then, the rule of highest likelihood is use@ssign a particular classxoThe rule
states that the vector of observed variables belgnip the clas€, that obtained the

highest discriminant functiory,, (Anderson, et al., 2007), is given by

x € C,/C; = argmax(g;),i € {1,-,L}, (4.37)

where the functionargmax:) takes the maximum value of a set. The quadratic

discriminant function is given by the natural lagfan of the posteriori probability,



94 Chapter 4eTProposed BCI

Ik = ln(P(Ck|x)) (eq. 4.38). In this equation some simplificatiaas be made: first
the term— ln(P(x)) is only a scaling factor and it can be negleckexnt.the cases where
the priori probabilityP(Cy) is equal for all classes the tedm(P(C;)) can also be

neglected. Finally, the term (d/2) - In(2m) is constant for all classes and it can also
be neglected (Duda, et al., 2000).

P(x|Cy) - P(Cy)
P(x)

9k (X) = In(P(Cy|x)) = 1n< ) = In(P(x|Cx)) — In(P(x)) + In(P(Cy)) -

1 1. et o
9x(x) = In(P(x|Cy)) = In(N(Xy, Z)) = In —" e_f(x_xk)Tzkl(x_xk) o
(2m)2 - X2

1 d 1
gre(x) = — > (x—%)TZ(x— %) — Eln(Zn) - Eln(lzkl) -

1 1
grk(x) = _E(X_Xk)Tzlzl(x_)_(k) _Eln(lzkl) : (4.38)

Therefore, the arithmetic mean and the sample @wse matrix are calculated
from eq. 4.32 and eq. 4.36 for each class, andidgegiminant function of each one can
be obtained. When an unknown evg&nbccurs, the discriminant functions are applied
and the value obtained by a discriminant funct®nat a probability anymore, but it is
related to the posteriori probability. Then, thghgr the discriminant value of a class,
the higher the posteriori probability that the oleed event belongs to this class.
Therefore, to use the rule of highest likeneshiesdame as to attribute xothe class
with the highest probability of containing it. Thsolution leads to nonlinear, or
quadratic, discriminants and it is also knows asadpatic Discriminant Analysis
(QDA). Figure 4.14 - A shows a nonlinear decisi@gion between two univariate
normal distributions with same mean and differesriances. Figure 4.14 - B shows a
nonlinear decision region between two bivariatenmadrdistributions, and Figure 4.14 -
C shows nonlinear decision regions between fowariate normal distributions.

A particular case is obtained by using the lineacriminant function. In this
case it is assumed that the covariance matricall olasses are equ@d,; = X, = -+ =
X, ==X, =X). Therefore, the term(1/2) - In(|Z4]) from eq. 4.38 is independent
from the classes, being a constant that can besctegl Also, for the cases where the
priori probability P(C,) is equal for all classes the term(P(C;)) can also be

neglected.
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Figure 4.14 — Nonlinear decision regions. (A) Beam boundary between two univariate normal
distributions; (B) Decision boundary between twedbiate normal distributions; (C) Decision boundary
between two four bivariate normal distributions (ayet al., 2001).

1 1
gi(®) = == (X = %) "B (x = %) = 5 In(|Z]) + In(P(Cy)) -

1
gre(x) = — > x—%)TZ T (x—Xp) (4.39)

Expanding the quadratic term of eq. 4.89+~ X,)TE~(x — X,,), results in,

1 1
gr(x) = —=xTEZI(x — %) + =X 2T (x — %) ©

2 2
1 1 1 1
ge(X) = — EXTZ‘lx + EXTZ‘lik + E)TEZ‘lx — E)‘({Z‘lik -
1
gr(X) = XF271x — Exzz-lxk . (4.40)

In eq. 4.40 the term-(1/2) - xT2~x is independent from the cla€g, then, it
Is a constant that can be neglected. Thus, themisant function of eq. 4.40 results in
a linear decision region and this approach it mod&tnows as Linear Discriminant
Analysis (LDA). Geometrically, this correspondsthe situation in which the samples
are sets of hyper-ellipsoids with identical shapd aize, and the separation region is
defined by a hyperplane (Duda, et al., 2000). Bm#he rule of maximum likeness is
applied to assign a class to the unknown observatioFigure 4.15 shows a linear
decision region of normal distributions. Figure 5.4 A shows a decision region
between two univariate normal distributions, in @bhithe priori probability of class
namedw; and classw, is 0.5. Figure 4.15 - B shows a decision regiotwben two
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bivariate normal distributions, in which the prignobability of classv; and classv; is
0.5. Figure 4.15 - C shows the separation plane tfes multivariate normal

distributions with priori probabilities of 0.5.

//I[,":l'o

y/ 55
/Z"Ill,‘llf‘
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fl?l
P(w,)=.5

A B C

Figure 4.15 — Linear decision region of normal ritisttions. (A) Univariate normal distributions; (B)
Bivariate normal distributions; (C) Multivariate moal distributions (Duda, et al., 2000).

4.7 Simulated results and the reclassification metd

As previously mentioned in section 4.3, the EEGuess are the PSD frequency
components obtained over stationary time window2 sfshifted for every new sample
(the sliding window technique). The feature setmttiwvas made using the K-L
symmetric divergence associated with the threshollysis, as is mentioned in section
4.4. Finally, a normal Bayesian classifier withireear discriminant function was used
for classification of the dataset described inisact.1. As the normal PDF is estimated
for the classification Figure 4.16 shows the EEGtdgrams of the 19 channels of
International 10-20 System and each estimated rloRDd&. The histograms were
obtained for the interval of20 uV using 50 equally spaced intervals during the nienta
task of imagination of movement of the left hartdcdn be seen that the normal PDF
resembles the histograms general shapes.

In this dataset three normal subjects performeéetimental tasks without
feedback. The mental tasks were the imaginatiom@iement of left/right hands and
the thought of words beginning with a given randtatter. The mental tasks were
originally labeled as 2, 3 and 7 in the dataset,tbey will henceforth be referred as

class 1, 2 and 3, respectively. The first two sewssiof each subject were used to

estimate the meafk,, X,, X3) and the sample covariance matri¢Es, £,,Z;) of each
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class. As a linear discriminant function was ugshd,average covariance matrix taken
over the three covariance matrices was uZed,(1/3) - (Zf’:lfi), in eq. 4.40. The

third session of each subject was used for thesiflasvalidation, and all classes were

considered equiprobable.
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Figure 4.16 — EEG histograms and estimated nornaddghility functions of subject 1 during the mental
task of imagination of movement of the left hand.

As 2 sessions of the sub-sampled EEG of each sudmjeaised, and the PSD is
calculated for 2 s time window with the sliding wow technique, then 10,112 samples
are available for each class. Therefore, the Swingde (eq. 4.16) estimates thdt=
14.3038 and 15 bins are also used to calculatkisihegrams of the K-L method.

Figure 4.17 shows the classifier output, which espnts the current BCI output.
The best values of the success rate for subje@s dnd 3 were 83.77 £ 1.27% (with
discriminant threshold af = 50%), 65.75 + 1.52% (= 50%), and 55.53 + 1.59% €
0%, i.e., using all PSD components), respectivélythis figure, the real class is
represented by the dotted line and the predictassaks represented by the continuous
line (Benevides et al., 2012a). In Figure 4.17, phedicted class oscillates faster than
the user could change tasks, which indicates tletlassifier is unstable. Therefore, a
method to smooth the classifications was developadh output forms a new vector of
classification, which stores the previous clasatfans for a period of time, called the

reclassification window. These windows behave a®metiwindows; they are
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continuously displaced by one classification, ahdst do not change the original
classification rate of the system.

The reclassification could use the most frequeaslin the reclassification
window, but this will lead to a delay during thansitions of mental tasks, since the
new class should occur more often than the oldsdasllow the classifier to identify a
class change. To minimize the delay, the outpuhefclassifier is the class with the
highest weight in the reclassification window. TWweight of each past classification is
given in relation to the size of the subgroup afi@glasses that it belongs to (Figure
4.18).
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Figure 4.17 — Classifier output.

The weight is the inverse of the probability ofegpeated occurrence of a class.
Thus, even if two classes have the same number coir@nces within the
reclassification window, the class that occurs atpdly is more likely to be the current
class than one class with the same number of cmues, but which occurred
randomly. Then, for three equiprobable classesnapke in a subgroup with sizehas
probability P§) = (1/3)". Thus, the weight of this sample is given bys\\¥ (3)". This
penalizes isolated samples or samples in small reupg among identical
classifications, which create noise in the clasatfon. Figure 3.16 shows an example
where the reclassification window is composed ofenpast classifications. Although
the 3 classes occur the same number of timesdake that occurs more times without
changing will have the highest weight and be assigo the system output (Benevides
et al., 2011e).
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Figure 4.18 — Time windows and reclassificationdaws.

Two parameters were varied each in turn: the ler@ftithe classification
windows, A, which was varied from 1 to 5 s and the discrimtrthresholdf. Figure
4.19 shows the curves obtained for each subjeatreim the circle indicates the best
values of\ for a constang.

100

Subject 1
— — = Subject 2
. - Subject 3
50

Success rate (%)

0 20 40 60 80 100
§ (%)

Figure 4.19 — Success rate for different values of

Figure 4.20 shows the system output after reciaasibn using the values &f
and the classification windows sizevhich produced the best result. In this figura¢he
is a significant improvement in the stability obthystem response. Table 4.2 shows the
best values of the success rate of each subjedhanuhrameters (1) used (Benevides
et al., 2012a). In the last column, B is the infation transfer rate, calculated in

bits/min as used by Obermaier et al. (2001), argldgtven by

1-s
B =log, L +s-log,s+ (1 —5)-log, (L — 1), (4.41)

whereL is the number of classes asi$ the success rate.
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Figure 4.20 —Reclassification.

Table 4.2 — Results from each subject.

Success rate & A B[bits/min]
Subj. 1| 94.931+0.71% 50% 2.5s 29.88
Subj. 2| 78.89+1.31% 50% 1.88s 20.12
Subj. 3| 81.31+1.25% 0% 5s 8.44

Table 4.3 shows the statistical measures of acgusansitivity and specificity

of the best system configuration for each classach subject.

Table 4.3 — Statistical measures from each subject.

Accuracy Sensitivity Specificity
Subj.1 Subj.2 Subj.3 Subj.1 Subj.2 Subji3 jSub Subj.2 Subj.3
C, 0.85 0.54 0.80 1 0.79 0.79 0.95 0.87 0.90
C, 0.98 0.80 0.80 0.97 0.73 0.79 0.99 0.86 0.91
Cs 0.99 0.93 0.83 0.91 0.85 0.86 0.99 0.95 0.91

The differences in the accuracy of the subjectdikety due to the differences
in concentration level during a task, reflecting #ase or difficulty of the subject in
imagining the mental task. A solution would be toplement a training step with
feedback, giving users with lower concentrationoager training phase. The use of
feedback also allows the mutual adaptation of ther @nd the classifier, which could
greatly improve the BCI reliability. It could be plemented by means of an online
interface showing the subject performance durirgrtental task. Finally, the results
presented here were compared with some resultsigaddnio BClI Competition lll,
which used the same datasets and mental taskhasedlhe results are shown in table
4.4 and were obtained from BCI competition Il wed$2005) and at Anderson et al.
(2007).
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Table 4.4 — Comparison with best results of datdssibmitted to BCI Competition IIl. The row labdle
“Authors*” shows the classifications results obtdnusing 0.5 s reclassification windows, whichhis t

same length used by the other studies shown here.

Subject 1 Subject 2 Subject 3 Mean
Authors 94.93 78.89 81.31 85.04
Authors* 84.09 69.34 65.66 73.03
F. Galan 79.60 70.31 56.02 68.65
X. Liao 78.08 71.66 55.73 68.50
Walter 77.85 66.36 53.44 65.90
S. Sun 74. 31 62.32 51.99 62.83
C. Anderson 62.30 57.60 47.50 55.80
A. Schlogl 69.00 57.05 32.29 52.71
E. Arbabi 5541 51.79 43.61 50.25
A. Salehi 26.54 32.84 24.53 27.97

First, some considerations about the results ¢ t&ld need to be given. In table
4.4, the classifications were performed using a p®mreclassification method.
Smoothing was applied to the classification resulith 0.5 s windows, which likely
leads to a delay during classification. Althoughk tlsults of the proposed method are
on average 16.3% better than those of the best, weclassification windows of up to 5
seconds were used. The proposed reclassificatidimoohdéeads to shorter delays, which
justifies the use of larger reclassification windowor fair comparison, the second row
of Table 4.4, labeled “Authors*”, shows the clagsifion results obtained with 0.5 s
reclassification windows. Our results are on averég% better than those of the best
work of Table 4.4. The performance improvementtigbauted to the use of symmetric
K-L divergence for feature selection (Benevidealgt2012a).

It should also be noted that each work comparethlihe 4.4 used different
techniques. For example, Shiliang Sun et al. (TaiagUniversity, Beijing) previously
removed artifacts of seven channels, and the EBGabkwas filtered between 8-13 Hz
for subject 1 and 2 and between 11 to 15 Hz fojestit8. Common Spatial Patterns
(CSP) and Support Vector Machines (SVMs) were digethe classification. Anderson
et al. used Short-time PCA for feature extractiod &DA for the classification. Alois
Schlogl et al. (Graz University of Technology) ssdmpled the signal to 128 Hz,
formed bipolar channels and estimated autoregressdels for each channel. Then,

the u andp energy were obtained and the best feature was fmged statistical
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classification. Ehsan Arbabi et al. (Sharif Univgref Technology, Iran) sub-sampled
the signal to 128 Hz and filtered it between 0.%%50Hz. Features based on statistical
measures and parametric models were extracted Gssgvindows and classification
was made by a Bayesian classifier. Ali Salehi usetbmbination of the Short-time
Fourier Transform (STFT) energy and temporal fegguo perform the classification by

means of a Bayesian classifier.
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Chapter 5 : Results

This Chapter will describe our experimental envin@mt and protocol, as well
as the application of some tests that were usétkeidataset V taken from our own data.
The ACF rule was applied in order to estimate tB€sEsample rate. The KPSS, ADF
and Runs Test are applied in order to verify th&Eationarity and the time windows
length. The histograms of all channels of the Imi@onal 10-20 System are shown
together with the estimated normal PDFs. The ER¥ERtterns and spectrograms
were calculated for all channels and were showmscadp maps for the frequencies
bandso/p, B andy. The processing time of the artifact removal teghes presented in
section 3.6 was calculated in order to evaluatethéreit is possible to adapt the
algorithms to an online approach. Finally, an asialpf the EEG SNR was performed

during different mental tasks and artifact remdeahniques.

5.1 Experimental environment

Data were acquired with five right handed male scisj, aged between 26 to 34
years (30.4£3.5). All subjects had normal hearimagmal or corrected-to-normal vision
and no history of substance abuse, major medigahpatric illness, or developmental
or neurological disorder. Each subject performe@ fmental tasks, which were the
imagination of the movement of right and left hanolsboth feet, of the rotation of a
cube and of music imagery.

For EEG acquisition, the device BrainNet36(BNT), from EMSA
Equipamentos Médicos LtdéFigure 5.1 - A), was used with a cap of integrated
electrodes from MedC&pcompany (Figure 5.1 - C). We used 19 electrodsitipned
according to the international 10-20 system (Fg&2,F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1 and O2). As expthimesection 3.2 the grounding
electrode was positioned on the user forehead, randoauricular reference was
adopted and all impedances were kept belo@FHord et al., 2004; Luck, 2005). The
EEG was acquired at a sampling rate of 200 Hz.BM& has 36 channels (Figure 5.1 -
B), A/D converters with 16 bit accuracy, conversitme of 10 us and Ethernet
communication interface (BNT36 User's manual, 20@@ing a device for clinical

purposes, the BNT does not export data online. &fbeg, a sniffer was programmed in
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ANSI C to export these data in an online way, allgmhe online processing, which
was performed by MATLAB 7.11%0(R2010b) on a computer with InfeCore™ i7
processor with a clock speed of 2.10 GHz, 8 GBAMRand a HDD of 1 TB.
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Figure 5.1 — a) BNT device; b) BNT panel (adaptenf BrainNet - BNT36 User's manual, 2004); c)
MedCafS cap of integrated electrodes, conductive eledimbel and paste.

The sniffer is a program able to track the date&ke@csent into a network. The
BNT sends UDP packets with coded EEG informatibant the sniffer is configured in
the promiscuous mode to observe and decode the watamg them into a text file,
without blocking the original data flow. The sniffevorks together with routines
implemented in the MATLAB. As the data is sent bMB the sniffer writes the text
file that is read and deleted by the MATLAB routifghen the text file is deleted the
sniffer creates another text file with the next BNdckets. The sniffer was released as
free and open source software in accordance wehQ@éneral Public License version
3.0 (GPLv3) and published in the web-based sounme aepository SourceForge
(Benevides, A. B. [Alessander] and Benevides, A.[Blessandro], 2013). More
information about the sniffer and the data trangfetocol of the BrainNet36can be

found in appendix A.
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Regarding the experimental protocol, for each metaisk sixty epochs were
taken, each epoch corresponding to 25 s. For gamthesubjects were instructed to sit
with their hands resting on their legs and to oleser cross in the center of the screen.
The cross is a fixation point to avoid excessivdaat from eye movement. After 5 s an
arrow replaces the cross indicating the start efrttental task. The mental task lasts 10
s, and then the cross reappears in place of tlevandicating that the mental task is
over. The subject must remain still until the crasseplaced by a circle at time 25 s,
indicating the end of the record.

For the left/right hand task the subject was irg&d to imagine the movement
of the right arm and hand in order to reach anth graobject placed in a table in front
of him at a distance of 30 cm. The subject watruoted to repeatedly perform this
imaginary movement, at his own pace, from the $h&15 s mark of the EEG record.
For the foot task the subject was instructed togimathe movement of extending both
legs, and thus raising both feet. In the same whg, subject was instructed to
repeatedly perform this imaginary movement, atdws pace, from the 5 to the 15 s
mark of the EEG record.

For the rotation of a cube task the subject wasuoted to imagine that he was
manipulating a Rubik’s cuB&with both hands. In order to facilitate the imaagion, a
real Rubik’s cube was placed in a table in fronhiwh at a distance of 30 cm. In the
same way, the subject was instructed to repeapafprm this imaginary movement, at
his own pace, from the 5 to the 15 s mark of th&E&Ecord. Finally, for the music
imagery task the subject was instructed to rememqstrinstrumental music, with no
lyrics, to avoid the association of brain areaatesl to language, from the 5 to the 15 s
mark of the EEG record.

It is worth commenting that the project was apptbieg the Ethics Committee
of the Universidade Federal do Espirito Santo (Brarecognized by the Ethics
Committee of the Research Ethics National Commis@ZiEP-048/08).

5.2 EEG pre-processing and histograms

The present study used different motor and non-nreflated tasks, and as we

do not know the exact size of the brain areasdhatactive during these mental tasks,

%> Rubik's Cube is a 3-D combination puzzle inverited974 by Hungarian sculptor and professor of
architecture Eréh Rubik, and was originally called the “Magic Cube”.
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the CAR method was adopted. As a normal Bayesiassifler with a linear
discriminant function was chosen for classificatidfigure 5.2 shows the EEG
histograms of the 19 channels of International @Bgstem and each estimated normal
PDF. The histograms were obtained using all sixtpchas of the mental task of
imagination of movement of the right hand of subjkecfor the interval oft100 uV,
using 50 equally spaced intervals. It can be shahthe normal PDF resembles the

histograms general shapes.
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Figure 5.2 — EEG histograms and estimated nornwalhility functions of subject 1 during the mental
task of imagination of movement of the right hand.

5.3 ERD/ERS scalp maps

In order to investigate the possibility of extergliour BCI to operate with both,
motor and music imagery paradigms, five mentaldas&re studied. The SNR and the
differences between ERD/ERS scalp maps of thegeriental tasks were used as a
factor in making a decision about choosing newdaskbe used in the aforementioned
BCI (Benevides et al., 2012b-c).

The traditional method to obtain the ERD/ERS, dbsd in section 3.9, was
implemented for 19 electrodes positioned accordinthe international 10-20 system.
The ERD/ERS calculated for the 19 electrodes wamsvshas scalp maps for the
frequency bands/p (8-12 Hz),p (14-30 Hz) andy (30-100 Hz). In Chapter 3, the
Figure 3.24 exemplified the application of the slasmethod for measuring the

ERD/ERS pattern for the mental task of imaginattdrmovement of the right hand
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from subject 1 from our dataset. Then, regardimgstbund imagery task, diverse studies
assert that neural activity in the secondary angitortex can occur in the absence of
sound as a consequence of the experience of imagmisic (Zatorre et al., 2005). The
sound imagery generally elicits a posterior synolzation (ERS) in the parieto-
occipital a band, which may relate to the inhibition of noskaelevant cortical areas,
such as the visual areas. However, the individaalability during sound imagery is
highly significant and some early EEG studies regbrconflicting findings as
decreases, increases or null responses ia bl@d when listening to music (Schaefer et
al., 2011b). Then, since there was no consolidatidmation about the occurrence of
ERD/ERS during music imagery, the ERD/ERS analysmil the spectrograms
presented cover a wide range of frequencies.

The relative energy of the EEG filtered at thg (8-12 Hz), (14-30 Hz) and
(30-100 Hz) bands was calculated for all the 1@tedeles and all mental tasks. Tjhe
frequency band lies on the same frequency intasaheo band, and the distinction
between them is mostly the location at which theg measured. The p band is
observed over the sensorimotor cortex, anditband is observed over almost the entire
scalp. Then, during the analysis of the ERD/ER3psceps, the EEG filtered at 8-12
Hz was referred to without distinction as tkdu band, since the electrodes of
sensorimotor areas and other areas could be medttogether.

The ERD/ERS protocol described in the previousigectvas adopted, 60
epochs were taken for the motor related mentaktaekd 80 epochs were taken for the
music imagery mental task, which were shown to lmeenthan enough. Because of
space constraints we only show the ERD/ERS scalpsmé subject 1 (29 year old).
Figure 5.3 - A shows the arrangement of electramethe scalp. Figures 5.2 (B, C, D
and E) show the ERD/ERS scalp maps of the EEGditat then/n (black), (dark
gray), andy (light gray) frequency bands. To avoid overloaditig figure, the
amplitude and time scales are shown only for chianRpl and Fp2, but all channels
are related to the same scale.

Figure 5.3 - B shows the ERD/ERS scalp map durimg mental task of
imagination of movement of the right hand. The ERR® pattern is observed spread
over the scalp and the highest ERS occurs at dntretie C3. Electrodes on the parietal
area (P3, Pz and P4) exhibit ERD only at the p b&ngure 5.3 - C shows the
ERD/ERS scalp map during the mental task of imdginaof movement of the left
hand. The ERD/ERS pattern is observed spread ¢weistalp and there is a little
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difference between it and the scalp map of FiguBe-3B, which is the absence of the
ERD at the p band in electrodes Pz and P4.

Right Hand Left Hand
Fp1 Fp2 Fp1 Fp2
. 80 80 120 120
[%] 0 %] 0 (% 0& [%] 0
-9 - -90 -90
05 15 25 5] 05 15 25(s] 05 15 25 [s] 05 15 25 [s]
F3 Fz F4 F8 F7

T bE LE LE LE bE

fl Bl B S LE LB bE LE BB

pe i B Bl P E LE LE b8 ba
T L= LB

(c)

F Cube Rotation
Fp1 eet Fp2 Fp1 Fp2
150 150 200 200
] %] % & ] &
B B (a) 8 o
05 15 25 [s] 05 15 25 [s] 05 15 25 [s] 05 15 25s]
F3 Fz 2 F8 F F3 Fz F4

LS LE LE LE bLE LE LE LE LE LE
LE LB LE Ly

(d) (e)
Sound Imagery
Fp1 Fp2
80 [/|801 i
% 0 %l 0
05 15 25 [s] 05 15 25 [s]
F3 Fz F4

E B -8 8 B
B o B i
é(ﬂ&

Figure 5.3 — Relative energy of thiu, B andy bands. The reference period was taken betweed B an
and the mental task occurred between 5 and 19 arr@ngement of electrodes; (b) ERD/ERS scalp map
during the mental task of imagination of movemerthe right hand; (c) ERD/ERS scalp map during the
mental task of imagination of movement of the hefhd; (d) ERD/ERS scalp map during the mental task
of imagination of movement of both feet; () ERDf&Bcalp map during the mental task of rotation of a
cube; (f) ERD/ERS scalp map during the mental tdskusic imagery.
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Figure 5.3 - D shows the ERD/ERS scalp map durimg mental task of
imagination of movement of both feet. The ERD/ERftgrn is also observed spread
over the scalp, and the main difference betweenttsk and the hand-related mental
tasks is the amplitude of the ERS occurring in teteles C3 and P3. Figure 5.3 - E
shows the ERD/ERS scalp map during the mental tdskotation of a cube. The
ERD/ERS pattern is observed spread over the saalpthe main difference between
this task and the foot movement imagination of mgvbooth feet is the ERS at the p
band occurring in both electrodes C3 and C4.

Figure 5.3 - F shows the ERD/ERS scalp map dutiegniental task of music
imagery. The ERD is observed less spread over dakp,sand for thex/pu band it is
mainly observed in temporal sites (T3, T4 and T&gral-frontal sites (F7 and F8) and
the parietal electrode P3. In tfdband the ERD is only observed in electrodes T3, T4
F7 and F8. The ERD is observed in thandp bands with smaller amplitude in frontal
sites (F3, Fz and F4). The main difference betwis task and the motor-related
mental tasks is the absence of ERD in the y bartbderelectrodes of the central area
(C3, Cz and C4).

5.4 Periodograms

As was previously mentioned, since there is no alhested information about
the occurrence of ERD/ERS and its frequency bamehglunusic imagery, and since the
research of Klonowski et al. (2009) reports higbkgfrency peaks related to imagined
tones, the periodogram from 1 to 100 Hz was caledldor all electrodes. The
periodogram was also calculated for all motor mletatsks, in order to verify if the
ERD/ERS pattern would occur at higher frequencydsaihe periodogram used the
PSD with Hamming windows of 1 s overlapped by 50%ng calculated separately for
each mental task epoch (Davidson et al., 2000).

The periodograms of the EEG during all aforememitbmental tasks were
calculated in absolute amplitudes and also in peage values relative to the mean
activity of each frequency over the time. The congmm between these two types of
spectrograms showed at which frequencies the ERB/ERIld be measured and also
its energy. Because, even if the ERD/ERS patternldcdbe measured at high

frequencies by using a large number of epochg, pfesented very small amount of
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energy the probability of being measured online B&l applications would be low.
Because of space constraints we only show thergigeatns for subject 1.

Figure 5.4 (A and B) shows the average periodogitarmg the mental task of
rotation of a cube. In this figure the amplitudes eolor-coded in gray scale. To avoid
overloading the figure, the frequencies and tineescare shown only for channels Fpl
and Fp2, and all channels are related to the safe@ded scale. In Figure 5.4 - A it
can be seen that the main activity occurs aroun#ia,0which has the highest energy
variation. The energy variation at about 10 Hztrergly related to the mental task,
since the energy is lower between 5 s and 15 déwlkntral area). Figure 5.4 - B shows
the periodogram focused on the activity from 0@d-&, and it also can be seen that the
a/p band has a higher energy variation thargthand.

Figure 5.4 (C and D) also shows the average pegiaaio during the mental task
of rotation of a cube, but in this figure the amyalies are percentage values relative to
the mean activity of each frequency over the tiargl are color-coded in gray scale. In
Figure 5.4 - C, it can be seen that the ERD/ER%epatoccurs spread over all the
analyzed frequency, thus not being an exclusivpeny of theo/t band. The relative
energy variation at 10 Hz was between -64.16 an863%, and at 100 Hz it was
between -45.85 and 76.42 %. Then, the ERD/ERS cbeldmeasured even for
frequencies near 100 Hz with percentage variatingst 16.89 % less than for 10 Hz.
However in absolute amplitudes, the energy vama#ib 10 Hz was between 5.38 and
130.72 pV, and at 100 Hz it was between 3.78 and 151.68 mpproximately one
thousand times lower. The main feature then otitheband, compared to tiffeand the
vy bands, is its higher absolute energy variatiostei@ad of the relative energy variation.

The periodograms of all mental tasks, including timgsic imagery, presented
the same general behavior of Figure 5.4 (A andByhich only theo/u band shows a
visible absolute energy variation. Figure 5.4 (H &) shows the average periodogram
during the mental task of music imagery. Figu@ -5 shows the periodogram from 1
to 100 Hz, and it can be seen that in general RB/ERS has lower amplitude than
motor mental tasks. Figure 5.3 - F shows the pegoam from 1 to 30 Hz and it can be
seen that the electrodes Cz, C4, Pz and T4 didreeent the ERD/ERS pattern.
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Figure 5.4 — (a) average periodogram during the tahetask of rotation of a cube; (b) average
periodogram during the mental task of rotation afule focused on the activity from 0 to 30 Hz; (c)
average periodogram with relative amplitudes far thental task of rotation of a cube; (d) average
periodogram with relative amplitudes for the mertalk of rotation of a cube focused on the activity
from 0 to 30 Hz; (e) average periodogram with retaamplitudes for the mental task of music imagery
(f) average periodogram with relative amplitudes tfte mental task of music imagery focused on the
activity from O to 30 Hz.
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5.5 Artifact removal techniques

In Chapter 3, the Figures 3.18, 3.19 and 3.20 ekbfetpthe methods for
discarding and minimizing artifacts. As BCI apptioas need an online usage of the
ICA, the separating matriw/ (eq. 3.6)can be estimated during some training trials and
used in later trials, and the processing time willy be due the matrix multiplication.
The processing time of the techniques of artifachaval presented in section 3.6 was
calculated in order to evaluate whether it is guesio adapt the algorithms to an online
approach. The ICA algorithms used two trainingl¢ria estimate the separating matrix
W and the average processing time was calculatethéremaining 58 trials. As the
threshold analysis and the filtering approach dustsneed training trials the average
processing time was calculated for all 60 triatsaverage, the threshold analysis took
0.34 + 0.47 us. The filtering approach spent87.6 +7.47 ms. The *“fastiCA”
algorithm spent.0 + 0.18 ms, and the “runica” algorithm took6 + 0.61 ms.

Figure 5.5 shows the ERD/ERS of subject 1 obtafoed¢hannel C3 using 60
epochs during the mental task of imagination ofectddation. The black line shows the
ERD/ERS obtained without artifact removal, by onging the CAR method. The dark
gray line shows the ERD/ERS obtained with “fastiCAhd the light gray line shows
the ERD/ERS obtained with “runica”. It can be olbser that “fastiCA” provided a
small improvement in the ERD/ERS amplitude. The B3k reached 163%, and by
using “fastICA” it reached 186% while the ERD didtrchange. It can be seen that the
“runica” worsened the ERD/ERS curve, and the ER8kpenly reached 45%. The
average result of applying fastiCA during all méntasks and subjects was an
improvement ofl2.6 + 9.4%. It means that, on average, the application o$tl@GA”

enhanced the EEG SNR slightly, so the ERS peak®mERD depression was more

detectably.
ERD/ERS - C3
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Figure 5.5 — ERD/ERS of channel C3 at p band. &clblERD/ERS obtained without artifact removal; in
dark gray: ERD/ERS obtained with “fastiCA”; in lighray: ERD/ERS obtained with “runica”.
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5.6 Sampling rate analysis

Regarding the sampling rate, the same ACF anatlismussed in section 4.2
was performed with new experiments. In this tinhe, EEG was acquired at a sampling
rate of 400 Hz and subject 1 performed 20 trial§®&. In half of the trials the subject
should actually move his index finger of the rigtand; in the other half the subject
should only imagine the movement of the index fmgef the right hand.
Simultaneously, the SEMG signal from the index éngvas captured using a bipolar
channel, in which one electrode was placed on tdapeohand over thExtensor indicis
and Extensor digitorum communiendons, and the second electrode was placedeon th
wrist. The subject was instructed to sit with hamnesting on the legs and observe a
cross in the center of the screen. After 4 s amvmareplaces the cross indicating the start
of the task. The task lasts 2 s, and then the amgpears in place of the arrow,
indicating that the mental task is over. The subfeast remain still until the cross is
replaced by a circle at the 10 s mark, indicathregyend of the record.

During the experiment the hands were resting onldge and the subject was
instructed to slowly perform one extension of thdeix finger, from the 4 to the 6 s
mark of the EEG record. For the imagination task ghbject was instructed to slowly
perform one imaginary extension of the index findeom the 4 to the 6 s mark of the
EEG record.

At the bottom left of the Figure 5.6 there is ansigrepresenting the beginning
and end of the task, and the average EMG fromQ@liridls. The SEMG signal is not
related to the scale of the figure. A slight detdyabout 0.2 s can be noticed, which is
due to the subject’s reaction time between viewihg arrow and performing the
effective finger extension. Another delay is fouatdthe end of the task, where the
SEMG activity lasts for approximately 1 second raftee notification of the end of the
task. The top left part of the figure shows the HRRS calculated at theandf3 bands
of channel C3, in which the reference period wasernabetween to be 0 to 2 s. There is
a 50% decrease of tifidband energy during the finger extension and tlsea@ increase
of up to 110% after the task execution that charams the ERD/ERS pattern.

At the right of Figure 5.6 the average periodogitithe EEG from channel C3
using Hamming windows of 0.5 s overlapped by 20%shswn. The hatched area
highlights thep band activity during the execution of the taskd awen in the

periodogram a decrease in flndand energy while performing the task can be edtic
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However, thef band does not present a clear ERD/ERS patterh, tvé ERD/ERS
only being observed in the average of this frequemerval.
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Figure 5.6 — Left: Relative energy of the u ghtdands of channel C3. The reference period wasitake
between 0 and 2 s and the index finger extensienroed between 4 and 6 s; Right: Periodogram of
channel C3.

Figure 5.7 was obtained with the task of imagimatwd movement of the index
finger. At the bottom left of the Figure 5.7 thesea signal representing the beginning
and end of the task and the average sEMG fromQattidls. The SEMG signal is not
related to the scale of the figure. It may be remtithat SEMG activity is random and
does not present any particular feature or vestig@ement during the task interval.
The lower horizontal line that almost coincideshnibe time axis corresponds to the
SEMG activity scaled over the sEMG obtained duffinger movement. This second
SEMG is shown scaled to show that there is almoshyoelectric activity, and it is also
shown enlarged so that it appears that the resatiigity is seemingly random.

The top left part of the figure shows the ERD/ER&alated afr andp bands of
channel C3. There is a 45% decrease offthand energy during the finger extension
and an increase of up to 90% after the mental éscution that characterizes the
ERD/ERS pattern. For the band there is an increase of up to 180% aftentéeetal
task execution.

At the right of the Figure 5.7 the average periogdagof the EEG from channel
C3 is shown. The hatched area highlightsithand activity during the execution of the
task, and even in the periodogram a decrease in tlaed energy while performing the
task can be noticed. The energy decrease durinmmémal task extends to frequencies
up to 20 Hz.
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Figure 5.7 — Left: Relative energy of the u ghtdands of channel C3. The reference period wasitake
between 0 and 2 s and the mental task occurrecebatd/and 6 s; Right: Periodogram of channel C3.

Figure 5.8 - Left shows the average ACF resultrduthe motor mental task.
Figure 5.8 - Right shows the average ACF resulinduthe non-motor mental task and
both results are very similar. The first ACF minimuwvas obtained for 0.06 3.
Substituting thery into eq. 4.1, then, 0.006 Ts < 0.003 or 166.6 HX Fs < 333.3 Hz,
and the result of the analysis is that the EEG lshba sub-sampled to 256 Hz. This
analysis corroborates the statement made in se8t®rthat the EEG could not have
fundamental oscillation frequencies much highentb@0 Hz and that the sampling rate
of 200 Hz should be enough for the observatiorhefrhain frequency bands, §3, v, 6,

p ando).
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Figure 5.8 — Average ACF obtained during the matental task.
5.7 Stationarity analysis

Some characteristics of non-stationarity signalshsas the mean, variance or
power spectra can change with time. Then, the BEB&windows used to calculate the
PSD and also to estimate the mean and variandbdddayesian classifier have to be at

least WSS. If very small time-windows are usedrdrelom nature of EEG prevails and
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different values of u and are obtained for each new window analyzed. Onother
hand, large EEG time-windows, are avoided in rmaétclassification because it may
result in large delays during the identification abiss transitions. Then, the minimal
size of time-windows in which the EEG can be coesad stationary is estimated by
using the KPSS and ADF tests.

Figure 5.9 shows the ongoing average, |, and stérbviation,s, calculated
for every new EEG sample until the end of the epedhich is 25 s. But, this figure
shows the superimposition of all channels and,ait be seen that when using few
samples the values of p amdend to vary. While using larger time-windows tlaues
of u ando tend to be a constant. The left part of Figuresh®ws the ongoing average
and standard deviation for the right hand imagexyiacan be noticed that the values of
K ando of most channels tend to stabilize from 5 s onwafthe right part of Figure 5.9
shows the ongoing average and standard deviatiothéosound imagery and it can be
noticed that the values of u amdof most channels also tend to stabilize from 5 s
onwards. Then, Figure 5.9 shows that small timedawvs of the EEG can be non-

stationary as p amgl became unstable.
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Figure 5.9 — Left: Ongoing average 4 and standaxdations calculated with time-windows up to 25 s
during the right hand imagery task; Right: Ongoavgrage p and standard deviatonalculated with

time-windows up to 25 s during the sound imagesk.ta

The left of Figure 5.10 shows the average resuKR$S and ADF tests for the
motor mental task of right hand imagery, and tgatrof Figure 5.10 shows these tests
for the non-motor mental task of sound imagery. thermotor mental task, the p-value
of the KPSS is higher than the significance lewgl ¢f 5% for all lenghts of time
windows tested. Then, the null hypothesis that slgnal is stationary can not be

rejected. The ADF p-value is smaller thafor time windows larger than 0.7 s, stating
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that the null hypothesis that the signal is a natienary unit root process can be
rejected for windows with duration larger than 6. By using the confirmatory analysis
of KPSS and ADF tests, shown in table 4.1, theaigan only be considered trend
stationary for windows larger than 0.7 s. The n@tisnary interval is highlighted by
the shaded area.

For the non-motor mental task, the KPSS p-valdggbker thar for all lenghts
of time windows tested, and the ADF p-value is $enahana for time windows larger
than 0.7 s. By using the confirmatory analysis 8f3S and ADF tests the signal can
only be considered trend stationary for windowgéarthan 0.7 s, which corresponds to
aproximately 140 samples, as the EEG signal wagleahat 200 Hz. The nearest
power of two higher than 140 samples correspond®5t samples, therefore, time-
windows with 256 samples are suggested for onlhoegssing, that is approximately
1.28 s. Finally, this analysis proposes that tmeetiwindows of 1.28 s should be

stationary and can be used for the signal procgssid feature extraction steps.
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Figure 5.10 — Left: KPSS and ADF tests resultsrfator mental tasks; Right: KPSS and ADF tests
results for non-motor mental tasks.

5.8 SNR analysis

As previously mentioned in section 3.7, the noisgléude of the average of

trials is 1/v/N times that of a single trial, and the SNR of thEGEincreases in
approximate proportion to the number of trials (k,u2005). When dealing with the
EEG signal it is very difficult to distinguish theoise component from the clean ERP
signal. Therefore, making a realistic estimatiortr@f ERP and the noise amplitudes in
order to calculate the SNR improvement for each added trial by using eq. 3.17 is

complicated. Because of this we consider usingstgeal correlation that is strongly
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related to the SNR (Borga, 1999). Let's considerdbrrelation between a signalvith
this same signal corrupted with a norsevhere both are zero-mean and uncorrelated.

Then, we have that the corrupted signal is givem byx + n, and the correlation is

) _Elx—ElxD) - v — ElyD] _ E[C) - e+ n—Elx +nD]
X,y —

VE[x?]-JE[y?] VE[x?] - E[(x + n)?]
3 E[(x) - (x +n)] 3 E[x?] + E[xn]
Pry = JEZ] - E[x? + 2xn +n2]  JE[x2]- (E[x%] + E[2xn] + E[n2]) ”
E[x?] S
Pry = (5.1)

JER?] B2 T E2) S GIN)

where S is signal energy and N is the noise en@gsga, 1999). Then, the SNR can be
obtained from the correlation, by

SZ
Pa%,y=m<—>p£,y'(5+N)=S<—>p§’y-5+p§‘y-N—S=0<—>
S pi
S-(p2,—1)=—p2, N —=—""_ 5.2
(px,y ) Pxy HN 1_[0)%'31 ( )

An estimation of the EEG SNR was performed, usingpaparison with the
correlation between the ongoing average and thal iERD/ERS curve, and the
correlation between a single trial and the ongawmgrage as well. This analysis was
performed in order to estimate the number of epoeltgssary to observe the ERD/ERS
pattern during the mental tasks with two kinds afgaligms: the motor and non-motor
related mental tasks. By comparing the SNR of timetional mental task of movement
of the right hand with the proposed task of musiagery we can have a clue about how
difficult it will be to perform the online processj of the feature extraction.

The noise amplitude approximately decreases inocxppate proportion to the
square root of the number of trials. An excessivmiper of trials then, will not cause
meaningful changes in the observed ERD/ERS (Lubk52 In order to verify if the
number of trials used to observe the ERD/ERS wami@m or was excessive, the
correlation between the ongoing average and thal H#RD/ERS curve (C-1) was

calculated for each new epoch, until reaching ¢t@ humber of sixty epochs.
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Equation 5.2 shows the relation between the SNRthadcorrelation for the
specific case in which both signal and noise aduelated. However, the assumption
that the ongoing average is uncorrelated from tRBAERS curve is not true, therefore,
eg. 3.41 can not be directly applied to find thePERNR. As a conservative approach,
the rescaled correlation function was compared it square root of the SNR by
using a polynomial regression.

As a single epoch is quite different from the firmaleraged ERD/ERS curve
obtained, the correlation must show small valueshat beginning. As the ongoing
average uses more epochs, the correlation increasds then, it finally converges,
indicating that the difference between them is metaningful. The left side of Figure
5.10 shows, in a black continuous line, the coti@aC-1 of channel C3 obtained for
the right hand mental task. From 30 epochs fohe,dorrelation reaches 95% and the
ERD/ERS curve obtained at this point is very simitathe ERD/ERS curve obtained
by using the total amount of 60 epochs.

Also, the correlation between a single trial and ¢timgoing average (C-2) was
calculated. As a single epoch is very similar te fihitial ongoing average, the
correlation must show high values at the beginnkgythe ongoing average uses more
epochs, the correlation decreases, and, thennitecges, indicating that the difference
between them is not meaningful. Figure 5.11 - kbfiws, in a gray continuous line, the
correlation C-2. In this curve, from 30 epochs lipthe correlation reaches 16%, and
when using the total amount of epochs it decreasks2%.

Finally, the gray dashed line in Figure 5.11 shdwessquare root of the SNR as
more epochs are considered and it is related toighe vertical axis. The correlation
curve, C-1, was divided into two parts, from thstfiepoch to an epogh) and fromn to
the end of C-1. Then, two polynomial regressionsewserformed for each part of C-1
using functions of the typg(n) = ¢ - (n)%, wherec is a scale parameter. The right part
of Figure 5.11 shows in the black line th@alue of the first part of C-1, asvaried. It
can be seen that from 7 to 11 epochsahalue is quite close to the noise amplitude
decrease, or the square root of the SNR (thabjs O.
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Figure 5.11 —Left: Mental task of right hand. Tterelation curve, C-1, of channel C3 is shown by th
black continuous line. The correlation curve, @Rchannel C3 is shown by the gray continuous line.
The square root of the SNR curve is shown by tla giashed line, whose vertical axis is on the right
side; Right: Thea value of the first part of C-1 is shown by thedidine. Thea value of the second part
of C-1 is shown by the gray line.

The right part of Figure 5.12 shows on the grag linea value of the second
part of C-1, ax varies. Thea value obtained from 11 to 60 epochs, correspoads t
a = 0.34, which means approximately théfn) = 3/n. This indicates that only for the
first 10 epochs, where C-1 reaches 80%, does tbamation increase similarly to the
square root of the SNR curve. Most of the inforoai@bout the ERD/ERS pattern then
is already retained with just 10 epochs.

The correlations C-1 and C-2 were also performedHe mental task of music
imagery. Figure 5.12 shows, in the black contindmes the correlation C-1 of channel
T5 that is over the auditory cortex on the tempdwak of the left brain hemisphere.
From 53 epochs forth, the correlation reaches 3% ,the ERD/ERS curve obtained at
this point is very similar to the ERD/ERS curve abed by using the total amount of
80 epochs. The curve seems to converge from 5thegorcth.

In Figure 5.12 the gray dashed line shows the soguaant of the SNR curve that
was scaled in order to cross C-1 at 50 epochs.ifitial part of C-1, from 1 to 50
epochs, is very similar to the square root of thlRSunction and, after rescaling, the
same aforementioned polynomial fit was performedtfes part of C-1, in whicka
obtained a value of 0.49, which is very close ® vhlue of the curve. The end part of
C-1, from 51 to 80 epochs, obtainee- 0.46. This small decrease of the exponann
relation to the decrease obtained for the rightdharental task, is due to the small

amount of samples representing the convergentopoofi C-1.
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Figure 5.12 — Mental task of music imagery. Ther@ation curve, C-1, of channel T5 is shown by the
black continuous line. The correlation curve, @Rgchannel T5 is shown by the gray continuous line.
The square root of the SNR curve is shown by tlay glashed line, whose vertical axis is on the right
side.

Even without absolute values for the ERP SNR ofamahd non-motor mental
tasks, this correlation analysis leads to the emich that the mental task of sound
imagery should need approximately five times magoecés than the motor related
mental task in order to observe the ERD/ERS patté/a do not intend to make
physiological assumptions about the strength of tesynchronization or later
synchronization of the neural mass recruited fa& thental task of music imagery.
However, it is known that electrodes at tempord, (T4, T5 and T6) and lateral-frontal
sites (F7 and F8) are particularly affected bydhouscle artifacts from tension or jaw
movements (Davidson et al., 2000). In general tiloand temporal electrodes are more
heavily contaminated by artifacts then central gcdlannels (Jung et al., 2000). Thus,
the SNR of these electrodes should be lower tharnStiR from electrodes at central
sites and more epochs are needed to observe thé&ERSpattern.

The convergent portion of C-1 for the right handntaé task had 50 samples
while the convergent portion of C-1 for the mentatk of sound imagery had 30
samples. Then, 20 new samples were estimated éocdhvergent portion of C-1 by
using general polynomial regression. The new C4ivement portion of the mental
task of sound imagery, with 50 samples, obtaimed0.38, which is very close to the
exponent value obtained for the right hand merask.t Then, after C-1 convergence,
the information enhancement gradually decreaseshdtih mental tasks, in a quite

similar way.
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Chapter 6 : Conclusion

As described in Chapter 1, BCls can be understsoth@ union of two main
processes that are the signal acquisition and itpeals processing (Figure 6.1).
Regarding the signal acquisition the sampling ratalysis shown in section 5.6
concluded that the sampling rate of 200 Hz shoel@fwough for the observation of the
main features of the EEG, which lie in the frequebandsa, B, v, 8, u and0. This
analysis also corroborates the statement madeciiose3.3 that the EEG could not
have fundamental oscillation frequencies much higjinen 100 Hz.

If very small time-windows are used the random reatf EEG prevails as the
stationarity analysis shown in section 5.7 conadludhat the EEG can only be
considered trend stationary for windows larger tbahs. On the other hand, large EEG
time-windows, are avoided in real-time classifioatibecause it may result in large
delays during the identification of class transisoTherefore, time windows with 1.28
s, or 256 samples are suggested.

Regarding the signal pre-processing, the CAR dpéttar is suggested in
association with the “fastICA” algorithm that todk0 + 0.18 ms and resulted in an
improvement ofl 2.6 + 9.4% in the ERD/ERS. At a sampling rate of 200 Hz, ¢hisra
new sample every 5 ms, and time windows of 1 slaliggl at no less than 10 ms could
be used. Then, the system would have a classditatite of 100 Hz with no lag and it
could be implemented online in BCIl applications mmg minimally in our
aforementioned requirements.

Regarding the feature extraction, the EEG featunes the PSD frequency
components obtained over stationary time window2%8 samples shifted for every
two samples. As shown is section 4.5, the feat@lecBon suggested is the K-L
symmetric divergence associated with the thresholaysis that adapts the Bayesian
classifier with linear discriminant function for mon-supervised training step. This
approach makes the classifier independent of tbeesthmental task paradigm and also

would adapt the BCI for individual features of tinser.
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Figure 6.1 — BCI schematic flow chart proposecdhis Ph.D. Thesis.
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The simulated results shown in table 4.2 are coetpan table 4.4 with the
results obtained in BCl competition Ill. The resutif the proposed method are on
average 16.3% better than those of the best workirea in BCI competition Ill. By
using fixed reclassification windows of 0.5 s, gasults are on average 4.3% better
than the best work obtained in BCI competition Tlhese results support the view that
this proposal for the BCI could be implemented ssstully, achieving success rates
higher than those obtained in BClI competition Higure 6.1 shows the overall
schematic flow chart of the proposed BCI.

The training process of the classifier and theuieaselection method can start
after some seconds of EEG acquisition for each ah¢ask, almost without training.
However, by using a training time so small it ig e&pected that the classifier set the
correct class. But, after several sessions ofitrgithe classifier should start to set the
classes with the advantage that the user can ab#leevimprovement of the accuracy
rate of the classifier throughout the processahing.

Regarding the possibility of extending our BCI foecate with both, motor and
music imagery paradigms, five mental tasks werdistl Before introducing a new
mental task into a BCI, it should be analyzed te i$at provides enough and distinct
enough information to be classified, at least oéli The main features that allow the
identification of a mental task are the physiolagieffects that culminate in
desynchronization and synchronization of the rdlateuronal masses. As distinct
mental tasks activate different brain areas, thB/ERS pattern obtained over the scalp
should vary related to the mental task.

From the ERD/ERS scalp maps of Figure 5.3 it isywdifficult to assign a
source for the spread ERD/ERS activity observetienscalp. In the average technique,
the time-locked activity is stressed as the spatas activity decreases, however, the
cortical electrical activity spreads until it cap measured by electrodes on the scalp.
Then, during the average process other scalp #raado not have time-locked activity
to the event may present a remnant of the origipegdad time-locked activity. Then, a
naive approach is to assign the source of the ERB/E the site where the highest
activity occurs.

As it can be seen in Figure 5.3 - B, during the taletask of imagination of
movement of the right hand the higher ERD/ERS d&gtivccurs in electrodes C3 and
P3. Then, it might be supposed that this activépresents the activation of areas

related to the right hand in motor cortex, and #wivity has spread to the neighboring
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electrodes F7, F3, Fz, T3, Cz, T5 and Pz. Howdeennental tasks whose activation
areas were not fully mapped, this assumption cdddwrong, since the activity
measured in these electrodes may also be due te some-locked activity of local

small generators yielding a lower amplitude ERD/ERS

Even though a specific source can not be assigoedht spread observed
ERD/ERS pattern obtained for all the motor menéaks, the ERD/ERS scalp maps
obtained for the sound imagery have a less spra#tdrp over the scalp. The sound
imagery ERD/ERS activity was observed in tiig band over temporal sites (T3, T4
and T5), lateral-frontal sites (F7 and F8) and piheetal electrode P3. The electrodes
T3 and T4 are located approximately over the awgditortex (Brodmann areas 41 and
42) on the temporal lobe. The electrodes T5 andrB3ocated approximately over the
Wernicke area (Brodmann areas 39 and 40) on th@deaiiparietal lobe. And the
electrode F7 is located over the Broca’'s area (Beoth areas 44 and 45) on frontal
lobe (Bear et al., 2008).

The ERD observed in electrodes T3 and T4 indictiasthe auditory cortex of
both brain hemispheres was activated. Wernickesa and Broca’s area are related to
information comprehension, language processingspa@ch production, and they are
present in the dominant cerebral hemisphere, wikithe left hemisphere in about 97%
of people (Bear et al., 2008). Then, the activipgerved in electrodes T5 and P3, over
the left hemisphere, is strongly related to the Miéde’s area as no similar activity was
observed over electrodes T6 and P4, over the hightisphere. The activity shown on
electrode F7 may be due to the activation of Broeaéa.

Also, the activity measured on electrodes F7 anddt8d be merely due to the
spreading of an ERD occurring at electrodes T3 a#ad over the auditory cortex.
However, this is a very cautious approach, sinedeafERD had originated beneath the
electrode T4, it would have spread radially, alsaching the electrodes T6 and C4. The
same occurred for the electrode T3, in which thar méectrode C3 did not present an
ERD. It is also important to note that even usingnental task in which the subjects
were instructed to remember just instrumental musith no lyrics, some brain areas
related to language and speech were supposedhatecti

The ERD was also observed with smaller amplitud&dntal sites (F3, Fz and
F4) that could be due to the spread of the ERCepatiuring the average process. Also,
it could be due to a local desynchronization omtab lobe related to the state of

attention to the beginning of the mental task. émeayal, for all analyzed mental tasks,
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an ERD with smaller amplitude was always preserdl@ttrodes of frontal lobe (Fp1,

Fp2, F3, Fz and F4). Then, the above mentionedmtit about the frontal ERD being
related to the state of attention can be appligti¢cdERD/ERS scalp maps obtained for
all mental tasks.

Also, almost no ERD/ERS activity was observed actebdes O1 and O2, for
all the mental tasks here analyzed. The electr@deand O2 are over the occipital lobe,
which is related to visual processing, and so #hbsence of activity was expected
during the mental tasks. Also, considering the apref the EEG, these electrodes were
less affected by the activity of other nearby btalves.

The spectrograms of Figure 5.4 (A, B) show thatfteguency band with the
highest absolute energy variation wasdhe band. The spectrograms of Figure 5.4 (C,
D, E and F) show that the ERD/ERS pattern occunmeasp over all analyzed
frequencies, and any mental task impelled a desgnctation/synchronization of a
specifically narrow high frequency band.

Although the ERD/ERS could be measured even fajuigacies near 100 Hz,
with percentage variations of just 16.89 % lowenttior 10 Hz, in absolute amplitudes
the energy variation at 100 Hz was approximately throusand times lower than for 10
Hz. This decrease of energy at high frequenciesaigsed by the low electrical
conductivity of the skull, acting as a low pastefil(Davidson, et al., 2000; Tang, et al.,
2008).

In order to estimate the number of epochs necesesappserve the ERD/ERS
pattern, we suggest an analysis of the EEG SNR daygua comparison with the
correlation between the ongoing average and the #®RD/ERS curve and also the
correlation between a single trial and the ongoawgrage. The comparison was
endorsed by using a polynomial regression that sdowimilarities between the
exponents of the curves. Then, we suggest a minanabunt of 10 epochs for
observing the ERD/ERS pattern during motor memisiks and 50 epochs for the sound
imagery task. And we concluded that the mental tafskound imagery should need
approximately five times more epochs than the mottated mental task in order to
observe the ERD/ERS pattern.

Although the correlation curves of the mental taskslyzed converged at
different points, indicating different amounts gfoehs to achieve the same quality of
information, the decrease of the information enbament after the convergence is

approximately similar for both mental tasks. Thee, can assert that for the motor and
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non-motor related mental tasks analyzed, the airoel curve behavior, until it reaches
the convergence, is similar to the SNR enhancenianttion. And after the
convergence point the behavior of the correlatiarve is similar for both kinds of
mental tasks studied.

The ERD/ERS scalp maps of Figure 5.3 show thatetiera little difference
between the scalp maps from the mental task of agt left hand movement imagery.
The main difference between the mental task of in&gn of movement of both feet
and those hand related mental tasks is the ameliafdthe ERS that occur in the
electrode C3 and P3. The main difference betweemntal task of rotation of a cube
and the imagination of movement of both feet is BRS at the p band, occurring in
both electrodes C3 and C4. And the main differdmegveen the sound imagery task
and the motor-related mental tasks is the absehE&D at the p band in electrodes of
the central area (C3, Cz and C4). During the sdmmaery task we believe that the
auditory cortex of both brain hemispheres was attid, followed by the activation of
Wernicke's area and Broca’s area.

Since it is not known, a priori, which bands ofquencies present useful
information during the task of music imagery, tipedrograms of the EEG during all
aforementioned mental tasks were calculated in latesscamplitudes and also in
percentage values relative to the mean activitgath frequency over the time. The
spectrograms of Figure 5.4 show that the ERD/ER&dche measured even for
frequencies near 100 Hz, but in absolute amplitdldesnergy variation at 100 Hz was
approximately one thousand times smaller than @oiH4. Even if the ERD/ERS pattern
could be measured for high frequencies by usiraggelnumber of epochs, if it presents
a very small amount of energy the probability oingemeasured online for BCI
applications will be low. Then, most of the usahibrmation for online processing and
BCls corresponds to théu band.

Finally, concluding this analysis, although thes@imeasurable difference in the
ERD/ERS scalp map of the sound imagery task andnthier-related mental tasks at
the a/u band, the low SNR of the sound imagery taskddad a problem during the
online processing and pattern recognition for BEdge.

Further studies are necessary to investigate tloenhation Transfer Rate (ITR)
during the online classification of sound image@bérmaier, et al.,, 2001). As the
mental task of sound imagery should need approeiméitve times more epochs than

the motor related mental task in order to obsengesame ERD/ERS pattern, it is very



128 Chapter 6: Conclusion

likely that the ITR should be approximately fivengs lower than for motor-related
mental tasks.
It is worth to comment that from the studies coriddauring this Ph.D. Thesis,
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An Ethernet sniffer for BrainNet36®

This Ethernet sniffer was designed to work togethi¢n the medical device for
EEG acquisition BrainNet36 (BNT36), from EMSA Equipamentos Médicos Ltda
(Figure 5.1 - A). BrainNet36has 36 channels (Figure 5.1 - C), A/D converteth 16
bit accuracy, conversion time of 10 ps and Etheomghmunication interface. The
smaller amplitude of the patient physiological silgtihat this equipment can handle and
display reliably is 2 uV. Being a device for cliaicpurposes, BrainNet36does not
export data online.

The sniffer is a program able to track the datke@csent into a network. BNT
sends UDP packets with coded EEG information, thiee, sniffer is configured in
promiscuous mode to observe and decode the datengathem into a text file, without
blocking the original data flow. The sniffer wadeased as free and open source
software in accordance with the General Public msee version 3.0 (GPLv3) and
published in the web-based source code repositoyc8Forge (Benevides, A. B.
[Alessander] and Benevides, A. B. [Alessandro],301

» http://sourceforge.net/projects/brainnet36-ethernetniffer/ (Accessed on:

October 30, 2013).

The data is sent by UDP packets with payload o01Bytes (Figure A.1). The
samples are 16-bit signed integers and each paokedins 20 samples (2 Bytes) for
each channel, in a total of 1440 Bytes. Data isg@lanoment by moment and the order
of the channels in the packets is: channel 1, adla®n..., channel 36 = F7, T3, T5,
Fpl, F3, C3, P3, O1, F8, T4, T6, Fp2, F4, C4, P4,K2, Cz, Pz, Oz, 21, 22, ..., 36.

Using more channels or fewer channels does nat @iée packet size, so that
unused channels are also sent in the packet. Thplisg frequency of the device can
be varied between 100 to 600 Hz, but it does nahgh the packet size. Changing the
sampling frequency of the device only increasesl@ws the emission rate of packets.
The header of BNT36 packets includes informatiooualbhe packet itself (one of them
is a 32-bit integer with the packet number). Thstfsample of the first channel starts at
position 71 (72 Byte). The destination port is tixe® 11111. Figure A.1 shows the
schematic of the UDP packet sent by BNT36.
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o
channel 1 =F7
channel 2 =T3
channel 3 =T5
channel 4 =Fpl
channel 5 =F3

UDP Packet channel 6 =C3
channel 7 =P3

Ethernet P UDP Data Ethernet channel 8 =01

Header | | Header | | Header Trailer channel 9 =F8

channel 10 =T4

14 bytes 20 bytes _ 8 bytes UDP payload \ 4 bytes channel 11 =T6
1470 bytes channel 12 = Fp2

channel 13 =F4

channel 14 = C4

e channel 15 =P4

BNT36 || sample |[ sample | .. [ sample channel 16 = 02

Header 1 2 20 channel 17 =Fz

" channel 18 =Cz

30bytes 36 X 2 X 20 _ 1440 putes channel 19 =Pz

channels bytes samples channel 20 = Oz

channel 21 = Al

channel 22 = A2
channel 23

chaxlmel 36

Figure A.1 — UDP packet sent by BNT36.

User guide on Windows:

1.

Install WinPcap for Windows [1] and extract it und&. The zip file contains a
directory named WpdPack, so, after unpacking, ymukl have C:\WpdPack.
Open the terminal, enter the directory where yot BrainNet36Sniffer.c and
enter the following command-line: BrainNet36Sniféae \\Device\\Tcpip_
{OXXXXXK-XXXX-XXXX-XXXX-XXXXXXXXXXXX} k1 k2 data. Where Tcpip_{x-x-x-
x} is the MAC address of your ethernet board. Oae get this MAC address
using the function ‘getmac' in the terminal (maksuge that the Ethernet cable
is connected). “k1” is the number of packets tonfenitored and “k2” is the
number of packets to be recorded in the same itextHere 'data’ is the name of
the text file generated with the EEG data. You igplace it. If “k1” is equal to
“k2”, the sniffer writes one text file named “da@Il.txt” with “k2” packets. If
“k1” is larger than “k2”, the sniffer writes sevérnaxt files with “k2” packets
named: data0001.txt, data0002.txt, etc.

Each text file records continuously the concateh&EG data in the same order

that they appear in the UDP packet.

[1] http://www.winpcap.org/install/default.htm
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For example, if you use the following commaimei BrainNet36Sniffer.exe
\\Device\\Tcpip_{put here your ethernet device MAa@dress} 200 50 data. You will
sniffer 200 packets and write it on 4 text fileacle one with 50 packets: dataO001.txt,
data0002.txt, data0003.txt and data0004.txt. Ak packet contains 20 samples of each
channel (concatenated as shown if figure A.1),filee“data0001.txt” will present 50
packets, i. e., 1000 samples concatenated in the seder that they appear in the UDP
packet.

How to compile on Windows:

1. Install MinGW [1] in order to get gcc.

2. Install WinPcap for Windows [2].

3. Download WinPcap Developer's Pack [3] and extracinder C:. The zip file
contains a directory named WpdPack, so, after uapgc you should have
C:\WpdPack.

4. Open the terminal, enter the directory where yot BrainNet36Sniffer.c and
enter the following command-line: gcc -Wall -1 C:pdPack\include -o
BrainNet36Sniffer.exe BrainNet36Sniffer.c -L C:\\WRaEk\Lib -lwpcap.

[1] http://www.mingw.org/wiki/Getting_Started
[2] http://www.winpcap.org/install/default.htm
[3] http://www.winpcap.org/devel.htm



