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Resumo

Classificadores do tipo maquina de vetores de suporte (SVd/Bts@lmente considerados
uma das técnicas mais poderosas para se resolver probleroassificacdo com duas classes.
Para aumentar o desempenho alcancado por classificadokés8Widuais, uma abordagem
bem estabelecida é usar uma combinacao de SVMs, a qualgmmtesa um conjunto de clas-
sificadores SVMs que séo, simultaneamente, individuakenpréacisos e coletivamente diver-
gentes em suas decisfes. Este trabalho prop6e uma aborgaggese criar combinacdes de
SVMs, baseada em um processo de trés estagios. Inicialnséoteisadas execucdes comple-
mentares de uma busca baseada em algoritmos genéticos)(@BRS objetivo de investigar
globalmente o espaco de caracteristicas para definir urargorge subconjuntos de caracteris-
ticas. Em seguida, para cada um desses subconjuntos deedataas definidos, uma SVM
gue usa parametros otimizados € construida. Por fim, é eatf@agna busca local com o
objetivo de selecionar um subconjunto otimizado dessas §¥Mssim formar a combinacéo
de SVMs que é finalmente produzida. Os experimentos foralimadas num contexto de de-
teccdo de defeitos em maquinas industriais. Foram usa@@ss@mplos de sinais de vibracao
de moto bombas instaladas em plataformas de petréleo. @simemtos realizados mostram
gue o0 método proposto para se criar combinacdo de SVMs apoasen desempenho superior
em comparacao a outras abordagens de classificacdo beelestids.



Abstract

The support vector machine (SVM) classifier is currentlysidered one of the most pow-
erful pattern recognition based techniques for solvinghyirtlassification problems. To further
increase the accuracy of an individual SVM, a well-estélelisapproach relies on using a SVM
ensemble, which is a set of accurate, divergent SVMs. Invibik we investigate composing
an ensemble with SVMs that differ among themselves on theeifeaubset and also the hy-
perparameter value they use. We propose a three-stagediettmiilding an SVM ensemble.
First we use complementary Genetic Ensemble Feature Beld GEFS) searches to globally
investigate the feature space, aiming to produce a set efstvfeature subsets. Further, for
each produced feature subset we build a SVM with tuned hypanpeters. Finally, we employ
a local search to retain an optimized, reduced set of thedds3Wd ultimately comprise the
ensemble. Our experiments were performed in a context bfvedd industrial machine fault
diagnosis. We use 2000 examples of vibration signals oflafrom motor pumps installed
on oil platforms. The performed experiments show that tleppsed SVM ensemble method
achieved superior results in comparison to other wellbdistaed classification approaches.
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1 Introduction

“The machine does not isolate man from
the great problems of nature but plunges
him more deeply into theim.
- Antoine de Saint-Exupéry, Wind, Sand, and Stars, 1939.

This chapter presents the objective and structure of thikwo

Section 1.1 introduces support vector machine classifi&assifier ensembles, and the ma-
chine fault diagnosis problem. Section 1.2 presents thibdustructure of this work.
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1.1 Introduction

Dichotomizers (i.e. two-class classifiers) are used in maportant applications, such as
automated diagnosis, fraud detection, currency veriboadind document retrieval. In order
to achieve a high discriminative power, a well establishedreach relies on using @assi-
fier ensembl¢Kuncheva 2004] [Wandekokem et al. 2011] to take classiboatlecisions. An
ensemble is a set of accurate classifiers that disagree athemgelves as much as possible.
Several works have showed that employing an adequate elesprobides a higher classifica-
tion accuracy than employing a single accurate classifier.

Thesupport vector machingSVM) [Vapnik 1998] classifier is currently considered orie 0
the most powerful machine learning techniques for solvimg-tlass classification problems.
The classification hypothesis limit of a SVM correspondhyperplane providing the maxi-
mum separation margin between the two classes, constinaddgh-dimensional transformed
feature space defined implicitly bykaernelmapping [Miller et al. 2001].

The kernel function used by a SVM estimates the similarityveen two patterng andy.
We employ the widely adopted radial basis function (RBF) kiekivey) = exp(—y||x — y||?).
It is critical to consider that the performance of a SVM dlyidepends on its hyperparameters,
and choosing an adequate hyperparameter value dependsamibn the used feature subset.
For instance, for a SVM using the RBF kernel, even a slight tianaof the used feature subset
(i.e. the set of features composir@ndy) or a slight variation of the kernel parametealter
the values computed l¥(x,y), therefore changing the transformed feature space in whieh
SVM discriminant hyperplane is defined.

Even thought the SVM is currently a very popular classifmatiechnique, by now few
works have studied SVM ensembles, and most of them haveddarsthe traditional approach
based on employing, for each classifier, a resampled taidta set [Li, Wang e Sung 2008,
Hu et al. 2007, Bertoni, Folgieri e Valentini 2005, Kim et al(3]. But considering that the
SVM is a stable classifier, in the sense that a small variaifdhe training data causes only a
small variation of the SVM decision function, we argue thahare natural and powerful ap-
proach to generate diversity in a SVM ensemble should takerdadge of the high sensitivity
of the SVM discriminant function to a variation of the emptalyfeature subset and hyperpa-
rameter value.

The proposed SVM ensemble method is based on a three-stagespr First, we use dif-
ferent Genetic Algorithm (GA) searches to globally invgate the space of feature subsets,
with each GA search using a fixed, different hyperparamedkrevto build SVMs to estimate
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the quality of the feature subsets. Using these complemef®A searches allows many ac-

curate feature subsets to be found, which are also divegjeoe they were investigated in

feature spaces defined by different kernel mappings. Inebersl stage, for each produced
feature subset we build a SVM, which uses tuned hyperpasmaiming to achieve a better

classification performance. The use of different hypenpatar values increases the collective
diversity of SVMs. Finally, in the third stage, we employ &db search aiming to retain an

optimized, reduced set of these produced SVMs to ultimatetgpose the ensemble.

Our experiments were performed in the context of fault deie@nd diagnosis of industrial
machines [Widodo e Yang 2007]. We used data from real-wgokerating industrial machines
instead of using data from a controlled laboratory envirentrwhich is almost always found
in the literature (see for instance [Zio, Baraldi e Gola 20080 et al. 2007]). From the engi-
neering point of view, that is an important novelty of oureasch, since laboratory hardware
in general cannot realistically represent real-world tfagcurrences. We work with 2000 ex-
amples of vibration signals obtained from operating plytfaulty motor pumps, installed on
25 oil platforms off the Brazilian coast; the signals wereaittd during a period of five years.
To generate the labeled training data, experts in maintenangineering provided a label for
every fault present in each acquired example.

In the diagnosis of an input pattexn(which represents the acquired signals of a motor
pump), each considered fault is detected by an independévithsemble, with the SVMs
in an ensemble consideringas belonging to the positive class,s if X presents the fault
considered by this ensemble, or as belonging to the negatigewy,osif x does not present this
fault (althoughx may present other faults).

1.2 Structure of this Work

The chapters of this work are structured as follows. Chapietr@éduces classifier ensem-
bles and support vector machine classifiers. Chapter 2 isescoad with classifier ensembles
in general. Chapter 3 considers the specificities of SVM tflass and the use of SVMs as
component classifiers in ensembles. Chapter 4 outlines dpoped method for building SVM
ensembles, based on feature and hyperparameter vari@tiapter 5 presents the motor pump
equipment, the considered faults, and the extracted fest@hapter 6 shows the experimental
results achieved by the studied classification models ubmgcquired database of motor pump
vibration signals. Finally, chapter 7 draws conclusiond points out to future research.
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2 Classifier Ensembles

“Vox populi, vox Def.

This chapter is concerned with classifier ensembles in géner

Section 2.1 discusses why an ensemble should be composedurate, divergent classi-
fiers, in order to achieve a high prediction accuracy. Seci@ presents a method for com-
bining decisions of different classifiers into a single slsation decision. Section 2.3 is con-
cerned with approaches for generating a set of divergessifiers in order to compose an
ensemble.
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2.1 Ensemble of Classifiers

To achieve a high classification accuracy, a well-estabdtisipproach relies on combining
decisions from complementary, divergent classifiers gadtof employing just a single, fixed
classifier. In this context, divergence means that eactsi@ilersgives wrong prediction in a
different region of theglobal feature space (obtained by considering every availabkerfeg
Thus divergent classifiers make errors for different tesgiatterns.

Figure 2.1 shows the global feature space region in whicssiflarsC;, C, andCs give
wrong predictions, respectiveR;, R, andR3. The shaded area is the region in which the
ensemble composed of the three classifiers, using majatsg; gives a wrong prediction. As
one can see, the error region of the ensemble is smaller lieagrtor region of any individual
classifier. In the example presented in this figure, bothsdiass C; and C3 give a correct
decision for the testing patter, thusx, is correctly classified by the ensemble, even with
the classifielCy giving a wrong prediction fox,. However testing patterr; is incorrectly
classified by the ensemble, since b6thandCs give a wrong decision for this pattern.

The general motivation behind the use of classifier ensesnbleeflected in figure 2.1. If
the component classifiedivergeon their predictions (i.e. if each classifier corresponda to
different error region in the global feature space), then,sbme testing patterns, the wrong
decision given by some classifiers can be corrected by tihé digcision given by others. Be-
sides, if the component classifiers aecurate(i.e. if each classifier corresponds to a small
region of wrong decision in the global feature space), tlienensemble composed of them
might correspond to an even smaller region of wrong decssion

Creating a classifier ensemble entails addressing two iskoesto generate a set of diver-
gent classifiers to compose the ensemble; and how to aggrégeitsions from these distinctly
trained classifiers into a single, combined decision.

2.2 Combining Decisions from Distinct Classifiers

A widely employed method for combining decisions from dlisticlassifiers is the majority
vote. In this approach, each classifier in the ensemblersssigesting patterr to one class;
then the ensemble ultimately assignt® the class indicated by most classifiers. Majority vote
can be naturally employed with classifiers that only provitepredicted class, for instance the
K-Nearest Neighbors classifier.

Considering SVM classifiers, the discriminant function comel by a SVM is a real-valued
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R4

examples

Figure 2.1: The region of wrong decision of an ensemble (tlzeled area) is smaller than the
region of wrong decision of any individual component classs (the region&;, R, andR3).

function that corresponds to the degree of support of béhgng a class, which is more infor-
mative than just providing the predicted class. As it is nemavenient to use degrees of support
in the intervall0, 1] (with 0 meaning “no support” and 1 meaning “full support”)ewse a lo-
gistic discrimination [Theodoridis e Koutroumbas 2006¢&timate the a posteriori probability
ﬁpos(x) that a patterix belongs to the positive classos

An advantage of using classifiers that produce a degree pbsuip that it allows taking into
account their certainty of decision. For that aim, we useatreragingmethod to combine the
decisions of the individual classifiers. In this approacheasembl&’ estimates the probability
ﬁg)s(x) of an input patterrx belonging to the positive class,os as the average of t &n(X)
score value that the®’| classifiersy, in & produce forx,

. 1 6l
& m
Bjed) = 177 3 Pl @)

Thusx is predicted as belonging toyes if If’ggs(x) > 0.5 or as belonging toxeg Otherwise.
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2.3 Generating Divergent Classifiers

A classifier takes decisions according to its hypothesinee by the training of this classi-
fier. Before being trained, a classifier has a set of hypothes¢are accessible to it, according
to the available training data and the used classifier actute. The classifier training algo-
rithm then starts an a point in the hypothesis space, trasdhsough this space and stops in
one of the accessible hypothesis.

Ensemble methods can be grouped according to how they daartdiat component classi-
fiers use different hypotheses [Brown et al. 2005]. We makstindtion between two general
groups: methods based on training each classifier with teeoftithe same set of accessible
hypotheses; and methods based on training each classifleitivei use of a different set of
accessible hypotheses.

The approach based on employing the same set of accessfiaébges relies on starting
the training of each classifier in a different point in the bijyesis space, or employing, for each
classifier, a different approach for traversing the spacpeoskible hypotheses. For instance,
[Opitz e Maclin 1999] built a neural network ensemble byrtnag each network using different
random initial weights, and [Brown et al. 2005] used a peni@tyn in the error function of a
neural network ensemble to encourage some overfitting imtheidual networks to occur.

The second general ensemble approach relies on trainimgotessifier with the use of a
different set of accessible hypotheses. One can vary thiegstamong classifiers: architecture
(classifier model and value of intrinsic parameters); trgjrpatterns; and the feature subset.

A natural approach to create diverse classifiers is basedttingsthe intrinsic parameters
of each classifier to a different value. For instance, [Isl#ao e Murase 2003] investigated
ensembles of neural networks with each classifier usingferdift, fixed number of neurons in
its hidden layer.

Probably the most studied ensemble method is based on emgplaydifferent training
data set for each classifier. For instance, in Bagging [Breib®®6], each classifier samples
N training patterns, with equal probability and with repla@nt, from an available set of
different examples; thus a training set might not contameof the available patterns while it
contains other repeated patterns. The AdaBoost methodr{éfe&chapire 1996] is a variation
of Bagging, in which an iterative process is employed to pgegively increase the probability
of sampling difficult patterns. The ensemble methods basedesampling the training data
work well with the use of unstable classifiers, for instanearal networks, in which a small
variation of the training data set might cause a large vanabf the classifier discriminant
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function [Kuncheva 2004].

Another useful approach for building ensembles is basedmgwa different feature subset
for each classifier [Zio, Baraldi e Gola 2008] [Wandekokemle2@11]. Indeed, [Ho 1998]
showed that even randomly sampling the features used byceaghonent classifier is effective
for producing an ensemble. Other works have investigatpdoaghes for searching the space
of feature subsets, aiming to define more accurate ensenblesll-established method is the
Genetic Ensemble Feature Selecti@EFS) proposed by Opitz [Opitz 1999], that relies on a
Genetic Algorithm (GA) based global search. Using neuréivoeks as component classifiers,
Opitz showed that ensembles built by GEFS achieved bettesrpgance than ensembles built
by Bagging or AdaBoost. Several works have employed GEFS fmpaning results; in fact,
previous work shows that the GEFS method usually achievaeghehprediction accuracy in
comparison to other ensembles methods [Tsymbal, Pechgeizunningham 2005].
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3  Support Vector Machine Ensembles

“If in other sciences we should arrive at
certainty without doubt and truth without error,
it behooves us to place the foundations of knowledge
in mathematics.

- Roger Bacon.

This chapter is concerned with the specificities of suppectar machine (SVM) classifiers
and the use of SVMs as component classifiers in ensembles.

Section 3.1 presents the SVM classification architectueetiGn 3.2 details previous work
on SVM ensemble construction.
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3.1 The Support Vector Machine Classifier

The SVM discriminant function corresponds to the hypergldrat provides the maximum-
margin separation between patterns belonging to the twsidered classes. To deal with non-
linearly separable problems, a kernel function is usedckwvimplicitly performs a non-linear
mapping of the input feature space into a high-dimensiagaakformed feature space in which
the separating hyperplane can be defined.

We use the widely employed radial basis function (RBF) kekfely) = exp(—y||x —y||?).
As the computed valuk(x,y) estimates the similarity between pattesnandy in the trans-
formed feature space, the kernel paramgteontrols decisively the non-linear mapping from
the input feature space. Using a higlbauses distance between patterns to be increased, thus
employing a very higly may cause overfitting. On the other hand, using ajo@auses distance
between patterns to be decreased, thus employing a vernyraay cause underfitting.

During the training of a SVM classifier it is possible to alle@me training patterns to be
misclassified. That is controlled by a regularization paetrC which determines the cost of
allowing a training pattern to remain in the wrong side of¢kparating hyperplane. A very high
value forC determines a very high cost for misclassification, prodyeicomplex discriminant
function that may overfit the training data. On the other h&@ is set to a very low value, the
SVM may not be able to learn an effective discriminant rule¢cs too many training patterns
are allowed to be misclassified.

After training, the SVM discriminant function which defintee side of the hyperplane of
an unknown patterr is sgr(g(x)), with

Ns
g(X) = Z }\ktkk(X,Xk) +Wp (3.1)
k=1

being the unnormalized distance of the pattefrom the maximum-margin separating hyper-
plane defined by the SVM training. The vectagsare the support vectors (the training patterns
that are ideally closest to the decision boundatypgre the class labels of eagh (1 for the
positive class;—1 for the negative class); ang are the Lagrange multipliers obtained from
the convex quadratic optimization problem [Tu et al. 20@ffulated by the SVM approach
(thusAy is a linear weight corresponding to the relevanceidf andk(x,y) = @(x) - @(y) is a
kernel function that calculates the inner product of twadgratsx, y implicitly mapped from the
original feature space to the usually nonlinear mappedespgdhe implicit feature extraction
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function@. We employ the radial basis function (RBF) kernel
k(x,y) = exp(—yl[x = Y|[°). (3.2)

The distance of a pattern to the separating hyperptdrg followed by a logistic dis-
crimination [Theodoridis e Koutroumbas 2006], is used tineste the a posteriori probability
I3pos(x) that a patterx belongs to the positive classos

1
" 1+expA+Bgx))

Poos(X) (3.3)
The parameters andB in (3.3) are determined after training the SVM, by minimgia
cross-entropy error on the training set [Bishop 2007].

We use thé i bsvmlibrary [Chen, Lin e Scholkopf 2005] to implement SVM classafiion.
This provides C++ code to implement tasks such as scaling feptures to a range ¢f1,1]
(which is more adequate for SVMs), training and evaluativ/S, and hyperparameter tuning.

3.2 Previous Work on Support Vector Machine Ensemble
Methods

Since the SVM training algorithm investigates the spacecoéasible hypotheses and then
finds the global best solution, a natural approach to cre&¥M ensemble relies on training
each classifier with the use of a different set of accessipetieses. In this case, one can vary
three things among SVMs: training patterns, its architec{ue. employed hyperparameter
values and the kernel function), and the feature subset.

Although some works reported success in building SVM ensesnby using traditional
data resampling methods such as Bagging or AdaBoost [Hu ed@r] &Kim et al. 2003], other
works did not, for instance [Evgeniou, Pontil e Elisseef®2Dwhich stated that single SVMs
with tuned hyperparameters had performed as well as SVManiss defined by Bagging. As
a matter of fact, building SVM ensembles by employing tragndata resampling may seem
like going against the SVM principle, since the SVM is a statihssifier i.e. a small variation
of the training data might cause only a small variation of$M discriminant function.

To better adapt the AdaBoost method to SVMs, [Li, Wang e Su@@Pproposed varying
the value of the kernel parametgeas the AdaBoost iteration proceeds, starting with Joval-
ues (implying weak learning) and then increaspmgogressively. This process generates SVMs
that differ on training data and also on hyperparameteregalifhe authors reported success in
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problems with unbalanced classes, as AdaBoost focuseseamtisgldifficult patterns that tend
to belong to the less frequent class. Other works, takinguidge of the high influence gf
in the definition of the SVM discriminant function, have eioygd SVM ensembles with com-
ponent SVMs differing among themselves solely on the vafug[Sun, Zhang e Wang 2007],
[Valentini e Dietterich 2000].

Another approach for building SVM ensembles is based omudiiferent feature subsets
for generating diversity among SVMs. For instance, [Berténigieri e Valentini 2005] stated
that, in a classification task with many available features &ith few training patterns, SVM
ensembles using randomly defined feature subsets perfdratet than single SVMs with an
optimized feature subset defined by feature selection [Ku8&lansky 2000].

Reference [Verikas et al. 2010] considered SVM ensembldsauitmponent SVMs differ-
ing on feature subset and also hyperparameter values. e ai GA method which per-
forms feature selection and hyperparameter tuning to m®dun accurate single SVM. This
GA method was used to initially build a SVM having access tdled available features dur-
ing training (thus being able to select an optimized featwreset). Further, this GA search
was used to independently build each other component SVBIbgrone, but using as features
available to be selected just a randomly defined subset tfalhitially available features.
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4 SVM Ensemble Based on Feature and
Hyperparameter Variation

“A designer knows he has achieved perfection not
when there is nothing left to add, but
when there is nothing left to take away.

- Antoine de Saint-Exupéry.

This chapter outlines the proposed method for building stpgector machine (SVM)
ensembles, based on feature and hyperparameter variation.

Section 4.1 introduces the proposed SVM ensemble constnutiethod, based on a three-
stage approach. The first stage, described in section 4ildslauset of feature subsets. The
second stage, presented in section 4.3, builds, for eaclopsty defined feature subset, a SVM
with tuned hyperparameters; these SVMs are candidatesnpase the ensemble. The third
stage, described in section 4.4, selects a subset of SVMs dtbthese produced SVMs, to
ultimately comprise the SVM ensembile.
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4.1 Three-stage Approach to Build SVM Ensemble

The traditional approach to build a SVM based predictoregetin determining a single
accurate SVM. Under that perspective, first, the space tfifesubsets is investigated to find
oneaccurate feature subset; this process is denoted as feataction [Kudo e Sklansky 2000].
Further, the space of hyperparameters is investigateddafimyperparameter value providing
an accurate SVM using that feature subset; this processnsteld as hyperparameter tuning
[Widodo e Yang 2007].

In this work, we propose an adaptation of that traditionagkd-SVM based approach to
the modern perspective of classifier ensembles. Our SVMnalmisemethod first employs a
global search to investigate the space of feature subsetsigato find asetof feature subsets
corresponding to accurate, divergent classifiers. Fyrtbeeach produced feature subset, the
methods builds a SVM with tuned hyperparameters. Finallint¢rease the ensemble accuracy
besides reducing the number of component SVMs, the metheslaimcal search to determine
an optimized, reduced SVM subset to compose the final ensembl

The proposed ensemble method is based on a three-stagegrégest it produces a set
F of feature subsets. Then for each feature subset in th¥ sle¢ method builds a SVM with
tuned hyperparameters, which generates &sebmposed of H | = | F| SVMs, each of which
associated to a feature subset and to a hyperparameter Fala#ly, the method selects a subset
& of SVMs from # to form the final ensemble, composed &f SVMs. Figure 4.1 presents a
diagram of the proposed SVM ensemble method.

4.2 First stage: Feature Variation

The objective of the first stage is generating diversity byngiseature subsets that allow
complementary classification decisions to emerge. We eelilés by producing a sef of
diverse feature subsets. Since searching the space ofdeatiosets is a NP-hard problem, we
rely on a suboptimal search strategy, namely the well-éshaal GEFS [Opitz 1999] method.

GEFS originally employed neural networks as componensifiass. To better adapt GEFS
using component classifiers that are very sensitive to tifiaitien of their parameters (such
as SVMs), in this work we proposeraultiple-GEFSapproach to search the space of feature
subsets more profoundly, by evolving independent ensesnBlach of the feature subsets rep-
resents one SVM classifier and uses a different, fixed hypempeter value.
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Figure 4.1: Construction of an ensembidy the proposed Multiple-GEFS ensemble method.
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4.2.1 The GEFS Method

Opitz [Opitz 1999] proposed the Genetic Ensemble Featuexfen (GEFS) that relies on
a Genetic Algorithm (GA) global search to investigate thacgpof feature subsets. Since the
efficacy of a feature subset to learning depends on the tegaigorithm itself, GEFS relies on
the wrapper approach which directly estimates the quafity f@ature subset by using k-fold
cross-validation to evaluate a classifier employing th&uee subset. GEFS considers that a
member of the population represents one feature subsegnmepted as a vector storing the
index of each component feature.

The parameteM determines the number of feature subsets composing thenblesat the
end of every generation. Considering that we hBvglobally available features, the size of
each initial feature subset is randomly defined from 1 to[2, with features being sampled
with replacement; repeating a feature in a chromosome nmghg¢ase its chance of surviving
to future generations besides increasing its importanckassification.

In each generation, starting from thecurrent feature subsets, tb®ss-ovewperator pro-
ducesmgo New feature subsets, and threitationoperator producesy, : new feature subsets.
Then, from all thes®! + m¢ro + Mmyt available feature subsets, only a totaMvfeature subsets
presenting the highest fithess values are selected to cenippensemble at the end of the cur-
rent generation (the other feature subsets, with smallerd#, are discarded). Thddefeature
subsets correspond to the output of the current generation.

The fitness F; of a feature subsehy, is estimated as a linear combination of the accuracy
Accn, achieved by a classifier, which usesf,, and the diversity Diy, of this classifier,

whereA is a regularization parameter that controls the trade-@tiiveen accuracy and diversity.
The diversity Diy, of a classifielc, is defined as the average difference between its prediction
and the prediction of the ensembfé of M classifiers corresponding to the population of the
current generation for a training set compose® tfaining exampleg; as

Py

[PSn(xr) — PodXr)- 4.2)
1

) 1
Divijp= —
m Rr

Since there is no obvious way to set the value of the parame®EFS dynamically adjusts

A after each generation, based on the discrete derivativéseaénsemble error, the average
population error and the average diversity within the eridendf the ensemble error is not de-
creasing, then is modified by 10% of its current valu@:is increased if the average population
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error is not increasing and the average diversity is decrgasr A is decreased if the average
population error is increasing and the average diversitpigecreasing.

The cross-over operator works as follows. It randomly gs|groportionally to fitness, two
feature subsets from the currévitfeature subsets. These two parents generate one childy whic
Is a new feature subset that uses a randomly defined numbeatofés (from 1 to 2 D); the
percentage of these features that comes from each pardst imsadomly defined. Then each
parent contributes with a number of features, each feateiregbsampled, with replacement,
from the feature subset of this parent.

The mutation operator works as follows: It uses one feauioset, that is randomly selected
from the currentM feature subsets. Then a new feature subset is produced, th&rsame
number of features, but having a total of Bgrgercent of its features being randomly selected
and then changed to a different, randomly defined feature.

4.2.2 The Multiple-GEFS Approach

Running the GEFS algorithm produces a set of feature sulisgtfidave a good potential
to compose an ensemble. These feature subsets were sélectase they presented a higher
fitness, estimated by constructing SVMs and performingsskadidation. But this optimized
performance was achieved with SVMs using a fixed hyperpaemalue, which provides a
fixed perspective of the transformed feature space definéadyernel mapping. As defining a
fixed, global best SVM hyperparameter value is against timeipte of classifier ensembles, in
this work we usenultiple-GEFSsearches, each of which employing a different hyperpammet
value. The use of different hyperparameter values migbtathore diverse feature subsets to
be found, which ultimately might compose a more divergettueate ensemble.

For creating the sef of feature subsets, we rurindependent GEFS searches,
{S1,...,8i,...,8 }, each of which using a different, fixed hyperparameter véllig); to build
RBF-kernel C-SVMs to estimate the quality of each feature dubSbe output of a GEFS
searchs; corresponds ti feature subsets{,ff‘,..., foi ..., f,f,f}. The set of feature subsets
is then composed of every feature subfgt which is them-th feature subset produced by the

searchs$i. So|F| =1 x M.
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4.3 Second Stage: Hyperparameter Variation

The objective of the second stage is to improve divergenea iensemble besides improv-
ing the SVMs accuracy, by better adapting the SVMs to thexcH feature subset. That is
done by tuning the hyperparameters of each SVM. Althoughdpproach does not explicitly
increase a metric of divergence among the SVMs, tuning e&dh &es improve their diver-
sity and disagreement, since the assigned hyperparanadter i likely to be quite distinct
among different SVMs due to the diverse feature subsetsamag!

We use a simple, widely employed method to tune the SVM hygrarpeters. We use the
grid-search on the log-scale of the parameters in combimatith cross-validation on each
candidate parameter vector. Basically, p&sy) from a set of predefined values are tried by
evaluating RBF-kernel C-SVMs which use them, and the pair thatiged the highest cross-
validation accuracy is finally selected to be used with thi8/SThel i bsvm
[Chen, Lin e Scholkopf 2005] library provides an implemeiatatof grid-search, in which the
investigated values @ are{2.0, 8.0, 32.0, 128.0, 512.0, 2048.0, 8192.0, 32758@d the
investigated values gfare{0.0078125, 0.03125, 0.125, 0.5, 2.0,)8.0

To define the SVM set!, for each feature subséfi in the setF we employ the grid-search
method to build a SVM;, using this feature subset and employing tuned hyperpaesset
Thus# is composed of every produced SVM, i|g{| = | F]|.

4.4 Third Stage: Selection of the Final Ensemble

The objective of the third stage is discarding most of therpnaeluced SVMs in the set
H, in such a way that just an optimized SVM subget # is finally retained to comprise the
ensemble. This classifier selection process is useful foeasing the ensemble accuracy and
to reduce the number of component SVMs in the ensemble. Bgildilarge classifier set and
further searching for an optimized classifier subset is @emble construction strategy known
asoverproduce-and-choo$Kuncheva 2004].

Considering that the SVM sé&{ was defined by a global search, in the sense that multiple,
complementary GEFS searches were used to investigate dbe spfeature subsets, it seems
adequate to employ a local search to define the classifieesfibs #. Since# is composed
of many promising SVMs, this local search should be able¢gigely investigate the candidate
ensembles, aiming to find a SVM subset with an optimized taftibetween accuracy and
diversity, i.e. with a higher estimated ensemble accuracy.
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We use thesequential forward selectiof6FS) search method [Kudo e Sklansky 2000] to
select the classifiers, due to the good performance of Imtlbeng approaches in performing
local search. The SFS search starts with an emptylketf selected SVMs composing the
ensemble, and at each step one SVM is include@{in Consider thak SVMs have already
been selected and includediq. If # is the set of al|#| available SVMs, ther¥ \ 14 is the
set of|H| — k candidates SVMs;. To include one more SVM if4, each non-selected SVM
¢t must be tested individually together with the already del&VMs and ranked according to
the criterionL, so that

L(ThU{e}) = L(AU{ca}) = ... = L(HU{Ci i })- (4.3)

As a result of the current inclusion step, the S\¢éMhat provided the highest criteridr{ 74 U
{c1}) = L(7k.1) is included in the set of selected SVMs; this correspondsiedk + 1)-th
inclusion step.

We define the criterioh(‘7%) of a candidate SVM sekj to be the Area Under the Receiver
Operating Characteristics (ROC) Curve (AUC) [Fawcett 2006]eaeld by this candidate en-
semble?. Since the score that every SVM i gives to a training pattern was previously
estimated by cross-validation (during the hyperparamedeation stage), then the criterion
L(74) can be readily estimated, by obtaining, for every trainiagggrnx, the scordf’pq&(x) as-
signed tax by the candidate ensembig. FA’{,'Q‘S(X) is obtained by averaging thescoresﬁ&gs(x)
given tox by thek SVMs ¢y in 4.

The AUC value, used to directly estimate the quality of a cdewe ensemble, is similar to
the traditional accuracy value, but using AUC is more usifutomparing classifiers in prob-
lems with unbalanced classes in which negative class exeasmapé usually much more common
than positive ones. The AUC value achieved by a classifigesponds to the probability that,
given a positive class examppeand a negative class exammpieboth randomly sampled, this
classifier predict®pos(p) > Ppog(N).
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5 Oil Rig Motor Pump Fault Diagnosis

“The engineer’s first problem in any design situation
is to discover what the problem really’is.
- George C. Beakley.

This chapter details the mechanical engineering problemsed on this work, namely the
diagnosis of faults in industrial machines.

Section 5.1 is concerned with the fault diagnosis problexh ttue model-free approach
based on pattern recognition techniques. Section 5.2 idescthe motor pump equipment.
Section 5.3 presents the considered fault categoriesioB8éct describes the extracted features.
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5.1 Model-free Fault Diagnosis

The early detection of faults in complex industrial maclyne advantageous for econom-
ical and security reasons [Bellini, Filippetti e Capolino 8D0An effective diagnostic system
can aid relatively unskilled operators in making reliabdeidions about machinery condition as
well as aiding experts in making decisions about intricatdtfoccurrences. This might deci-
sively contribute to the main objective of maintenance eeegiing, which is repairing damaged
components during planned maintenance aiming to minimiaehmery downtime and to im-
prove security.

There are two main approaches to the machine fault diagpodidem: model-based tech-
niqgues and model-free techniques. The model-based linesafarch relies on an analytical
model of the studied process, involving time dependenerdfitial equations. Usually the ex-
perimental process setup is installed in a controlled latooy environment and is embedded in
a control loop in which inputs, controlled variables andssegroutputs are modeled. However in
real-world processes the availability of an analytical elasl often unrealistic or inaccurate due
to the complexity of the process. In this case model-frelrtiggies are an alternative approach
[Bellini, Filippetti e Capolino 2008], which relies on patterecognition based techniques for
automatically learning fault describing rules from traigidata.

5.2 Motor Pump Equipment

Rotating machinery covers a wide range of mechanical equipara plays an important
role in industrial applications. In this work we focus on a&sific rotating machine model,
namely horizontal motor pumps with extended coupling betwthe electric motor and the
pump. Accelerometers are placed at strategic positionggaloe main directions to capture
specific vibrations of the main shaft which provides a mbkienel time domain raw signal.
Figure 5.1 shows a typical positioning configuration of theederometers in the equipment.

5.3 Considered Fault Categories

Several faults can simultaneously occur in a motor pump.h&ubigh diversity of de-
fects has a direct impact on the subsequent classifier. Maulisfcause vibrations in similar
frequency bands, for instance the first, the second and itteitarmonics of the shaft rotation
frequency, in such a way that the faults cannot be detectgdgsbgearching for their well-known
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Figure 5.1: Motor pump with accelerometers placed alonghttrizontal (H), axial (A) and
vertical (V) directions. The motor corresponds to possidime 1 and 2, and the pump to the
positions 3 and 4.

characteristic signature.

We build an independent predictor for detecting the indigidoccurrence of each of the
following fault categories: pump blade unbalance; hydrayic fault (due to blade pass and
vane pass, cavitation or flow turbulence); shaft misaligmnlling element bearing failures;
mechanical looseness; and structural looseness. Forttbetlaee fault categories, since they
individually occur in a motor or in a pump, we make a distiontbetween the predictor of a
fault occurrence in the motor and the predictor of a fauluoence in the pump.

Table 5.1 shows, for each considered fault category, theepéage of the 2000 examples
that presented this fault. Examples presenting multipiéigaare more common than examples
in which just one fault is occurring.

Figure 5.2 illustrates how the frequency spectrum is aasediwith two of the faults. The
figure presents the vibration signal Fourier spectrum of tomgump with misalignment; this
fault manifests itself in the frequency spectrum at the firgte harmonics of the shaft rotation
frequency. Besides, the high energy in the fifth harmonic,elkag the noise in low frequencies,
indicate that additionally a hydrodynamic fault is emeggiiihis signal was measured from the
position 3, in the horizontal direction.
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Figure 5.2: Vibration signal Fourier spectrum of a motor jpupnesenting misalignment and
also an emerging hydrodynamic fault.

Table 5.1: Fault occurrence.

Fault class Percentage of faulty data
Misalignment 42.6%
Hydrodynamic 42.4%
Unbalance 24.9%

Bearing - motor 24.9%

Bearing - pump 16.6%
Structural looseness - motor 26.6%
Structural looseness - pump 13.9%
Mechanical looseness - motor 12.1%
Mechanical looseness - pump 8.6%

5.4 Extracted Features

Our general classification strategy is based on providingnash information as possible
in the initial feature extractiorstage, and further using ensemble construction to autoatiti
prioritize more relevant features.

It would be desirable to extract features from distinct, p@mentary information sources,
for instance electrical current, chemical, thermal, anamaaical vibration sensors. Also, it
would be desirable to employ different signal preprocessechniques, thus obtaining fea-
tures from different domains aiming to reflect complementaarspectives. For instance, for
mechanical vibration sensors, the features can includeeflad. 2010]: time domain statistical
features such as mean, root mean square (RMS), varianceyeseand kurtosis; frequency do-
main features such as the amplitude of the spectrum and éngyeim specific frequency bands;
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and time-frequency domain features obtained by using adhtime-frequency analysis tech-
nigues, such as the empirical mode decomposition (EMD) hadvavelet packet transform
(WPT) [Lei et al. 2010].

But the information format of the acquired examples was sl fixed as the frequency
and the envelope spectrum of machine vibration signals. @& with well-established signal
processing techniques, namely the Fourier transform,l@pgeanalysis based on the Hilbert
transform [Mendel, Rauber e Varejao 2008] and median filgerinhus the extracted features
correspond to the vibrational energy of predeterminedueegy bands of the spectrum.

In the initial feature extraction stage, we extract the séeature categories for building the
predictor of every considered fault. The initially extredtfeature set is composed of a total of
D = 81 features, with 68 of them from the Fourier spectrum andf18em from the Envelope
spectrum.

Before extracting th® = 81 features that globally describe the condition of a motonp,
it is necessary to specify which one of the four machine mosstwill be employed as the source
of the vibration signal. This depends on which fault catggsicurrently under consideration.
Specifically, the shaft misalignment predictor chooses

between position 2 or 3, actually selecting the one whiclsgmes the higher total RMS
vibration energy of the velocity signal, for the testingtpatx under consideration. Similarly,
the predictor of unbalance or hydrodynamic fault chooséwdsen positions 3 or 4. For me-
chanical looseness, structural looseness or a bearingtdsifece they can independently occur
in a motor or in a pump, we build an independent predictor teatea fault occurrence in the
motor (thus choosing between the position 1 or 2) and anatkependent predictor to detect
a fault occurring in the pump (thus choosing between thetiposB or 4).

In summary, the complete diagnostic system is composednef independent SVM en-
sembles, each of which individually detects one considéxeld category.

5.4.1 Fourier Spectrum Features

We extract a total of 68 features from the Fourier spectrune. e the RMS value of a
10% large narrow band around each of the following harmauwfitise shaft rotation frequency:
0.5x, 1x, 15X, 2x, 25x, 3x, 35X, 4%, 45x%, 5x and 55x, obtained for each of the three directions
of measurement, namely horizontal, vertical and axiak(ieénerates a total of 13 = 33
features).
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Besides, we use as features the sum of the RMS value of a 10%nlangev band around
the harmonics 1x, 2, ..., 5x, in each direction (3 featyrasjl also similarly the sum of the
RMS value of bands around the inter-harmonidsQ15x, ..., 55x (3 features).

We also use the RMS value of the noise calculated with the médiiering, in the bands
0x-1x, 0x-2x, 0x-3x, 0x-4x and 0x-5x, in each direction{8 = 15 features).

Additionally, we use the 10% large narrow band around harosoof the pump blade pass
frequency (BPF), namely.D x BPF, 10 x BPF and 20 x BPF, in each direction (23=9
features).

We also use the vibration signal total RMS value, in each doedor the velocity signal
(3 features) and in horizontal and vertical direction fag #tceleration signal (2 features).

5.4.2 Envelope Spectrum Features

We extract a total of 13 features using the Envelope andlykigerny e Dai 2003]. Specif-
ically, these features correspond to the RMS of 10% largewndrands around the first, the sec-
ond and the third harmonics of the bearing characterisgpfencies, namely BPFI, BPFO, FTF
and BSF [Mendel, Rauber e Varejao 2008], in the horizontattoe (this generates a total of
4 x 3= 12 features). The bearing characteristic frequenciesntkpithe bearing model of the
machine under consideration. We also use as a feature #éleRbIS value of the Envelope
spectrum (1 feature).
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6 Experimental Results

“Computers are useless.
They can only give you answers.

- Pablo Picasso.

This chapter shows the experimental results achieved bsttliked classification models,
using the acquired database of real-world industrial mreckibration signals.

Section 6.1 details the 52 cross-validation method, employed to estimate the quafit
the studied classification models which are presented itose6.2. Section 6.3 provides the
classification accuracy estimated by 2 cross-validation. Section 6.4 details experiments
performed to provide a better insight into important aspetthe proposed ensemble method.
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6.1 Cross-validation 5<2

To assess the effectiveness of the studied classificatiproaphes we performed a strati-
fied 5x 2 cross-validation [Kuncheva 2004]. This corresponds te feplications of a 2-fold
cross-validation. In each replication, the complete dadabof 2000 examples was randomly
partitioned, in a stratified manner, into two sets each ortb approximately 1000 examples
(the stratification process preserves the distributiorhefriine fault categories between both
sets). So in each replication each considered classificatadel for creating the predictor of a
fault was trained on a set and tested on the remaining ores;tht five replications, the final
test data AUC achieved by this classification model in praticthis fault is then obtained as
the average of the ten estimated testing data AUC values.

6.2 Studied Classification Models

For each considered fault category, we studied four diffieckassification models for build-
ing the predictor of this fault: a single SVM; a SVM ensembiglttby the traditional GEFS
method, with every SVM using the same hyperparameter vadu8YM ensemble built by
a straightforward upgrade of GEFS, namely tuning the hygarpeters of every SVM ulti-
mately produced by GEFS; and a SVM ensemble built by the megpaultiple-GEFS method
described in chapter 4.

6.2.1 TheSVMClassification Model

This classification model is a single SVM classifier, usirigred D = 81 available features.
We used the grid-search method to tune the hyperparamsterphkained in section 4.3.

6.2.2 TheGEFS Classification Model

This classification model is a SVM ensemble built by the tradal GEFS method, de-
scribed in section 4.2.1. We employed the hyperparametaev& = 8.0,y = 0.5) to build
RBF-kernel C-SVMs to estimate fitness; this value was chosee sinvas frequently selected
by grid-search in preliminary experiments, thus suggggtiat this hyperparameter value tends
to produce more accurate SVMs.

We set the initial value of th& regularization parameter used for fithess evaluation as
A =10. We useM = 20 classifiers (feature subsets) in the ensemble. In eactragen,
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starting from theséM = 20 feature subsets, we producegh,; = 10 new feature subsets by
using mutation (randomly changing Pgre= 30% of features) and morg;,, = 10 new feature
subsets by using cross-over; from th&se- mero + Mmyt = 40 feature subsets, tivd = 20 top
ones with higher fitness were selected to compose the ensantile end of this generation.
The population evolved for a total &f = 100 generations.

A single run of the GEFS algorithm demanded a total o$20x 20= 2020 feature subsets
to be evaluated. Since each feature subset evaluatiorspomded to a 5-fold cross validation,
a run of the GEFS algorithm demanded a total of 20290= 10100 SVMs to be constructed.

In summary, thisSEFS classification model corresponds to an ensemble of 20 RBFekern
C-SVMs, each of which used the hyperparameter valGes 8.0,y = 0.5).

6.2.3 TheGEFS- Tuned Classification Model

This classification model corresponds to a straightforwsggrade of GEFS, namely tuning
the hyperparameters of each SVM in an ensemble built by GEFSL we used th&EFS
classification model (presented in section 6.2.2) to geéaean ensemble d¥1 = 20 SVMs
which differ among themselves solely on their feature subserther, for each of these 20
produced SVMs we employed the grid-search method to tunieypigerparameters. Thus the
final ensemble was composedvi= 20 SVMs which differ among themselves on their feature
subset and also on their employed hyperparameter value.

In summary, thisGEFS- Tuned classification model corresponds to an ensemble of 20
RBF-kernel C-SVMs, each of which used tuned hyperparameters.

6.2.4 TheMuil ti pl e- GEFS Classification Model

This classification model corresponds to a SVM ensembledbasdeature and hyperpa-
rameter variation, built by the multiple-GEFS ensemblehuodtproposed in this work (pre-
sented in section 4.1).

For creating the sef of feature subsets, we rén= 5 independent GEFS searches, each of
which used a different, fixed hyperparameter vdlDgy); to build SVMs to estimate the quality
of the feature subsets. After preliminary experiments tlate the hyperparameter values
investigated by the grid-search tuning method (which aesgmted in section 4.3), we defined
the following hyperparameter values to be usf( = 8.0,y=0.5), (C=1280,y= 0.03125,
(C=1280,y =0.125), (C=1280,y = 2.0), (C= 1280,y =8.0)}. The former value was
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chosen since it provided more accurate SVMs, while therlaétieies were chosen because they
correspond to a large range p¥alues besides using a relatively hiGhvalue. Every GEFS
search evolved for a total ®f = 100 generations.

To ultimately compose the sgt of feature subsets we used the outputs of those five GEFS
searches, thugf | = 5x 20= 100. Further, for composing the SVM s#f, for each feature
subset inF we used the grid-search method to build a SVM with tuned hpygameters. Thus
|H| = || =100. Finally, from all thes¢# | = 100 produced SVMs, we used the SFS search to
selectareduced SVM subg@ts explained in section 4.4. We set the ensemble siiz8 as40,
so the ultimately produced ensemigfevas composed of 40 SVMs. The other parameters of
the GEFS algorithm were set as for {BEFS classification model presented in section 6.2.2.

In summary, thidvul t i pl e- GEFS classification model corresponds to an ensemble of 40
RBF-kernel C-SVMs, each of which used tuned hyperparameters.

6.3 Cross-validation 5<2 Estimated Results

Table 6.1 presents the testing data AUC values and the sthddsiations estimated by
5 x 2 cross-validation. For each considered fault, the reduhe classification model which
provided the most accurate predictor is showed in bold.

The consistently higher accuracy achieved by the propbséd i pl e- GEFS classifica-
tion model, in comparison to the accuracy achieved byA@HES or the GEFS- Tuned classi-
fication models, suggests the importance of employing a fol&earch to deeply investigate
the space of feature subsets and the space of hyperparaaletes, aiming to produce an op-
timized SVM ensemble based on feature and hyperparameiatioa. Results show that the
Mul t i pl e- GEFS classification model achieved the highest accuracy forydeeilt category,
and the lowest standard deviation for six of the nine comsuiéaults.

To corroborate the superiority of the multiple-GEFS methwe used the statistical testing
procedure proposed by Dietterich (described in [Kunch®@ to be employed with thex62
cross-validation process, which determines whether thimated difference of AUC values is
statistically significantly different.

The level of significance is the.@ percentile. For misalignment, hydrodynamic and
bearing-motor faults, the statistical test confirmed thatNul t i pl e- GEFS classification
model performed significantly better than tBBFS or the GEFS- Tuned classification mod-
els. Also, comparing th&ul t i pl e- GEFS model to theSYMmodel (which corresponds to
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Table 6.1: Test data AUC estimated by 2 cross-validation

Fault category SVM GEFS GEFS Multiple
-Tuned -GEFS
Misalignment .834.011 .862+.007 .865+.009 .882+.006
Unbalance .909.014 .933+.008 .929+.006 .942+4.005
Hydrodynamic .923+:.010 .931+.012 .935+.010 .942+.008
Bearing - motor .935:.006 .955+.004 .9574+.004 .969+.005
Bearing - pump 87%.020 .927+.014 .926+.019 .944+.010

Structural L. - motor 914-.009 .931+.006 .934+.007 .943+.008
Structural L. - pump .85#4.028 .893+.011 .896+.012 .911+.013
Mechanical L. - motor .862.013 .888+.012 .888+.012 .895+.012
Mechanical L. - pump  .886:.022 .908+.016 .908+.018 .920+.014

a single SVM), the statistical test confirmed a significastiperior performance for all those
mentioned faults and additionally for the bearing-pumpgtfa@n the other hand, for theEFS
or theGEFS- Tuned classification models, the statistical test confirmed asopgerformance
of the ensemble in comparison to a single SVM just for theibgamotor fault.

6.4 Influence of the Number of Evolved Generations and the
Number of Component SVMs

In this section we show experimental results aiming to mtewn insight into two important
aspects of the proposed ensemble method: the influence otithber of evolved generations
and the influence of the number of component SVMs in the enlgsmb

6.4.1 Influence of the Number of Evolved Generations

An important parameter of the GEFS algorithm is the maximwmiper of evolved gen-
erations. Using a very high number of generations causesnamn problems, namely a high
computational cost and overfitting. In this work, to builé t8YM ensembles, we evolved the
GEFS searches for a total Bf= 100 generations.
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Figure 6.1: AUC on test data achieved by each evolved geoemaitthe GEFS method, for the
misalignment predictor.

Figure 6.1 presents the behaviour of a GEFS search congettmennumber of evolved
generations. The figure shows results obtained for the fastqd training and testing data
generated for the & 2 cross-validation process, considering the misalignmesdictor. One
can observe the AUC on test data achieved by the SVM ensenmddeged by each generation
of the GEFS classification model, starting from the generation numband finishing in the
generation number 400; every SVM used the hyperparamelige @ = 8.0,y = 0.5). It can
be seen that the generation number 100 corresponded to amlgleswith a relatively high
accuracy. The figure also shows that after the generatiorbaub0 the test AUC presented
a tendency of decreasing, as a consequence of overfittingisuogly, the ensemble produced
by the generation number 400 presented a lower estimatedats AUC than the ensemble

defined by the first generation.

To present the behaviour found for some of the other faulgsirés 6.2 and 6.3 present
results for the bearing - pump and the bearing - motor faeligtor, respectively; these experi-
ments also used the first pair of training and testing datargéed by the & 2 cross-validation.

6.4.2 Influence of the Number of Component SVMs

To provide an insight into the influence of the number of comga SVMs in an en-
semble, we show the AUC on test data estimated during thsifitasselection stage of the
Mul ti pl e- GEFSclassification model, performed using the sequential fothgalection (SFS)

search strategy.
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Figure 6.2: AUC on test data achieved by each evolved geoemaitthe GEFS method, for the
bearing - pump fault predictor.
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Figure 6.3: AUC on test data achieved by each evolved geaeratthe GEFS method, for the
bearing - motor fault predictor.
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Figure 6.4: AUC on training and testing data achieved by eachber of component SVMs,
during the classifier selection stage of the multiple-GEF$hmod, for the misalignment predic-

tor.

Figure 6.4 shows results for the first generated pair of #r@sh data of the & 2 cross-
validation, for the misalignment predictor. The figure pr&s the AUC of training data (which
is the selection criterion) and the AUC of testing data ackdeby the SVM ensemble defined
by using each number of selected SVMs, from 1 SVM to 100 SVMee final ensemble was
composed of thés’| = 40 firstly selected SVMs, since we observed a general tegdafnen
AUC decrease with the use of a larger set.

To present the behaviour found for some of the other faulgsirés 6.5 and 6.6 present
results for the structural looseness - pump and the straldmwseness - motor predictor, re-
spectively; these experiments also used the first pair ofitigaand testing data generated by

the 5x 2 cross-validation.

6.5 Usefulness of Hyperparameter Tuning to Improve SVM
Diversity

This experiment provides an insight into the effectiverass/perparameter tuning aiming
to improve SVM diversity. First, we used feature selectiogénerate a set of different feature
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Figure 6.5: AUC on training and testing data achieved by eachber of component SVMs,
during the classifier selection stage of the multiple-GEFE$hwd, for the structural looseness -

pump predictor.
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Figure 6.6: AUC on training and testing data achieved by eachber of component SVMs,
during the classifier selection stage of the multiple-GEF$hwd, for the structural looseness -

motor predictor.
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subsets. Further, for each produced feature subset, waatst the classification accuracy
achieved by a SVM using this feature subset. We evaluatedappooaches: building each
SVM with the hyperparameter valy€ = 8.0,y = 0.5) (which tends to provide accurate SVMs)
and building each SVM with a tuned hyperparameter.

To perform feature selection, we used the traditionally leygx sequential forward selec-
tion (SFS) search strategy [Kudo e Sklansky 2000]. The SBE&keavas presented in section
4.4 in the context of selecting classifiers to compose anmebige But in the present section,
we use SFS to select features aiming to generate an accungle SVM.

The SFS search starts with an empty set of selected featumésit each step one feature is
included in this set, namely the feature that provided thyadn selection criterion with its indi-
vidual inclusion in the current set of selected featurese 3élection criterion of a feature was
estimated as the 5-fold cross-validation AUC achieved by &l $ising the currently selected
features and also this new feature under evaluation. ThesS¥8dd the hyperparameter value
(C=8.0y=0.5).

From the total oD = 81 available features, we required SFS to sdleetl = 80 features.
This produces 80 different feature subsets; for each onevalaaed two classifiers, namely a
SVM with fixed hyperparameters and a SVM with tuned hypenpatars.

Figure 6.7 presents the results obtained for the first panaofing and testing data defined
by 5x 2 cross-validation, for the misalignment predictor. Fartteaumber of selected features,
from k =1 to k = 80, the figure shows the AUC on the test data achieved by the $itm
hyperparameter fixed g€ = 8.0,y = 0.5), and the AUC on test data achieved by the SVM
with tuned hyperparameters. Figure 6.7 also shows, as admbai line, the test data AUC
achieved by the SVM ensemble built by thiel t i pl e- GEFS classification model.

By comparing the performance of the non-tuned SVMs versusuthed SVMs, it is in-
teresting to see that tuning the hyperparameters of gattvidual SVM tends to increase the
collectivediversity of SVMs, since the figure shows that the AUC achidvg the tuned SVMs
can strongly vary even among SVMs that employ similar featwbsets (i.e. SVMs that use a
similar number of selected features). Such an improvenme&¥iM diversity is useful since it
corresponds to an increasing in the disagreement among/tis,Svhich tends to improve the
ensemble accuracy. Indeed, the figure shows that the pexfmerof the ensemble with tuned
SVMs (indicated as a dashed horizontal line) was signifigdrgtter than the performance of
any single SVM.

Figures 6.8 and 6.9 present results for the structural loesse- pump and the structural
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Figure 6.7: AUC on test data achieved by the Multiple-GEF$hme, and by individual SVMs
which use selected feature subsets with tuned or non-twyestbaramenters, for the misalign-
ment predictor.
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Figure 6.8: AUC on test data achieved by the Multiple-GEF$hoe, and by individual SVMs
which use selected feature subsets with tuned or non-twysetbaramenters, for the structural
looseness - pump predictor.

looseness - motor predictor, respectively. Figures 6.X0@Gfh1 present results for the me-
chanical looseness - pump and the mechanical loosenes®Fr pnetlictor, respectively. These
experiments also used the first pair of training and testeig denerated by the>52 cross-

validation.
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Figure 6.9: AUC on test data achieved by the Multiple-GEF$hoe, and by individual SVMs
which use selected feature subsets with tuned or non-twyeetparamenters, for the structural
looseness - motor predictor.
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AUC on test data achieved by the Multiple-GEF$hod, and by individual SVMs

which use selected feature subsets with tuned or non-tuyyeetparamenters, for the mechan-
ical looseness - pump predictor.
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Figure 6.11: AUC on test data achieved by the Multiple-GEFE$hod, and by individual SVMs
which use selected feature subsets with tuned or non-tuyyeetparamenters, for the mechan-
ical looseness - motor predictor.



51

7 Conclusions and Future Work

“Around computers it is difficult to find the
correct unit of time to measure progress.
Some cathedrals took a century to complete.
Can you imagine the grandeur and scope of a
program that would take as lont?
- ‘Epigrams in Programming’, SIGPLAN, Association for Computing Machmn&e82.

This chapter summarizes the main results of this work, afed obncluding remarks.

Section 7.1 draws conclusions. Section 7.2 points out toéutesearch.
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7.1 Conclusions

In this work we presented a novel approach for creating a SWsé&mble with component
classifiers differing among themselves on the feature s@mskthe hyperparameter value they
use. The performed experiments show a consistent impraveméhe prediction accuracy in
comparison to using a single accurate SVM or using the vatidished GEFS method for
creating ensemble classifiers.

This work presented an optimization method to improve thegljotion accuracy, which is
generally the main objective of classification. But it is imamt to note that this improvement
in accuracy demands an even higher growth of the computdttast, specially during training,
that demands building and evaluating several SVMs to iny&ts the space of feature subsets.
Fortunately, SVMs can naturally be employed using paraldehputing in order to drastically
reduce the processing time.

7.2 Future Work

We plan to work on two main directions of future researchsti-gcquiring data from more
sources than just vibration signals. Second, improvingptioposed SVM ensemble method,
specifically by increasing the accuracy gain provided bynmerparameter variation stage.

7.2.1 Using Data from Different Sources

We plan to acquire more real-world data, from different miaes and from more sources
than just vibration signals. Thus we plan to develop a mailtametric diagnostic system, which
uses vibration signals complemented with electrical dggsach as current, power and torque;
besides, we plan to employ new features which carry spenificrnation about the occurrence
of some faults, for instance structural resonance [Warikskcet al. 2011].

The use of features from different sources might increaseptiediction accuracy, since
more diversified information may become available, withheiméormation source considering
a different perspective of the current motor pump conditiolassifier ensembles can naturally
take advantage of multiple information sources, sinceguggatures extracted from different
sources has a good potential for generating classifiergthatwvrong predictions in different
regions of the global feature space.

As the SVM ensemble method proposed in this work relies drallyi extracting as much
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features as possible and further using ensemble consinuictiautomatically prioritize more
relevant features, we expect this method to be able to ngtdesl with features from multiple
sources. For instance, considering that the availableifestcomprise a total dd,;, vibra-
tional features anB¢jecelectrical features, than the GEFS searches can be empitoyedctly
investigate all thesBgional = Dvib + Delec features. In this case, the generated feature subsets
would be composed of features from both electrical and titmal sources, as a result of the
performed GEFS searches that automatically determinenad feature subsets.

7.2.2 Using Particle Swarm Optimization to Tune Hyperparameters

The performed experiments showed the consistent impravem&VM diversity and en-
semble accuracy that was provided by the hyperparametiagtatage. Considering that in this
work we employed the simple, exhaustive grid-search metbddne hyperparameters, there
is still much space for further improvement. Specificallg plan to investigate more powerful
approaches to tune SVMs.

A straightforward improvement of the proposed SVM ensemid¢hod may be employing
a more powerful method for tuning the hyperparameters oh gmoduced SVM aiming to
directly increase its individual accuracy; this also irojily increases the collective diversity of
SVMs.

A more complex improvement of the proposed SVM ensemble ogethay be using hy-
perparameter variation not only to increase the individaeuracy of each SVM, but also to
directlyimprove the collective divergence of a set of SVMs. Thatisady done by the GEFS
method, but using feature variation instead of hyperpatanvariation.

Particle Swarm Optimization (PSO) based techniques haee beccesfuly employed for
SVM hyperparameter tuning [Li e Tan 2010]. By now, these apphes have showed promis-
ing results for building accurate single SVMs. Thus a strtd@ward improvement of the
proposed SVM ensemble method may be using a PSO search thyijpegarameters, instead
of using the simple grid-search. Also, since PSO is a pojudiased search algorithm (like
GEFS), PSO seems approppriate to be used for the more cotaglerf tuning the hyperpa-
rameters of a set of SVMs aiming to directly increase theieidiity and accuracy.
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Abstract.

We present a generic procedure for diagnosing faults using featutescted from noninvasive machine signals, based on
supervised learning techniques to build the fault classifiers. An impantavgity of our research is the use of 2000 examples of
vibration signals obtained from operating faulty motor pumps, acquied &5 oil platforms off the Brazilian coast during five
years. Several faults can simultaneously occur in a motor pump. Batths individually detected in an input pattern by using a
distinct ensemble of support vector machine (SVM) classifiers. Wegs®a novel method for building a SVM ensemble, based
on using hill-climbing feature selection to create a set of accurate, difeature subsets, and further using a grid-search parameter
tuning technique to vary the parameters of SVMs aiming to increase thewidodl accuracy. Thus our ensemble composing
method is based on the hybridization of two distinct, simple techniques origi@dligned for producing accurate single SVMs.
The experiments show that this proposed method achieved a highertestipnadiction accuracy in comparison to using a single
SVM classifier or using the well-established genetic ensemble featuréisel@8EFS) method for building SVM ensembles.

1 Introduction operators in making reliable decisions about the ma-
chine condition as well as providing valuable informa-
tion to experts in making decisions about intricate fault

The detection and diagnosis of faults in complex ocCUrrences.

industrial machines is advantageous for economical

and security reasons [7]. The early detection of a A single reliable diagnosis procedure for any type of
fault allows damaged components to be repaired dur- fault based on noninvasive signals is still not established
ing planned maintenance, which minimizes machinery [1]. Noninvasive monitoring relies on easily measured
downtime besides providing more secure operations. signals, for instance electrical and mechanical quanti-
Recent progress in sensor technology and computa- ties like current, voltage, flux, torque and speed. In
tional intelligence permit the construction of powerful  this work we present a generic procedure for diagnos-
diagnostic systems, which can aid relatively unskilled ing faults using features extracted from machine sig-
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nals. Our approach is based on gupervised learning faults may be present). We build a fault predictor able
[2] classification paradigm as the primal mechanism to to diagnose six fault categories, so it is composed of
automatically generate fault classifiers in a model-free six independent ensembles of SVM classifiers, each en-
context. This has as an advantage the requirement of semble considering the occurrence of a different fault.
a minimum of a priori knowledge about the plant, as We propose a novel method for building an accurate
the fault predictor is automatically defined based onthe SVM ensemble. By now very few papers have inves-
training data, which allows the diagnosis procedure to tigated SVM ensembles based on varying the feature
be easily extended to many types of equipments, faults set of the classifiers besides also varying their SVM pa-

and sensors.

rameter value. It can be expected that using different

Supervised learning based diagnosis requires the use feature subsets and SVM parameter values might in-

of a large number of labeled examples of each fault cat-
egory in order to build a classifier with a good gen-
eralization capacity. An important novelty of our re-
search is the use of data from real-world operating in-
dustrial machines instead of using data from a con-
trolled laboratory environment which is almost always
found in the literature (see for instance [34]). This is
highly desirable, as laboratory hardware cannot realis-
tically represent intricate real-world fault occurrences
We work with 2000 examples of vibration signals ob-
tained from operating partially faulty motor pumps, ac-
quired from 25 oil platforms off the Brazilian coast dur-
ing five years. After extensive analysis, human experts
provided a label for every fault present in each acquired
example, relying on their practical experience in main-
tenance engineering.

Several faults can simultaneously occur in a motor
pump. We formulate the fault diagnosis problem as a
multi-label [26] classification task in which several la-
bels (fault categories) may be simultaneously assigned
to a pattern; in this context, a pattern represents the sig-
nals of a motor pump and a label represents a specific
fault category. Each fault is individually detected in an
input pattern by a distinct binary predictor. Specifically,
each fault category is detected by a distirosemble
[14] of support vector machin€SVM) [4] classifiers.
The SVM classifier is currently considered one of the
most powerful binary classification techniques; to fur-
ther increase the accuracy of a single SVM we use an
ensemble of SVMs, composed of accurate SVMs that
disagree on their predictions as much as possible. An
SVM ensemble assigns a patterto the positive class
WposOF to the negative clagsneg with the positive class
meaning that the fault considered by the ensemble is
present in the patteraand the negative class meaning
that this considered fault is not presentxiribut other
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crease the divergence among the SVMs in an ensem-
ble, therefore increasing the ensemble accuracy. We
propose a novel method for constructing an SVM en-
semble, based on using hill-climbirigature selection
[11] to create a set of accurate, diverse feature sub-
sets, and further using a grid-seamdrameter tuning
technique to vary the parameters of SVMs aiming to
increase their individual accuracy. Thus our ensem-
ble composing method is based on the hybridization
of two distinct, simple techniques originally designed
for producing accurate single SVMs. The experiments
show that this proposed method achieved a higher esti-
mated prediction accuracy in comparison to other well-
established approaches for building ensembles.

The remainder of this paper is organized as follows.
Section 2 is concerned with the motor pump equipment,
the considered fault categories and the extracted fea-
tures. Section 3 details feature selection. Section 4
describes the SVM classifier. Section 5 presents the en-
semble approach for classification. Section 6 details the
proposed method for building SVM ensembles based
on varying both the features and the parameters of the
classifiers. In section 7 we show the experimental re-
sults achieved by the studied classification models. Fi-
nally, section 8 draws conclusions and points out future
research.

2 Model-free approach to motor pump fault diag-
nosis

There are two main approaches to the machine
fault diagnosis problem: model-based techniques and
model-free techniques. The model-based approach re-
lies on an analytical model of the studied process, in-
volving time dependent differential equations. In this



Figure 1: Horizontal motor pump with extended cou-
pling between the motor and the pump. Accelerometers
are placed along the main directions to capture specific
vibrations of the main axes (H=horizontal, A=axial,
V=vertical.)

25

Velocity (mm/s)
B

0.5

Frequency (Hz)

Figure 2: Misalignment fault and its manifestation in
the frequency spectrum at the first three harmonics of
the shaft rotation frequency. The high energy in the fifth
harmonic, as well as the noise in low frequencies indi-
cate that additionally a hydrodynamic fault is emerging.

case, usually the experimental process setup is installed

on a controlled laboratory environment and is embed-
ded in a control loop in which inputs, controlled vari-

ables and sensor outputs are modeled. However in real-

world processes the availability of an analytical model
is often unrealistic or inaccurate due to the complexity

pact on the subsequent classifier. For instance, many
faults cause vibrations in similar frequency bands, like
the first, the second, and the third harmonics of the shaft
rotation frequency, in such a way that the faults cannot

of the process. In this case model-free techniques are an P€ detected by just searching for their well-known char-

alternative approach [6]. This paper is concerned with
model-free diagnosis of multiple faults in motor pumps,
relying on supervised learning based techniques.

2.1 Motor pump equipment

Rotating machinery covers a wide range of mechan-
ical equipment and plays an important role in industrial
applications. In this work we focus on a specific rotat-
ing machine model, namely the horizontal motor pump
with extended coupling between the electric motor and
the pump. Accelerometers are placed at strategic posi-
tions along the main directions to capture specific vi-
brations of the main shaft which provides a multichan-
nel time domain raw signal. Figure 1 shows a typical
positioning configuration of the accelerometers on the
equipment.

2.2 Considered fault categories

Several faults can simultaneously occur in a motor
pump. Such a high diversity of defects has a direct im-
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acteristic signature.

We build a predictor for individually detecting each
of the following six fault categories in an input pattern:
rolling element bearing failures (problems on ball pass
inner raceway, ball pass outer raceway, or on bearing
cage); pump blade unbalance; hydrodynamic fault (due
to blade pass and vane pass, cavitation or flow turbu-
lence); shaft misalignment; mechanical looseness; and
structural looseness.

Figure 2 illustrates how the frequency spectrum is as-
sociated with two of the faults, presenting the Fourier
spectrum of the vibration signal (measured from the
position three, horizontal direction) of a faulty motor
pump with a misalignment fault and also an emerging
hydrodynamic fault.

Every example in the database of 2000 machine sig-
nal acquisitions presented the occurrence of at least one
fault. Examples presenting the occurrence of multiple
faults are more common than examples in which just
one fault is occurring. Table 1 shows, for each of the
six considered fault categories, the percentage of the
2000 examples that presented this fault.



Table 1: Fault occurrence.

A priori class
Fault class distribution
Misalignment 42.6%
Hydrodynamic 42.4%
Bearing 35.7%
Unbalance 24.9%
Structural looseness 21.2%
Mechanical looseness 12.0%

2.3 Extracted features

The first step to diagnose the faults in a motor pump
is to extracta global feature vectds to describe many
relevant aspects of the current motor pump condition.
The general strategy is to provide as much informa-
tion as possible in the feature extraction stage and fur-
ther use feature selection and ensemble construction to
prioritize more relevant features. So the feature vec-
tor G should be composed of features extracted from
distinct, complementary information sources, for in-
stance electrical current, chemical, thermal, and me-
chanical vibration sensors. Also, for each informa-
tion source, different signal preprocessing techniques
should be used, thus producing features extracted from
different domains that can reflect complementary per-
spectives. For instance, for mechanical vibration sen-
sors, the extracted features can include [16]: time do-

format of the acquired examples was previously defined
only as the frequency and the envelope spectrum of the
machine vibration signals. In this context, features cor-

respond to the vibrational energy in a predetermined

frequency band of the spectrum.

To build the predictor of a specific fault, an important
aspect to analyze is the occurrence of the fault in each
of the four machine positions of signal acquisition. For
instance, the hydrodynamic fault only occurs in a pump
(positions 3 and 4), the occurrence of a misalignment
fault is better detected by measuring vibrations close to
the shaft (positions 2 and 3), and the mechanical loose-
ness fault usually occurs independently in a motor (po-
sitions 1 and 2) or in a pump (positions 3 and 4).

We performed preliminary experiments aiming to de-
fine a set of relevant features to be extracted. The cardi-
nality of a feature vecto® is 95 regardless of the fault
under consideration, with 69 of them from the Fourier
spectrum and 26 of them from the envelope spectrum.

2.3.1 Fourier spectrum features

For extracting features from the Fourier spectrum,
for the hydrodynamical fault predictor, one feature vec-
tor is extracted from the machine position which has the
highest total root mean square (RMS) value of the ve-
locity signal selected from position 3 or 4 (the pump);
for misalignment, one feature vector is similarly ex-
tracted from position 2 or 3 (which are close to the
shaft); for unbalance, 3 or 4; and for the bearing fault
predictor, from position 1, 2, 3 or 4. On the other hand,

main statistical features such as mean, root mean square for structural looseness and mechanical looseness, one

(RMS), variance, skewness and kurtosis; frequency do-
main features such as the amplitude of the spectrum
and the energy in the frequency band considered by a
feature; and time-frequency domain features obtained
by using advanced time-frequency analysis techniques,
such as the empirical mode decomposition (EMD) [16]
and the wavelet [22] packet transform (WPT) [16].

In this work we build a diagnostic system that uses
vibration signals. We work with well-established signal
processing techniques, namely the Fourier transform,
envelope analysis based on the Hilbert transform [21]
and median filtering. The reason that we use solely vi-
bration signals besides not using other signal sources
as for instance electrical current is that the information
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pattern is extracted from position 1 or 2 (motor) and
another distinct pattern is extracted from position 3 or
4 (pump). A motor pump is diagnosed as faulty if any
of the extracted feature vectors is diagnosed as faulty,
so the SVM classifiers of the first group of faults are
trained with one pattern per machine signal acquisition,
while for the second group of faults a SVM is trained
with two patterns per acquisition (each of which inde-
pendently labeled as belonging to the positivgs or

to the negativeoeg Class).

Most of the Fourier features correspond to the RMS
value of frequency bands defined as harmonics of the
shaft rotation frequency, which is 60Hz for most of the
studied motor pumps (thus in this example 1x means 60



Hz and 1.5x means 90 Hz). We use the RMS value of
a 10% large narrow band around each of the following
frequencies: 0.5x, 1.0x, 1.5, ..., 5.5x, obtained for each
of the three directions of measurement (horizontal, ver-
tical and axial) (which generates3l1 = 33 features,
for instance the featumers _V_2. 0x corresponds to the
vertical direction and to the second harmonic). Besides,
we take as features the sum of the RMS value of a 10%
large narrow band around the harmonics 1x, 2x, ..., 5X,
in each direction (3 features, for instarsemhar mX
which corresponds to the axial direction), and also sim-
ilarly the sum of the RMS value of bands around the
inter-harmonics 0.5x, 1.5x, ..., 5.5x (3 features, for in-
stancesum.i nt er har mHwhich corresponds to the hor-
izontal direction). We also use the RMS value of the
noise calculated with the median filtering, in the bands
0x-1x, 0x-2x, 0x-3x, 0x-4x and 0x-5x, in each direc-
tion (3x 5 = 15 features, for instanceoi se_0-4x_H
which corresponds to the band 0x-4x and to the hori-
zontal direction). Additionally, we use the 10% large
narrow band around harmonics of the pump blade pass
frequency (BPF), namely.B x BPF, 1.0 x BPF and

2.0 x BPF, in each direction (% 3 =9 features, for in-
stancebpf _1x _X which corresponds to BPF frequency
and to the axial direction). We also use the vibration
signal total RMS value, in each direction for the veloc-
ity signal (3 features, for instant¢et al _r ms _HV which
corresponds to the horizontal direction) and in hori-
zontal direction for the acceleration signal (1 feature,
total _rnms_HA). Finally we take the total RMS value
of the acceleration signal in the horizontal direction,
specifically for position 1 or 2 (1 featurens _mot or _A)

and also 3 or 4 (1 featurens_punp_A).

2.3.2 Envelope spectrum features

For extracting features from the Envelope spectrum
to compose a pattern, regardless of the fault under con-
sideration, a group of features is taken from position
1 or 2 (selecting the one with the highest total RMS
value) and another group of features is similarly taken
from position 3 or 4. Each group is composed of fea-
tures defined as the RMS of 10% large narrow bands
around the first, the second and the third harmonics
of the bearing characteristic frequencies [21] (BPFI,
BPFO, FTF and BSF, each one being a constant value
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determined by the machine bearing model), in the hor-
izontal direction (the only one available for the Enve-
lope signals), for instance the featuvpf o_punp_2x
corresponds to the second harmonic of the BPFO fre-
quency and is extracted from the pump (position 3 or
4), and the featurésf _mot or _1x corresponds to the
BSF frequency and is extracted from the motor (posi-
tion 1 or 2). We also use as a feature the total RMS
value of the vibration signal Envelope spectrum, for in-
stance the featunens_punp_E which is extracted from
the pump. Once a group of Envelope spectrum features
is extracted from position 1 or 2 and another from posi-
tion 3 or 4, they result in a total of 2 13 = 26 features.

3 Feature selection

A central issue in fault diagnosis is the definition of
which aspects of the input signals, i. e. features, a
fault predictor should analyze. The traditional approach
is the manual definition of the used features (see for
instance [17]). But the handpicking of the fault de-
scriptive features demands specialized knowledge and
can result in predictors with low accuracy, for instance
due to multiple coexistent faults [30]. An approach for
avoiding the manual definition of the important features
relies on the initial extraction of a large, comprehensive
feature set, and on the further usefefture selection
techniques [11] to retain a reduced set of relevant fea-
tures that are used to form the feature space of a classi-
fier (see for instance [32]). An alternative approach is
assigning a different weight to each of the extracted fea-
tures [15]. In this work we use feature selection tech-
nigues to create a SVM classifier ensemble instead of
searching for a single accurate SVM.

Feature selection is the process of choosing an opti-
mized subset of features for classification from a larger
set that may contain irrelevant and redundant informa-
tion. The two common approaches to feature selection
are the filter and the wrapper methods. The former as-
sess the saliency of feature subsets from data properties,
without training a classifier. The latter uses the learn-
ing algorithm itself to estimate the usefulness of fea-
tures by evaluating classifiers which use the candidate
feature subsets. Wrappers methods are computationally
more expensive but usually allow more accurate feature



subsets to be found [24] and thus are used in this work.

Feature selection is composed of two ingredients: the
selection criterion and the search strategy. The selec-
tion criterion is used to estimate the performance of a

sembles. The SBS method starts with every feature
(from the global pooG) included in the set of selected
features, and at each step one feature is removed from
this set. Consider thdt features are included in the

feature subset. A suboptimal search strategy is needed set of selected feature&. To remove the worst fea-

since an exhaustive search is not feasible to investigate
the space of feature sets.

3.1 Selection criterion

We estimate the criteriali(Xy) of a candidate feature
setX as the Area Under the ROC Curve (AUC) [10]
achieved by a SVM classifier which usks estimated
by cross-validation on the training data.

The Receiving Operating Characteristics (ROC)
analysis is very useful for comparing classifiers in prob-
lems with unbalanced classes in which negative class
examples are usually much more common than posi-
tive ones. Table 1 shows that the predictor of some
considered fault categories (for instance mechanical
looseness) must deal with the unbalance problem. A
ROC graph represents a classifier as a point in a two-
dimensional space where the true positive rate is plot-
ted on the Y axis and the false positive rate is plotted on
the X axis. The threshold of the estimated a posteriori
probability of belonging to the positive clagp,s is set
to 0.5 by default, producing the X-Y point. By vary-
ing the threshold between zero and one, the X-Y point
traces the ROC curve and a high area under it indicates
an accurate classifier; an AUC value db@orresponds
to a random classifier. So the AUC value can be seen
as the probability that, given a positive class example
p and a negative class exampigboth randomly sam-
pled, the classifier outpuByos(p) > Poos(N).

3.2 Search strategy

An exhaustive search také‘%‘) attempts to seleat
features from an available global pd®bf |G| features,
which is computationally unfeasible in general. Thus
we must rely on a suboptimal search strategy.

We use theSequential Backward Selectiq®BS)
[13] search strategy, which operates based on a hill-
climbing greedy search. The SBS strategy allows the
more important features to be prioritized, which is use-
ful for building accurate SVMs and thus accurate en-
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ture fromX, each currently selected featudyemust be
evaluated by being individually removed frody and
ranked following the criteriod, so that

I\ {81} 2 IKAA{&2}) = - 2 IK\ {&})- (1)

As a result of the current exclusion step, the updated
selected feature set is givenXs 1 = X\ {§1}, having
[Xk—1| = (k— 1) features in it. The exclusion process
stops when the desired number of features is selected.

4 The support vector machine classifier

The support vector machine (SVM) [4] classification
architecture has been extensively used during the last
decade in many distinct domains, for instance bioin-
formatics [33] and machine fault diagnosis [31], and
is currently considered one of the most powerful meth-
ods in machine learning for solving binary classifica-
tion problems; SVMs also have been successfully used
for regression tasks [20]. We experimentally compared
SVM classifiers with Multi-layer Perceptron (MLP)
[2] artificial neural network classifiers and found that
SVMs achieved a consistent higher accuracy, besides
the MLP being computationally much more expensive
during training and thus less appropriate to be used for
feature selection.

The objective of the SVM training is to create a
maximum-margin separating hyperplane that lies in a
transformed feature space defined implicitly by a ker-
nel mapping. The hyperplane splits the mapped space
into two regions, one associated to the positive class
Wpos and the other to the negative clasgeg a SVM
considers a pattemas belonging to the positive class
wpos if X presents the fault category considered by the
SVM or as belonging to the negative clagggif x does
not present this fault. The distance of a pattetn the
separating hyperplane, followed by a logistic discrim-
ination, is used to estimate the a posteriori probability
Ispos(x) thatx belongs to the positive classos



We use a widely adopted SVM model, namely a Ra-
dial Basis Function (RBF) kernel and the C-SVM ar-
chitecture [2]. So we work with two SVM parameters,
namely the regularization paramet@mwhich controls
the model complexity and the kernel paramgtetich
controls the nonlinear mapping of the features.

The performance of a SVM classifier strictly depends
on its parameters. We use an effective, simple method
to tune the SVM parameters, namely tijed-search
on the log-scale of the parameters in combination with
cross-validation on each candidate parameter vector.
Basically, pairs(C,y) from a set of predefined values
are tried by evaluating SVMs which use them, and the
pair that provided the highest cross-validation accuracy
defines the best parameters.

We use thé i bsvmlibrary [3] to implement the SVM
classification.

5 Classifier ensembles

Combining decisions of multiple accurate, divergent
predictors into an ensemble decision is becoming one
of the most important techniques to improve classifica-
tion accuracy [34]. In this context divergence means
that each classifier gives erroneous answers in a dif-
ferent region of the global feature space. Creating a
so-calledclassifier ensemblentails addressing two is-
sues: the construction of the base classifiers which con-
stitute the ensemble and the combination of their in-
dividual predictions. To combine classifier predictions
we use an effective, simple method, namely averaging
the scores assigned to an input pattern by the classifiers
being combined.

The focus of this work is on methods for building
a set of classifiers to compose an ensemble. By now,
three approaches have become popular for achieving di-
versity in an ensemble: using a different set of training
data for each classifier; using a distinct feature set for
each classifier; and setting different values of the clas-
sifier intrinsic parameters.

5.1 Data-based ensembles

The classical approach to create a set of classifiers to
compose an ensemble relies on using a different train-
ing data set for each classifier. For instance, in bagging

64

[2], each classifier in the ensemble sampiegaining
patterns (with equal probability and with replacement)
from an available set o different examples; so the
training set of a classifier might not contain some of the
available patterns besides containing some patterns that
are repeated.

Bagging works well with unstable classifiers, for in-
stance MLP neural networks, in which a small variation
of the training data set may cause a large variation of
the classifier decision function. But the SVM is a stable
classifier, in the sense that a small variation of the train-
ing data set tends to cause a small variation of the SVM
decision function, as just a reduced subset of the train-
ing patterns are retained as support vectors (namely the
ones close to the decision boundary). Although some
works have reported that SVM ensembles built by us-
ing bagging achieved a high prediction accuracy [12],
other works have reported negative experiments about
bagging based SVM ensembles [8]; see for instance [9]
which stated that single SVMs with tuned parameters
performed as well as SVM ensembles built by using
the bagging method. For the fault diagnosis problem
studied in this work we found that the traditional bag-
ging method was not effective to increase the accuracy
achieved by a single SVM.

5.2 Feature-based ensembles

A useful approach for building an ensemble is to em-
ploy a different feature set for each classifier; see [34]
for a reference on fault diagnosis.

Opitz [23] proposed the genetic ensemble feature se-
lection (GEFS) method which relies on a Genetic Al-
gorithm (GA) based search to investigate the space of
feature sets. In GEFS, a member of the population (a
chromosome) represents the feature set of a single clas-
sifier. Starting with randomly defined feature sets, the
genetic operators (selection, cross-over and mutation)
are used to evolve the population aiming to increase the
classifiers fitness. The fitness of a classifier is estimated
as a linear combination of its accuracy and its diversity,
the latter being defined as the average difference be-
tween the prediction of this classifier and the prediction
of the current ensemble. At the end of every generation
the algorithm outputs the feature subsets of the classi-
fiers in the current ensemble, thus the last generation



defines the final produced feature subsets.

Previous work shows that the GEFS method usually
achieves a higher prediction accuracy in comparison to
other approaches for building ensembles [28]. Inspired
by GEFS, other GA based methods for building feature-

values might increase the collective divergence among
the SVM classifiers in an ensemble, therefore increas-
ing the ensemble accuracy.

The BSFS method operates as follows. We use com-
plementary SBS feature selection searches combined

based ensembles have been investigated; see [25] for awith the grid-search parameter optimization technique

reference on SVM ensembles.

5.3 Parameter-based ensembles

A natural approach for generating divergence among
the decisions of a set of classifiers is the use of different
classifier intrinsic parameter values. For instance, one
of the first studied ensemble models was an ensemble of
MLP neural network classifiers with each MLP having
a different number of neurons in its hidden layer. Con-
sidering SVM classifier ensembles, varying the kernel
parameter (in our case the RB)-of a SVM classifier
decisively changes its decision function [29], so using
different kernel parameter values might allow the con-
struction of divergent SVMs which is useful for build-
ing ensembles [19]. For instance, in [27] an SVM en-
semble was built with each SVM using a different pre-
defined value foy (every SVM used the same value for
the parametet).

In this work, we use the grid-search parameter tun-
ing technique to vary the parameters of SVMs aim-
ing to increase their individual accuracy. Although the
grid-search method does not directly work aiming to
increase a metric of the diversity among the classifiers,
we observed that the tuned SVM parameter value as-
signed to each SVM was likely to be distinct among
many of the produced SVMs, as each SVM used a dis-
tinct feature subset. Thus this parameter tuning process
is useful for building accurate SVMs which are also di-
vergent among themselves.

6 The Best Selected Feature Subsets method

We propose a novel method for building an SVM en-

to build a large set. of classifiers that are candidates
to constitute the ensemble. Further we use a sequen-
tial forward search to select just a reduced, optimized
subsets” of them to compose the final ensemble. This
approach of building a large classifier getand further
searching for a subseét is known asoverproduce-and-
choosq14].

As we combine the decisions of the classifiers by av-
eraging the assigned scores, an ensemdbéstimates
the probabilityf’pos(x) that an input pattern belongs
to the positive claseyos as the average of th%,os(x)ch
classification score values that the classifign & out-
puts forx (considering every classifier in the ensemble
&i. e. forh=1toh=|&]). Thusx is predicted as be-
longing towposif Ppos(X) > 0.5 or as belonging toxneg
otherwise.

6.1 The classifier overproduction stage

To create the set of candidate classifiers to com-
pose the ensemble, we first build a Setf feature sets
composed of several promising feature sets. The fea-
ture sets use features from the global pBand differ
on their cardinality. To defin& we performm distinct
SBS feature selection searche&s,...,Si,...,Sm}.
which differ among themselves on the SVM parameter
value they use to create SVMs to estimate the selection
criterion; this allows feature subsets to be found using
complementary kernel mapped feature spaces. We re-
quire each search to select a total of 1 feature (which
is equivalent to requirg; to exclude|G| — 1 features);
the exclusion of each feature defines a new feature sub-
set and hence a new candidate classifier to compose
the ensemble. So the feature set&iare determined

semble, based on varying the features and also the value by taking each produced feature 3¢t which usesk

of the parameters of the classifiers. We call it Best Se-
lected Feature Subsets (BSFS). By now very few pa-
pers have investigated SVM ensembles based on vary-
ing both features and parameters. It can be expected

features selected by the seat§hconsidering everk
andi, thatisk=1,2,3,...,|G| andi = 1,2,...,m(thus
= =mx|G]).

Then the classifier set is defined by building, for

that using different feature subsets and also parameter each feature s&¢’ in the se€, a classifie;' that uses
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Figure 3: A diagram of the training process of an ensembl# byithe BSFS method (used as the predictor of
a fault). After the initial overproduction stage every catade SVM classifier in the sef uses a distinct feature
subset (defined by feature selection) and also tuned pagesndt the Ensemble Classifier Selection (ECS) stage the
ensemble is finally built by selecting an optimized subsefassifiers fromc.

this feature set, and we use the grid-search method to namely the one that provided the highest criterion with
tune the SVM parameters of every classitigraiming its individual inclusion in the current set of selected
to increase its accuracy. Thuisis composed of every classifiers. We define the criteridnof a candidate en-
producedc’, each of which associated to a feature set Semble (a subset of classifiers fraijito be the AUC on

lei and to a tuned SVM parameter val(@, ). training data achieved by this candidate ensemble. The
’ score that each classifier i gives to a training pat-

ternx is previously estimated by cross-validation. Thus
6.2 The Ensemble Classifier Selection (ECS) stage  to obtain the criterionJ of a candidate ensemble the
o ) - scoreﬁ’pos(x) assigned by this ensemble to each train-
After building _the setL of candld_ate classifiers, we ing patternx must be obtained by averaging the scores
use theSequ.en_tlaI Forward Sele_gtlo(tSFS) search to |5pos(X)cj assigned t by the classifiers; in the can-
select an optimized set ¢f | classifiers to compose the  gigate ensemble.
final ensemble?, selecting fromz, cf. figure 3. The
SFS search operates in a similar way as SBS, but SBS  The first selected classifiemfi (from L) is the one
removes objects, while SFS includes objects. with the highest individual cross-validation AUC. In the
SFS starts with an empty set of selected classifiers, following, each next selected classifier is the currently
and at each step one classifier is included in this set, non-selected one which enabled the highest critefion
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achieved by an ensemble composed of the currently se-
lected classifiers and also this new selected one; thus
the second selected classifier is the one which provided
the highest criterion for an ensemble of two classifiers,

set the SVM parameter values @=8.0,y=0.5) in

order to build SVMs to estimate the fitness; this value
was chosen for providing more accurate SVMs in pre-
liminary experiments with the grid-search parameter

namely the first and the second selected ones. When the tuning method. We set the GEFS ensemble size param-

desired numbe8’| of classifiers are selected, the inclu-
sion process stops, so the ensembie finally built.

7 Experimental results

To assess the effectiveness of the studied classifica-
tion approaches we performed a stratified 3 cross-
validation [14]. So in the experiments we performed
five replications of a 2-fold cross-validation. In each
replication, the complete database of 2000 examples
was randomly partitioned, in a stratified manner, into
two sets each one with approximately 1000 examples
(the stratification process preserves the distribution of
the six fault categories between both sets). Thenin each
replication each considered classification model for cre-
ating the predictor of a fault was trained on a set and
tested on the remaining one; after the five replications
we averaged the ten distinct test accuracies.

7.1 Studied classification approaches

For each of the six considered fault categories, we
studied three different classification models for creating
the predictor of that fault: a single SVM classifier; a
SVM ensemble built using the GEFS method; and an
SVM ensemble built using the proposed BSFS method.

7.1.1 TheSVMclassification model

This classification model is a single SVM classifier.
We used the global pool of featur€s as the feature
set, and used the grid-search method to tune the SVM
parameters explained in section 4.

7.1.2 TheCGEFS classification model

This classification model is a SVM ensemble built
using the GEFS method. So the feature sets of the clas-
sifiers in the ensemble are defined by the last generation
of classifiers of the GEFS algorithm. During the ensem-
ble construction (i. e. the GA evolutionary process) we
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eter to 20, so the final ensemble produced by GEFS was
composed of 20 SVMs, each of which uses a different
feature subset (with features from the &tand using

the SVM parameter valug€C = 8.0,y = 0.5).

The GEFS algorithm has several parameters [23],
and we performed preliminary experiments aiming to
find parameter values that provided more accurate en-
sembles. We set the initial value of the GEkFaram-
eter as 10, to estimate the initial value of the fitness of a
classifier. We set 20 classifiers in the ensemble; in each
generation, starting from the ensemble of 20 classifiers,
we produce 10 new classifiers by mutation (randomly
changing 10% of the features of each classifier) and
more 10 new classifiers by cross-over (the two parents
of each classifier are randomly selected from the current
ensemble, proportionally to the fithess), and from these
40 classifiers the 20 fittest are selected to compose the
ensemble at the end of this generation. The population
evolved for 200 generations. We used 5-folds cross-
validation to estimate the accuracy and fitness of each
classifier.

7.1.3 TheBSFS classification model

This classification model is a SVM ensemble built
using the proposed BSFS method, as showed in sec-
tion 6. To build the seE of feature sets we ran four
SBS feature selection experimefts, . .., Ss}, each of
which uses a different SVM parameter value to create
SVMs to estimate the selection criterion (which was
the 5-fold cross-validation AUC). We performed pre-
liminary experiments to define the SVM parameters
values to be used. We used the SVM parameter val-
ues(C = 8.0,y = 0.5) which provided accurate SVMs.
For the other three values, we focused on varying the
y parameter in order to introduce diversity among the
SBS searches, allowing the selection of accurate fea-
ture subsets from different mapped feature spaces. So
we used a low, a medium and a high value for the
parameter; for th€ parameter we used a high value,
as it may cause some overfitting which is useful for



increasing the diversity [5] (we usétl= 300000 ac-
cording to experiments with the grid-search method).
So the four SVM parameter valués = 8.0,y = 0.5),

(C = 300000,y = 0.002), (C = 300000,y = 2.0) and

(C = 300000,y = 36.0) were used to run the four SBS
feature selection searches.

After performing the four SBS searches, to obtain
the feature setX," to form =, we employed, for each
SBS searcly;, the feature subsets defined by using each
number of selected features frdma= 1 tok = |G|. Thus
|Z| = 4 x 95 = 380 feature sets.

Then for each feature set bwe built a SVM clas-
sifier using the grid-search method to tune its SVM pa-
rameters, including this classifier in the setof can-
didates to compose the ensemble. In order to finally
select a subsef of classifiers fromsZ we applied the
SFS search as explained in section 6.2. We set the de-
sired ensemble siZ&’| = 10 as we observed a general
tendency of an AUC decrease with the use of a larger
set.

7.2 5x 2 cross-validation estimation results

Table 2 presents, for each considered fault, the AUC
estimated on test data by thex® cross-validation es-
timation process, achieved by each considered classifi-
cation model predictor.

A comparison among the studied classification mod-
els suggests two main conclusions. First, building an
SVM ensemble was an effective method for improving
the accuracy achieved by a single SVM. Second, SVM
ensembles built by the BSFS method achieved a higher
prediction accuracy than SVM ensembles built by the
well-established GEFS method

We performed the statistical testing procedure sug-
gested by Dietterich [14] to be used with the 3 cross-
validation process, aiming to determine whether there
is a significant difference of the accuracy achieved by
using a single SVM, a SVM ensemble built by BSFS
and a SVM ensemble built by GEFS. The level of sig-
nificance of the statistical test is 0.05. For the GEFS
method, for none of the considered fault categories it
was possible to accept that the accuracy achieved by the
ensemble had a significant difference to the accuracy
achieved by a single SVM. On the other hand, for the
BSFS method, for the misalignment, structural loose-
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Table 2: Estimated test data AUC byx52 cross-
validation

Fault classifier Single  GEFS BSFS
SVM
Misalignment 0.829 0.852 0.876
Bearing 0.909 0.934 0.942
Unbalance 0.836 0.866 0.883
Hydrodynamic  0.912 0.929 0.936
Structural L. 0.873 0.874 0.918
Mechanical L. 0.878 0.892 0.901

ness and hydrodynamic fault the statistical test con-
firmed that there is a significant difference of the ac-

curacy achieved by an ensemble in comparison to the
accuracy achieved by a single SVM.

7.3 Using the BSFS method to build the misalignment
predictor

Figure 4 presents results for the misalignment predic-
tor, for the first pair of train-test data of the<® cross-
validation process, considering the use of the BSFS
method. Figure 4 presents the AUC estimated during
feature selection by two SBS searches. We present for
each search, for each number of selected features, the
5-fold cross-validation AUC estimated on the training
data (the feature selection criterion), and also the esti-
mated AUC on test data achieved by a SVM using this
feature subset and with parameters tuned by the grid-
search method. For comparison we also show as a hori-
zontal line the estimated test data AUC achieved by the
ensemble produced by the BSFS method.

Figure 4 illustrates that using different SBS searches
which differ on their SVM parameter value is able to
generate diverse SVMs. The SBS seafchsed the
SVM parameter valuéC = 8.0,y = 0.5) and the SBS
searchB used the valuéC = 3000Qy = 0.002). As the
parametey is related to the kernel mapping of the fea-
ture space and each search used a different valug for
the SVMs investigated during the searches tend to be
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Figure 4: AUC achieved by the SVMs defined during the featatection searches, estimated on the test data (using
tuned SVM parameters) and on the training data (using fixel drameters, to estimate the feature selection
criterion). As a comparison we also show as a horizontaltlieeAUC on test data achieved by the ensemble built

using the proposed BSFS method.

distinct, which is suggested by the fact that the AUC
achieved by the searchwas consistently higher than
the AUC achieved by the searBhSo we expected that
investigating diverse SVMs might allow diverse fea-
ture subsets to be found during the feature selection

searches. Figure 4 also shows that the process of tuning

the SVM parameters of each produced SVM, besides
increasing their accuracy, also tends to increase the di-
versity among the SVMs, as it can be seen that the test
data AUC achieved by the SVMs would strongly vary
even among SVMs built using a similar number of fea-
tures.

Figure 5 is concerned with the Ensemble Classifier
Selection (ECS) stage of the BSFS method for select-
ing SVMs to compose the ensemble, i.e. selecting a
subsets’ from the classifier sef. Figure 5 presents the
selection of the SVMs obtained for the feature selection
processes shown in figure 4 and also the other two SBS
searches, not shown in figure 4. Figure 5 shows the test
data AUC and also the training data cross-validation

69

AUC (which is the selection criterion) achieved by each

number of selected SVMs composing the ensemble,
from 1 to 70; above 70 classifiers the curve presented
a tendency of decreasing slightly. The final ensemble
& was composed of the ten first selected SVMs.

7.4 Useful fault indicators

Aiming to provide an engineering insight into the
fault indicators used by the classifiers, we show in ta-
ble 3 an ordered list of the most common features in the
ensemble built for each considered fault by the BSFS
method. Thus the firstly listed features are used by a
higher number of classifiers in the ensemble than the
posteriorly listed ones.

One can observe that the most common features are
usually related to characteristic aspects of the consid-
ered fault. For instance, for the bearing fault predic-
tor the total RMS energy of the Envelope spectrum
of acceleration signat 6t al _r rs_HA), the BPF-based
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Figure 5: AUC on test and training data for each num-
ber of classifiers in the ensemble, from 1 to 70. The
selection criterion was the 5-fold cross validation AUC
estimated on the training data. The final ensemble was
composed of 10 classifiers. An ensemble composed of
all 380 produced SVMs achieved a test data AUC of
0.863.

features for the hydrodynamical fault classifier (like
bpf _1x_X which is around the first harmonic of BPF,

in axial direction), and for the mechanical looseness
predictor the RMS around 0.5x in vertical direction

(rms_0. 5x_V).

The features listed next are less crucial and can be
grouped into two categories. The first one encom-

RMS from harmonics or inter-harmonics (for instance,
respectivelysumhar mX andsumi nt er _H).

We observed that classifiers with reduced feature sets
usually presented a good performance, since using the
characteristic features of a fault might be sufficient to
detect it, for instance in an isolated occurrence of the
fault. On the other hand, when a complex combina-
tion of faults is happening, some of the classifiers with
a higher number of features, namely the ones with a
feature set better adapted to the current machine con-
dition, presented a good performance. This suggests
that building an ensemble is an interesting approach for
dealing with the multiple faults problem, as each clas-
sifier can reflect a different perspective (according to its
feature set) and thus contribute with a complementary
decision.

7.5 Using a knowledge-based system to detect struc-
tural resonance

Our approach of extracting a general global pool of
feature<s for detecting every considered fault category,
with the features representing the vibrational energy in
predetermined frequency bands, requires little a priori
knowledge about the plant. The experiments show that
this approach provided accurate predictors for the six
studied fault categories. However, there are other fault
categories that may not be effectively detected by using
the presented extracted features in theGetTo detect
these faults, new features should be defined to describe

passes features describing less characteristic aspects oftheir relevant aspects.

the fault, which manifest themselves just in a fraction
of the training examples, for instance the RMS energy
of harmonics above 2x for the hydrodynamic fault pre-
dictor (for instance ns _5x _H). The second category en-

Probably the definition of such new features would
demand the system developer to consider intricate, spe-
cific aspects of the considered fault, thus increasing the
demand of a priori knowledge about the plant. To illus-

compasses features related to the occurrence of other trate the definition of such new features, in this section
defects and thus used to detect the considered fault in we show the results achieved by the predictor of an-
the occurrence of mutually influential defects, for in-  other fault category, not considered in the previous sec-
stance the Envelope-based features used by the me-tions. For diagnosing the fault of structural resonance,

chanical looseness predictor which are useful for dis-
tinguishing between that fault and a severe bearing de-
fect (for instance t f _punp_3x which is the RMS en-
ergy around the FTF third harmonic, extracted from a
pump position). Additional useful features are the me-
dian filtering based noise (for instanoei se_0- 4x_H
which is the noise in band 0x-4x) and the sum of the
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we created a so-called knowledge-based system, which
predicts this fault by directly searching its characteris-
tic aspect. So the structural resonance predictor worked
based on an if-then-else rule.

Structural resonance is characterized by a very high
vibrational energy occurring at a frequency, usually not
at a harmonic of the shaft rotation frequency. The



Table 3: Ordered list of the features most used by the classifi the ensembles.

Misalignment Isc;[glécet:él Unbalance Hydrodynamic '\fsg:::ézzl T)zlg:]igg
rms H_2x rmsV_1x rmsH_2x bpfX_1x rmsV_0.5x totalrms HA
rmsV_2x sumharmH rms.H_1x bpfV_1x bpfamotorlx  rmsmotorA

noise0-5x.V bpfi_motor 1x rmsV _0.5x bpfH_1x rmsH_1 bpfopump1x

bsf - motor 2x rmsX_3.5x noise0-2x H totalLrmsV bpfi_pump.2x ftf_motor 2x
bpfo_motor.3x rmsV _0.5x bpfipump1x rmsV_3x bpfi.motor 1x rmspumpE
rms.X_2x noise0-5x H rms.H_2.5x bpfipump3x  bpfomotor3x  bpfimotor.1x
rms.H_0.5x rmsV_5x rmsX_1x rmsV._2x noise0-5x H bsf-motor.1x
noise0-4x.V rms_H_1x bpfimotor 3x noise0-1xX ftf_motor3x  bpfa.motor2x
total.rms VV noise.0-4x H rmsV_2.5x rmsX_2.5x bptX_0.5x bpfamotor 1x
rms.H_1x bpfV_2x noise0-1x.V rms_V_4.5x bptV_2x rmsV_2x
rms H_6.5x bpfH_0.5x suminterharmX  noise0-2x H bpfH_3 rmsH_0.5x
noise0-4x H totalLrmsV sumharmV noise 0-1x H rms.H_3x rmspumpA
suminterharmX total_.rms H bpfi_motor.2x ftf_pump.1x rmsH_2.5x bpfipump2x
suminterharmV  bpfo_pump2x bpfimotor 2x sumharmX ftf _motor.2x rmsX_0.5x
sumharmX rms_V_2x bpfapump4x sumharmH bpf_H_1x rmsV_3.5x
sumharmV rms_H_4.5x bpfapump3x rmspumpA sumharmH rms.V_2.5x
total.rms HA rms_H_5.5x rmsX_3.5x bpfipump3x rmspumpE rmsH_2x
bpfi_motor.2x noise0-3x H rms.X_2.5x rmsX_2.5x noise0-5x .V rms_H_5.5x
bpfo_motor.1x ftf_motor_2x rms.X_5x rmsX_3x noise0-3x.V noise 0-5x H
rms.X_1x bsfpump.3x rmsH_3x rmsX_2x noise0-3x H ftf_motor.3x

source of such a high vibrational energy is external
to the motor pump equipment, for instance a damaged
equipment that is located close to the motor pump. Fig-
ure 6 shows the Fourier spectrum of the vibration signal
obtained from a motor pump in which structural reso-
nance is occurring. It can be seen that this fault category
is naturally predicted by a rule-based classifier. In fact,
no feature in the s&b might carry specific information
about an energy peak likely to occur at any frequency
of the spectrum (and not usually at a harmonic or a sub-
harmonic frequency).

The fault of structural resonance was present 198
of the data. The rule-based predictor achieved a test
data accuracy of 98% in predicting this fault (estimat-
ing by the 5x 2 cross-validation); the test data AUC
value could not be estimated since the structural res-
onance predictor did not provide scores for the input
patterns as it directly predicts a pattern as belonging to
the positive classies Or to the negative classneg
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Figure 6: Structural resonance fault and its manifesta-
tion in the frequency spectrum. The defect is charac-
terized by a high vibrational energy at the frequency 80

Hz. The energy around 1x (the first harmonic at the

leftmost dashed line) indicates a coexistent unbalance
fault.

8 Conclusions and Future Work

We presented a novel method for building an accu-
rate ensemble of SVM classifiers, aiming to construct a
fault predictor to diagnose six different fault categories
in the vibration signals of oil rig motor pumps. This
method is based on the hybridization of two distinct,
simple techniques originally designed for building ac-
curate SVMs, namely hill-climbing sequential feature
selection and grid-search SVM parameter tuning. We
use an overproduce-and-choose strategy, first building
SVMs which differ on their feature set and also on their
SVM parameter, and further searching for an optimized
subset of the produced SVMs. The experiments show
that such SVM ensembles achieved a higher prediction
accuracy in comparison to using single SVM classifiers
or using SVM ensembles built by the well-established
GEFS method.

To further increase the prediction accuracy, we plan
to study more powerful approaches for tuning the pa-
rameters of the SVM classifiers. This might produce
SVMs that are more accurate and also more diver-
gent among themselves in comparison to the SVMs
produced by the grid-search parameter tuning method.
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Specially, Particle Swarm Optimization (PSO) based
techniques have been successfully used to tune SVM
parameters [18].

We plan to acquire more real-world data, from differ-
ent machines and from more sources than just vibration
signals. Thus we plan to develop a multiparametric di-
agnostic system, which uses vibration signals comple-
mented with electrical signals such as current, power
and torque. This should increase the prediction accu-
racy as more information sources will be available to
compose the global po@ of extracted features.
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