

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FISIOLÓGICAS
LABORATÓRIO DE ELETROMECÂNICA CARDÍACA E REATIVIDADE VASCULAR

TESE DE DOUTORADO

Edna Aparecida Silveira Almeida

Orientador: Prof. Dr. Dalton Valentim Vassallo

Co-orientadora: Profª. Drª. Alessandra Simão Padilha

Fevereiro, 2011

Exposição à baixa dose de acetato de chumbo por trinta dias aumenta a pressão arterial com alterações funcionais em anéis de aorta de ratos

Edna Aparecida Silveira Almeida

Orientador: Prof. Dr. Dalton Valentim Vassallo

Co-orientadora: Profª. Drª. Alessandra Simão Padilha

INTRODUÇÃO

Chumbo - Plumbum

- Características
- Tóxico, pesado, macio, maleável e mau condutor
- Coloração:

Branco-azulada → recentemente cortado

Acinzentada → exposto ao ar

Utilização pelo homem

Egito Antigo

Idade Média

hydrogen 1 H 1.0079		Chumbo - Pb												helium 2 He 4.0026				
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												ΑĬ	Si	P	S	CI	År
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
V	_				1/	_		_			Cit		-		Α	-	_	
n	Ca		Sc	- 11	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51,996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	65,39 cadmium	69,723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	1ead 82	bismuth 83	polonium 84	astatine 85	radon 86
	12 33 54				_		200		20				TI	_22300	3339	200		
Cs	Ba	*	Lu	Hf	la	W	Re	Os	lr	Pt	Au	Hg	-11	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	* *	0.335.55	Rf	Db	25557	Bh	22370	Mt									
7745		^ ^	Lr			Sg		Hs			Uuu			Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
F	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
L	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Chumbo - Pb2+

- Elemento tóxico de ocorrência natural
- Emissão na atmosfera: fontes naturais e antropogênicas
- Amplamente utilizado nas indústrias
- > Seres humanos possuem chumbo em seu organismo
- > Efeitos tóxicos sobre homens e animais

Alterações nos órgãos e sistemas

> Fontes de Chumbo:

Naturais

- Vulcanismo
- Desgaste da crosta terrestre
- Evaporação dos oceanos

Antropogênicas

- Combustíveis fósseis
- ➤ Dejetos industriais
- Mineração
- ➤ Pesticidas / Fungicidas

Saryan & Zen, 1994;

Moreira & Moreira, 2004;

Capitani, 2009.

> Fontes de exposição:

Exposição ambiental

- Particulado na atmosfera
- Crosta terrestre
- Revestimento interno e externo das casas e edifícios
- > Alimentos, bebidas e alguns medicamentos

Exposição ocupacional

- > Indústrias de baterias chumbo-ácidas
- Manufaturas de vidros coloridos
- Fábricas de tintas para plásticos
- > Atiradores e instrutores de tiro ao alvo

WHO, 1995; Mavropoulos, 1999; Paoliello, 2001; Capitani, 2009.

> Fontes de exposição:

Fontes Industriais

Fundições Primárias (refino de minério de chumbo) e Secundárias (fusão de sucatas ou barras de chumbo para fins variados)

Produção de ligas (bronze, latão)

Fabricação e recuperação de baterias

Esmaltação de cerâmicas

Fabricação de pigmentos e "fritas" para cerâmicas

Fabricação de PVC e outros plásticos

Indústria de borracha

Fabricação de cabos elétricos (elemento dielétrico)

Operação de corte e solda de peças e chapas metálicas contendo chumbo

Jateamento de areia de estruturas metálicas pintadas com tintas com chumbo (pontes, navios)

Solda eletrônica (Sn + Pb)

Produção de compostos orgânicos de chumbo

Fontes não industriais ou não ocupacionais

Bebidas alcoólicas (vinhos e destilados)

Uso de cristais finos e porcelana esmaltada

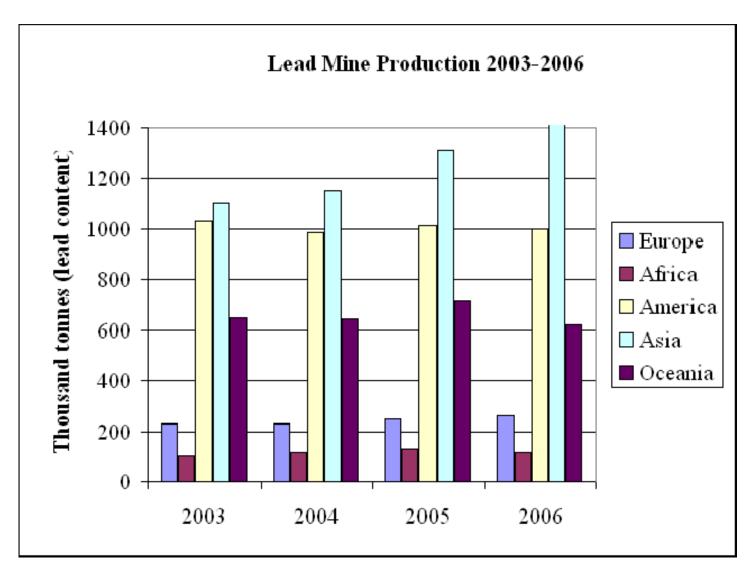
Utensílios de PVC

Fabricação caseira de "chumbadas" de pesca e cartuchos

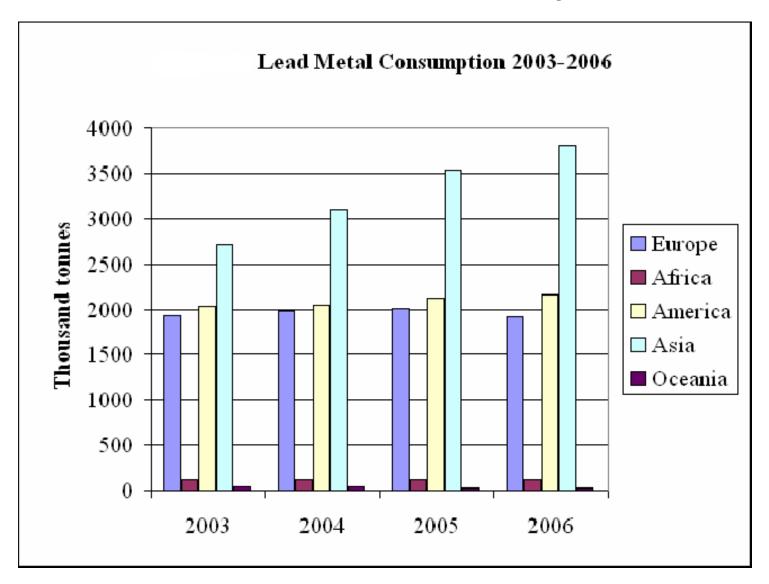
Tinturas de cabelo

Prática de tiro ao alvo

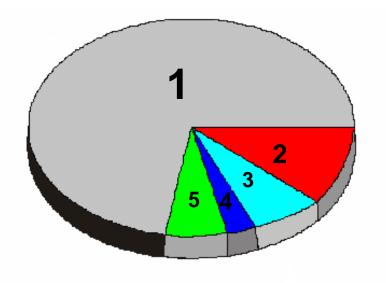
Cerâmica artística caseira


Projétil de arma de fogo alojado em articulações ou canal medular

Alimentos industrializados


Tintas em brinquedos

Medicina chinesa e indiana


Produção de Chumbo Metálico por Continentes

Consumo de Chumbo Metálico por Continentes

Consumo Mundial de Chumbo de 1997-2001

- **1** Baterias 70%
- Pigmentos 12%
- 3 Munições 6%
- 4 Cabos 3%
- Outros 7% (soldas, ligas)

O chumbo é utilizado na fabricação de diversos materiais, porém **não é metabolizado** pelos organismos.

Processos de **bioacumulação**, comprometendo os animais da cadeia alimentar, inclusive o homem.

> Impacto ambiental causado pelo chumbo

EUA: 23% amostras de águas superficiais: 20 μg/dL
 48% amostras de águas subterrâneas: 21 μg/dL.

ATSDR, 1995

 \triangleright Brasil: 1998 a 2000, amostras de águas superficiais do rio Ribeira e Ribeirão (PR e SP): 5 a 6 μg/dL \rightarrow acima dos valores estabelecidos pelo CONAMA: 3 μg/dL.

Cunha et al, 2001

> Impacto ambiental causado pelo chumbo

> Santo Amaro da Purificação (BA):

Fábrica de mineração de chumbo → depositou aleatoriamente 490.000 toneladas de escória contaminada com chumbo → deposição nas áreas de suas instalações → solo e rios.

Essa empresa doou escória para prefeitura para pavimentação de ruas e fundações de casas.

Silvany-Neto, et al., 1989

> Limites de tolerância biológica ao chumbo

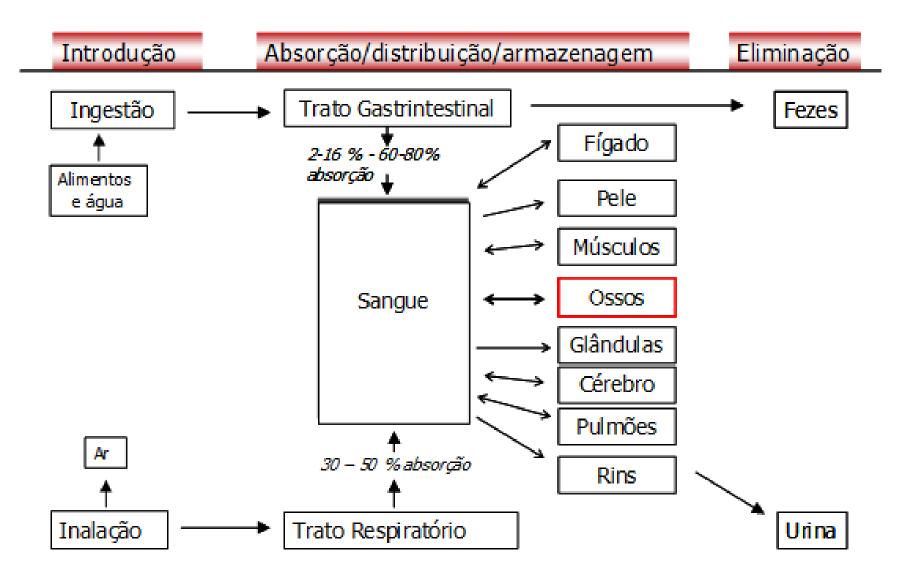
➤ Brasil: A Norma Regulamentadora n° 7 (NR7) do Ministério do Trabalho em **1978** estabelece: Valor de Referência de normalidade e o Limite superior da normalidade (LBMP) para exposição ao chumbo.

VR: 40 μg/dL e LBMP: 60 μg/dL

Internacionalmente: LBMP: 40 μg/dL

> Limites de tolerância biológica ao chumbo

Center for Disease Control (1997): 10 μg/dL de Pb-S como valor
 de referência para o gerenciamento de risco em crianças.


 \triangleright Center for Disease Control (2005): concentrações **elevadas** de chumbo no sangue valores \ge **10** μg/dL para **todas** as idades.

> Limites de tolerância biológica ao chumbo

> Cordeiro *et al* (2003) avaliaram 20 operários de uma fábrica de acumuladores elétricos e sugerem que os limites de tolerância biológica ao chumbo sejam ajustados para **32 μg/dL.**

>2007: American Conference of Government Industrial Hygienists dos Estados Unidos: **30 μg/dL** como Índice de Tolerância Biológica.

> Toxicocinética do chumbo

SNC

- Alterações no sistema nervoso periférico > adultos
- ➤ Encefalopatias → crianças e adultos

Alterações comportamentais

Déficit no aprendizado, redução do QI e na memorização

Reduz o crescimento físico e a estatura

Beyrs & Lord, 1943; Vivoli, et al., 1993 Saryan & Zen, 1994; WHO, 1995; EPA, 1994; ATSDR, 2005; Dietrich, *et al.*, 2001; NAHNES III, 2002; Lanphear *et al.*, 2005; Braun, *et al.*, 2008;

SNC S. Renal

- Doença renal progressiva e irreversível
- ➤ Nefropatia → HA
- Esclerose glomerular
- >Lesão do túbulo proximal

Saryan & Zen, 1995;

WHO, 1995;

Diamond, 2005;

Marsden, 2003.

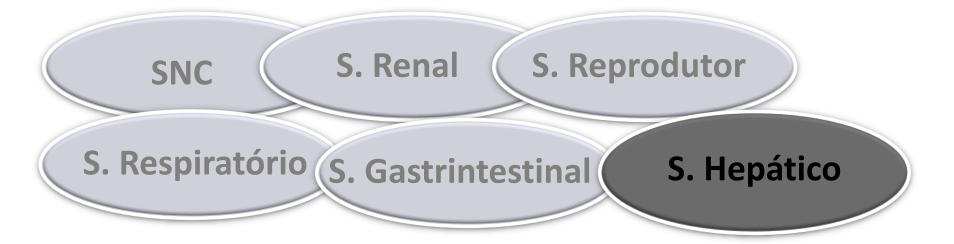
SNC S. Renal S. Reprodutor

- ➤ ↑ Abortos e partos de natimortos
- Danos fetais
- Baixo peso ao nascer e nascimento prematuro
- > 40 a 50 μg/dL de Pb-S: ↓ da função reprodutiva dos homens;
- ➤ Infertilidade
- ➤ ↓ Libido

Goyer, 1991; ATSDR, 1992; Skerfving, 1993; Saryan & Zen, 1994; WHO, 1995; ATSDR, 1999; Levin, 2000.

SNC S. Renal S. Reprodutor

S. Respiratório


> Câncer de pulmão

SNC S. Renal S. Reprodutor

S. Respiratório S. Gastrintestinal

- Dores abdominais / diarréias;
- Hemorragia digestiva;
- > Estomatite;
- Náuseas / vômitos;
- Linha azulada nas gengivas;

Saryan & Zen, 1995; WHO, 1995; ATSDR, 1999; Skerfving, 1993; Tandon et al., 2001.

- > Os efeitos do chumbo sobre a síntese do grupamento heme:
- ↓ a capacidade funcional do citocromo P-450 do sistema hepático.

WHO, 1995;

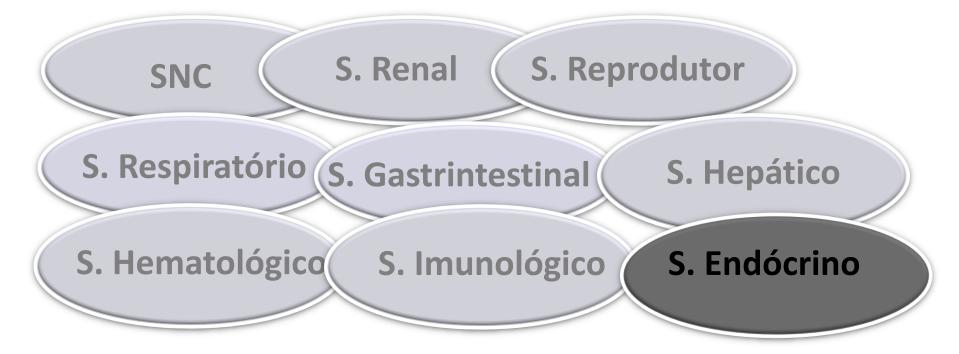
Skerfving, 1993.

SNC S. Renal S. Reprodutor

S. Respiratório S. Gastrintestinal S. Hepático

S. Hematológico

- ➤ Redução na síntese do grupamento heme representado uma das principais causas de doenças induzidas pelo chumbo;
- Anemias.


Hu et al., 1994; WHO, 1995; ATSDR, 1992 e 1999; Vahter, et al., 1997; Jacob, et al., 2000.

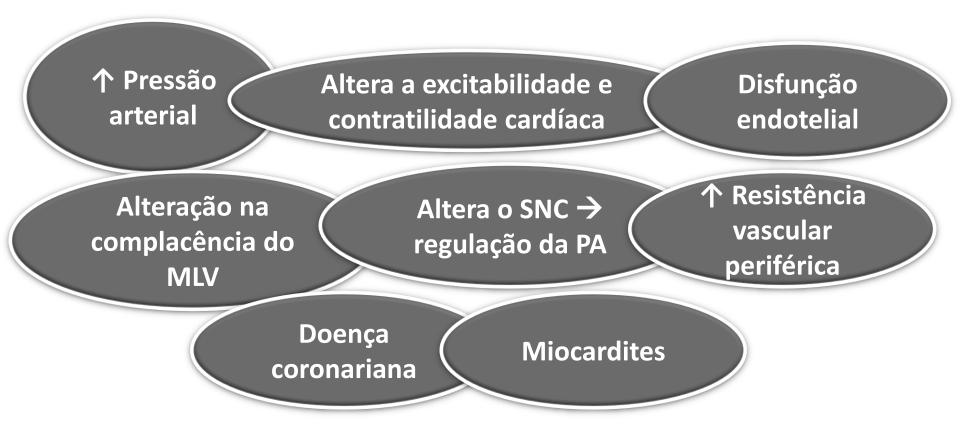
SNC S. Renal S. Reprodutor

S. Respiratório S. Gastrintestinal S. Hepático

S. Hematológico S. Imunológico

Fetos e neonatos com distúrbios no sistema imune → na vida adulta → problemas alérgicos, infecção, câncer, doença automimune.

Alterações, por exemplo, nos eixos hipotálamo-hipófise-tireóide/glândula supra-renal.


Skerfving, 1993; Saryan & Zen, 1994; Erfuth, et al., 2001; Singh, et al., 2000; ATSDR, 2005.

Sistema Cardiovascular

Influenciados pela dose, tempo de exposição, via de exposição, idade, temperatura e ingestão de cálcio.

```
Read & Williams, 1952;
Kline, 1960;
Dimitrova, 1972;
Kopp & Bárány, 1980;
Carmignani et al. 1999;
Hond, et al., 2002;
Marques et al., 2001;
Tsao et al., 2000 ;
Courtois, et al., 2003;
Vupputuri et al., 2003;
Navas-Acien, et al., 2007;
Vaziri et al., 2008;
Prozialeck et al., 2008;
Vassallo et al., 2008;
Silveira et al., 2010;
Fioresi et al., 2010;
Simões et al., 2010;
Fiorim et al., 2011.
```

> Efeitos tóxicos do Chumbo sobre os sistema cardiovascular

Rosenblum, 1965; Stöfen, 1974; Piccinini, et al., 1977; Kopp, et al., 1978; Kopp & Bárány, 1980 Webb, et al., 1981; Hejtmancik & Williams, 1981; Bohr & Webb, 1984; Pretice & Kopp, 1985; Tomera & Harakal, 1986; Sharp, et al., 1987; Harlan, 1988; Steassen, 1994; Sxhwartz, 1995; Marques et al., 2001; Hond et al., 2002; Courtois, et al., 2003; Navas-Acien, et al., 2007; Vassallo et al., 2008; Silveira, et al., 2010; Fiorim, et al., 2011.

Efeitos tóxicos do Chumbo sobre os sistema cardiovascular

Mecanismos de ação:

> Estresse oxidativo

Cai et al., 2000; Hansson, 2005; Libby, 2002; Shah, 2003; Vaziri et al., 2006; Khalil-Manesh et al., 1994; Gonick et al., 1998; Dursun et al., 2005; Ding et al., 2000; Ding et al., 2001.

Via dos prostanóides derivados da ciclooxigenase

Gonock et al., 1998; Hotter et al., 1995; Dorman & Freeman, 2002.

Sistema Renina-Angiotesina

Vander, 1988; Carmignani et al., 2000; Sharifi et al., 2004; Rodríguez-Iturbe et al., 2005; Vaziri et al., 2006; Bravo et al., 2007.

JUSTIFICATIVA

- > Diversas fontes de exposição ao chumbo
- > Efeitos prejudiciais à saúde humana
- Não há um consenso sobre os valores de chumbo no sangue para indivíduos expostos e não expostos a esse metal

OBJETIVOS

Geral

Produzir um modelo experimental em ratos expostos à baixa dose de acetato de chumbo, a fim de alcançar uma concentração sanguínea abaixo do VR e do IBMP aceitável para indivíduos expostos e não expostos (ocupacionalmente) ao chumbo, e investigar as prováveis alterações cardiovasculares promovidas pelo chumbo.

Específicos

Analisar os efeitos da exposição por trinta dias ao acetato de chumbo sobre:

1 - A pressão arterial de ratos acordados e anestesiados;

- 2 A reatividade vascular à fenilefrina da artéria aorta torácica de ratos expostos ao chumbo, a partir das seguintes análises:
 - a) Participação do endotélio na resposta contrátil à fenilefrina;

b) Participação do óxido nítrico; das espécies reativas de oxigênio; dos prostanóides derivados da ciclooxigenase e, do sistema renina-angiotensina.

Específicos

Analisar os efeitos da exposição por trinta dias ao acetato de chumbo sobre:

3 - Expressão protéica das isoformas: endotelial e induzível da sintase do óxido nítrico, da ciclooxigenase-2 e do receptor da angiotensina - AT_1 ;

4 - Liberação local de óxido nítrico e de ânion superóxido;

5 - Atividade plasmática da enzima conversora de angiotensina.

MATERIAIS E MÉTODOS

> Animais:

Ratos Wistar: 3 meses / 200 - 300 g.

Colégio Brasileiro de Experimentação Animal (COBEA-1991) e foram aprovados pelo Comitê de Ética em Experimentação e Uso de Animais da EMESCAM- CEUA 004/2007.

- > Animais:
- Modelo experimental:

Exposição diária ao acetato de chumbo - 30 dias, via im

Concentração → ≈ 20 µg/dL

Grupo Chumbo: Dose de ataque: 4 μg/100g

Dose de manutenção: 0,55 µg/100 g/dia;

Grupo Controle: NaCl (0,9%).

- > Animais:
- Modelo experimental:

Acetato de chumbo;

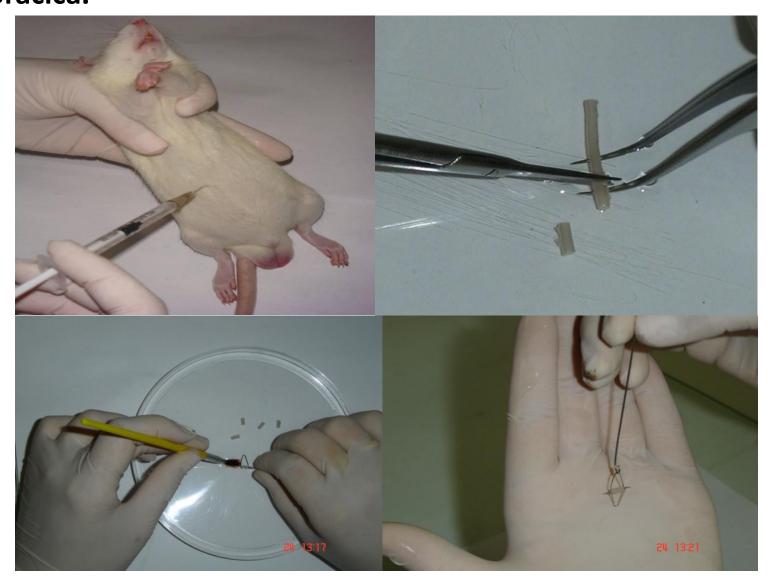
Doses;

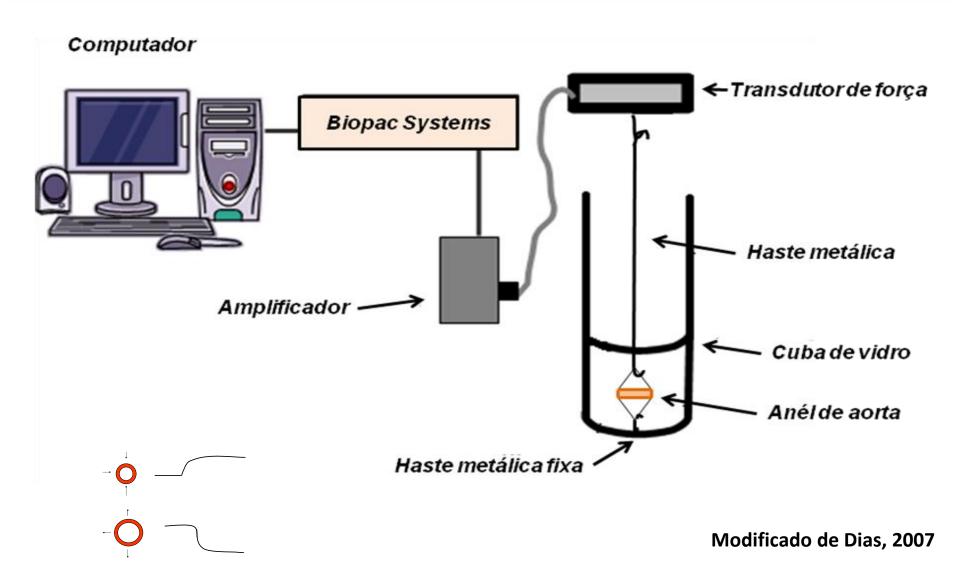
Dosagem do chumbo no sangue:

Espectrofotometria de absorção atômica com forno de grafite \rightarrow Departamento de Química da Universidade Federal do Espírito Santo.

- Animais;
- Modelo experimental;
- Avaliação dos valores pressóricos

Medida indireta da pressão arterial sistólica

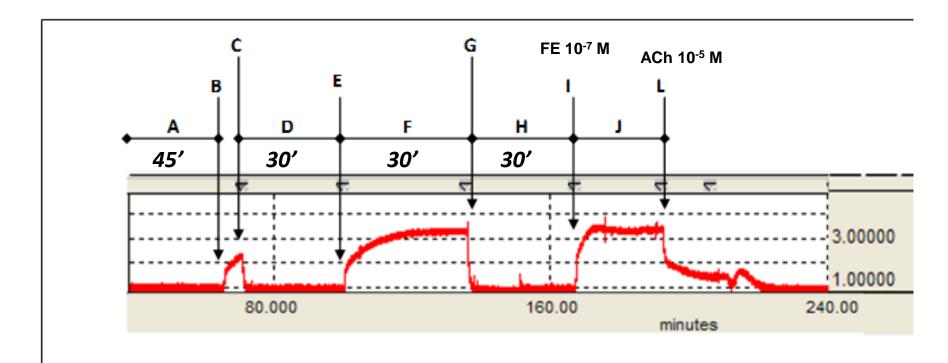

Pletismografia de cauda, durante o tratamento


Medida direta da pressão arterial e da frequência cardíaca

Cateterização da artéria carótida direita

- Animais;
- Modelo experimental;
- Avaliação dos valores pressóricos
- Reatividade em anéis isolados de aorta de ratos

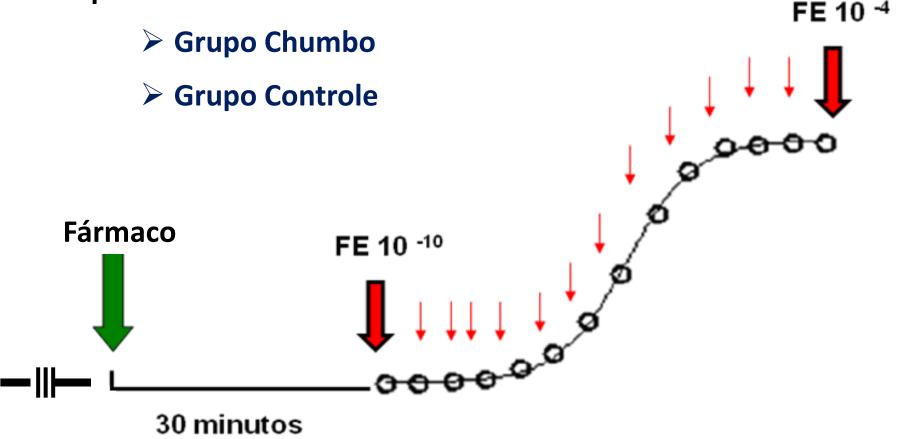
Metodologia empregada para obtenção dos anéis de aorta torácica.


Preparação dos anéis isolados de aorta para avaliação da reatividade vascular "in vitro".

- Animais;
- Modelo experimental;
- Avaliação dos valores pressóricos;
- > Reatividade em anéis isolados de aorta de ratos;
- **→** Protocolos experimentais;

Protocolo de reatividade vascular in vitro:

Estabilização;


- **≻**KCl (75 mM);
- > Teste do endotélio.

Registro típico com curvas representando o teste da viabilidade do músculo liso vascular com KCl e avaliação da integridade funcional do endotélio.

> Protocolo de reatividade vascular in vitro

Resposta vascular a fenilefrina:

- Animais;
- Modelo experimental;
- > Avaliação dos valores pressóricos;
- > Reatividade em anéis isolados de aorta de ratos;
- Protocolos experimentais;
- ➤ Biologia Molecular;

Biologia molecular

➤ Medida da expressão protéica: eNOS, iNOS, COX-2 e receptor AT₁

Liberação local do óxido nítrico: Medida do aumento da fluorescência/DAF (4,5-diaminofluoresceina) (Martín *et al.,* 2005)

➤ **Produção local de ânion superóxido**: Medida do aumento da quimioluminescência/lucigenina (Martín *et al.*, 2005)

➤ Determinação da atividade plasmática da ECA: Medida do aumento da fluorescência/His-Leu (Friedland & Silverstein, 1976)

- > Animais;
- Modelo experimental;
- > Avaliação dos valores pressóricos;
- > Reatividade em anéis isolados de aorta de ratos;
- **→** Protocolos experimentais;
- Biologia Molecular;
- Expressão dos dados e análise estatística.

Expressão dos dados:

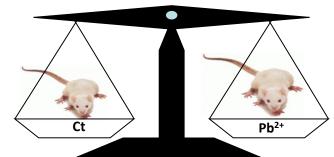
Média \pm EPM;

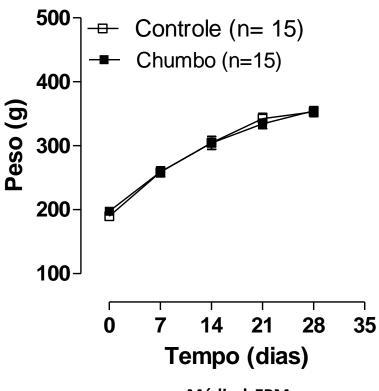
Dados de reatividade vascular à FE foram normalizados em função da resposta máxima de contração ao KCl (75 mM) e estão expressos em %.

Análise estatística:

Rmáx e pD₂ (-log EC₅₀) \rightarrow análise de regressão não linear;

dAUC;


Teste *t* não-pareado;


ANOVA 1/2 vias \rightarrow teste *post-hoc* de Tukey;

P < 0,05.

RESULTADOS e DISCUSSÃO

Controle do peso corporal

Média ± EPM

Carmignani *et al.,* 1999; Grizzo et al., 2008; Rizzi *et al.,* 2009. Concentração de chumbo no sangue

Grupo chumbo: $11,96 \pm 1,34 \mu g/dL$

ightharpoonup Gonick, et al., (1997): Pb-S **12,4 ± 1,8 µg/dL** em ratos;

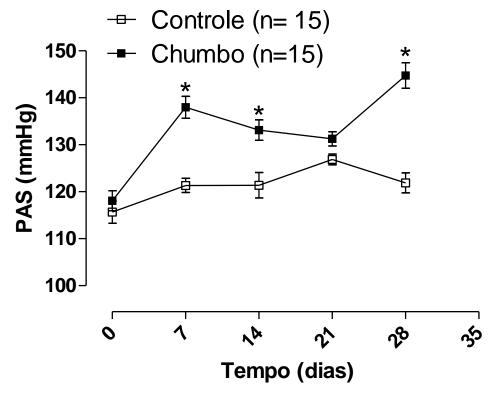
Barbosa Jr. et al., (2005): Pb-S 11,6 ± 9,6 μg/dL em humanos.

Concentração Pb-S \rightarrow 11,96 \pm 1,34 μ g/dL

VR: 40 μg/dL e do IBMP: 60 μg/dL (Brasil ,NR -7; 1978)

IBMP: 30 μg/dL (ACGIH - EUA, 2007)

Baixos valores de exposição ao chumbo têm sido fortemente associados com o desenvolvimento de hipertensão arterial, tanto em estudos realizados em humanos quanto em animais.


Gurer & Ercal, 2000;

Ni et al., 2004;

Vaziri & Sica 2004.

➤ Avaliação dos valores pressóricos em ratos nos grupos controle e chumbo

Medida indireta da PAS

Média ± EPM. ANOVA (duas vias): P < 0, 05.

➤ Avaliação dos valores pressóricos em ratos nos grupos controle e chumbo

> Medida Direta

	Controle (n= 08)	Chumbo (n= 18)
PAS	94,8 ± 2,80	108 ± 2,81*
PAD	55,5 ± 2,39	68,9 ± 3,53*
FC	$\textbf{324} \pm \textbf{14,01}$	$\textbf{348} \pm \textbf{13,34}$

Média \pm EPM. Teste t não pareado: *P < 0,05.

> Avaliação dos valores pressóricos em ratos nos grupos controle e chumbo

Chumbo provoca Hipertensão arterial:

Humanos:

Schwartz, et al., 1985; Sharp, et al., 1987; Moreau, et al., 1988; Koop, et al., 1988; Hertz-Picciotto & Croft, 1993; Staessen, et al., 1994; Nawrot, et al., 2002; Nash, et al., 2003; Navas-Acien, et al., 2007.

Ratos:

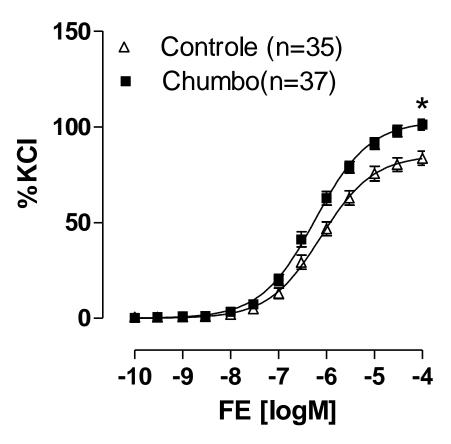
Griffith & Lindauer, 1944; Diaz-Rivera & Horn, 1945; Vander, 1988; Carmignani et al., 1999; Vaziri et al., 1999; Carmignani et al, 2000; Tsao, et al., 2000; Marques et al., 2001; Vaziri, 2003; Sharifi et al., 2004; Heydari et al., 2006; Simões et al., 2010; Fiorim, et al., 2011.

Grupo chumbo: $11,96 \pm 1,34 \mu g/dL$

Valores de Referência e em curto período de tempo, já demonstram um efeito hipertensor do chumbo, recomendando que os Valores de Referência para esse metal, devem ser repensados pelas Agências de Toxicovigilância.

Reatividade vascular em anéis aórticos de ratos

Resposta ao KCI:


KCl (75 mM)	Controle (g)	Chumbo (g)
E+ (n=7) E- (n=7)	2,26 ± 0,11 2,36 ± 0,13	$2,43 \pm 0,09$ $2,53 \pm 0,08$
	Média ± EPM	

Media ± EPIVI

Os dados de reatividade vascular foram normalizados em função da resposta máxima de contração ao KCl (75 mM) e estão expressos em %.

Reatividade vascular em anéis aórticos de ratos

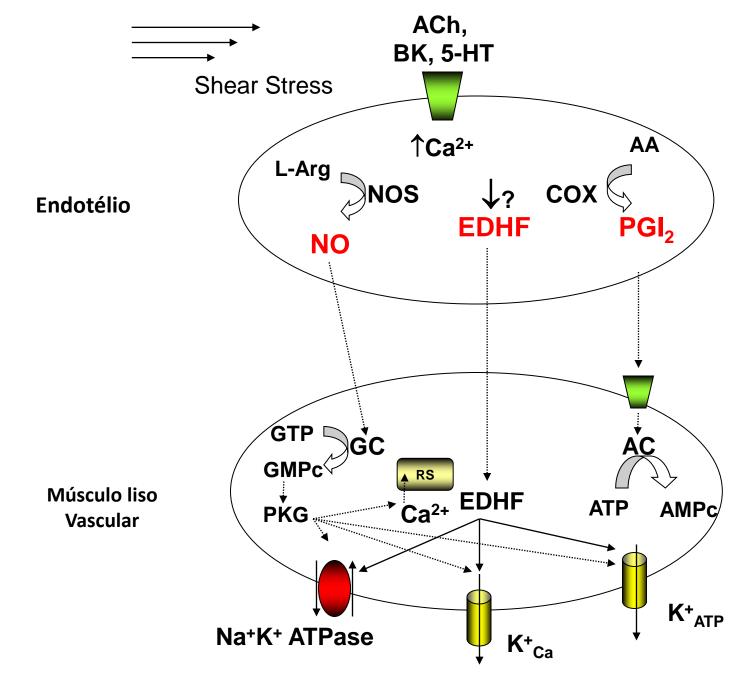
Resposta contrátil à Fenilefrina:

Média \pm EPM. Teste t não pareado: *P < 0,05

- Webb et al., 1981
 100 ppm → 7 meses
- ➤ Carmignani *et al.*, 2000 60 ppm → 10 meses
- Shelkovnikov et al., 2001 $100 \ \mu M \ e \ \downarrow \ [Ca^{2+}]$
 - → Heydari *et al.*, 2006
 100 ppm → 1, 2 e 3 meses
 - > Silveira *et al.*, **2010**100 μM

Fiorim, et al., 2011

Hipertensão arterial induzida pelo chumbo



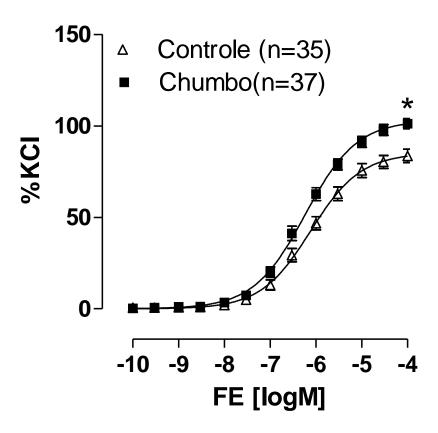
Alterações nas células endoteliais

Khalil-Manesh *et al.*, 1993; Oishi *et al.*, 1996; Mittal *et al.*, 1995; Vaziri *et al.*, 1997; Gonick *et al.*, 1997.

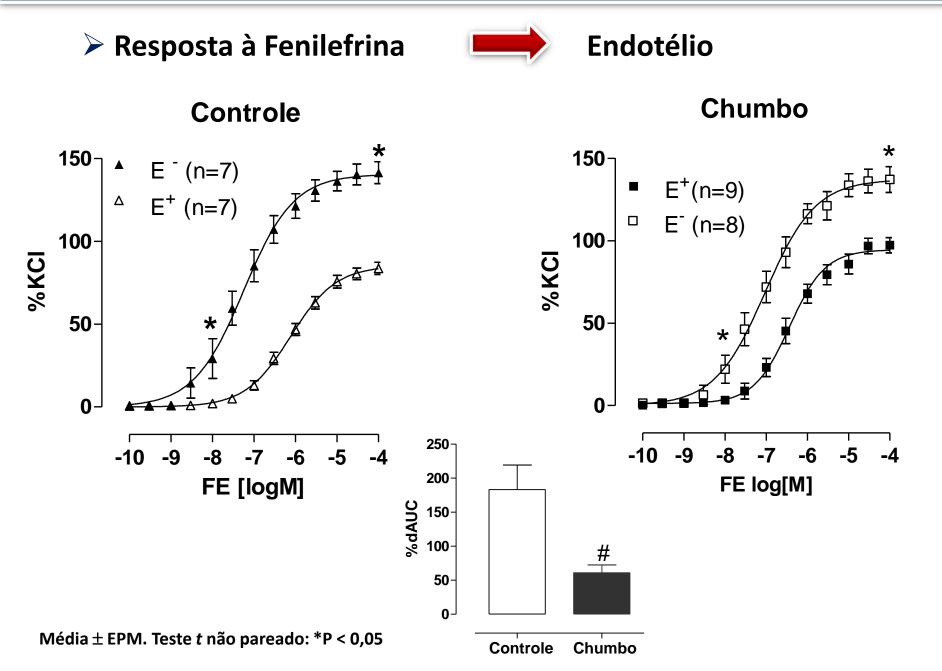
Alterações nas células do músculo liso vascular

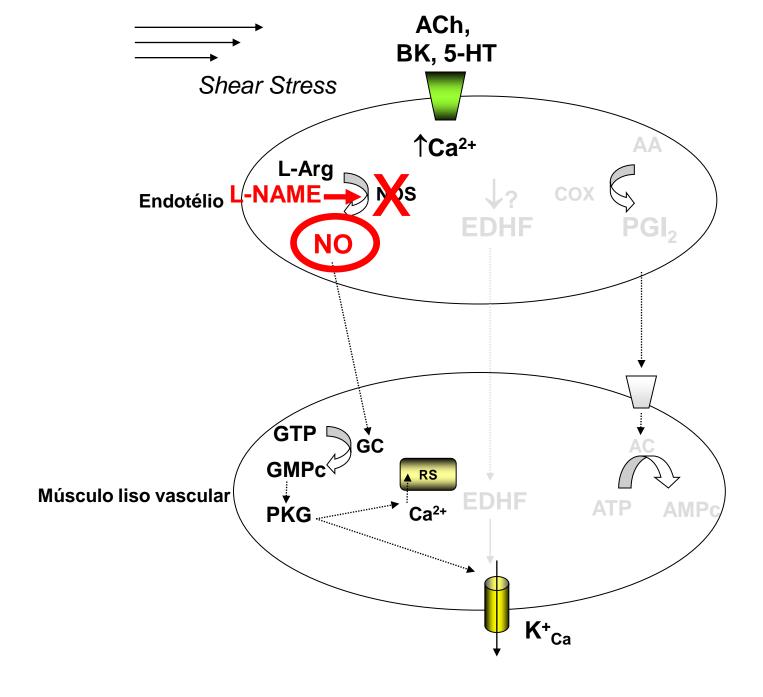
Webb *et al.*,1981; Tomera & Harakal, 1986; Skoczynska *et al.*, 1986; Chai & Webb, 1988; Kopp *et al.*, 1988; Watts *et al.*, 1995.

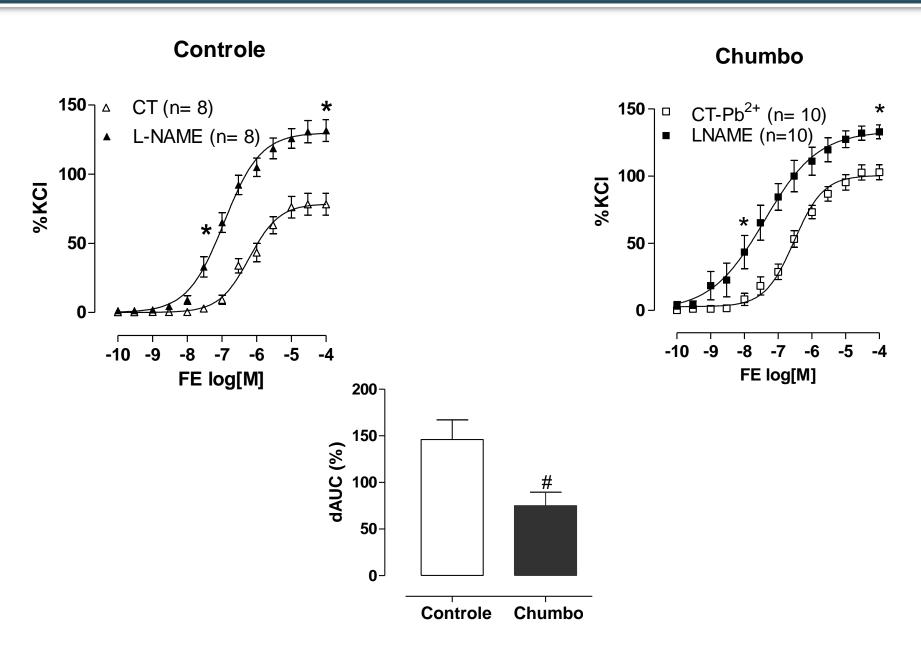
Fujimoto et al., 1986; da Cunha et al., 2000



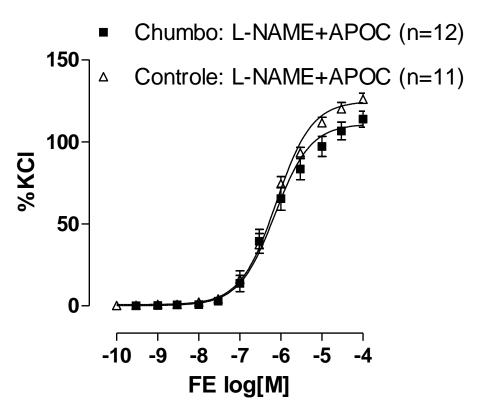
Fujimoto et al., 1986; da Cunha et al., 2000


> Resposta contrátil à Fenilefrina




Endotélio-dependente?

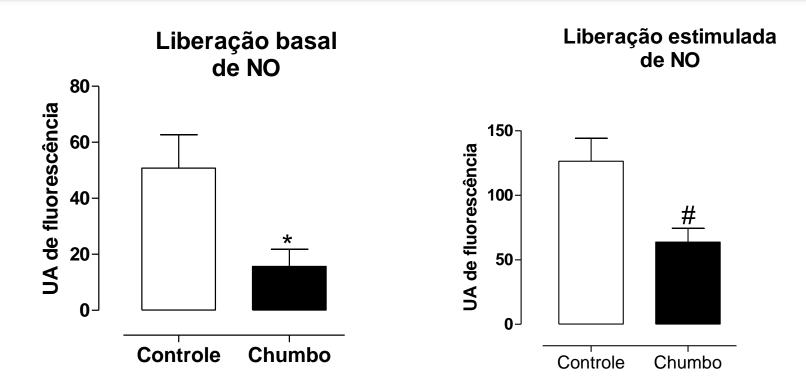
Média \pm EPM. Teste t não pareado: *P < 0,05



Média \pm EPM. Teste t não pareado: *# P < 0,05

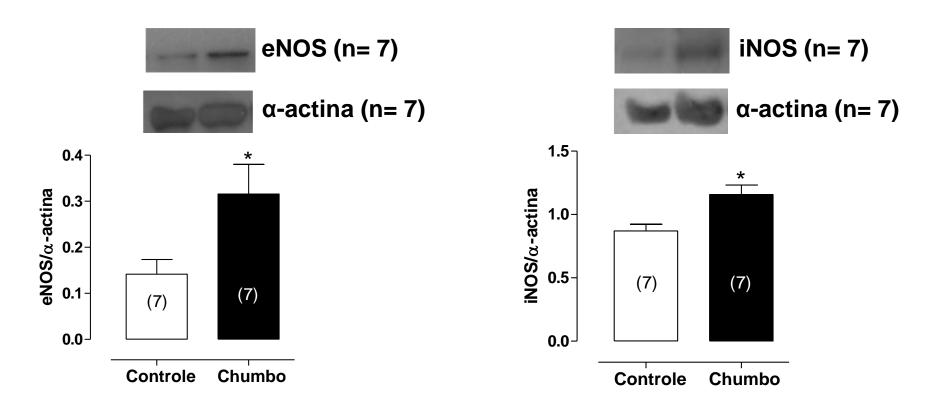
Será que a menor biodisponibilidade do NO poderia ser atribuída ao efeito direto do chumbo? Ou será que esse efeito poderia ser imputado à capacidade dos radicais livres em diminuir a biodisponibilidade do NO?

Média \pm EPM. Teste t não pareado: P > 0,05


Barbosa Jr. et al., 2006

Correlação negativa entre o nitrito plasmático e o chumbo presente no plasma e no sangue de humanos → efeito inibitório do chumbo na formação do NO.

Kelm et al., 1999; Lauer et al., 2001; Kleinbongard et al., 2003 e 2006.


Vaziri *et al.,* 1999

Ratos expostos ao chumbo → diminuição significante na excreção urinária dos metabólitos do NO e aumento na concentração plasmática do malondialdeido.

- ➤ Modelo experimental, os efeitos do chumbo são dependentes do endotélio e devem-se à menor biodisponibilidade do NO;
- ➤ Situações fisiopatológicas → redução na biodisponibilidade de NO → fenômeno adaptativo de aumento na produção de NO.

Média ± EPM, estão expressos em unidades arbitrárias/mg de tecido, calculados a partir da intensidade de fluorescência emitida pelo DAF. Teste t não pareado. A: *# P < 0,05

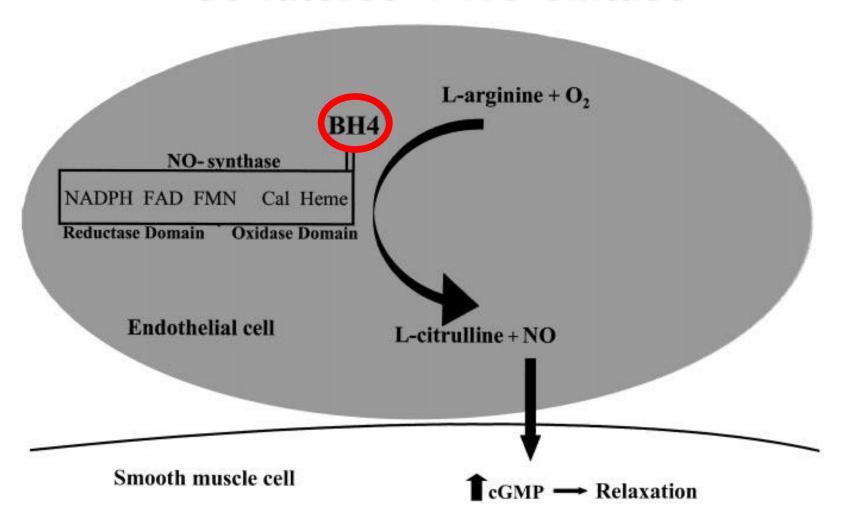
➤ Mittal *et al.*, 1995; Pohl *et al.*, 1995; Noris *et al.*, 1995; Le Cras *et al.*, 1996; Vaziri *et al.*, 1998; Vaziri & Wang 1999; Vaziri *et al.*, 1999; Drummond *et al.*, 2000; Vaziri *et al.*, 2001; Marques *et al.*, 2001

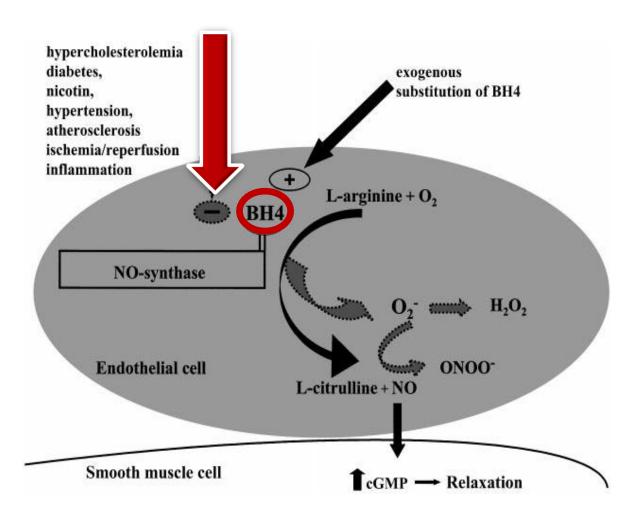
U*p-regulation* eNOS e iNOS em aorta e tecido renal de ratos

Média \pm EPM: expressos como relação entre a densidade das bandas das isoformas eNOS e iNOS e bandas de α -actina. Teste t não pareado: * P < 0,05.

Resultados funcionais e bioquímicos

30 dias de exposição à baixa dose de Pb Disfunção Endotelial eNOS **iNOS**


> Stroes et al., 1997 - Diabetes


eNOS desacoplada

↑eNOS

Heitzer et al., 2000 – Hipercolesterolemia / Tabagismo

Co-fatores → NO-sintase

- ➤ Milstien & Katusic, 1999
- Kawashima & Yokoyama, 2004

↓ BH₄

■ Desacopla eNOS

> Fostermann & Munzel, 2006

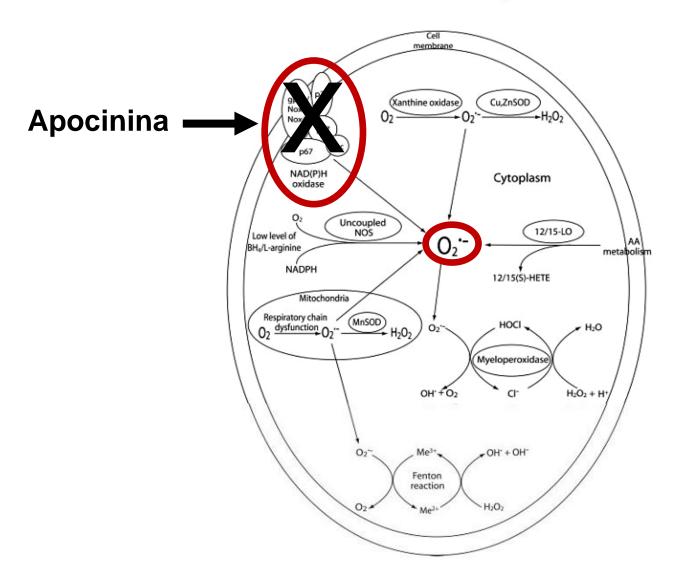
Chumbo

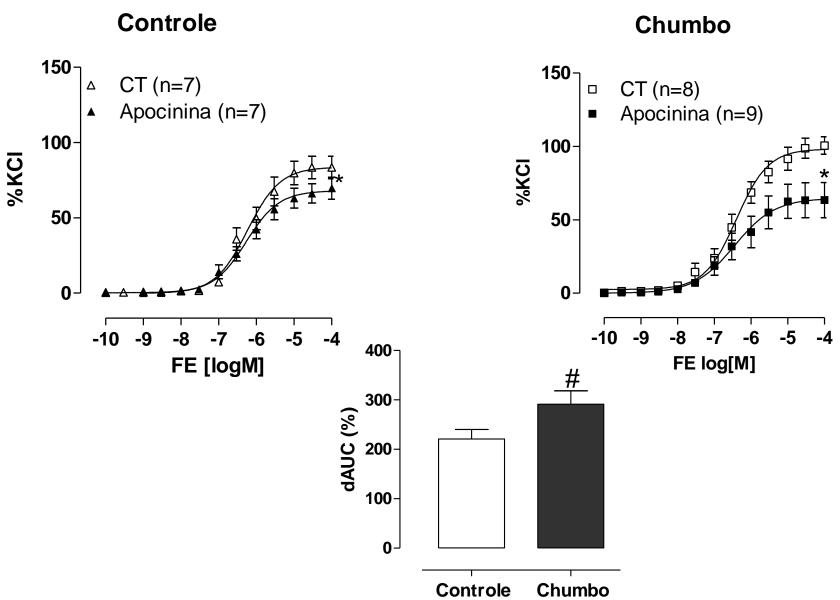
→ ↑ Estresse Oxidativo

- Khalil-Manesh et al., 1994;
- ➢ Gonick et al., 1998
- Cai et al., 2000;
- Ding et al., 2000 e 2001;
- **≻** Libby, 2002;
- > Shah, 2003
- **→** Hansson, 2005;
- **→** Dursun et al., 2005;
- **➤** Vaziri et al., 2006.

Chumbo

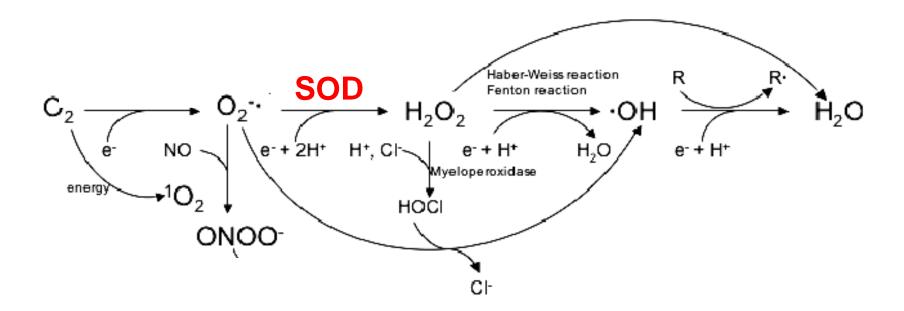
Estresse Oxidativo

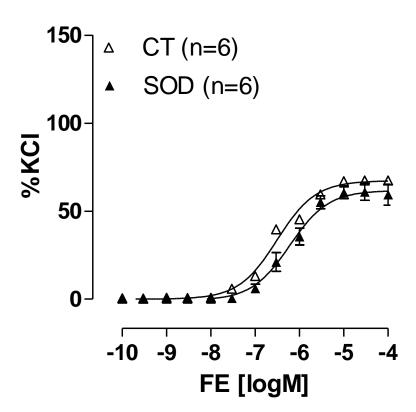

Disfunção endotelial

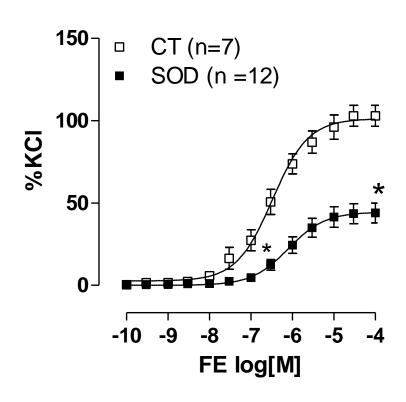

- ➤ Mugge, 1991;
- **➢** Jin *et al.*, 1991;
- Suzuki & Ford, 1992;
- **≻**Xin *et al.*, 2002;
- > Chade *et al.*, 2004;
- ➤ Vaziri, et al 2004;
- ➤ Nageswara, et al., 2005
- ➤ Kim et al., 2006;
- **≻** Lavi *et al.*, 2008;
- **→** Gao & Mann, 2009.

> Resposta à Fenilefrina

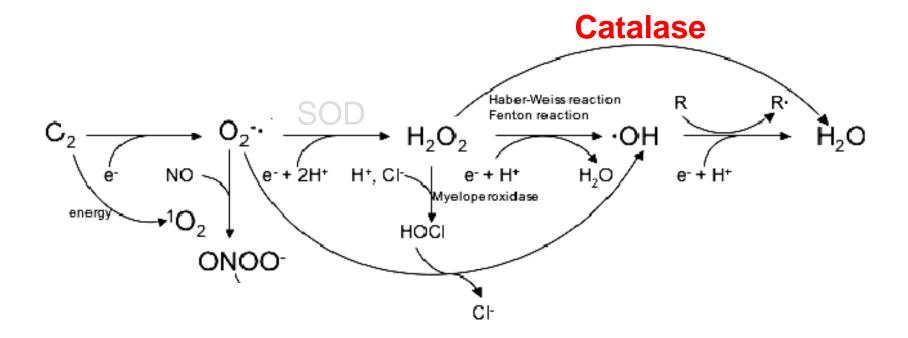
EROs (Apocinina)

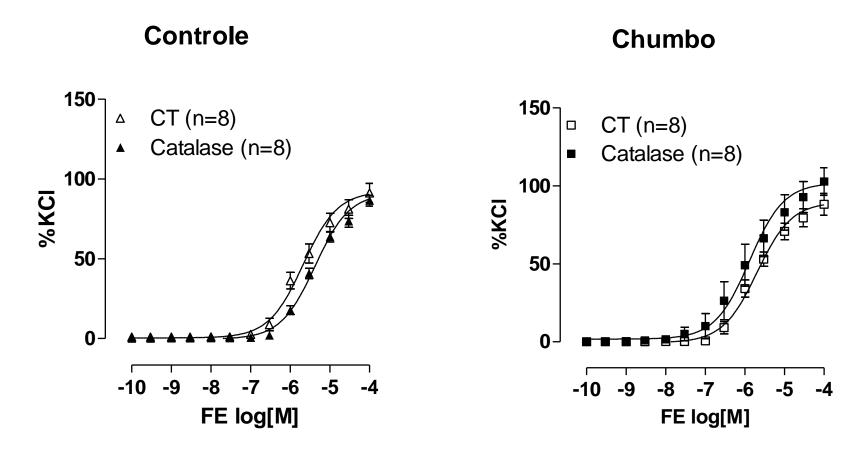



> Resposta à Fenilefrina

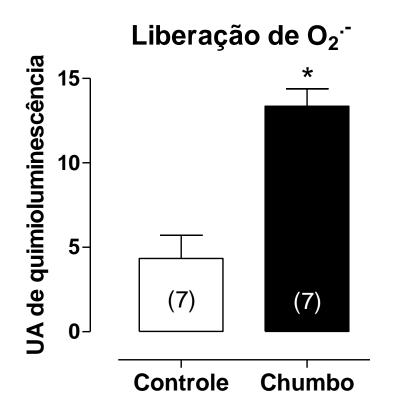

EROs (SOD)

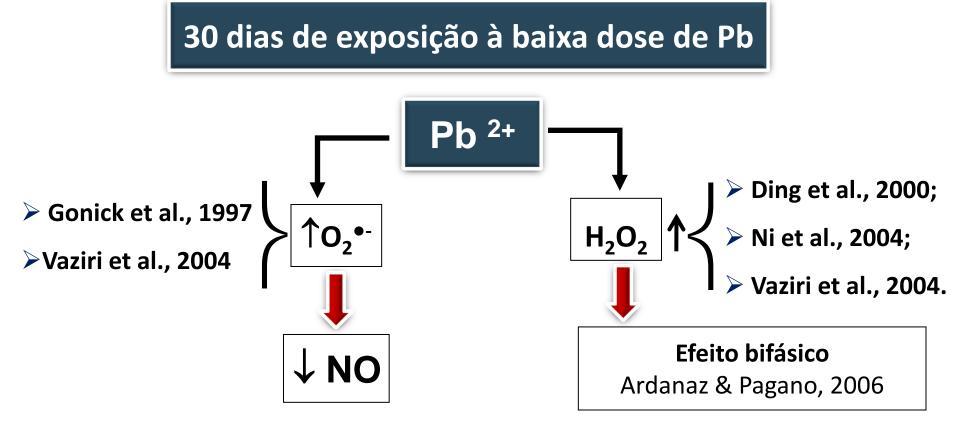
Controle


Chumbo

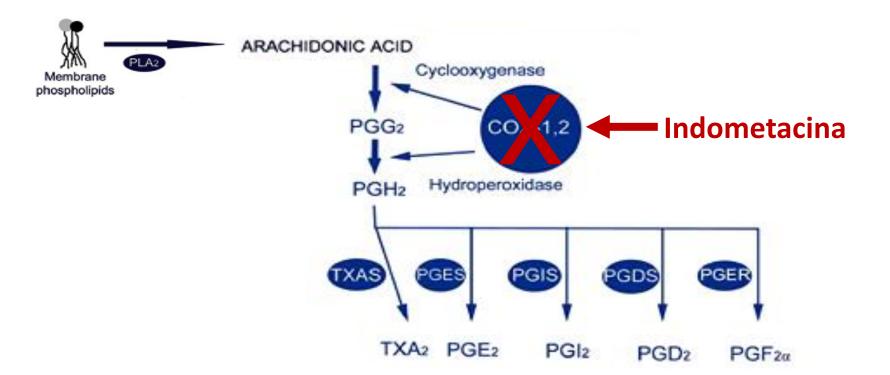


> Resposta à Fenilefrina

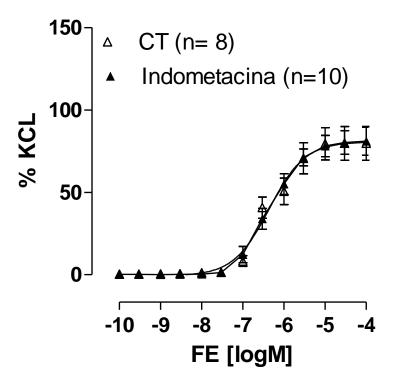


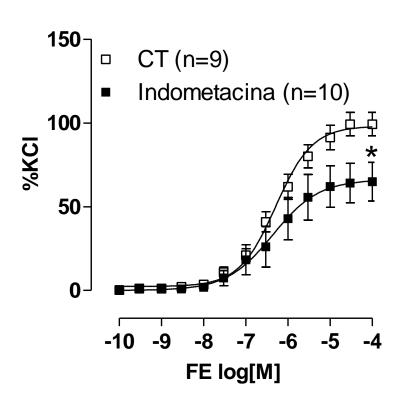

EROs (Catalase)

Chumbo → ↑ ERO's → ↑ Resposta a Fenilefrina

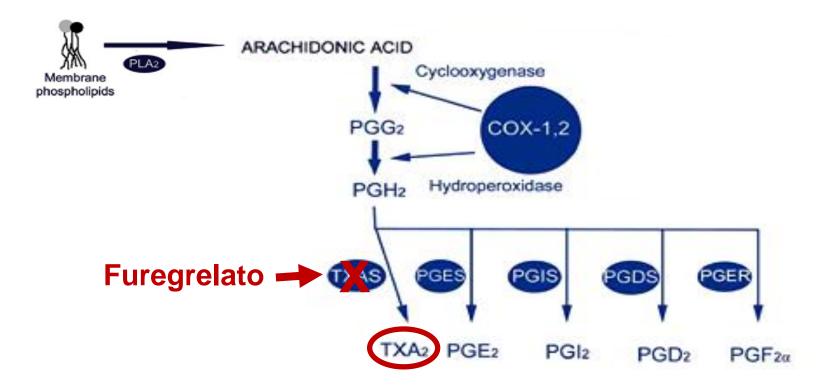


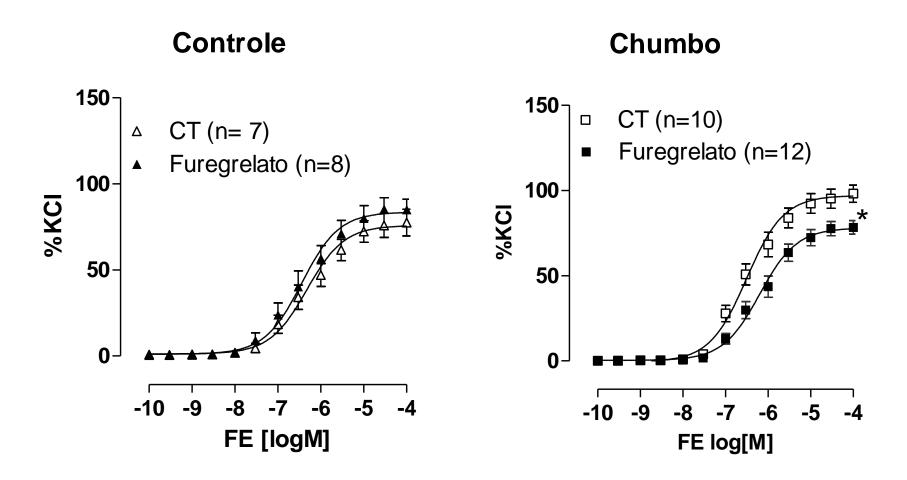
Outras vias poderiam estar envolvidas nos efeitos desse metal no nosso modelo experimental


Resposta à Fenilefrina


COX (Indometacina)

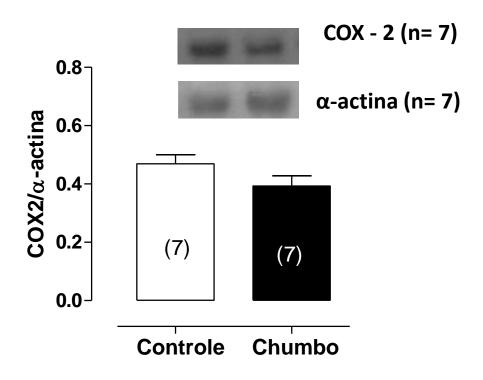
Controle


Chumbo



Resposta à Fenilefrina

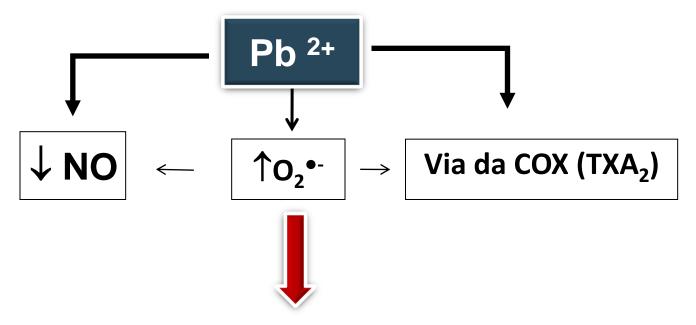
COX (Furegrelato)


COX – 2 vascular em processos patológicos

Respostas inflamatórias e doenças como a aterosclerose e hipertensão arterial (Adeagbo *et al.*, 2005; Alvarez *et al.*, 2005; Antman *et al.*, 2005);

➤ Disfunção endotelial associada à hipertensão e ao envelhecimento dos animais (Widlansky *et al.*, 2003; Blanco-Rivero *et al.*, 2005; Wong *et al.*, 2009);

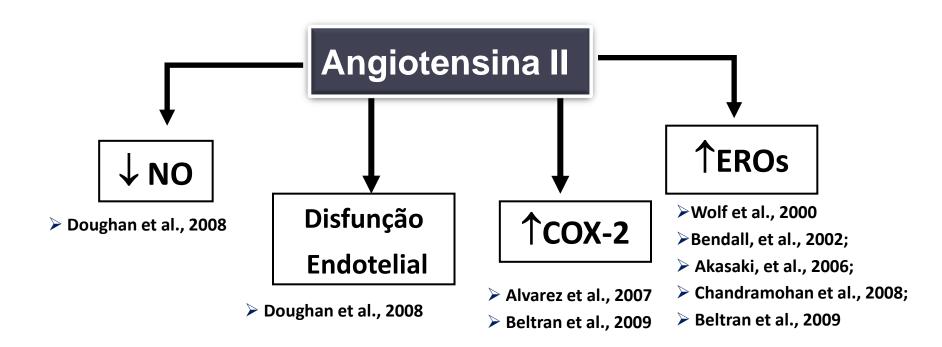
Resposta vasoconstritora em ratos hipertensos (Zerrouk *et al.*, 1998; Adeagbo *et al.*, 2005; Álvarez *et al.*, 2005);


Efeito hipertensor do chumbo → COX – 2?

➤ Efeitos hipertensivos induzidos pelo chumbo → mecanismos celulares envolvidos com processos inflamatórios incluindo a COX-2 (Courtois *et al.*, 2003; Rodríguez-Iturbe *et al.*, 2005; Prozialeck et al., 2008).

Média \pm EPM: expressos como relação entre a densidade das bandas da COX-2 e da α -actina.

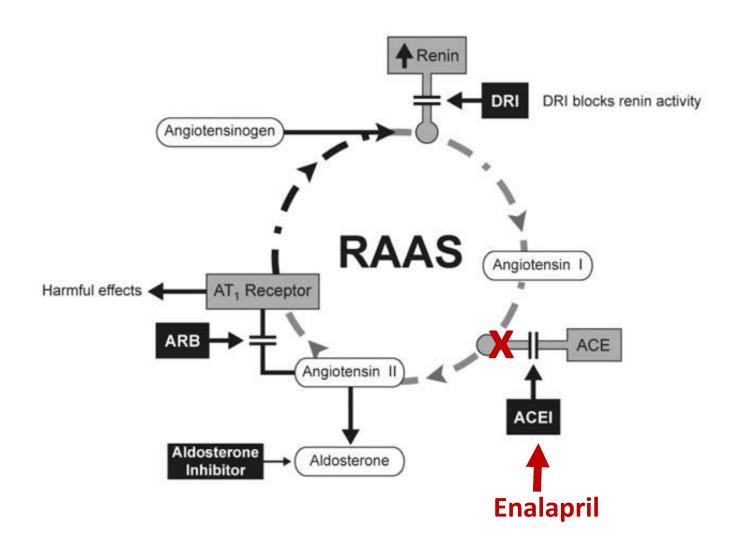
30 dia de exposição à baixa dose de Pb

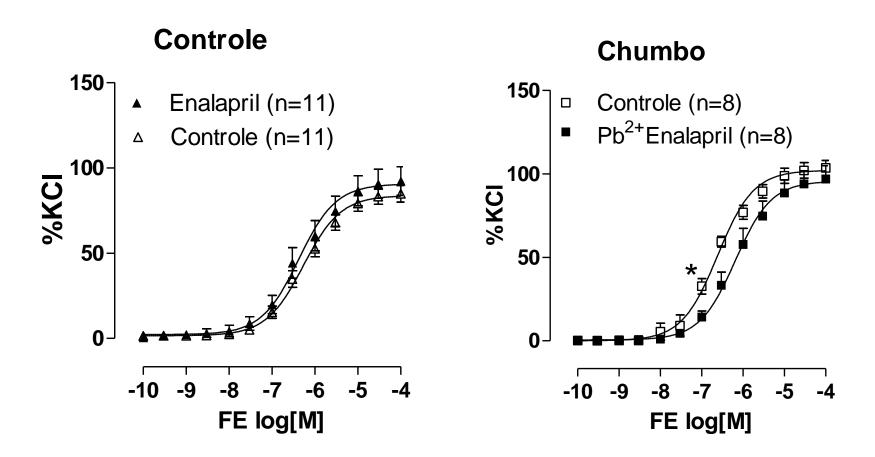

Sinalizador da Angiotensina II

George, et al., 2001

Remodelamento cardiovascular associado com Hipertensão, falência cardíaca e Diabetes Mellitus

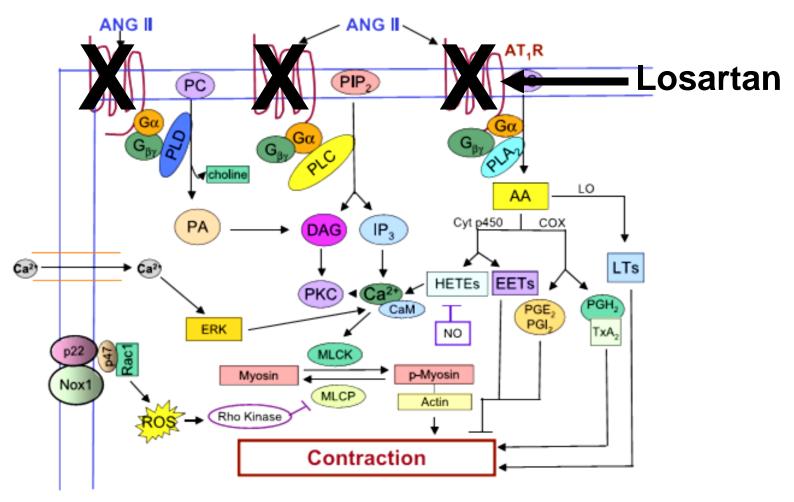
Yusuf, et al., 2000; Garg & Yusuf, 1995

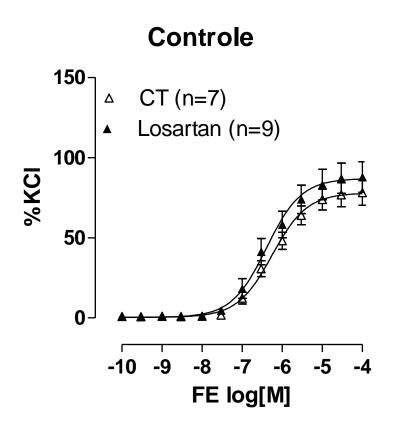

Sistema Renina-Angiotensina

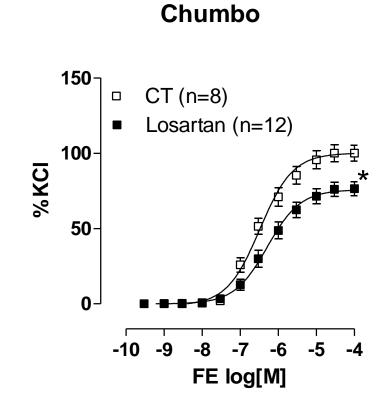


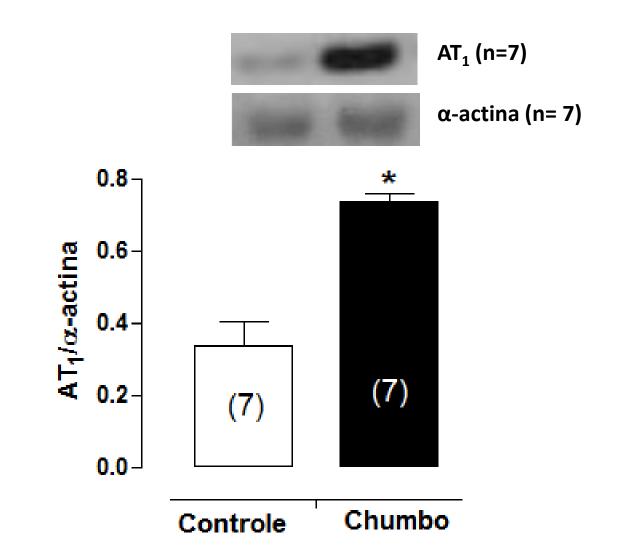
Resposta à Fenilefrina

Sistema Angiotensina

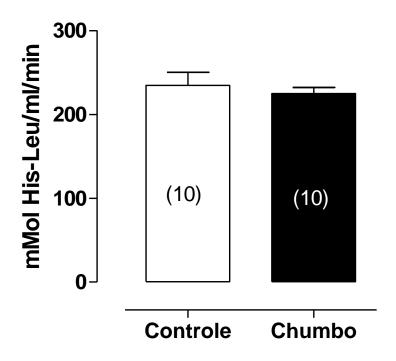




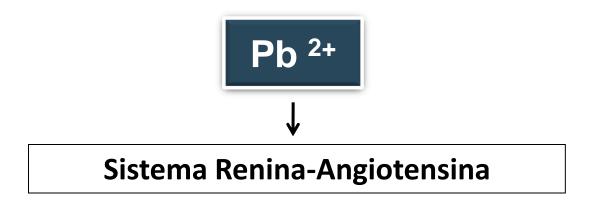

Resposta à Fenilefrina



Sistema Angiotensina



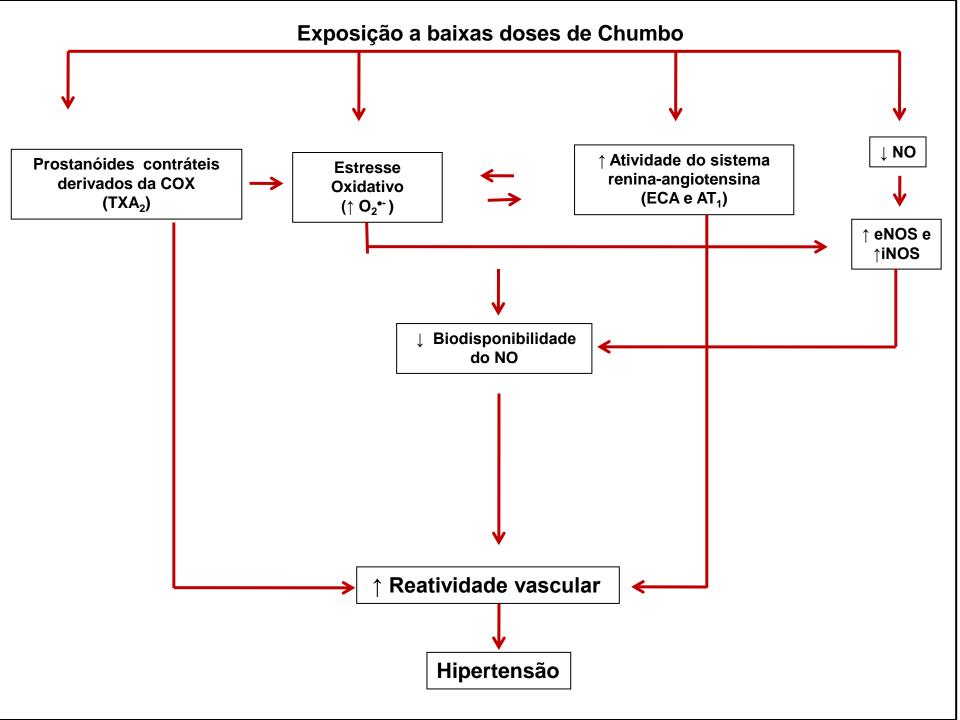
Média \pm EPM: expressos como relação entre a densidade das bandas do receptor AT_1 e da α -actina


Atividade plasmática da ECA

Chumbo → Aumenta atividade da ECA

- Campbell et al 1985 (humanos);
- Carmignani et al., 1999 (ratos);
- Sharifi et al., 2004 (ratos).

30 Dias de exposição ao chumbo



➤ Wouw, et al., 1978; Fleischer et al., 1980; Goldman et al., 1981; Keiser et al., 1983; Victery et al., 1983; Metedith, et al., 1985; Rodríguez-Iturbe et al., 2005; Simões et al., 2010

Sumarizando os resultados

Ratos expostos à baixa dose de chumbo – 30 dias

- ➤ Concentração sanguínea de chumbo → bem abaixo do valor aceitável, como valor de referência, para indivíduos expostos e não expostos ocupacionalmente;
- ➤ Alterações nos valores da PAS a partir do 7º dia e da PAS e PAD a partir do 30º dia de tratamento e alterou a reatividade vascular → aumento da resposta contrátil à fenilefrina nos anéis aórticos de ratos;
- ➤ Redução da biodisponibilidade do NO causada pelo aumento da produção das espécies reativas de oxigênio via NAD(P)H oxidase;
- Modulação endotelial negativa, envolvendo maior participação do ânion superóxido, dos prostanóides contráteis derivados da COX, especialmente o TXA₂ e participação do sistema renina-angiotensina;
- \blacktriangleright Aumento na expressão protéica das isoformas eNOS e iNOS e no receptor AT_1

CONCLUSÃO

Exposição por trinta dias à baixa dose de acetato de chumbo provoca alterações vasculares consequentes à menor biodisponibilidade do óxido nítrico e maior produção de espécies reativas de oxigênio, maior liberação dos prostanóides contráteis derivados da COX e maior atividade do sistema reninaangiotensina. Nosso estudo reforça a idéia de que o chumbo deve ser considerado fator de risco para o desenvolvimento de doenças cardiovasculares. E seus valores aceitáveis como isentos de efeitos deletérios para o homem devem ser reduzidos.

Obrigada!