
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO
CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PEDRO PAULO FAVATO BARCELOS

ONTOLOGY-BASED PROVISIONING FOR TECHNOLOGY-

INDEPENDENT MULTI-LAYER TRANSPORT NETWORKS

VITÓRIA

2015

PEDRO PAULO FAVATO BARCELOS

ONTOLOGY-BASED PROVISIONING FOR TECHNOLOGY-

INDEPENDENT MULTI-LAYER TRANSPORT NETWORKS

Tese apresentada ao Programa de Pós-
Graduação em Engenharia Elétrica do
Centro Tecnológico da Universidade
Federal do Espírito Santo, como requisito
parcial para obtenção do Grau de Doutor
em Engenharia Elétrica.

Orientador: Prof. Dr. Anilton Salles Garcia

Coorientador: Prof. Dr. Maxwell E. Monteiro

VITÓRIA

2015

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Setorial Tecnológica,

Universidade Federal do Espírito Santo, ES, Brasil)

 Barcelos, Pedro Paulo Favato, 1985-
B242o Ontology-based provisioning for technology-independent

multi-layer transport networks / Pedro Paulo Favato Barcelos. –
2015.

 210 f. : il.

 Orientador: Anilton Salles Garcia.
 Coorientador: Maxwell Eduardo Monteiro.
 Tese (Doutorado em Engenharia Elétrica) – Universidade

Federal do Espírito Santo, Centro Tecnológico.

 1. Ontologia. 2. Telecomunicações. 3. Redes de

computadores – Gerência. 4. Redes ópticas de transporte. 5.
Aprovisionamento de rede. 6. Sistema baseado em
conhecimento. 7. Interoperabilidade semântica. I. Garcia, Anilton
Salles. II. Monteiro, Maxwell Eduardo. III. Universidade Federal
do Espírito Santo. Centro Tecnológico. IV. Título.

 CDU: 621.3

PEDRO PAULO FAVATO BARCELOS

ONTOLOGY-BASED PROVISIONING FOR TECHNOLOGY-

INDEPENDENT MULTI-LAYER TRANSPORT NETWORKS

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica do
Centro Tecnológico da Universidade Federal do Espírito Santo, como requisito
parcial para obtenção do Grau de Doutor em Engenharia Elétrica.

Aprovada em 18 de dezembro de 2015.

COMISSÃO EXAMINADORA

Prof. Dr. Anilton Salles Garcia – Orientador
Universidade Federal do Espírito Santo

Prof. Dr. Maxwell E. Monteiro – Coorientador
Instituto Federal do Espírito Santo

Prof. Dr. João Paulo Andrade Almeida
Universidade Federal do Espírito Santo

Prof. Dr. José Augusto Suruagy Monteiro
Universidade Federal de Pernambuco

Prof.ª Dr.ª Maria Luiza Machado Campos
Universidade Federal do Rio de Janeiro

Prof. Dr. Pedro Frosi Rosa
Universidade Federal de Uberlândia

AGRADECIMENTOS

À minha esposa Schwanny por todo amor, auxílio, atenção e paciência. Tenho

certeza de que, sem ela ao meu lado, nada disso seria possível!

Aos orientadores Prof. Dr. Anilton S. Garcia e Prof. Dr. Maxwell E. Monteiro, pelas

contribuições fundamentais ao desenvolvimento deste trabalho e por todo meu

crescimento acadêmico nesses oito anos de trabalhos juntos.

Aos membros da banca, Prof. Dr. João Paulo Andrade Almeida, Prof. Dr. José

Augusto Suruagy Monteiro, Prof.ª Dr.ª Maria Luiza Machado Campos e Prof. Dr.

Pedro Frosi Rosa, pelo tempo dedicado na avaliação e pelas contribuições

realizadas a esta tese.

Ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal

do Espírito Santo, pela oportunidade.

À PADTEC S.A. e sua equipe, pelos projetos onde pudemos aplicar ontologias de

forma prática a redes de transporte, o que muito auxiliou no desenvolvimento do

meu doutorado.

Aos amigos pesquisadores Freddy Brasileiro, pela ajuda na codificação da

ferramenta aqui apresentada, e Cássio Reginato, por todas as discussões e ajudas

relacionadas ao modelo conceitual da tese. Aos professores do Nemo que me

receberam durante anos em seu laboratório como colaborador. E a todos os muitos

amigos do Nemo que viveram comigo grande parte do meu doutorado, pelas ideias

e discussões que muito me ajudaram a crescer no campo da modelagem conceitual.

Aos amigos do Labtel, em especial ao Rodrigo Stange, companheiro da graduação

ao doutorado. Aos professores e a toda a equipe de suporte do Labtel, em especial

ao prof. Marcelo Segatto, que gentilmente me cedeu um computador para trabalho.

Ao professor Victor Villagrá e à Verónica Mateos que me receberam muito bem na

Universidad Politécnica de Madrid.

A todos meus familiares e amigos pelo apoio e companheirismo, sempre. Por fim, a

todos que acreditaram e torceram por mim!

RESUMO

O aprovisionamento é uma atividade importante na configuração de redes. A

Recomendação ITU-T M.3400 define aprovisionamento de redes como sendo os

"procedimentos necessários para se colocar um equipamento em serviço, não

incluindo a instalação". Os aprovisionamentos de recursos e de serviços são

desafios recentes no planejamento de redes de comunicação, sendo atividades

importantes nos paradigmas de redes futuras, como as redes orientadas a serviços,

as redes em nuvem e a virtualização de redes. Considerando os problemas

identificados na literatura, esta tese investiga o uso de tecnologias semânticas,

especialmente ontologias, para resolver o problema da falta de interoperabilidade na

área e o uso dessas tecnologias como base para uma solução computacional capaz

de aprovisionar redes de transporte multicamadas independentes de tecnologia

considerando os estados dos equipamentos da rede. Esta tese tem como objetivo

desenvolver uma solução computacional para as redes de transporte, contribuindo

assim com a área de aprovisionamento de redes, uma subárea da gerência de

redes. Para atingir esse objetivo, (i) uma Ontologia de Referência para redes de

transporte multicamadas independentes de tecnologia foi construída com base na

Recomendação ITU-T G.800 utilizando-se de uma linguagem de ontologias bem

fundamentada e expressiva para a definição de uma semântica precisa para a área.

Essa Ontologia de Referência permite a comunicação, a aprendizagem e a

interoperação na área de redes de transporte. Além disso, (ii) um modelo de rede

semanticamente melhorado para o aprovisionamento de redes de transporte, aqui

chamado Ontologia Computacional em OWL, foi gerado a partir da Ontologia de

Referência através de uma rígida engenharia de ontologias; e (iii) foi implementado

um sistema baseado em conhecimento para aprovisionamento de redes de

transporte que usa a Ontologia Computacional em OWL como base de

conhecimento. Os resultados de um teste em uma Rede Óptica de Transporte

confirmam que o sistema desenvolvido é capaz de realizar o aprovisionamento de

circuitos e o aprovisionamento de conexões em redes de transportes multicamadas

considerando os estados dos equipamentos.

Palavras-chave: rede de transporte, aprovisionamento de rede, ontologia, sistema

baseado em conhecimento.

ABSTRACT

Provisioning is an important activity in the configuration of networks. The ITU-T

Recommendation M.3400 defines network provisioning as the "procedures which are

necessary to bring an equipment into service, not including installation". Resource

and service provisioning are recent challenges in communication network planning

and important activities in paradigms of future networking, like service-oriented

networks, cloud networking, and network virtualization. Considering the problems

identified in the literature, this thesis investigates the use of semantic technologies,

especially ontologies, to solve the lack of interoperability in the transport network

area and the use of these technologies as the basis for a computational solution that

can provision technology-independent multi-layer transport networks considering the

networks equipment states. This thesis contributes to the network provisioning area,

a subarea of network management, by developing an ontology-based provisioning

solution for technology-independent multi-layer transport networks. To accomplish

this objective, (i) an Ontology Reference Model for technology-independent multi-

layer transport networks based on the Recommendation ITU-T G.800 was built with

an expressive well-founded ontology language to the definition of precise semantics.

The Ontology Reference Model allows communication, learning, and interoperation in

the transport network area. In addition, (ii) a semantically improved network model for

the provisioning of transport networks, here called OWL Computational Ontology,

was generated from the Ontology Reference Model through a rigid ontology

engineering; and (iii) an ontology-based network provisioning knowledge-based

system that uses the OWL Computational Ontology as a knowledge base was

implemented. Results of a test on an Optical Transport Network example confirm that

the developed system is able to perform circuit provisioning and connection

provisioning on multi-layer transport networks considering the equipment states.

Keywords: transport network, network provisioning, ontology, knowledge-based

system.

LIST OF FIGURES

Figure 1-1 – Management hierarchy. Adapted from (ITU-T, 2010) 19

Figure 1-2 – Provisioning in different network abstractions 20

Figure 1-3 – Network provisioning related works ... 25

Figure 1-4 – Visual schema of the thesis structure .. 30

Figure 2-1 – Content distribution of chapter 2 ... 33

Figure 2-2 – Sublayering within the optical layer. From (DOVERSPIKE; YATES,
2012) ... 38

Figure 2-3 – Overview of the existing information models and their influences.
Adapted from (HAM et al., 2014) ... 51

Figure 3-1 – Use of models in software development. Adapted from (KELLY;
TOLVANEN, 2008) .. 63

Figure 3-2 – The Model Driven Architecture models and transformations 65

Figure 3-3 – Separation of concerns via different types of MDA models 69

Figure 3-4 – Model transformation. From (OBJECT MANAGEMENT GROUP, 2003)
 .. 70

Figure 3-5 – The three-phased ontology engineering presented in (GUIZZARDI,
2007) ... 71

Figure 3-6 – Association between MDA models and different ontology models 73

Figure 3-7 – Development method of ontology reference models. From (BARCELOS;
GUIZZARDI; GARCIA, 2013) .. 74

Figure 3-8 – Different computational ontologies considering different design issues 82

Figure 3-9 – Transformation's conceptual view ... 83

Figure 3-10 – OOTOS as an MDA transformation. Adapted from (OBJECT
MANAGEMENT GROUP, 2003) ... 85

Figure 4-1 – Ontological deficiencies. From (BARCELOS et al., 2011), based on
(FETTKE; LOOS, 2005; GUIZZARDI, 2005) ... 88

Figure 4-2 – Technologies defined over the functional architecture of the ITU-T
G.805. Adapted from (ITU-T, 2010) ... 91

Figure 4-3 – Example of the ITU-T G.800 visual notation. From (ITU-T, 2012a) 94

Figure 4-4 – The three ontologies of the Ontology Reference Model 96

Figure 4-5 – Example of a diagram from the Rec. ITU-T G.800 OntoUML Ontology 97

Figure 4-6 – Relation between different architectural components 98

Figure 4-7 – Equipment composition at the Simple Equipment OntoUML Ontology . 99

Figure 4-8 – Equipment interfaces’ bindings and connections 99

Figure 4-9 – The complete Simple Site OntoUML Ontology 100

Figure 5-1 – The ontology-based provisioning tool parts ... 101

Figure 5-2 – Decomposition of the provisioning tool .. 102

Figure 5-3 – Provisioning tool decomposition in knowledge base and reasoning
engine ... 102

Figure 5-4 – Decomposing the knowledge base in TBox and ABox 103

Figure 5-5 – Different ontology models used and their relation 104

Figure 5-6 – Taxonomy of transport function ... 106

Figure 5-7 – Main relations of the design model .. 107

Figure 5-8 – Different use of the relations int_binds and path 108

Figure 5-9 – Inputs and outputs in the design model ... 108

Figure 5-10 – Fragment of the allowed bindings between inputs and outputs 109

Figure 5-11 – Layer network relationships .. 110

Figure 5-12 – OWL ontology models in the knowledge base 111

Figure 5-13 – Taxonomy representation (left box) and OntoGraf representation (right
box) ... 113

Figure 5-14 – Consistency Model DL expressivity ... 114

Figure 5-15 – Consistency Model metrics ... 114

Figure 5-16 – Parameters used in the Inference Model generation 115

Figure 5-17 – Inference Model DL expressivity ... 116

Figure 5-18 – Inference Model metrics .. 117

Figure 5-19 – Network specification .. 119

Figure 5-20 – ABox constitution .. 120

Figure 5-21 – Knowledge base formation .. 120

Figure 5-22 – Stages of the provisioning tool logic .. 123

Figure 5-23 – Complete provisioning tool flowchart ... 124

Figure 5-24 – Provisioning tool Input Stage... 125

Figure 5-25 – Provisioning tool final procedure ... 127

Figure 5-26 – Reasoning procedure .. 128

Figure 5-27 – Provisioning tool Setup Stage ... 129

Figure 5-28 – Manual provisioning flowchart ... 130

Figure 5-29 – Use of variables in the manual provisioning 131

Figure 5-30 – Example of VAR_OUT candidates’ selection 132

Figure 5-31 – Matrix protection special case ... 133

Figure 5-32 – Example of VAR_IN candidates’ selection .. 135

Figure 5-33 – Automatic provisioning flowchart ... 137

Figure 5-34 – Simple example of the automatic provisioning steps 138

Figure 5-35 – Example of network to be automatically provisioned 141

Figure 5-36 – Example of unrestricted automatic path provisioning 142

Figure 5-37 – Example of restricted automatic path provisioning 143

Figure 5-38 – Examples of restrictions’ and priority’s influence over automatic path
finding .. 144

Figure 6-1 – Topology to be provisioned ... 149

Figure 6-2 – OTN layer hierarchy used in the example ... 151

Figure 6-3 – Physical Media Equipment .. 152

Figure 6-4 – Amplifier (AMP) internal structure ... 152

Figure 6-5 – OTN Switch architecture. From (DILEM et al., 2013) 154

Figure 6-6 – Client Interface Card definition .. 155

Figure 6-7 – ODU Switch and WSS definitions ... 156

Figure 6-8 – Network Interface Card definition .. 157

Figure 6-9 – Optical Interface Card definition .. 158

Figure 6-10 – Declared equipment available in the example 159

Figure 6-11 – Possible equipment available in the example 160

Figure 6-12 – Topological representation of the paths to be provisioned 161

Figure 6-13 – Loading of the knowledge base, declared, and possible equipment . 162

Figure 6-14 – INT_SOURCE, INT_SINK, and provisioning mode selection 163

Figure 6-15 – Restrictions and priority definitions .. 163

Figure 6-16 – Path selection options ... 164

Figure 6-17 – Combined topological and transport view of the provisioned working
path ... 165

Figure 6-18 – Validation checking and new provisioning option 166

Figure 6-19 – Manual provisioning .. 166

Figure 6-20 – First part of the manual provisioning (provisioning of EQ1 modules) 167

Figure 6-21 – Invalid network provisioning .. 169

Figure 6-22 – Second part of the manual provisioning .. 171

Figure 6-23 – End of provisioning process .. 172

Figure 6-24 – Topological representation of the provisioned paths 172

Figure 6-25 – Representation of the provisioned paths at the complete network 173

Figure 6-26 – Test network with N layers .. 176

Figure 6-27 – Proportion of each evaluated time when varying the number of layers
 .. 177

Figure 6-28 – Exponential characteristic of the path finding when no restrictions are
defined .. 178

Figure 6-29 – Restriction tests representing the restrictions’ use importance 179

Figure 7-1 – Contributions of the published works to the thesis 188

Figure II-1 – Network declaration parts ... 206

Figure II-2 – Amplifier used in the network declaration example 207

Figure II-3 – Instance population definition .. 207

Figure II-4 – Object property population definition ... 208

Figure II-5 – Data property population definition .. 209

LIST OF TABLES

Table 2-1 – Overview of the existing network models. Adapted from (HAM et al.,
2014) ... 49

Table 5-1 – Allowed bindings according to the design model 109

Table 5-2 – Reasoning comparison for consistency and Inference Models 118

Table 6-1 – Possible elements and their colors ... 150

Table 6-2 – Paths' attributes and interfaces .. 174

Table 6-3 – Path finding time for no limits set.. 177

Table I-1 – Design Model and Inference Model SWRL Rules 203

Table II-1 – Amplifier’s instance population ... 207

Table II-2 – Amplifier’s object property population ... 208

Table II-3 – Data properties' declaration .. 209

ABBREVIATIONS AND ACRONYMS

ABox – Assertional Box
AF – Adaptation Function
AMP – Amplifier
API – Application Programming Interface
ATM – Asynchronous Transfer Mode
BGP – Border Gateway Protocol
BWW – Bunge-Wand-Weber Ontology
CAPEX – Capital Expenditure
CIC – Client Interface Card
CIM – Common Information Model (in chapter 2)
CIM – Computation Independent Model (in chapter 3)
DC – Data Center
DL – Description Logic
DOLCE – Descriptive Ontology for Linguistic and Cognitive Engineering
DWDM – Dense Wavelength Division Multiplexing
EBNF – Extended Backus-Naur Form
EMS – Element Management System
EON – Elastic Optical Networking
GCI – Global City Indicators
GENI – Global Environment for Network Innovations
GEYSERS – Generalized Architecture for Dynamic Infrastructure Services
GLGPL – GNU Lesser General Public License
GMPLS – Generalized Multi-Protocol Label Switching
HTML – HyperText Markup Language
IaaS – Infrastructure-as-a-Service
IEEE – Institute of Electrical and Electronics Engineers
IETF – Internet Engineering Task Force
IMF – Information Modeling Framework
INDL – Infrastructure and Network Description Language
IP – Internet Protocol
IT – Information Technology
ITU – International Telecommunication Union
ITU-T – ITU Telecommunication Standardization Sector
KBS – Knowledge-based System
MDA – Model-Driven Architecture
MDD – Model-Driven Development
MPLS – Multi-Protocol Label Switching
MPLS-TP – Multi-Protocol Label Switching Transport Profile
NaaS – Network-as-a-Service
NDL – Network Description Language
NE – Network Element
NGSON – Next Generation Service Overlay Network
NIC – Network Interface Card
NML – Network Markup Language
NOVI – Networking over Virtualized Infrastructures
NRDL – Network Resource Description Language
OAM – Operation, Administration and Maintenance
OAM&P – Operations, Administration, Maintenance, and Provisioning
OCh – Optical Channel
OCL – Object Constraint Language
ODU – Optical Data Unit
OFDM – Orthogonal Frequency Division Multiplexing
OIC – Optical Interface Card
OIF – Optical Internetworking Forum
OLED – OntoUML Lightweight Editor
OMA – Open Mobile Alliance
OMG – Object Management Group
OMS – Optical Multiplex Section
OOTN – Ontology for Optical Transport Networks
OOTOS – OntoUML and OCL to OWL and SWRL Transformation
OPEX – Operational Expenditure
ORCA-BEN – Open Resource Control Architecture-Breakable Experimental Network
OSE – Open Service Environment

OSPF-TE – Open Shortest Path First-Traffic Engineering
OTN – Optical Transport Network
OTS – Optical Transmission Section
OWA – Open World Assumption
OWL – Web Ontology Language
PIM – Platform Independent Model
PM – Physical Media
PSM – Platform-Specific Model
QoS – Quality of Service
RDF – Resource Description Framework
RDF-S – Resource Description Framework Schema
RSA – Route and Spectrum Assignment
RWA – Routing and Wavelength Assignment
SDF – Service Delivery Framework
SDH – Synchronous Digital Hierarchy
SDN – Software Defined Networking
SDON – Software-Defined Optical Network
SIMF – Semantic Information Model Federation
SLICE – Spectrum-sliced Elastic Optical Path Network
SNE – System and Network Engineering
SO – Specific Objective
SOA – Service-Oriented Architecture
SONET – Synchronous Optical Networking
SS7 – Signaling System No. 7
SWRL – Semantic Web Rule Language
TBox – Terminological Box
TF – Termination Function
TMN – Telecommunications Management Network
TPF – Transport Processing Function
UCP – Unified Control Plane
UFO – Unified Foundational Ontology
UML – Unified Modeling Language
UNA – Unique Name Assumption
UTP – Unshielded Twisted Pair
VON – Virtual Optical Network
VxDL – Virtual Resources and Interconnection Networks Description Language
W3C – World Wide Web Consortium
WDM – Wavelength Division Multiplexing
WSON – Wavelength Switched Optical Network
WSS – Wavelength Selective Switch
XML – eXtensible Markup Language

SUMMARY

1 INTRODUCTION .. 18

1.1 MOTIVATION ... 20

1.1.1 SERVICE PROVISIONING DEPENDENCE ON THE INFRASTRUCTURE LAYER 20

1.1.2 ABSENCE OF FORMAL SEMANTICS AND LACK OF INTEROPERABILITY 21

1.1.3 NEED FOR AUTOMATION .. 22

1.1.4 LIMITED CONSIDERATION OF NETWORK EQUIPMENT .. 22

1.1.5 TECHNOLOGY DEPENDENCE .. 23

1.1.6 LIMITED LAYERING CONSIDERATIONS .. 23

1.2 PROPOSAL AND JUSTIFICATION .. 26

1.3 OBJECTIVES ... 29

1.4 THESIS STRUCTURE .. 30

2 NETWORK PROVISIONING: RECENT AND RELATED WORKS 33

2.1 SERVICE LAYER PROVISIONING .. 34

2.2 INFRASTRUCTURE LAYER PROVISIONING ... 37

2.2.1 CONTROL PLANE DISCUSSIONS .. 38

2.2.2 RECENT STUDIES ON LIGHTPATH PROVISIONING .. 41

2.3 ONTOLOGY-BASED PROVISIONING .. 44

2.4 EXISTING TRANSPORT NETWORK MODELS .. 47

2.5 PATH FINDING IN TECHNOLOGY-INDEPENDENT MULTI-LAYER NETWORKS 52

2.5.1 AN ITU-T G.805 NETWORK MODEL AND ALGEBRA FOR CONNECTIONS 53

2.5.2 A PATH FINDING SOLUTION FOR TECHNOLOGY-INDEPENDENT MULTI-LAYER

NETWORKS ... 57

3 ONTOLOGIES AND ONTOLOGY-BASED DEVELOPMENT METHOD 61

3.1 MODEL-DRIVEN DEVELOPMENT .. 63

3.2 MODEL-DRIVEN ARCHITECTURE ... 64

3.2.1 MDA VIEWPOINTS AND MODELS: THE SEPARATION OF CONCERNS 66

3.2.1.1 THE COMPUTATION INDEPENDENT MODEL (CIM) ... 66

3.2.1.2 THE PLATFORM INDEPENDENT MODEL (PIM) .. 67

3.2.1.3 THE PLATFORM SPECIFIC MODEL (PSM) .. 68

3.2.2 MDA MODEL TRANSFORMATIONS .. 69

3.3 ONTOLOGY-BASED DEVELOPMENT OF APPLICATIONS ... 70

3.3.1 ONTOLOGY REFERENCE MODELS ... 74

3.3.2 COMPUTATIONAL ONTOLOGIES ... 77

3.3.2.1 OWL: THE WEB ONTOLOGY LANGUAGE ... 78

3.3.2.2 REASONING MECHANISMS ... 80

3.3.3 DESIGN STAGE ... 81

3.3.3.1 OOTOS: TRANSFORMATION FROM ONTOUML AND OCL TO OWL AND SWRL ... 83

4 WELL-FOUNDED ONTOLOGY REFERENCE MODEL FOR TECHNOLOGY-INDEPENDENT

MULTI-LAYER TRANSPORT NETWORKS.. 86

4.1 TRULY ONTOLOGICAL DISTINCTIONS FOR STANDARDIZATIONS 86

4.2 THE RECOMMENDATION ITU-T G.800 .. 90

4.2.1 RECOMMENDATION’S MAIN CONCEPTS ... 92

4.2.2 RECOMMENDATION’S CRITICISMS ... 94

4.3 THE RECOMMENDATION ITU-T G.800 ONTOLOGY REFERENCE MODEL 95

4.3.1 THE ITU-T G.800 ONTOLOGY .. 97

4.3.2 THE SIMPLE EQUIPMENT ONTOLOGY .. 98

4.3.3 THE SIMPLE SITE ONTOLOGY ... 100

5 AN ONTOLOGY-BASED TECHNOLOGY-INDEPENDENT MULTI-LAYER TRANSPORT

NETWORKS PROVISIONING TOOL .. 101

5.1 THE KNOWLEDGE BASE ... 103

5.1.1 THE TERMINOLOGICAL BOX .. 104

5.1.1.1 THE ITU-T G.800 ONTOUML DESIGN MODEL FOR PROVISIONING OF TRANSPORT

NETWORKS ... 105

5.1.1.2 THE ITU-T G.800 OWL ONTOLOGY FOR TRANSPORT NETWORK PROVISIONING 111

5.1.2 THE ASSERTIONAL BOX ... 118

5.2 HERMIT: THE PROVISIONING TOOL REASONING ENGINE 121

5.3 THE PROVISIONING TOOL LOGIC .. 122

5.3.1 INPUT STAGE .. 125

5.3.2 SETUP STAGE ... 129

5.3.3 PROVISIONING STAGE ... 130

5.3.3.1 MANUAL PROVISIONING ... 130

5.3.3.2 AUTOMATIC PROVISIONING .. 137

6 ONTOLOGY-BASED PROVISIONING IN AN OPTICAL TRANSPORT NETWORK 148

6.1 EXAMPLE SETTINGS .. 149

6.1.1 EQUIPMENT INTERNAL STRUCTURE DEFINITION ... 151

6.1.1.1 DEFINITION OF THE PHYSICAL MEDIA EQUIPMENT .. 151

6.1.1.2 DEFINITION OF THE AMPLIFIER .. 152

6.1.1.3 DEFINITION OF THE OTN SWITCH ... 153

6.1.2 DECLARED NETWORK AND POSSIBLE EQUIPMENT .. 158

6.1.3 INFORMATION TRANSFER TO BE PROVISIONED ... 160

6.2 AUTOMATIC PROVISIONING OF THE WORKING PATH ... 162

6.3 MANUAL PROVISIONING OF THE PROTECTION PATH ... 166

6.4 DISCUSSION ON THE PROVISIONING TOOL PERFORMANCE 175

7 CONCLUSION .. 181

7.1 THESIS MATERIAL ... 184

7.2 FUTURE WORKS ... 184

7.3 PUBLICATIONS .. 188

8 BIBLIOGRAPHY ... 191

APPENDIX I – SWRL RULES .. 203

APPENDIX II – INPUT TXT FILES STRUCTURE ... 206

18

1 INTRODUCTION

The acronym OAM (Operation, Administration, and Maintenance) is recurrently used

in the telecommunication industry to identify an important and integral part of

transport telecommunication technologies (ITU-T, 2000a). One of the activities of the

Administration in the OAM acronym is Provisioning. The importance of this frequent

activity is such that sometimes a fourth character is added to the acronym,

transforming the OAM into OAM&P (Operations, Administration, Maintenance, and

Provisioning) (ITU-T, 2000a).

Network provisioning concerns the configuration of network resources to support the

service requested by the client (ITU-T, 2010). The ITU-T Recommendation M.3400

defines network provisioning as "procedures which are necessary to bring an

equipment into service, not including installation" (ITU-T, 2000a). Less formally, it can

be thought as a “combination of configuration management and connection

management” (DOVERSPIKE; YATES, 2012).

According to the ITU Telecommunication Standardization Sector (ITU-T),

provisioning is supported by configuration management, which provides functions to

exercise control over, identify, collect data from, and provide data to Network

Elements (NE) (ITU-T, 2010). A NE provides various functions that allow provisioning

of the hardware such as slot provisioning, circuit pack assignment, and port

provisioning (ITU-T, 2010). The management of the NEs in the transport plane of the

transport network is possible through Element Management Systems (EMS), which

are located in the management plane, as illustrated in Figure 1-1.

19

Figure 1-1 – Management hierarchy. Adapted from (ITU-T, 2010)

As can be observed in Figure 1-1, the management plane provisions and configures

the NEs in the transport plane. The EMSs perform management functions defined by

recommendations of the Telecommunications Management Network (TMN), from

which M.3400 is part (ITU-T, 2010).

Resource and service provisioning are recent challenges in communication network

planning (MATERA; LISTANTI; PIÓRO, 2015) and are important activities in

paradigms of future networking, like service-oriented networks (ESCALONA et al.,

2011), cloud networking (HOUIDI et al., 2011a), and network virtualization

(SCHAFFRATH et al., 2009). In all these paradigms, there is a decoupling of the

service provisioning from the network infrastructure, exposing the underlying network

functionalities through resource abstraction and virtualization (DUAN; YAN;

VASILAKOS, 2012). As illustrated in Figure 1-2, this decoupling results in two

abstract network layers: the upper layer, which is called service or application layer,

and the lower layer, called infrastructure or substrate layer.

M
an

ag
em

en
t

P
la

n
e

20

Figure 1-2 – Provisioning in different network abstractions

As expected due to their different considerations, the layers presented in Figure 1-2

have different provisioning requirements and strategies. The decoupling of network

transport and service-related functions is a key feature of the Next Generation

Network architecture, allowing virtualization of network infrastructure for flexible

service provisioning (DUAN; YAN; VASILAKOS, 2012).

1.1 MOTIVATION

Considering the network division in layers presented in Figure 1-2, this section

presents the motivations of the work performed in this thesis. The issues reported in

this section could be identified in the related literature, which is presented in chapter

2.

1.1.1 Service Provisioning Dependence on the Infrastructure Layer

Telecommunication and networking systems are facing the challenge of rapidly

developing and deploying new functions and services for supporting the diverse

requirements of various Internet services and applications, each with diverse

resource requirements (DUAN; YAN; VASILAKOS, 2012; MAGEDANZ; BLUM;

DUTKOWSKI, 2007). Even though an application or service could be completely

decoupled from the underlying network infrastructure, like in the abstraction

separation presented in Figure 1-2, this is not always realistic (GRINGERI; BITAR;

XIA, 2013). There is still a strong dependence between the two layers because the

Network Infrastructure Layer

Service Abstraction Layer

Different abstractions
and provisioning solutions

21

services provisioning and the management of the underlying network are coupled

(ABOSI; NEJABATI; SIMEONIDOU, 2009). The introduction of new services requires

reengineering the underlying network to support the new services, which is currently

slow and static. Hence, service provisioning is constrained to the limitations of the

evolution of the underlying network (i.e., the infrastructure layer) (ABOSI; NEJABATI;

SIMEONIDOU, 2009). Actually, the tight coupling between the service provisioning

and the network infrastructure is a barrier to the rapid and flexible service

development and deployment (DUAN; YAN; VASILAKOS, 2012). This creates long

cycles between client service requests and service delivery, resource utilization

inefficiency, and increased operational complexity and expenses (ABOSI;

NEJABATI; SIMEONIDOU, 2009; INFINERA CORPORATION, 2007).

1.1.2 Absence of Formal Semantics and Lack of Interoperability

According to (CLEARY; DANEV; DONOGHUE, 2005), although the use of

“improved” syntactical protocols and processing models – approaches found in many

works – is an adequate (though not ideal) approach for fault management and

performance management, these approaches prove to be inadequate when talking

about configuration management or provisioning. They believe that the inability to

create value added network configuration applications is caused by the lack of

agreement on, or the definition of, formal semantics needed for configuration

activities (CLEARY; DANEV; DONOGHUE, 2005).

An important consequence of the poor formalization (i.e., formalizations with weak

semantics, where ontological distinctions are not considered) or absent formalization

is the lack of interoperability. As an example, the interoperability problem between

different technologies, administrative areas, and control planes makes inter-domain

provisioning below the conventional Internet Protocol (IP) layer a challenge

(CHAMANIA; JUKAN, 2009). Concerning the infrastructure layer, today, carriers lack

the management and signaling systems to be able to provision end-to-end

connections across their network (RAMASWAMI; SIVARAJAN; SASAKI, 2010).

Maintaining all the complexity in the management plane resulted in sophisticated

management systems that are difficult to implement (FAWAZ et al., 2004). Currently,

22

different network elements are managed by different management systems

(RAMASWAMI; SIVARAJAN; SASAKI, 2010) with different software implementations

caused by different approaches in the software design (e.g., when defining

cardinalities, data abstractions, and hierarchical nature of relationships) (CLEARY;

DANEV; DONOGHUE, 2005). This situation is reflected in the limited interoperability

across equipment from multiple vendors when dealing with provisioning end-to-end

connections (RAMASWAMI; SIVARAJAN; SASAKI, 2010).

1.1.3 Need for Automation

Today, while the circuit provisioning process is more highly automated in the higher

layer networks, it is a combination of automated and manual steps in the optical layer

(DOVERSPIKE; YATES, 2012). Connections provisioning is a rather manual and

time-consuming process in already fully equipped systems (RAMASWAMI;

SIVARAJAN; SASAKI, 2010). Furthermore, circuit provisioning using legacy

management systems is also manually conducted, which makes it more error-prone

and implies longer setup times for an end-to-end circuit (FAWAZ et al., 2004). I.e., in

current networks, we still rely on human and expert knowledge to configure networks

(CLEARY; DANEV; DONOGHUE, 2005) and the “human factor” is often responsible

for misconfigurations and provisioning delays (DUTTA; KAMAL; ROUSKAS, 2008).

1.1.4 Limited Consideration of Network Equipment

The provisioning solutions proposed in the literature for the infrastructure layer have

a limited consideration regarding the network equipment to be provisioned. These

solutions do not consider the different possible states of the network elements,

always dealing only with the already installed or operational ones. Many times the

network vendor has planned equipment that are not installed or operational, but that

are available to be used when necessary. The consideration of such elements in a

provisioning system extends the ITU-T M.3400 definition of provisioning, as the

recommendation excludes installation. However, the consideration of the different

23

equipment states can significantly improve a provisioning solution, offering better

resource utilization, saving time, and financial resources.

1.1.5 Technology Dependence

As new technologies emerge, it is certain that the current technologies will be

replaced, as well as the layer networks that describe them. When new technologies

come up, new positioning solutions must be created and harmonized with old ones.

Regarding technologies, on the one hand, the provisioning solutions of the service

layer abstracts the underlying network characteristics (e.g., physical infrastructure,

technology, transmission rates). These solutions have less strong requirements,

being, in general, more adaptable to different situations. On the other hand, the

provisioning solutions for the infrastructure layer must operate on real networks that

are implemented with transport network technologies (the lightpath provisioning in

optical networks is an example). Hence, the solutions for provisioning of the

infrastructure layer have a strong dependence on the network technology, resulting in

more restrict, static, and less interoperable provisioning systems.

Technology-independent solutions, which can be specialized to represent different

technologies, are a powerful resource with greater durability. Solutions of this type

will continue to work, even when practical network descriptions change (DIJKSTRA

et al., 2008).

1.1.6 Limited Layering Considerations

Lastly, an important issue that must be addressed when dealing with provisioning

solutions for the infrastructure layer concerns the abstraction used to represent the

diverse technologies that networks usually have. Note that the layers separation here

used, depicted in Figure 1-2, is a high-level abstraction of a network and does not

represent technologies. The network infrastructure layer, in fact, can be decomposed

into a number of other technological layers, according to the layering concept.

24

The layering concept, described in the ITU-T Recommendation G.805, states that

“transport network can be decomposed into a number of independent layer networks

with a client/server relationship between adjacent layer networks” (ITU-T, 2000b).

According to the ITU-T G.805, the layering concept allows: (a) each layer network to

be described using similar functions; (b) the independent design and operation of

each layer network; (c) each layer network to have its own operations, diagnostic and

automatic failure recovery capability; (d) the possibility of adding or modifying a layer

network without affecting other layer networks from the architectural viewpoint; and

(e) simple modeling of networks that contain multiple transport technologies (ITU-T,

2000b).

The networks that adopt the layering concept to represent their technologies are

called multi-layer networks. According to (DIJKSTRA et al., 2008; KUIPERS;

DIJKSTRA, 2009), multi-layer networks are computer networks where the

configuration of the network can be changed dynamically at multiple layers. Modern

networks must be viewed as a layered system, capable of providing, simultaneously,

services at different layers. Unlike regular networks, multi-layer networks allow users

and other networks to interface on different technology layers (DIJKSTRA et al.,

2008).

The provisioning of multi-layer networks is a challenge. This can be observed by the

path finding activity, which is just part of the process to provision network

connections (DIJKSTRA et al., 2009). While path finding on a single layer is currently

well understood, path finding on multi-layer networks, where the integration of the

different technologies in transport networks increases the path finding complexity, is

far from trivial (DIJKSTRA et al., 2008; XU et al., 2009). In fact, regarding path

finding, assumptions that are valid for single-layer networks do not hold for multi-

layer networks, making path finding in the latter networks far more complex than path

finding in the former networks (KUIPERS; DIJKSTRA, 2009). In multi-layer networks,

even the constraints (the possible incompatibilities) to be considered are not always

clear (DIJKSTRA et al., 2008).

Considering that each networking technology has its own set of unique

characteristics and poses challenges that require specific solutions for provisioning

(CHOWDHURY; BOUTABA, 2010), the alternatives proposed in the literature are

25

frequently restricted to one specific network layer (representing a single technology)

or, when considering multi-layer networks, the solutions are tied to a limited number

of layers, representing specific technologies. In fact, as pointed by (LIU et al., 2012),

today’s commercial IP/optical multi-layer networks operates different layers

separately, without dynamic interaction, which leads to low network efficiency, high

Operational Expenditure (OPEX) and Capital Expenditure (CAPEX), as well as long

processing latency for path provisioning.

A qualitative representation of the related literature concerning the most recent

network provisioning works is presented in Figure 1-3. This figure, generated from

the evaluation of the works presented in chapter 2, represents qualitatively the

number of provisioning works that address layering and technology issues. In Figure

1-3, darker areas represent more frequently found works. The dotted area in the

technology-independent and multi-layer quadrant indicates the path finding works

from the System and Network Engineering (SNE) research group, which are going to

be presented in section 2.5.

Figure 1-3 – Network provisioning related works

As represented by the light red area with the exclamation mark in Figure 1-3, no

previous works regarding technology-independent multi-layer transport network

provisioning and strong semantics could be found. Hence, through the literature

SNE*M
u

lt
i-

la
ye

r

Technology
Independent

Si
n

gl
e

 L
ay

e
r

Technology
Specific

26

review presented in chapter 2, it can be concluded that this is a current open issue in

the literature.

1.2 PROPOSAL AND JUSTIFICATION

As presented in subsection 1.1.1, the infrastructure layer is related both to service

provisioning (through its dependence on the infrastructure layer) and to the actual

transport network provisioning (the technology used to implement the infrastructure

layer). Hence, considering the importance of the infrastructure layer to the overall

network provisioning, this thesis focuses on this layer.

Five major problems related to the infrastructure layer provisioning solutions were

pointed in the previous section (subsections 1.1.2 to 1.1.6): (i) the absence of formal

semantics and lack of interoperability, (ii) the need for automation, (iii) the limited

consideration of network equipment, (iv) the technology dependence, and (v) the

limited layering considerations. Regarding these important problems found in the

literature, this thesis research question is: can the use of semantic technologies,

especially ontologies, solve the lack of interoperability in the transport network area

and be the basis for a computational solution that can provision technology-

independent multi-layer transport networks considering the equipment states?

The hypothesis evaluated in this thesis is that the use of a well-founded Ontology

Reference Model of the Recommendation ITU-T G.800 is able to give precise

semantics to the transport network area, allowing interoperability, and that the use of

this Ontology Reference Model in a rigid ontology-based development method can

generate a software that is able to provision technology-independent multi-layer

transport networks considering the equipment states.

Ontologies are proposed in (BERNERS-LEE; HENDLER; LASSILA, 2001) as “a way

to discover common meanings” and have been used in Artificial Intelligence since the

beginning of the 90’s as a synonymous for semantic techniques. Ontologies can be

used in different stages of software development for semantic improvement of the

generated artifacts. The term Ontology came up in Philosophy meaning a systematic

explanation of being. In computing, while used as “an explicit specification of a

27

conceptualization" (GRUBER, 1993), ontologies are used to provide a large number

of resources for intelligent systems as well as for knowledge representation and

reasoning in general (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009).

The use of ontologies in network management with the intention of information

integration and interoperability among different management models and languages

is proposed in (VERGARA; VILLAGRÁ; BERROCAL, 2002) and (VERGARA et al.,

2003). Since then, ontologies have been applied to a number of use cases and

research projects (LÓPEZ DE VERGARA et al., 2009). However, interoperation

between different frameworks or management solutions remains an open subject

(MONTEIRO et al., 2014). Ontologies are also used in intelligent network

environments to provide semantics for building knowledge bases, enabling

communication, and reasoning (WONG et al., 2005).

The use of a rigid ontology engineering like the one presented in (GUIZZARDI, 2007)

allows the development of semantically improved ontology artifacts. Different types of

ontology are available for different stages of this ontology engineering. In a first

phase, a conceptual modeling phase, highly expressive languages should be used

(GUIZZARDI, 2007), creating an Ontology Reference Model.

Regarding the weak formalization of the transport network domain and the existing

lack of interoperability, this thesis proposes the creation of an Ontology Reference

Model for this domain. The formalization of this domain allows the interoperability of

management systems for provisioning equipment from multiple vendors. In addition,

the availability of such model is fundamental for the development of intelligent

applications for network provisioning, as the whole configuration management area

relies on a full understanding of the network topology and state (CLEARY; DANEV;

DONOGHUE, 2005).

The proposed Ontology Reference Model should be built with an expressive well-

founded ontology language to define precise semantics and to allow communication,

learning, and interoperation. The OntoUML language (GUIZZARDI, 2005), which has

been successfully employed in a number of industrial projects in several different

domains (ALBUQUERQUE; GUIZZARDI, 2013), is suitable for this purpose.

28

Intending to represent technology-independent multi-layer networks, the OntoUML

Ontology Reference Model must rely on a recognized international standard that

specifies such domain. This thesis proposes the modeling of the Recommendation

ITU-T G.8001 (ITU-T, 2012a), which is the standard that provides a set of constructs

and the semantics that can be used to describe the functional architecture of multi-

layer transport networks in a technology-independent way. The ITU-T G.800 is the

basis for a harmonized set of functional architecture recommendations for specific

layer network technologies (ITU-T, 2012a).

Once the ITU-T G.800 OntoUML Ontology Reference Model is available, in a last

stage of the ontology engineering, versions of this model can be created, resulting in

a computational (or lightweight) ontology. Contrary to reference ontologies,

computational ontologies are not focused on representation adequacy, but are

designed with the focus on guaranteeing desirable computational properties

(GUIZZARDI, 2007).

Considering that the computational artifact resulting from the ontology engineering is

a semantically improved network model with technology-independent multi-layer

transport network concepts, this thesis proposes its use as a knowledge base in a

knowledge-based system (KBS) for network provisioning. Using this knowledge

base, the KBS is able to perform provisioning on this type of network. The use of

Description Logics and semantic web technologies in the development of the

computational provisioning tool allows it to detect inconsistencies and to perform

inferences over the network data, as well as gives to the tool other desired

characteristics, like extensibility and adaptability.

The proposed provisioning tool must be able to perform two different types of

provisioning activities on a technology-independent multi-layer transport network.

First, the network provisioning tool must perform physical circuit provisioning, binding

interfaces from network equipment, considering their different implementation layers,

to provide end-to-end connectivity. This first type of provisioning is here named circuit

1
 In order to simplify the reference to the ITU-T recommendations, hereafter they will be called,

indistinctly, Recommendation ITU-T X, ITU-T Rec. X, or simply ITU-T X; where X is substituted by the

corresponding recommendation’s series and number.

29

provisioning. Second, the provisioning tool must perform a virtual circuit provisioning,

enabling information transfer through selected source and destination interfaces of

network equipment. This second type of provisioning is here named connection

provisioning.

A computational provisioning tool helps the network operator to perform network

provisioning, reducing the “human factor”, and, consequently, reducing provisioning

times. For a better use of the network resources, the proposed provisioning tool must

consider the equipment already installed and operational in the network, but also it

should consider the equipment that are available to be used, but that are not installed

or operational.

1.3 OBJECTIVES

This thesis aims to contribute to the network provisioning area, a subarea of the

network management. Its general objective is to develop an ontology-based

provisioning solution for technology-independent multi-layer transport networks. To

accomplish the general objective, three specific objectives (SO) are defined:

 SO1: the development of an Ontology Reference Model for technology-

independent multi-layer transport networks based on a recognized

international standard, the Recommendation ITU-T G.800, and built with an

expressive well-founded ontology language to the definition of precise

semantics and to allow communication, learning and interoperation;

 SO2: the development of a semantically improved network model for the

provisioning of technology-independent multi-layer transport networks, here

called OWL Computational Ontology. This computational artifact must be

generated from the Ontology Reference Model (SO1) through a rigid ontology

engineering; and

 SO3: the development of an ontology-based network provisioning knowledge-

based system that uses the OWL Computational Ontology (SO2) as a

knowledge base. This system must be able to perform circuit provisioning and

30

connection provisioning on a technology-independent multi-layer transport

network, considering the equipment state.

1.4 THESIS STRUCTURE

Besides this introductory chapter, the thesis is divided into seven other chapters and

two appendixes. A visual representation of the content of the thesis can be seen in

Figure 1-4.

Figure 1-4 – Visual schema of the thesis structure

Each one of the thesis chapters and appendixes are described as follows:

Chapter 2 – Network Provisioning: Recent and Related Works: This chapter

presents the most recent works in network provisioning for the service layer, for the

infrastructure layer, and, more specifically, provisioning works that somehow use

ontologies. The already existing transport network models, which are related to the

ontology here developed, are also presented, as well as related works addressing

technology-independent multi-layer path finding – one of the activities of the network

provisioning.

OWL G.800 Provisioning
Computational Ontology

OntoUML ITU-T G.800
Ontology Reference Model

OntoUML G.800
Provisioning
Design Model

Chapter 6: Ontology-
based Provisioning in an
Optical Transport
Network

Ontology-based
TI ML TN

Provisioning Tool

Chapter 5: An Ontology-based
Technology-independent Multi-
layer Transport Network
Provisioning Tool

Chapter 4: Well-Founded
Ontology Reference Model
for Technology-
independent Multi-layer
Transport Networks

Chapter 2: Network
Provisioning: Recent and
Related Works

Chapter 3: Ontologies and
Ontology-based
Development Method

31

Chapter 3 – Ontologies and Ontology-based Development Method: This chapter

presents the ontology-based development method used to build the knowledge base

of the transport networks provisioning tool, which comprises an ontology engineering.

This development method is in the context of the Model-Driven Development (MDD)

paradigm, more specifically, it is related to the Model-Driven Architecture (MDA).

Chapter 4 – Well-Founded Ontology Reference Model for Technology-

independent Multi-layer Transport Networks: In this chapter, the

Recommendation ITU-T G.800 is introduced and then the Ontology Reference Model

for technology-independent multi-layer transport networks (SO1), which is based on

the recommendation, is presented. This ontology is later used for the development of

the Network Provisioning Tool.

Chapter 5 – An Ontology-based Technology-independent Multi-Layer Transport

Networks Provisioning Tool: This chapter presents three contributions of the

thesis. First, it presents the OntoUML design model. The design model is used as a

basis for the generation of the provisioning tool knowledge base. This knowledge

base, which is the OWL Computational Ontology (SO2), is the second contribution

presented. Together with the reasoning engine, the knowledge base is the base for

the technology-independent multi-layer transport networks provisioning tool (SO3).

The knowledge-based system’s complete logics are presented in this chapter, as well

as the tool capabilities.

Chapter 6 – Ontology-based Provisioning in an Optical Transport Network: This

chapter presents the application of the provisioning tool in an Optical Transport

Network (OTN) example. The objective of this chapter is to provide a more realistic

use of the provisioning tool, as well as to highlight its use in a specific transport

network technology. After presenting the example settings, the two provisioning

modes available in the tool – i.e., the automatic mode and manual mode – are

presented. Lastly, as performance issues of the provisioning tool are out of the scope

of this thesis, this chapter just briefly addresses this topic.

Chapter 7 – Conclusion: This chapter presents the conclusions of the thesis.

Besides the final discussions, the thesis related material available to readers and

32

future works are presented. A description of the publications that were produced

during the thesis development is also presented.

Chapter 8 – Bibliography: The complete used bibliography is listed in this chapter.

Appendix I – SWRL Rules: This appendix presents the nineteen Semantic Web

Rule Language (SWRL) rules that are part of the OntoUML Design Model and of the

OWL Computational Ontology.

Appendix II – Input TXT Files Structure: The syntax of the provisioning tool input

files is presented with examples in this appendix.

33

2 NETWORK PROVISIONING: RECENT AND RELATED

WORKS

In this chapter, we are going to present a study on recent works concerning network

provisioning, as well as discuss related works. Based on Figure 1-3, the distribution

of this chapter’s content is represented in Figure 2-1.

Figure 2-1 – Content distribution of chapter 2

Many different network configuration operations can be classified with the term

“provisioning”. As an example, when performing a literature research, one will find

different provisioning strategies for Quality of Service (QoS), bandwidth, resource

allocation, etc. Intending to present a broad overview of the recent works on the area,

we are going to use once more the two-layer network abstraction presented in Figure

1-2. In section 2.1 and in section 2.2, we are going to present, respectively, recent

studies in service provisioning and in infrastructure provisioning. After that, in section

2.3, we are going to explore works that have already somehow used ontologies for

network provisioning.

Although the works presented in these three initial sections are not directly related to

the one presented in this thesis, they are in the same area and address current

network provisioning problems. By providing these works, we would like to highlight

the relevance of this area, as well as to situate the reader in the most recent

Multi-layer

Technology
Independent

Single Layer

Technology
Specific

Sections 2.1 to 2.3

Sections 2.4 and 2.5

Unavailable Literature

34

contributions to network provisioning. The works presented in these three sections

are located in the blue area in Figure 2-1.

Regarding related works, in section 2.4, we first present other network models

available in the literature, explaining their focus and main concerns. Finally, the most

related works to the one presented in this thesis, which addresses path finding in

technology-independent multi-layer transport networks, are presented in section 2.5

and compared to the work developed here. The related works, especially the ones

presented in section 2.5, are located in the green area in Figure 2-1.

In conclusion, we could not find works that could be positioned in the red area of

Figure 2-1. The work developed in this thesis is situated in this still unexplored area

of the literature.

2.1 SERVICE LAYER PROVISIONING

The review performed by (DUAN; YAN; VASILAKOS, 2012) shows that recent

evolution of service management in telecommunications has followed a path toward

network virtualization; that is, decoupling service provisioning from data transport and

exposing network infrastructure through resource abstraction. The Service-Oriented

Architecture (SOA) principle and Web Service technologies have been applied to

facilitate virtualization in telecom systems (DUAN; YAN; VASILAKOS, 2012).

The increasing attention to network virtualization is supported by a recent study

described in (MATERA; LISTANTI; PIÓRO, 2015) on trends in network planning to

decrease the CAPEX/OPEX costs. In such study, among ten studied papers

addressing recent challenges in communication network planning, two of them

concern resource provisioning in virtualized networks. They listed as trends (i) the

provisioning of customized and on-demand resources for multiple service providers

with different Quality of Service requirements in (SEDDIKI; FRIKHA; SONG, 2015),

and (ii) the design and implementation aspects of a network resource provisioning

module designed for the Polish Initiative of Future Internet called System IIP in

(GOZDECKI et al., 2015).

35

The first work cited by (MATERA; LISTANTI; PIÓRO, 2015) proposes a two-stage

approach based on non-cooperative games focused on provisioning and managing

the physical resources in a virtualized network infrastructure (SEDDIKI; FRIKHA;

SONG, 2015). The second cited work proposes a set of novel linear programming

optimization models for network resource provisioning designed to minimize the

network resource consumption, either bandwidth or node’s computational power, as

well as to maximize the residual capacity (GOZDECKI et al., 2015).

This demand for service provisioning is reflected by the standardization

organizations, which have released different standards in this area, like frameworks

for service management and operation by aggregating network capabilities and

service management functions in a common platform. Specifications in this area

include the Open Mobile Alliance (OMA) Open Service Environment (OSE) (MAES,

2007) and the TM Forum Service Delivery Framework (SDF) (HUANG, 2009).

In addition, according to (DUAN; YAN; VASILAKOS, 2012), there has been a

motivation to organize the services/applications offered by various networks on an

overlay that allows service providers to offer rich services. Toward this objective, the

Institute of Electrical and Electronics Engineers (IEEE) recently developed the Next

Generation Service Overlay Network (NGSON) standard (LEE; KANG, 2012), which

specifies context-aware, dynamically adaptive, and self-organizing networking

capabilities, including both service level and transport level functions that are

independent of the underlying network infrastructure (DUAN; YAN; VASILAKOS,

2012).

SOA has been widely adopted in cloud computing via the paradigm of Infrastructure-

as-a-Service (IaaS) (DUAN; YAN; VASILAKOS, 2012). The provisioning of virtual

resources in future networks relying on the IaaS principle is addressed in (HOUIDI et

al., 2011b), which uses exact and heuristic optimization algorithms for the

provisioning of virtual networks involving multiple infrastructure providers. Their study

assumes the emergence of new actors such as virtual network providers acting as

brokers requesting virtual resources on behalf of users. Resource matching, splitting

(solved in the paper with the use of both max-flow min-cut algorithms and linear

programming techniques), embedding (formulated and solved as a mixed integer

program), and binding steps required for virtual network provisioning are proposed

36

and evaluated (HOUIDI et al., 2011b). In a previous work, described in (HOUIDI et

al., 2010), the same authors had investigated the problem of adaptive virtual network

provisioning and developed an algorithm for adaptive infrastructure resource

allocation to support virtual networks (DUAN; YAN; VASILAKOS, 2012).

According to (DUAN; YAN; VASILAKOS, 2012), service-oriented network

virtualization enables the Network-as-a-Service (NaaS) paradigm that allows network

infrastructure to be exposed and utilized as network services, which can be

composed with computing services in a cloud environment. Therefore, the NaaS

paradigm may greatly facilitate a convergence of networking and cloud computing

(DUAN; YAN; VASILAKOS, 2012).

Cloud service provisioning across multiple cloud providers is addressed in (HOUIDI

et al., 2011a), which developed an exact algorithm to efficiently split the cloud

requests among the multiple cloud platforms with the aim of decreasing the cost for

customers. Still concerning cloud computing, (CALHEIROS et al., 2011) proposed

the CloudSim, an extensible simulation toolkit that enables modeling and simulation

of cloud computing systems and application provisioning environments. The

CloudSim implements generic application provisioning techniques that can be

extended with ease and limited effort (CALHEIROS et al., 2011).

An application-aware virtual data center provisioning method for distributed data

centers (DC) enabled by coordinated virtualization of optical Orthogonal Frequency

Division Multiplexing (OFDM) network and DCs is proposed in (PENG et al., 2013).

The coordinated virtualization of optical network and Information Technology (IT)

resources in DCs is developed as a key part of the provisioning method (PENG et al.,

2013). This work targets future cloud platform that deploys advanced optical

transport technologies for interconnecting remote DCs.

The service provisioning technology dependence, as well as the difficulty to divide

the two network abstraction layers here adopted, can be observed in (WANG et al.,

2014), which presents a flexible virtual optical network provisioning procedure for

distance-adaptive flex-grid optical networks. Their work, which aims at maximizing

spectrum utilization efficiency, is in the context of Software-defined Optical Network

(SDON). This technology relies on optical network virtualization, which enables

37

network service providers to provision multiple coexisting and isolated Virtual Optical

Networks (VON) over the same physical infrastructure (WANG et al., 2014). Since a

lightpath is a special instance of a VON, they claim that the VON service provisioning

system used by a SDON service provider has backward-compatibility to traditional

lightpath provisioning.

2.2 INFRASTRUCTURE LAYER PROVISIONING

Concerning the infrastructure layer, the most recent works are focused on the Dense

Wavelength Division Multiplexing (DWDM) networks, which are the most widely used

transport technology nowadays (LIU et al., 2006). We can divide the works related to

this network abstraction layer into two categories: discussions about control plane

solutions (subsection 2.2.1) and lightpath provisioning strategies (subsection 2.2.2).

Before presenting the diverse provisioning techniques, we must say that multi-layer

provisioning is addressed in some works, however always dealing with technology-

specific layers. For example, (LEHMAN et al., 2007) defines its multi-layer aspect as

referring to the fact that end-to-end service may be instantiated via a data plane path

that traverses multiple different network elements that belong to different technology

layers. This situation can be seen in Figure 2-2, which shows an example from

(DOVERSPIKE; YATES, 2012) representing five layers supporting the provisioning of

two 10-Gb/s circuits. Note that all layers in Figure 2-2 are from specific technologies.

38

Figure 2-2 – Sublayering within the optical layer. From (DOVERSPIKE; YATES, 2012)

As another example, the work presented in (DOUCETTE; GROVER; GIESE, 2007)

defines a multi-layer design and operation strategy for multi-service and multi-layer

survivable traffic engineering and bandwidth management. In this specific work, the

term “multi-layer” is used to refer to the fact that the strategy there defined deals with

two distinct layers: Wavelength Division Multiplexing (WDM) and IP/Multi-Protocol

Label Switching (MPLS). The same happens with the work presented in (KOZAT;

KOUTSOPOULOS; TASSIULAS, 2006). This work performs QoS provisioning

considering wireless multi-layers, which are the routing layer, the medium access

control layer, and the physical layer.

2.2.1 Control Plane Discussions

A first category of works regarding provisioning in optical networks deals with the

control plane technology, architecture, and design. A control plane is a key enabling

39

technique for dynamic and intelligent end-to-end path provisioning in optical networks

(LIU et al., 2013).

The Generalized Multi-Protocol Label Switching (GMPLS), developed by the Internet

Engineering Task Force (IETF) as a generic network control plane framework, is

used for managing physical path and core tunneling technologies of the Internet and

telecom service providers (AZODOLMOLKY et al., 2011). The GMPLS control plane,

due to its support for various optical transport technologies as well as its capability for

dynamic and on demand lightpath provisioning, is widely being considered by

operators as the control plane of their next generation core optical networks

(AZODOLMOLKY et al., 2011).

Architecture and design considerations associated with the development of a control

plane capable of dynamic provisioning in heterogeneous multi-domain, multi-layer,

multi-service hybrid network environments are presented in (LEHMAN et al., 2007).

The vision for these hybrid networks is to enable flexible and dynamic provisioning of

end-to-end network services (LEHMAN et al., 2007). This work proposes a

framework for addressing the heterogeneous nature of the hybrid networks via the

development of a flexible set of mechanisms which address the key control plane

functions of routing, path computation, and signaling (LEHMAN et al., 2007). An

interoperable set of constructs is proposed based on GMPLS and Web Service for

seamless provisioning across heterogeneous data and control planes (LEHMAN et

al., 2007).

Considering Elastic Optical Networking (EON), some studies have started to design a

GMPLS-based control plane (LIU et al., 2013). Despite massive progress, it should

be noted that such studies mainly focused on the control of the optical layer (LIU et

al., 2013).

Authors like (LIU et al., 2012) claims that, despite the development and

standardization efforts, with different interconnection models proposed for a GMPLS-

based Unified Control Plane (UCP) in multi-layer optical networks, there are no

commercial deployments of these models, and the debate for their practicability in a

real operational scenario grows in intensity (LIU et al., 2012). Due to its distributed

nature, the number of protocols, and the interactions among different

40

layers/granularities, the GMPLS UCP becomes overly complex (LIU et al., 2012).

However, recent studies (MARTINEZ; CASELLAS; MUNOZ, 2012) have validated

the application of a GMPLS-based unified control plane for controlling a multi-layer

network composed of both packet – Multi-Protocol Label Switching Transport Profile

(MPLS-TP) – and optical switching – Wavelength Switched Optical Network (WSON)

– technologies (LIU et al., 2013). Although more mature and intelligent, a GMPLS-

based control plane may not be an ideal solution for the deployment in a real

operational scenario due to its distributed nature and high complexity, especially for a

unified control functionality in IP and optical multi-layer networks (LIU et al., 2013).

Criticisms over GMPLS, especially for the representation of multi-layer networks and

for the development of path finding applications in this kind of networks, can be found

in (DIJKSTRA, 2009; DIJKSTRA et al., 2008).

More recently, OpenFlow has been proposed as a control framework that supports

programmability of network functions and protocols (i.e., software defined

networking) by decoupling the data plane and the control plane, which are currently

vertically integrated in many networking equipment (e.g., routers, switches, access

points) (AZODOLMOLKY et al., 2011; MCKEOWN et al., 2008). The mediation

between control plane segments and layer boundaries, allowing communication and

interoperability to support transport networks with multiple administrative and

technology segments, is often a manual process that Software Defined Networking

(SDN) could automate (GRINGERI; BITAR; XIA, 2013). OpenFlow adopts the

concept of flow based switching and network traffic control for intelligent, user

controlled, and programmable network service provisioning with the capability to

execute any user defined routing, control, and management application in its

controller (AZODOLMOLKY et al., 2011).

In (AZODOLMOLKY et al., 2011), a software-defined packet over optical networks

solution based on the OpenFlow and GMPLS control plane integration is

demonstrated. They proposed an overlay model that extends the functionality of a

typical OpenFlow controller in a way to properly interface with GMPLS control plane

(AZODOLMOLKY et al., 2011).

The OpenFlow protocol, which has been previously addressed as a unified control

plane for multi-layer multi-granularity optical networks (LIU et al., 2012), provides the

41

maximum flexibility for operators to control a network and arguably matches carriers’

preference given its simplicity and manageability (LIU et al., 2012, 2013). In light of

this, an OpenFlow-based control plane to achieve dynamically optical path

provisioning and IP traffic offloading in an EON, referred to as OpenSlice, was

presented in (LIU et al., 2013).

The control plane is also an interest research topic in the mobile network

provisioning. As an example, the work presented in (HOFFMANN; STAUFER, 2011)

provides concrete extensions of existing control plane protocols and interfaces for a

layer-independent, vendor-independent, and domain-independent provisioning, and

operation of virtual networks for future mobile networks.

2.2.2 Recent Studies on Lightpath Provisioning

On the algorithmic provisioning side, a multitude of DWDM Routing and Wavelength

Assignment (RWA) and survivability schemes have evolved (LIU et al., 2006). As

DWDM technology proliferates, there is a pressing need to develop more advanced

lightpath provisioning algorithms for distributed multi-domain settings (LIU et al.,

2006). This position is supported by (CHAMANIA; JUKAN, 2009), which defends that

efficient provisioning of high-bandwidth connections between the multiple domains

separated by technologies, administrative rules, and control and signaling concepts

is an open challenge.

Today’s optical circuit provisioning process in large carrier networks is presented and

discussed in (DOVERSPIKE; YATES, 2012). Their work lists four broad categories of

provisioning steps in the core segment, which are:

1. Manual: installation personnel visit central office, install cards and plug-ins,

and fiber them to the patch panel.

2. Manual: installation personnel visit central office and cross connect ports via

the patch panel.

3. Semi-automated: provisioners request optical cross connects via a command

line interface or element management system.

42

4. Fully automated: an operation support system is fed by a circuit path from a

network planner or planning tool. Then, this system automatically sends

optical cross-connect commands to the command line interface or element

management system.

They also present that carriers are mostly semi-automated provisioning today, and in

many cases, a circuit order may require steps from all four categories

(DOVERSPIKE; YATES, 2012).

A survey of inter-domain provisioning solutions for the next generation optical

networks is presented in (CHAMANIA; JUKAN, 2009), however multi-layer issues are

outside the paper’s scope.

While previous works – e.g., (YURONG HUANG; HERITAGE; MUKHERJEE, 2005) –

intend to design intelligent connection-provisioning algorithms that improve network

performance, the most recent works are focused in the provisioning of elastic optical

networks and in considerations about energy efficiency.

Elastic Optical Networking is an emerging candidate to achieve more cost-effective

optical networks, as they achieve more spectrally efficient networking in the optical

layer employing an adaptive bandwidth allocation scheme with fine and flexible

frequency slots (SONE et al., 2011). On EON, the Route and Spectrum Assignment

(RSA) problem for provisioning paths could be a concern for network operations,

similar to the RWA problem in conventional optical networks (SONE et al., 2011).

The elastic optical path is achieved using OFDM technology. According to (ZHU et

al., 2013), the provisioning of elastic optical OFDM networks has started to attract

research interests just recently.

According to (SONE et al., 2011), the operational scenarios for elastic optical

networking are broadly classified into incremental, static, and dynamic provisioning.

As can also be seen in (SONE et al., 2011), for dynamic provisioning (where the

duration of a path is considered), (TAKAGI et al., 2011) presented a distance-

adaptive RSA algorithm for dynamic traffic; and, regarding static provisioning (where

entire demands are considered at the same time), (CHRISTODOULOPOULOS;

TOMKOS; VARVARIGOS, 2010) provided an Integer Linear Programming

formulation. The RSA problems for incremental provisioning (where a permanent

43

path is provisioned on a one-by-one basis) is addressed in (SONE et al., 2011) that

proposes the Maximize Common Large Segment RSA algorithm, which employs a

metric that quantifies the consecutiveness of the common available spectrum slots

among relevant fibers.

A spectrum-sliced elastic optical path network (SLICE) architecture has been recently

proposed as an efficient solution for a flexible bandwidth allocation in optical

networks (JINNO et al., 2009). This architecture is defined as a very promising

solution for 100 GB/s and beyond connection provisioning in optical networks in

(KLINKOWSKI; WALKOWIAK, 2011).

Once again, demonstrating the weak separation between the two abstraction layers,

service provisioning in EON is also present in the literature. In the context of a

Coherent Optical OFDM optical network, (SHEN; YANG, 2011) evaluates how

flexible wavelength and spectrum assignment can help lightpath service provisioning,

while (ZHU et al., 2013) addresses the dynamic service provisioning in EON with

hybrid single-/multi-path routing.

Considering that the traffic supported by the Internet has grown enormously over the

last few years and that it is virtually certain that this traffic growth will continue both in

the near and long term future (JIRATTIGALACHOTE et al., 2011), the interest in the

energy consumption of communication networks has risen in recent years (MONTI et

al., 2011). In such scenario, “green” strategies are desirable to help service providers

operate their networks and provision services in a more energy efficient way (XIA et

al., 2011).

Green provisioning strategies for optical WDM networks are addressed by (XIA et al.,

2011), where the authors developed a power-aware provisioning scheme to improve

the energy efficiency of the networks. Connection provisioning is addressed by

(JIRATTIGALACHOTE et al., 2011), which presents dynamic provisioning strategies

for energy efficient WDM networks with dedicated path protection. Their focus is on

the network’s energy consumption, as they investigate the energy savings in path

protection. Lastly, concerning energy-efficient lightpath provisioning in static WDM

networks with dedicated path protection, (MONTI et al., 2011) proposes a scalable

44

and efficient heuristic that chooses the route of the working and protection lightpaths

with the aim to maximize power saving.

2.3 ONTOLOGY-BASED PROVISIONING

In the last decade, many works have used ontologies, especially lightweight

ontologies, as a solution or as part of the solution to service provisioning. An

interesting paper that presented study cases and lessons learned for ontology-based

network management from diverse research projects can be found in (LÓPEZ DE

VERGARA et al., 2009). Among the presented studies, one concerns the use of

ontologies for network provisioning. The project reported by (LÓPEZ DE VERGARA

et al., 2009) is about a home gateway that autonomously provisions services to the

users, configuring the associated devices when a user queries for a new service.

This project, presented in (LÓPEZ DE VERGARA et al., 2008) and in (LOZANO et

al., 2008), is related to the use of ontologies in a self-managed system as a way to

model the information to be used in that system. The used ontology was defined to

share the knowledge between both the telecommunications company operator and

the home gateway (LÓPEZ DE VERGARA et al., 2009).

Ontological modeling of pervasive services’ lifecycle as a result of the management

necessities in broadband convergence networks is addressed in (SERRANO et al.,

2008). This paper presents research challenges for facilitating autonomic

management, defining aspects in the organizational view of service lifecycle, and for

the control of pervasive services functions. A brief comparison of a management

system using policies without semantic enrichment and using ontology-based policies

is also depicted in (SERRANO et al., 2008).

A context-aware middleware system that facilitates diverse multimedia services in-

heterogeneous network environments by combining an adaptive service-provisioning

middleware framework with a context-aware multimedia middleware framework is

presented in (ZHOU et al., 2010). In this work, the authors adopt the Web Ontology

Language (OWL) to enable expressive context descriptions and data interoperability

of context.

45

Recently, The Global City Indicators (GCI) Telecommunication & Innovation ontology,

defined in (FORDE; FOX, 2015), which intends to represent the definitions of the ISO

37120 Telecommunication & Innovation theme indicators, has a provisioning model

as one of its composing parts. Provisioning is an important concept for this work

because the GCI Telecommunication & Innovation indicators are all based on

measuring the number of telecom services to which residents in a city are connected.

By accounting for the preparation process necessary to develop a network to provide

services the GCI Telecommunication & Innovation ontology will be able to account

for new network services introduced over time (FORDE; FOX, 2015). The OWL

ontology proposed in the project makes use of another OWL ontology developed in

(KNACKSTEDT et al., 2008), which models services based on human requirements.

They claim that, inside their context, the ontology presented in (KNACKSTEDT et al.,

2008) is best used as a reference model that can address issues surrounding

provisioning (FORDE; FOX, 2015).

Concerning service provisioning and an economic perspective with respect to service

allocation and price determination, (BLAU et al., 2008) has three main contributions.

First, they introduce an ontology framework, which is part of a tool that visually and

semantically supports service providers in the process of service mashup planning.

Second, their ontology-based framework for modeling services provides concepts for

specifying functional and non-functional service properties with a special focus on

economic aspects. And finally, the result of the planning process is a graph topology

representing the complex service and its potential sub-services, their configurations

and reasonable interrelations that fulfill an overall functionality (BLAU et al., 2008).

Ontologies have a close relation to the use of intelligent computational agents. In

(PODOBNIK; TRZEC; JEZIC, 2007), ontologies are used in agent-based context-

aware service provisioning systems for next-generation networks. Ontologies and

agents were also used in (VRDOLJAK et al., 2009), which proposed an ontology-

based middleware for enhancing group-oriented mobile service provisioning, called

AMiGO-Mob.

Ontologies are also used in the proposal for ubiquitous service provisioning, in

(SANCHEZ-LORO et al., 2009). In this work, ontologies are used to provide a

common syntax and semantics to network nodes. The work presented in (ABOSI;

46

NEJABATI; SIMEONIDOU, 2009), concerning a service composition mechanism for

the future optical Internet, has an ontology translator module. This ontology translator

module uses an ontology to describe semantics of information to support service

discovery and composition. According to (ABOSI; NEJABATI; SIMEONIDOU, 2009),

the use of Resource Description Framework (RDF) and OWL as knowledge

representation languages facilitate unambiguous discovery of services.

For other types of network, we can also find ontology proposals to manage services.

For multi-service IP networks, (RODRIGUES et al., 2012) proposes an ontological

model – built in OWL and Semantic Web Rule Language (SWRL) – intending to

provide an improved semantic description of network services for interoperability and

self-management. For the highly relevant Internet of Things, lightweight ontologies

are used in a system architecture that, among other functionalities, provides on-

demand service provisioning (GUINARD et al., 2010). A framework for service

provisioning in virtual sensor networks is presented in (SARAKIS et al., 2012).

Resource description using ontologies can also be found in many other areas, like

Low Carbon Grid Networks (DAOUADJI et al., 2010).

An important usage of ontologies in network provisioning consists in the ontology-

based network description languages, like the Network Description Language (NDL)

(VAN DER HAM et al., 2007) and the Network Markup Language (NML) (HAM et al.,

2013). The former language aims to describe an overview of network topology in

order to provide a common semantic to the applications, the network, and the service

providers for unambiguous communications among them (DUAN; YAN; VASILAKOS,

2012). The latter language is an extensible schema to describe network topologies

and capabilities – it was used with success to define an information model for service

discovery and provisioning in (FAJJARI; AYARI; PUJOLLE, 2010). Another example

of language in this class is the Network Resource Description Language (NRDL)

(CAMPI; CALLEGATI, 2009), developed in order to facilitate abstraction of

networking resources with a focus on the interaction among network elements rather

than on individual network objects (DUAN; YAN; VASILAKOS, 2012). According to

(DUAN; YAN; VASILAKOS, 2012), this change of emphasis enables the NRDL to

give a better description of the resources for network service provisioning; thus

expressing network service abstraction. These network description languages are

addressed in this thesis section 2.4.

47

Finally, an important ontology-based project is the Generalized Architecture for

Dynamic Infrastructure Services (GEYSERS) (ESCALONA et al., 2011). The

GEYSERS concept aims to define and implement a novel service provisioning

architecture, capable of provisioning optical network and IT resources for end-to-end

service delivery (ESCALONA et al., 2011). One of the GEYSERS’s modules utilizes a

semantic resource description and information modeling mechanism, based on NDL

and on Virtual Resources and Interconnection Networks Description Language

(VXDL) (KOSLOVSKI; PRIMET; CHARÃO, 2009) for describing the underlying

physical infrastructure (e.g., switching capabilities). This ontology-based module

allows the creation of virtual infrastructures using the virtualized resources and a

dynamic on-demand re-planning of the virtual infrastructure composition

(ESCALONA et al., 2011).

2.4 EXISTING TRANSPORT NETWORK MODELS

Network models can help users and applications to understand the complexity of

networks (especially multi-layer networks, where the configuration of the network can

be changed dynamically at multiple layers), and can support diverse applications,

such as path finding, scheduling, fault isolation, and visualization (DIJKSTRA et al.,

2008). Regarding the importance of models, the usage of data structuring models

built with semantic web technologies, especially lightweight ontologies, is found in

many different works. These works claim that the use of these technologies can

directly solve interoperation problems. However, the direct use of computational

languages for building these interoperation artifacts can lead to lack of semantics

and, hence, to problems like false integration – see, for example, the false agreement

problem (GUARINO, 1998).

Considering network management, the lack of a formal semantics in models was

presented in (VERGARA et al., 2003) and (VERGARA; VILLAGRÁ; BERROCAL,

2004). According to them, different management models (SNMP, CMIP, CIM/WBEM,

and Corba) could be correlated. In their work, a heuristic (human driven) mapping

process was used to establish a semantic equivalence between these models. As a

result, (VERGARA; VILLAGRÁ; BERROCAL, 2002) presented a network

48

management metamodel. The term ontology, meaning taxonomy or common

information model, has been used in the network management context since then

and interoperability has become an issue in network management, as pointed in

(WONG et al., 2005).

Autonomic management and self-management researchers have taken ontology first

as information taxonomy (VERGARA; VILLAGRÁ; BERROCAL, 2002), then as a

data representation standard (QUIROLGICO; MILLS; MONTGOMERY, 2003) and

later as endogenous interoperability solution (WONG et al., 2005). Thus,

interoperability is reached only inside the proposed solution, i.e., interoperability just

exists if the communicating parts implement the proposed framework or model. Even

so, ontology as an interoperability tool is frequently used as an approach to improve

autonomy and self-features of network management solutions (SERRANO; SERRAT;

STRASSNER, 2007). Interoperation between different autonomic solutions

(exogenous interoperability) remains an open subject (MONTEIRO et al., 2014).

The interesting work presented in (HAM et al., 2014) provides a taxonomy of current

and past network modeling efforts over the last few years. This work concludes that,

on the one hand, management models have changed less, given they are all aimed

at specific applications, and target very specific use-cases or tools; and, on the other

hand, monitoring, general, and Future Internet models have all evolved significantly.

According to (HAM et al., 2014), there is a trend towards not only describing the

network, but connected devices as well. This is especially current given the many

Future Internet projects, which are combining different models and resources in order

to provide complete virtual infrastructures to users (HAM et al., 2014).

One basic rule that holds for both the current Internet and the upcoming Future

Internet platforms is presented in (HAM et al., 2014): the design, planning,

management, and monitoring of the network rely on the knowledge of its topology,

expressed as network models. A network topology provides information on the

location of devices and on the connections between them; this information, in turn,

gives a view of the physical and logical structure of the network. Topology

information needs to be available to all devices within the network to operate

properly, to external tools that act on the network, and to applications that use the

49

network (HAM et al., 2014). Three main challenges for network models are pointed in

(HAM et al., 2014):

1. handling different abstraction levels;

2. managing multi-domain communication and path setup;

3. integration with computing-network-storage-planning services.

An important mechanism for managing complexity is the creation of an abstract

model, a step which, according to (HAM et al., 2014), has been undertaken in

computer networks. According to (HAM et al., 2014), works that define general

network models are NDL v2, NML, NDL-OWL, Networking Over Virtualized

Infrastructures (NOVI), GEYSERS, and Infrastructure and Network Description

Language (INDL). Table 2-1 summarizes the models’ main purpose, scope, and

language type. The next paragraphs use text adapted from (HAM et al., 2014) to

present briefly all these initiatives.

Table 2-1 – Overview of the existing network models. Adapted from (HAM et al., 2014)

Model Name Main Purpose Scope Representation Language

NDL General Network RDF

NML General Network XML + OWL

NDL-OWL General Network + Comp & Storage OWL

NOVI/GEYSERS/INDL General Network + Comp & Storage OWL

NDL, originally presented in (VAN DER HAM et al., 2006), is a method of using RDF

to describe networks. Its original model (v1) was simple and intended to describe

devices, interfaces, and their connections. Using ideas from ITU-T G.805, NDL was

extended to its version 2, which is able to describe multi-layer networks generically

(DIJKSTRA et al., 2008; VAN DER HAM et al., 2008). More information about the

NDL underlying concepts and other works from the same research group, especially

the ones regarding multi-layer path finding, are presented in section 2.5.

The ITU-T G.805 and the NDL are the models on which NML is based. NML (HAM et

al., 2013) is a generic network model that can be used for describing measurements,

monitoring, topologies, and also requests. To support different applications, NML has

two different data models, one in eXtensible Markup Language (XML) and other in

OWL.

50

The Network Description Language OWL (NDL-OWL) is an extension of NDL v2 to

the OWL syntax developed in the Open Resource Control Architecture-Breakable

Experimental Network (ORCA-BEN) project (BALDINE et al., 2009; XIN et al., 2011),

within the Global Environment for Network Innovations (GENI)2 initiative. NDL-OWL

also extends NDL with more virtualization and service description features to

describe their infrastructures. These descriptions are then used in the client software

to describe requests, but also in the management software to match the requests

with the available infrastructure.

The NOVI project aims to federate Future Internet platforms and one of the

challenges of the NOVI information model is to interact with different platforms (HAM

et al., 2011a, 2011b). The NOVI ontology suite allows a complete semantic

description of a Future Internet federation. NOVI has ontologies for the infrastructure,

but also for monitoring tools and results, as well as policy aspects and rules.

The GEYSERS Information Modeling Framework (IMF), intends to provide an

information model for the Logical Infrastructure Composition Layer (GARCÍA-ESPÍN

et al., 2012). One of the key innovations of GEYSERS is to enable virtualization of

optical infrastructures. This layer is the element responsible for managing physical

resource virtualization and composing Virtual Infrastructures. These are then offered

as a service within the GEYSERS architecture.

INDL (GHIJSEN et al., 2012, 2013) is an evolution of the Network Description

Language, combined with the experiences in NOVI and GEYSERS. In INDL, the

general model from NML was added to capabilities to describe the virtualization of

nodes and infrastructure. According to (HAM et al., 2014), the resulting model of

INDL is actually not that different from the model in NOVI and GEYSERS, but it

provides a more reusable model available for other Future Internet platforms. Figure

2-3 shows an overview of the described information models and shows how they

have influenced each other.

2
 https://www.geni.net/

51

Figure 2-3 – Overview of the existing information models and their influences. Adapted from

(HAM et al., 2014)

None of the network models presented in this section were built with the use of an

ontology engineering, like the one presented in (GUIZZARDI, 2007). Instead, the

models were built directly using computational languages, like XML, RDF, and OWL.

As can be seen in (GUIZZARDI, 2005, 2007; GUIZZARDI et al., 2009), this category

of languages are not able to correctly represent a domain because of their

computational restrictions. In addition, Figure 2-3 emphasizes the special importance

that the ITU-T G.805 has in this context, as being the reference for many other

network models. It has already been demonstrated, in (BARCELOS et al., 2011), that

the ITU-T G.805 has ontological deficiencies in its natural language description, and

it has also been demonstrated that its formal specification is also not capable to

capture all the domain nuances (BARCELOS et al., 2016). The ITU-T G.805 became

the basis of NDL, as pointed in (VAN DER HAM et al., 2008) and, by inheritance, as

can be seen in Figure 2-3, it is also part of the languages that extend NDL, which are

NML, NDL-OWL, NOVI, GEYSERS, and INDL. A recommendation with ontological

deficiencies will propagate these problems to all other recommendations, models,

and languages that use it as a basis (BARCELOS et al., 2016).

The ITU-T G.800 Ontology Models are built with a strict method (that is going to be

presented in section 4.3), which guarantees better semantic representation and the

52

elimination of ontological deficiencies. The use of the Ontology Reference Model to

create computational models (e.g., via automated transformation, a process free from

human errors) results in a network computational (information) model with improved

knowledge representation and reasoning capabilities.

The first two of the three desired properties listed by (HAM et al., 2014) are

accomplished by the ITU-T G.800 Ontology Reference Model. The model can handle

different abstraction levels using a three layered ontology level (Site, Equipment, and

ITU-T G.800). As being based on the Recommendation ITU-T G.800, it can manage

multi-domain communication and path setup. However, the current knowledge base

(generated from the Ontology Reference Model) does not have the third desired

point, which is the integration with computing-network-storage-planning services.

This third point can be thought as a future work. This characteristic could be included

as a new ontology layer (to be coupled with the already existing ones) or as the

extension of one of the already presented layers in a future version of the knowledge

base.

2.5 PATH FINDING IN TECHNOLOGY-INDEPENDENT MULTI-LAYER NETWORKS

Regarding the provisioning of technology-independent multi-layer networks, we can

assert that the most related works are the multi-layer path finding ones, developed by

the System and Network Engineering (SNE) research group, from the University of

Amsterdam3.

One of this groups’ most important works is the NDL, originally presented in (VAN

DER HAM et al., 2006). In its first version, NDL was a simple language only capable

to describe single layer networks. The group, beginning with the study of the

Recommendation ITU-T G.805 presented in (DIJKSTRA et al., 2007), developed, in

(DIJKSTRA et al., 2008), a network model based on the ITU-T G.805. Incorporating

the proposed network model, the NDL became able to describe multi-layer networks

(DIJKSTRA et al., 2008). With the multitude of uses of the NDL and with its extension

3
 https://ivi.fnwi.uva.nl/sne/

53

to other languages (according to Figure 2-3, the languages are NML, NDL-OWL,

NOVI, GEYSERS, and INDL), the proposed network model based on the ITU-T

G.805 presented in (DIJKSTRA et al., 2008) acquires a crucial importance.

2.5.1 An ITU-T G.805 Network Model and Algebra for Connections

In (DIJKSTRA et al., 2008), the authors have shown that multi-layer networks cannot

be represented as simple graphs because this type of representation only provide

two basic building blocks: edges and vertices. According to the authors, multi-layer

computer networks have at least three building blocks: links, devices, and

adaptations – perhaps four, when counting interfaces. In addition, even though cited

as candidates for representation of multi-layer networks, the GMPLS and the

Common Information Model (CIM) (as well as network simulators) are classified in

(DIJKSTRA et al., 2008) as technology-specific models. In fact, the authors report

that the few models that consider multiple layers are often geared towards very

specific cases. Therefore, just like in this thesis, the mentioned work proposes a

model for technology-independent multi-layer computer networks – this model is later

called an ontology in (DIJKSTRA et al., 2009). Their model, build with the intention to

support a path finding function, is mainly based on the ITU-T G.805 (hence, only

covers circuit-switched networks), but also on the GMPLS label concept (for solving a

practical problem concerning identification of connections).

Besides the network model, (DIJKSTRA et al., 2008) also presents a simple algebra

that can be used to verify the validity of network connections. Both the model and the

algebra have been implemented in a syntax and network tool, a software framework

that is able to find valid paths in multi-layer networks.

The results of (DIJKSTRA et al., 2008) can be directly associated with the Ontology

Reference Model for technology-independent multi-layer transport networks that is

one of the objectives of this thesis. Their proposed network model is related to the

ontology model and their algebra for connections is associated with the model

inference rules – no restriction rules were presented in (DIJKSTRA et al., 2008). The

network model proposed in this thesis, however, intends to be a reference model for

the area, providing sound formalization for the domain without considering

54

computational restrictions and possible applications. The model proposed in

(DIJKSTRA et al., 2008) was developed with the intention to be coupled to NDL and

to provide the basis for domain-specific computational applications, like the path

finding proposed by the same research group in (DIJKSTRA et al., 2009).

Application-oriented models are well suited for the applications they are built for,

however, they lack in expressivity when considering the whole domain and usually

are a source of problems when used for semantic interoperation (GUIZZARDI, 2005,

2007).

To show that the network model and algebra presented in (DIJKSTRA et al., 2008)

have practical applications, a Resource Description Framework Schema (RDF-S)

was created to extend the NDL. The resulting NDL multi-layer schema describes the

basic concepts of network layers and allows descriptions of actual technologies.

According to the authors, the schema was able to describe successfully WDM, Fiber,

Synchronous Optical Networking (SONET), Synchronous Digital Hierarchy (SDH),

Asynchronous Transfer Mode (ATM), Ethernet, and MPLS – specific aspects of the

modeling of these technologies are presented in (DIJKSTRA et al., 2009). In addition,

a computational framework based on the proposed model was implemented and

used in various tools. Examples are: (i) in the description of the current configuration

of the author’s network, and trace network connections; (ii) to the generation of

sample networks; (iii) for path finding of multi-layer connections through the network;

(iv) and for isolation of errors in multi-layer network connections (DIJKSTRA et al.,

2008).

The most important contribution of the proposed model and algebra, as claimed by

the authors, is that they are technology-independent (just like is this thesis proposal)

– i.e., they only know about the generic concepts such as ‘‘layer”, ‘‘adaptation”, and

‘‘label”, but they do not know about specific technologies. The technology

independence is a powerful characteristic, allowing the model and algebra to

describe any circuit-switched network technology without modifications and without

the need to be tuned or adjusted as new network technologies come along

(DIJKSTRA et al., 2008).

The model proposed by (DIJKSTRA et al., 2008) is a mapping between the network

concepts needed for path finding and the ITU-T G.805 concepts. In their paper, this

55

model is textually presented by describing which mappings were made – no math-

based formal or diagrammatical language was used to formalize the model. In a

simplified manner, the mapping is as follows. The switching core of a network device

is mapped as a subnetwork. In fact, the switching capability of a device is modeled

as a switch matrix on a specific layer and domains are treated as “virtual” devices

and modeled as subnetworks, just as devices are. A network device contains

interfaces, which are modeled as multiple connection points (one or more for each

layer, one for each channel on each layer) and optional adaptation capabilities.

Finally, (physical) links between interfaces are mapped to link connections in the ITU-

T G.805 (in their mapping, a fiber is modeled as a link connection at the fiber layer

and an Unshielded Twisted Pair (UTP) cable is modeled as a link connection at the

UTP layer). In their model, an adaptation function defines the relation between the

connection points that represent the different layers of an interface (DIJKSTRA et al.,

2008).

A first observation is that the presented mapping uses a reduced number of elements

when compared to the Ontology Reference Model proposed in this thesis. As already

pointed, in (DIJKSTRA et al., 2008), the mapping was not formally specified, it was

described using natural language (English), which is notoriously ambiguous (KOOIJ,

1973). The usage of natural languages for domain formalizations may lead to a

document with a series of deficiencies, undermining its comprehension and use in

interoperation, in decision-making, or in problem solutions (BARCELOS et al., 2016;

GUIZZARDI, 2005, 2007).

Some authors – e.g., (BOWEN, 1996; SPIVEY, 1989) – claim that because a formal

specification is precise (i.e., has a mathematical definition), this means that even if a

certain specification is wrong, it is easier to identify and correct the problem. The

same authors claim that, since an informal specification is often ambiguous, it is more

difficult to detect errors and subsequently to correct them. Additionally, just like stated

by (BOWEN, 1996), with the use of formal specifications, it is possible to reason

about a system and detect inconsistencies in it far more easily than in the case

where only an informal specification is available (BARCELOS et al., 2016).

A mathematical notation (logic-based) description is used in (DIJKSTRA et al., 2008)

for their algebra to verify the validity of network connections – i.e., to specify how

56

paths (end-to-end connections) happen in the network. However, even mathematical

notations (not aware of ontological distinctions) are not well suited for domain

representation (BARCELOS et al., 2016).

Despite all relevant advantages of the formal specifications’ usage, this kind of

formalization may be loose, allowing multiple interpretations by stakeholders and,

thus, allowing undesired different interpretations (and even implementations,

considering a computational scenario) (BARCELOS et al., 2016). The lack of

ontological distinctions in formal specifications has already been addressed in

(BARCELOS et al., 2016), which highlights their importance. According to the

authors, to represent correctly a domain, well-founded ontology languages should be

used, as they provide resources for the specification author to better distinguish the

meanings of concepts and relations, resulting in a better specification.

Besides the lack of semantics in the formalization of the proposed multi-layer network

model, some conceptualization significantly differs from the ones we adopt in the

Ontology Reference Model for technology-independent multi-layer transport networks

here proposed. As an example, (DIJKSTRA et al., 2008) states: the “ITU-T

Recommendation G.805 defines the logic that a pair of adaptation function,

connection with a network connection at the server layer, yields a link connection at

the client layer”. Differently, in the Ontology Reference Model, this is not true. In fact,

in the Ontology Reference Model, the inverse happens: a “connection” at the client

layer, yields a “connection” at the server layer (the use of the quotation marks is

because connection is a broad term in the ontology, being refined by a number of

more specific concepts). In a simplified manner, the specified conceptualization was

adopted in the ITU-T G.800 Ontology Reference Model because a non-functioning

sink adaptation can prevent the connection at a client layer. However, what should

be noted is that the different interpretations by different research groups also

highlight the ITU-T G.805 unclearness and consequent difficult interpretation.

57

2.5.2 A Path Finding Solution for Technology-independent Multi-layer

Networks

The works of the SNE research group go beyond the technology-independent multi-

layer network model and the algebra for the definition of the properties of a valid

connection through a network, which are presented in (DIJKSTRA et al., 2008).

According to (XU et al., 2009), how to obtain a valid path given a network, a source,

and a destination is a different matter from the one presented in (DIJKSTRA et al.,

2008). Regarding this, (DIJKSTRA et al., 2009) presents a path finding solution for

technology-independent multi-layer networks.

The multi-layer path selection problem – later called, in (DIJKSTRA et al., 2009),

multi-layer path finding problem – is defined in (KUIPERS; DIJKSTRA, 2009) as “the

problem of finding the shortest feasible path from a source to a destination in a

multilayer network”. This problem is proven to be NP-complete in (KUIPERS;

DIJKSTRA, 2009).

According to (XU et al., 2009), while the path finding problem in single layer networks

is well studied, it is far from trivial in multi-layer networks. As stated in (DIJKSTRA et

al., 2009), single layer algorithms, such as path vector algorithms in Signaling

System No. 7 (SS7) (ITU-T, 1996) and Border Gateway Protocol (BGP) (REKHTER;

LI; HARES, 2006), or the link state algorithms in Open Shortest Path First-Traffic

Engineering (OSPF-TE) (KOMPELLA; REKHTER; JUNIPER NETWORKS, 2005),

can only deal with link-constrained problems, where the possibility to use each edge

is independent from the use of other edges. Regarding the fact that multi-layer path

finding is a path-constrained problem (i.e., the possible use of an edge depends on

the choice of other edges in the path), these single layer algorithms cannot deal with

the complexity of the multi-layer networks and fail to find the shortest multi-layer path.

In (KUIPERS; DIJKSTRA, 2009) two path finding algorithms through multilayer

networks are presented: a variant of the breadth first search algorithm and a variant

of a k-shortest path algorithm. In (DIJKSTRA et al., 2009), the breadth first search

algorithm was implemented in an imperative program in Python, while in (XU et al.,

2009), this algorithm was implemented in a declarative program in Prolog.

58

Different from the work here presented, which gives to the user three selection

criteria of a desired path (where the shortest path is one of the options), the works

presented in (DIJKSTRA et al., 2009) and in (XU et al., 2009) (always) aim to find the

shortest feasible path from a source to a destination in a multi-layer network. In

addition, if the algorithm implemented in (DIJKSTRA et al., 2009) is not terminated

when the shortest path is found, other branches continue to try new paths, and the

algorithm turns into a k-shortest path finding algorithm. I.e., in their works, the user

cannot choose between different path selection criteria: just the shortest path is

available. In the provisioning tool presented in this thesis, the user may choose

between selecting the shortest path, the path that requires the minimum number of

new bindings, and the path that uses the minimum number of equipment that are

currently not installed or operational in the network (here called possible equipment).

A similarity between the network provisioning tool proposed in this thesis and the

path finding mechanism developed in (DIJKSTRA et al., 2009) is the focus on the

accuracy as opposed to the execution speed. However, regarding this topic, both

works presents exponential running time characteristics – given the NP-complete

nature of the problem addressed by (DIJKSTRA et al., 2009), the algorithms that they

implement, defined in (KUIPERS; DIJKSTRA, 2009), have an exponential running

time. A discussion on this work’s execution time is presented in the thesis conclusion

(chapter 7, section 6.4).

To reduce the flooding nature of its algorithm, (DIJKSTRA et al., 2009) allows the

user to perform some modifications. It is possible to remove some of the branch

termination logic (e.g., by not counting the available channels or not checking for

compatible labels) or to increase the number of branch termination rules (it is

possible to terminate if a node is processed twice). However, the authors state that

these modifications usually result in false negative or false positive path indications.

Just like in (DIJKSTRA et al., 2009), the user can also reduce the execution time of

the provisioning tool proposed in this thesis. This is done by setting four different

restrictions (the maximum number of paths to be found, the maximum number of

interfaces in a path, the maximum number of new bindings in a path, and the

maximum number of interfaces of possible equipment in a path). However, differently

from (DIJKSTRA et al., 2009), when using the restrictions here available, no false

59

positive or false negative results are shown to the user. In fact, the use of the

restrictions is encouraged as it may help the network operator to choose the best

path according to his/her provisioning strategy. Nonetheless, it must be remembered

that the intention of the algorithm implemented in (DIJKSTRA et al., 2009) is to find

the shortest feasible path, it is not in its scope to give options to the network operator.

Finally, the difference in the compared works’ scopes must be detailed. The work

here proposed is committed to the circuit provisioning and to the connection

provisioning of a network, while (DIJKSTRA et al., 2009) intends to perform only path

finding, which, according to the authors, is just a part of the process to provision

network connections. The steps defined by (DIJKSTRA et al., 2009) are (1) routing,

the distribution of the state of a device or domain to its neighbors; (2) path finding,

determine (a) viable path(s) using the given information; (3) select a path and

determine its parameters that have not been decided upon; (4) path provisioning,

configuring the actual network elements.

Routing, the first step, consists in the composition of the network to be provisioned.

I.e., in this step, the network instances are provided in the network model to be later

manipulated by the algorithms. In (DIJKSTRA et al., 2009), NDL provides a way to

distribute routing information, while in the provisioning tool here defined, this

information is provided by the user in an input stage.

The second step consists in finding a network path: a series of contiguous valid

relations between different network elements according to certain restrictions. In

(DIJKSTRA et al., 2009), it is assumed that the only existing relations between

elements are the ones provided in step 1 – i.e., new relations cannot be established

between the network elements. This thesis provisioning tool has a broader view: it

evaluates the internal structure of network elements to define if they can be bound or

not. I.e., it verifies if new bindings (physical relations) can be established between the

network elements in order to create new paths. In addition, besides considering just

the equipment already operational or installed in a network, the provisioning tool also

verifies if other available equipment (that are not operational or installed) can be used

to create paths. The creation of physical paths is here called circuit provisioning.

Once physical paths are created, a logical relation representing information transfer

between the source and destination points is performed by the provisioning tool. This

60

second process is here called connection provisioning. As can be seen, although the

two software implements the second step, they have important differences. The path

finding mechanism defined in (DIJKSTRA et al., 2009) deals only with step 2 (it does

not cover steps 3 and 4).

The step 3 has two parts, which the first one is the selection of the path found in the

step 2. Regarding the second part, it can be understood that “determinate its (i.e., the

selected path’s) parameters that have not been decided upon” refers to verify

technology-specific attributes from the chosen path to see if it is viable or not. As

both works here compared do not address specific technologies, these parameters

are not present in the used network models and, hence, no technology-specific

restriction applies in the implemented network tools. Future implementations of the

developed algorithms for technology-specific networks may deal with technology-

specific parameters (e.g., optical dispersion). Such expansion of both works to cover

new parameters is a future work.

Finally, step 4 regards the actual network provisioning. As no deeper information was

provided in (DIJKSTRA et al., 2009) to define this step, the cited network provisioning

can be interpreted in two forms: in the first one, the provisioning is performed in the

software network abstraction; and in the second form, the provisioning is performed

in the real physical network by sending configuration commands. Considering that

both physical and logical relations are established in the provisioning process of the

provisioning tool defined in this thesis, it can be asserted that this tool is able to

perform the first form of provisioning. As the software does not have any direct

connection to the real network to be provisioned, the network operator must replicate

the results of the tool provisioning process in the real network to be configured. The

generation of configuration files that can be automatically sent to network equipment

to provision the physical network is considered a future work.

61

3 ONTOLOGIES AND ONTOLOGY-BASED DEVELOPMENT

METHOD

The word “ontology” comes from the Greek ontos, for “being,” and logos, for “word.”

In philosophy, it refers to the subject of existence, i.e., the study of being as such.

More precisely, it is the study of the categories of things that exist or may exist in

some domain (SOWA, 2000).

According to (GUIZZARDI, 2005), the term “ontology” in the computer and

information science literature appeared for the first time in (MEALY, 1967), in a work

on the foundations of data modeling. In an independent manner, another sub-field of

computer science, namely Artificial Intelligence began to make use of what came to

be known as domain ontologies (GUIZZARDI, 2007). A domain ontology explains the

types of things in that domain. Informally, the ontology of a certain domain is about its

terminology (domain vocabulary), all essential concepts in the domain, their

classification, their taxonomy, their relations (including all important hierarchies and

constraints), and domain axioms (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). Since the

first time the term was used, a large amount of domain ontologies have been

developed in a multitude of subject areas (GUIZZARDI, 2007).

In the past decade, an explosion of works related to ontology has happened in

computer science, chiefly motivated by the growing interest in the semantic web, and

by the key role played by them in that initiative (GUIZZARDI, 2007). In the semantic

web context, Ontologies are proposed in (BERNERS-LEE; HENDLER; LASSILA,

2001) as “a way to discover common meanings” and has been used since then as

synonymous for semantic techniques.

According to (GUIZZARDI, 2007), an important point that should be emphasized is

the difference in the senses of the term ontology used by the information systems, on

one side, and artificial intelligence and semantic web communities on the other. In

information systems, the term ontology has been used in ways that conform to its

definitions in philosophy (as “a branch of metaphysics concerned with the nature and

relations of being” and as “a theory concerning the kinds of entities and specifically

the kinds of abstract entities that are to be admitted to a language system”). In

62

contrast, in most other areas of computer science, the term ontology is, in general,

used as a concrete engineering artifact designed for a specific purpose, and

represented in a specific language (GUIZZARDI, 2007). In this last sense, as a

concrete artifact, Ontologies are used to provide a large number of resources for

intelligent systems as well as for knowledge representation and reasoning in general

(GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). According to (GAŠEVIĆ; DJURIĆ;

DEVEDŽIĆ, 2009), the main areas of application of ontologies are: (a) collaboration,

providing a “skeleton” of unified knowledge; (b) interoperability, allowing the

information integration from different sources; (c) education, being a source of

reference; and (d) modeling, representing important reusable blocks.

Ontologies as concrete computational artifacts have been largely used in

telecommunications, especially in network management (LÓPEZ DE VERGARA et

al., 2009). The use of ontologies in network management with the intention of

information integration and interoperability among different management models and

languages was first proposed in (VERGARA; VILLAGRÁ; BERROCAL, 2002) and in

(VERGARA et al., 2003). Since then, ontologies have been used in large projects,

like in the GEYSERS project (ESCALONA et al., 2011), and in standardizations –

e.g., the Network Markup Language initiative (HAM et al., 2013).

Ontologies can be used in different stages of software development for semantic

improvement of the generated artifacts (GAŠEVIĆ; KAVIANI; MILANOVIĆ, 2009;

HAPPEL; SEEDORF, 2006). To achieve this objective, the different types of

ontologies must be built according to a rigid ontology engineering to be used in the

different phases of the software development. To generate the network provisioning

tool knowledge base, we are going to use of a rigid ontology engineering like the one

presented in (GUIZZARDI, 2007), with three basic phases, which are related to the

Model-Driven Architecture (MDA) (OBJECT MANAGEMENT GROUP, 2003) three

abstraction levels.

In this chapter, in section 3.1, we are to going present the context in which the MDA

is part, which is the Model-Driven Development (MDD). Then, the most important

concepts about MDA are going to be presented in section 3.2. Finally, in section 3.3,

we are going to present the ontology-based development method used to create the

provisioning tool knowledge base.

63

3.1 MODEL-DRIVEN DEVELOPMENT

There are different forms to use models in a software development process (KELLY;

TOLVANEN, 2008). Such variety is partially represented in Figure 3-1, where four

different forms are represented, ranging from a software process where models are

not used to a process completely dependent on models.

Figure 3-1 – Use of models in software development. Adapted from (KELLY; TOLVANEN, 2008)

At one extreme, there is the “only coding” approach, which can be seen in the left

part of Figure 3-1. This approach is frequent for the development of small software

features. In such approach, no model is created, i.e., the intended functionality is

specified directly in code (KELLY; TOLVANEN, 2008). But, as just coding concepts

is, in most cases, too far from the requirements and from the actual problem domain,

models are used to raise the level of abstraction and hide the implementation details

(KELLY; TOLVANEN, 2008).

In traditional development processes, models are usually kept totally separated from

the code, as there is no automated transformation available from those models to

code. In such cases, developers can read the models and interpret them while

coding the application and producing executable software (case “Separate Model

and Code, in Figure 3-1) or they can also be used in trying to understand the

software after it is designed and built (case “Code Visualization” in Figure 3-1)

(KELLY; TOLVANEN, 2008). In these cases, the models, are typically not used for

implementing, debugging, or testing and have high maintenance and update costs

(KELLY; TOLVANEN, 2008).

Only Coding Code Visualization Model-oriented

Model

Code Code Code

Model

Finalized
Product

Finalized
Product

Finalized
Product

Separate
Model and Code

Model

Code

Finalized
Product

64

In the Model-Driven Development (MDD) paradigm, presented in the right part of

Figure 3-1, models are the primary artifacts in the development process – they are

used to specify, simulate, verify, test and generate the system to be built (AMELLER,

2014). The benefits of using MDD are a higher abstraction level and an improved

platform independence (AMELLER, 2014). Instead of requiring developers to use a

programming language spelling out how a system is implemented, the MDD allows

them to use models for specifying what system functionality is required and what

architecture is to be used (ATKINSON; KUHNE, 2003). The aim of MDD is to achieve

the same degree of automation for issues which today are very complex when dealt

with manually, such as system persistence, interoperability, distribution, etc.

(ATKINSON; KUHNE, 2003).

MDD is a software engineering approach consisting of the application of models and

model technologies to raise the level of abstraction at which developers create and

evolve software, with the goal of both simplifying (making easier) and formalizing

(standardizing, so that automation is possible) the various activities and tasks that

comprise the software life cycle (HAILPERN; TARR, 2006). According to (MELLOR;

CLARK; FUTAGAMI, 2003), “model-driven development is simply the notion that we

can construct a model of a system that we can then transform into the real thing”.

The Object Management Group (OMG) defines a particular realization of the Model-

Driven Development (MDD) using the term Model-Driven Architecture (MDA).

Although the MDA represents just one view of MDD, it is the most prevalent at

present (HAILPERN; TARR, 2006) and its models and transformations have become

the de facto standard in MDD approaches (AMELLER, 2014). These main MDA

concepts (models and transformations) are presented in section 3.2.

3.2 MODEL-DRIVEN ARCHITECTURE

The Model-Driven Architecture (MDA), specified in (OBJECT MANAGEMENT

GROUP, 2003), is a standard proposed by the OMG. According to (FRANKEL,

2003), “MDA is about using modeling languages as programming languages rather

than merely as design languages”. Aiming portability, interoperability, and reusability

65

through architectural separation of concerns, the MDA provides an approach for, and

enables tools to be provided for: specifying a system independently of the platform

that supports it, specifying platforms, choosing a particular platform for the system,

and transforming the system specification into one for a particular platform (OBJECT

MANAGEMENT GROUP, 2003).

According to the MDA specification (OBJECT MANAGEMENT GROUP, 2003), the

MDA promise is to allow the definition of machine-readable application and data

models that allow long-term flexibility of: implementation, integration, maintenance,

testing, and simulation.

With MDA, the designer begins with a high-level model that abstracts from all kinds of

platform issues, and iteratively transforms the model to more concrete models,

introducing more and more platform-specific information (ASSMAN; ZSCHALER;

WAGNER, 2006). A visual representation of the MDA models and transformation,

which are the MDA main concepts, can be seen in Figure 3-2.

Figure 3-2 – The Model Driven Architecture models and transformations

In this section, we present the MDA models (subsection 3.2.1) and the model

transformations (subsection 3.2.2), which is the process of converting one model to

another model of the same system (OBJECT MANAGEMENT GROUP, 2003). The

specific transformation from a Platform Independent Model to a Platform Specific

Model can be seen in Figure 3-2. It is important to mention that most of the text from

Platform Specific Model
(PSM)

Computational
Independet Model (CIM)

Model Transformation

Tr
ac

ea
b

ili
ty

 b
et

w
ee

n
 m

o
d

el
s

Platform Independet
Model (PIM)

66

this section is extracted and adapted from the MDA Guide version 1.0.1 (OBJECT

MANAGEMENT GROUP, 2003).

3.2.1 MDA Viewpoints and Models: the Separation of Concerns

A viewpoint on a system is a technique for abstraction using a selected set of

architectural concepts and structuring rules in order to focus on particular concerns

within that system (OBJECT MANAGEMENT GROUP, 2003). The Model-Driven

Architecture specifies three viewpoints on a system: a computation independent

viewpoint, a platform independent viewpoint, and a platform specific viewpoint

(OBJECT MANAGEMENT GROUP, 2003) – each one of these are directly related to

a specific type of MDA model.

3.2.1.1 The Computation Independent Model (CIM)

According to (OBJECT MANAGEMENT GROUP, 2003), a Computation Independent

Model (CIM) is a view of a system from the computation independent viewpoint. A

CIM does not show details of the structure of systems – typically, such a model is

independent of how the system is implemented. A CIM is sometimes called a domain

model or a business model. A domain model is the type of model that describes the

environment of a system (ASSMAN; ZSCHALER; WAGNER, 2006). A vocabulary

that is familiar to the practitioners of the domain in question is used in its specification

(OBJECT MANAGEMENT GROUP, 2003).

The CIM plays an important role in bridging the gap between, on the one hand, those

that are experts about the domain and its requirements, and, on the other hand,

those that are experts in the design and construction of the artifacts that together

satisfy the domain requirements (OBJECT MANAGEMENT GROUP, 2003).

A CIM is a model of a system that shows the system in the environment in which it

will operate, and thus helps in presenting exactly what the system is expected to do.

In an MDA specification of a system, the CIM requirements should be traceable to

the Platform Independent Model (PIM) and the Platform-Specific Model (PSM)

67

constructs that implement them, and vice versa (OBJECT MANAGEMENT GROUP,

2003). Making a relation with the traditional software engineering method, this model

can be considered a typical analysis model, since it is expressed in terms of the

problem domain (ASSMAN; ZSCHALER; WAGNER, 2006) – the analysis model has

as critical point the objective to provide a common understanding of the domain

under study (GAŠEVIĆ; KAVIANI; MILANOVIĆ, 2009), just like the CIM. This

common comprehension must then be propagated to the models that refer to the

CIM.

3.2.1.2 The Platform Independent Model (PIM)

A Platform Independent Model (PIM) is a view of a system from the platform

independent viewpoint. A PIM exhibits a specified degree of platform independence

in order to be suitable for the use in a number of different platforms of similar type.

The PIM describes the system, but it does not show details of the system’s use on

the platform (OBJECT MANAGEMENT GROUP, 2003). I.e., the PIM is the high level

abstract design of the system (DURAK; MA MUTYA ICIO LU; O U T N,

2005).

It is important to note, however, that platform independence is a relative term

(FRANKEL, 2003). The MDA Guide defines the platform independence as a quality,

which a model may exhibit – one model might only assume availability of features of

a very general type of platform, while another model might assume the availability of

a particular set of tools (OBJECT MANAGEMENT GROUP, 2003). When asserting

that a language or a model is platform-independent, you must specify the platform

technologies of which it is independent (FRANKEL, 2003).

According to (FRANKEL, 2003), at this level of abstraction, these assumptions are

not severe enough to bind the models to specific implementation technology, but they

do impose constraints on the choice of implementation. A PIM reflects technical

design decisions for a given implementation, and then it can be seen as a Design

Model of the classical software engineering method.

68

3.2.1.3 The Platform Specific Model (PSM)

The separation of the PIM to the Platform-Specific Model (PSM) is a key concept of

the OMG’s MDA (STAHL et al., 2006). A PSM is a view of a system from the platform

specific viewpoint. A PSM combines the specifications in the PIM with the details that

specify how that system uses a particular type of platform (OBJECT MANAGEMENT

GROUP, 2003). According to (STAHL et al., 2006), the PIM abstracts from

technological details, whereas the PSM uses the concepts of a platform to describe a

system. More precisely, a PSM is a computational model that is specific to some

information-formatting technology, programming language, distributed component

middleware, or messaging middleware (FRANKEL, 2003).

A PSM may provide more or less details, depending on its purpose: it will be an

implementation if it provides all the information needed to construct a system and to

put it into operation, or it may act as a PIM that is used for further refinement to a

PSM (OBJECT MANAGEMENT GROUP, 2003). In this last case, platform

information is added to the PIM in successive refinements, which are called model

weaving in (ASSMAN; ZSCHALER; WAGNER, 2006), resulting in a PSM that can be

directly implemented. To be precise, either this model can be executed directly, or it

is used to generate code (ASSMAN; ZSCHALER; WAGNER, 2006). Hence, this

model has a close relation to the implementation stage of the classical software

engineering method.

Figure 3-3 represents, in summary, the different MDA models related to the

separation of concerns available in the standard, where the CIM can be directly

related to an Analysis Model, the PIM can be related to a Design Model, and the

PSM can be related to the Implementation.

69

Figure 3-3 – Separation of concerns via different types of MDA models

3.2.2 MDA Model Transformations

Model transformations – defined as the process of converting one model to another

model of the same system – form a key part of MDA (OBJECT MANAGEMENT

GROUP, 2003). Transformations map models to the respective next level, be it

further models or source code (STAHL et al., 2006). Figure 3-4 illustrates the MDA

pattern, by which a PIM is transformed to a PSM. The represented transformation

can be done manually, with computer assistance, or automatically – transformations

can even use different mixtures of manual and automatic transformations.

Platform Specific Model
(PSM)

Platform Independet
Model (PIM)

Computational
Independet Model (CIM)

Analysis Model

Design Model

Implementation
Model

70

Figure 3-4 – Model transformation. From (OBJECT MANAGEMENT GROUP, 2003)

As stated in the MDA Guide, the drawing presented in Figure 3-4 is intended to be

suggestive and generic (OBJECT MANAGEMENT GROUP, 2003). The empty box in

Figure 3-4 represents all other information that can be combined to the PIM in the

transformation to produce a PSM. The guide states that there are many ways in

which such a transformation may be done. By instance, the guide describes the

following model transformation approaches: marking, metamodel transformation,

model transformation, pattern application, and model merging (OBJECT

MANAGEMENT GROUP, 2003). In addition to the PIM and the platform specific

marks, additional information can be supplied to guide the transformation.

3.3 ONTOLOGY-BASED DEVELOPMENT OF APPLICATIONS

According to (KALIBATIENE; VASILECAS; GUIZZARDI, 2009), in knowledge-based

information systems development, a number of authors (GUARINO, 1998; JARRAR;

DEMEY; MEERSMAN, 2003; WAND; STOREY; WEBER, 1999) suggest to represent

knowledge by means of domain ontologies, since the semantic content expressed by

ontologies can be transformed into information systems artifacts.

According to (ASSMAN; ZSCHALER; WAGNER, 2006), the division of domain

models into platform-aware subject areas (CIM, PIM, and PSM) is a structuring

principle that can be applied to the ontology world. The same authors claim that,

71

because the principle has been invented for the reuse of models in product families

(CIM and PIM are reused in many PIMs and PSMs, respectively), it could enable

reuse of abstract ontologies in ontology families (ASSMAN; ZSCHALER; WAGNER,

2006). The fact that domains are not always disjoint, but often overlap, suggests that

abstract ontologies should be developed that can be shared between domains and

are refined towards concrete ontologies by adding the differences of domains

(ASSMAN; ZSCHALER; WAGNER, 2006).

In order to represent a complex domain, one should rely on engineering tools (e.g.,

design patterns), modeling languages, and methodologies that are based on well-

founded ontological theories in the philosophical sense (e.g., (BUREK et al., 2006)

and (FIELDING et al., 2004)) (GUIZZARDI et al., 2009). A preferable form to create a

domain computational ontology (e.g., an OWL ontology) with improved semantics is

by making use of a rigid ontology engineering like the one presented in (GUIZZARDI,

2007), represented in Figure 3-5, with three basic phases.

Figure 3-5 – The three-phased ontology engineering presented in (GUIZZARDI, 2007)

In a first phase, a conceptual modeling phase (detailed in subsection 3.3.1), highly

expressive languages should be used to create strongly axiomatized ontologies that

approximate as well as possible to the ideal ontology of the domain. The focus of

these languages is on representation adequacy, since the resulting specifications are

intended to be used by humans in tasks such as communication, domain analysis

Computational Ontology

Design Stage

Ontology Reference
Model

• Domain

comprehension

• Maximum expressivity

• Platform restrictions

• Computational

Restrictions:
• Decidability

• Tractability, etc.

72

and problem-solving (GUIZZARDI, 2007). OntoUML is proposed in (GUIZZARDI,

2005) as an ontologically well-founded profile of the Unified Modeling Language

(UML) to be a language used in this step. Making a relation with the MDA context,

(ASSMAN; ZSCHALER; WAGNER, 2006) defends that the domain model of a CIM

can be selected to be a domain ontology. As the CIM intends to represent a domain,

the ontology must be as expressive as possible. Hence, an ontology reference model

is the best option.

Once users have already agreed on a common conceptualization, versions of a

reference ontology can be created as the objective of the Ontology Engineering (its

last phase). These versions have been named in the literature lightweight ontologies.

Contrary to reference ontologies, lightweight ontologies are not focused on

representation adequacy, but are designed with the focus on guaranteeing desirable

computational properties (GUIZZARDI, 2007). The Web Ontology Language (OWL)

is an example of a language suitable for lightweight ontologies. This type of

ontologies is addressed in subsection 3.3.2.

In order to achieve this objective, an intermediate phase is necessary in the Ontology

Engineering: a phase to bridge the gap between the conceptual modeling of

reference ontologies and the coding of these ontologies in terms of specific

lightweight ontology languages. Issues that should be addressed in such a phase

(presented in subsection 3.3.3) are, for instance, determining how to deal with the

difference in the expressivity of the languages that should be used in each of these

phases (GUIZZARDI, 2007).

A clear relation can be made between the MDA models and transformations,

presented in section 3.2, and the different ontology models presented in the rigid

ontology engineering defended by (GUIZZARDI, 2007). This relation is represented

in Figure 3-6. The use of an MDA approach combined with this rigid ontology

engineering may result in a combination of the practical benefits from the MDA

(automation, easy maintenance, etc.) to the semantic benefits from the use of

ontologies.

73

Figure 3-6 – Association between MDA models and different ontology models

In special, the advantages of employing ontology models as analysis models in a

software development method are highlighted in (ASSMAN; ZSCHALER; WAGNER,

2006). They state that, firstly, the use of such models should increase the reliability of

software products since these models are well engineered, often used, and hence

trustworthy, avoiding the risks of a self-made domain analysis. Secondly, ontologies

as analysis models offer a more common vocabulary for the software architect,

customer, and domain expert. This should improve the understanding of the parties

that order and construct software. Then, the standardization of the ontologies

improves the interoperability of applications, because applications that use the

ontology contain a common core of common vocabulary. Finally, they state that

domain and business ontologies can be reused in many software products. In

particular, these types of ontologies may form the core of a software product line,

around which many products are grouped, and from which they reuse domain

terminology. Overall, this improves reuse in the software process (ASSMAN;

ZSCHALER; WAGNER, 2006).

In conclusion, it is important to mention that the relation represented in Figure 3-6

between the MDA models and the ontology artifacts from the different phases of the

ontology engineering defended by (GUIZZARDI, 2007), is not a consensus among

specialists. With that association, we intended to illustrate the use of different types

of ontology artifacts in a MDD context. For more precise definitions in this context, we

recommend (ASSMAN; ZSCHALER; WAGNER, 2006; ATKINSON; KUHNE, 2003;

Computational Ontology

Ontology Reference
Model

Platform Specific Model
(PSM)

Platform Independet
Model (PIM)

Computational
Independet Model (CIM)

Design Model

74

GUIZZARDI, 2007) – which, by the way, do not necessarily have a same point of

view about this issue.

In the next three subsections, we are going to present the main characteristics of,

respectively, Ontology Reference Models (subsection 3.3.1), Computational

Ontologies (subsection 3.3.2), and the Ontology Design stage (subsection 3.3.3).

3.3.1 Ontology Reference Models

To create a conceptual ontology model (i.e., an ontology reference model) that

correctly reflects the intended domain and that can be used by different agents

(people, groups of people and machines) to interoperate, a rigid development

method must be used. The ITU-T G.800 Ontology Reference Model uses the

modeling methodology presented in (BARCELOS; GUIZZARDI; GARCIA, 2013),

which is partially based on the Ontological Approach to Domain Engineering

presented in (FALBO; GUIZZARDI; DUARTE, 2002). In this method, shown in Figure

3-7, the steps of the Ontological Approach to Domain Engineering are used with

different level of rigor, abstracting non-essential elements to the modeling context.

Figure 3-7 – Development method of ontology reference models. From (BARCELOS;

GUIZZARDI; GARCIA, 2013)

The scope definition is the first step of the iterative methodology. The ITU-T G.800

Ontology Reference Model has the ITU-T recommendation itself as scope, with a

focus on the defined architectural components.

Scope
Definition

Ontology
Formalization

Syntatic
Validation

Anti-Pattern
Treatment

Simulation

Information
Acquisition

Conceptualization

Ontology
Reference

Model

75

The second step of the methodology is the ontology capture, where the sub activities

of information acquisition and conceptualization are conducted. In order to acquire

information, a domain study is necessary for the modeler to learn about the subject to

be modeled. For the ITU-T G.800 Ontology, besides the recommendation itself, other

ITU-T recommendations were used, as well as specifications of specific multi-layer

technologies. Conceptualizations are immaterial entities that only exist in the mind of

the user or a community of users. In order to be documented, they must be captured

in terms of some concrete artifact. This implies that a language is necessary for

representing them in a concise, complete, and unambiguous way (BARCELOS;

GUIZZARDI; GARCIA, 2013; GUIZZARDI, 2007).

The ontology formalization step consists in the formalization, through diagrams, of

the domain model. In order to represent correctly a domain, an expressive language

must be used. This language should be able to represent information despite of

implementation technologies or limitations.

The ontologically well-founded modeling language used to build the ITU-T G.800

Ontology Reference Model is a version of UML 2.0 first proposed in (GUIZZARDI,

2005) and, thereafter, dubbed OntoUML. OntoUML real-world semantics is defined in

terms of a number of ontological theories, such as theory of parts, of wholes, types

and instantiation, identity, dependencies, unity, etc. OntoUML has been successfully

employed in a number of industrial projects in several different domains

(ALBUQUERQUE; GUIZZARDI, 2013), ranging from Petroleum and Gas

(GUIZZARDI et al., 2009) to News Information Management (CAROLO;

BURLAMAQUI, 2011). In fact, it has been considered as a possible candidate for

contributing to the OMG Semantic Information Model Federation (SIMF)

standardization request for proposal4 after a significant number of successful

applications in real-world engineering settings (BAUMAN, 2009; U.S. DEPARTMENT

OF DEFENSE, 2011). In special, regarding the modeling of multi-layer networks,

OntoUML has already proven to be able to identify ontological deficiencies in the

Recommendation ITU-T G.805, an ITU-T G.800 predecessor, in (BARCELOS et al.,

2011). In addition, recently, in (BARCELOS et al., 2016), OntoUML was used to

4
 http://www.omgwiki.org/architecture-ecosystem

76

demonstrate the importance of truly ontological distinctions for standardizations using

the same network recommendation as example.

As graphical languages are not always capable of correctly representing the domain,

Object Constraint Language (OCL) rules were also used in the ITU-T G.800 Ontology

Reference Model for the specification of restriction and derivation rules.

As we intend to create a domain ontology that is a reference model, it is important to

ensure that the final version of the created model allows only instantiation as desired.

That is, the user can only create instances that are possible in the real world. To do

this, the methodology presented in Figure 3-7 has focus on the validation of

information modeled at the diagrams. Two main types of validation are used: (1) the

syntactic one, which guarantees that the OntoUML model created is syntactically

correct, i.e., that the entities created are according to the languages’ metamodel; and

(2) the semantic validation, where the objective is to avoid syntactically correct

diagrams that can be instantiated to generate undesired world of affairs

(BARCELOS; GUIZZARDI; GARCIA, 2013).

The OntoUML Lightweight Editor (OLED) (GUERSON et al., 2015) provides the

syntactical validation. The semantic validation does not ensure that there is no

impossible state of affairs allowed by the ontology. In fact, it does ensure that its

occurrences are reduced. The semantic validation is done in two steps: the first step

is an anti-patterns identification and treatment, and the second step is a simulation

using Alloy (SALES; BARCELOS; GUIZZARDI, 2012).

As stated in (SALES; BARCELOS; GUIZZARDI, 2012), an anti-pattern is a recurrent

decision for a specific scenario that usually results in more negative consequences

than positive ones. The OLED provides a verification tool to check occurrences of

anti-patterns (GUIZZARDI; SALES, 2014; SALES; BARCELOS; GUIZZARDI, 2012).

Simulation can help the modeler to find inconsistencies and unwanted worlds of

affairs allowed by the model. The verification tool can translate the model to Alloy

(JACKSON, 2002). Alloy is a model-checking language that can be used to simulate

possible worlds based on the formalization provided. This kind of validation

guarantees the validity of modeled information in an specific context, thus its usage

significantly improves model quality as the user can make assertions and check if

77

these are valid or not (GUIZZARDI; SALES, 2014; SALES; BARCELOS;

GUIZZARDI, 2012).

3.3.2 Computational Ontologies

In 2001, (BERNERS-LEE; HENDLER; LASSILA, 2001) proposed to handle the

interoperability problem in an open and heterogeneous computing environment, the

Web, by giving more attention to the semantics of terms, thus creating the semantic

web. The autonomic management research community has adopted it as an

important technology in machine-to-machine interaction. Semantic interoperability is

a research vector for autonomic management, since networks and its services

continue to grow in number of components and complexity, as well as the global data

interchange demand. In this context, the usage of knowledge-based systems plays a

key role. In fact, some authors, like (AGOULMINE et al., 2006) believe that “the

knowledge is the most important part of the autonomic-system”.

Knowledge-based systems are built on an architecture with two main components: a

knowledge base, which must be built with a formalization language, and a reasoning

engine – which may be attached to an ontology language or not.

According to (HORROCKS, 2008), semantic web research already had a major

impact on the development and deployment of ontology languages and tools – now

often called semantic web technologies. These technologies have rapidly become a

de facto standard for ontology development, and are seeing increasing use not only

in research labs, but also in large scale IT projects, particularly those where the

schema plays an important role, where information has high value, and where

information may be incomplete (HORROCKS, 2008).

There are diverse knowledge representation paradigms underlying ontology

implementation languages: frames, Description Logics (DL), first (and second) order

logic, semantic networks, etc. This fact makes even more important the correct

selection of the language in which the ontology is to be implemented (GÓMEZ-

PÉREZ; FERNÁNDEZ-LÓPEZ; CORCHO, 2004). During the years, many languages

have been used to represent domain ontologies. Examples include Predicate

78

Calculus, KIF, Ontolingua, UML, EER, LINGO, ORM, CML, DAML+OIL, F-Logic, and

OWL (GUIZZARDI, 2007). After considering some differences between two modeling

paradigms proposed for the semantic web, (PATEL-SCHNEIDER; HORROCKS,

2006) argue that, although some of the characteristics of Datalog languages have

their utility, the open environment of the semantic web is better served by standard

logics.

With the ascension of the semantic web, the standardized representation languages

for this paradigm are frequently employed to build reusable and machine-readable

computational knowledge bases. The World Wide Web Consortium (W3C),

standardization organ for the semantic web, has standardized languages with

different expressivity and that can be used on knowledge bases; the most expressive

one is the OWL, which is going to be presented in subsection 3.3.2.1.

3.3.2.1 OWL: The Web Ontology Language

Although already recognizable as ontology languages (HORROCKS, 2008), the

expressivities of RDF and RDF-S are deliberately very limited: RDF is limited to

binary ground predicates, and RDF-S is limited to a subclass hierarchy and a

property hierarchy, with domain and range definitions of these properties

(ANTONIOU; HARMELEN, 2009). These languages do not, for example, include the

ability to describe cardinality constraints, a feature found in most conceptual

modeling languages, or the ability to describe even a simple conjunction of classes

(HORROCKS, 2008). From this lack of expressivity, the Ontology Web Language,

known by its short name OWL, was born. OWL – currently in its version 2 (HITZLER

et al., 2012) – is the W3C’s current standard for knowledge representation on the

semantic web.

The Assertional Box (ABox) of the OWL ontology is its part that deals with the

individuals and their relationships, while the OWL class structuring is named the

Terminological Box (TBox). According to (HORROCKS, 2008), the term ontology is

often used to refer just to a conceptual schema or TBox, but, in OWL, an ontology

can consist of a mixture of both TBox and ABox axioms. In Description Logics, the

combination of ABox and TBox is known as a knowledge base (HORROCKS, 2008).

79

OWL adopts the Open World Assumption (OWA) (PATEL-SCHNEIDER;

HORROCKS, 2006), in which, when there is no assertion about something, it is

considered as unknown, not as true or false. OWA enables the existence of

incomplete or partial knowledge on knowledge bases. The knowledge

incompleteness can have different results in knowledge-based systems, but it is often

difficult to visualize and correct (i.e., complete). Using the OWA, the OWL axioms

behave like inference rules rather than database constraints. OWL also makes no

Unique Name Assumption (UNA) – i.e., in OWL it is possible to assert (or infer) that

two different names do not refer to the same individual (HORROCKS, 2008).

According to (HORROCKS, 2008), unlike database management systems, ontology

tools typically don not reject updates that result in the ontology becoming wholly or

partly inconsistent, they simply provide a suitable warning.

A key feature of OWL is that its semantics are compatible with the model theoretic

semantics of the SROIQ Description Logic – a decidable fragment of first order logic

with useful computational properties (HORROCKS, 2008; W3C OWL WORKING

GROUP, 2012). SROIQ logics include complex roles, reflexive, antisymmetric, and

irreflexive roles, disjoint roles, a universal role, negated role assertions in Aboxes,

and qualified number restrictions (HORROCKS; KUTZ; SATTLER, 2006).

As well as giving a precise and unambiguous meaning to descriptions of the domain,

the close connection between OWL and the Description Logics allows that the

extensive Description Logics literature and implementation experience can be directly

exploited by OWL tools (W3C OWL WORKING GROUP, 2012). It also allows for the

development of reasoning algorithms that can provide correct answers to arbitrarily

complex queries about the domain. An important aspect of Description Logic

research has been the design of such algorithms and their implementation in (highly

optimized) reasoning systems that can be used by applications to help them

“understand” the knowledge captured in an ontology based on Description Logics

(HORROCKS, 2008). These reasoning mechanisms associated with the OWL

language are presented in subsection 3.3.2.2.

80

3.3.2.2 Reasoning Mechanisms

Building and maintaining ontologies, especially the very large and complex ones, are

very costly and time consuming, and providing tools and services to support this

ontology engineering process is of crucial importance to both the cost and the quality

of the resulting ontology. Therefore, ontology reasoning plays a central role in both

the development of high quality ontologies, and the deployment of ontologies in

applications (HORROCKS, 2008).

In (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009), the authors use the Numbernut5

definition of reasoning: “a process of using known facts and/or assumptions in order

to derive a conclusion or make an inference”. It is a complex process involving a

number of abilities, including association, categorization, cause and effect, problem

solving, organization, generalization, and judgment of safety (GAŠEVIĆ; DJURIĆ;

DEVEDŽIĆ, 2009).

Reasoning also refers, more specifically, to the act or process of using one’s reason

to derive one statement or assertion (the conclusion) from a prior group of

statements or assertions (the premises) by means of a given method (GAŠEVIĆ;

DJURIĆ; DEVEDŽIĆ, 2009). To achieve reasoning in semantic web applications,

semantic web researchers and developers must deploy an inference engine that can

derive additional statements that are in their knowledge bases (as well as in the

associated ontologies) but that are not expressed explicitly. The inference engine can

invoke query answering; inference explanation; common set-theory operations of

union, intersection, and difference; predicate logics inferencing; Description Logics

checking for satisfiability, subsumption, consistency, and instance-of relationships;

etc. (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009).

In spite of the complexity of reasoning with OWL ontologies, highly optimized

Description Logics reasoning systems such as FaCT++, Racer, and Pellet have

proved to be very effective in practice. In fact, the availability of such reasoning

systems was one of the key motivations for basing OWL on Description Logics

(HORROCKS, 2008). Reasoning is also important when ontologies are deployed in

5
 http://www.numbernut.com/glossary/r.shtml

81

applications: it is needed in order to answer standard data retrieval queries as well as

to answer conceptual queries about the structure of the domain (HORROCKS, 2008).

Finally, an important point that must be addressed is that a central issue for

Knowledge Representation formalisms is the tradeoff between expressive power and

reasoning mechanisms (LEVESQUE; BRACHMAN, 1985): the more expressive a

language is, the more complex results to create an inference engine with the

corresponding deductive mechanisms (GÓMEZ-PÉREZ; FERNÁNDEZ-LÓPEZ;

CORCHO, 2004).

3.3.3 Design Stage

Design bridges the conceptual modeling and the implementation. In the Design

Stage, the conceptual specification is transformed in a design specification – a

design model – by taking into consideration a number of issues ranging from

architectural styles, non-functional quality criteria to be maximized, target

implementation environment, etc. (GUIZZARDI, 2007).

A conceptual specification can potentially be used to produce a number of (even

radically) different designs (GUIZZARDI, 2007). In addition, by taking into

consideration a number of implementation issues, from the same design, a number

of different implementations can be produced from a design model (GUIZZARDI;

WAGNER, 2012; GUIZZARDI, 2007). This situation is represented in Figure 3-8.

82

Figure 3-8 – Different computational ontologies considering different design issues

In Figure 3-8, the dotted lines indicate a transformation with human assistance from a

unique conceptual model to different design models. According to (GUIZZARDI;

WAGNER, 2012), it should be clear that a conceptual model, which is a solution-

independent description of a domain, cannot be automatically transformed into a

computational specification without human assistance. The solid lines in Figure 3-8

indicate possible automated transformations from the design models to

computational models.

As can be seen from Figure 3-6, we can make an association from the MDA models

and the ontology artifacts from ontology engineering. In the same way we associate

models, we can also make an association between the MDA transformation between

the PIM to the PSM model and the transformation from a design model to a

computational ontology. Regarding this, the OntoUML and OCL to OWL and SWRL

(OOTOS) transformation had its first version proposed in (BARCELOS et al., 2013).

This transformation provides rigid, formal, and clear design considerations and

contributes to the creation of OWL files with improved semantics to be used for

knowledge representation, communication, interoperation, and reasoning on

computational applications.

Design Model Design Model

Unique Ontology
Reference Model

83

3.3.3.1 OOTOS: Transformation from OntoUML and OCL to OWL and SWRL

An example of an automated transformation from a conceptual modeling language to

a lightweight ontology language can be found in (BARCELOS et al., 2013). This

transformation aims to bridge the expressivity gap between these languages through

a Model Driven Architecture automated transformation from OntoUML to OWL with

SWRL rules that contributes to (i) make easier the OWL creation from OntoUML, (ii)

eliminate human errors in this process, (iii) improve the resultant OWL ontology

semantics. A newer version of the transformation presented in (BARCELOS et al.,

2013) can be found in the OLED editor (GUERSON et al., 2015). This newer version,

called OntoUML and OCL to OWL and SWRL (OOTOS) transformation, also

implements an OCL to SWRL transformation, improving the semantics of the

resulting computational ontology.

The MDA specification defines model transformation as “the process of converting

one model to another model of the same system” (OBJECT MANAGEMENT

GROUP, 2003). More specifically, the OOTOS transformation can be classified as an

MDA metamodel transformation, which is a model transformation whose specification

is in terms of a mapping between metamodels (OBJECT MANAGEMENT GROUP,

2003). MDA transformations can be done manually, with computer assistance, or

automatically – OOTOS is inserted into the third case, as no human intervention is

necessary during the transformation process.

Figure 3-9 represents the OOTOS transformation inside two different contexts: an

MDA context and the hierarchy of model levels (ATKINSON; KUHNE, 2003).

Figure 3-9 – Transformation's conceptual view

OOTOS
OntoUML + OCL

Metamodel

OntoUML + OCL
Model

OWL + SWRL
Metamodel

OWL + SWRL
Model

M2
Level

M1
Level

instance of

PIM PSM

Transformation

84

Considering the hierarchy of model levels in Figure 3-9, even though the OOTOS

transforms models (which are located in the M1 level – the domain model level), it

can be noted that the OOTOS transformation is specified in terms of the M2 level,

which is the metamodel level. Once models are instances of their metamodels, if

there is a mapping between the concepts of the metamodels (the source and the

target language’s metamodels), any model (i.e., models about any domains) can be

transformed using the same transformation. I.e., transformations in the metamodel

level (M2 level), just like the OOTOS, are reusable across different domains, making

them a more permanent solution. In other words, every time a specific (domain

dependent) transformation between models is performed, this transformation is an

instance of a more generic transformation that was previously defined in the M2 level

and that is generic (domain independent). Note that M2 transformations (language-

dependent) are more reusable than M1 transformations (domain-dependent), which,

by its turn, are more reusable than transformations of user data (sometimes called

the M0 level) (ATKINSON; KUHNE, 2003).

In the MDA context in Figure 3-9, the OntoUML (design) model with OCL rules can

be seen as a PIM, while the OWL with SWRL rules model can be seen as a PSM. A

representation of the OOTOS as an MDA transformation can be seen in Figure 3-10.

In this figure, the part (A) represents the MDA generic transformation pattern just like

specified in (OBJECT MANAGEMENT GROUP, 2003) (the specification figure 3-2).

The part (B) of the figure is the same representation, but now populated with the

OOTOS specific information.

85

Figure 3-10 – OOTOS as an MDA transformation. Adapted from (OBJECT MANAGEMENT

GROUP, 2003)

An intrinsic characteristic of transformations from highly expressive modeling

languages (with focus on knowledge representation) to computational representation

languages (that must be decidable, tractable, etc.) is the loss of expressivity. The

difference of expressiveness results in incompatibilities between some operators of

the languages. I.e., not all constructs and operators from one language can be

transformed to the constructs and operators of the other language. Considering the

whole language constructs and operators, information loss is unavoidable in such

transformation process.

However, information compatibility can be completely guaranteed when dealing with

subsets of the languages, i.e., for some portions of the languages, one can

guarantee no loss of information – a mapping from the languages to be transformed

must, then, be defined and made explicit. Hence, in the OOTOS, a subset of

OntoUML and OCL (the source languages) is mapped to a subset of OWL and

SWRL (the target languages). A rigid design process may allow the user to know

which is the information that is lost between the languages’ transformation, as well as

which parts of its input can be transformed correctly. The user must also be

previously informed which operators are allowed and which are not, and how he or

she can get around this limitation, possibly modifying its input structure.

(A) MDA Transformation Pattern (B) OOTOS Transformation

OntoUML
and OCL

Model (PIM)

OWL and
SWRL Model

(PSM)
OWL and SWRL

Metamodels

OOTOS’s
Specification

OntoUML and OCL
Metamodels

86

4 WELL-FOUNDED ONTOLOGY REFERENCE MODEL FOR

TECHNOLOGY-INDEPENDENT MULTI-LAYER

TRANSPORT NETWORKS

As cleverly pointed in (MCGUIRE; BONENFANT, 1998), Niccolò Machiavelli, in his

masterpiece The Prince, observed that “who has not first laid his foundations may be

able with great ability to lay them afterwards, but they will be laid with trouble to the

architect and danger to the building”. To the network architect, standard

specifications lay the foundations for the construction of telecommunications

networks, which are composed of a myriad of technologies (MCGUIRE;

BONENFANT, 1998).

Regarding the importance of standardizations for the telecommunications’

community, this chapter begins with a discussion – adapted from (BARCELOS et al.,

2016) – on the importance of using truly ontological distinctions in standardizations,

in general, and, more specifically, in the ITU-T G.800. In section 4.2, we present

more details about the Recommendation ITU-T G.800, which was modeled to create

the Ontology Reference Model for transport networks. The referred model is

presented in section 4.3.

4.1 TRULY ONTOLOGICAL DISTINCTIONS FOR STANDARDIZATIONS

According to the Oxford Dictionaries6, a standard is “an idea or thing used as a

measure, norm, or model in comparative evaluations”. That is, by means of

comparative evaluations, a standard is something used by human beings to provide

a unique or equal interpretation over something in order to interoperate,

communicate or deal with this thing. Groups of people usually define standards in

order to represent a community consensus. These standards are typically defined in

informal specifications – like the ones in natural language (e.g. English or Chinese) –

6
 http://www.oxforddictionaries.com/us/definition/american_english/standard?q=standard

87

or in formal specifications, which are the specifications that use mathematical-based

notation (usually logic-based), in a diagrammatic form or not, to create descriptions in

a more precise way (BARCELOS et al., 2016).

Particularly for the telecommunications’ community, the importance of standards is

notorious (BARCELOS et al., 2016; MCGUIRE; BONENFANT, 1998). The complexity

of the knowledge field is reflected in the large number of standards bodies – e.g.,

ITU-T, IEEE, TM Forum, and Optical Internetworking Forum (OIF), among others. In

this field, a huge number of protocols can only be used when standardized. This vast

number is due to the existence of a central necessity for interoperation between

telecommunications equipment vendors (i.e., equipment must interoperate for an

appropriate communication). Incompatibilities can result in loss of data or absence of

communication and, in both cases, probable serious financial losses (BARCELOS et

al., 2016).

The Recommendation ITU-T G.800 (ITU-T, 2012a) is the standard that provides a set

of constructs (definitions and diagrammatic symbols) and the semantics that can be

used to describe the functional architecture of multi-layer transport networks in a

technology-independent way. The generic functional architecture defined in the

Recommendation ITU-T G.800 provides the basis for a harmonized set of functional

architecture recommendations for specific layer network technologies. This set

includes recommendations that use connection-oriented circuit switching or

connection-oriented packet switching, and connectionless packet switching (e.g. ITU-

T G.803, ITU-T G.872, ITU-T I.326, ITU-T G.8010/Y.1306), and a corresponding set

of recommendations for management, performance analysis, and equipment

specifications (ITU-T, 2012a). In practice, this standard unifies concepts from the

ITU-T Recommendation G.805 (ITU-T, 2000b), for connection-oriented networks, and

from the Recommendation ITU-T G.809 (ITU-T, 2003), for connectionless networks.

Even though the ITU-T Recommendation G.805 is defined using both natural

language and a formal specification in Z, the ITU-T Rec. G.800 is only defined in

natural language. Despite the visible importance of the ITU-T G.800

Recommendation, its text does not contemplate an adequate and precise information

model for the represented domain concepts. According to (GUIZZARDI, 2005), the

suitability of a language to create specifications in a given domain depends on how

88

“close” the structure of the specifications constructed using that language resemble

the structure of the domain abstractions they are supposed to represent. Further,

(GUIZZARDI, 2005) also presents that what is referred by the structure of a language

can be accessed via the description of the specification of the conceptual model

underlying the language, i.e., a description of the worldview embedded in the

language’s modeling primitives. In (MILTON; KAZMIERCZAK, 2008), this is called

the ontological metamodel of the language, or simply, the ontology of the language

(BARCELOS et al., 2016).

Natural languages do not have a well-defined underlying conceptual model, hence,

these languages are notoriously ambiguous (KOOIJ, 1973). This happens because

this category of languages evolved by cognitive and social demand through the

centuries. The usage of natural languages in standardizations may lead to a

document with a series of deficiencies, undermining its comprehension and use in

interoperation, in decision-making, or in problem solutions (BARCELOS et al., 2016).

Figure 4-1 presents the different types of ontological deficiencies that can occur in

standards.

Figure 4-1 – Ontological deficiencies. From (BARCELOS et al., 2011), based on (FETTKE;

LOOS, 2005; GUIZZARDI, 2005)

A recommendation with ontological deficiencies will propagate these problems to all

other recommendations (specifications, standards, norms, etc.) that use it as a basis.

In addition, when used as a reference for conceptual or computational applications,

Construct Overload Construct Excess

Construct Redundancy Incompleteness

Conceptualization Construct Specification Construct

89

this deficient recommendation will possibly generate applications with failures and

interoperation problems (BARCELOS et al., 2016).

Ontological deficiencies can occur when the languages are built over a not-well

specified underlying conceptual model (the language’s metamodel). Apart from

natural languages, formal languages can (and usually do) suffer from such a

problem, even when the language has a formalized underlying conceptual model. It

must be made clear that the existence of ontological deficiencies in a language is not

only related to the presence or absence of a formalization of the language’s

underlying conceptual model: it is a matter of “how well specified” this formalization is

(BARCELOS et al., 2016). A well-specified underlying conceptual model should rely

on a sound well-founded ontology (sometimes called upper ontology), like the Unified

Foundational Ontology (UFO) (GUIZZARDI, 2005), the Bunge-Wand-Weber

Ontology (BWW) (WAND; WEBER, 1993), or the Descriptive Ontology for Linguistic

and Cognitive Engineering (DOLCE) (MASOLO et al., 2003).

According to (GUIZZARDI et al., 2009), the use of foundational concepts that take

truly ontological issues seriously is becoming more and more accepted in the

ontological engineering literature. In addition, the authors state that, in order to

represent a complex domain, one should rely on engineering tools (e.g., design

patterns), modeling languages, and methodologies that are based on well-founded

ontological theories in the philosophical sense (see (BUREK et al., 2006; FIELDING

et al., 2004), for instance). An example of an ontologically well-founded modeling

language is OntoUML, which was the language here used to create the Ontology

Reference Model for the ITU-T G.800.

Especially in complex domains – i.e., domains with complex concepts, relations, and

constraints – and in domains with potentially serious risks of interoperability problems

(the domain specified in the Recommendation ITU-T G.800 fits in both cases), a

supporting ontology engineering approach should be able to:

a. allow the conceptual modelers and domain experts to be explicit, regarding

their ontological commitments, which enables them to expose subtle

distinctions between models to be integrated and to minimize the chances of

running into a False Agreement Problem (GUARINO, 1998);

90

b. support the user in justifying their modeling choices and providing a sound

design rationale for choosing how the elements in the universe of discourse

should be modeled in terms of language elements (GUIZZARDI et al., 2009).

The modeling method here adopted is the one defined in (BARCELOS; GUIZZARDI;

GARCIA, 2013) and presented in subsection 3.3.1.

4.2 THE RECOMMENDATION ITU-T G.800

The primary purpose of a transport network is to transfer user information from a

sender at one location to a receiver at another location (ITU-T, 2010, 2012a). The

objectives of the network architecture (functional model) specification are to support

the description of the generic characteristics of transport networks in a way that is

independent of the technology and of the physical architecture (ITU-T, 2010). The

recommendations ITU-T G.800, ITU-T G.805, and ITU-T G.809 define a common

language and symbols used in the specification of transport and management

functionalities, which are essential for network design and management (ITU-T,

2010). These are international standards defined by the International

Telecommunication Union (ITU) – the United Nations specialized agency for

information and communication technologies7.

Considering a telecommunication network as a complex network that can be

described in a number of different ways depending on the particular purpose of the

description, these recommendations describe the network as a transport network

from the viewpoint of the information transfer capability (ITU-T, 2010, 2012a). These

recommendations describe the functional architecture of transport networks in a

technology-independent way, providing a set of constructs (definitions and

diagrammatic symbols) and the semantics that can be used to describe the

considered viewpoint (ITU-T, 2012a).

The recommendation’s importance is justified by the fact that the architecture there

presented serves as the basis for several other ITU-T recommendations – e.g.

7
 http://www.itu.int/

91

G.803, G.872, I.326, G.8010/Y.1306 (ITU-T, 2010). These recommendations

standardize specific technological platforms (e.g., Ethernet and Optical Transport

Network), network management and control (e.g. the Multiprotocol Label Switching

Transport Profile and the Automatically Switched Optical Network), performance

evaluation, and functional specification of equipment (ITU-T, 2000b, 2010). A visual

schema of the importance of the ITU-T G.805 to other technologies is presented in

Figure 4-2.

Figure 4-2 – Technologies defined over the functional architecture of the ITU-T G.805. Adapted

from (ITU-T, 2010)

The importance of the recommendations is highlighted by the many works that intend

to explain and manipulate the concepts there defined – e.g., (BARCELOS et al.,

2011; DIJKSTRA et al., 2007; FORTUNE, 2015) – to provide conceptual basis for the

development of computational applications that solve technology-specific network

problems. Examples of applications based on these three recommendations can be

found in (DIJKSTRA et al., 2008, 2009; VAN DER HAM et al., 2006). The NDL (VAN

DER HAM et al., 2006), previously presented in chapter 2 and used in many network

projects, is strongly based on the functional elements defined by the

recommendations ITU-T G.805 and ITU-T G.800 (XU et al., 2009).

As can be seen in (ITU-T, 2010), the first generic functional architecture

recommendation was the ITU-T G.805, which describes connection-oriented

networks and was used as the basis for ITU-T G.803 (SDH) and ITU-T G.872 (OTN)

architecture recommendations. The next generic functional architecture

recommendation was the ITU-T G.809, which describes connectionless networks and

92

was used as the basis for ITU-T G.8010/Y.1306, the Ethernet functional architecture

(ITU-T, 2010). Finally, the ITU-T G.800 was developed to provide a common

framework to describe both connection-oriented and connectionless networks. The

descriptions in ITU-T G.800 are fully compatible with the descriptions derived from

the earlier recommendations (i.e., the ITU-T G.805 and the ITU-T G.809) although

some of the terminology has been modified (ITU-T, 2010).

4.2.1 Recommendation’s Main Concepts

This functional and structural model proposed in the ITU-T G.800 (and in the

recommendations unified by it, i.e., the ITU-T G.805 and the ITU-T G.809) provides a

high level of abstraction for the basic elements in a network and defines relevant

concepts to simplify network descriptions. Two of its main concepts are partitioning

(some elements can be part of others or be composed of others of the same kind)

and layering (each technology is inside a layer and different aspects of a complex

network can be viewed from different layers). These concepts allow a high degree of

recursion (i.e., reuse of the common specification). Partitioning is important to

describe routing aspects, administrative domain boundaries and the subnetwork (a

recursive definition for a not well-known network, e.g., a cloud network) (BARCELOS

et al., 2016).

Furthermore, the recommendation defines the client/server relationship between

vertically-adjacent layers, which is also a recursive paradigm because any particular

server layer could itself be a client of another server layer (ITU-T, 2010). The

information flow between the two network ends (called source and sink ends) is

performed through adjacent layers up to the real (i.e., physical) transmission at the

lowest layer. These adjacent layers have a client/server relationship where a lower-

level layer (server) provides the transport services to the higher-level layer (client).

For instance, an example of a client/server relationship occurs between the Optical

Channel (OCh) and the Optical Multiplex Section (OMS) layers in Optical Transport

Networks (OTN) – this technology’s layer structure is going to be important for the

provisioning example in chapter 6. It is important to observe that client/server

relationship is not dependent on information flow directionality (uni or bi-directional).

93

It only depends on the network layer organization (technology and protocols)

(BARCELOS et al., 2016).

Besides partitioning, layering, and client/server relationship, other important

definitions are the Transport Processing Functions (TPF) and the Reference Points.

TPFs are blocks that process information that passes through them by their input and

output ports. There are three types of TPFs: Termination Function (TF), Adaptation

Function (AF), and the Layer Processor Function. The TPFs are, together with

Matrices, Subnetworks, Physical Media (PM), and Forwarding Functions (elements

defined in the recommendation), the available Transport Functions. A Reference

Point represents a binding between an input and an output of different instances of

TPFs and other physical components. There are three types of Reference Points:

Access Point, Connection Point, and Termination Connection Point. The elements

that represent the information transfer between Reference Points are the Transport

Entities, which can be Network Connections, Access Transport Entities, Channel

Forwarding Transport Entities, Matrix Connections, or Link Connections.

The ITU-T G.800 contains, in addition to a textual description of the main concepts

and its relationships (in natural language, available in English8), a visual language to

represent the same concepts (BARCELOS et al., 2016). An example of an abstract

transport network using the visual language defined in the ITU-T G.800 is presented

in Figure 4-3.

8
 http://www.itu.int/rec/T-REC-G.800-201202-I/

94

Figure 4-3 – Example of the ITU-T G.800 visual notation. From (ITU-T, 2012a)

Despite the relative small number of architectural components defined (directly or

indirectly, inheriting concepts from the ITU-T G.805 and the ITU-T G.809) in the

Recommendation ITU-T G.800, the numerous possibilities of relation between them

makes it a large and complex knowledge domain (BARCELOS et al., 2016;

FORTUNE, 2015) – hence, telecommunications companies are prone to error when

implementing this recommendation.

4.2.2 Recommendation’s Criticisms

As the ITU-T G.805 is the basis for many network standards, due to its fundamental

importance, it is essential for this recommendation to be clear, complete, and

unambiguous, thus eliminating the spread of problems for all its referring documents.

However, despite the visible importance of this recommendation, its document does

not contemplate an adequate and precise information model for the represented

domain concepts. An ontological analysis of this standard, presented in (BARCELOS

et al., 2011), revealed that four different types of ontological deficiencies (for

instance, Construct Overload, Construct Excess, Construct Redundancy, and

Incompleteness) are present in the recommendation. Ambiguities in this standard

were also reported in (DIJKSTRA et al., 2008). More recently, it was shown that the

recommendation’s formal specification is also not precise enough to define the

95

intended domain (BARCELOS et al., 2016). According to (ITU-T, 2010), the

descriptions provided in ITU-T G.800 are fully compatible with the descriptions from

the recommendations ITU-T G.805 and ITU-T G.809, although some of the

terminology has been modified. In fact, the ITU-T G.800 inherits most of the already

identified problems, resulting in formalization with ambiguities, contradictions,

representation gaps, and inconsistencies.

As the recommendation’s text makes clear, since the transport network is a large and

complex network with various components, an appropriate network model with well-

defined functional entities is essential for its design and management (ITU-T, 2012a).

Once the ontological deficiencies are identified, an Ontology Reference Model should

be built to represent correctly the domain, providing a precise definition of

technology-independent multi-layer transport networks. The importance of truly

ontological distinctions (available in Ontology Reference Models built with

ontologically well-founded languages) is discussed in (BARCELOS et al., 2016).

4.3 THE RECOMMENDATION ITU-T G.800 ONTOLOGY REFERENCE MODEL

A first endeavor for the development of an ontology for transport networks based on

the ITU-T G.805 and on the ITU-T G.872 (the recommendation that defines the

architecture of Optical Transport Networks), named Ontology for Optical Transport

Networks (OOTN), was presented in (BARCELOS et al., 2009). However, even

though the OOTN was successfully used for mapping classical concepts of Virtual

Topology Design and Routing and Wavelength Assignment applications, it was built

with a lightweight ontology language (OWL), which, as presented in (GUIZZARDI et

al., 2009), does not have enough expressivity to represent correctly a domain.

Regarding this, an OntoUML Ontology Reference Model was built for the ITU-T

Recommendation G.805. The first version of this ontology was presented in

(MONTEIRO et al., 2010), and the final version was presented in (BARCELOS,

2011). This ontology is in accordance with the three-phased ontology engineering

defended in (GUIZZARDI, 2007). During the development of the ontology, an

ontological evaluation was performed (BARCELOS et al., 2011). This ontological

96

evaluation reported that four different types of ontological deficiencies were identified

in the ITU-T Recommendation G.805.

It is important to mention that, at the development time of the works presented in

(MONTEIRO et al., 2010) and in (BARCELOS et al., 2011), the methodology and the

tools were not available (especially the method to build the reference model

presented in (BARCELOS; GUIZZARDI; GARCIA, 2013) and the validation functions

provided by OLED). The ITU-T G.800 ontology here presented has significant

semantic and correctness improvement over the ITU-T G.805 ontology used in those

works. The latest version of the ITU-T G.800 also has extensions to include Site and

Equipment concepts. The relation between these three parts of the ontology is

presented in Figure 4-4.

Figure 4-4 – The three ontologies of the Ontology Reference Model

The lower level of this ontology is the Recommendation ITU-T G.800 Ontology. This

level contains the most specific elements that compose a transport network. The

second level of abstraction is the Simple Equipment Ontology, which presents

network elements with a higher level of abstraction: equipment and interfaces. The

third level of abstraction is the Simple Site Ontology, used for grouping equipment

over sites. It is important to mention that both the Simple Equipment and Simple Site

ontologies are just a way to raise the abstraction over the ITU-T G.800 elements,

thus, all relations presented in these ontologies are derived from the ITU-T G.800

relations. In the next sections, we are going to present briefly the three ontologies

that are part of the ITU-T G.800 Ontology Reference Model. The ITU-T G.800

Ontology is not going to be fully presented and described because of its great size

Simple Site Ontology

Simple Equipment Ontology

ITU-T Rec. G.800 Ontology

uses

uses

97

and complexity – however, its complete version is available for download in the

thesis shared folder: https://goo.gl/L1UPv4.

4.3.1 The ITU-T G.800 Ontology

The ITU-T G.800 OntoUML ontology has five main packages, according to the

Recommendation definitions: Transport Function, Layer Network, Reference Points,

Transport Entities, and Topological Components. Its scope includes the architectural

characteristics of the recommendation: its elements and their relations (in general,

the architectural components presented in the recommendation’s chapter 6). An

example of a diagram from the Recommendation ITU-T G.800 OntoUML ontology,

representing Termination Functions and its different types, is presented in Figure 4-5.

Figure 4-5 – Example of a diagram from the Rec. ITU-T G.800 OntoUML Ontology

The domain has a strong characteristic that cannot be clearly observed in its textual

description, but that is evidenced by the ontology modeling: the dependency relation

between network architectural components. The ontology model clearly distinguishes

Transport Functions, elements whose bindings are represented by Reference Points,

which, by its turn, are elements that have the information transfer between them

represented by Transport Entities. This element dependence is illustrated in Figure

4-6.

98

Figure 4-6 – Relation between different architectural components

The dependence between the architectural components was identified by the first

complete ontology modeling of the ITU-T G.805, presented in (BARCELOS, 2011) –

this fact also highlights the strong relation between the ITU-T G.800 and the ITU-T

G.805 recommendations. An architectural restructuring proposal for the ITU-T G.805

is also presented in (BARCELOS, 2011).

In order to illustrate the ontology magnitude, the ITU-T G.800 OntoUML ontology has

32 packages, 85 diagrams, 450 classes, and more than 450 OCL rules.

4.3.2 The Simple Equipment Ontology

The Simple Equipment Ontology defines the Equipment concept. The complete

OntoUML ontology is represented in two diagrams, presented in Figure 4-7 and

Figure 4-8.

99

Figure 4-7 – Equipment composition at the Simple Equipment OntoUML Ontology

As can be seen in Figure 4-7, three main classes are created in this ontology:

Equipment, Input Interface, and Output Interface. Equipment is composed of

Transport Functions (except from the Physical Media – restricted by an OCL rule)

and of Input and Output Interfaces. These interfaces are mapped to one input or

output from the Transport Functions that is composing the Equipment (ensured by

other OCL rules).

Figure 4-8 – Equipment interfaces’ bindings and connections

100

As stated in Figure 4-8, equipment interfaces can be related to other network

elements by two distinct relations (derived from relations defined in the ITU-T G.800):

interface binds and interface connects. The interface binds relationship represents

the input and output association that is represented by a Reference Point in the ITU-

T G.800 ontology. The interface connects relationship, by its turn, is mapped to the

relations between the G.800 elements that are represented by connections. In the

lowest layer network, equipment interfaces are connected directly to the Physical

Media inputs and outputs.

4.3.3 The Simple Site Ontology

The Simple Site Ontology is the Ontology Reference Model highest network level of

abstraction: it defines the Site concept. The complete OntoUML ontology is also

represented in a single diagram, presented in Figure 4-9.

Figure 4-9 – The complete Simple Site OntoUML Ontology

According to the ontology, every site is composed of one or more Equipment. Note

that, due to the OntoUML’s weak supplementation restriction (GUIZZARDI, 2005)

over the Site composition by Equipment, its composition was broken in two different

relationships. Sites can only be of type Source and Sink when they have a connects

relationship. This relation is associated with the equipment relations that are inside

the sites. This derivation is provided by OCL rules.

101

5 AN ONTOLOGY-BASED TECHNOLOGY-INDEPENDENT

MULTI-LAYER TRANSPORT NETWORKS PROVISIONING

TOOL

Besides the Ontology Reference Model presented in chapter 4, in this thesis we

intend to also contribute to the provisioning of technology-independent multi-layer

transport networks with a semantically improved computational tool. Hence, using the

ontology-driven development method presented in chapter 3, we have created a

Knowledge-based System (KBS) Provisioning Tool9. As a KBS, the provisioning tool

is composed of three main parts: a knowledge base, a reasoning engine, and the

provisioning logic, just like illustrated in Figure 5-1.

Figure 5-1 – The ontology-based provisioning tool parts

This chapter will present all the components and functionalities of the KBS. For a

better comprehension of the software, we are going to decompose the Provisioning

Tool, just like in Figure 5-2, and present the parts in different sections.

9
 Although the provisioning tool and its related conceptual and computational artifacts are a

contribution of this thesis, the software coding was performed by the researcher Freddy Brasileiro

Silva.

Provisioning Logic

Ontology-based ML MT
TN Provisioning Tool

Reasoning Engine

A
B

o
x

TB
o

x

102

Figure 5-2 – Decomposition of the provisioning tool

Knowledge-based systems are usually composed of two main parts (STEFIK, 1995):

a knowledge-base and a reasoning engine, just like represented in Figure 5-3.

Figure 5-3 – Provisioning tool decomposition in knowledge base and reasoning engine

The knowledge base of the provisioning tool is going to be presented in section 5.1.

In this section, the knowledge base is divided into its two composing parts (the

Terminological Box and the Assertional Box) and their characteristics are detailed. As

we have already addressed the importance of reasoning engines in subsection 3.3.2,

in this chapter, in section 5.2, we are going to present the HermiT (SHEARER;

MOTIK; HORROCKS, 2008), which is the reasoning engine present in the

provisioning tool. The other important part of the KBS is the implemented

provisioning logic, which is going to be presented in section 5.3.

Limitations of the provisioning tool are presented in chapters 5 and 6 in a distributed

manner, according to the related topic. It must be said, however, that the software

does not present a graphical interface, what can be considered one of the tool most

important limitations. The implementation of a graphical interface that helps the

network operation is left for future work.

Provisioning Logic

Knowledge and Reasoning

Ontology-based ML MT
TN Provisioning Tool

Reasoning Engine Knowledge Base

A
B

o
x

TB
o

x

Provisioning Logic

Knowledge and Reasoning Reasoning Engine Knowledge Base

103

5.1 THE KNOWLEDGE BASE

Knowledge bases contain rich information of entities and their relations and are very

useful resources for Artificial Intelligence related applications (WANG; WANG; GUO,

2015). According to (NEELAKANTAN; ROTH; MCCALLUM, 2015), knowledge bases

have been of increasing interest in both industry and academia. As depicted by

(ZHAO et al., 2015), these artifacts are extremely useful for human-like reasoning,

query expansion, coreference resolution, question answering (e.g., Siri, Speaktoit,

iris, SimSimi), information retrieval and other Natural Language Processing tasks like

relation extraction, semantic parsing, etc.

Knowledge bases can be divided into two main parts: (i) a schema, where the

knowledge types are structured, and (ii) the data or information that is present in the

schema, corresponding to instances or individuals (STEFIK, 1995). Considering the

hierarchy of model levels (ATKINSON; KUHNE, 2003), the schema represents the

model level (frequently called M1), while the data or information corresponds to a

lower level, which represents user data (sometimes called M0) (ATKINSON; KUHNE,

2003). In languages based on Description Logics (e.g., OWL), the knowledge base

schema is known as the Terminological Box (TBox), while the user data is known as

the Assertional Box (ABox) (HORROCKS, 2008). The division of the provisioning tool

knowledge base in its two parts is represented in Figure 5-4.

Figure 5-4 – Decomposing the knowledge base in TBox and ABox

Reasoning Engine Knowledge Base

A
B

o
x

TB
o

x

104

The provisioning tool TBox and ABox are going to be described, respectively, in

subsections 5.1.1 and 5.1.2. The separation present in Figure 5-4 is important

because there are substantial differences in the creation and use of the two parts of

the knowledge base. The information presented in this subsection is complemented

with the information present in subsection 5.3.1, which describes the input stage of

the provisioning logic. In this section, the practical use of each one of the knowledge

base parts is detailed. The red line dividing the TBox and the ABox in two parts,

represented in Figure 5-4, indicates a performance technique that consists in using

two different models, as it is going to be presented in subsection 5.1.1.2.

5.1.1 The Terminological Box

In order to be used in a KBS, a knowledge base must be implemented in some kind

of computational artifact. Hence, the TBox of the provisioning tool is implemented as

an OWL file. The tool TBox is the ITU-T G.800 OWL Computational Ontology, which

is the result of the ontology-driven development method described in section 3.3, as

represented in Figure 5-5.

Figure 5-5 – Different ontology models used and their relation

OWL G.800 Provisioning
Computational Ontology

OntoUML ITU-T G.800
Ontology Reference Model

Tr
ac

ea
b

ili
ty

 b
et

w
ee

n
 m

o
d

el
s

OOTOS
Model TransformationOntoUML G.800

Provisioning
Design Model

Terminological
Box

105

The provisioning tool TBox is indirectly based on the ITU-T G.800 Ontology

Reference Model, which has been used as the basis for the development of an ITU-T

G.800 Provisioning OntoUML design model with SWRL rules (the existing traceability

of the models from the different levels is also represented in Figure 5-5). Following

the ontology-based development method here adopted, the design model was

transformed, with the use of the OOTOS transformation (presented in subsection

3.3.3.1), resulting in the OWL ITU-T G.800 Provisioning Computational Ontology,

which is the TBox itself.

In the next subsection (5.1.1.1) we are going to present (almost completely) the ITU-

T G.800 OntoUML Provisioning Design Model. The OWL Computational Ontology

that is the provisioning tool TBox is presented in subsection 5.1.1.2.

5.1.1.1 The ITU-T G.800 OntoUML Design Model for Provisioning of Transport

Networks

The OntoUML Design Model developed for the provisioning domain is a simple

model with five diagrams and a total of 48 classes and 19 SWRL rules. Considering

the number of classes and rules in the Ontology Reference Model, from which it is

based, the design model can be considered a huge simplification of the reference

model. The development of the design model was oriented by the requirements and

definitions of the provisioning tool.

OntoUML Diagrams

Although some authors, e.g., (ASSMAN; ZSCHALER; WAGNER, 2006), argue that

the design model is not an ontology, we have used OntoUML, an ontology language,

for the formalization of the design model for provisioning of transport networks. This

decision was taken because of two main factors: (i) OntoUML is an expressive

language, which results in better-formalized models; and (ii) its usage allows us to

transform the design model to the OWL Computational Ontology via the OOTOS

transformation.

106

The design model first diagram, presented in Figure 5-6, specifies the hierarchy of

transport functions that are made available in the provisioning tool. Within the

software, the user can manage Matrices, Adaptation Functions, and Termination

Functions. The complexity of Transport Function types is here reduced to simplify the

software operation by the user. It can be noted that some transport functions that are

formalized in the ITU-T G.800 OntoUML Ontology Reference Model are not available

in the design model, such as the Layer Processor Function. This reduction, however,

configures a limitation of the provisioning tool with relation to the domain (i.e., the tool

operates just over a portion of the domain).

A special case occurs with the Matrix concept, which was modified to increase the

usability of the software through a design decision. In the design model, as can be

seen in Figure 5-6, the Matrix is presented in two possibilities, Source and Sink.

However, the design model concepts of Source and Sink Matrices refer to the same

Matrix concept in the Ontology Reference Model, i.e., there is a controlled case of

construct redundancy.

Figure 5-6 – Taxonomy of transport function

The diagram presented in Figure 5-7 specifies the main relationships used in the

network provisioning tool. It presents the Equipment composition (named hasPart) by

Transport Functions and by Input and Output Interfaces, as well as the mappings

(relation maps) from these interfaces to the transport function inputs and outputs. In

107

addition, the relations int_binds, tf_binds, and eq_binds are also formalized. These

relations, which are derived relations between concepts of the same class (i.e., they

are self-associations (GOMAA, 2011)), have an important use in the provisioning tool

algorithm. As derived relations, they have associated derivation rules, which are the

rules 8 to 10, in Table I-1, from the Appendix I – SWRL Rules.

Figure 5-7 – Main relations of the design model

Another important relation defined in the diagram presented in Figure 5-7 is the path.

This relation indicates that an interface is being used in a specific path. This relation

differs from the int_binds relation as the path relation indicates a logical relation,

representing an information transfer, while the int_binds relation indicates a physical

relation between interfaces. For a path to exist, first the interfaces must be bound

(with the relation int_binds).

The int_binds relation relates interfaces from different equipment, while the path

relation relates interfaces from the same equipment and interfaces from different

equipment, just like represented in Figure 5-8. In this figure, interfaces are

represented as white arrows and equipment are represented as squares.

108

Figure 5-8 – Different use of the relations int_binds and path

The int_binds and the path relations are directly associated with, respectively, the

circuit provisioning and the connection provisioning capabilities of the software. This

association is better described in section 5.3.

Figure 5-9 presents all the specific compositions of the Transport Functions (defined

in the diagram presented in Figure 5-6) by Port (Inputs and Outputs).

Figure 5-9 – Inputs and outputs in the design model

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

path path path path path

int_binds int_binds

109

Figure 5-10 presents half of the diagram that formalizes all possible bindings

between input and output ports. Differently from the Ontology Reference Model, in

this diagram, the relations that formalize the bindings are not material relations, but

formal relations. This happens because we are not interested in manipulating the

Reference Points that are used as relators in the Ontology Reference Model.

Figure 5-10 – Fragment of the allowed bindings between inputs and outputs

For a better visualization, instead of representing the entire diagram, the complete list

of allowed bindings is represented in Table 5-1.

Table 5-1 – Allowed bindings according to the design model

From To Comment

Adaptation Function Sink Input Termination Function Sink Output Adaptation Functions can only

bind Termination Functions Adaptation Function Source Output Termination Function Source Input

Adaptation Function Sink Output Adaptation Function Source Input
This is the unique case of Sink to

Source binding

Matrix Sink Input Adaptation Function Sink Output Matrices can only bind

Adaptation Functions Matrix Source Output Adaptation Function Source Input

Termination Function Sink Input PM Output
There are three different binding

possibilities from a Termination

Function Sink Input

Termination Function Sink Input Matrix Sink Output

Termination Function Sink Input Adaptation Function Sink Output

110

Termination Function Source Output PM Input
There are three different binding

possibilities from a Termination

Function Source Output

Termination Function Source Output Matrix Source Input

Termination Function Source Output Adaptation Function Source Input

Finally, the diagram presented in Figure 5-11 represents the Layer Network concept

and its relations with the transport functions and with other Layer Networks. As can

be seen, a Layer Network is defined by some Termination Functions, has a relation

with Matrices (Matrices hasLayer a specific Layer Network), and Adaptations adapts

from and to some Layer Network. In addition, a Layer Network instance is a client of

other Layer Network instance.

Figure 5-11 – Layer network relationships

All the relations here presented have associated integrity and derivation rules, which

are presented in Table I-1, from the Appendix I – SWRL Rules.

SWRL Rules

Despite the natural choice of OCL for the formalization of the integrity and inference

rules of the design model, we chose to formalize these rules directly in Semantic

Web Rule Language (SWRL). This decision was taken because of the small size of

the model and because of the simplicity and small number (only 19) of the rules.

Consequently, the rules formalized for the design model are going to be the same

rules used in the OWL Computational Ontology, which are the rules directly present

in the provisioning tool. All the nineteen rules associated with these two artifacts are

presented in the Appendix I – SWRL Rules.

111

5.1.1.2 The ITU-T G.800 OWL Ontology for Transport Network Provisioning

With the design model specified in OntoUML, the OOTOS transformation is used to

generate the OWL Computational Ontology. This OWL ontology is used as the

provisioning tool knowledge base. However, intending a better performance of the

provisioning tool, the OWL Computational Ontology here developed is not a single

OWL file, instead, it is composed of two different OWL ontologies: the Consistency

Model and the Inference Model, just like presented in Figure 5-12.

Figure 5-12 – OWL ontology models in the knowledge base

Performance is a well-known problem in the semantic web community, where there is

a tradeoff between the expressivity of the knowledge representation artifact (i.e., the

ontology) and the scalability of the systems used to process them (HORROCKS,

2008). Reasoning in the classical paradigm (the class of languages which OWL is

part) is difficult for any reasonably expressive ontology language (PATEL-

SCHNEIDER; HORROCKS, 2006). Performance issues are outside the scope of this

thesis. However, to situate better the reader, a brief discussion about the provisioning

tool performance is presented in section 6.4.

Although high performance is not a requirement of the provisioning tool, the tool

development tried to reach acceptable execution times. The technique here

presented makes use of two different OWL files in order to contribute to better

reasoning times in the provisioning tool. While the Consistency Model is a heavy

(highly axiomatized) ontology, the Inference Model is a lighter ontology – thus

allowing a faster reasoning. Instead of using the reasoning in the Consistency Model,

Inference Model Consistency Model

TBox

ABox

TBox

ABox

Knowledge Base

112

we just use the validate and the isValid functions made available by JENA, an open

source Java framework for building semantic web and linked data applications

(CARROLL et al., 2004). As it is going to be presented, the SWRL rules are only

attached to the Inference Model, not to the Consistency Model.

The use of the two OWL ontologies as a unique knowledge base is almost

transparent to the user. Regarding this separation, the unique action that the user

must take is to provide two inputs containing the models, as it is going to be

presented in the description of the provisioning tool logic (section 5.3).

Differently from what is presented in Figure 5-5, not just one, but two different

transformations from the design model to OWL ontologies are necessary to create

the knowledge base. The Consistency Model and the Inference Model used in the

provisioning tool can be found in the thesis shared folder (https://goo.gl/L1UPv4).

The Consistency Model

The generation of the Consistency Model uses the OOTOS transformation with its

default settings, just as it is implemented in OLED. In this transformation, just the

OntoUML to OWL part of the OOTOS transformation is used – i.e., there is no

transformation from OCL to SWRL. The use of the OOTOS transformation

guarantees a consistent resulting OWL file (when the OntoUML model used as input

is well built, as in this case). The resulting OWL ontology, i.e., the Consistency

Model, is graphically presented in Figure 5-13.

113

Figure 5-13 – Taxonomy representation (left box) and OntoGraf representation (right box)

Figure 5-13 illustrates two different graphical representations of the Consistency

Model generated using Protégé10, a largely used ontology editor. In its left box,

Figure 5-13 represents the ontology taxonomy with classes up to the fourth level in

the hierarchy. The right box of the figure presents the OntoGraf11 representation of

the ontology, representing the taxonomy up to the third level in the hierarchy and the

relations that the presented classes have between them. In this box, it can be noted

that the concepts with more relations are Equipment, Interface, and Transport

Function, while the concept with less relations are the Ports.

Using the Protégé DL Expressivity tool, the expressivity of the Description Logic (DL)

of the generated ontology can be evaluated – as can be seen in Figure 5-14, it is of

type ALCIQ(D). Figure 5-14 is a snapshot of the Protégé DL Expressivity tool

interface, modified to present only the ontology expressivity symbols.

10

 http://protege.stanford.edu/

11
 http://protegewiki.stanford.edu/wiki/OntoGraf

114

Figure 5-14 – Consistency Model DL expressivity

The metrics of the Consistency Model can be visualized using the Protégé Ontology

Metrics tool. An adapted snapshot of this tool can be seen in Figure 5-15.

Figure 5-15 – Consistency Model metrics

We can see from Figure 5-15 that, according to the Ontology Metrics tool, the

Description Logic of the Consistency Model is of type ALCRIQ(D). This result differs

from the one presented in the DL Expressivity tool, as it presents the R extension.

The R extension means the existence of limited complex role inclusion axioms,

reflexivity and irreflexivity, or role disjointness. As these axioms really occur in the

115

ontology, we can consider the evaluation made by the Ontology Metrics tool more

precise than the one made by the DL Expressivity tool.

Analyzing Figure 5-15, we can also see that the ontology has 48 classes, 84 object

properties (relations between classes) and just one data property (relation between

classes and data types). Not represented in Figure 5-15, the ontology also has one

(1) DataPropertyDomain axiom and one (1) DataPropertyRange axiom.

The Inference Model

The OWL Inference Model is also generated via the OntoUML to OWL part of the

OOTOS transformation – again, the OCL to SWRL part is not used. A difference

between this model creation and the Consistency Model creation is that, in the latter

case, the transformation is performed in a modified OOTOS transformation, which is

implemented in the Menthor12 tool, a fork project from OLED. Menthor implemented

OOTOS transformation allows the user to parameterize the transformation, including

or excluding OWL axioms according to his or her objectives. The parameterization

used in the generation of the Inference Model is represented in Figure 5-16.

Figure 5-16 – Parameters used in the Inference Model generation

With the intention to reach better reasoning performance, the transformation is

parameterized to create a lighter OWL ontology, with simple logics – i.e., with

reduced complexity. As can be seen in Figure 5-16, the transformation is configured

12

 http://www.menthor.net/

116

to remove cardinality transformation, disjointness, and association binary properties.

The Generalization sets and “UFO structure” options are also kept unchecked. The

result of the transformation is then manually combined with the same SWRL rules of

the design model (fully presented in the Appendix I – SWRL Rules) to create the

complete Inference Model.

An intrinsic characteristic of transformations from more expressive models to less

expressive models is the loss of expressivity. This loss of expressivity occurs in the

transformation from the design model to the Inference Model and, as this model is

less axiomatized than the Consistency Model, it allows more unintended states.

However, this situation does not configure a problem because the Inference Model is

just used to perform inferences through SWRL rules. The consistency of the model is

only verified in the Consistency Model, not in the Inference Model. The reduction of

complexity of OWL can be observed in Figure 5-17, which pictures the Description

Logic of the Inference Model as being the ALHI(D).

Figure 5-17 – Inference Model DL expressivity

The reduced number of axioms in the Inference Model can be clearly noted in Figure

5-18. When comparing the information from Figure 5-18 (Inference Model metrics)

with the one from Figure 5-15 (Consistency Model metrics), we can observe that the

number of classes, object properties, and data properties of the model are the same.

However, it can also be observed that the number of axioms has decreased 35,92%

117

(from 710 to 455), and that the number of logical axioms has decreased 44,19%

(from 577 to 322). Considering the class axioms, the number of SubClassOf axioms

is also the same, but the count of all other axioms has been reduced to zero, just like

the number of the DisjointObjectProperty axioms (which are Object Property axioms).

Figure 5-18 – Inference Model metrics

Not depicted in Figure 5-18, this ontology also has one (1) DataPropertyDomain

axiom and one (1) DataPropertyRange axiom.

In order to illustrate briefly how the Inference Model can simplify reasoning, we have

performed a simple test with the Hermit reasoner (version 1.3.8) inside the Protégé

editing tool. This test aimed to verify the reasoning time for non-populated models

(i.e., just their TBoxes). The reasoning was performed five times, the maximum and

the minimum values found in tests 1 to 5 were eliminated, and the final value consists

in the average of the three remaining values. The results of the test, presented in

Table 5-2, indicate that the Inference Model takes 5,37% of the Consistency Model

reasoning time.

118

Table 5-2 – Reasoning comparison for consistency and Inference Models

Test Number
Consistency Model

Reasoning Time (ms)
Inference Model

Reasoning Time (ms)

1 1056 63

2 972 47

3 1200 78

4 1035 62

5 1114 47

Average (ms) 1068,33 57,33

It is important to emphasize that this test was performed just to provide minor

evidences that the lower complexity of the Inference Model allows it to have a better

reasoning time than the Consistency Model. However, this test cannot be considered

sufficient, as the reasoning functions applied to each one of the models are different,

also because, when populated, there is an increase in the complexity of the models.

5.1.2 The Assertional Box

In Figure 5-12, the knowledge base of the provisioning tool is composed of two

different OWL files, both with their respective TBoxes and ABoxes – transparently

implemented to the user. Even though the two models do not contain the same

information in their TBoxes, they must have the same information in their ABoxes at

all moments (represented by the orange double arrow in Figure 5-12). I.e., the

ABoxes must be kept synchronized and work as a single ABox during software

execution. These two ABoxes must be populated with the same instances and

relations between instances every time an operation is performed in the ABox (e.g.,

just like a distributed database works), as the existence of different information may

lead to inconsistencies. Considering this, hereafter the ABoxes are going to be

treated as a single one.

Once the TBoxes (both the Consistency Model and the Inference Model) are

available, the ABox must be populated to create the software knowledge base. I.e.,

the network elements must be provided as instances to be treated by the

provisioning tool. The population of the knowledge base is performed by inputting a

network specification (an abstraction of a real network). This specification is written in

119

a defined format, which is defined in accordance with the OWL knowledge base –

and thus, build upon the concepts of the Recommendation ITU-T G.800. The

specification format is presented in the Appendix II – Input TXT Files Structure. The

population process is represented in Figure 5-19.

Figure 5-19 – Network specification

In Figure 5-19, a group of people abstracts the reality (i.e., a real network) according

to the concepts of the Recommendation ITU-T G.800 to build a specification, which is

going to be used to create the provisioning tool ABox. In the figure, a group of people

is building a specification according to a common conceptualization, what reduces

the possibility of semantic problems. However, a single person (e.g. a network

operator) could perform this stage alone, if necessary. The network is formalized in a

structured document, in this case, a text file.

One of the requirements of the provisioning tool is that it must operate according to

different equipment states. Regarding this, the ABox is going to be populated with

two different information: the network elements that are already installed or

operational, which are going to be called declared equipment; and the elements

that are not installed or operational, but that are available to be used in the network.

This latter type of equipment is going to be called here possible equipment. For the

provisioning tool, the declared equipment must be provided as input (i.e., it is

mandatory), while the user can provide possible equipment or not (i.e., it is optional).

Figure 5-20 represents this situation. More information about the input of the

provisioning tool can be found in subsection 5.3.1, which deals with the input

according to the software algorithm.

Reality Conceptualization Formalization

Abstracted in Formalized in

Equipment:

x,;

Input_Interfac
e: x1,x2;

Output_Interf
ace:y1,y2;

Terminati....

120

Figure 5-20 – ABox constitution

Once the inputs are defined in a structured text file (.txt), they pass through a

transformation to OWL instances, which will form the ABox. The instances generated

from the transformation of the input files are loaded into the computer memory using

the JENA Ontology Application Programming Interface (API). In memory, together

with the previous loaded TBox, the knowledge base of the provisioning tool is

completed. This situation is represented in Figure 5-21.

Figure 5-21 – Knowledge base formation

A question that may occur is: why use a text file for the network formalization instead

of directly writing it in OWL? OWL has a markup syntax that resembles the

HyperText Markup Language (HTML) one, which makes difficult the writing directly

on it. Some ontology editors aim to reduce this problem with a user-friendly graphical

interface – like the highly used Protégé. However, even with the use of these editors,

ABox

Declared
Equipment

Possible
Equipment
(optional)

Inputs

Equipment: x,;

Input_Interface: x1,x2;

Output_Interface:y1,y2;
Termination_Function:

a1,b2;

Adaptation_Function: z;

A
B

o
x

TB
o

x

.OWL

transformation

Knowledge Base in memory

A
B

o
x

TB
o

x

121

it is still difficult to insert all information when dealing with a large number of

individuals – which is, in most cases, the situation of the networks declarations. The

writing of the information in a simple structured text file may facilitate this process.

The structured text file has its syntax completely presented in Appendix II – Input

TXT Files Structure. The provisioning tool expects correct input files to execute the

provisioning. No syntax or semantic treatments of the inputs are performed by the

provisioning tool: inconsistency checking is left to the reasoner after the

transformation to OWL. A better treatment of the input files is considered a future

work.

5.2 HERMIT: THE PROVISIONING TOOL REASONING ENGINE

According to (DENTLER et al., 2011), a reasoner is a program that infers logical

consequences from a set of explicitly asserted facts or axioms and typically provides

automated support for reasoning tasks such as classification, debugging and

querying. The reasoning engine performs a central function in the transport network

provisioning tool: it is responsible for performing the inferences (and the consistency

checking) in the Inference Model. To accomplish this objective, the chosen reasoner

must be able to support ABox and SWRL reasoning, to support Java (the

provisioning tool implementation language), as well as it must have a fast algorithm.

Regarding this, the HermiT13 (SHEARER; MOTIK; HORROCKS, 2008) reasoning

engine version 1.3.8 was used in the implementation of the provisioning tool.

HermiT is a sound and complete OWL reasoner that implements a fast reasoning

algorithm, the hypertableau calculus (DENTLER et al., 2011). According to

(ABBURU, 2012; DENTLER et al., 2011), besides its fast reasoning algorithm,

HermiT presents other important features. Some of them are: (i) reasoning support

for TBox, ABox, and SWRL rules; (ii) its support for OWL API (it uses OWL API 3.4.3,

which is backwards compatible with OWL APIs 3.3.x, 3.2.x and 3.1.x); (iii) its open

13

 http://hermit-reasoner.com/

122

license, GNU Lesser General Public License (GLGPL); and (iv) its compatibility with

Java 1.5 or higher (ABBURU, 2012; DENTLER et al., 2011).

According to (SHEARER; MOTIK; HORROCKS, 2008), HermiT uses an improved

blocking strategy and an optimization that tries to reuse existing individuals rather

than generating new ones. HermiT also incorporates a number of other

optimizations, such as a more efficient approach for handling nominal (concepts that

refer to a particular individual in the ABox), and various techniques for optimizing

ontology classification. The developer’s tests show that HermiT is usually much faster

than other reasoners when classifying complex ontologies, and that it is already able

to classify a number of ontologies which no other reasoner has been able to handle

(SHEARER; MOTIK; HORROCKS, 2008). The good performance is verified in other

reasoners evaluations, like (KANG; LI; KRISHNASWAMY, 2012) and (DENTLER et

al., 2011) – the latter performs a comparison of reasoners for a specific scenario

(OWL 2 EL profile).

Regarding the Consistency Model, for performance purposes, instead of using the

reasoner in this model, we just use JENA validate and isValid functions. These

functions use JENA built-in reasoner to detect when constraints are violated by some

data set14. As just consistency-related functions are performed (i.e., inferences are

not verified), a better performance is expected when using these functions.

5.3 THE PROVISIONING TOOL LOGIC

The ontology-based KBS provisioning tool implementation logic is composed of three

main phases, as represented in Figure 5-22: (i) the Input Stage, (ii) the Setup Stage,

and (iii) the Provisioning Stage. The third stage can be divided in Manual

Provisioning and Automatic Provisioning. In Figure 5-22, the wheels in the top right

corner of the boxes represent the moments when the reasoning engine is executed.

14

 https://jena.apache.org/documentation/inference/

123

Figure 5-22 – Stages of the provisioning tool logic

In the next subsections, we are going to present the provisioning tool logic divided in

the three stages represented in Figure 5-22. To present the software logic, we are

going to use a simplified flowchart with just four shapes: terminal, process, decision,

and an adapted cloud to indicate links between different parts of the represented

flowchart. For the process shape, we use the blue color to represent user interaction,

the gray color to represent internal processes, and the purple color to represent

reasoning. Our intention here is to use a high level of abstraction in the graphical

representation and then make detailed textual explanations of each flowchart step.

The complete provisioning tool flowchart can be observed in Figure 5-23.

Stage 1:
INPUT

Stage 2:
SETUP

Stage 3A:
MANUAL

PROVISIONING

Stage 3B:
AUTOMATIC

PROVISIONING

124

Figure 5-23 – Complete provisioning tool flowchart

For a better visualization and comprehension, we are going to divide and present the

flowchart in three pieces, corresponding to the stages presented in Figure 5-22, in

subsections 5.3.1 to 5.3.3.

Enter
Consistency

Model

Enter
Declared

Equipment

Enter
Possible

Equipment
Treat Inputs

Generate
ABox

Are there at
least two
declared

equipment?

Are the
interfaces
correct?

yes

no no

Is there an eq.
composed of

PM?
yes yes

no

Enter
Inference

Model

no

Any
inconsistency

found?
yes

Check
Consistency

Perform
Inferences

Inform User Save OWL

Select
INT_SOURCE

Select
INT_SINK

Set Mode
(Automatic
or Manual)

Mode

Set
Restrictions

Set Priority Find Paths

Select Path
for

Provisioning

Paths were
found?

yes

no

Bind Path

Automatic

Manual

Check
Consistency

Perform
Inferences

Any
inconsistency

found?

Select
VAR_OUT

VAR_OUT =
INT_SINK?

yes

no

Are there
VAR_IN

candidates?

Are there
VAR_OUT

candidates?

yes

yes

no

no

Select
VAR_IN

Binds
VAR_OUT

with VAR_IN

yes

Provision
another

path?

no

yes

Inform User

Save OWL

no

Set Path
Relation

125

5.3.1 Input Stage

The first stage of the provisioning tool is the Input Stage, represented in Figure 5-24.

In this stage, the load and the population of the provisioning tool knowledge base

occurs, as well as some initial verifications.

Figure 5-24 – Provisioning tool Input Stage

The flowchart process and decision shapes, presented in Figure 5-24, are going to

be detailed in the next paragraphs.

Enter Consistency Model and Enter Inference Model: The two first processes are

the input of the two parts of the provisioning tool TBox by the user. As presented in

section 5.1, the TBox consists of two different OWL ontologies, one for the execution

of inferences (the Inference Model) and the other one for consistency checking (the

Consistency Model). The manual input of the TBox parts in the provisioning tool was

chosen because this would let the provisioning tool more flexible for modifications or

updates. For example, depending on which modification is made, a newer version of

the ontology models can be generated without affecting the provisioning tool logic. It

should be highlighted that the correct development of a new knowledge base should

always be done according to the ontology-based development method here adopted.

Enter Consistency
Model

Enter Declared
Equipment

Enter Possible
Equipment

Treat Inputs Generate ABox

Are there at least
two declared
equipment?

Are the interfaces
correct?

yes

Proceed to
final procedure

no

Proceed to
final procedure

no

Is there an eq.
composed of PM?

yes yes

Proceed to
final procedure

no

Run Reasoner

Enter Inference
Model

126

Enter Declared Equipment and Enter Possible Equipment: These two steps

consist in the population of the inserted TBox with the network data. In these steps,

the individuals and their relations will be provided by the user and will form (later, in

the Generate ABox process) the provisioning tool ABox, as represented in Figure

5-20.

The inputs that form the ABox are two structured TXT files: the declared equipment

and the possible equipment. The former has a structured declaration of the elements

(equipment, their components, and the relationships between them) that are already

operational in a network and that are going to be provisioned. The declared

equipment is an obligatory input for the software operation, but the possible

equipment declaration is optional. After being input, these text files are then

translated to OWL instances (i.e., an ABox). The ABox and the input TBox form the

provisioning tool knowledge base.

Treat Inputs: In the Treat Inputs process, the TXT files are verified for syntactical

problems. Other small treatments are also performed, for example: instances with

different names (case sensitively) are set as disjoint from each other; and repeated

layers must be ignored.

Generate ABox: Once the inputs are treated, they are transformed to the OWL

ABox, which is going to be used in the provisioning tool. Just like presented in

subsection 5.1.2, the provisioning tool ABox is, in fact, two separate ABoxes that are

kept updated in a transparent way to the user. At the end of this process, the

knowledge base is complete (with the TBox and the ABox).

After the Generate ABox process, the Input Stage continues with three verifications.

These verifications evaluate if any mistake in the inputs prevents the software

execution. Such verification is necessary to reduce the processing time when there is

a problem and to warn the user to correct the problem. In all these verifications, when

a problem is identified, the final procedure is called – what is represented in the

flowchart in Figure 5-24 as a red cloud. If no problems are identified, the software

execution continues.

The final procedure, presented in Figure 5-25, can indicate a correct or an incorrect

completion of the software execution. Besides the Input Stage, the final procedure

127

can also be invoked in the last stage of the software, the Provisioning Stage. Within

this procedure, the Inform User process prints an informative text to the user to

indicate the execution result – i.e., the correct end is reported or, in case of failures or

errors, a description of the problem (and of what have caused it) is reported. An

example of error that invokes the final procedure is an inconsistency detection by the

reasoner. In both cases, i.e., representing a correct or problematic execution, the

OWL knowledge base is saved and made available to the user in the Save OWL

process. In the case of an error, after the end of the software execution, the user can

analyze the informed text and the OWL knowledge base made available to verify the

cause of the problems.

Figure 5-25 – Provisioning tool final procedure

Back to the Input Stage, the first of the three verifications is “Are there at least two

declared equipment?”, which verifies if at least two equipment are declared (i.e., if

the declared equipment TXT file contains at least two equipment declarations). As

the provisioning is performed from an input interface of an equipment to the output

interface of other equipment, there must be at least two equipment so the

provisioning can happen.

The second verification, “Are the interfaces correct?”, is about the correctness of the

interfaces that were specified in the declared equipment input. Four verifications are

performed in this verification to guarantee the minimum conditions for the

provisioning to happen:

1. Is there at least one equipment that contains an output interface that maps an

output port of a source component?

2. Is there at least one equipment that contains an input interface that maps an

input port of a source component?

3. Is there at least one equipment that contains an output interface that maps an

output port of a sink component?

Inform User Save OWLFrom last stage

128

4. Is there at least one equipment that contains an input interface that maps an

input port of a sink component?

The four verifications above do not ensure that the declared equipment specification

is free of errors – it only intends to reduce the probability of problems.

The third and final verification of this step is the “Is there an equipment composed of

PM?”, which verifies if there is at least one equipment that contains a physical

medium (PM) in the declared equipment or in the possible equipment declarations.

I.e., there must be at least one PM, which can be of types declared or possible.

Equipment with physical medium are required as they are the only way to transport

the information from the source part of the network to the sink part of the network.

Run Reasoner: After the three verifications, as can be seen in Figure 5-24, the

software execution proceeds to the Run Reasoner process. This process is an

abstraction of other processes and decisions, which composes the reasoning

procedure presented in Figure 5-26. As can be noted, the complete flowchart,

presented in Figure 5-23, does not present the Run Reasoner process, but its

composing parts. Besides the Input Stage, the reasoning procedure is also called at

the end of the third stage of the provisioning tool execution.

Figure 5-26 – Reasoning procedure

The reasoning procedure is composed of two processes and one verification. In the

first process, the HermiT reasoner is used to perform inferences. The inferences are

performed according to the nineteen rules presented in Appendix I – SWRL Rules.

The indirect relations int_binds, eq_binds, tf_binds, and path are especially important

for the provisioning tool, as these relationships are directly queried in the next stages.

no

Proceed to next stage

Proceed to
final procedure

Any inconsistency
found?

yes
Check

Consistency
Perform

Inferences

129

In the second process, the consistency of the model is evaluated using the validate

and the isValid functions available in the JENA framework. If the reasoner founds any

inconsistency, then the final procedure is invoked. If no problem is found, the

software execution proceeds to its next stage, which is the Setup Stage.

5.3.2 Setup Stage

Figure 5-27 represents the processes in the second stage of the provisioning tool

execution, the Setup Stage. This is a simple stage composed of only three

processes: Select INT_Source, Select INT_Sink, and Set Mode (Automatic or

Manual).

Figure 5-27 – Provisioning tool Setup Stage

Select INT_SOURCE: INT_SOURCE is the input interface to be provisioned. The

user must choose the INT_SOURCE from a list of candidate interfaces – i.e., input

interfaces that are mapped to input ports of source components.

Select INT_SINK: INT_SINK is the output interface to be provisioned. The user must

choose the INT_SINK from a list of candidate interfaces – i.e., output interfaces that

are mapped to output ports of sink components.

Set Mode (Automatic or Manual): The user must now choose between the two

available provisioning modes: automatic or manual. The Provisioning Stage has

different flows according to the option selected in this process. The manual and the

automatic modes are going to be described, respectively, in subsections 5.3.3.1 and

5.3.3.2.

Select
INT_SOURCE

Select
INT_SINK

Set Mode
(Automatic or

Manual)
Proceed to next stage

From last stage

130

5.3.3 Provisioning Stage

The Provisioning Stage is the third and last stage of the tool execution. The

connection provisioning and the circuit provisioning of the network happens in this

stage, which can be considered the most important one.

This stage implements two distinct executions, which depend on the provisioning

mode (automatic or manual) selected in the Set Mode process (from the Setup

Stage). This section describes the logics of these two different modes: the Manual

Provisioning, presented in subsection 5.3.3.1, and the Automatic Provisioning,

presented in subsection 5.3.3.2.

At the end of this stage (independently of the choice for the automatic or manual

modes), the reasoning procedure is invoked to verify inferences and the consistency

of the knowledge base, which was modified during the provisioning processes. If

inconsistencies are found, the final procedure is invoked. If no inconsistencies are

found, the user may choose if he or she wants to provision another path or finish the

software execution (i.e., finish the network provisioning).

5.3.3.1 Manual Provisioning

The manual provisioning mode’s flowchart is represented in Figure 5-28.

Figure 5-28 – Manual provisioning flowchart

Select VAR_OUT
VAR_OUT =
INT_SINK?

Run Reasoner

yes

no

From last stage

Are there VAR_IN
candidates?

Are there
VAR_OUT

candidates?
yes

yes
Proceed to

final procedure

Proceed to
final procedure

no

noSelect VAR_IN
Binds VAR_OUT

with VAR_IN

Set Path Relation

131

The manual provisioning is iteratively performed based on two variables: VAR_OUT

and VAR_IN, which represents the interfaces (an output and an input interface,

respectively) selected by the user in the path to be provisioned. Using Figure 5-29,

we are going to exemplify the manual provisioning and the use of these variables and

of its associated relations.

Figure 5-29 – Use of variables in the manual provisioning

Figure 5-29 represents four steps of the manual provisioning of a simple network with

just two equipment. The represented steps are the VAR_OUT selection, the VAR_IN

selection, the binds VAR_OUT with VAR_IN (int_binds assignment), and the set path

relation (path assignment). In Figure 5-29, equipment are represented as blue boxes

and equipment interfaces are represented as arrows. INT_SOURCE and INT_SINK

are the desired interfaces to be provisioned. The information about which interfaces

are INT_SOURCE and INT_SINK was provided by the user in the Input Stage.

Select VAR_OUT: The selection of a VAR_OUT interface is the first step of the

manual provisioning. The VAR_OUT corresponds to an output interface of an

equipment that is going to be in the provisioned path. The VAR_OUT is chosen from

a list of pre-selected candidates, evaluated by the decision “Are there VAR_OUT

candidates?” in the flowchart. If no VAR_OUT candidate is found, then there is a

problem in the provisioning (i.e., the network cannot be provisioned through the

currently selected path). Considering the first iteration in the manual provisioning,

where no VAR_IN have already been chosen by the user, the absence of VAR_OUT

candidates probably indicates a bad network description. Considering later iterations,

the absence of VAR_OUT candidates indicates that the user has chosen to provision

a path through interfaces that do not allow new connections or there are no

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

VAR_OUT candidates

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K
VAR_IN candidates

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

VAR_OUT candidates

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

STEP 1: VAR_OUT selection

STEP 2: VAR_IN selection

STEP 3: int_binds assignment and VAR_OUT selection

STEP 4: path assignment

132

interfaces that are internally connected with the selected VAR_IN (or INT_SOURCE,

depending on the iteration). If no candidates are available, the final procedure is

invoked. In this procedure (presented in Figure 5-25), the software indicates the

problem to the user and is terminated.

The selection of VAR_OUT candidate interfaces considers three points:

1. Type of interface: it must be an output interface;

2. Availability: the VAR_OUT candidates must not be bound to other interfaces;

3. Physical relation: the transport function that contains the ports that are

mapped to the candidate interfaces must have a tf_binds relation with the

transport function that contains the port that is mapped to the INT_SOURCE (if

VAR_IN is not set yet – e.g., in the first step of Figure 5-29, i.e., the first

iteration) or to the VAR_IN (in any other case). In brief, a series of bound ports

must exist to allow the information flow.

An example of the selection of VAR_OUT candidates is illustrated in Figure 5-30.

Figure 5-30 – Example of VAR_OUT candidates’ selection

In Figure 5-30, the interfaces in the black circles are not candidates, as they do not

comply with the third restriction rule presented in the list (regarding physical

relations). The bound interfaces (represented in purple) are not candidates, as they

do not comply with the second rule. As can be seen in Figure 5-30, only the available

interfaces (represented as blue arrows) that have a physical relation to

INT_SOURCE or VAR_IN are listed as VAR_OUT candidates (inside the red circles).

INT_SOURCE or VAR_IN

VAR_OUT candidates

NOT VAR_OUT candidates

Available interface

Pair of bound interfaces

Legend

133

This transitive relation is necessary to allow the information flow from INT_SOURCE

or VAR_IN to VAR_OUT.

Special restrictions must be established for matrices, which are the transport

functions that implement network protection (inside subnetworks, e.g. in

recommendations ITU-T G.873.1 and ITU-T G.798). If the protection rules were not

implemented, a user could perform (de)multiplexing in a matrix, what is not allowed

by the transport network recommendations. These implemented restrictions are:

1. The interface that maps the output of a source matrix can only have one path

relation. The same restriction applies to the interface that maps the input port

of a sink matrix. This restriction is represented in Figure 5-31.

Figure 5-31 – Matrix protection special case

2. The second restriction is that the information source and destination must be

the same for the protection case. When an input interface that maps the input

port of a source matrix is evaluated as an VAR_IN candidate, it must be

observed if it has already been used in a previous provisioning execution (if it

is already provisioned – i.e., if it contains a path relation). If the interface is

already provisioned, to allow a new provisioning, the current INT_SOURCE

and the current INT_SINK must already have a path relation with this interface

(guaranteeing that the information source and destination are the same, and

that it is a case of network protection). The same verification must be

Information must have the same source and destination

Allowed information
transfer: protection

Not allowed information
transfer: (de)multiplexing

So
u

rc
e

M
at

ri
x

Si
n

k
M

at
ri

x

So
u

rc
e

M
at

ri
x

Si
n

k
M

at
ri

x

134

observed when choosing the output interface that maps an output port of a

sink matrix as VAR_OUT.

However, these rules are only verified by the provisioning tool when an interface

directly maps a matrix port. If the input or output ports of the matrix are not directly

mapped by an interface, then just part of the restriction is going to be verified or, in

the case that there is no direct mapping, no restriction is going to be verified. This

lack of verification is a limitation of the provisioning tool with relation to the domain. It

was a design decision in order to simplify the implementation, allowing better

performance of the software. Improvements in this sense are left for future work.

Continuing with the software logic, the user must choose a VAR_OUT from the list of

candidates. All the interfaces selected as VAR_OUT during the provisioning process

are kept in a data structure for the later path relation attribution (see Set Path

Relation process). Once a VAR_OUT is selected, a first verification should be made:

“VAR_OUT = INT_SINK?”. If the answer is positive, then the provision of the

networks is over, as the desired output interface was already reached by a path. If

this happens, the Set Path Relation process is executed.

If the result is negative, then the objective of the provision was not reached yet, and

the path (i.e., the circuit provisioning and connection provisioning) must continue to

be built. This is done by selecting an input interface, which is represented as

VAR_IN. This situation can be observed in the second step of Figure 5-29, which

represents a situation where VAR_OUT not equals INT_SINK and, hence, a VAR_IN

must be selected.

Select VAR_IN: The VAR_IN corresponds to an input interface that is going to be in

the provisioned path. However, before the selection of the VAR_IN, another question

must be answered: Are there VAR_IN candidates? A negative answer to this

decision box, represented in Figure 5-28, indicates that something went wrong with

the provisioning process: the user was trying to create a path in an unsupported way.

Once this happens, the final procedure is called, the user is informed of the problem,

and the provisioning algorithm is finished. As future work, the algorithm could be

made more robust and, instead of finishing the provisioning algorithm, it could make

a rollback to the last state when there were available paths (i.e., it could be back to

135

the last valid provisioning option, when there was at least one VAR_IN or VAR_OUT

available). Another possibility could be the following: the software could check one

step further to see if the displayed interfaces have other possible bindings or not.

The VAR_IN candidates’ selection is performed considering the following restrictions:

1. Type of interface: it must be an input interface;

2. Availability: the VAR_IN candidates must not be bound to other interfaces;

3. Layer hierarchy: the VAR_IN candidate must be part of:

a. a matrix that is in the same layer that has the transport function that

contains the port that is mapped to VAR_OUT; or

b. a transport function (except matrices) that is in a layer that has a client-

server relation with the layer that has the transport function that

contains the port that is mapped to VAR_OUT;

4. Allowed bindings: the interfaces must map the transport functions’ ports that

can be bound together. There are 11 cases of allowed relations, which are

presented in Table 5-1;

5. No loop: the VAR_IN must not be the INT_SOURCE.

Besides the five listed restrictions, the restrictions considering the protection

performed by matrices (presented in the VAR_OUT selection process) must also be

observed. An example of VAR_IN candidates’ selection is presented in Figure 5-32.

Figure 5-32 – Example of VAR_IN candidates’ selection

VAR_IN candidates

VAR_OUT

NOT VAR_IN candidates

Available interface

Pair of bound interfaces

LAYER 2
(client of 1)

LAYER 1
(server of 2)
(client of 0)

LAYER 0
(server of 1)

1

2

Legend

136

In Figure 5-32, we can see that the interfaces inside the black circle indicated by the

number one are not candidates, as they do not comply with the allowed bindings rule

(rule number 4). The interface in the black circle indicated by the number two is not a

candidate because it does not comply with the layer hierarchy rule (rule number 3).

All interfaces inside the green circles are VAR_IN candidate interfaces.

Just like happens with the interfaces selected as VAR_OUT, the interfaces selected

as VAR_IN during the provisioning tool execution are also kept in a data structure for

the future path relation assignment (at the Set Path Relation process).

Binds VAR_OUT with VAR_IN: Once a VAR_OUT and a VAR_IN are selected,

these interfaces must be physically related in order to allow the information transfer.

The relation that represents this physical relation between interfaces is the int_binds

relation. When considering the whole path, we name the process of performing the

physical connection from the source interface to the destination interface a circuit

provisioning. The circuit provisioning is directly related to the int_binds relation.

The provisioning tool, instead of directly assigns the int_binds relation between the

interfaces, assigns the binds relation between the ports that are mapped to the

interfaces to be bound. Later, with the reasoning of the model, an SWRL rule (to be

more specific, the rule number 08 of the table presented in Appendix I – SWRL

Rules) guarantees the int_binds relation between the interfaces. The third step in

Figure 5-29 represents the assertion of this relation once a VAR_IN is selected.

When the binding is performed, the software continues the provisioning with a new

VAR_OUT selection.

Set Path Relation: The final process of both the manual provisioning and the

automatic provisioning is the assignment of the path relation between the interfaces

that are in the path that were provisioned.

Once all interfaces (INT_SOURCE, and all VAR_INs and VAR_OUTs that were

selected during the provisioning process) in the path are known (i.e., they are stored

in the already mentioned data structure) and physically connected through the

int_binds relation, the information transfer should be represented by the path relation.

137

This process is here named connection provisioning. The path relation assignment is

represented in the fourth step of Figure 5-29.

The path relation connects all interfaces in a path, representing the logical

connection between them – i.e., the path relation represents the information transfer

from the source interface to the destination interface, through all intermediate

interfaces between these two.

5.3.3.2 Automatic Provisioning

The second available provisioning mode is the automatic mode, which has the

processes represented in Figure 5-33.

Figure 5-33 – Automatic provisioning flowchart

This provisioning mode discovers all possible paths from INT_SOURCE to INT_SINK

according to some user-defined criteria (restrictions and priority). The user must

select one of the paths found to provision the network. The main steps of this

provisioning mode are represented in Figure 5-34.

Set Restrictions Set Priority Find Paths

Select Path for
Provisioning

Run Reasoner

From last stage

Paths were
found?

yes

Proceed to
final procedure

no

Bind Path Set Path Relation

138

Figure 5-34 – Simple example of the automatic provisioning steps

All processes of this provisioning mode are going to be described in this section.

When possible, Figure 5-34 is going to be used as an example for the processes.

Set Restrictions: Differently from the manual provisioning, where a single path is

established with the user’s direct supervision, the automatic provisioning verifies all

possible paths between INT_SOURCE and INT_SINK. This discovery of paths is

performed using the same verifications and variables (VAR_IN and VAR_OUT) of the

manual provisioning. However, depending on the size of the network to be

provisioned, a huge number of paths can be found between two points. Considering

this, the user can optionally set restrictions to limit the number of paths to be found.

The definition of the restrictions has two objectives:

a) to simplify the user’s selection of a path: the restrictions are going to make the

Find Paths process to return only the paths desired by the network operator.

With a restricted list, (i) paths that are not desired cannot be selected by the

user, eliminating human errors in the network provisioning, and (ii) and the

user’s task to select the best provisioning option is largely simplified, saving

time; and

b) to improve the software performance: the restrictions are verified every time

an interface that can be part of the path is discovered in the Find Paths

process. If in one of these verifications the path that is being discovered does

not fit the restrictions, the software closes the non-compliant path discovery

execution thread, saving processing time and reducing the time spent to return

to the user the possible paths.

Four different restrictions may be applied by the user. These restrictions are:

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

IN
T_

SO
U

R
C

E

IN
T_

SI
N

K

STEP 1: Find paths (according to restrictions and to priority)

STEP 2: Select a path

STEP 3: int_binds assignment (representing physical conn.)

STEP 4: path assignment (logical connection – inf. transfer)

139

1. the maximum number of paths to be found;

2. the maximum number of interfaces in a path (size of the path);

3. the maximum number of new bindings in a path; and

4. the maximum number of interfaces of possible equipment in a path (when the

possible equipment definition is available).

The first restriction (maximum number of paths) sets an upper limit to the number of

paths that are going to be found in the Find Paths process and exhibited to the user.

As an example, in Figure 5-34, the number of all the possible paths in that network is

3 – setting this restriction on that network would reduce this number to 1 or 2 paths,

according to the user’s definition.

The maximum size of the path (i.e., maximum number of interfaces) restriction

guarantees that all paths that are going to be exhibited to the user have an allowed

size according to the operator’s definition. I.e., no paths with a number of interfaces

greater than the limit are going to be exhibited. In the provisioning tool, the size of a

path is counted by the total number of (input or output) interfaces in it (including

INT_SOURCE and INT_SINK, and interfaces from declared or possible equipment).

Using Figure 5-34 as an example, the size of all paths there represented is 4.

The maximum number of new bindings restriction sets a limit to the number of new

physical connections that are accepted during the provisioning of the network. The

new bindings, represented by the int_binds relation, are new physical connections

between equipment. Once again, using the network presented in Figure 5-34, it is

required at least one physical connection to perform the provisioning between

INT_SOURCE and INT_SINK. This required physical connection is represented in

the third step of this figure.

The fourth and last restriction, which is the maximum number of interfaces of possible

equipment in a path, restricts the number of possible equipment that can be used in a

network with the intention to prioritize the equipment of that network that are already

operational (i.e., the declared equipment). The lower number of interfaces of this type

of equipment means that a smaller number of possible equipment is used in the

network, ensuring savings. However, this restriction is only available to the user if an

140

input file with possible equipment were previously provided (in an optional process in

the Input Stage – presented in the subsection 5.3.1).

The effect of the use of each one of these restrictions during the automatic discovery

of the paths is going to be better explained in the Find Paths process.

Set Priority: Once the restrictions over the maximum number of paths are defined,

the automatically discovered paths must be allocated in this defined number to be

returned to the user. This allocation must be based on a criterion defined by the user,

which is defined in this process. To define a criterion, the user must prioritize a path

characteristic. Three priority options are given to the user:

1. the number of interfaces in the path (size of the path);

2. the number of new bindings in the path; and

3. the number of interfaces of possible equipment in the path (when the possible

equipment definition is available).

Every time a new path is found in the Find Paths process and accomplishes all

restrictions defined in the Set Restrictions process, it is allocated in a vector in

increasing order according to the priority here established. The size of the vector was

previously defined by the user in the maximum number of paths restriction. If the

vector is already full and a new path found has a smaller value of the priority criterion

than the path in the last position of the vector, then the path that occupies the last

position is replaced by the new path in the vector, which is reordered according to the

priority criterion. By the end of this process, the paths are exhibited to the user

ordered by the priority criterion.

To conclude this process, it must be said that the third option (number of interfaces of

possible equipment) is exhibited to the user only when a possible equipment

specification was previously provided by the user. Both this process and the previous

process happen before the first stage of the example provided in Figure 5-34.

Find Paths: In this process, which can be considered the most important process of

the automatic provisioning, all possible paths that fit in the restrictions provided by

the user are found and exhibited. The provisioning tool path finding – according to

the restrictions and to the priority set – is represented by the step 1 of Figure 5-34.

141

The automatic path finding uses the same processes and variables presented in the

manual provisioning mode. I.e., the same iterative process that consists of the

selection of VAR_OUT and VAR_IN variables are performed. However, instead of

building a single and final path, this process uses a multiway tree structure to

discover all possible paths. By the end of the path finding, all possible paths identified

are allocated in a vector sized accordingly to the value of the restriction maximum

number of paths. To better illustrate the path finding process, consider the simple

example network presented in Figure 5-35.

Figure 5-35 – Example of network to be automatically provisioned

The left part of Figure 5-35 represents an abstraction of the network presented in the

right part of the same figure. The network is composed of three defined equipment

(D1, D2, and D3) and a single possible equipment (P1). In the example, the interface

1 is the INT_SOURCE and the interface 18 is the INT_SINK – i.e., a path must be

established from the interface 1 to the interface 18. In this network, the interface 11

from D2 is already physically bound with the interface 15 from D3 (represented by

the int_binds red arrow in the right part of Figure 5-35).

The abstraction of the network, in the left part of Figure 5-35, shows all the network’s

interfaces, representing them as candidates to be in a path or not. The candidates

are represented in green, while the interfaces that are not candidates are

represented in red. By candidates, we mean all interfaces that may form a path. In

this case, the green interfaces are all VAR_IN candidates, all VAR_OUT candidates,

and interfaces 11 and 15, which are not VAR_IN or VAR_OUT candidates (as they

INT_SOURCE

INT_SINK

Output
Interfaces

Input
Interfaces

Output
Interfaces

Input
Interfaces

4 52

86

12

16 17

D1

D3

1

2 3 4 5

14 15 16 17

18

P1D2

10 11 12 13

6 7 8 9
7

1110

1

3

9

13

14 15

18

142

are already bound) but that may be in a path. For the candidates, the equipment

internal interfaces’ relations (in orange) and the physical bindings between different

equipment interfaces (in black) are represented. The dashed line in interfaces 8, 9,

12, and 13 indicates that these interfaces are from possible equipment.

Figure 5-36 represents the multiway tree structure used to discover all possible paths

when automatically provisioning the example presented in Figure 5-35. As can be

seen in the top of the figure, no restrictions (represented by the number -1) were set

for this example. In this example, the provisioning tool returns three paths to the user,

called Path X, Path Y, and Path Z in Figure 5-36.

Figure 5-36 – Example of unrestricted automatic path provisioning

The paths that can be provisioned, which is the partial result of the provisioning

process, are then displayed to the user, which may choose one among all

possibilities. Besides the tree structure, Figure 5-36 also presents a table with all the

attributes of each path (the attributes are related to the restrictions that the user can

set). Note that, although all paths found in this example have exactly the same size

(6 interfaces), this does not happen in all cases.

Regarding the different restriction that the user may apply, we have already

presented how the maximum number of paths restriction acts on the path finding

1 3

7

9

Path X: 1, 3, 7, 10, 14, 18

Path Y: 1, 3, 7, 11, 15, 18

10

11

13

14

15

14

18

18

18 Path Z: 1, 3, 9, 13, 14, 18

Path Path Size New Bindings # Possible Int.

X 6 2 0

Y 6 1 0

Z 6 2 2

Path relation

Path relation and new int_binds

Legend

Path relation and old int_binds

t1 t2 t3 t4 t5 t6

Restrictions: max_path = -1, max_size = -1, max_bind = -1, max_pos_int = -1

143

(defining the size of the vector that allocates the found paths). However, how do the

other restrictions act in the path finding process? Every time that a new node (an

interface) is included in the tree, the paths’ attributes are verified: the number of

interfaces, the number of new bindings, and the number of interfaces of possible

equipment. If, during the verification of the restrictions, it is confirmed that the path is

not a possible solution – i.e., the path does not fit into the restrictions – then the

continuation of that branch of the tree is interrupted (saving memory use, processing

time, and improving performance). Only the paths that accomplish the restrictions are

allocated in the final vector of possible paths that are going to be presented to the

user. An example of this verification is presented in Figure 5-37, which presents the

results of the path finding for the same network presented in Figure 5-35. Differently

from Figure 5-36, which is based on the same network and does not have

restrictions, in the example of Figure 5-37, the restriction of maximum number of new

bindings is set to 1 (max_bind = 1) and the restriction of maximum number of

interfaces of possible equipment is set to 0 (max_pos_int = 0).

Figure 5-37 – Example of restricted automatic path provisioning

It can be observed, in Figure 5-37, that two of the three paths that could be formed

when no restrictions are applied were aborted during the construction of the tree

structure. The first interrupted path corresponds to the Path Z of Figure 5-36. This

path is interrupted because it is verified that it contains one possible interface, while

the restriction defines that it should have none. The second interrupted path, which

corresponds to the Path X of Figure 5-36, is interrupted because it is verified that it

1 3

7

9

Path Y

10

11

14

15 18

t1 t2 t3 t4 t5 t6

Restrictions: max_path = -1, max_size = -1, max_bind = 1, max_pos_int = 0

max_pos_int > 0

max_bind > 1

144

has two int_binds relations, i.e., two new bindings, what violates the defined

restriction for a maximum of one new binding. In the example of Figure 5-37, the only

path that is in accordance with the defined criteria is the Path Y.

Moreover, it should be explained how the priority criterion influences the path finding

process. In two cases, the defined priority acts just in the ordination of the vector of

paths that is going to be shown to the user. The first one is the case where there is

no restriction about the maximum number of paths, and the second case is when the

number of possible paths found is smaller than the number set in the restriction.

However, when the number of possible paths is greater than the defined restriction,

the priority criterion has a more important role in the path finding process. In this

situation, the priority defines which paths are going to be returned to the user and

which paths are not going to be returned. As the vector has a limited number of

paths, some paths that were already allocated in the vector can lose their places to a

recently found path that have a smaller value of the defined priority. Figure 5-38

presents an example, for a same set of possible paths, of how different restrictions

and priorities present different results to the user.

Figure 5-38 – Examples of restrictions’ and priority’s influence over automatic path finding

Figure 5-38 have two main parts: the left part, which presents the paths found, and

the right part, which presents the vector of possible paths being mounted while the

paths are being found.

In the left part of Figure 5-38, there are six different paths from INT_SOURCE

(represented as a green circle) to INT_SINK (red circle). These paths are discovered

in the exact sequence presented in the figure (P1, P2, …, P6). The blue circles

E2: (4, 2, 2)

P3

P3 P6

E3: (6, 2, 0)

P1

P1

P3 P1

P3 P1 P4

P3 P5 P1

P3 P5 P1

E1: (6, 2, 2)

P1

P1

P3 P1

P3 P1 P2

P3 P1 P2

P3 P6 P1

P2

P2

P1: (6, 1, 0)

P2: (6, 2, 2)

P3: (4, 0, 0)

P4: (6, 2, 0)

P5: (6, 0, 0)

P6: (4, 2 0)

ti
m

e

Paths Found

145

represent declared interfaces and the purple circles represent interfaces from

possible equipment. Black lines represent already existing bindings (abstracting the

fact that they are internal or external from the equipment) and red lines represent

new bindings. The values of triples in the right part of the paths indicate, respectively,

the size of the path (i.e., its total number of interfaces), the number of new bindings,

and the number of interfaces from possible equipment.

In the right part of Figure 5-38, there are three executions of the provisioning tool. All

presented executions have the same restriction on the vector’s size of a maximum of

3 paths. This restriction is indicated by the vector’s three boxes. The executions,

however, have different restrictions on the maximum number of interfaces, new

bindings, and interfaces of possible equipment. These three restrictions are

respectively indicated as values of a triple represented in the right side of the

execution name (above the column of vectors). Inside the triple, the number indicated

in red represents the priority criterion chosen. The final vector with the result of the

path finding process is highlighted in yellow in Figure 5-38.

The first execution (E1) does not impose any practical restriction to the paths that are

found, because its defined restrictions are higher than the paths’ attributes. P1 and

P2, both with size 6, when found, are allocated in the vector. When P3 is found, it is

inserted in the vector in the first position, as it has size 4 and the prioritized attribute

is the path size (number of interfaces). With all positions of the vector occupied, as

P4 and P5 have the same size of the path of the last position of the vector (size 6),

they are not allocated in the vector. Finally, as P6 have size 4, it is allocated in the

second position of the vector (as the first position also has size 4) and, by doing this,

it moves P1 to the third position and eliminates P2 as an answer to be shown to the

user.

The E2 execution imposes a size restriction of 4 interfaces in its paths. Regarding

this, in this execution, every time that a path with a higher number of interfaces is

identified, the path finding of the rest of this path is not performed. Therefore,

differently from what is represented in Figure 5-38 (which shows complete paths), the

paths P1, P2, P4, and P5 are aborted by the provisioning tool before their INT_SINKs

are reached. In E2, just paths P3 and P6 are presented to the user, as these are the

only paths with size smaller than or equal to 4.

146

Finally, in E3, the last execution, the main restriction is the number of interfaces from

possible equipment, and the priority is set to the number of new bindings. The

defined restriction only eliminates the finding of the path P2, which has two new

bindings. In this execution, even though P1 have a higher size than P6, P1 is made

available to the user and P6 is not, because of the defined priority criterion.

By the end of this process, a list of possible paths is provided to the user, which must

choose, in the next process, a single path to be provisioned.

Select Path for Provisioning: Once the paths are found, they are listed to the user

according to their position in the vector, which is defined by the priority criterion

defined in the Set Priority process. The user must choose a unique path to be

provisioned. The selection of a unique path among all paths made available by the

provisioning tool is represented by the step 2 of Figure 5-34.

Bind Path: This process is equivalent to the Binds VAR_OUT with VAR_IN process

of the manual provisioning. With the path selected and all its composing interfaces

known, these interfaces must be physically connected to allow the information

transfer: i.e., the circuit provisioning must occur.

In this step, the int_binds relation is assigned between the interfaces to be physically

connected, resulting in the network’s circuit provisioning. In fact, just like happens in

the manual provision, the asserted relation is the binds relation between the ports

that are mapped to the interfaces to be bound – the int_binds relations are then

inferred by the reasoner’s execution. The step 3 of Figure 5-34 represents this

process.

Set Path Relation: Once all interfaces in the path are known and bound, the

information transfer should be represented by the path relation, resulting in the

network’s connection provisioning. This process is represented in step 4 of Figure

5-34. By the end of this process, the network provisioning (consisting in both the

circuit provisioning and the connection provisioning) is complete and the desired

source and destination interfaces are able to provide services.

To conclude, as can be seen in the complete provisioning tool flowchart (Figure

5-23), this stage is the same already presented in the manual provisioning. To

147

simplify the process’ explanation, even though this is a single process, it is presented

duplicated, in both Figure 5-28 – Manual provisioning flowchart and in Figure 5-33 –

Automatic provisioning flowchart.

The complete provisioning process can be observed in a practical example in the

next chapter, when examples of manual provisioning and automatic provisioning are

going to be presented for a transport network with a specific technology: the OTN

technology.

148

6 ONTOLOGY-BASED PROVISIONING IN AN OPTICAL

TRANSPORT NETWORK

In chapter 5, we have presented the conceptual and computational issues of the

implemented knowledge-based system for transport networks provisioning. However,

only technology-independent examples were used during that chapter to illustrate its

functionalities. Technology independence is one of the software main advantages,

allowing it to be used for a multitude of ITU-T G.800 compliant transport network

technologies. To provide a more realistic use of the provisioning tool, as well as to

highlight its use in a specific transport network technology, the provisioning tool is

going to be applied to a more elaborated network with a specific-technology: the

Optical Transport Network (OTN) (ITU-T, 2012b).

The specific aspects concerning the OTN layered structure, characteristic

information, client/server layer associations, network topology, and layer network

functionality are provided in the Recommendation ITU-T G.872 (ITU-T, 2012b), which

describes the functional architecture of optical transport networks using the concepts

defined in the ITU-T G.800 and ITU-T G.805 recommendations.

One of the main characteristics of the Optical Transport Networks is that they enable

operations, administration, and management of connections that are transparent to

their clients (ITU-T, 2010). The functionality of OTN comprises of providing transport,

aggregation, routing, supervision, and survivability of client signals that are

processed in both optical and digital domains (ITU-T, 2012b). OTN has the capability

to wrap any service into a digital optical container and thus enable service

transparency that provides the flexibility to support all traffic types: voice, video, and

data – i.e., it seamlessly combines multiple networks and services into a common,

future-ready infrastructure (ITU-T, 2010).

The fact that its architecture is defined in terms of the ITU-T G.800 was the main

reason why an OTN network was chosen as an example in this chapter. Besides

that, it was also considered that the OTN technology is becoming the current

predominant multiplexing hierarchy now being used on clients with service

149

bandwidths ranging from 1 Gbit/s to 100 Gbit/s (ITU-T, 2010) and beyond (COLE,

2011; YAMAZAKI; TOMIZAWA; MIYAMOTO, 2012).

The example’s settings, including the network and its equipment definitions, are

presented in section 6.1. The next two sections correspond to an automatic

provisioning (section 6.2) and a manual provisioning (section 6.3) of the defined

network. Finally, to conclude this chapter, a brief discussion on the provisioning tool

performance is going to be presented in section 6.4.

6.1 EXAMPLE SETTINGS

Figure 6-1 represents the square topology that is going to be provisioned manually

and automatically in the two examples of this chapter.

Figure 6-1 – Topology to be provisioned

The topology presented in Figure 6-1, representing an OTN network, is composed of

four nodes and has two different equipment types: EQ1 and EQ4 are OTN Switches,

while EQ2 and EQ3 are amplifiers. These equipment are connected through four

links, here called pm12, pm13, pm24, and pm34. To be used in the provisioning tool,

these links are also defined as equipment (i.e., links are specified as equipment

containing physical media, as presented in subsection 6.1.1).

Figure Type

OTN Switch

Amplifier

Link

EQ
2

EQ
1

EQ
3

EQ
4

pm12

pm34

pm13 pm24

150

The internal composition of each one of these equipment and links is going to be

described in subsection 6.1.1 using the notation presented in Table 6-1. Although

different, this notation is inspired by the ITU-T G.800 notation.

Table 6-1 – Possible elements and their colors

Complementing the information provided in Table 6-1, in the next figures, the

interfaces and ports, when already physically bound, are represented as a single

purple arrow. When not bound, the interfaces and ports are represented as individual

blue arrows.

The OTN layer hierarchy used for the specification of the equipment in this example

is presented in Figure 6-2. According to the provisioning tool requirements, all

equipment elements (except the Physical Media, which is never inside a layer

network) are described inside one of these layers. Both the declared and the possible

equipment declarations contain a description of the layer hierarchy presented in this

figure, with minor modifications that are going to be presented.

Figure Type Color Indication

To equip.: Input Interface/Port

From equip.: Output

Interface/Port

Blue: Available single element

Purple: pair of bound

elements

White: single not specified

Equipment White: not specified

Physical Media Blue: no defined directionality

Termination Function,

Adaptation Function and

Matrix (respectively)

Yellow: Source TF

Orange: Sink TF

(TF = Transport Function)

Layer Network Blue: no defined directionality

151

Figure 6-2 – OTN layer hierarchy used in the example

6.1.1 Equipment Internal Structure Definition

The internal structure of each one of the equipment that are part of the four-node

topology used in this example are going to be presented in this section.

6.1.1.1 Definition of the Physical Media Equipment

The Physical Media Equipment, presented in Figure 6-3, corresponds to the links in

the topology of Figure 6-1. The physical media are the network elements responsible

for the information transfer below the lowest layer network and are implemented as

optical fibers, copper cables, etc., depending on the transport technology. As in the

example we are working with OTN networks, the physical media correspond to

optical fibers.

Due to a design consideration, the provisioning tool requires that the physical media

must be inside an equipment. In this example, the Physical Media Equipment,

represented in Figure 6-3, is defined as an equipment composed of two physical

ODU

OTU

OCh

OMS

OTS

client of

client of

client of

client of

Optical channel Data Unit

Optical Transport Unit

Optical channel

Optical Multiplex Section

Optical Transmission Section

D
ig

it
al

 H
ie

ra
rc

h
y

O
p

ti
ca

l H
ie

ra
rc

h
y

152

media transport functions. The composition by two distinct physical media intends to

allow a single Physical Media Equipment to be used for bidirectional information

transfer.

Figure 6-3 – Physical Media Equipment

As can be seen in Figure 6-3, the equipment has, in each one of its sides, one input,

and one output.

6.1.1.2 Definition of the Amplifier

The equipment 2 and 3 (EQ2 and EQ3) of the example network presented in Figure

6-1 are amplifiers (AMP). The internal structure of the amplifiers used in this example

is depicted in Figure 6-4.

Figure 6-4 – Amplifier (AMP) internal structure

As can be seen in Figure 6-4, the AMP used in the example has a duplicated pair of

source and sink elements, allowing bidirectional information transfer. All transport

1

Physical_Media

2

A
M

P

O
TS

2 21 1

153

functions that compose the Amplifier are at the Optical Transmission Section (OTS)

OTN layer.

6.1.1.3 Definition of the OTN Switch

The OTN Switch is an equipment that performs low-order to high-order signal

multiplexing, as well as wavelengths and time slots switching (DILEM et al., 2013). In

the provisioning example of this chapter, we are going to use the OTN Switch

equipment architecture proposed in (DILEM et al., 2013), which focuses on the

functionality provided by ITU-T recommendations, especially the ITU-T G.798 (ITU-T,

2012c). The main features of OTN Switches are explored in the architecture

proposed in (DILEM et al., 2013): the multiplexing and switching of signals in optical

and electrical domains.

The proposed architecture can be seen in Figure 6-5. In the proposal, the OTN

Switch is divided into six different modules that process and/or treat the (electrical or

optical) signals. The modules are the Client Interface Card (CIC), the Optical Data

Unit (ODU) Switch, the Network Interface Card (NIC), the Wavelength Selective

Switch (WSS), the Optical Interface Card (OIC), and the Controller Card. From these

six modules, we are here interested in the first five – the controller card is not used in

the provisioning example because it does not treat and transport information: it is

responsible for controlling and managing the other five modules, which are the ones

that treat and transport information.

154

Figure 6-5 – OTN Switch architecture. From (DILEM et al., 2013)

Nevertheless, the ITU-T G.800 Ontology Reference Model does not contemplate the

module concept – consequently, neither do the design model and the provisioning

tool. They also do not allow equipment composition by other equipment. Considering

these restrictions, in this example, the OTN Switch modules are going to be defined

as equipment to the provisioning tool. It is important to operate directly over the

modules, instead of operating on the OTN Switch itself, because of two reasons. The

first one is that with a fine-grained abstraction, a more refined provisioning can be

performed (more interfaces can be operated). The second one is that modules can

be presented as already operational in an OTN Switch (as declared equipment) or

they can be presented as not operational, but available for use (as possible

equipment). Consequently, the OTN Switch, here, is just an abstraction – it is the

aggregation of all modules that are part of it. Once the modules are represented as

equipment, each one of them is going to have its internal structure (formed by ITU-T

G.800 elements) described.

The first OTN Switch module is the Client Interface Card (CIC), a module that is

responsible for adapting/recovering the client signal that is entering/leaving the OTN

155

network. Different types of client signals, with different characteristics, can

communicate with the CIC, for instance, 10G-100G Ethernet, MPLS-TP, SDH, and

also lower order OTN signals (DILEM et al., 2013). Figure 6-6 represents, in its left

part, the CIC as presented in (DILEM et al., 2013); and in its right part, the CIC

simplification used in the example here presented. The same display pattern of

Figure 6-6 is adopted for the presentation of all other OTN Switch modules. Note

that, as (DILEM et al., 2013) uses an example with a client signal of type 10 Gigabit

Ethernet, the same client signal is going to be used in the example provided in this

chapter.

Figure 6-6 – Client Interface Card definition

The second OTN Switch module used here is the ODU Switch, which is presented in

Figure 6-7. The ODU Switch is responsible for the digital switching of the ODU

signals inside the OTN Switch. This switching can be configured automatically (by a

control plan, such as OpenFlow, GMPLS, etc.) or manually (by the network operator

intervention) (DILEM et al., 2013).

CIC as defined in Dilem et al. CIC as used in the example

C
IC

O
D

U
2

e

156

Figure 6-7 – ODU Switch and WSS definitions

As can be seen in Figure 6-7, the ODU Switch is differently implemented in (DILEM

et al., 2013) and in the OTN example here defined. While (DILEM et al., 2013)

represents the internal structure of the ODU Switch with a subnetwork, we used the

matrix to implement this module. This was necessary because, as a design decision,

considering that the subnetwork concept definition by the recommendations ITU-T

G.805 and ITU-T G.800 presents ontological deficiencies (BARCELOS, 2011),

subnetworks are not allowed in the provisioning tool. However, as matrices represent

the limit to the recursive partitioning of a subnetwork (ITU-T, 2012a), this substitution

does not constitute a problem. For simplification purposes, the ODU Switch used in

the example has exactly two matrices (one source and one sink), each one with two

pairs of input and output ports.

Also represented in Figure 6-7, the Wavelength Selective Switch (WSS) is the

module in which an optical signal can be routed, protected, added, or dropped

from/to an aggregated WDM signal (DILEM et al., 2013). Just like happens with the

ODU Switch, in this example, for the same reasons, the WSS has matrices in its

internal structure instead of subnetworks.

Another OTN Switch module here used is the Network Interface Card (NIC). This

module is responsible for providing a digital end-to-end path, insert management

ODU Switch as defined in Dilem et al. ODU Switch as used in the example

WSS as defined in Dilem et al. WSS as used in the example

O
C

h

W
SS

O
D

U
2

e

O
D

U
 S

w
it

ch

157

information and error corrections (Forward Error Correction), and to provide the

functionality (when necessary) of one or more ODU multiplexing stages. It is inside

the NIC that the electrical-optical conversion occurs (DILEM et al., 2013). The NIC’s

internal structure is presented in Figure 6-8.

Figure 6-8 – Network Interface Card definition

As already mentioned, in this example we adopt a client signal of type 10 Gigabit

Ethernet, just like (DILEM et al., 2013). Consequently, the layer structure used in the

example differs from the “pure” OTN layer hierarchy presented in Figure 6-2. In the

example here presented, the ODU layer is divided in two: the ODU2e and the ODUk.

While the CIC and the ODU Switch implement transport functions of the former layer,

the NIC’s first layer is the latter.

The final module of the OTN Switch here used is the Optical Interface Card (OIC),

presented in Figure 6-9. The OIC performs the treatment of the optical signal, i.e., the

NIC as defined in Dilem et al. NIC as used in the example

O
D

U
k

O
TU

O
C

h

N
IC

158

multiplexing and demultiplexing of different optical channels in a single fiber, just like

the amplification and the compensation of the dispersion (DILEM et al., 2013).

Figure 6-9 – Optical Interface Card definition

Hereafter, in the figures that illustrate this chapter, the modules presented in this

subsection are going to be presented in a higher abstraction, as independent

equipment. For a better illustration of the network, these equipment are going to be

represented as named colored rectangles, each one with their corresponding

interfaces.

6.1.2 Declared Network and Possible Equipment

As presented in chapter 5, the provisioning tool can accept two network descriptions

as inputs: the declared equipment, which consists of the equipment that are already

operational on the network; and optionally the possible equipment, which consists of

equipment that are available to be used, but that are not installed or operational. Both

the declared equipment and the possible equipment used in the example are going to

be presented and described in this section. The complete specification of these

equipment (i.e., the complete structured text file), however, is not provided in this

OIC as defined in Dilem et al. OIC as used in the example

O
M

S
O

TS

O
IC

159

thesis because of its large size. Just like all other necessary information, the

specifications can be found in the thesis shared folder: https://goo.gl/L1UPv4.

The network formed by the declared equipment, represented in Figure 6-10,

corresponds to the topology presented in Figure 6-1. In this network, four equipment

are available: two OTN Switches and two amplifiers. In addition, the four links in

Figure 6-10 (pm12, pm13, pm24, and pm34) are also declared as equipment.

Figure 6-10 – Declared equipment available in the example

Just like previously said, the OTN Switches (EQ1 and EQ4) are represented by its

modules, here declared as independent equipment. The amplifiers (EQ2 and EQ3)

are single equipment, as well as the four physical media. In summary, the network

presented in Figure 6-10 has 19 declared equipment.

A
M

P
 –

EQ
 3

pm12

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

O
TN

 S
w

it
ch

 –
EQ

 4

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

OIC
02

O
TN

 S
w

it
ch

 –
EQ

 1

pm24

pm13 pm34

A
M

P
 –

EQ
 2

160

As can be seen in Figure 6-10 there are resources available and physical bindings

already established to provision a path from equipment EQ1 to EQ4 via EQ3.

However, there are no resources already available on the network for provisioning a

path from EQ1 to EQ4 via EQ2.

The OTN Switches represented in Figure 6-10 are declared with partial capacity.

Regarding this, two considerations can be made. The first one is that their available

slots are empty (i.e., there are no installed modules). In this case, possible

equipment can be used to provide full capacity to the OTN Switches, allowing new

paths. The second consideration is that the available slots have installed modules

that are not operational. In this second case, the not operational equipment constitute

possible equipment, not declared ones. The possible equipment made available in

this example are represented in Figure 6-11. They are one CIC (CIC P1), two NICs

(NIC P1 and NIC P2), and one OIC (OIC P1).

Figure 6-11 – Possible equipment available in the example

Once the network to be provisioned is presented with its declared equipment and

possible equipment, in subsection 6.1.3, the desired information transfer is

presented.

6.1.3 Information Transfer to be Provisioned

The example consists on the provisioning of an information transfer (i.e., a

connection), represented as an orange dotted line in the topological view of the

network in Figure 6-12, from EQ1 to EQ4.

NIC
P1

OIC
P1

NIC
P2

161

Figure 6-12 – Topological representation of the paths to be provisioned

In the example, the information transfer presented in the left part of Figure 6-12 must

be protected in the electrical domain. To implement the desired connection, two

paths must be provisioned: (i) a working path, which is the main information transfer

path, and (ii) a protection path, which is an alternative in case of failure of the working

path. Both the working path and the protection path must share the same source and

destination interfaces (i.e., the same INT_SOURCE and INT_SINK). It can be

observed, in the right part of Figure 6-12, the restrictions that apply to the paths to be

provisioned.

The first path to be provisioned is the working path, in section 6.2. The provision of

this path must demand a minimum intervention in the network, using the

infrastructure already available. On this path, the priority to be set is the use of the

minimum number of new bindings. In addition, the provisioning of this path must use

the automatic provisioning mode available in the KBS.

The second path to be provisioned, the protection path, intends to protect the

information transfer of the working path in the electrical domain. Therefore, it is

desired that the two provisioned paths do not share the same optical fibers because,

in case of a failure (e.g., a broken fiber) in one of the paths, the information transfer

can continue on the other provisioned path. The provisioning of the protection path,

presented in section 6.3, must be performed in the manual mode of the provisioning

tool.

EQ
2

EQ
1

EQ
3

EQ
4

pm12

pm34

pm13 pm24

EQ1 CIC 01
(INT_SOURCE)

EQ4 CIC 01
(INT_SINK)

Path Mode Requirement

Working Path Automatic
Minimum number

of new bindings

Protection Path Manual
Different fibers

from working path

162

6.2 AUTOMATIC PROVISIONING OF THE WORKING PATH

At the beginning of the provisioning process, it is necessary to provide as input the

inference and the consistency models, as well as the declared and possible

equipment declarations. This first step can be seen in Figure 6-13.

Figure 6-13 – Loading of the knowledge base, declared, and possible equipment

Figure 6-13 is a screen capture of the provisioning tool execution. Other images from

this section and from the next section are also screen captures, however, some of

them present modifications and arrangements to better illustrate the software

execution. Besides the content of the images here presented, the software also

provides intermediate execution and processing information, which are not presented

because they are not relevant for the comprehension of the paths’ provisioning. In

addition, marks and other editions are also included in some images when it is

necessary to highlight part of the information presented.

Back to the provisioning of the working path, the second step is the selection of the

source interface (INT_SOURCE) and the destination interface (INT_SINK), as can be

observed in Figure 6-14. The selected source and sink interfaces to be provisioned

are, respectively, in_int_so_EQ1_CIC_01 (from equipment EQ1_CIC_01) and

out_int_sk_EQ4_CIC_01 (from equipment EQ4_CIC_01).

163

Figure 6-14 – INT_SOURCE, INT_SINK, and provisioning mode selection

As can be seen in the last line of Figure 6-14, the two provisioning modes are made

available to the user, which must choose one. According to the requirements defined

in subsection 6.1.3, the provisioning path must be automatically provisioned and,

hence, this mode was here selected.

Two important steps of the automatic path provisioning are presented in Figure 6-15.

This figure represents the definition of the restrictions that apply in the path finding

process, as well as the selection of the priority.

Figure 6-15 – Restrictions and priority definitions

In Figure 6-15, it can be observed that the only restriction imposed was the maximum

number of paths to be returned to the user, which was set as 2. By the end of the

path finding process, there are going to be at most two paths to be evaluated by the

user, which may choose the best option among them. No maximum value was

defined for the other three restrictions available (number of interfaces in a path,

number of new bindings, and number of interfaces from possible equipment). In

164

addition, as previously defined, the working path must demand a minimum

intervention in the network and, hence, the minimum number of new bindings was

the selected priority.

Once the restrictions and the selected priority are set, the path finding process is

executed. The result of this process is exhibited in Figure 6-16, which exhibits the

two candidate paths required by the user. Other interesting information in Figure 6-16

is the path finding execution time: the provisioning tool took 2,401 seconds to find the

two candidate paths.

Figure 6-16 – Path selection options

The two candidate paths’ attributes and composing interfaces can be observed in

Figure 6-16. Even though the two candidate paths have the same size (26 interfaces

each one) and the same number of interfaces from possible equipment (both do not

have any), the attribute of interest for the path selection is the number of new

bindings, which is highlighted in red in Figure 6-16. Regarding this attribute, the first

candidate path does not have any new binding, while the second candidate has one.

Therefore, as can be seen in the last line of Figure 6-16, the first path was the

chosen option to be provisioned in the network – i.e., the first candidate path was

chosen as the working path.

A combined topological view and transport view of the provisioned working path can

be seen in Figure 6-17. In this figure, the working path is represented as a red dotted

line in the topological view (in the center of the figure) and, in the transport view, it is

represented by its composing interfaces (also in red).

165

Figure 6-17 – Combined topological and transport view of the provisioned working path

In Figure 6-17, it can be seen that the working path goes from EQ1 to EQ4 through

EQ3. Hence, as the protection path must use different fibers from the working path, it

obligatorily has to use EQ2 and its related physical media (pm12 and pm24). In

addition, it can be observed that no interfaces from possible equipment were used in

the working path provisioning.

Finally, by the end of the provisioning of the working path, as can be seen in Figure

6-18, the provisioning tool validates the current knowledge base’s state and returns

this information to the user. In case of success of the validation, the user can choose

to provision another path or not. As we intend to provision the protection path, in this

example, the answer was positive, as can be seen in Figure 6-18.

A
M

P
 –

EQ
 3

pm12

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

O
TN

 S
w

it
ch

 –
EQ

 4

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

OIC
02

O
TN

 S
w

it
ch

 –
EQ

 1

pm24

pm13 pm34

A
M

P
 –

EQ
 2

EQ2EQ1

EQ3 EQ4

pm12

pm34

pm13 pm24

166

Figure 6-18 – Validation checking and new provisioning option

Differently from the provisioning of the working path, the provisioning of the

protection path has to be done with the manual provisioning mode, according to the

requirements presented in subsection 6.1.3.

6.3 MANUAL PROVISIONING OF THE PROTECTION PATH

The provisioning of the protection path begins with the selection of the source and

destination of the provisioning (i.e., INT_SOURCE and INT_SINK, respectively).

However, differently from the first executed provisioning (i.e., the working path

provisioning), the already provisioned interfaces are informed to the user. This

difference is represented by red marks in Figure 6-19.

Figure 6-19 – Manual provisioning

However, as we want to provision a protection path, the same interfaces of the last

example were selected: in_int_so_EQ1_CIC_01 (from equipment EQ1_CIC_01) and

out_int_sk_EQ4_CIC_01 (from equipment EQ4_CIC_01). These interfaces are,

respectively, INT_SOURCE and INT_SINK. This selection, as well as the selection of

167

the manual provisioning mode (a previously defined requirement of the protection

path provisioning), is presented in Figure 6-19.

The manual provisioning mode consists in iterative steps in which the user is

required to choose the input interfaces (VAR_INs) and the output interfaces

(VAR_OUTs) that compose the path to be provisioned until a selected output

interface equals the defined destination interface (INT_SINK). All iterations of the

provisioning of the protection path are presented in Figure 6-20 and in Figure 6-23.

These figures contain selected parts of the provisioning result mounted together in

chronological order. The first part of the protection path’s provisioning is represented

in Figure 6-20, which corresponds to the selection of the interfaces of EQ1.

Figure 6-20 – First part of the manual provisioning (provisioning of EQ1 modules)

As can be seen in Figure 6-20, while the interfaces are being selected by the user,

the provisioning tool presents the current provisory path (i.e., the path that is being

mounted) with all its composing interfaces and attributes.

As the working path must be protected in the electrical domain, the protection path to

be provisioned uses the ODU Switch to duplicate the information transfer and hence

implement the protection. The use of a second output port of this equipment (i.e., the

port which is not being used by the working path) in the protection path is

represented by the red mark in Figure 6-20. In addition, Figure 6-20 illustrates that

not only declared equipment was used in the provisioning of the protection path,

168

possible equipment were also required in order to allow the information transfer

through the desired optical fibers. The selection of interfaces from possible

equipment is represented in orange in Figure 6-20 and in Figure 6-22.

The purple mark in Figure 6-20 represents an important limitation on the provisioning

tool. This mark highlights an example of invalid interface that is offered to the user as

a correct provisioning candidate. However, the candidate interface is invalid with

relation to the domain, not with relation to the software algorithm. I.e., even though

the candidate interfaces respect all the restrictions and definitions established in the

provisioning tool algorithm, it does not respect a domain aspect: the geographical

position of the equipment. Without this important consideration, the software cannot

know the distance between the network equipment, which may be kilometers away

one from the other. In the example highlighted in purple in Figure 6-20, an interface

from EQ4 is exhibited as a candidate to be directly bound to an interface from EQ1,

what clearly does not respect the topology presented in Figure 6-1.

An interesting example of this limitation of the provisioning tool would be observed if,

instead of selecting the minimum number of new bindings in the automatic

provisioning of the working path, we had selected the minimum number of interfaces

as the priority. In such case, the first path that would be returned to the user by the

tool path finding process is represented in Figure 6-21.

169

Figure 6-21 – Invalid network provisioning

As can be seen in Figure 6-21, the returned path would have only 18 interfaces (and

also 6 new bindings, and 8 interfaces from possible equipment), while the path

actually provisioned has 26 interfaces. However, this smaller path is invalid and,

hence, it should not be considered by the provisioning tool user. The suggested path

is invalid because it does not respect the topology presented in Figure 6-1: it does

not use any amplifier to transfer information from EQ1 to EQ4 and directly binds

interfaces from these equipment.

The suggestion of false candidate interfaces caused by the provisioning tool

limitation in dealing with the geographical position of equipment is recurrent and can

be found more times in Figure 6-20 and in Figure 6-22. This problem forces the

network operator to evaluate carefully all the provisioning results (in both automatic

and manual modes) in order to assure a valid provisioning. The solution of this

problem is considered a future work and it involves the redesign of the provisioning

tool. As the Ontology Reference Model already provides the necessary attributes and

concepts for this solution, a second version of the design model should reflect these

pm12

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

O
TN

 S
w

it
ch

 –
EQ

 4

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

OIC
02

O
TN

 S
w

it
ch

 –
EQ

 1

pm24

A
M

P
 –

EQ
 2

NIC
P1

OIC
P1

170

necessary concepts, as well as the implementation should be modified to treat them.

These concepts are the latitude and longitude attributes that every Transport

Processing Function and Matrix have in the Ontology Reference Model, as well as

the site concept (a site aggregates equipment in a given location) that can be found

in the site ontology presented in subsection 4.3.3.

Back to the provisioning of the protection path, in Figure 6-22 the reminder of the

provisioning iterations can be observed. In this provisioning process, the requirement

that the protection path must not share any optical fiber with the working path was

considered. As can be seen in Figure 6-17, the working path uses pm13 and pm34,

and, because of that, the protection path must use pm12 and pm24. The use of these

two physical media is represented in Figure 6-22 by blue marks, indicating the use of

the interfaces of the Physical Media Equipment in the intermediate path (i.e., the

protection path that was being mounted).

171

Figure 6-22 – Second part of the manual provisioning

The red mark in Figure 6-22 indicates that the electrical protection that began in the

ODU Switch of EQ1 is terminated in the ODU Switch of EQ4. In addition, as in Figure

6-20, the orange marks in Figure 6-22 shows that interfaces from possible equipment

were used in the provisioning of the protection path.

Finally, by the selection of INT_SOURCE as VAR_OUR, represented in the last line

of Figure 6-22, the path is complete and the consistency of the knowledge base’s

resulting state is verified by the reasoner. When no problem is found, the provisioning

process is finished and the user must answer if he or she would like to provision

another path. In case of a negative answer, the performed network provisioning is

saved as an OWL file, which is made available to the user. These last steps are

represented in Figure 6-23.

172

Figure 6-23 – End of provisioning process

The final topological view of the network provisioning is presented in Figure 6-24. As

it can be seen, the working path goes from EQ1 to EQ4 through EQ3, passing on

pm13 and pm34, while the protection path goes from the same source to the same

destination by a different route, passing through EQ2 instead of EQ3, using pm12

and pm24. Moreover, Figure 6-24 shows that the two paths have an intersection,

which is represented as an orange dotted line.

Figure 6-24 – Topological representation of the provisioned paths

The same provisioned network can be seen in Figure 6-25 using a transport view

instead of a topological view. Note that the network contains both the declared

equipment and the possible equipment, as both were used in the network

provisioning. This figure also represents, with the same colors used in Figure 6-24,

the two provisioned paths (by means of its composing interfaces). In addition,

possible equipment are differentiated from the declared equipment by a red border in

Figure 6-25.

Figure Type

Working Path

Protection Path

Intersection of

Paths

EQ
2

EQ
1

EQ
3

EQ
4

pm12

pm34

pm13 pm24

173

Figure 6-25 – Representation of the provisioned paths at the complete network

Using the representation of Figure 6-25, it can be seen that the working path could

be provisioned using only declared equipment, while the protection path required

three possible equipment to be provisioned.

All interfaces that are part of each one of the provisioned paths are seen in Figure

6-25. However, as the names of these interfaces are not displayed in the figure, they

are provided in Table 6-2, as well as the name of the equipment that contains these

interfaces. In this table, the interfaces shared by both paths are presented in bold. In

addition, the Table 6-2 also contains the attribute values for both paths.

A
M

P
 –

EQ
 3

pm12 pm24

pm13 pm34

A
M

P
 –

EQ
 2

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

O
TN

 S
w

it
ch

 –
EQ

 1

NIC
P1

OIC
P1

O
TN

 S
w

it
ch

 –
EQ

 4

CIC
01

NIC
01

OIC
01

WSS

ODU
Switch

CIC
02

OIC
02

NIC
P2

174

Table 6-2 – Paths' attributes and interfaces

 Working Path Protection Path

Num. of
Interfaces

26 26

New
bindings

0 7

Int. of
Poss. Eq.

0 6

In
te

rf
a
c

e
s

 a
n

d
 b

e
lo

n
g

in
g

 e
q

u
ip

m
e

n
t

n
a

m
e

s

1. in_int_so_EQ1_CIC_01

 from: EQ1_CIC_01
2. out_int_so_EQ1_CIC_01

 from: EQ1_CIC_01
3. in_int01_so_EQ1_ODUSwitch

 from: EQ1_ODUSwitch
4. out_int01_so_EQ1_ODUSwitch

 from: EQ1_ODUSwitch
5. in_int01_so_EQ1_NIC_01

 from: EQ1_NIC_01
6. out_int_so_EQ1_NIC_01

 from: EQ1_NIC_01
7. in_int01_so_EQ1_WSS

 from: EQ1_WSS
8. out_int01_so_EQ1_WSS

 from: EQ1_WSS
9. in_int_so_EQ1_OIC_01

 from: EQ1_OIC_01
10. out_int_so_EQ1_OIC_01

 from: EQ1_OIC_01
11. in_int01_Physical_Media_13

 from: Physical_Media_13
12. out_int01_Physical_Media_13

 from: Physical_Media_13
13. in_int01_EQ3_AMP

 from: EQ3_AMP
14. out_int01_EQ3_AMP

 from: EQ3_AMP
15. in_int01_Physical_Media_34

 from: Physical_Media_34
16. out_int01_Physical_Media_34

 from: Physical_Media_34
17. in_int_sk_EQ4_OIC_02

 from: EQ4_OIC_02
18. out_int_sk_EQ4_OIC_02

 from: EQ4_OIC_02
19. in_int02_sk_EQ4_WSS

 from: EQ4_WSS
20. out_int01_sk_EQ4_WSS

 from: EQ4_WSS
21. in_int_sk_EQ4_NIC_01

 from: EQ4_NIC_01
22. out_int01_sk_EQ4_NIC_01

 from: EQ4_NIC_01
23. in_int01_sk_EQ4_ODUSwitch

 from: EQ4_ODUSwitch
24. out_int01_sk_EQ4_ODUSwitch

 from: EQ4_ODUSwitch
25. in_int_sk_EQ4_CIC_01

 from: EQ4_CIC_01
26. out_int_sk_EQ4_CIC_01

 from: EQ4_CIC_01

1. in_int_so_EQ1_CIC_01

 from: EQ1_CIC_01
2. out_int_so_EQ1_CIC_01

 from: EQ1_CIC_01
3. in_int01_so_EQ1_ODUSwitch

 from: EQ1_ODUSwitch
4. out_int02_so_EQ1_ODUSwitch

 from: EQ1_ODUSwitch
5. in_int01_so_POSSIBLE_NIC_P1

 from: POSSIBLE_NIC_P1
6. out_int_so_POSSIBLE_NIC_P1

 from: POSSIBLE_NIC_P1
7. in_int02_so_EQ1_WSS

 from: EQ1_WSS
8. out_int02_so_EQ1_WSS

 from: EQ1_WSS
9. in_int_so_POSSIBLE_OIC_P1

 from: POSSIBLE_OIC_P1
10. out_int_so_POSSIBLE_OIC_P1

 from: POSSIBLE_OIC_P1
11. in_int01_Physical_Media_12

 from: Physical_Media_12
12. out_int01_Physical_Media_12

 from: Physical_Media_12
13. in_int01_EQ2_AMP

 from: EQ2_AMP
14. out_int01_EQ2_AMP

 from: EQ2_AMP
15. in_int01_Physical_Media_24

 from: Physical_Media_24
16. out_int01_Physical_Media_24

 from: Physical_Media_24
17. in_int_sk_EQ4_OIC_01

 from: EQ4_OIC_01
18. out_int_sk_EQ4_OIC_01

 from: EQ4_OIC_01
19. in_int01_sk_EQ4_WSS

 from: EQ4_WSS
20. out_int02_sk_EQ4_WSS

 from: EQ4_WSS
21. in_int_sk_POSSIBLE_NIC_P2

 from: POSSIBLE_NIC_P2
22. out_int01_sk_POSSIBLE_NIC_P2

 from: POSSIBLE_NIC_P2
23. in_int02_sk_EQ4_ODUSwitch

 from: EQ4_ODUSwitch
24. out_int01_sk_EQ4_ODUSwitch

 from: EQ4_ODUSwitch
25. in_int_sk_EQ4_CIC_01

 from: EQ4_CIC_01
26. out_int_sk_EQ4_CIC_01

 from: EQ4_CIC_01

To conclude this section, it is important to mention that the provisioning tool and all

the files that are necessary to reproduce the example here presented can be found in

the thesis shared folder: https://goo.gl/L1UPv4.

175

6.4 DISCUSSION ON THE PROVISIONING TOOL PERFORMANCE

In this section, an overview about the provisioning tool performance is provided.

However, first, it must be emphasized that performance is not a requirement of the

software and is out of the thesis scope. Hence, this issue will not be here addressed

in depth – some performance information is provided so the user can have a better

comprehension about the provisioning tool.

To perform an evaluation of the provisioning tool execution time, the total

provisioning time is split in its composing parts, which are:

i. Include Time: the time to include all instances from the input specification in

the knowledge base;

ii. Reasoning Time: the reasoner’s execution time after the loading of the

instances in the knowledge base;

iii. Path Finding Time: the time to execute the automatic path finding and return

the possible candidate paths to the user;

iv. Overhead Time: is the processing time not directly related to the network

provisioning activities, calculated from total time minus the previous three

measured times.

Once again, the total provisioning time is the sum of its four composing parts. In this

section, the total time is measured from the include time to the end of the path finding

time. I.e., the time to apply the object properties that represent the path provisioning,

the time to perform the last consistency checking, and the time to save the OWL file

are not evaluated in this section.

To execute a set of tests, a specific Java software was developed to evaluate the

performance of the provisioning tool. Although not in the scope of this thesis, the

tester is provided in the thesis shared folder.

The network presented in Figure 6-26 was used in the performance test here

presented. This network has, as possible equipment, its lowest layer with four

equipment: two source equipment and two sink equipment. All these equipment are

composed of exactly one adaptation function (with one input and one output) bound

176

with a termination function (also with one input and one output). This file also

contains the declaration of two physical media.

Figure 6-26 – Test network with N layers

The upper layers of the test network, presented in Figure 6-26, are specified as

declared equipment. The test consists in variations of the number of layers declared

in the possible equipment file, ranging from 1 to 3 layers. In all tests, the upper layers

are always composed of four equipment: two source equipment and two sink

equipment. All these equipment are composed of exactly one adaptation function

(with one input and one output) bound with a termination function (also with one input

and one output), which is bound to a matrix (with three ports – one input, when

source, or two inputs, when sink).

In the test here performed, any restrictions were defined (i.e., there are no

restrictions on the number of paths, their sizes, number of new bindings, or number

of interfaces from possible equipment). The resulting times of the execution of the

test for the network presented in Figure 6-26, with N ranging from 1 to 3, is presented

in Table 6-3.

L1
L0

L2
LN

Source
Port

Sink
Port

Fi
xd

e
 p

o
rt

io
n

 in
 a

ll
te

st
s

(f
ile

:
p

o
ss

ib
le

)
P

o
rt

io
n

 t
h

at
 a

re
 in

cr
e

as
e

d
 in

 t
e

st
s

(f
ile

:
d

e
cl

ar
e

d
)

177

Table 6-3 – Path finding time for no limits set

Execution Times 1 Layer 2 Layers 3 Layers

Include Time (ms) 2.432,67 3.995,00 5.716,33

Reasoning Time (ms) 2.646,00 2.644,67 2.730,33

Path Finding Time (ms) 338,33 12.392,33 1.018.576,00

Overhead Time (ms) 1.084,00 1.604,33 2.215,67

Total Time (ms) 6.500,67 20.671,33 1.029.206,33

Within the presented times, it can be observed that, while the reasoning time is

almost constant when varying the number of layers, the include time and the

overhead time are better approximated by polynomial functions, and, more

importantly, the path finding time (the execution of the provisioning algorithm

presented in this thesis) presents an exponential characteristic.

Using the data provided in Table 6-3, the relevancy of the path finding time with

relation to the other evaluated times can be observed in the graphs presented in

Figure 6-27.

Figure 6-27 – Proportion of each evaluated time when varying the number of layers

It can be clearly noted in Figure 6-27 that, when more layers are added to the

network (i.e., the bigger the network is), most time the path finding will spend. The

exponential characteristic of the path finding time can be better visualized in Figure

6-28, where the path finding time is approximated by an exponential curve,

represented in red.

37%

41%

5% 17%

1 Layer

19%

13%

60%

8%

2 Layers

99%

3 Layers 1 Layer
Include Time (ms)

Reasoning Time (ms)

Path Finding Time (ms)

Overhead Time (ms)

178

Figure 6-28 – Exponential characteristic of the path finding when no restrictions are defined

The exponential running time here presented can also be found in the work

presented in (KUIPERS; DIJKSTRA, 2009), which defined path finding algorithms for

multi-layer graphs. The work there presented also demonstrated the NP-complete

nature of the multi-layer path finding problem, which a step of the network

provisioning process (DIJKSTRA et al., 2009). However, it is important to highlight

that, as presented in section 2.5, the problem there addressed differs from the one

we address in this thesis.

The problems related to this exponential characteristic of the path finding times when

dealing with no limitations can be observed, for example, when the number of layers

in the test is set to four. In this case, the provisioning tool reports an

OutOfMemoryError: Java heap space. However, it is important to highlight that in a

real provisioning case, it is unlikely that the provisioning tool would be used to find all

paths from two points or that no restrictions would be defined. In real situations, the

network operator will need just some options to evaluate which is the best path to be

provisioned. Hence, the network operator (i.e., the provisioning tool user) would use

the restrictions available (number of paths, size of the path, number of new bindings,

and number of interfaces from possible equipment) in order to just evaluate the paths

that most fit in the provisioning strategy.

The use of the restrictions allows the provisioning tool execution in networks with a

higher number of elements and in a smaller time. The software performance

338,33

12.392,33

1.018.576,00

y = 5,3891e4,0049x

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1 2 3 4 5

P
at

h
 F

in
d

in
g

Ti
m

e
 (

m
s)

Number of Layers

Path Finding Times (ms)

179

improvement can be observed when restrictions are set, as also tested in the

provisioning tool. As the performed test involves many executions of the provisioning

tool and considering that this is a complementary discussion, only the results of the

test are here presented to illustrate the restrictions’ importance. The complete test

information and its results can be found in the thesis shared folder. Six categories of

restrictions were created for this other test. These categories are:

 NL: unlimited, where no limit is defined;

 L1: limited maximum number of paths;

 L2: limited maximum number of interfaces in a path;

 L3: limited maximum number of new bindings;

 L4: limited maximum number of interfaces from possible equipment;

 AL: limited defined for all parameters.

In the NL category, just one test was performed, as there are no restrictions to be

varied (i.e., it is the same test already presented in this section). For the other five

categories, five executions were performed. The restrictions are related to the

executions’ number: the higher the number, fewer restrictions were imposed. The

mean total provisioning time of all categories tested can be visualized in Figure 6-29.

Figure 6-29 – Restriction tests representing the restrictions’ use importance

0

200

400

600

800

1.000

1.200

1 2 3 4 5

To
ta

l
Ex

e
cu

ti
o

n
 T

im
e

 (
m

s)

Th
o

u
sa

n
d

s

Number of the Test

Test Results by Category

L1 L2 L3 L4 AL NL

180

It can be observed in Figure 6-29 that the highest provisioning time was observed in

the NL category. For all other categories, as more restrictions are imposed, the path

finding times are smaller – this happens because fewer paths are found.

To conclude, all tests were performed on a Windows 8.1 Pro 64 bits, in an Intel Core

i5-3570 CPU with 3.40 GHz and 8,00 GB of memory. No other special pre

configurations were made for the test.

181

7 CONCLUSION

Provisioning is an important activity in the configuration of networks. The ITU-T

Recommendation M.3400 defines network provisioning as the "procedures which are

necessary to bring an equipment into service, not including installation" (ITU-T,

2000a). Resource and service provisioning are recent challenges in communication

network planning (MATERA; LISTANTI; PIÓRO, 2015) and are important activities in

paradigms of the future networking, like service-oriented networks (ESCALONA et

al., 2011), cloud networking (HOUIDI et al., 2011a), and network virtualization

(SCHAFFRATH et al., 2009).

In this thesis chapter 2, the most recent studies in service provisioning and in

infrastructure provisioning were presented, as well as the works that have already

used ontologies somehow for network provisioning. In addition, related works

proposed in the literature concerning network models and path finding in technology-

independent multi-layer transport networks were presented and discussed.

Five major problems related to the infrastructure layer’s provisioning solutions were

pointed out: (i) the absence of formal semantics and lack of interoperability, (ii) the

need for automation, (iii) the limited consideration of network equipment, (iv) the

technology dependence, and (v) the limited layering considerations. Regarding these

important identified problems, this thesis investigated if the use of semantic

technologies, especially ontologies, can solve the lack of interoperability in the

transport network area and if these technologies can be the basis for a computational

solution that can provision technology-independent multi-layer transport networks

considering the equipment states. The adopted hypothesis was that the use of a well-

founded Ontology Reference Model of the Recommendation ITU-T G.800 is able to

give precise semantics to the transport network area, allowing interoperability, and

that the use of this Ontology Reference Model in a rigid ontology-based development

method can generate a software that is able to provision technology-independent

multi-layer transport networks considering the equipment states. Regarding this

hypothesis, the thesis general objective was to develop an ontology-based

182

provisioning solution for technology-independent multi-layer transport networks. To

accomplish the general objective, three specific objectives were defined:

 SO1: the development of an Ontology Reference Model for technology-

independent multi-layer transport networks based on a recognized

international standard, the Recommendation ITU-T G.800, and built with an

expressive well-founded ontology language to the definition of precise

semantics and to allow communication, learning, and interoperation;

 SO2: the development of a semantically improved network model for the

provisioning of technology-independent multi-layer transport networks, here

called OWL Computational Ontology. This computational artifact must be

generated from the Ontology Reference Model (SO1) through a rigid ontology

engineering; and

 SO3: the development of an ontology-based network provisioning knowledge-

based system that uses the OWL Computational Ontology (SO2) as a

knowledge base. This system must be able to perform circuit provisioning and

connection provisioning on a technology-independent multi-layer transport

network, considering the equipment state.

To accomplish the desired objectives, the MDA ontology-based development method

used to develop the provisioning tool knowledge base was presented in this thesis

chapter 3. This method is composed of three phases, each one with a respective

artifact: the Ontology Reference Model, the design model, and the OWL

Computational Ontology. The three phases of the ontology-based development

method were described, as well as their respective implementation technologies.

The Recommendation ITU-T G.800 Ontology Reference Model built to define precise

semantics to the transport network area, eliminating semantic deficiencies and

allowing interoperation, was presented in chapter 4. The Recommendation ITU-T

G.800, which is the standard that describes the functional architecture of transport

networks in a technology-independent way, was modeled using OntoUML. OntoUML

is a highly expressive well-founded ontology language that has been successfully

employed in a number of industrial projects in several different domains

(ALBUQUERQUE; GUIZZARDI, 2013). In chapter 4, the thesis SO1 was achieved.

183

The use of the Ontology Reference Model in the MDA ontology-based development

method results in the knowledge base of the desired KBS provisioning tool –

accomplishing the thesis SO2. The provisioning tool, divided into its main parts (its

knowledge base, reasoning engine, and domain logics), is presented in chapter 5. As

desired, this software is able to provision technology-independent multi-layer

transport networks considering the networks equipment states. Hence, the thesis

SO3 was also achieved.

In chapter 5, conceptual and computational issues of the implemented knowledge-

based system for transport networks provisioning were demonstrated on technology-

independent examples. However, the technology independence is one of the

software main advantages, allowing it to be used in a multitude of ITU-T G.800

compliant transport network technologies. To provide a more realistic use of the

provisioning tool, as well as to highlight its use in a specific transport network

technology, in chapter 6, the provisioning tool was applied to an Optical Transport

Network (OTN). In this chapter, two paths were provisioned, a working path and a

protection path, using, respectively, the automatic and the manual provisioning

modes available in the KBS provisioning tool.

Considering that (1) an Ontology Reference Model of the Recommendation ITU-T

G.800 was created, and that it was built with a well-founded ontology language within

a rigid ontology engineering, resulting in a model capable of giving precise semantics

to the transport network area, and thus allowing interoperability. Considering also

that (2) a rigid ontology-based development method was here used to (3) generate a

KBS provisioning tool that is able to provision technology-independent multi-layer

transport networks aware of the network’s equipment states. As well as considering

that this tool was tested in a technology-specific example, being able to achieve the

desired results (i.e., to perform the circuit and connection provisioning of an OTN

transport network), it can be concluded that the thesis hypothesis is confirmed.

184

7.1 THESIS MATERIAL

We provide in this thesis a shared folder with all the material related to the thesis.

The links to access this folder are:

 https://goo.gl/L1UPv4 – Shortened link

 https://drive.google.com/folderview?id=0B5G6gMOt9j5lQ1JyVHhGOEJmenM

&usp=sharing – Complete link

In the shared folder, the reader can find:

 the Recommendation ITU-T G.800 OntoUML Ontology Reference Model,

 the OntoUML design model,

 the OWL Consistency Model and the OWL Inference Model,

 the provisioning tool Java file

 the Java performance tester, test information and results discussed in section

6.4,

 the declared equipment and the possible equipment specifications used in the

example of chapter 6, and

 the specification described in this thesis Appendix II.

7.2 FUTURE WORKS

This thesis intended to demonstrate that an Ontology Reference Model can define

precise semantics to the transport network area and that it can be used in a rigid

ontology-based development method to generate a software that is able to provision

technology-independent multi-layer transport networks considering the networks

equipment states. Positive results indicate that the objective was achieved. However,

both the Ontology Reference Model and the provisioning tool can be significantly

improved in future works to cover better the intended domain, as well as to be

extended to other domains and applications. Regarding this, the first category of

future works to be here presented concerns the already known limitations of the

provisioning tool, which were presented in chapters 5 and 6.

185

One of the most important limitations of the current version of the provisioning tool is

the absence of a graphical interface. The development of a graphic interface can

provide a visual representation of the network to be provisioned and would

significantly improve the user’s comprehension about what is happening in the paths’

provisioning, performing then an important role and, hence, being desired for future

implementations.

Designed to provide an easy network provisioning to the user, the current version of

the provisioning tool has a restriction on the representation of the complete transport

network domain. The software ease of use is important; however, by adopting this

restriction, the software becomes limited because it cannot operate on all real

networks. I.e., currently, the provisioning tool can only operate on the real networks

that use the same concepts that are available in it. An example of this restriction can

be observed for the transport processing functions. While the ITU-T G.800 OntoUML

Ontology Reference Model formalizes all these concepts, the design model

formalizes just a reduced set of them (e.g., it does not represent the Layer Processor

Function). We encourage here the creation of a second version of the provisioning

tool with less domain restrictions. However, in the development of this second

version, the tradeoff that exists between the quantity of concepts to be managed and

the execution time (reasoning time, path finding time, etc.) must be observed. The

exponential characteristic of the current implementation of the path finding process is

a limitation of the provisioning tool, preventing its execution in large networks.

Regarding this tradeoff, optimization techniques may be employed to allow the

execution of the provisioning tool in an acceptable time.

Still concerning simplifications implemented in the current provisioning tool version,

another future work is a strong treatment on the rules that are verified by the

provisioning tool in the case of network protection, which is performed in matrices.

The current implementation, as presented in chapter 5, does not verify all possible

cases of occurrences of this situation and may lead to problems in more complex

networks.

The last case of future work that can be classified in the category of already known

limitations of the provisioning tool is the non-representation of the geographical

positions of the networks equipment. This problem leads to situations where invalid

186

candidate interfaces are offered to the user during the network provisioning. As

already discussed and exemplified in chapter 6, solution proposals involve the use of

the geographical position attribute that is present in the ITU-T G.800 Reference

Model, as well as the use of concepts from the Simple Site Ontology.

Regarding the provisioning tool algorithm improvement, a better treatment of the

problematic situations in the manual provisioning can be thought as future works.

When no VAR_IN candidate or no VAR_OUT candidate is found, the algorithm could

be more robust and, instead of finishing the provisioning algorithm, it could make a

rollback to the last valid state. The verification of possible interfaces one step further,

to see if the displayed interfaces have other possible bindings or not, is another

possibility.

Another interesting future work is the implementation of a software to generate valid

network declarations to be used as input files in the network provisioning. The

software, a graphical equipment studio, could use the same design model used in the

provisioning tool to perform semantic validations. Together with a syntactical

validation, the generation of valid inputs can be guaranteed. This input generator

could be implemented coupled or not to the provisioning tool. In addition, a visual

interface for this software would considerably help the declaration of networks. A

graphical equipment editor for transport networks have already been developed in

(ANHOLETTI, 2014). Although based on the same standard of the provisioning tool,

the equipment editor presented in (ANHOLETTI, 2014) does not use the same

metamodel of the work here presented and, hence, it cannot be directly coupled to

this work. We encourage modifications on the editor presented in (ANHOLETTI,

2014) to make it compatible with the provisioning tool.

This version of the provisioning tool uses a three layered ontology structure,

represented in Figure 4-4, to create the design model that is then transformed to the

provisioning tool knowledge base. As future works, other ontology layers could be

developed and coupled to the Ontology Reference Model, increasing its domain

representation (vertically, including new levels of abstractions about the concepts

already defined; or horizontally, including new technologies and concepts). Once in

the Ontology Reference Model, the new ontologies could be used in the development

of a new and extended design model, which could be transformed to the provisioning

187

tool knowledge base. An example of a possible extension of the provisioning tool is

the modeling of network standards that deal with specific technologies. A candidate

technology-specific recommendation to be modeled is the Recommendation ITU-T

G.872 (ITU-T, 2012b), which specifies the Optical Transport Networks. Attributes that

can be included to deal with specific transport technologies are suggested in

(DIJKSTRA et al., 2008). For the lower layers, (DIJKSTRA et al., 2008) says that

power levels, signal degradation, cable length, and optical dispersion should be

used; and for higher layers, the modeling of delay and jitter are suggested.

The provisioning tool here defined claims to perform network provisioning. However,

network provisioning can be interpreted in two forms: in the first one, the provisioning

is performed in the software network abstraction; and in the second form, the

provisioning is performed in the real physical network. As presented in chapter 5, this

tool is able to perform the first form of provisioning: its results are physical and logical

relations inside the software network model, saved as an OWL output file. As the

software does not have any direct connection to the real network to be provisioned,

the network operator must replicate the results of the tool provisioning process in the

real network to be configured. The automated configuration of the real network can

be implemented in future developments of the provisioning tool. In these newer

versions, the provisioning tool can output network configuration files that can be

manipulated the network – e.g., by using the YANG data model and the NETCONF

protocol (SCHONWALDER; BJORKLUND; SHAFER, 2010). Such procedure would

eliminate intermediate human errors and reduce the network provisioning time. With

this future implementation, the network tool can be classified in the group of fully

automated provisioning mechanisms defined in (DOVERSPIKE; YATES, 2012) and

presented in this thesis in subsection 2.2.2.

To conclude this thesis, the last future work here suggested is the possible

integration of the provisioning tool with NDL and its related tools and languages. The

provisioning tool could benefit from the extensive experience that the NDL language

and related tools have, as well as it could help to improve the semantics of NDL.

188

7.3 PUBLICATIONS

Five works were published during the development of this thesis. All published works

concerns the use of ontologies and were cited in this document. The relation

between four of these works and the models used in this thesis can be found in

Figure 7-1.

Figure 7-1 – Contributions of the published works to the thesis

In this subsection, we present in chronological order the list of the published works

and their corresponding abstracts.

ODISE 2012 – Identification of Semantic Anti-Patterns in Ontology-Driven

Conceptual Modeling via Visual Simulation (SALES; BARCELOS; GUIZZARDI,

2012)

The construction of large-scale reference conceptual models and ontologies is a

complex engineering activity. To develop high quality models, a modeler must have

the support of expressive engineering tools such as theoretically well-founded

modeling languages and methodologies, ontological patterns and computational

environments. Patterns and Anti-Patterns are known to be an efficient way to reuse

knowledge from experts’ successful past experiences. This paper proposes a set of

Semantic Anti-Patterns for ontology engineering. These anti-patterns capture error

prone modeling decisions that can result in the creation of models that allow for

unintended model instances (representing undesired state of affairs). The anti-

OWL G.800 Provisioning
Computational Ontology

OntoUML ITU-T G.800
Ontology Reference Model

OOTOS
Model TransformationOntoUML G.800

Provisioning
Design Model

Identification of Semantic
Anti-Patterns in Ontology-
Driven Conceptual
Modeling via Visual
Simulation

An Automated
Transformation from
OntoUML to OWL and
SWRL

An Ontology Reference
Model for Normative Acts

On the Importance of Truly
Ontological Distinctions for
Standardizations: a Case
Study in the Domain of
Telecommunications

189

patterns presented here have been empirically elicited through an approach of

ontology conceptual models validation via visual simulation.

Ontobras 2013 – An Automated Transformation from OntoUML to OWL and

SWRL (BARCELOS et al., 2013)

OntoUML and OWL are ontology languages appropriated to different knowledge

representation levels. In order to have better knowledge representation and

reasoning capabilities in OWL ontologies, an Ontology Engineering should be used –

which corresponds to the transformation of a conceptual model ontology language,

such as OntoUML, to a computational ontology language, such as OWL. This paper

aims to bridge the expressivity gap between these languages through a Model Driven

Architecture automated transformation from OntoUML to OWL with SWRL rules that

contributes to (i) make easier the OWL creation from OntoUML, (ii) eliminate the

human errors in this process, (iii) improve the resultant OWL ontology semantics.

Ontobras 2013 – Na Ontology Reference Model for Normative Acts

(BARCELOS; GUIZZARDI; GARCIA, 2013)

Normative Acts are important legislative and regulatory documents made by different

governmental organs. Every year, a huge amount of information is provided in

Normative Acts by these organs without control, i.e., there is no effective way to

verify redundancies, inconsistencies, cross-impact and ambiguities. In this paper, we

propose a domain ontology for Normative Acts based on official documents (the

Brazilian Constitution and the Redaction Manual of the Presidency of the Republic)

as a reference model that can be used to improve communication, interoperation and

automation of Normative Acts. The reference model is built with a highly expressive

well-founded language within a methodology that ensures its quality.

CNSM 2014 – An Ontology-based Approach to Improve SNMP Support for

Autonomic Management (MONTEIRO et al., 2014)

The SNMP protocol remains a broadly adopted technology in the Internet

management framework and its MIB was proposed to guarantee interoperation. In

order to enable the management of new equipment, the human manager must

compile the correlated MIB file (MIB description) and choose the right objects to

190

manage an implicit knowledge. This paper presents an ontology-based approach and

a Semantic SNMP extension to improve the framework's autonomic support.

Computer Standards & Interfaces 2016 – On the Importance of Truly

Ontological Distinctions for Standardizations: a Case Study in the Domain of

Telecommunications (BARCELOS et al., 2016)

Standards are documents that aim to define norms and common understanding of a

subject by a group of people. In order to accomplish this purpose, these documents

must define its terms and concepts in a clear and unambiguous way. Standards can

be written in two different ways: by informal specification (e.g. natural language) or

formal specification (e.g. math-based languages or diagrammatic ones). Remarkable

papers have already shown how well-founded ontology languages provide resources

for the specification's author to better distinguish concepts and relations meanings,

resulting in a better specification. This paper has the objective to expose the

importance of truly ontological distinctions for standardizations. To achieve this

objective, we evaluate a math-based formal specification, in Z notation, using a well-

founded ontology language for a telecommunications case study, the ITU-T

Recommendation G.805. The results confirm that truly ontological distinctions are

essential for clear and unambiguous specifications.

191

8 BIBLIOGRAPHY

ABBURU, S. A Survey on Ontology Reasoners and Comparison. International
Journal of Computer Applications, v. 57, n. 17, p. 33–39, 2012.

ABOSI, C. E.; NEJABATI, R.; SIMEONIDOU, D. A Novel Service Composition
Mechanism for the Future Optical Internet. Journal of Optical Communications
and Networking, v. 1, n. 2, p. A106, 1 Jul. 2009.

AGOULMINE, N. et al. Challenges for Autonomic Network Management 1st IEEE
International Workshop on Modelling Autonomic Communications Environments
(MACE). Anais...2006

ALBUQUERQUE, A.; GUIZZARDI, G. An ontological foundation for conceptual
modeling datatypes based on semantic reference spaces IEEE 7th International
Conference on Research Challenges in Information Science (RCIS). Anais...Paris:
IEEE, 2013

AMELLER, D. Non-Functional Requirements as drivers of Software Architecture
Design. [s.l.] Universitat Politècnica de Catalunya, 2014.

ANHOLETTI, A. F. Um Editor Gráfico para Redes de Transporte Baseado na
Recomendação ITU-T G.800. Vitória, Brazil: Federal University of Espírito Santo,
2014.

ANTONIOU, G.; HARMELEN, F. VAN. Web Ontology Language: OWL. In: STAAB,
S.; STUDER, R. (Eds.). Handbook on Ontologies. Second Edi ed. [s.l.]
SpringerVerlag Berlin Heidelberg, 2009. p. 91–110.

ASSMAN, U.; ZSCHALER, S.; WAGNER, G. Ontologies, Meta-models, and the
Model-Driven Paradigm. In: CALERO, C.; RUIZ, F.; PIATTINI, M. (Eds.). Ontologies
for Software Engineering and Software Technology. [s.l.] Springer Berlin
Heidelberg, 2006. p. 249–273.

ATKINSON, C.; KUHNE, T. Model-Driven Development: a Metamodeling Foundation.
IEEE Software, v. 20, n. 5, p. 36–41, 2003.

AZODOLMOLKY, S. et al. Integrated OpenFlow–GMPLS control plane: an overlay
model for software defined packet over optical networks. Optics Express, v. 19, n.
26, p. B421, 12 Dec. 2011.

BALDINE, I. et al. The Missing Link: Putting the Network in Networked Cloud
Computing ICVCI09: International Conference on the Virtual Computing Initiative.
Anais...2009

BARCELOS, P. P. F. et al. OOTN -An Ontology Proposal for Optical Transport
Networks International Conference on Ultra Modern Telecommunications &
Workshops (ICUMT’09). Anais...St. Petersburg, Russia: IEEE, 2009

BARCELOS, P. P. F. Análise Arquitetural, Ontológica e Proposta de Modelo de
Referência para a Recomendação ITU-T G. 805. Vitória: Federal University of
Espírito Santo, 2011.

BARCELOS, P. P. F. et al. Ontological Evaluation of the ITU-T Recommendation

192

G.805 18th International Conference on Telecommunications. Anais...IEEE, May
2011

BARCELOS, P. P. F. et al. An Automated Transformation from OntoUML to OWL
and SWRL (M. P. Bax, M. B. Almeida, R. Wassermann, Eds.) Ontobras.
Anais...Belo Horizonte, Brazil: 2013

BARCELOS, P. P. F. et al. On the importance of truly ontological distinctions for
standardizations: A case study in the domain of telecommunications. Computer
Standards & Interfaces, v. 44, p. 28–41, 2016.

BARCELOS, P. P. F.; GUIZZARDI, R. S. S.; GARCIA, A. S. An Ontology Reference
Model for Normative Acts (M. P. Bax, M. B. Almeida, R. Wassermann, Eds.)
Ontobras. Anais...Belo Horizonte, Brazil: 2013

BAUMAN, B. T. Prying Apart Semantics and Implementation: Generating XML
Schemata directly from ontologically sound conceptual models Balisage: The
Markup Conference 2009. Anais...Montréal, Canada: Balisage Series on Markup
Technologies, 2009

BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. The Semantic Web. Scientific
American, v. 284, n. 5, p. 28–37, 2001.

BLAU, B. et al. Provisioning of Service Mashup Topologies Proceedings of the
16th European Conference on Information Systems. Anais...2008

BOWEN, J. P. Formal Specification and Documentation using Z: A Case Study
Approach. Rev. 2003 ed. London: International Thomson Computer Press, 1996.

BUREK, P. et al. A top-level ontology of functions and its application in the Open
Biomedical Ontologies. Bioinformatics, v. 22, n. 14, p. e66–e73, 2006.

CALHEIROS, R. N. et al. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, v. 41, n. 1, p. 23–50, Jan. 2011.

CAMPI, A.; CALLEGATI, F. Network Resource Description Language2009 IEEE
Globecom Workshops. Anais...IEEE, Nov. 2009

CAROLO, F. P.; BURLAMAQUI, L. Improving Web Content Management with
Semantic Technologies Semantic Technology Conference (SemTech). Anais...San
Francisco, USA: 2011

CARROLL, J. J. et al. Jena: Implementing the Semantic Web Recommendations
Proceedings of the 13th international World Wide Web conference on Alternate track
papers & posters - WWW Alt. ’04. Anais...New York, New York, USA: ACM Press,
2004

CHAMANIA, M.; JUKAN, A. A survey of inter-domain peering and provisioning
solutions for the next generation optical networks. IEEE Communications Surveys
& Tutorials, v. 11, n. 1, p. 33–51, 2009.

CHOWDHURY, N. M. M. K.; BOUTABA, R. A survey of network virtualization.
Computer Networks, v. 54, n. 5, p. 862–876, Apr. 2010.

CHRISTODOULOPOULOS, K.; TOMKOS, I.; VARVARIGOS, E. Spectrally/bitrate
flexible optical network planning 36th European Conference and Exhibition on
Optical Communication. Anais...IEEE, Sep. 2010

193

CLEARY, D.; DANEV, B.; DONOGHUE, D. O. Using Ontologies to Simplify
Wireless Network Configuration Proceedings of the 1st International Workshop
Formal Ontologies Meet Industry, FOMI 2005. Anais...Verona, Italy: 2005

COLE, C. R. 100-Gb/s and beyond transceiver technologies. Optical Fiber
Technology, v. 17, n. 5, p. 472–479, Oct. 2011.

DAOUADJI, A. et al. Ontology-Based Resource Description and Discovery
Framework for Low Carbon Grid Networks 2010 First IEEE International
Conference on Smart Grid Communications. Anais...IEEE, Oct. 2010

DENTLER, K. et al. Comparison of Reasoners for large Ontologies in the OWL 2 EL
Profile. Semantic Web, v. 2, n. 2, p. 71–87, 2011.

DIJKSTRA, F. et al. Introduction to ITU-T Recommendation G. 805 SNE technical
report SNE-UVA-2007-01. Amsterdam, The Netherlands: [s.n.], 2007.

DIJKSTRA, F. et al. A multi-layer network model based on ITU-T G.805. Computer
Networks, v. 52, n. 10, p. 1927–1937, 2008.

DIJKSTRA, F. et al. A path finding implementation for multi-layer networks. Future
Generation Computer Systems, v. 25, n. 2, p. 142–146, 2009.

DIJKSTRA, F. Framework for Path Finding in Multi-Layer Transport Networks.
Netherlands: Faculteit der Natuurwetenschappen, Wiskunde en Informatica (FNWI),
Universiteit van Amsterdam (UvA), 2009.

DILEM, M. et al. Proposta De Arquitetura OTN Switch Segundo as
Recomendações ITU-T SBrT 2013. Anais...Fortaleza, CE, Brazil: Sociedade
Brasileira de Telecomunicações, 2013

DOUCETTE, J.; GROVER, W.; GIESE, P. Physical-Layer p-Cycles Adapted for
Router-Level Node Protection: A Multi-Layer Design and Operation Strategy. IEEE
Journal on Selected Areas in Communications, v. 25, n. 5, p. 963–973, Jun.
2007.

DOVERSPIKE, R. D.; YATES, J. Optical Network Management and Control.
Proceedings of the IEEE, v. 100, n. 5, p. 1092–1104, May 2012.

DUAN, Q.; YAN, Y.; VASILAKOS, A. V. A Survey on Service-Oriented Network
Virtualization Toward Convergence of Networking and Cloud Computing. IEEE
Transactions on Network and Service Management, v. 9, n. 4, p. 373–392, Dec.
2012.

DURAK, U.; MA MUTYA ICIO LU, G.; O U T N, . Domain Analysis for
Reusable Trajectory Simulation Euro SIW’05. Anais...2005

DUTTA, R.; KAMAL, A. E.; ROUSKAS, G. N. (EDS.). Traffic Grooming for Optical
Networks. [s.l.] Springer Science+Business Media, 2008.

ESCALONA, E. et al. GEYSERS: A novel architecture for virtualization and co-
provisioning of dynamic optical networks and IT services 2011 Future Network &
Mobile Summit. Anais...Warsaw: IEEE, 2011

FAJJARI, I.; AYARI, M.; PUJOLLE, G. VN-SLA: A Virtual Network Specification
Schema for Virtual Network Provisioning 2010 Ninth International Conference on
Networks. Anais...IEEE, 2010

194

FALBO, R. DE A.; GUIZZARDI, G.; DUARTE, K. C. An Ontological Approach to
Domain Engineering. Proceedings of the 14th international conference on
Software engineering and knowledge engineering - SEKE ’02, SEKE ’02. p. 351–
358, 2002.

FAWAZ, W. et al. Service level agreement and provisioning in optical networks. IEEE
Communications Magazine, v. 42, n. 1, p. 36–43, Jan. 2004.

FETTKE, P.; LOOS, P. Ontological Analysis of Reference Models. In: GREEN, P. F.;
ROSEMANN, M. (Eds.). Business Systems Analysis with Ontologies. [s.l.] IGI
Global, 2005. p. 56–81.

FIELDING, J. M. et al. Ontological Theory for Ontological Engineering:
Biomedical Systems Information Integration Ninth International Conference on
the Principles of Knowledge Representation and Reasoning (AMIA 2004).
Anais...2004

FORDE, A. N.; FOX, M. S. A Telecommunication & Innovation Ontology for
Global City Indicators (ISO 37120). Toronto, ON, Canada: [s.n.], 2015.

FORTUNE, S. Equivalence and generalization in a layered network model. Journal
of Computer and System Sciences, p. 1–28, 2015.

FRANKEL, D. S. Model Driven Architecture: Applying MDA to Enterprise
Computing. Indianapolis, Indiana: Wiley Publishing, Inc, 2003.

GARCÍA-ESPÍN, J. A. et al. Logical Infrastructure Composition Layer, the
GEYSERS Holistic Approach for Infrastructure Virtualisation TERENA
Networking Conference (TNC-2012). Anais...Ghent University, Department of
Information technology: 2012

GAŠEVIĆ, D.; DJURIĆ, D.; DEVEDŽIĆ, V. Model Driven Engineering and
Ontology Development. 2nd. ed. Berlin: Springer, 2009.

GAŠEVIĆ, D.; KAVIANI, N.; MILANOVIĆ, M. Ontologies and Software Engineering.
In: STAAB, S.; STUDER, R. (Eds.). Handbook on Ontologies. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009. p. 593–615.

GHIJSEN, M. et al. Towards an Infrastructure Description Language for
Modeling Computing Infrastructures 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications (ISPA). Anais...Leganes: IEEE,
2012

GHIJSEN, M. et al. A Semantic-Web Approach for Modeling Computing
Infrastructures. Computers & Electrical Engineering, v. 39, n. 8, p. 2553–2565,
2013.

GOMAA, H. Software Modeling and Design: UML, Use Cases, Patterns, and
Software Architectures. Cambridge: Cambridge University Press, 2011.

GÓMEZ-PÉREZ, A.; FERNÁNDEZ-LÓPEZ, M.; CORCHO, O. Ontological
Engeenering. [s.l.] Springer-Verlag London Berlin Heidelberg, 2004.

GOZDECKI, J. et al. Methods of Network Resource Provisioning for the Future
Internet IIP Initiative. Telecommunication Systems, 19 Mar. 2015.

GRINGERI, S.; BITAR, N.; XIA, T. J. Extending software defined network principles
to include optical transport. IEEE Communications Magazine, v. 51, n. 3, p. 32–40,

195

Mar. 2013.

GRUBER, T. R. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, v. 5, n. 2, p. 199–220, Jun. 1993.

GUARINO, N. Formal Onthology and Information Systems Proceedings of the
First International Conference on Formal Ontologies in Information Systems
(FIOS’98). Anais...Trento, Italy: IOS Press, 1998

GUERSON, J. et al. OntoUML Lightweight Editor: A Model-Based Environment
to Build, Evaluate and Implement Reference Ontologies 2015 IEEE 19th
International Enterprise Distributed Object Computing Workshop. Anais...IEEE, Sep.
2015

GUINARD, D. et al. Interacting with the SOA-Based Internet of Things: Discovery,
Query, Selection, and On-Demand Provisioning of Web Services. IEEE
Transactions on Services Computing, v. 3, n. 3, p. 223–235, Jul. 2010.

GUIZZARDI, G. Ontological Foundations for Structural Conceptual Models.
Enschede, The Netherlands: Universal Press, 2005.

GUIZZARDI, G. On Ontology, ontologies, Conceptualizations, Modeling Languages,
and (Meta)Models. Proceedings of the 2007 conference on Databases and
Information Systems IV: Selected Papers from the Seventh International Baltic
Conference, Frontiers in Artificial Intelligence and Applications. v. 155, p. 18–39,
2007.

GUIZZARDI, G. et al. On the importance of truly ontological distinctions for ontology
representation languages: An industrial case study in the domain of oil and gas.
Enterprise, Business-Process and Information Systems Modeling, p. 224–236,
2009.

GUIZZARDI, G.; SALES, T. P. Detection, Simulation and Elimination of Semantic
Anti-patterns in Ontology-Driven Conceptual Models. Conceptual Modeling-ER
2014, Lecture Notes in Computer Science. v. 8824, p. 363–376, 2014.

GUIZZARDI, G.; WAGNER, G. Tutorial: Conceptual Simulation Modeling with
Onto-UML (C. Laroque et al., Eds.)Proceedings of the 2012 Winter Simulation
Conference (WSC). Anais...Berlin: IEEE, 2012

HAILPERN, B.; TARR, P. Model-driven development: The good, the bad, and the
ugly. IBM Systems Journal, v. 45, n. 3, p. 451–461, 2006.

HAM, J. VAN DER et al. Challenges of an Information Model for Federating
Virtualized Infrastructures 2011 5th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management (SVM). Anais...IEEE, 2011a

HAM, J. VAN DER et al. D2.2: First information and data models. [s.l: s.n.], 2011b.

HAM, J. VAN DER et al. The Network Markup Language (NML): A Standardized
Network Topology Abstraction for Inter-domain and Cross-layer Network
Applications, 2013.

HAM, J. VAN DER et al. Trends in Computer Network Modeling Towards the
Future Internet eprint arXiv:1402.3951. Anais...2014

HAPPEL, H.; SEEDORF, S. Applications of Ontologies in Software Engineering
Proc. of Workshop on Sematic Web Enabled Software Engineering (SWESE) on the

196

ISWC. Anais...2006

HITZLER, P. et al. OWL 2 Web Ontology Language Primer (Second Edition),
2012.

HOFFMANN, M.; STAUFER, M. Network Virtualization for Future Mobile
Networks: General Architecture and Applications 2011 IEEE International
Conference on Communications Workshops (ICC). Anais...IEEE, Jun. 2011

HORROCKS, I. Ontologies and the Semantic Web. Communications of the ACM,
v. 51, n. 12, p. 58–67, 2008.

HORROCKS, I.; KUTZ, O.; SATTLER, U. The Even More Irresistible SROIQ. Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR2006), p. 57–67, 2006.

HOUIDI, I. et al. Adaptive virtual network provisioning Proceedings of the second
ACM SIGCOMM workshop on Virtualized infrastructure systems and architectures -
VISA ’10. Anais...New York, New York, USA: ACM Press, 2010

HOUIDI, I. et al. Cloud Service Delivery across Multiple Cloud Platforms 2011
IEEE International Conference on Services Computing. Anais...IEEE, 2011a

HOUIDI, I. et al. Virtual network provisioning across multiple substrate networks.
Computer Networks, v. 55, n. 4, p. 1011–1023, Mar. 2011b.

HUANG, J. Service Delivery Framework (SDF) OverviewTM Forum, 2009.

INFINERA CORPORATION. Bandwidth Virtualization Enables a Programmable
Optical Network. Sunnyvale, CA: [s.n.], 2007.

ITU-T. ITU-T Recommendation Q.704: Specifications of Signalling System No. 7
– Message transfer partITU-T International Telecommunication Union, 1996.

ITU-T. ITU-T Recommendation M.3400: TMN Management Functions
International Telecommunication Union, 2000a.

ITU-T. ITU-T Recommendation G.805: Generic Functional Architecture of
Transport Networks International Telecommunication Union, 2000b.

ITU-T. ITU-T Recommendation G.809: Functional Architecture of
Connectionless Layer Networks International Telecommunication Union, 2003.

ITU-T. Optical Transport Networks from TDM to Packet, 2010.

ITU-T. Recommendation ITU-T G.800: Unified Functional Architecture of
Transport Networks International Telecommunication Union, 2012a.

ITU-T. Recommendation ITU-T G.872: Architecture of optical transport
networksInternational Telecommunication Union, 2012b.

ITU-T. Recommendation ITU-T G.798: Characteristics of optical transport
network hierarchy equipment functional blocks International Telecommunication
Union, 2012c.

JACKSON, D. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), v. 11, n. 2, p. 256–290, 2002.

JARRAR, M.; DEMEY, J.; MEERSMAN, R. On Using Conceptual Data Modeling for
Ontology Engineering. Journal on Data Semantics I, Lecture Notes in Computer

197

Science Volume 2800. p. 185–207, 2003.

JINNO, M. et al. Spectrum-efficient and scalable elastic optical path network:
architecture, benefits, and enabling technologies. IEEE Communications Magazine,
v. 47, n. 11, p. 66–73, Nov. 2009.

JIRATTIGALACHOTE, A. et al. Dynamic provisioning strategies for energy efficient
WDM networks with dedicated path protection. Optical Switching and Networking,
v. 8, n. 3, p. 201–213, 2011.

KALIBATIENE, D.; VASILECAS, O.; GUIZZARDI, G. Transforming Ontology
Axioms to Information Processing Rules – An MDA Based Approach (C. Kop et
al., Eds.) Proceedings of the Third International Workshop on Ontology,
Conceptualization and Epistemology for Information Systems, Software Engineering
and Service Science held in conjunction with CAiSE’09 Conference.
Anais...Amsterdam, The Netherlands: CEUR Workshop Proceedings, 2009

KANG, Y.-B.; LI, Y.-F.; KRISHNASWAMY, S. Predicting Reasoning Performance
Using Ontology Metrics. In: The Semantic Web – ISWC 2012. Lecture Notes in
Computer Science. [s.l.] Springer Berlin Heidelberg, 2012. v. 7649p. 198–214.

KELLY, S.; TOLVANEN, J.-P. Domain-Specific Modeling: Enabling Full Code
Generation. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008.

KLINKOWSKI, M.; WALKOWIAK, K. Routing and Spectrum Assignment in Spectrum
Sliced Elastic Optical Path Network. IEEE Communications Letters, v. 15, n. 8, p.
884–886, 2011.

KNACKSTEDT, R. et al. An Ontology-Based Service Discovery Approach for the
Provisioning of Product- Service Bundles 16th European Conference on
Information Systems. Anais...Galway, Ireland: 2008

KOMPELLA, K.; REKHTER, Y.; JUNIPER NETWORKS. RFC 4203: OSPF
Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS).
[s.l: s.n.], 2005.

KOOIJ, J. G. Ambiguity in Natural Language: An Investigation of Certain Problems in
Its Linguistic Description. Foundations of Language, v. 10, n. 4, p. 595–597, 1973.

KOSLOVSKI, G. P.; PRIMET, P. V.-B.; CHARÃO, A. S. VXDL: Virtual Resources and
Interconnection Networks Description Language. In: Networks for Grid
Applications. [s.l.] Springer, 2009. v. 2p. 138–154.

KOZAT, U.; KOUTSOPOULOS, I.; TASSIULAS, L. Cross-Layer Design for Power
Efficiency and QoS Provisioning in Multi-Hop Wireless Networks. IEEE Transactions
on Wireless Communications, v. 5, n. 10, p. 3306–3315, Nov. 2006.

KUIPERS, F.; DIJKSTRA, F. Path selection in multi-layer networks. Computer
Communications, v. 32, n. 1, p. 78–85, 2009.

LEE, S.; KANG, S. NGSON: features, state of the art, and realization. IEEE
Communications Magazine, v. 50, n. 1, p. 54–61, Jan. 2012.

LEHMAN, T. et al. Control Plane Architecture and Design Considerations for
Multi-Service, Multi-Layer, Multi-Domain Hybrid Networks 2007 High-Speed
Networks Workshop. Anais...IEEE, May 2007

LEVESQUE, H. J.; BRACHMAN, R. J. A Fundamental Tradeoff in Knwoledge

198

Representation and Reasoning (Revised Version). Readings in Knowledge
Representation, p. 41–70, 1985.

LIU, L. et al. First Field Trial of an OpenFlow-based Unified Control Plane for
Multi-layer Multi-granularity Optical Networks Optical Fiber Communication
Conference. Anais...Washington, D.C.: OSA, 2012

LIU, L. et al. OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic
optical path networks. Optics Express, v. 21, n. 4, p. 4194, 25 Feb. 2013.

LIU, Q. et al. Hierarchical routing in multi-domain optical networks. Computer
Communications, v. 30, n. 1, p. 122–131, Dec. 2006.

LÓPEZ DE VERGARA, J. E. et al. An autonomic approach to offer services in OSGi-
based home gateways. Computer Communications, v. 31, n. 13, p. 3049–3058,
Aug. 2008.

LÓPEZ DE VERGARA, J. E. et al. Ontology-Based Network Management: Study
Cases and Lessons Learned. Journal of Network and Systems Management, v.
17, n. 3, p. 234–254, Sep. 2009.

LOZANO, J. A. et al. Autonomic Provisioning Model for Digital Home Services. In:
[s.l: s.n.]. p. 114–119, 2008.

MAES, S. H. Service Delivery Platforms as IT Realization of OMA Service
Environment: Service Oriented Architectures for Telecommunications 2007
IEEE Wireless Communications and Networking Conference. Anais...IEEE, 2007

MAGEDANZ, T.; BLUM, N.; DUTKOWSKI, S. Evolution of SOA Concepts in
Telecommunications. Computer, v. 40, n. 11, p. 46–50, Nov. 2007.

MARTINEZ, R.; CASELLAS, R.; MUNOZ, R. Experimental validation/evaluation of a
GMPLS unified control plane in multi-layer (MPLS-TP/WSON) networks. Optical
Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the
National Fiber Optic Engineers Conference, p. 1–3, 2012.

MASOLO, C. et al. DOLCE: a Descriptive Ontology for Linguistic and Cognitive
Engineering. [s.l: s.n.], 2003.

MATERA, F.; LISTANTI, M.; PIÓRO, M. Recent trends in network planning to
decrease the CAPEX/OPEX cost. Telecommunication Systems, 19 Mar. 2015.

MCGUIRE, A.; BONENFANT, P. Standards: the blueprints for optical networking.
IEEE Communications Magazine, v. 36, n. 2, p. 68–70, 75–8, 1998.

MCKEOWN, N. et al. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, v. 38, n. 2, p. 69, 2008.

MEALY, G. H. Another look at data Proceedings of the November 14-16, 1967, fall
joint computer conference on - AFIPS ’67 (Fall). Anais...New York, New York, USA:
ACM Press, 1967

MELLOR, S. J.; CLARK, A. N.; FUTAGAMI, T. Model-driven Development: Guest
Editors’ Introduction. IEEE Software, v. 20, n. 5, p. 14–18, 2003.

MILTON, S. K.; KAZMIERCZAK, E. An Ontology of Data Modelling Languages: A
Study Using a Common-Sense Realistic Ontology. In: WANG, J. (Ed.). Data
Warehousing and Mining: Concepts, Methodologies, Tools, and Applications.

199

Hershey, PA, USA: IGI Global, 2008. p. 3194–3211.

MONTEIRO, M. E. et al. Ontology Based Model for The ITU-T Recommendation
G.805: Towards the Self-Management of Transport Networks. International journal
of computer science & information Technology, v. 2, n. 2, p. 155–170, 2010.

MONTEIRO, M. E. et al. An ontology-based approach to improve SNMP support
for autonomic management 10th International Conference on Network and Service
Management (CNSM) and Workshop. Anais...Rio de Janeiro, Brazil: IEEE, 2014

MONTI, P. et al. Energy-efficient lightpath provisioning in a static WDM network
with dedicated path protection 2011 13th International Conference on Transparent
Optical Networks. Anais...IEEE, 2011

NEELAKANTAN, A.; ROTH, B.; MCCALLUM, A. Compositional Vector Space
Models for Knowledge Base Completion Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers).
Anais...Stroudsburg, PA, USA: Association for Computational Linguistics, 2015

OBJECT MANAGEMENT GROUP. MDA Guide Version 1.0.1 (J. Miller, J. Mukerji,
Eds.), 2003.

PATEL-SCHNEIDER, P. F.; HORROCKS, I. Position paper: a comparison of two
modelling paradigms in the Semantic Web. Proceedings of the 15th international
conference on World Wide Web, p. 3–12, 2006.

PENG, S. et al. Application-aware and Adaptive Virtual Data Centre
Infrastructure Provisioning over Elastic Optical OFDM Networks 39th European
Conference and Exhibition on Optical Communication (ECOC 2013).
Anais...Institution of Engineering and Technology, 2013

PODOBNIK, V.; TRZEC, K.; JEZIC, G. Context-Aware Service Provisioning in Next-
Generation Networks. International Journal of Information Technology and Web
Engineering, v. 2, n. 4, p. 41–62, Jan. 2007.

QUIROLGICO, S.; MILLS, K.; MONTGOMERY, D. Deriving Knowledge for the
Knowledge Plane, 2003.

RAMASWAMI, R.; SIVARAJAN, K. N.; SASAKI, G. H. Optical Networks - A
Practical Perspective. Third Edit ed. [s.l.] Morgan Kaufmann Publishers, 2010.

REKHTER, Y.; LI, T.; HARES, S. RFC 4271: A Border Gateway Protocol 4 (BGP-
4). [s.l: s.n.], 2006.

RODRIGUES, C. et al. An ontology for managing network services quality. Expert
Systems with Applications, v. 39, n. 9, p. 7938–7946, Jul. 2012.

SALES, T. P.; BARCELOS, P. P. F.; GUIZZARDI, G. Identification of Semantic Anti-
Patterns in Ontology-Driven Conceptual Modeling via Visual Simulation. 4th
International Workshop on Ontology-Driven Information Systems (ODISE 2012),
2012.

SANCHEZ-LORO, X. et al. Proposal of a clean slate network architecture for
ubiquitous services provisioning 2009 First International Conference on Future
Information Networks. Anais...IEEE, Oct. 2009

SARAKIS, L. et al. A framework for service provisioning in virtual sensor networks.

200

EURASIP Journal on Wireless Communications and Networking, v. 2012, n. 1,
p. 135, 2012.

SCHAFFRATH, G. et al. Network virtualization architecture Proceedings of the 1st
ACM workshop on Virtualized infrastructure systems and architectures - VISA ’09.
Anais...New York, New York, USA: ACM Press, 2009

SCHONWALDER, J.; BJORKLUND, M.; SHAFER, P. Network configuration
management using NETCONF and YANG. IEEE Communications Magazine, v. 48,
n. 9, p. 166–173, 2010.

SEDDIKI, M. S.; FRIKHA, M.; SONG, Y.-Q. A non-cooperative game-theoretic
framework for resource allocation in network virtualization. Telecommunication
Systems, 2015.

SERRANO, J. M. et al. Facilitating Autonomic Management for Service
Provisioning using Ontology-Based Functions & Semantic Control NOMS
Workshops 2008 - IEEE Network Operations and Management Symposium
Workshops. Anais...IEEE, Apr. 2008

SERRANO, J. M.; SERRAT, J.; STRASSNER, J. Ontology-Based Reasoning for
Supporting Context-Aware Services on Autonomic Networks 2007 IEEE
International Conference on Communications. Anais...IEEE, Jun. 2007

SHEARER, R.; MOTIK, B.; HORROCKS, I. HermiT: A Highly-Efficient OWL
Reasoner. OWLED, v. 432, 2008.

SHEN, G.; YANG, Q. From Coarse Grid to Mini-Grid to Gridless: How Much can
Gridless Help Contentionless? Optical Fiber Communication Conference/National
Fiber Optic Engineers Conference 2011. Anais...Washington, D.C.: OSA, 2011

SONE, Y. et al. Routing and Spectrum Assignment Algorithm Maximizes
Spectrum Utilization in Optical Networks 37th European Conference and
Exposition on Optical Communications. Anais...Washington, D.C.: OSA, 2011

SOWA, J. F. Knowledge Representation: Logical, Philosophical, and
Computational Foundations. 1st. ed. Pacific Grove, CA: Brooks Cole Publishing
Co., 2000.

SPIVEY, J. M. An introduction to Z and Formal Specifications. Software
Engineering Journal, v. 4, n. 1, p. 40–50, 1989.

STAHL, T. et al. Model-Driven Software Development: Technology, Engineering,
Management. [s.l.] John Wiley & Sons, Ltd., 2006.

STEFIK, M. Introduction to Knowledge Systems. 1st ed. ed. [s.l.] Morgan
Kaufmann, 1995.

TAKAGI, T. et al. Dynamic Routing and Frequency Slot Assignment for Elastic
Optical Path Networks that Adopt Distance Adaptive Modulation Optical Fiber
Communication Conference/National Fiber Optic Engineers Conference 2011.
Anais...Washington, D.C.: OSA, 2011

U.S. DEPARTMENT OF DEFENSE. Data Modeling Guide (DMG) For An
Enterprise Logical Data Model (ELDM) - Version 2.3, 2011.

VAN DER HAM, J. et al. Using the Network Description Language in Optical
Networks 2007 10th IFIP/IEEE International Symposium on Integrated Network

201

Management. Anais...Munich: IEEE, 2007

VAN DER HAM, J. et al. A distributed topology information system for optical
networks based on the semantic web. Optical Switching and Networking, v. 5, n.
2-3, p. 85–93, 2008.

VAN DER HAM, J. J. et al. Using RDF to describe networks. Future Generation
Computer Systems, v. 22, n. 8, p. 862–867, Oct. 2006.

VERGARA, J. E. L. DE et al. Ontologies: giving semantics to network management
models. IEEE Network, v. 17, n. 3, p. 15–21, May 2003.

VERGARA, J. E. L. DE; VILLAGRÁ, V. A.; BERROCAL, J. Semantic Management:
advantages of using an ontology-based management information meta-model
Proceedings of the HP Openview University Association Ninth Plenary Workshop
(HP-OVUA’2002). Anais...Böblingen, Germany: 2002

VERGARA, J. E. L. DE; VILLAGRÁ, V. A.; BERROCAL, J. Benefits of Using
Ontologies in the Management of High Speed Networks. In: High Speed Networks
and Multimedia Communications. [s.l.] Springer Berlin Heidelberg, 2004. p. 1007–
1018.

VRDOLJAK, L. et al. The AMiGO-Mob: Agent-based middleware for group-
oriented mobile service provisioning 10th International Conference on
Telecommunications, 2009. ConTEL 2009. Anais...Zagreb, Croatia: IEEE, 2009

W3C OWL WORKING GROUP. OWL 2 Web Ontology Language Document
Overview (Second Edition), 2012.

WAND, Y.; STOREY, V. C.; WEBER, R. An ontological analysis of the relationship
construct in conceptual modeling. ACM Transactions on Database Systems, v. 24,
n. 4, p. 494–528, 1999.

WAND, Y.; WEBER, R. On the ontological expressiveness of information systems
analysis and design grammars. Information Systems Journal, v. 3, n. 4, p. 217–
237, 1993.

WANG, Q.; WANG, B.; GUO, L. Knowledge Base Completion Using Embeddings
and Rules (Q. Yang, M. Wooldridge, Eds.) Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI 2015). Anais...Buenos
Aires, Argentina: AAAI Press / International Joint Conferences on Artificial
Intelligence, 2015

WANG, X. et al. Flexible Virtual Network Provisioning over Distance-Adaptive
Flex-Grid Optical Networks Optical Fiber Communication Conference.
Anais...Washington, D.C.: OSA, 2014

WONG, A. K. Y. et al. Ontology mapping for the interoperability problem in network
management. IEEE Journal on Selected Areas in Communications, v. 23, n. 10,
p. 2058–2068, Oct. 2005.

XIA, M. et al. Green Provisioning for Optical WDM Networks. IEEE Journal of
Selected Topics in Quantum Electronics, v. 17, n. 2, p. 437–445, Mar. 2011.

XIN, Y. et al. Virtual smart grid architecture and control framework 2011 IEEE
International Conference on Smart Grid Communications (SmartGridComm).
Anais...Brussels: IEEE, 2011

202

XU, L. et al. A declarative approach to multi-layer path finding based on
semantic network descriptions International Conference on Optical Network
Design and Modeling, 2009. ONDM 2009. Anais...Braunschweig: IEEE, 2009

YAMAZAKI, E.; TOMIZAWA, M.; MIYAMOTO, Y. 100-Gb/s optical transport network
and beyond employing digital signal processing. IEEE Communications Magazine,
v. 50, n. 2, p. s43–s49, Feb. 2012.

YURONG HUANG; HERITAGE, J. P.; MUKHERJEE, B. Connection provisioning with
transmission impairment consideration in optical WDM networks with high-speed
channels. Journal of Lightwave Technology, v. 23, n. 3, p. 982–993, Mar. 2005.

ZHAO, Y. et al. Knowledge base completion by learning pairwise-interaction
differentiated embeddings. Data Mining and Knowledge Discovery, 2015.

ZHOU, L. et al. Context-Aware Middleware for Multimedia Services in Heterogeneous
Networks. IEEE Intelligent Systems, v. 25, n. 2, p. 40–47, 2010.

ZHU, Z. et al. Dynamic Service Provisioning in Elastic Optical Networks With Hybrid
Single-/Multi-Path Routing. Journal of Lightwave Technology, v. 31, n. 1, p. 15–22,
2013.

203

APPENDIX I – SWRL RULES

All eleven Semantic Web Rule Language (SWRL) rules here presented are part of

the design model and are part of the provisioning tool knowledge base.

Table I-1 – Design Model and Inference Model SWRL Rules

ID SWRL Rule

1

Termination_Function(?v1), Termination_Function(?v7), DifferentFrom(?v1,?v7), Port(?v2),

Port(?v3), Port(?v5), Port(?v6), DifferentFrom(?v2,?v3), DifferentFrom(?v2,?v5),

DifferentFrom(?v2,?v6), DifferentFrom(?v3,?v5), DifferentFrom(?v3,?v6), DifferentFrom(?v5,?v6),

Physical_Media(?v4), Layer_Network(?v8), Layer_Network(?v9), componentOf(?v1,?v2),

componentOf(?v4,?v3), componentOf(?v4,?v5), componentOf(?v7,?v6), binds(?v2,?v3),

binds(?v5,?v6), defines(?v1,?v8), defines(?v7,?v9) -> SameAs(?v8,?v9)

2

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3),

Adaptation_Function(?v4), Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3),

binds(?v2,?v3), defines(?v1,?v8) -> adapts_from(?v4,?v8)

3

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3),

Adaptation_Function(?v4), Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3),

binds(?v2,?v3), adapts_from(?v4,?v8) -> defines(?v1,?v8)

4

Termination_Function(?v7), Port(?v5), Port(?v6), DifferentFrom(?v5,?v6),

Adaptation_Function(?v4), Layer_Network(?v9), componentOf(?v4,?v5), componentOf(?v7,?v6),

binds(?v5,?v6), defines(?v7,?v9) -> adapts_to(?v4,?v9)

5

Termination_Function(?v7), Port(?v5), Port(?v6), DifferentFrom(?v5,?v6),

Adaptation_Function(?v4), Layer_Network(?v9), componentOf(?v4,?v5), componentOf(?v7,?v6),

binds(?v5,?v6), adapts_to(?v4,?v9) -> defines(?v7,?v9)

6

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Physical_Media(?v4),

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), defines(?v1,?v8),

binds(?v2,?v3) -> Layer_Network.isLast(?v8, true)

7
Adaptation_Function(?v4), Layer_Network(?v8), Layer_Network(?v9), DifferentFrom(?v8,?v9),

adapts_from(?v4,?v8), adapts_to(?v4,?v9) -> client_of(?v8,?v9)

204

ID SWRL Rule

8
Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Interface(?v4), Interface(?v5),

DifferentFrom(?v4,?v5), maps(?v4,?v2), maps(?v5,?v3), binds(?v2,?v3) -> int_binds(?v4,?v5)

9

Equipment(?v1), Equipment(?v6), DifferentFrom(?v1,?v6), Interface(?v4), Interface(?v5),

DifferentFrom(?v4,?v5), componentOf(?v1, ?v4), componentOf(?v6,?v5), int_binds(?v4,?v5) ->

eq_binds(?v1,?v6)

10
Transport_Function(?v1), Port(?v2), Port(?v3), Transport_Function(?v4), componentOf(?v1,?v2),

componentOf(?v4,?v3),binds(?v2,?v3)->tf_binds(?v1,?v4)

11 Matrix(?v1), Layer_Network (?v2), hasLayer(?v1,?v2) -> Layer_Network.isLast (?v2, false)

12

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Matrix(?v4),

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3),

defines(?v1,?v8) -> hasLayer(?v4,?v8)

13

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Matrix(?v4),

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3),

hasLayer(?v4,?v8) -> defines(?v1,?v8)

14

Matrix(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Adaptation_Function(?v4),

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3),

hasLayer(?v1,?v8) -> adapts_from(?v4,?v8)

15

Matrix(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Adaptation_Function(?v4),

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3),

adapts_from(?v4,?v8) -> hasLayer(?v1,?v8)

16

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2),

componentOf(?v5,?v3), binds(?v2,?v3), adapts_from(?v4,?v1) -> adapts_from(?v5,?v1)

17

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2),

componentOf(?v5,?v3), binds(?v2,?v3), adapts_from(?v5,?v1) -> adapts_from(?v4,?v1)

205

ID SWRL Rule

18

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2),

componentOf(?v5,?v3), binds(?v2,?v3), adapts_to(?v4,?v1) -> adapts_to(?v5,?v1)

19

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2),

componentOf(?v5,?v3), binds(?v2,?v3), adapts_to(?v5,?v1) -> adapts_to(?v4,?v1)

206

APPENDIX II – INPUT TXT FILES STRUCTURE

In this appendix, the syntax of the provisioning tool input files is presented. The

provisioning tool has two input files, which are (i) the declared equipment and (ii) the

possible equipment. Together, these equipment compose the network to be

provisioned.

Both input files share the same syntax, which is here specified in Extended Backus-

Naur Form (EBNF). Besides the EBNF description, a visual representation of the

specification syntax is going to be presented using railroad diagrams. Both the

formalization of the syntax and the generation of visual representation were

performed in the Railroad Diagram Generator15.

The equipment declaration (i.e., the input file) is composed of three main parts: the

instance population, the object property population, and the data property population.

The beginning of the file, as well as the separation between its three parts, and the

end of the file are represented by a separator, in this case, the three asterisks (***).

The division of the network description in three parts is represented in Figure II-1.

Figure II-1 – Network declaration parts

As can be seen in Figure II-1, all the declaration parts are optional. An input file

without information does not make sense and, hence, it must be avoided. The

provisioning tool expects correct input files to execute the provisioning. No syntax or

semantic treatments of the inputs are performed by the provisioning tool.

15

 http://bottlecaps.de/rr/ui

207

As an example of the description here presented, we are going to present the

complete declaration of the amplifier used in chapter 6 (defined in subsection

6.1.1.2). This amplifier can be visualized in Figure II-2.

Figure II-2 – Amplifier used in the network declaration example

Even though the syntax specification presented in Figure II-1 generates a single file,

we are going to present the amplifier description in three parts in this appendix for

didactical purposes.

The first part of the network declaration is the instance population, presented in

Figure II-3.

Figure II-3 – Instance population definition

In Figure II-3, Class_Name correspond to the OWL classes available in the

provisioning tool knowledge base. The declaration of Instance_Name is case

sensitive. The instance population for the amplifier presented in Figure II-2 can be

seen in Table II-1.

Table II-1 – Amplifier’s instance population

Layer_Network: ODU2e, ODUk, OTU, OCh, OMS, OTS;

Equipment: AMP;

A
M

P

O
TS

2 21 1

208

Input_Interface: in_int01_AMP, in_int02_AMP;

Output_Interface: out_int01_AMP, out_int02_AMP;

AF_Source: af01_so_AMP, af02_so_AMP;

AF_Sink: af01_sk_AMP, af02_sk_AMP;

TF_Source: tf01_so_AMP, tf02_so_AMP;

TF_Sink: tf01_sk_AMP, tf02_sk_AMP;

Input: in_af01_so_AMP, in_af01_sk_AMP, in_tf01_so_AMP, in_tf01_sk_AMP,
 in_af02_so_AMP, in_af02_sk_AMP, in_tf02_so_AMP, in_tf02_sk_AMP;

Output: out_af01_so_AMP, out_af01_sk_AMP, out_tf01_so_AMP, out_tf01_sk_AMP,
 out_af02_so_AMP, out_af02_sk_AMP, out_tf02_so_AMP, out_tf02_sk_AMP;

The second part of the declaration is the object property declaration, which can be

seen in Figure II-4. This declaration defines the relation between the network

elements.

Figure II-4 – Object property population definition

As represented in Figure II-4, the object property declaration is composed of the

property to be set between two instances and these two instances, which are named

source and target. The amplifier’s object property declaration can be seen in Table

II-2.

Table II-2 – Amplifier’s object property population

client_of: (ODU2e, ODUk), (ODUk, OTU), (OTU, OCh), (OCh, OMS), (OMS, OTS);

componentOf: (AMP , in_int01_AMP), (AMP , out_int01_AMP),
 (AMP , in_int02_AMP), (AMP , out_int02_AMP);

adapts_from: (af01_so_AMP , OMS), (af01_sk_AMP , OMS),
 (af02_so_AMP , OMS), (af02_sk_AMP , OMS);

adapts_to: (af01_so_AMP , OTS), (af01_sk_AMP , OTS),
 (af02_so_AMP , OTS), (af02_sk_AMP , OTS);

defines: (tf01_so_AMP , OTS), (tf01_sk_AMP , OTS),
 (tf02_so_AMP , OTS), (tf02_sk_AMP , OTS);

componentOf: (AMP , af01_so_AMP), (AMP , af01_sk_AMP), (AMP , af02_so_AMP), (AMP ,

209

af02_sk_AMP),
 (AMP , tf01_so_AMP), (AMP , tf01_sk_AMP), (AMP , tf02_so_AMP), (AMP , tf02_sk_AMP);

componentOf: (af01_so_AMP , in_af01_so_AMP), (af01_so_AMP , out_af01_so_AMP), (af01_sk_AMP ,
in_af01_sk_AMP), (af01_sk_AMP , out_af01_sk_AMP), (tf01_so_AMP , in_tf01_so_AMP), (tf01_so_AMP ,
out_tf01_so_AMP), (tf01_sk_AMP , in_tf01_sk_AMP), (tf01_sk_AMP , out_tf01_sk_AMP),
 (af02_so_AMP , in_af02_so_AMP), (af02_so_AMP , out_af02_so_AMP), (af02_sk_AMP ,
in_af02_sk_AMP), (af02_sk_AMP , out_af02_sk_AMP), (tf02_so_AMP , in_tf02_so_AMP), (tf02_so_AMP ,
out_tf02_so_AMP), (tf02_sk_AMP , in_tf02_sk_AMP), (tf02_sk_AMP , out_tf02_sk_AMP);

binds: (in_af01_sk_AMP , out_tf01_sk_AMP), (out_af01_sk_AMP , in_af01_so_AMP), (out_af01_so_AMP ,
in_tf01_so_AMP),
 (in_af02_sk_AMP , out_tf02_sk_AMP), (out_af02_sk_AMP , in_af02_so_AMP), (out_af02_so_AMP ,
in_tf02_so_AMP);

maps: (in_int01_AMP , in_tf01_sk_AMP), (out_int01_AMP , out_tf01_so_AMP),
 (in_int02_AMP , in_tf02_sk_AMP), (out_int02_AMP , out_tf02_so_AMP);

Finally, the last part of the description concerns the declaration of the data properties,

which are related to the attributes of the network. The specification of this declaration

can be seen in Figure II-5. Just like the object property population, this declaration is

composed of the property to be set between two instances and these two instances.

Figure II-5 – Data property population definition

As can be seen in the design model, the only class attribute defined is the isLast

Boolean attribute of the class Layer Network and, hence, this is the only data

property available. In the amplifier example, the OTS layer must be set as the last

layer, as can be observed in Table II-3.

Table II-3 – Data properties' declaration

Layer_Network.isLast: (OTS, true, boolean);

The concatenation of the three parts of the amplifier example here presented results

in its complete description. The text file with this description can be found in the

thesis shared folder.

210

In the declarations, spaces and line breaks in the input files are ignored. In addition,

the user must know that every individual declared with a different name is set as

disjoint from each other in the knowledge base. If a same individual is declared twice

(for example, in two different classes), only one individual is created in the knowledge

base.

