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RESUMO 

O aprovisionamento é uma atividade importante na configuração de redes. A 

Recomendação ITU-T M.3400 define aprovisionamento de redes como sendo os 

"procedimentos necessários para se colocar um equipamento em serviço, não 

incluindo a instalação". Os aprovisionamentos de recursos e de serviços são 

desafios recentes no planejamento de redes de comunicação, sendo atividades 

importantes nos paradigmas de redes futuras, como as redes orientadas a serviços, 

as redes em nuvem e a virtualização de redes. Considerando os problemas 

identificados na literatura, esta tese investiga o uso de tecnologias semânticas, 

especialmente ontologias, para resolver o problema da falta de interoperabilidade na 

área e o uso dessas tecnologias como base para uma solução computacional capaz 

de aprovisionar redes de transporte multicamadas independentes de tecnologia 

considerando os estados dos equipamentos da rede. Esta tese tem como objetivo 

desenvolver uma solução computacional para as redes de transporte, contribuindo 

assim com a área de aprovisionamento de redes, uma subárea da gerência de 

redes. Para atingir esse objetivo, (i) uma Ontologia de Referência para redes de 

transporte multicamadas independentes de tecnologia foi construída com base na 

Recomendação ITU-T G.800 utilizando-se de uma linguagem de ontologias bem 

fundamentada e expressiva para a definição de uma semântica precisa para a área. 

Essa Ontologia de Referência permite a comunicação, a aprendizagem e a 

interoperação na área de redes de transporte. Além disso, (ii) um modelo de rede 

semanticamente melhorado para o aprovisionamento de redes de transporte, aqui 

chamado Ontologia Computacional em OWL, foi gerado a partir da Ontologia de 

Referência através de uma rígida engenharia de ontologias; e (iii) foi implementado 

um sistema baseado em conhecimento para aprovisionamento de redes de 

transporte que usa a Ontologia Computacional em OWL como base de 

conhecimento. Os resultados de um teste em uma Rede Óptica de Transporte 

confirmam que o sistema desenvolvido é capaz de realizar o aprovisionamento de 

circuitos e o aprovisionamento de conexões em redes de transportes multicamadas 

considerando os estados dos equipamentos. 

Palavras-chave: rede de transporte, aprovisionamento de rede, ontologia, sistema 

baseado em conhecimento.   



ABSTRACT 

Provisioning is an important activity in the configuration of networks. The ITU-T 

Recommendation M.3400 defines network provisioning as the "procedures which are 

necessary to bring an equipment into service, not including installation". Resource 

and service provisioning are recent challenges in communication network planning 

and important activities in paradigms of future networking, like service-oriented 

networks, cloud networking, and network virtualization. Considering the problems 

identified in the literature, this thesis investigates the use of semantic technologies, 

especially ontologies, to solve the lack of interoperability in the transport network 

area and the use of these technologies as the basis for a computational solution that 

can provision technology-independent multi-layer transport networks considering the 

networks equipment states. This thesis contributes to the network provisioning area, 

a subarea of network management, by developing an ontology-based provisioning 

solution for technology-independent multi-layer transport networks. To accomplish 

this objective, (i) an Ontology Reference Model for technology-independent multi-

layer transport networks based on the Recommendation ITU-T G.800 was built with 

an expressive well-founded ontology language to the definition of precise semantics. 

The Ontology Reference Model allows communication, learning, and interoperation in 

the transport network area. In addition, (ii) a semantically improved network model for 

the provisioning of transport networks, here called OWL Computational Ontology, 

was generated from the Ontology Reference Model through a rigid ontology 

engineering; and (iii) an ontology-based network provisioning knowledge-based 

system that uses the OWL Computational Ontology as a knowledge base was 

implemented. Results of a test on an Optical Transport Network example confirm that 

the developed system is able to perform circuit provisioning and connection 

provisioning on multi-layer transport networks considering the equipment states. 

Keywords: transport network, network provisioning, ontology, knowledge-based 

system. 
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18 

1 INTRODUCTION 

The acronym OAM (Operation, Administration, and Maintenance) is recurrently used 

in the telecommunication industry to identify an important and integral part of 

transport telecommunication technologies (ITU-T, 2000a). One of the activities of the 

Administration in the OAM acronym is Provisioning. The importance of this frequent 

activity is such that sometimes a fourth character is added to the acronym, 

transforming the OAM into OAM&P (Operations, Administration, Maintenance, and 

Provisioning) (ITU-T, 2000a). 

Network provisioning concerns the configuration of network resources to support the 

service requested by the client (ITU-T, 2010). The ITU-T Recommendation M.3400 

defines network provisioning as "procedures which are necessary to bring an 

equipment into service, not including installation" (ITU-T, 2000a). Less formally, it can 

be thought as a “combination of configuration management and connection 

management” (DOVERSPIKE; YATES, 2012). 

According to the ITU Telecommunication Standardization Sector (ITU-T), 

provisioning is supported by configuration management, which provides functions to 

exercise control over, identify, collect data from, and provide data to Network 

Elements (NE) (ITU-T, 2010). A NE provides various functions that allow provisioning 

of the hardware such as slot provisioning, circuit pack assignment, and port 

provisioning (ITU-T, 2010). The management of the NEs in the transport plane of the 

transport network is possible through Element Management Systems (EMS), which 

are located in the management plane, as illustrated in Figure 1-1. 
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Figure 1-1 – Management hierarchy. Adapted from (ITU-T, 2010) 

As can be observed in Figure 1-1, the management plane provisions and configures 

the NEs in the transport plane. The EMSs perform management functions defined by 

recommendations of the Telecommunications Management Network (TMN), from 

which M.3400 is part (ITU-T, 2010). 

Resource and service provisioning are recent challenges in communication network 

planning (MATERA; LISTANTI; PIÓRO, 2015) and are important activities in 

paradigms of future networking, like service-oriented networks (ESCALONA et al., 

2011), cloud networking (HOUIDI et al., 2011a), and network virtualization 

(SCHAFFRATH et al., 2009). In all these paradigms, there is a decoupling of the 

service provisioning from the network infrastructure, exposing the underlying network 

functionalities through resource abstraction and virtualization (DUAN; YAN; 

VASILAKOS, 2012). As illustrated in Figure 1-2, this decoupling results in two 

abstract network layers: the upper layer, which is called service or application layer, 

and the lower layer, called infrastructure or substrate layer. 
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Figure 1-2 – Provisioning in different network abstractions 

As expected due to their different considerations, the layers presented in Figure 1-2 

have different provisioning requirements and strategies. The decoupling of network 

transport and service-related functions is a key feature of the Next Generation 

Network architecture, allowing virtualization of network infrastructure for flexible 

service provisioning (DUAN; YAN; VASILAKOS, 2012). 

1.1 MOTIVATION 

Considering the network division in layers presented in Figure 1-2, this section 

presents the motivations of the work performed in this thesis. The issues reported in 

this section could be identified in the related literature, which is presented in chapter 

2. 

1.1.1 Service Provisioning Dependence on the Infrastructure Layer 

Telecommunication and networking systems are facing the challenge of rapidly 

developing and deploying new functions and services for supporting the diverse 

requirements of various Internet services and applications, each with diverse 

resource requirements (DUAN; YAN; VASILAKOS, 2012; MAGEDANZ; BLUM; 

DUTKOWSKI, 2007). Even though an application or service could be completely 

decoupled from the underlying network infrastructure, like in the abstraction 

separation presented in Figure 1-2, this is not always realistic (GRINGERI; BITAR; 

XIA, 2013). There is still a strong dependence between the two layers because the 

Network Infrastructure Layer

Service Abstraction Layer

Different abstractions 
and provisioning solutions
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services provisioning and the management of the underlying network are coupled 

(ABOSI; NEJABATI; SIMEONIDOU, 2009). The introduction of new services requires 

reengineering the underlying network to support the new services, which is currently 

slow and static. Hence, service provisioning is constrained to the limitations of the 

evolution of the underlying network (i.e., the infrastructure layer) (ABOSI; NEJABATI; 

SIMEONIDOU, 2009). Actually, the tight coupling between the service provisioning 

and the network infrastructure is a barrier to the rapid and flexible service 

development and deployment (DUAN; YAN; VASILAKOS, 2012). This creates long 

cycles between client service requests and service delivery, resource utilization 

inefficiency, and increased operational complexity and expenses (ABOSI; 

NEJABATI; SIMEONIDOU, 2009; INFINERA CORPORATION, 2007). 

1.1.2 Absence of Formal Semantics and Lack of Interoperability 

According to (CLEARY; DANEV; DONOGHUE, 2005), although the use of 

“improved” syntactical protocols and processing models – approaches found in many 

works – is an adequate (though not ideal) approach for fault management and 

performance management, these approaches prove to be inadequate when talking 

about configuration management or provisioning. They believe that the inability to 

create value added network configuration applications is caused by the lack of 

agreement on, or the definition of, formal semantics needed for configuration 

activities (CLEARY; DANEV; DONOGHUE, 2005). 

An important consequence of the poor formalization (i.e., formalizations with weak 

semantics, where ontological distinctions are not considered) or absent formalization 

is the lack of interoperability. As an example, the interoperability problem between 

different technologies, administrative areas, and control planes makes inter-domain 

provisioning below the conventional Internet Protocol (IP) layer a challenge 

(CHAMANIA; JUKAN, 2009). Concerning the infrastructure layer, today, carriers lack 

the management and signaling systems to be able to provision end-to-end 

connections across their network (RAMASWAMI; SIVARAJAN; SASAKI, 2010). 

Maintaining all the complexity in the management plane resulted in sophisticated 

management systems that are difficult to implement (FAWAZ et al., 2004). Currently, 
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different network elements are managed by different management systems 

(RAMASWAMI; SIVARAJAN; SASAKI, 2010) with different software implementations 

caused by different approaches in the software design (e.g., when defining 

cardinalities, data abstractions, and hierarchical nature of relationships) (CLEARY; 

DANEV; DONOGHUE, 2005). This situation is reflected in the limited interoperability 

across equipment from multiple vendors when dealing with provisioning end-to-end 

connections (RAMASWAMI; SIVARAJAN; SASAKI, 2010). 

1.1.3 Need for Automation 

Today, while the circuit provisioning process is more highly automated in the higher 

layer networks, it is a combination of automated and manual steps in the optical layer 

(DOVERSPIKE; YATES, 2012). Connections provisioning is a rather manual and 

time-consuming process in already fully equipped systems (RAMASWAMI; 

SIVARAJAN; SASAKI, 2010). Furthermore, circuit provisioning using legacy 

management systems is also manually conducted, which makes it more error-prone 

and implies longer setup times for an end-to-end circuit (FAWAZ et al., 2004). I.e., in 

current networks, we still rely on human and expert knowledge to configure networks 

(CLEARY; DANEV; DONOGHUE, 2005) and the “human factor” is often responsible 

for misconfigurations and provisioning delays (DUTTA; KAMAL; ROUSKAS, 2008). 

1.1.4 Limited Consideration of Network Equipment 

The provisioning solutions proposed in the literature for the infrastructure layer have 

a limited consideration regarding the network equipment to be provisioned. These 

solutions do not consider the different possible states of the network elements, 

always dealing only with the already installed or operational ones. Many times the 

network vendor has planned equipment that are not installed or operational, but that 

are available to be used when necessary. The consideration of such elements in a 

provisioning system extends the ITU-T M.3400 definition of provisioning, as the 

recommendation excludes installation. However, the consideration of the different 
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equipment states can significantly improve a provisioning solution, offering better 

resource utilization, saving time, and financial resources. 

1.1.5 Technology Dependence 

As new technologies emerge, it is certain that the current technologies will be 

replaced, as well as the layer networks that describe them. When new technologies 

come up, new positioning solutions must be created and harmonized with old ones. 

Regarding technologies, on the one hand, the provisioning solutions of the service 

layer abstracts the underlying network characteristics (e.g., physical infrastructure, 

technology, transmission rates). These solutions have less strong requirements, 

being, in general, more adaptable to different situations. On the other hand, the 

provisioning solutions for the infrastructure layer must operate on real networks that 

are implemented with transport network technologies (the lightpath provisioning in 

optical networks is an example). Hence, the solutions for provisioning of the 

infrastructure layer have a strong dependence on the network technology, resulting in 

more restrict, static, and less interoperable provisioning systems. 

Technology-independent solutions, which can be specialized to represent different 

technologies, are a powerful resource with greater durability. Solutions of this type 

will continue to work, even when practical network descriptions change (DIJKSTRA 

et al., 2008). 

1.1.6 Limited Layering Considerations 

Lastly, an important issue that must be addressed when dealing with provisioning 

solutions for the infrastructure layer concerns the abstraction used to represent the 

diverse technologies that networks usually have. Note that the layers separation here 

used, depicted in Figure 1-2, is a high-level abstraction of a network and does not 

represent technologies. The network infrastructure layer, in fact, can be decomposed 

into a number of other technological layers, according to the layering concept. 
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The layering concept, described in the ITU-T Recommendation G.805, states that 

“transport network can be decomposed into a number of independent layer networks 

with a client/server relationship between adjacent layer networks” (ITU-T, 2000b). 

According to the ITU-T G.805, the layering concept allows: (a) each layer network to 

be described using similar functions; (b) the independent design and operation of 

each layer network; (c) each layer network to have its own operations, diagnostic and 

automatic failure recovery capability; (d) the possibility of adding or modifying a layer 

network without affecting other layer networks from the architectural viewpoint; and 

(e) simple modeling of networks that contain multiple transport technologies (ITU-T, 

2000b).  

The networks that adopt the layering concept to represent their technologies are 

called multi-layer networks. According to (DIJKSTRA et al., 2008; KUIPERS; 

DIJKSTRA, 2009), multi-layer networks are computer networks where the 

configuration of the network can be changed dynamically at multiple layers. Modern 

networks must be viewed as a layered system, capable of providing, simultaneously, 

services at different layers. Unlike regular networks, multi-layer networks allow users 

and other networks to interface on different technology layers (DIJKSTRA et al., 

2008). 

The provisioning of multi-layer networks is a challenge. This can be observed by the 

path finding activity, which is just part of the process to provision network 

connections (DIJKSTRA et al., 2009). While path finding on a single layer is currently 

well understood, path finding on multi-layer networks, where the integration of the 

different technologies in transport networks increases the path finding complexity, is 

far from trivial (DIJKSTRA et al., 2008; XU et al., 2009). In fact, regarding path 

finding, assumptions that are valid for single-layer networks do not hold for multi-

layer networks, making path finding in the latter networks far more complex than path 

finding in the former networks (KUIPERS; DIJKSTRA, 2009). In multi-layer networks, 

even the constraints (the possible incompatibilities) to be considered are not always 

clear (DIJKSTRA et al., 2008). 

Considering that each networking technology has its own set of unique 

characteristics and poses challenges that require specific solutions for provisioning 

(CHOWDHURY; BOUTABA, 2010), the alternatives proposed in the literature are 
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frequently restricted to one specific network layer (representing a single technology) 

or, when considering multi-layer networks, the solutions are tied to a limited number 

of layers, representing specific technologies. In fact, as pointed by (LIU et al., 2012), 

today’s commercial IP/optical multi-layer networks operates different layers 

separately, without dynamic interaction, which leads to low network efficiency, high 

Operational Expenditure (OPEX) and Capital Expenditure (CAPEX), as well as long 

processing latency for path provisioning. 

A qualitative representation of the related literature concerning the most recent 

network provisioning works is presented in Figure 1-3. This figure, generated from 

the evaluation of the works presented in chapter 2, represents qualitatively the 

number of provisioning works that address layering and technology issues. In Figure 

1-3, darker areas represent more frequently found works. The dotted area in the 

technology-independent and multi-layer quadrant indicates the path finding works 

from the System and Network Engineering (SNE) research group, which are going to 

be presented in section 2.5. 

 

Figure 1-3 – Network provisioning related works 

As represented by the light red area with the exclamation mark in Figure 1-3, no 

previous works regarding technology-independent multi-layer transport network 

provisioning and strong semantics could be found. Hence, through the literature 
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review presented in chapter 2, it can be concluded that this is a current open issue in 

the literature. 

1.2 PROPOSAL AND JUSTIFICATION 

As presented in subsection 1.1.1, the infrastructure layer is related both to service 

provisioning (through its dependence on the infrastructure layer) and to the actual 

transport network provisioning (the technology used to implement the infrastructure 

layer). Hence, considering the importance of the infrastructure layer to the overall 

network provisioning, this thesis focuses on this layer. 

Five major problems related to the infrastructure layer provisioning solutions were 

pointed in the previous section (subsections 1.1.2 to 1.1.6): (i) the absence of formal 

semantics and lack of interoperability, (ii) the need for automation, (iii) the limited 

consideration of network equipment, (iv) the technology dependence, and (v) the 

limited layering considerations. Regarding these important problems found in the 

literature, this thesis research question is: can the use of semantic technologies, 

especially ontologies, solve the lack of interoperability in the transport network area 

and be the basis for a computational solution that can provision technology-

independent multi-layer transport networks considering the equipment states? 

The hypothesis evaluated in this thesis is that the use of a well-founded Ontology 

Reference Model of the Recommendation ITU-T G.800 is able to give precise 

semantics to the transport network area, allowing interoperability, and that the use of 

this Ontology Reference Model in a rigid ontology-based development method can 

generate a software that is able to provision technology-independent multi-layer 

transport networks considering the equipment states. 

Ontologies are proposed in (BERNERS-LEE; HENDLER; LASSILA, 2001) as “a way 

to discover common meanings” and have been used in Artificial Intelligence since the 

beginning of the 90’s as a synonymous for semantic techniques. Ontologies can be 

used in different stages of software development for semantic improvement of the 

generated artifacts. The term Ontology came up in Philosophy meaning a systematic 

explanation of being. In computing, while used as “an explicit specification of a 
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conceptualization" (GRUBER, 1993), ontologies are used to provide a large number 

of resources for intelligent systems as well as for knowledge representation and 

reasoning in general (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). 

The use of ontologies in network management with the intention of information 

integration and interoperability among different management models and languages 

is proposed in (VERGARA; VILLAGRÁ; BERROCAL, 2002) and (VERGARA et al., 

2003). Since then, ontologies have been applied to a number of use cases and 

research projects (LÓPEZ DE VERGARA et al., 2009). However, interoperation 

between different frameworks or management solutions remains an open subject 

(MONTEIRO et al., 2014). Ontologies are also used in intelligent network 

environments to provide semantics for building knowledge bases, enabling 

communication, and reasoning (WONG et al., 2005). 

The use of a rigid ontology engineering like the one presented in (GUIZZARDI, 2007) 

allows the development of semantically improved ontology artifacts. Different types of 

ontology are available for different stages of this ontology engineering. In a first 

phase, a conceptual modeling phase, highly expressive languages should be used 

(GUIZZARDI, 2007), creating an Ontology Reference Model. 

Regarding the weak formalization of the transport network domain and the existing 

lack of interoperability, this thesis proposes the creation of an Ontology Reference 

Model for this domain. The formalization of this domain allows the interoperability of 

management systems for provisioning equipment from multiple vendors. In addition, 

the availability of such model is fundamental for the development of intelligent 

applications for network provisioning, as the whole configuration management area 

relies on a full understanding of the network topology and state (CLEARY; DANEV; 

DONOGHUE, 2005). 

The proposed Ontology Reference Model should be built with an expressive well-

founded ontology language to define precise semantics and to allow communication, 

learning, and interoperation. The OntoUML language (GUIZZARDI, 2005), which has 

been successfully employed in a number of industrial projects in several different 

domains (ALBUQUERQUE; GUIZZARDI, 2013), is suitable for this purpose. 
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Intending to represent technology-independent multi-layer networks, the OntoUML 

Ontology Reference Model must rely on a recognized international standard that 

specifies such domain. This thesis proposes the modeling of the Recommendation 

ITU-T G.8001 (ITU-T, 2012a), which is the standard that provides a set of constructs 

and the semantics that can be used to describe the functional architecture of multi-

layer transport networks in a technology-independent way. The ITU-T G.800 is the 

basis for a harmonized set of functional architecture recommendations for specific 

layer network technologies (ITU-T, 2012a). 

Once the ITU-T G.800 OntoUML Ontology Reference Model is available, in a last 

stage of the ontology engineering, versions of this model can be created, resulting in 

a computational (or lightweight) ontology. Contrary to reference ontologies, 

computational ontologies are not focused on representation adequacy, but are 

designed with the focus on guaranteeing desirable computational properties 

(GUIZZARDI, 2007). 

Considering that the computational artifact resulting from the ontology engineering is 

a semantically improved network model with technology-independent multi-layer 

transport network concepts, this thesis proposes its use as a knowledge base in a 

knowledge-based system (KBS) for network provisioning. Using this knowledge 

base, the KBS is able to perform provisioning on this type of network. The use of 

Description Logics and semantic web technologies in the development of the 

computational provisioning tool allows it to detect inconsistencies and to perform 

inferences over the network data, as well as gives to the tool other desired 

characteristics, like extensibility and adaptability. 

The proposed provisioning tool must be able to perform two different types of 

provisioning activities on a technology-independent multi-layer transport network. 

First, the network provisioning tool must perform physical circuit provisioning, binding 

interfaces from network equipment, considering their different implementation layers, 

to provide end-to-end connectivity. This first type of provisioning is here named circuit 

                                            
1
 In order to simplify the reference to the ITU-T recommendations, hereafter they will be called, 

indistinctly, Recommendation ITU-T X, ITU-T Rec. X, or simply ITU-T X; where X is substituted by the 

corresponding recommendation’s series and number. 
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provisioning. Second, the provisioning tool must perform a virtual circuit provisioning, 

enabling information transfer through selected source and destination interfaces of 

network equipment. This second type of provisioning is here named connection 

provisioning. 

A computational provisioning tool helps the network operator to perform network 

provisioning, reducing the “human factor”, and, consequently, reducing provisioning 

times. For a better use of the network resources, the proposed provisioning tool must 

consider the equipment already installed and operational in the network, but also it 

should consider the equipment that are available to be used, but that are not installed 

or operational. 

1.3 OBJECTIVES 

This thesis aims to contribute to the network provisioning area, a subarea of the 

network management. Its general objective is to develop an ontology-based 

provisioning solution for technology-independent multi-layer transport networks. To 

accomplish the general objective, three specific objectives (SO) are defined: 

 SO1: the development of an Ontology Reference Model for technology-

independent multi-layer transport networks based on a recognized 

international standard, the Recommendation ITU-T G.800, and built with an 

expressive well-founded ontology language to the definition of precise 

semantics and to allow communication, learning and interoperation; 

 SO2: the development of a semantically improved network model for the 

provisioning of technology-independent multi-layer transport networks, here 

called OWL Computational Ontology. This computational artifact must be 

generated from the Ontology Reference Model (SO1) through a rigid ontology 

engineering; and 

 SO3: the development of an ontology-based network provisioning knowledge-

based system that uses the OWL Computational Ontology (SO2) as a 

knowledge base. This system must be able to perform circuit provisioning and 
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connection provisioning on a technology-independent multi-layer transport 

network, considering the equipment state. 

1.4 THESIS STRUCTURE 

Besides this introductory chapter, the thesis is divided into seven other chapters and 

two appendixes. A visual representation of the content of the thesis can be seen in 

Figure 1-4. 

 

Figure 1-4 – Visual schema of the thesis structure 

Each one of the thesis chapters and appendixes are described as follows: 

Chapter 2 – Network Provisioning: Recent and Related Works: This chapter 

presents the most recent works in network provisioning for the service layer, for the 

infrastructure layer, and, more specifically, provisioning works that somehow use 

ontologies. The already existing transport network models, which are related to the 

ontology here developed, are also presented, as well as related works addressing 

technology-independent multi-layer path finding – one of the activities of the network 

provisioning. 
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Chapter 3 – Ontologies and Ontology-based Development Method: This chapter 

presents the ontology-based development method used to build the knowledge base 

of the transport networks provisioning tool, which comprises an ontology engineering. 

This development method is in the context of the Model-Driven Development (MDD) 

paradigm, more specifically, it is related to the Model-Driven Architecture (MDA). 

Chapter 4 – Well-Founded Ontology Reference Model for Technology-

independent Multi-layer Transport Networks: In this chapter, the 

Recommendation ITU-T G.800 is introduced and then the Ontology Reference Model 

for technology-independent multi-layer transport networks (SO1), which is based on 

the recommendation, is presented. This ontology is later used for the development of 

the Network Provisioning Tool. 

Chapter 5 – An Ontology-based Technology-independent Multi-Layer Transport 

Networks Provisioning Tool: This chapter presents three contributions of the 

thesis. First, it presents the OntoUML design model. The design model is used as a 

basis for the generation of the provisioning tool knowledge base. This knowledge 

base, which is the OWL Computational Ontology (SO2), is the second contribution 

presented. Together with the reasoning engine, the knowledge base is the base for 

the technology-independent multi-layer transport networks provisioning tool (SO3). 

The knowledge-based system’s complete logics are presented in this chapter, as well 

as the tool capabilities. 

Chapter 6 – Ontology-based Provisioning in an Optical Transport Network: This 

chapter presents the application of the provisioning tool in an Optical Transport 

Network (OTN) example. The objective of this chapter is to provide a more realistic 

use of the provisioning tool, as well as to highlight its use in a specific transport 

network technology. After presenting the example settings, the two provisioning 

modes available in the tool – i.e., the automatic mode and manual mode – are 

presented. Lastly, as performance issues of the provisioning tool are out of the scope 

of this thesis, this chapter just briefly addresses this topic. 

Chapter 7 – Conclusion: This chapter presents the conclusions of the thesis. 

Besides the final discussions, the thesis related material available to readers and 
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future works are presented. A description of the publications that were produced 

during the thesis development is also presented. 

Chapter 8 – Bibliography: The complete used bibliography is listed in this chapter. 

Appendix I – SWRL Rules: This appendix presents the nineteen Semantic Web 

Rule Language (SWRL) rules that are part of the OntoUML Design Model and of the 

OWL Computational Ontology. 

Appendix II – Input TXT Files Structure: The syntax of the provisioning tool input 

files is presented with examples in this appendix. 
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2 NETWORK PROVISIONING: RECENT AND RELATED 

WORKS 

In this chapter, we are going to present a study on recent works concerning network 

provisioning, as well as discuss related works. Based on Figure 1-3, the distribution 

of this chapter’s content is represented in Figure 2-1. 

 

Figure 2-1 – Content distribution of chapter 2 

Many different network configuration operations can be classified with the term 

“provisioning”. As an example, when performing a literature research, one will find 

different provisioning strategies for Quality of Service (QoS), bandwidth, resource 

allocation, etc. Intending to present a broad overview of the recent works on the area, 

we are going to use once more the two-layer network abstraction presented in Figure 

1-2. In section 2.1 and in section 2.2, we are going to present, respectively, recent 

studies in service provisioning and in infrastructure provisioning. After that, in section 

2.3, we are going to explore works that have already somehow used ontologies for 

network provisioning. 

Although the works presented in these three initial sections are not directly related to 

the one presented in this thesis, they are in the same area and address current 

network provisioning problems. By providing these works, we would like to highlight 

the relevance of this area, as well as to situate the reader in the most recent 
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contributions to network provisioning. The works presented in these three sections 

are located in the blue area in Figure 2-1. 

Regarding related works, in section 2.4, we first present other network models 

available in the literature, explaining their focus and main concerns. Finally, the most 

related works to the one presented in this thesis, which addresses path finding in 

technology-independent multi-layer transport networks, are presented in section 2.5 

and compared to the work developed here. The related works, especially the ones 

presented in section 2.5, are located in the green area in Figure 2-1. 

In conclusion, we could not find works that could be positioned in the red area of 

Figure 2-1. The work developed in this thesis is situated in this still unexplored area 

of the literature. 

2.1 SERVICE LAYER PROVISIONING 

The review performed by (DUAN; YAN; VASILAKOS, 2012) shows that recent 

evolution of service management in telecommunications has followed a path toward 

network virtualization; that is, decoupling service provisioning from data transport and 

exposing network infrastructure through resource abstraction. The Service-Oriented 

Architecture (SOA) principle and Web Service technologies have been applied to 

facilitate virtualization in telecom systems (DUAN; YAN; VASILAKOS, 2012). 

The increasing attention to network virtualization is supported by a recent study 

described in (MATERA; LISTANTI; PIÓRO, 2015) on trends in network planning to 

decrease the CAPEX/OPEX costs. In such study, among ten studied papers 

addressing recent challenges in communication network planning, two of them 

concern resource provisioning in virtualized networks. They listed as trends (i) the 

provisioning of customized and on-demand resources for multiple service providers 

with different Quality of Service requirements in (SEDDIKI; FRIKHA; SONG, 2015), 

and (ii) the design and implementation aspects of a network resource provisioning 

module designed for the Polish Initiative of Future Internet called System IIP in 

(GOZDECKI et al., 2015). 
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The first work cited by (MATERA; LISTANTI; PIÓRO, 2015) proposes a two-stage 

approach based on non-cooperative games focused on provisioning and managing 

the physical resources in a virtualized network infrastructure (SEDDIKI; FRIKHA; 

SONG, 2015). The second cited work proposes a set of novel linear programming 

optimization models for network resource provisioning designed to minimize the 

network resource consumption, either bandwidth or node’s computational power, as 

well as to maximize the residual capacity (GOZDECKI et al., 2015). 

This demand for service provisioning is reflected by the standardization 

organizations, which have released different standards in this area, like frameworks 

for service management and operation by aggregating network capabilities and 

service management functions in a common platform. Specifications in this area 

include the Open Mobile Alliance (OMA) Open Service Environment (OSE) (MAES, 

2007) and the TM Forum Service Delivery Framework (SDF) (HUANG, 2009). 

In addition, according to (DUAN; YAN; VASILAKOS, 2012), there has been a 

motivation to organize the services/applications offered by various networks on an 

overlay that allows service providers to offer rich services. Toward this objective, the 

Institute of Electrical and Electronics Engineers (IEEE) recently developed the Next 

Generation Service Overlay Network (NGSON) standard (LEE; KANG, 2012), which 

specifies context-aware, dynamically adaptive, and self-organizing networking 

capabilities, including both service level and transport level functions that are 

independent of the underlying network infrastructure (DUAN; YAN; VASILAKOS, 

2012). 

SOA has been widely adopted in cloud computing via the paradigm of Infrastructure-

as-a-Service (IaaS) (DUAN; YAN; VASILAKOS, 2012). The provisioning of virtual 

resources in future networks relying on the IaaS principle is addressed in (HOUIDI et 

al., 2011b), which uses exact and heuristic optimization algorithms for the 

provisioning of virtual networks involving multiple infrastructure providers. Their study 

assumes the emergence of new actors such as virtual network providers acting as 

brokers requesting virtual resources on behalf of users. Resource matching, splitting 

(solved in the paper with the use of both max-flow min-cut algorithms and linear 

programming techniques), embedding (formulated and solved as a mixed integer 

program), and binding steps required for virtual network provisioning are proposed 
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and evaluated (HOUIDI et al., 2011b). In a previous work, described in (HOUIDI et 

al., 2010), the same authors had investigated the problem of adaptive virtual network 

provisioning and developed an algorithm for adaptive infrastructure resource 

allocation to support virtual networks (DUAN; YAN; VASILAKOS, 2012). 

According to (DUAN; YAN; VASILAKOS, 2012), service-oriented network 

virtualization enables the Network-as-a-Service (NaaS) paradigm that allows network 

infrastructure to be exposed and utilized as network services, which can be 

composed with computing services in a cloud environment. Therefore, the NaaS 

paradigm may greatly facilitate a convergence of networking and cloud computing 

(DUAN; YAN; VASILAKOS, 2012). 

Cloud service provisioning across multiple cloud providers is addressed in (HOUIDI 

et al., 2011a), which developed an exact algorithm to efficiently split the cloud 

requests among the multiple cloud platforms with the aim of decreasing the cost for 

customers. Still concerning cloud computing, (CALHEIROS et al., 2011) proposed 

the CloudSim, an extensible simulation toolkit that enables modeling and simulation 

of cloud computing systems and application provisioning environments. The 

CloudSim implements generic application provisioning techniques that can be 

extended with ease and limited effort (CALHEIROS et al., 2011). 

An application-aware virtual data center provisioning method for distributed data 

centers (DC) enabled by coordinated virtualization of optical Orthogonal Frequency 

Division Multiplexing (OFDM) network and DCs is proposed in (PENG et al., 2013). 

The coordinated virtualization of optical network and Information Technology (IT) 

resources in DCs is developed as a key part of the provisioning method (PENG et al., 

2013). This work targets future cloud platform that deploys advanced optical 

transport technologies for interconnecting remote DCs. 

The service provisioning technology dependence, as well as the difficulty to divide 

the two network abstraction layers here adopted, can be observed in (WANG et al., 

2014), which presents a flexible virtual optical network provisioning procedure for 

distance-adaptive flex-grid optical networks. Their work, which aims at maximizing 

spectrum utilization efficiency, is in the context of Software-defined Optical Network 

(SDON). This technology relies on optical network virtualization, which enables 
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network service providers to provision multiple coexisting and isolated Virtual Optical 

Networks (VON) over the same physical infrastructure (WANG et al., 2014). Since a 

lightpath is a special instance of a VON, they claim that the VON service provisioning 

system used by a SDON service provider has backward-compatibility to traditional 

lightpath provisioning. 

2.2 INFRASTRUCTURE LAYER PROVISIONING 

Concerning the infrastructure layer, the most recent works are focused on the Dense 

Wavelength Division Multiplexing (DWDM) networks, which are the most widely used 

transport technology nowadays (LIU et al., 2006). We can divide the works related to 

this network abstraction layer into two categories: discussions about control plane 

solutions (subsection 2.2.1) and lightpath provisioning strategies (subsection 2.2.2). 

Before presenting the diverse provisioning techniques, we must say that multi-layer 

provisioning is addressed in some works, however always dealing with technology-

specific layers. For example, (LEHMAN et al., 2007) defines its multi-layer aspect as 

referring to the fact that end-to-end service may be instantiated via a data plane path 

that traverses multiple different network elements that belong to different technology 

layers. This situation can be seen in Figure 2-2, which shows an example from 

(DOVERSPIKE; YATES, 2012) representing five layers supporting the provisioning of 

two 10-Gb/s circuits. Note that all layers in Figure 2-2 are from specific technologies. 
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Figure 2-2 – Sublayering within the optical layer. From (DOVERSPIKE; YATES, 2012) 

As another example, the work presented in (DOUCETTE; GROVER; GIESE, 2007) 

defines a multi-layer design and operation strategy for multi-service and multi-layer 

survivable traffic engineering and bandwidth management. In this specific work, the 

term “multi-layer” is used to refer to the fact that the strategy there defined deals with 

two distinct layers: Wavelength Division Multiplexing (WDM) and IP/Multi-Protocol 

Label Switching (MPLS). The same happens with the work presented in (KOZAT; 

KOUTSOPOULOS; TASSIULAS, 2006). This work performs QoS provisioning 

considering wireless multi-layers, which are the routing layer, the medium access 

control layer, and the physical layer. 

2.2.1 Control Plane Discussions 

A first category of works regarding provisioning in optical networks deals with the 

control plane technology, architecture, and design. A control plane is a key enabling 
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technique for dynamic and intelligent end-to-end path provisioning in optical networks 

(LIU et al., 2013). 

The Generalized Multi-Protocol Label Switching (GMPLS), developed by the Internet 

Engineering Task Force (IETF) as a generic network control plane framework, is 

used for managing physical path and core tunneling technologies of the Internet and 

telecom service providers (AZODOLMOLKY et al., 2011). The GMPLS control plane, 

due to its support for various optical transport technologies as well as its capability for 

dynamic and on demand lightpath provisioning, is widely being considered by 

operators as the control plane of their next generation core optical networks 

(AZODOLMOLKY et al., 2011). 

Architecture and design considerations associated with the development of a control 

plane capable of dynamic provisioning in heterogeneous multi-domain, multi-layer, 

multi-service hybrid network environments are presented in (LEHMAN et al., 2007). 

The vision for these hybrid networks is to enable flexible and dynamic provisioning of 

end-to-end network services (LEHMAN et al., 2007). This work proposes a 

framework for addressing the heterogeneous nature of the hybrid networks via the 

development of a flexible set of mechanisms which address the key control plane 

functions of routing, path computation, and signaling (LEHMAN et al., 2007). An 

interoperable set of constructs is proposed based on GMPLS and Web Service for 

seamless provisioning across heterogeneous data and control planes (LEHMAN et 

al., 2007). 

Considering Elastic Optical Networking (EON), some studies have started to design a 

GMPLS-based control plane (LIU et al., 2013). Despite massive progress, it should 

be noted that such studies mainly focused on the control of the optical layer (LIU et 

al., 2013).  

Authors like (LIU et al., 2012) claims that, despite the development and 

standardization efforts, with different interconnection models proposed for a GMPLS-

based Unified Control Plane (UCP) in multi-layer optical networks, there are no 

commercial deployments of these models, and the debate for their practicability in a 

real operational scenario grows in intensity (LIU et al., 2012). Due to its distributed 

nature, the number of protocols, and the interactions among different 
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layers/granularities, the GMPLS UCP becomes overly complex (LIU et al., 2012). 

However, recent studies (MARTINEZ; CASELLAS; MUNOZ, 2012) have validated 

the application of a GMPLS-based unified control plane for controlling a multi-layer 

network composed of both packet – Multi-Protocol Label Switching Transport Profile 

(MPLS-TP) – and optical switching – Wavelength Switched Optical Network (WSON) 

– technologies (LIU et al., 2013). Although more mature and intelligent, a GMPLS-

based control plane may not be an ideal solution for the deployment in a real 

operational scenario due to its distributed nature and high complexity, especially for a 

unified control functionality in IP and optical multi-layer networks (LIU et al., 2013). 

Criticisms over GMPLS, especially for the representation of multi-layer networks and 

for the development of path finding applications in this kind of networks, can be found 

in (DIJKSTRA, 2009; DIJKSTRA et al., 2008). 

More recently, OpenFlow has been proposed as a control framework that supports 

programmability of network functions and protocols (i.e., software defined 

networking) by decoupling the data plane and the control plane, which are currently 

vertically integrated in many networking equipment (e.g., routers, switches, access 

points) (AZODOLMOLKY et al., 2011; MCKEOWN et al., 2008). The mediation 

between control plane segments and layer boundaries, allowing communication and 

interoperability to support transport networks with multiple administrative and 

technology segments, is often a manual process that Software Defined Networking 

(SDN) could automate (GRINGERI; BITAR; XIA, 2013). OpenFlow adopts the 

concept of flow based switching and network traffic control for intelligent, user 

controlled, and programmable network service provisioning with the capability to 

execute any user defined routing, control, and management application in its 

controller (AZODOLMOLKY et al., 2011).  

In (AZODOLMOLKY et al., 2011), a software-defined packet over optical networks 

solution based on the OpenFlow and GMPLS control plane integration is 

demonstrated. They proposed an overlay model that extends the functionality of a 

typical OpenFlow controller in a way to properly interface with GMPLS control plane 

(AZODOLMOLKY et al., 2011). 

The OpenFlow protocol, which has been previously addressed as a unified control 

plane for multi-layer multi-granularity optical networks (LIU et al., 2012), provides the 
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maximum flexibility for operators to control a network and arguably matches carriers’ 

preference given its simplicity and manageability (LIU et al., 2012, 2013). In light of 

this, an OpenFlow-based control plane to achieve dynamically optical path 

provisioning and IP traffic offloading in an EON, referred to as OpenSlice, was 

presented in (LIU et al., 2013). 

The control plane is also an interest research topic in the mobile network 

provisioning. As an example, the work presented in (HOFFMANN; STAUFER, 2011) 

provides concrete extensions of existing control plane protocols and interfaces for a 

layer-independent, vendor-independent, and domain-independent provisioning, and 

operation of virtual networks for future mobile networks. 

2.2.2 Recent Studies on Lightpath Provisioning 

On the algorithmic provisioning side, a multitude of DWDM Routing and Wavelength 

Assignment (RWA) and survivability schemes have evolved (LIU et al., 2006). As 

DWDM technology proliferates, there is a pressing need to develop more advanced 

lightpath provisioning algorithms for distributed multi-domain settings (LIU et al., 

2006). This position is supported by (CHAMANIA; JUKAN, 2009), which defends that 

efficient provisioning of high-bandwidth connections between the multiple domains 

separated by technologies, administrative rules, and control and signaling concepts 

is an open challenge. 

Today’s optical circuit provisioning process in large carrier networks is presented and 

discussed in (DOVERSPIKE; YATES, 2012). Their work lists four broad categories of 

provisioning steps in the core segment, which are:  

1. Manual: installation personnel visit central office, install cards and plug-ins, 

and fiber them to the patch panel. 

2. Manual: installation personnel visit central office and cross connect ports via 

the patch panel. 

3. Semi-automated: provisioners request optical cross connects via a command 

line interface or element management system. 
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4. Fully automated: an operation support system is fed by a circuit path from a 

network planner or planning tool. Then, this system automatically sends 

optical cross-connect commands to the command line interface or element 

management system. 

They also present that carriers are mostly semi-automated provisioning today, and in 

many cases, a circuit order may require steps from all four categories 

(DOVERSPIKE; YATES, 2012). 

A survey of inter-domain provisioning solutions for the next generation optical 

networks is presented in (CHAMANIA; JUKAN, 2009), however multi-layer issues are 

outside the paper’s scope. 

While previous works – e.g., (YURONG HUANG; HERITAGE; MUKHERJEE, 2005) –

intend to design intelligent connection-provisioning algorithms that improve network 

performance, the most recent works are focused in the provisioning of elastic optical 

networks and in considerations about energy efficiency. 

Elastic Optical Networking is an emerging candidate to achieve more cost-effective 

optical networks, as they achieve more spectrally efficient networking in the optical 

layer employing an adaptive bandwidth allocation scheme with fine and flexible 

frequency slots (SONE et al., 2011). On EON, the Route and Spectrum Assignment 

(RSA) problem for provisioning paths could be a concern for network operations, 

similar to the RWA problem in conventional optical networks (SONE et al., 2011). 

The elastic optical path is achieved using OFDM technology. According to (ZHU et 

al., 2013), the provisioning of elastic optical OFDM networks has started to attract 

research interests just recently. 

According to (SONE et al., 2011), the operational scenarios for elastic optical 

networking are broadly classified into incremental, static, and dynamic provisioning. 

As can also be seen in (SONE et al., 2011), for dynamic provisioning (where the 

duration of a path is considered), (TAKAGI et al., 2011) presented a distance-

adaptive RSA algorithm for dynamic traffic; and, regarding static provisioning (where 

entire demands are considered at the same time), (CHRISTODOULOPOULOS; 

TOMKOS; VARVARIGOS, 2010) provided an Integer Linear Programming 

formulation. The RSA problems for incremental provisioning (where a permanent 
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path is provisioned on a one-by-one basis) is addressed in (SONE et al., 2011) that 

proposes the Maximize Common Large Segment RSA algorithm, which employs a 

metric that quantifies the consecutiveness of the common available spectrum slots 

among relevant fibers. 

A spectrum-sliced elastic optical path network (SLICE) architecture has been recently 

proposed as an efficient solution for a flexible bandwidth allocation in optical 

networks (JINNO et al., 2009). This architecture is defined as a very promising 

solution for 100 GB/s and beyond connection provisioning in optical networks in 

(KLINKOWSKI; WALKOWIAK, 2011). 

Once again, demonstrating the weak separation between the two abstraction layers, 

service provisioning in EON is also present in the literature. In the context of a 

Coherent Optical OFDM optical network, (SHEN; YANG, 2011) evaluates how 

flexible wavelength and spectrum assignment can help lightpath service provisioning, 

while (ZHU et al., 2013) addresses the dynamic service provisioning in EON with 

hybrid single-/multi-path routing. 

Considering that the traffic supported by the Internet has grown enormously over the 

last few years and that it is virtually certain that this traffic growth will continue both in 

the near and long term future (JIRATTIGALACHOTE et al., 2011), the interest in the 

energy consumption of communication networks has risen in recent years (MONTI et 

al., 2011). In such scenario, “green” strategies are desirable to help service providers 

operate their networks and provision services in a more energy efficient way (XIA et 

al., 2011). 

Green provisioning strategies for optical WDM networks are addressed by (XIA et al., 

2011), where the authors developed a power-aware provisioning scheme to improve 

the energy efficiency of the networks. Connection provisioning is addressed by 

(JIRATTIGALACHOTE et al., 2011), which presents dynamic provisioning strategies 

for energy efficient WDM networks with dedicated path protection. Their focus is on 

the network’s energy consumption, as they investigate the energy savings in path 

protection. Lastly, concerning energy-efficient lightpath provisioning in static WDM 

networks with dedicated path protection, (MONTI et al., 2011) proposes a scalable 
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and efficient heuristic that chooses the route of the working and protection lightpaths 

with the aim to maximize power saving. 

2.3 ONTOLOGY-BASED PROVISIONING 

In the last decade, many works have used ontologies, especially lightweight 

ontologies, as a solution or as part of the solution to service provisioning. An 

interesting paper that presented study cases and lessons learned for ontology-based 

network management from diverse research projects can be found in (LÓPEZ DE 

VERGARA et al., 2009). Among the presented studies, one concerns the use of 

ontologies for network provisioning. The project reported by (LÓPEZ DE VERGARA 

et al., 2009) is about a home gateway that autonomously provisions services to the 

users, configuring the associated devices when a user queries for a new service. 

This project, presented in (LÓPEZ DE VERGARA et al., 2008) and in (LOZANO et 

al., 2008), is related to the use of ontologies in a self-managed system as a way to 

model the information to be used in that system. The used ontology was defined to 

share the knowledge between both the telecommunications company operator and 

the home gateway (LÓPEZ DE VERGARA et al., 2009). 

Ontological modeling of pervasive services’ lifecycle as a result of the management 

necessities in broadband convergence networks is addressed in (SERRANO et al., 

2008). This paper presents research challenges for facilitating autonomic 

management, defining aspects in the organizational view of service lifecycle, and for 

the control of pervasive services functions. A brief comparison of a management 

system using policies without semantic enrichment and using ontology-based policies 

is also depicted in (SERRANO et al., 2008). 

A context-aware middleware system that facilitates diverse multimedia services in-

heterogeneous network environments by combining an adaptive service-provisioning 

middleware framework with a context-aware multimedia middleware framework is 

presented in (ZHOU et al., 2010). In this work, the authors adopt the Web Ontology 

Language (OWL) to enable expressive context descriptions and data interoperability 

of context. 
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Recently, The Global City Indicators (GCI) Telecommunication & Innovation ontology, 

defined in (FORDE; FOX, 2015), which intends to represent the definitions of the ISO 

37120 Telecommunication & Innovation theme indicators, has a provisioning model 

as one of its composing parts. Provisioning is an important concept for this work 

because the GCI Telecommunication & Innovation indicators are all based on 

measuring the number of telecom services to which residents in a city are connected. 

By accounting for the preparation process necessary to develop a network to provide 

services the GCI Telecommunication & Innovation ontology will be able to account 

for new network services introduced over time (FORDE; FOX, 2015). The OWL 

ontology proposed in the project makes use of another OWL ontology developed in 

(KNACKSTEDT et al., 2008), which models services based on human requirements. 

They claim that, inside their context, the ontology presented in (KNACKSTEDT et al., 

2008) is best used as a reference model that can address issues surrounding 

provisioning (FORDE; FOX, 2015). 

Concerning service provisioning and an economic perspective with respect to service 

allocation and price determination, (BLAU et al., 2008) has three main contributions. 

First, they introduce an ontology framework, which is part of a tool that visually and 

semantically supports service providers in the process of service mashup planning. 

Second, their ontology-based framework for modeling services provides concepts for 

specifying functional and non-functional service properties with a special focus on 

economic aspects. And finally, the result of the planning process is a graph topology 

representing the complex service and its potential sub-services, their configurations 

and reasonable interrelations that fulfill an overall functionality (BLAU et al., 2008). 

Ontologies have a close relation to the use of intelligent computational agents. In 

(PODOBNIK; TRZEC; JEZIC, 2007), ontologies are used in agent-based context-

aware service provisioning systems for next-generation networks. Ontologies and 

agents were also used in (VRDOLJAK et al., 2009), which proposed an ontology-

based middleware for enhancing group-oriented mobile service provisioning, called 

AMiGO-Mob. 

Ontologies are also used in the proposal for ubiquitous service provisioning, in 

(SANCHEZ-LORO et al., 2009). In this work, ontologies are used to provide a 

common syntax and semantics to network nodes. The work presented in (ABOSI; 
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NEJABATI; SIMEONIDOU, 2009), concerning a service composition mechanism for 

the future optical Internet, has an ontology translator module. This ontology translator 

module uses an ontology to describe semantics of information to support service 

discovery and composition. According to (ABOSI; NEJABATI; SIMEONIDOU, 2009), 

the use of Resource Description Framework (RDF) and OWL as knowledge 

representation languages facilitate unambiguous discovery of services. 

For other types of network, we can also find ontology proposals to manage services. 

For multi-service IP networks, (RODRIGUES et al., 2012) proposes an ontological 

model – built in OWL and Semantic Web Rule Language (SWRL) – intending to 

provide an improved semantic description of network services for interoperability and 

self-management. For the highly relevant Internet of Things, lightweight ontologies 

are used in a system architecture that, among other functionalities, provides on-

demand service provisioning (GUINARD et al., 2010). A framework for service 

provisioning in virtual sensor networks is presented in (SARAKIS et al., 2012). 

Resource description using ontologies can also be found in many other areas, like 

Low Carbon Grid Networks (DAOUADJI et al., 2010). 

An important usage of ontologies in network provisioning consists in the ontology-

based network description languages, like the Network Description Language (NDL) 

(VAN DER HAM et al., 2007) and the Network Markup Language (NML) (HAM et al., 

2013). The former language aims to describe an overview of network topology in 

order to provide a common semantic to the applications, the network, and the service 

providers for unambiguous communications among them (DUAN; YAN; VASILAKOS, 

2012). The latter language is an extensible schema to describe network topologies 

and capabilities – it was used with success to define an information model for service 

discovery and provisioning in (FAJJARI; AYARI; PUJOLLE, 2010). Another example 

of language in this class is the Network Resource Description Language (NRDL) 

(CAMPI; CALLEGATI, 2009), developed in order to facilitate abstraction of 

networking resources with a focus on the interaction among network elements rather 

than on individual network objects (DUAN; YAN; VASILAKOS, 2012). According to 

(DUAN; YAN; VASILAKOS, 2012), this change of emphasis enables the NRDL to 

give a better description of the resources for network service provisioning; thus 

expressing network service abstraction. These network description languages are 

addressed in this thesis section 2.4. 
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Finally, an important ontology-based project is the Generalized Architecture for 

Dynamic Infrastructure Services (GEYSERS) (ESCALONA et al., 2011). The 

GEYSERS concept aims to define and implement a novel service provisioning 

architecture, capable of provisioning optical network and IT resources for end-to-end 

service delivery (ESCALONA et al., 2011). One of the GEYSERS’s modules utilizes a 

semantic resource description and information modeling mechanism, based on NDL 

and on Virtual Resources and Interconnection Networks Description Language 

(VXDL) (KOSLOVSKI; PRIMET; CHARÃO, 2009) for describing the underlying 

physical infrastructure (e.g., switching capabilities). This ontology-based module 

allows the creation of virtual infrastructures using the virtualized resources and a 

dynamic on-demand re-planning of the virtual infrastructure composition 

(ESCALONA et al., 2011). 

2.4 EXISTING TRANSPORT NETWORK MODELS 

Network models can help users and applications to understand the complexity of 

networks (especially multi-layer networks, where the configuration of the network can 

be changed dynamically at multiple layers), and can support diverse applications, 

such as path finding, scheduling, fault isolation, and visualization (DIJKSTRA et al., 

2008). Regarding the importance of models, the usage of data structuring models 

built with semantic web technologies, especially lightweight ontologies, is found in 

many different works. These works claim that the use of these technologies can 

directly solve interoperation problems. However, the direct use of computational 

languages for building these interoperation artifacts can lead to lack of semantics 

and, hence, to problems like false integration – see, for example, the false agreement 

problem (GUARINO, 1998). 

Considering network management, the lack of a formal semantics in models was 

presented in (VERGARA et al., 2003) and (VERGARA; VILLAGRÁ; BERROCAL, 

2004). According to them, different management models (SNMP, CMIP, CIM/WBEM, 

and Corba) could be correlated. In their work, a heuristic (human driven) mapping 

process was used to establish a semantic equivalence between these models. As a 

result, (VERGARA; VILLAGRÁ; BERROCAL, 2002) presented a network 
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management metamodel. The term ontology, meaning taxonomy or common 

information model, has been used in the network management context since then 

and interoperability has become an issue in network management, as pointed in 

(WONG et al., 2005). 

Autonomic management and self-management researchers have taken ontology first 

as information taxonomy (VERGARA; VILLAGRÁ; BERROCAL, 2002), then as a 

data representation standard (QUIROLGICO; MILLS; MONTGOMERY, 2003) and 

later as endogenous interoperability solution (WONG et al., 2005). Thus, 

interoperability is reached only inside the proposed solution, i.e., interoperability just 

exists if the communicating parts implement the proposed framework or model. Even 

so, ontology as an interoperability tool is frequently used as an approach to improve 

autonomy and self-features of network management solutions (SERRANO; SERRAT; 

STRASSNER, 2007). Interoperation between different autonomic solutions 

(exogenous interoperability) remains an open subject (MONTEIRO et al., 2014). 

The interesting work presented in (HAM et al., 2014) provides a taxonomy of current 

and past network modeling efforts over the last few years. This work concludes that, 

on the one hand, management models have changed less, given they are all aimed 

at specific applications, and target very specific use-cases or tools; and, on the other 

hand, monitoring, general, and Future Internet models have all evolved significantly. 

According to (HAM et al., 2014), there is a trend towards not only describing the 

network, but connected devices as well. This is especially current given the many 

Future Internet projects, which are combining different models and resources in order 

to provide complete virtual infrastructures to users (HAM et al., 2014). 

One basic rule that holds for both the current Internet and the upcoming Future 

Internet platforms is presented in (HAM et al., 2014): the design, planning, 

management, and monitoring of the network rely on the knowledge of its topology, 

expressed as network models. A network topology provides information on the 

location of devices and on the connections between them; this information, in turn, 

gives a view of the physical and logical structure of the network. Topology 

information needs to be available to all devices within the network to operate 

properly, to external tools that act on the network, and to applications that use the 
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network (HAM et al., 2014). Three main challenges for network models are pointed in 

(HAM et al., 2014): 

1. handling different abstraction levels; 

2. managing multi-domain communication and path setup; 

3. integration with computing-network-storage-planning services. 

An important mechanism for managing complexity is the creation of an abstract 

model, a step which, according to (HAM et al., 2014), has been undertaken in 

computer networks. According to (HAM et al., 2014), works that define general 

network models are NDL v2, NML, NDL-OWL, Networking Over Virtualized 

Infrastructures (NOVI), GEYSERS, and Infrastructure and Network Description 

Language (INDL). Table 2-1 summarizes the models’ main purpose, scope, and 

language type. The next paragraphs use text adapted from (HAM et al., 2014) to 

present briefly all these initiatives. 

Table 2-1 – Overview of the existing network models. Adapted from (HAM et al., 2014) 

Model Name Main Purpose Scope Representation Language 

NDL General Network RDF 

NML General Network XML + OWL 

NDL-OWL General Network + Comp & Storage OWL 

NOVI/GEYSERS/INDL General Network + Comp & Storage OWL 

NDL, originally presented in (VAN DER HAM et al., 2006), is a method of using RDF 

to describe networks. Its original model (v1) was simple and intended to describe 

devices, interfaces, and their connections. Using ideas from ITU-T G.805, NDL was 

extended to its version 2, which is able to describe multi-layer networks generically 

(DIJKSTRA et al., 2008; VAN DER HAM et al., 2008). More information about the 

NDL underlying concepts and other works from the same research group, especially 

the ones regarding multi-layer path finding, are presented in section 2.5. 

The ITU-T G.805 and the NDL are the models on which NML is based. NML (HAM et 

al., 2013) is a generic network model that can be used for describing measurements, 

monitoring, topologies, and also requests. To support different applications, NML has 

two different data models, one in eXtensible Markup Language (XML) and other in 

OWL. 
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The Network Description Language OWL (NDL-OWL) is an extension of NDL v2 to 

the OWL syntax developed in the Open Resource Control Architecture-Breakable 

Experimental Network (ORCA-BEN) project (BALDINE et al., 2009; XIN et al., 2011), 

within the Global Environment for Network Innovations (GENI)2 initiative. NDL-OWL 

also extends NDL with more virtualization and service description features to 

describe their infrastructures. These descriptions are then used in the client software 

to describe requests, but also in the management software to match the requests 

with the available infrastructure. 

The NOVI project aims to federate Future Internet platforms and one of the 

challenges of the NOVI information model is to interact with different platforms (HAM 

et al., 2011a, 2011b). The NOVI ontology suite allows a complete semantic 

description of a Future Internet federation. NOVI has ontologies for the infrastructure, 

but also for monitoring tools and results, as well as policy aspects and rules. 

The GEYSERS Information Modeling Framework (IMF), intends to provide an 

information model for the Logical Infrastructure Composition Layer (GARCÍA-ESPÍN 

et al., 2012). One of the key innovations of GEYSERS is to enable virtualization of 

optical infrastructures. This layer is the element responsible for managing physical 

resource virtualization and composing Virtual Infrastructures. These are then offered 

as a service within the GEYSERS architecture. 

INDL (GHIJSEN et al., 2012, 2013) is an evolution of the Network Description 

Language, combined with the experiences in NOVI and GEYSERS. In INDL, the 

general model from NML was added to capabilities to describe the virtualization of 

nodes and infrastructure. According to (HAM et al., 2014), the resulting model of 

INDL is actually not that different from the model in NOVI and GEYSERS, but it 

provides a more reusable model available for other Future Internet platforms. Figure 

2-3 shows an overview of the described information models and shows how they 

have influenced each other. 

                                            
2
 https://www.geni.net/ 
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Figure 2-3 – Overview of the existing information models and their influences. Adapted from 

(HAM et al., 2014) 

None of the network models presented in this section were built with the use of an 

ontology engineering, like the one presented in (GUIZZARDI, 2007). Instead, the 

models were built directly using computational languages, like XML, RDF, and OWL. 

As can be seen in (GUIZZARDI, 2005, 2007; GUIZZARDI et al., 2009), this category 

of languages are not able to correctly represent a domain because of their 

computational restrictions. In addition, Figure 2-3 emphasizes the special importance 

that the ITU-T G.805 has in this context, as being the reference for many other 

network models. It has already been demonstrated, in (BARCELOS et al., 2011), that 

the ITU-T G.805 has ontological deficiencies in its natural language description, and 

it has also been demonstrated that its formal specification is also not capable to 

capture all the domain nuances (BARCELOS et al., 2016). The ITU-T G.805 became 

the basis of NDL, as pointed in (VAN DER HAM et al., 2008) and, by inheritance, as 

can be seen in Figure 2-3, it is also part of the languages that extend NDL, which are 

NML, NDL-OWL, NOVI, GEYSERS, and INDL. A recommendation with ontological 

deficiencies will propagate these problems to all other recommendations, models, 

and languages that use it as a basis (BARCELOS et al., 2016). 

The ITU-T G.800 Ontology Models are built with a strict method (that is going to be 

presented in section 4.3), which guarantees better semantic representation and the 
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elimination of ontological deficiencies. The use of the Ontology Reference Model to 

create computational models (e.g., via automated transformation, a process free from 

human errors) results in a network computational (information) model with improved 

knowledge representation and reasoning capabilities. 

The first two of the three desired properties listed by (HAM et al., 2014) are 

accomplished by the ITU-T G.800 Ontology Reference Model. The model can handle 

different abstraction levels using a three layered ontology level (Site, Equipment, and 

ITU-T G.800). As being based on the Recommendation ITU-T G.800, it can manage 

multi-domain communication and path setup. However, the current knowledge base 

(generated from the Ontology Reference Model) does not have the third desired 

point, which is the integration with computing-network-storage-planning services. 

This third point can be thought as a future work. This characteristic could be included 

as a new ontology layer (to be coupled with the already existing ones) or as the 

extension of one of the already presented layers in a future version of the knowledge 

base. 

2.5 PATH FINDING IN TECHNOLOGY-INDEPENDENT MULTI-LAYER NETWORKS 

Regarding the provisioning of technology-independent multi-layer networks, we can 

assert that the most related works are the multi-layer path finding ones, developed by 

the System and Network Engineering (SNE) research group, from the University of 

Amsterdam3. 

One of this groups’ most important works is the NDL, originally presented in (VAN 

DER HAM et al., 2006). In its first version, NDL was a simple language only capable 

to describe single layer networks. The group, beginning with the study of the 

Recommendation ITU-T G.805 presented in (DIJKSTRA et al., 2007), developed, in 

(DIJKSTRA et al., 2008), a network model based on the ITU-T G.805. Incorporating 

the proposed network model, the NDL became able to describe multi-layer networks 

(DIJKSTRA et al., 2008). With the multitude of uses of the NDL and with its extension 

                                            
3
 https://ivi.fnwi.uva.nl/sne/ 
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to other languages (according to Figure 2-3, the languages are NML, NDL-OWL, 

NOVI, GEYSERS, and INDL), the proposed network model based on the ITU-T 

G.805 presented in (DIJKSTRA et al., 2008) acquires a crucial importance. 

2.5.1 An ITU-T G.805 Network Model and Algebra for Connections 

In (DIJKSTRA et al., 2008), the authors have shown that multi-layer networks cannot 

be represented as simple graphs because this type of representation only provide 

two basic building blocks: edges and vertices. According to the authors, multi-layer 

computer networks have at least three building blocks: links, devices, and 

adaptations – perhaps four, when counting interfaces. In addition, even though cited 

as candidates for representation of multi-layer networks, the GMPLS and the 

Common Information Model (CIM) (as well as network simulators) are classified in 

(DIJKSTRA et al., 2008) as technology-specific models. In fact, the authors report 

that the few models that consider multiple layers are often geared towards very 

specific cases. Therefore, just like in this thesis, the mentioned work proposes a 

model for technology-independent multi-layer computer networks – this model is later 

called an ontology in (DIJKSTRA et al., 2009). Their model, build with the intention to 

support a path finding function, is mainly based on the ITU-T G.805 (hence, only 

covers circuit-switched networks), but also on the GMPLS label concept (for solving a 

practical problem concerning identification of connections). 

Besides the network model, (DIJKSTRA et al., 2008) also presents a simple algebra 

that can be used to verify the validity of network connections. Both the model and the 

algebra have been implemented in a syntax and network tool, a software framework 

that is able to find valid paths in multi-layer networks. 

The results of (DIJKSTRA et al., 2008) can be directly associated with the Ontology 

Reference Model for technology-independent multi-layer transport networks that is 

one of the objectives of this thesis. Their proposed network model is related to the 

ontology model and their algebra for connections is associated with the model 

inference rules – no restriction rules were presented in (DIJKSTRA et al., 2008). The 

network model proposed in this thesis, however, intends to be a reference model for 

the area, providing sound formalization for the domain without considering 



54 

computational restrictions and possible applications. The model proposed in 

(DIJKSTRA et al., 2008) was developed with the intention to be coupled to NDL and 

to provide the basis for domain-specific computational applications, like the path 

finding proposed by the same research group in (DIJKSTRA et al., 2009). 

Application-oriented models are well suited for the applications they are built for, 

however, they lack in expressivity when considering the whole domain and usually 

are a source of problems when used for semantic interoperation (GUIZZARDI, 2005, 

2007). 

To show that the network model and algebra presented in (DIJKSTRA et al., 2008) 

have practical applications, a Resource Description Framework Schema (RDF-S) 

was created to extend the NDL. The resulting NDL multi-layer schema describes the 

basic concepts of network layers and allows descriptions of actual technologies. 

According to the authors, the schema was able to describe successfully WDM, Fiber, 

Synchronous Optical Networking (SONET), Synchronous Digital Hierarchy (SDH), 

Asynchronous Transfer Mode (ATM), Ethernet, and MPLS – specific aspects of the 

modeling of these technologies are presented in (DIJKSTRA et al., 2009). In addition, 

a computational framework based on the proposed model was implemented and 

used in various tools. Examples are: (i) in the description of the current configuration 

of the author’s network, and trace network connections; (ii) to the generation of 

sample networks; (iii) for path finding of multi-layer connections through the network; 

(iv) and for isolation of errors in multi-layer network connections (DIJKSTRA et al., 

2008). 

The most important contribution of the proposed model and algebra, as claimed by 

the authors, is that they are technology-independent (just like is this thesis proposal) 

– i.e., they only know about the generic concepts such as ‘‘layer”, ‘‘adaptation”, and 

‘‘label”, but they do not know about specific technologies. The technology 

independence is a powerful characteristic, allowing the model and algebra to 

describe any circuit-switched network technology without modifications and without 

the need to be tuned or adjusted as new network technologies come along 

(DIJKSTRA et al., 2008). 

The model proposed by (DIJKSTRA et al., 2008) is a mapping between the network 

concepts needed for path finding and the ITU-T G.805 concepts. In their paper, this 
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model is textually presented by describing which mappings were made – no math-

based formal or diagrammatical language was used to formalize the model. In a 

simplified manner, the mapping is as follows. The switching core of a network device 

is mapped as a subnetwork. In fact, the switching capability of a device is modeled 

as a switch matrix on a specific layer and domains are treated as “virtual” devices 

and modeled as subnetworks, just as devices are. A network device contains 

interfaces, which are modeled as multiple connection points (one or more for each 

layer, one for each channel on each layer) and optional adaptation capabilities. 

Finally, (physical) links between interfaces are mapped to link connections in the ITU-

T G.805 (in their mapping, a fiber is modeled as a link connection at the fiber layer 

and an Unshielded Twisted Pair (UTP) cable is modeled as a link connection at the 

UTP layer). In their model, an adaptation function defines the relation between the 

connection points that represent the different layers of an interface (DIJKSTRA et al., 

2008). 

A first observation is that the presented mapping uses a reduced number of elements 

when compared to the Ontology Reference Model proposed in this thesis. As already 

pointed, in (DIJKSTRA et al., 2008), the mapping was not formally specified, it was 

described using natural language (English), which is notoriously ambiguous (KOOIJ, 

1973). The usage of natural languages for domain formalizations may lead to a 

document with a series of deficiencies, undermining its comprehension and use in 

interoperation, in decision-making, or in problem solutions (BARCELOS et al., 2016; 

GUIZZARDI, 2005, 2007). 

Some authors – e.g., (BOWEN, 1996; SPIVEY, 1989) – claim that because a formal 

specification is precise (i.e., has a mathematical definition), this means that even if a 

certain specification is wrong, it is easier to identify and correct the problem. The 

same authors claim that, since an informal specification is often ambiguous, it is more 

difficult to detect errors and subsequently to correct them. Additionally, just like stated 

by (BOWEN, 1996), with the use of formal specifications, it is possible to reason 

about a system and detect inconsistencies in it far more easily than in the case 

where only an informal specification is available (BARCELOS et al., 2016).  

A mathematical notation (logic-based) description is used in (DIJKSTRA et al., 2008) 

for their algebra to verify the validity of network connections – i.e., to specify how 
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paths (end-to-end connections) happen in the network. However, even mathematical 

notations (not aware of ontological distinctions) are not well suited for domain 

representation (BARCELOS et al., 2016). 

Despite all relevant advantages of the formal specifications’ usage, this kind of 

formalization may be loose, allowing multiple interpretations by stakeholders and, 

thus, allowing undesired different interpretations (and even implementations, 

considering a computational scenario) (BARCELOS et al., 2016). The lack of 

ontological distinctions in formal specifications has already been addressed in 

(BARCELOS et al., 2016), which highlights their importance. According to the 

authors, to represent correctly a domain, well-founded ontology languages should be 

used, as they provide resources for the specification author to better distinguish the 

meanings of concepts and relations, resulting in a better specification. 

Besides the lack of semantics in the formalization of the proposed multi-layer network 

model, some conceptualization significantly differs from the ones we adopt in the 

Ontology Reference Model for technology-independent multi-layer transport networks 

here proposed. As an example, (DIJKSTRA et al., 2008) states: the “ITU-T 

Recommendation G.805 defines the logic that a pair of adaptation function, 

connection with a network connection at the server layer, yields a link connection at 

the client layer”. Differently, in the Ontology Reference Model, this is not true. In fact, 

in the Ontology Reference Model, the inverse happens: a “connection” at the client 

layer, yields a “connection” at the server layer (the use of the quotation marks is 

because connection is a broad term in the ontology, being refined by a number of 

more specific concepts). In a simplified manner, the specified conceptualization was 

adopted in the ITU-T G.800 Ontology Reference Model because a non-functioning 

sink adaptation can prevent the connection at a client layer. However, what should 

be noted is that the different interpretations by different research groups also 

highlight the ITU-T G.805 unclearness and consequent difficult interpretation. 
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2.5.2 A Path Finding Solution for Technology-independent Multi-layer 

Networks 

The works of the SNE research group go beyond the technology-independent multi-

layer network model and the algebra for the definition of the properties of a valid 

connection through a network, which are presented in (DIJKSTRA et al., 2008). 

According to (XU et al., 2009), how to obtain a valid path given a network, a source, 

and a destination is a different matter from the one presented in (DIJKSTRA et al., 

2008). Regarding this, (DIJKSTRA et al., 2009) presents a path finding solution for 

technology-independent multi-layer networks. 

The multi-layer path selection problem – later called, in (DIJKSTRA et al., 2009), 

multi-layer path finding problem – is defined in (KUIPERS; DIJKSTRA, 2009) as “the 

problem of finding the shortest feasible path from a source to a destination in a 

multilayer network”. This problem is proven to be NP-complete in (KUIPERS; 

DIJKSTRA, 2009). 

According to (XU et al., 2009), while the path finding problem in single layer networks 

is well studied, it is far from trivial in multi-layer networks. As stated in (DIJKSTRA et 

al., 2009), single layer algorithms, such as path vector algorithms in Signaling 

System No. 7 (SS7) (ITU-T, 1996) and Border Gateway Protocol (BGP) (REKHTER; 

LI; HARES, 2006), or the link state algorithms in Open Shortest Path First-Traffic 

Engineering (OSPF-TE) (KOMPELLA; REKHTER; JUNIPER NETWORKS, 2005), 

can only deal with link-constrained problems, where the possibility to use each edge 

is independent from the use of other edges. Regarding the fact that multi-layer path 

finding is a path-constrained problem (i.e., the possible use of an edge depends on 

the choice of other edges in the path), these single layer algorithms cannot deal with 

the complexity of the multi-layer networks and fail to find the shortest multi-layer path. 

In (KUIPERS; DIJKSTRA, 2009) two path finding algorithms through multilayer 

networks are presented: a variant of the breadth first search algorithm and a variant 

of a k-shortest path algorithm. In (DIJKSTRA et al., 2009), the breadth first search 

algorithm was implemented in an imperative program in Python, while in (XU et al., 

2009), this algorithm was implemented in a declarative program in Prolog. 
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Different from the work here presented, which gives to the user three selection 

criteria of a desired path (where the shortest path is one of the options), the works 

presented in (DIJKSTRA et al., 2009) and in (XU et al., 2009) (always) aim to find the 

shortest feasible path from a source to a destination in a multi-layer network. In 

addition, if the algorithm implemented in (DIJKSTRA et al., 2009) is not terminated 

when the shortest path is found, other branches continue to try new paths, and the 

algorithm turns into a k-shortest path finding algorithm. I.e., in their works, the user 

cannot choose between different path selection criteria: just the shortest path is 

available. In the provisioning tool presented in this thesis, the user may choose 

between selecting the shortest path, the path that requires the minimum number of 

new bindings, and the path that uses the minimum number of equipment that are 

currently not installed or operational in the network (here called possible equipment). 

A similarity between the network provisioning tool proposed in this thesis and the 

path finding mechanism developed in (DIJKSTRA et al., 2009) is the focus on the 

accuracy as opposed to the execution speed. However, regarding this topic, both 

works presents exponential running time characteristics – given the NP-complete 

nature of the problem addressed by (DIJKSTRA et al., 2009), the algorithms that they 

implement, defined in (KUIPERS; DIJKSTRA, 2009), have an exponential running 

time. A discussion on this work’s execution time is presented in the thesis conclusion 

(chapter 7, section 6.4). 

To reduce the flooding nature of its algorithm, (DIJKSTRA et al., 2009) allows the 

user to perform some modifications. It is possible to remove some of the branch 

termination logic (e.g., by not counting the available channels or not checking for 

compatible labels) or to increase the number of branch termination rules (it is 

possible to terminate if a node is processed twice). However, the authors state that 

these modifications usually result in false negative or false positive path indications. 

Just like in (DIJKSTRA et al., 2009), the user can also reduce the execution time of 

the provisioning tool proposed in this thesis. This is done by setting four different 

restrictions (the maximum number of paths to be found, the maximum number of 

interfaces in a path, the maximum number of new bindings in a path, and the 

maximum number of interfaces of possible equipment in a path). However, differently 

from (DIJKSTRA et al., 2009), when using the restrictions here available, no false 
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positive or false negative results are shown to the user. In fact, the use of the 

restrictions is encouraged as it may help the network operator to choose the best 

path according to his/her provisioning strategy. Nonetheless, it must be remembered 

that the intention of the algorithm implemented in (DIJKSTRA et al., 2009) is to find 

the shortest feasible path, it is not in its scope to give options to the network operator. 

Finally, the difference in the compared works’ scopes must be detailed. The work 

here proposed is committed to the circuit provisioning and to the connection 

provisioning of a network, while (DIJKSTRA et al., 2009) intends to perform only path 

finding, which, according to the authors, is just a part of the process to provision 

network connections. The steps defined by (DIJKSTRA et al., 2009) are (1) routing, 

the distribution of the state of a device or domain to its neighbors; (2) path finding, 

determine (a) viable path(s) using the given information; (3) select a path and 

determine its parameters that have not been decided upon; (4) path provisioning, 

configuring the actual network elements. 

Routing, the first step, consists in the composition of the network to be provisioned. 

I.e., in this step, the network instances are provided in the network model to be later 

manipulated by the algorithms. In (DIJKSTRA et al., 2009), NDL provides a way to 

distribute routing information, while in the provisioning tool here defined, this 

information is provided by the user in an input stage. 

The second step consists in finding a network path: a series of contiguous valid 

relations between different network elements according to certain restrictions. In 

(DIJKSTRA et al., 2009), it is assumed that the only existing relations between 

elements are the ones provided in step 1 – i.e., new relations cannot be established 

between the network elements. This thesis provisioning tool has a broader view: it 

evaluates the internal structure of network elements to define if they can be bound or 

not. I.e., it verifies if new bindings (physical relations) can be established between the 

network elements in order to create new paths. In addition, besides considering just 

the equipment already operational or installed in a network, the provisioning tool also 

verifies if other available equipment (that are not operational or installed) can be used 

to create paths. The creation of physical paths is here called circuit provisioning. 

Once physical paths are created, a logical relation representing information transfer 

between the source and destination points is performed by the provisioning tool. This 
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second process is here called connection provisioning. As can be seen, although the 

two software implements the second step, they have important differences. The path 

finding mechanism defined in (DIJKSTRA et al., 2009) deals only with step 2 (it does 

not cover steps 3 and 4). 

The step 3 has two parts, which the first one is the selection of the path found in the 

step 2. Regarding the second part, it can be understood that “determinate its (i.e., the 

selected path’s) parameters that have not been decided upon” refers to verify 

technology-specific attributes from the chosen path to see if it is viable or not. As 

both works here compared do not address specific technologies, these parameters 

are not present in the used network models and, hence, no technology-specific 

restriction applies in the implemented network tools. Future implementations of the 

developed algorithms for technology-specific networks may deal with technology-

specific parameters (e.g., optical dispersion). Such expansion of both works to cover 

new parameters is a future work. 

Finally, step 4 regards the actual network provisioning. As no deeper information was 

provided in (DIJKSTRA et al., 2009) to define this step, the cited network provisioning 

can be interpreted in two forms: in the first one, the provisioning is performed in the 

software network abstraction; and in the second form, the provisioning is performed 

in the real physical network by sending configuration commands. Considering that 

both physical and logical relations are established in the provisioning process of the 

provisioning tool defined in this thesis, it can be asserted that this tool is able to 

perform the first form of provisioning. As the software does not have any direct 

connection to the real network to be provisioned, the network operator must replicate 

the results of the tool provisioning process in the real network to be configured. The 

generation of configuration files that can be automatically sent to network equipment 

to provision the physical network is considered a future work. 
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3 ONTOLOGIES AND ONTOLOGY-BASED DEVELOPMENT 

METHOD 

The word “ontology” comes from the Greek ontos, for “being,” and logos, for “word.” 

In philosophy, it refers to the subject of existence, i.e., the study of being as such. 

More precisely, it is the study of the categories of things that exist or may exist in 

some domain (SOWA, 2000). 

According to (GUIZZARDI, 2005), the term “ontology” in the computer and 

information science literature appeared for the first time in (MEALY, 1967), in a work 

on the foundations of data modeling. In an independent manner, another sub-field of 

computer science, namely Artificial Intelligence began to make use of what came to 

be known as domain ontologies (GUIZZARDI, 2007). A domain ontology explains the 

types of things in that domain. Informally, the ontology of a certain domain is about its 

terminology (domain vocabulary), all essential concepts in the domain, their 

classification, their taxonomy, their relations (including all important hierarchies and 

constraints), and domain axioms (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). Since the 

first time the term was used, a large amount of domain ontologies have been 

developed in a multitude of subject areas (GUIZZARDI, 2007). 

In the past decade, an explosion of works related to ontology has happened in 

computer science, chiefly motivated by the growing interest in the semantic web, and 

by the key role played by them in that initiative (GUIZZARDI, 2007). In the semantic 

web context, Ontologies are proposed in (BERNERS-LEE; HENDLER; LASSILA, 

2001) as “a way to discover common meanings” and has been used since then as 

synonymous for semantic techniques. 

According to (GUIZZARDI, 2007), an important point that should be emphasized is 

the difference in the senses of the term ontology used by the information systems, on 

one side, and artificial intelligence and semantic web communities on the other. In 

information systems, the term ontology has been used in ways that conform to its 

definitions in philosophy (as “a branch of metaphysics concerned with the nature and 

relations of being” and as “a theory concerning the kinds of entities and specifically 

the kinds of abstract entities that are to be admitted to a language system”). In 
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contrast, in most other areas of computer science, the term ontology is, in general, 

used as a concrete engineering artifact designed for a specific purpose, and 

represented in a specific language (GUIZZARDI, 2007). In this last sense, as a 

concrete artifact, Ontologies are used to provide a large number of resources for 

intelligent systems as well as for knowledge representation and reasoning in general 

(GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). According to (GAŠEVIĆ; DJURIĆ; 

DEVEDŽIĆ, 2009), the main areas of application of ontologies are: (a) collaboration, 

providing a “skeleton” of unified knowledge; (b) interoperability, allowing the 

information integration from different sources; (c) education, being a source of 

reference; and (d) modeling, representing important reusable blocks. 

Ontologies as concrete computational artifacts have been largely used in 

telecommunications, especially in network management (LÓPEZ DE VERGARA et 

al., 2009). The use of ontologies in network management with the intention of 

information integration and interoperability among different management models and 

languages was first proposed in (VERGARA; VILLAGRÁ; BERROCAL, 2002) and in 

(VERGARA et al., 2003). Since then, ontologies have been used in large projects, 

like in the GEYSERS project (ESCALONA et al., 2011), and in standardizations – 

e.g., the Network Markup Language initiative (HAM et al., 2013). 

Ontologies can be used in different stages of software development for semantic 

improvement of the generated artifacts (GAŠEVIĆ; KAVIANI; MILANOVIĆ, 2009; 

HAPPEL; SEEDORF, 2006). To achieve this objective, the different types of 

ontologies must be built according to a rigid ontology engineering to be used in the 

different phases of the software development. To generate the network provisioning 

tool knowledge base, we are going to use of a rigid ontology engineering like the one 

presented in (GUIZZARDI, 2007), with three basic phases, which are related to the 

Model-Driven Architecture (MDA) (OBJECT MANAGEMENT GROUP, 2003) three 

abstraction levels. 

In this chapter, in section 3.1, we are to going present the context in which the MDA 

is part, which is the Model-Driven Development (MDD). Then, the most important 

concepts about MDA are going to be presented in section 3.2. Finally, in section 3.3, 

we are going to present the ontology-based development method used to create the 

provisioning tool knowledge base. 
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3.1 MODEL-DRIVEN DEVELOPMENT 

There are different forms to use models in a software development process (KELLY; 

TOLVANEN, 2008). Such variety is partially represented in Figure 3-1, where four 

different forms are represented, ranging from a software process where models are 

not used to a process completely dependent on models.  

 

Figure 3-1 – Use of models in software development. Adapted from (KELLY; TOLVANEN, 2008) 

At one extreme, there is the “only coding” approach, which can be seen in the left 

part of Figure 3-1. This approach is frequent for the development of small software 

features. In such approach, no model is created, i.e., the intended functionality is 

specified directly in code (KELLY; TOLVANEN, 2008). But, as just coding concepts 

is, in most cases, too far from the requirements and from the actual problem domain, 

models are used to raise the level of abstraction and hide the implementation details 

(KELLY; TOLVANEN, 2008). 

In traditional development processes, models are usually kept totally separated from 

the code, as there is no automated transformation available from those models to 

code. In such cases, developers can read the models and interpret them while 

coding the application and producing executable software (case “Separate Model 

and Code, in Figure 3-1) or they can also be used in trying to understand the 

software after it is designed and built (case “Code Visualization” in Figure 3-1) 

(KELLY; TOLVANEN, 2008). In these cases, the models, are typically not used for 

implementing, debugging, or testing and have high maintenance and update costs 

(KELLY; TOLVANEN, 2008). 
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In the Model-Driven Development (MDD) paradigm, presented in the right part of 

Figure 3-1, models are the primary artifacts in the development process – they are 

used to specify, simulate, verify, test and generate the system to be built (AMELLER, 

2014). The benefits of using MDD are a higher abstraction level and an improved 

platform independence (AMELLER, 2014). Instead of requiring developers to use a 

programming language spelling out how a system is implemented, the MDD allows 

them to use models for specifying what system functionality is required and what 

architecture is to be used (ATKINSON; KUHNE, 2003). The aim of MDD is to achieve 

the same degree of automation for issues which today are very complex when dealt 

with manually, such as system persistence, interoperability, distribution, etc. 

(ATKINSON; KUHNE, 2003). 

MDD is a software engineering approach consisting of the application of models and 

model technologies to raise the level of abstraction at which developers create and 

evolve software, with the goal of both simplifying (making easier) and formalizing 

(standardizing, so that automation is possible) the various activities and tasks that 

comprise the software life cycle (HAILPERN; TARR, 2006). According to (MELLOR; 

CLARK; FUTAGAMI, 2003), “model-driven development is simply the notion that we 

can construct a model of a system that we can then transform into the real thing”. 

The Object Management Group (OMG) defines a particular realization of the Model-

Driven Development (MDD) using the term Model-Driven Architecture (MDA). 

Although the MDA represents just one view of MDD, it is the most prevalent at 

present (HAILPERN; TARR, 2006) and its models and transformations have become 

the de facto standard in MDD approaches (AMELLER, 2014). These main MDA 

concepts (models and transformations) are presented in section 3.2. 

3.2 MODEL-DRIVEN ARCHITECTURE 

The Model-Driven Architecture (MDA), specified in (OBJECT MANAGEMENT 

GROUP, 2003), is a standard proposed by the OMG. According to (FRANKEL, 

2003), “MDA is about using modeling languages as programming languages rather 

than merely as design languages”. Aiming portability, interoperability, and reusability 
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through architectural separation of concerns, the MDA provides an approach for, and 

enables tools to be provided for: specifying a system independently of the platform 

that supports it, specifying platforms, choosing a particular platform for the system, 

and transforming the system specification into one for a particular platform (OBJECT 

MANAGEMENT GROUP, 2003). 

According to the MDA specification (OBJECT MANAGEMENT GROUP, 2003), the 

MDA promise is to allow the definition of machine-readable application and data 

models that allow long-term flexibility of: implementation, integration, maintenance, 

testing, and simulation. 

With MDA, the designer begins with a high-level model that abstracts from all kinds of 

platform issues, and iteratively transforms the model to more concrete models, 

introducing more and more platform-specific information (ASSMAN; ZSCHALER; 

WAGNER, 2006). A visual representation of the MDA models and transformation, 

which are the MDA main concepts, can be seen in Figure 3-2. 

 

Figure 3-2 – The Model Driven Architecture models and transformations 

In this section, we present the MDA models (subsection 3.2.1) and the model 

transformations (subsection 3.2.2), which is the process of converting one model to 

another model of the same system (OBJECT MANAGEMENT GROUP, 2003). The 

specific transformation from a Platform Independent Model to a Platform Specific 

Model can be seen in Figure 3-2. It is important to mention that most of the text from 

Platform Specific Model
(PSM)

Computational
Independet Model (CIM)

Model Transformation

Tr
ac

ea
b

ili
ty

 b
et

w
ee

n
 m

o
d

el
s

Platform Independet
Model (PIM)



66 

this section is extracted and adapted from the MDA Guide version 1.0.1 (OBJECT 

MANAGEMENT GROUP, 2003). 

3.2.1 MDA Viewpoints and Models: the Separation of Concerns 

A viewpoint on a system is a technique for abstraction using a selected set of 

architectural concepts and structuring rules in order to focus on particular concerns 

within that system (OBJECT MANAGEMENT GROUP, 2003). The Model-Driven 

Architecture specifies three viewpoints on a system: a computation independent 

viewpoint, a platform independent viewpoint, and a platform specific viewpoint 

(OBJECT MANAGEMENT GROUP, 2003) – each one of these are directly related to 

a specific type of MDA model. 

3.2.1.1 The Computation Independent Model (CIM) 

According to (OBJECT MANAGEMENT GROUP, 2003), a Computation Independent 

Model (CIM) is a view of a system from the computation independent viewpoint. A 

CIM does not show details of the structure of systems – typically, such a model is 

independent of how the system is implemented. A CIM is sometimes called a domain 

model or a business model. A domain model is the type of model that describes the 

environment of a system (ASSMAN; ZSCHALER; WAGNER, 2006). A vocabulary 

that is familiar to the practitioners of the domain in question is used in its specification 

(OBJECT MANAGEMENT GROUP, 2003). 

The CIM plays an important role in bridging the gap between, on the one hand, those 

that are experts about the domain and its requirements, and, on the other hand, 

those that are experts in the design and construction of the artifacts that together 

satisfy the domain requirements (OBJECT MANAGEMENT GROUP, 2003). 

A CIM is a model of a system that shows the system in the environment in which it 

will operate, and thus helps in presenting exactly what the system is expected to do. 

In an MDA specification of a system, the CIM requirements should be traceable to 

the Platform Independent Model (PIM) and the Platform-Specific Model (PSM) 
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constructs that implement them, and vice versa (OBJECT MANAGEMENT GROUP, 

2003). Making a relation with the traditional software engineering method, this model 

can be considered a typical analysis model, since it is expressed in terms of the 

problem domain (ASSMAN; ZSCHALER; WAGNER, 2006) – the analysis model has 

as critical point the objective to provide a common understanding of the domain 

under study (GAŠEVIĆ; KAVIANI; MILANOVIĆ, 2009), just like the CIM. This 

common comprehension must then be propagated to the models that refer to the 

CIM. 

3.2.1.2 The Platform Independent Model (PIM) 

A Platform Independent Model (PIM) is a view of a system from the platform 

independent viewpoint. A PIM exhibits a specified degree of platform independence 

in order to be suitable for the use in a number of different platforms of similar type. 

The PIM describes the system, but it does not show details of the system’s use on 

the platform (OBJECT MANAGEMENT GROUP, 2003). I.e., the PIM is the high level 

abstract design of the system (DURAK; MA MUTYA ICIO LU; O U T   N, 

2005). 

It is important to note, however, that platform independence is a relative term 

(FRANKEL, 2003). The MDA Guide defines the platform independence as a quality, 

which a model may exhibit – one model might only assume availability of features of 

a very general type of platform, while another model might assume the availability of 

a particular set of tools (OBJECT MANAGEMENT GROUP, 2003). When asserting 

that a language or a model is platform-independent, you must specify the platform 

technologies of which it is independent (FRANKEL, 2003). 

According to (FRANKEL, 2003), at this level of abstraction, these assumptions are 

not severe enough to bind the models to specific implementation technology, but they 

do impose constraints on the choice of implementation. A PIM reflects technical 

design decisions for a given implementation, and then it can be seen as a Design 

Model of the classical software engineering method. 
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3.2.1.3 The Platform Specific Model (PSM) 

The separation of the PIM to the Platform-Specific Model (PSM) is a key concept of 

the OMG’s MDA (STAHL et al., 2006). A PSM is a view of a system from the platform 

specific viewpoint. A PSM combines the specifications in the PIM with the details that 

specify how that system uses a particular type of platform (OBJECT MANAGEMENT 

GROUP, 2003). According to (STAHL et al., 2006), the PIM abstracts from 

technological details, whereas the PSM uses the concepts of a platform to describe a 

system. More precisely, a PSM is a computational model that is specific to some 

information-formatting technology, programming language, distributed component 

middleware, or messaging middleware (FRANKEL, 2003). 

A PSM may provide more or less details, depending on its purpose: it will be an 

implementation if it provides all the information needed to construct a system and to 

put it into operation, or it may act as a PIM that is used for further refinement to a 

PSM (OBJECT MANAGEMENT GROUP, 2003). In this last case, platform 

information is added to the PIM in successive refinements, which are called model 

weaving in (ASSMAN; ZSCHALER; WAGNER, 2006), resulting in a PSM that can be 

directly implemented. To be precise, either this model can be executed directly, or it 

is used to generate code (ASSMAN; ZSCHALER; WAGNER, 2006). Hence, this 

model has a close relation to the implementation stage of the classical software 

engineering method. 

Figure 3-3 represents, in summary, the different MDA models related to the 

separation of concerns available in the standard, where the CIM can be directly 

related to an Analysis Model, the PIM can be related to a Design Model, and the 

PSM can be related to the Implementation. 



69 

 

Figure 3-3 – Separation of concerns via different types of MDA models 

3.2.2 MDA Model Transformations 

Model transformations – defined as the process of converting one model to another 

model of the same system – form a key part of MDA (OBJECT MANAGEMENT 

GROUP, 2003). Transformations map models to the respective next level, be it 

further models or source code (STAHL et al., 2006). Figure 3-4 illustrates the MDA 

pattern, by which a PIM is transformed to a PSM. The represented transformation 

can be done manually, with computer assistance, or automatically – transformations 

can even use different mixtures of manual and automatic transformations. 
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Figure 3-4 – Model transformation. From (OBJECT MANAGEMENT GROUP, 2003) 

As stated in the MDA Guide, the drawing presented in Figure 3-4 is intended to be 

suggestive and generic (OBJECT MANAGEMENT GROUP, 2003). The empty box in 

Figure 3-4 represents all other information that can be combined to the PIM in the 

transformation to produce a PSM. The guide states that there are many ways in 

which such a transformation may be done. By instance, the guide describes the 

following model transformation approaches: marking, metamodel transformation, 

model transformation, pattern application, and model merging (OBJECT 

MANAGEMENT GROUP, 2003). In addition to the PIM and the platform specific 

marks, additional information can be supplied to guide the transformation. 

3.3 ONTOLOGY-BASED DEVELOPMENT OF APPLICATIONS 

According to (KALIBATIENE; VASILECAS; GUIZZARDI, 2009), in knowledge-based 

information systems development, a number of authors (GUARINO, 1998; JARRAR; 

DEMEY; MEERSMAN, 2003; WAND; STOREY; WEBER, 1999) suggest to represent 

knowledge by means of domain ontologies, since the semantic content expressed by 

ontologies can be transformed into information systems artifacts. 

According to (ASSMAN; ZSCHALER; WAGNER, 2006), the division of domain 

models into platform-aware subject areas (CIM, PIM, and PSM) is a structuring 

principle that can be applied to the ontology world. The same authors claim that, 
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because the principle has been invented for the reuse of models in product families 

(CIM and PIM are reused in many PIMs and PSMs, respectively), it could enable 

reuse of abstract ontologies in ontology families (ASSMAN; ZSCHALER; WAGNER, 

2006). The fact that domains are not always disjoint, but often overlap, suggests that 

abstract ontologies should be developed that can be shared between domains and 

are refined towards concrete ontologies by adding the differences of domains 

(ASSMAN; ZSCHALER; WAGNER, 2006). 

In order to represent a complex domain, one should rely on engineering tools (e.g., 

design patterns), modeling languages, and methodologies that are based on well-

founded ontological theories in the philosophical sense (e.g., (BUREK et al., 2006) 

and (FIELDING et al., 2004)) (GUIZZARDI et al., 2009). A preferable form to create a 

domain computational ontology (e.g., an OWL ontology) with improved semantics is 

by making use of a rigid ontology engineering like the one presented in (GUIZZARDI, 

2007), represented in Figure 3-5, with three basic phases. 

 

Figure 3-5 – The three-phased ontology engineering presented in (GUIZZARDI, 2007) 

In a first phase, a conceptual modeling phase (detailed in subsection 3.3.1), highly 

expressive languages should be used to create strongly axiomatized ontologies that 

approximate as well as possible to the ideal ontology of the domain. The focus of 

these languages is on representation adequacy, since the resulting specifications are 

intended to be used by humans in tasks such as communication, domain analysis 
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and problem-solving (GUIZZARDI, 2007). OntoUML is proposed in (GUIZZARDI, 

2005) as an ontologically well-founded profile of the Unified Modeling Language 

(UML) to be a language used in this step. Making a relation with the MDA context, 

(ASSMAN; ZSCHALER; WAGNER, 2006) defends that the domain model of a CIM 

can be selected to be a domain ontology. As the CIM intends to represent a domain, 

the ontology must be as expressive as possible. Hence, an ontology reference model 

is the best option. 

Once users have already agreed on a common conceptualization, versions of a 

reference ontology can be created as the objective of the Ontology Engineering (its 

last phase). These versions have been named in the literature lightweight ontologies. 

Contrary to reference ontologies, lightweight ontologies are not focused on 

representation adequacy, but are designed with the focus on guaranteeing desirable 

computational properties (GUIZZARDI, 2007). The Web Ontology Language (OWL) 

is an example of a language suitable for lightweight ontologies. This type of 

ontologies is addressed in subsection 3.3.2. 

In order to achieve this objective, an intermediate phase is necessary in the Ontology 

Engineering: a phase to bridge the gap between the conceptual modeling of 

reference ontologies and the coding of these ontologies in terms of specific 

lightweight ontology languages. Issues that should be addressed in such a phase 

(presented in subsection 3.3.3) are, for instance, determining how to deal with the 

difference in the expressivity of the languages that should be used in each of these 

phases (GUIZZARDI, 2007). 

A clear relation can be made between the MDA models and transformations, 

presented in section 3.2, and the different ontology models presented in the rigid 

ontology engineering defended by (GUIZZARDI, 2007). This relation is represented 

in Figure 3-6. The use of an MDA approach combined with this rigid ontology 

engineering may result in a combination of the practical benefits from the MDA 

(automation, easy maintenance, etc.) to the semantic benefits from the use of 

ontologies. 
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Figure 3-6 – Association between MDA models and different ontology models 

In special, the advantages of employing ontology models as analysis models in a 

software development method are highlighted in (ASSMAN; ZSCHALER; WAGNER, 

2006). They state that, firstly, the use of such models should increase the reliability of 

software products since these models are well engineered, often used, and hence 

trustworthy, avoiding the risks of a self-made domain analysis. Secondly, ontologies 

as analysis models offer a more common vocabulary for the software architect, 

customer, and domain expert. This should improve the understanding of the parties 

that order and construct software. Then, the standardization of the ontologies 

improves the interoperability of applications, because applications that use the 

ontology contain a common core of common vocabulary. Finally, they state that 

domain and business ontologies can be reused in many software products. In 

particular, these types of ontologies may form the core of a software product line, 

around which many products are grouped, and from which they reuse domain 

terminology. Overall, this improves reuse in the software process (ASSMAN; 

ZSCHALER; WAGNER, 2006). 

In conclusion, it is important to mention that the relation represented in Figure 3-6 

between the MDA models and the ontology artifacts from the different phases of the 

ontology engineering defended by (GUIZZARDI, 2007), is not a consensus among 

specialists. With that association, we intended to illustrate the use of different types 

of ontology artifacts in a MDD context. For more precise definitions in this context, we 

recommend (ASSMAN; ZSCHALER; WAGNER, 2006; ATKINSON; KUHNE, 2003; 
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GUIZZARDI, 2007) – which, by the way, do not necessarily have a same point of 

view about this issue. 

In the next three subsections, we are going to present the main characteristics of, 

respectively, Ontology Reference Models (subsection 3.3.1), Computational 

Ontologies (subsection 3.3.2), and the Ontology Design stage (subsection 3.3.3). 

3.3.1 Ontology Reference Models 

To create a conceptual ontology model (i.e., an ontology reference model) that 

correctly reflects the intended domain and that can be used by different agents 

(people, groups of people and machines) to interoperate, a rigid development 

method must be used. The ITU-T G.800 Ontology Reference Model uses the 

modeling methodology presented in (BARCELOS; GUIZZARDI; GARCIA, 2013), 

which is partially based on the Ontological Approach to Domain Engineering 

presented in (FALBO; GUIZZARDI; DUARTE, 2002). In this method, shown in Figure 

3-7, the steps of the Ontological Approach to Domain Engineering are used with 

different level of rigor, abstracting non-essential elements to the modeling context. 

 

Figure 3-7 – Development method of ontology reference models. From (BARCELOS; 

GUIZZARDI; GARCIA, 2013) 

The scope definition is the first step of the iterative methodology. The ITU-T G.800 

Ontology Reference Model has the ITU-T recommendation itself as scope, with a 

focus on the defined architectural components. 
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The second step of the methodology is the ontology capture, where the sub activities 

of information acquisition and conceptualization are conducted. In order to acquire 

information, a domain study is necessary for the modeler to learn about the subject to 

be modeled. For the ITU-T G.800 Ontology, besides the recommendation itself, other 

ITU-T recommendations were used, as well as specifications of specific multi-layer 

technologies. Conceptualizations are immaterial entities that only exist in the mind of 

the user or a community of users. In order to be documented, they must be captured 

in terms of some concrete artifact. This implies that a language is necessary for 

representing them in a concise, complete, and unambiguous way (BARCELOS; 

GUIZZARDI; GARCIA, 2013; GUIZZARDI, 2007). 

The ontology formalization step consists in the formalization, through diagrams, of 

the domain model. In order to represent correctly a domain, an expressive language 

must be used. This language should be able to represent information despite of 

implementation technologies or limitations. 

The ontologically well-founded modeling language used to build the ITU-T G.800 

Ontology Reference Model is a version of UML 2.0 first proposed in (GUIZZARDI, 

2005) and, thereafter, dubbed OntoUML. OntoUML real-world semantics is defined in 

terms of a number of ontological theories, such as theory of parts, of wholes, types 

and instantiation, identity, dependencies, unity, etc. OntoUML has been successfully 

employed in a number of industrial projects in several different domains 

(ALBUQUERQUE; GUIZZARDI, 2013), ranging from Petroleum and Gas 

(GUIZZARDI et al., 2009) to News Information Management (CAROLO; 

BURLAMAQUI, 2011). In fact, it has been considered as a possible candidate for 

contributing to the OMG Semantic Information Model Federation (SIMF) 

standardization request for proposal4 after a significant number of successful 

applications in real-world engineering settings (BAUMAN, 2009; U.S. DEPARTMENT 

OF DEFENSE, 2011). In special, regarding the modeling of multi-layer networks, 

OntoUML has already proven to be able to identify ontological deficiencies in the 

Recommendation ITU-T G.805, an ITU-T G.800 predecessor, in (BARCELOS et al., 

2011). In addition, recently, in (BARCELOS et al., 2016), OntoUML was used to 

                                            
4
 http://www.omgwiki.org/architecture-ecosystem 
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demonstrate the importance of truly ontological distinctions for standardizations using 

the same network recommendation as example. 

As graphical languages are not always capable of correctly representing the domain, 

Object Constraint Language (OCL) rules were also used in the ITU-T G.800 Ontology 

Reference Model for the specification of restriction and derivation rules. 

As we intend to create a domain ontology that is a reference model, it is important to 

ensure that the final version of the created model allows only instantiation as desired. 

That is, the user can only create instances that are possible in the real world. To do 

this, the methodology presented in Figure 3-7 has focus on the validation of 

information modeled at the diagrams. Two main types of validation are used: (1) the 

syntactic one, which guarantees that the OntoUML model created is syntactically 

correct, i.e., that the entities created are according to the languages’ metamodel; and 

(2) the semantic validation, where the objective is to avoid syntactically correct 

diagrams that can be instantiated to generate undesired world of affairs 

(BARCELOS; GUIZZARDI; GARCIA, 2013). 

The OntoUML Lightweight Editor (OLED) (GUERSON et al., 2015) provides the 

syntactical validation. The semantic validation does not ensure that there is no 

impossible state of affairs allowed by the ontology. In fact, it does ensure that its 

occurrences are reduced. The semantic validation is done in two steps: the first step 

is an anti-patterns identification and treatment, and the second step is a simulation 

using Alloy (SALES; BARCELOS; GUIZZARDI, 2012). 

As stated in (SALES; BARCELOS; GUIZZARDI, 2012), an anti-pattern is a recurrent 

decision for a specific scenario that usually results in more negative consequences 

than positive ones. The OLED provides a verification tool to check occurrences of 

anti-patterns (GUIZZARDI; SALES, 2014; SALES; BARCELOS; GUIZZARDI, 2012). 

Simulation can help the modeler to find inconsistencies and unwanted worlds of 

affairs allowed by the model. The verification tool can translate the model to Alloy 

(JACKSON, 2002). Alloy is a model-checking language that can be used to simulate 

possible worlds based on the formalization provided. This kind of validation 

guarantees the validity of modeled information in an specific context, thus its usage 

significantly improves model quality as the user can make assertions and check if 
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these are valid or not (GUIZZARDI; SALES, 2014; SALES; BARCELOS; 

GUIZZARDI, 2012). 

3.3.2 Computational Ontologies 

In 2001, (BERNERS-LEE; HENDLER; LASSILA, 2001) proposed to handle the 

interoperability problem in an open and heterogeneous computing environment, the 

Web, by giving more attention to the semantics of terms, thus creating the semantic 

web. The autonomic management research community has adopted it as an 

important technology in machine-to-machine interaction. Semantic interoperability is 

a research vector for autonomic management, since networks and its services 

continue to grow in number of components and complexity, as well as the global data 

interchange demand. In this context, the usage of knowledge-based systems plays a 

key role. In fact, some authors, like (AGOULMINE et al., 2006) believe that “the 

knowledge is the most important part of the autonomic-system”. 

Knowledge-based systems are built on an architecture with two main components: a 

knowledge base, which must be built with a formalization language, and a reasoning 

engine – which may be attached to an ontology language or not. 

According to (HORROCKS, 2008), semantic web research already had a major 

impact on the development and deployment of ontology languages and tools – now 

often called semantic web technologies. These technologies have rapidly become a 

de facto standard for ontology development, and are seeing increasing use not only 

in research labs, but also in large scale IT projects, particularly those where the 

schema plays an important role, where information has high value, and where 

information may be incomplete (HORROCKS, 2008). 

There are diverse knowledge representation paradigms underlying ontology 

implementation languages: frames, Description Logics (DL), first (and second) order 

logic, semantic networks, etc. This fact makes even more important the correct 

selection of the language in which the ontology is to be implemented (GÓMEZ-

PÉREZ; FERNÁNDEZ-LÓPEZ; CORCHO, 2004). During the years, many languages 

have been used to represent domain ontologies. Examples include Predicate 
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Calculus, KIF, Ontolingua, UML, EER, LINGO, ORM, CML, DAML+OIL, F-Logic, and 

OWL (GUIZZARDI, 2007). After considering some differences between two modeling 

paradigms proposed for the semantic web, (PATEL-SCHNEIDER; HORROCKS, 

2006) argue that, although some of the characteristics of Datalog languages have 

their utility, the open environment of the semantic web is better served by standard 

logics. 

With the ascension of the semantic web, the standardized representation languages 

for this paradigm are frequently employed to build reusable and machine-readable 

computational knowledge bases. The World Wide Web Consortium (W3C), 

standardization organ for the semantic web, has standardized languages with 

different expressivity and that can be used on knowledge bases; the most expressive 

one is the OWL, which is going to be presented in subsection 3.3.2.1. 

3.3.2.1 OWL: The Web Ontology Language 

Although already recognizable as ontology languages (HORROCKS, 2008), the 

expressivities of RDF and RDF-S are deliberately very limited: RDF is limited to 

binary ground predicates, and RDF-S is limited to a subclass hierarchy and a 

property hierarchy, with domain and range definitions of these properties 

(ANTONIOU; HARMELEN, 2009). These languages do not, for example, include the 

ability to describe cardinality constraints, a feature found in most conceptual 

modeling languages, or the ability to describe even a simple conjunction of classes 

(HORROCKS, 2008). From this lack of expressivity, the Ontology Web Language, 

known by its short name OWL, was born. OWL – currently in its version 2 (HITZLER 

et al., 2012) – is the W3C’s current standard for knowledge representation on the 

semantic web. 

The Assertional Box (ABox) of the OWL ontology is its part that deals with the 

individuals and their relationships, while the OWL class structuring is named the 

Terminological Box (TBox). According to (HORROCKS, 2008), the term ontology is 

often used to refer just to a conceptual schema or TBox, but, in OWL, an ontology 

can consist of a mixture of both TBox and ABox axioms. In Description Logics, the 

combination of ABox and TBox is known as a knowledge base (HORROCKS, 2008). 
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OWL adopts the Open World Assumption (OWA) (PATEL-SCHNEIDER; 

HORROCKS, 2006), in which, when there is no assertion about something, it is 

considered as unknown, not as true or false. OWA enables the existence of 

incomplete or partial knowledge on knowledge bases. The knowledge 

incompleteness can have different results in knowledge-based systems, but it is often 

difficult to visualize and correct (i.e., complete). Using the OWA, the OWL axioms 

behave like inference rules rather than database constraints. OWL also makes no 

Unique Name Assumption (UNA) – i.e., in OWL it is possible to assert (or infer) that 

two different names do not refer to the same individual (HORROCKS, 2008). 

According to (HORROCKS, 2008), unlike database management systems, ontology 

tools typically don not reject updates that result in the ontology becoming wholly or 

partly inconsistent, they simply provide a suitable warning. 

A key feature of OWL is that its semantics are compatible with the model theoretic 

semantics of the SROIQ Description Logic – a decidable fragment of first order logic 

with useful computational properties (HORROCKS, 2008; W3C OWL WORKING 

GROUP, 2012). SROIQ logics include complex roles, reflexive, antisymmetric, and 

irreflexive roles, disjoint roles, a universal role, negated role assertions in Aboxes, 

and qualified number restrictions (HORROCKS; KUTZ; SATTLER, 2006). 

As well as giving a precise and unambiguous meaning to descriptions of the domain, 

the close connection between OWL and the Description Logics allows that the 

extensive Description Logics literature and implementation experience can be directly 

exploited by OWL tools (W3C OWL WORKING GROUP, 2012). It also allows for the 

development of reasoning algorithms that can provide correct answers to arbitrarily 

complex queries about the domain. An important aspect of Description Logic 

research has been the design of such algorithms and their implementation in (highly 

optimized) reasoning systems that can be used by applications to help them 

“understand” the knowledge captured in an ontology based on Description Logics 

(HORROCKS, 2008). These reasoning mechanisms associated with the OWL 

language are presented in subsection 3.3.2.2. 
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3.3.2.2 Reasoning Mechanisms 

Building and maintaining ontologies, especially the very large and complex ones, are 

very costly and time consuming, and providing tools and services to support this 

ontology engineering process is of crucial importance to both the cost and the quality 

of the resulting ontology. Therefore, ontology reasoning plays a central role in both 

the development of high quality ontologies, and the deployment of ontologies in 

applications (HORROCKS, 2008). 

In (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009), the authors use the Numbernut5 

definition of reasoning: “a process of using known facts and/or assumptions in order 

to derive a conclusion or make an inference”. It is a complex process involving a 

number of abilities, including association, categorization, cause and effect, problem 

solving, organization, generalization, and judgment of safety (GAŠEVIĆ; DJURIĆ; 

DEVEDŽIĆ, 2009). 

Reasoning also refers, more specifically, to the act or process of using one’s reason 

to derive one statement or assertion (the conclusion) from a prior group of 

statements or assertions (the premises) by means of a given method (GAŠEVIĆ; 

DJURIĆ; DEVEDŽIĆ, 2009). To achieve reasoning in semantic web applications, 

semantic web researchers and developers must deploy an inference engine that can 

derive additional statements that are in their knowledge bases (as well as in the 

associated ontologies) but that are not expressed explicitly. The inference engine can 

invoke query answering; inference explanation; common set-theory operations of 

union, intersection, and difference; predicate logics inferencing; Description Logics 

checking for satisfiability, subsumption, consistency, and instance-of relationships; 

etc. (GAŠEVIĆ; DJURIĆ; DEVEDŽIĆ, 2009). 

In spite of the complexity of reasoning with OWL ontologies, highly optimized 

Description Logics reasoning systems such as FaCT++, Racer, and Pellet have 

proved to be very effective in practice. In fact, the availability of such reasoning 

systems was one of the key motivations for basing OWL on Description Logics 

(HORROCKS, 2008). Reasoning is also important when ontologies are deployed in 

                                            
5
 http://www.numbernut.com/glossary/r.shtml 
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applications: it is needed in order to answer standard data retrieval queries as well as 

to answer conceptual queries about the structure of the domain (HORROCKS, 2008). 

Finally, an important point that must be addressed is that a central issue for 

Knowledge Representation formalisms is the tradeoff between expressive power and 

reasoning mechanisms (LEVESQUE; BRACHMAN, 1985): the more expressive a 

language is, the more complex results to create an inference engine with the 

corresponding deductive mechanisms (GÓMEZ-PÉREZ; FERNÁNDEZ-LÓPEZ; 

CORCHO, 2004). 

3.3.3 Design Stage 

Design bridges the conceptual modeling and the implementation. In the Design 

Stage, the conceptual specification is transformed in a design specification – a 

design model – by taking into consideration a number of issues ranging from 

architectural styles, non-functional quality criteria to be maximized, target 

implementation environment, etc. (GUIZZARDI, 2007). 

A conceptual specification can potentially be used to produce a number of (even 

radically) different designs (GUIZZARDI, 2007). In addition, by taking into 

consideration a number of implementation issues, from the same design, a number 

of different implementations can be produced from a design model (GUIZZARDI; 

WAGNER, 2012; GUIZZARDI, 2007). This situation is represented in Figure 3-8. 
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Figure 3-8 – Different computational ontologies considering different design issues 

In Figure 3-8, the dotted lines indicate a transformation with human assistance from a 

unique conceptual model to different design models. According to (GUIZZARDI; 

WAGNER, 2012), it should be clear that a conceptual model, which is a solution-

independent description of a domain, cannot be automatically transformed into a 

computational specification without human assistance. The solid lines in Figure 3-8 

indicate possible automated transformations from the design models to 

computational models. 

As can be seen from Figure 3-6, we can make an association from the MDA models 

and the ontology artifacts from ontology engineering. In the same way we associate 

models, we can also make an association between the MDA transformation between 

the PIM to the PSM model and the transformation from a design model to a 

computational ontology. Regarding this, the OntoUML and OCL to OWL and SWRL 

(OOTOS) transformation had its first version proposed in (BARCELOS et al., 2013). 

This transformation provides rigid, formal, and clear design considerations and 

contributes to the creation of OWL files with improved semantics to be used for 

knowledge representation, communication, interoperation, and reasoning on 

computational applications. 

Design Model Design Model

Unique Ontology
Reference Model
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3.3.3.1 OOTOS: Transformation from OntoUML and OCL to OWL and SWRL 

An example of an automated transformation from a conceptual modeling language to 

a lightweight ontology language can be found in (BARCELOS et al., 2013). This 

transformation aims to bridge the expressivity gap between these languages through 

a Model Driven Architecture automated transformation from OntoUML to OWL with 

SWRL rules that contributes to (i) make easier the OWL creation from OntoUML, (ii) 

eliminate human errors in this process, (iii) improve the resultant OWL ontology 

semantics. A newer version of the transformation presented in (BARCELOS et al., 

2013) can be found in the OLED editor (GUERSON et al., 2015). This newer version, 

called OntoUML and OCL to OWL and SWRL (OOTOS) transformation, also 

implements an OCL to SWRL transformation, improving the semantics of the 

resulting computational ontology. 

The MDA specification defines model transformation as “the process of converting 

one model to another model of the same system” (OBJECT MANAGEMENT 

GROUP, 2003). More specifically, the OOTOS transformation can be classified as an 

MDA metamodel transformation, which is a model transformation whose specification 

is in terms of a mapping between metamodels (OBJECT MANAGEMENT GROUP, 

2003). MDA transformations can be done manually, with computer assistance, or 

automatically – OOTOS is inserted into the third case, as no human intervention is 

necessary during the transformation process. 

Figure 3-9 represents the OOTOS transformation inside two different contexts: an 

MDA context and the hierarchy of model levels (ATKINSON; KUHNE, 2003). 

 

Figure 3-9 – Transformation's conceptual view 
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Considering the hierarchy of model levels in Figure 3-9, even though the OOTOS 

transforms models (which are located in the M1 level – the domain model level), it 

can be noted that the OOTOS transformation is specified in terms of the M2 level, 

which is the metamodel level. Once models are instances of their metamodels, if 

there is a mapping between the concepts of the metamodels (the source and the 

target language’s metamodels), any model (i.e., models about any domains) can be 

transformed using the same transformation. I.e., transformations in the metamodel 

level (M2 level), just like the OOTOS, are reusable across different domains, making 

them a more permanent solution. In other words, every time a specific (domain 

dependent) transformation between models is performed, this transformation is an 

instance of a more generic transformation that was previously defined in the M2 level 

and that is generic (domain independent). Note that M2 transformations (language-

dependent) are more reusable than M1 transformations (domain-dependent), which, 

by its turn, are more reusable than transformations of user data (sometimes called 

the M0 level) (ATKINSON; KUHNE, 2003). 

In the MDA context in Figure 3-9, the OntoUML (design) model with OCL rules can 

be seen as a PIM, while the OWL with SWRL rules model can be seen as a PSM. A 

representation of the OOTOS as an MDA transformation can be seen in Figure 3-10. 

In this figure, the part (A) represents the MDA generic transformation pattern just like 

specified in (OBJECT MANAGEMENT GROUP, 2003) (the specification figure 3-2). 

The part (B) of the figure is the same representation, but now populated with the 

OOTOS specific information. 
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Figure 3-10 – OOTOS as an MDA transformation. Adapted from (OBJECT MANAGEMENT 

GROUP, 2003) 

An intrinsic characteristic of transformations from highly expressive modeling 

languages (with focus on knowledge representation) to computational representation 

languages (that must be decidable, tractable, etc.) is the loss of expressivity. The 

difference of expressiveness results in incompatibilities between some operators of 

the languages. I.e., not all constructs and operators from one language can be 

transformed to the constructs and operators of the other language. Considering the 

whole language constructs and operators, information loss is unavoidable in such 

transformation process.  

However, information compatibility can be completely guaranteed when dealing with 

subsets of the languages, i.e., for some portions of the languages, one can 

guarantee no loss of information – a mapping from the languages to be transformed 

must, then, be defined and made explicit. Hence, in the OOTOS, a subset of 

OntoUML and OCL (the source languages) is mapped to a subset of OWL and 

SWRL (the target languages). A rigid design process may allow the user to know 

which is the information that is lost between the languages’ transformation, as well as 

which parts of its input can be transformed correctly. The user must also be 

previously informed which operators are allowed and which are not, and how he or 

she can get around this limitation, possibly modifying its input structure. 
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4 WELL-FOUNDED ONTOLOGY REFERENCE MODEL FOR 

TECHNOLOGY-INDEPENDENT MULTI-LAYER 

TRANSPORT NETWORKS 

As cleverly pointed in (MCGUIRE; BONENFANT, 1998), Niccolò Machiavelli, in his 

masterpiece The Prince, observed that “who has not first laid his foundations may be 

able with great ability to lay them afterwards, but they will be laid with trouble to the 

architect and danger to the building”. To the network architect, standard 

specifications lay the foundations for the construction of telecommunications 

networks, which are composed of a myriad of technologies (MCGUIRE; 

BONENFANT, 1998). 

Regarding the importance of standardizations for the telecommunications’ 

community, this chapter begins with a discussion – adapted from (BARCELOS et al., 

2016) – on the importance of using truly ontological distinctions in standardizations, 

in general, and, more specifically, in the ITU-T G.800. In section 4.2, we present 

more details about the Recommendation ITU-T G.800, which was modeled to create 

the Ontology Reference Model for transport networks. The referred model is 

presented in section 4.3. 

4.1 TRULY ONTOLOGICAL DISTINCTIONS FOR STANDARDIZATIONS 

According to the Oxford Dictionaries6, a standard is “an idea or thing used as a 

measure, norm, or model in comparative evaluations”. That is, by means of 

comparative evaluations, a standard is something used by human beings to provide 

a unique or equal interpretation over something in order to interoperate, 

communicate or deal with this thing. Groups of people usually define standards in 

order to represent a community consensus. These standards are typically defined in 

informal specifications – like the ones in natural language (e.g. English or Chinese) – 

                                            
6
 http://www.oxforddictionaries.com/us/definition/american_english/standard?q=standard 
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or in formal specifications, which are the specifications that use mathematical-based 

notation (usually logic-based), in a diagrammatic form or not, to create descriptions in 

a more precise way (BARCELOS et al., 2016). 

Particularly for the telecommunications’ community, the importance of standards is 

notorious (BARCELOS et al., 2016; MCGUIRE; BONENFANT, 1998). The complexity 

of the knowledge field is reflected in the large number of standards bodies – e.g., 

ITU-T, IEEE, TM Forum, and Optical Internetworking Forum (OIF), among others. In 

this field, a huge number of protocols can only be used when standardized. This vast 

number is due to the existence of a central necessity for interoperation between 

telecommunications equipment vendors (i.e., equipment must interoperate for an 

appropriate communication). Incompatibilities can result in loss of data or absence of 

communication and, in both cases, probable serious financial losses (BARCELOS et 

al., 2016). 

The Recommendation ITU-T G.800 (ITU-T, 2012a) is the standard that provides a set 

of constructs (definitions and diagrammatic symbols) and the semantics that can be 

used to describe the functional architecture of multi-layer transport networks in a 

technology-independent way. The generic functional architecture defined in the 

Recommendation ITU-T G.800 provides the basis for a harmonized set of functional 

architecture recommendations for specific layer network technologies. This set 

includes recommendations that use connection-oriented circuit switching or 

connection-oriented packet switching, and connectionless packet switching (e.g. ITU-

T G.803, ITU-T G.872, ITU-T I.326, ITU-T G.8010/Y.1306), and a corresponding set 

of recommendations for management, performance analysis, and equipment 

specifications (ITU-T, 2012a). In practice, this standard unifies concepts from the 

ITU-T Recommendation G.805 (ITU-T, 2000b), for connection-oriented networks, and 

from the Recommendation ITU-T G.809 (ITU-T, 2003), for connectionless networks. 

Even though the ITU-T Recommendation G.805 is defined using both natural 

language and a formal specification in Z, the ITU-T Rec. G.800 is only defined in 

natural language. Despite the visible importance of the ITU-T G.800 

Recommendation, its text does not contemplate an adequate and precise information 

model for the represented domain concepts. According to (GUIZZARDI, 2005), the 

suitability of a language to create specifications in a given domain depends on how 
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“close” the structure of the specifications constructed using that language resemble 

the structure of the domain abstractions they are supposed to represent. Further, 

(GUIZZARDI, 2005) also presents that what is referred by the structure of a language 

can be accessed via the description of the specification of the conceptual model 

underlying the language, i.e., a description of the worldview embedded in the 

language’s modeling primitives. In (MILTON; KAZMIERCZAK, 2008), this is called 

the ontological metamodel of the language, or simply, the ontology of the language 

(BARCELOS et al., 2016). 

Natural languages do not have a well-defined underlying conceptual model, hence, 

these languages are notoriously ambiguous (KOOIJ, 1973). This happens because 

this category of languages evolved by cognitive and social demand through the 

centuries. The usage of natural languages in standardizations may lead to a 

document with a series of deficiencies, undermining its comprehension and use in 

interoperation, in decision-making, or in problem solutions (BARCELOS et al., 2016). 

Figure 4-1 presents the different types of ontological deficiencies that can occur in 

standards. 

 

Figure 4-1 – Ontological deficiencies. From (BARCELOS et al., 2011), based on (FETTKE; 

LOOS, 2005; GUIZZARDI, 2005) 

A recommendation with ontological deficiencies will propagate these problems to all 

other recommendations (specifications, standards, norms, etc.) that use it as a basis. 

In addition, when used as a reference for conceptual or computational applications, 
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this deficient recommendation will possibly generate applications with failures and 

interoperation problems (BARCELOS et al., 2016). 

Ontological deficiencies can occur when the languages are built over a not-well 

specified underlying conceptual model (the language’s metamodel). Apart from 

natural languages, formal languages can (and usually do) suffer from such a 

problem, even when the language has a formalized underlying conceptual model. It 

must be made clear that the existence of ontological deficiencies in a language is not 

only related to the presence or absence of a formalization of the language’s 

underlying conceptual model: it is a matter of “how well specified” this formalization is 

(BARCELOS et al., 2016). A well-specified underlying conceptual model should rely 

on a sound well-founded ontology (sometimes called upper ontology), like the Unified 

Foundational Ontology (UFO) (GUIZZARDI, 2005), the Bunge-Wand-Weber 

Ontology (BWW) (WAND; WEBER, 1993), or the Descriptive Ontology for Linguistic 

and Cognitive Engineering (DOLCE) (MASOLO et al., 2003). 

According to (GUIZZARDI et al., 2009), the use of foundational concepts that take 

truly ontological issues seriously is becoming more and more accepted in the 

ontological engineering literature. In addition, the authors state that, in order to 

represent a complex domain, one should rely on engineering tools (e.g., design 

patterns), modeling languages, and methodologies that are based on well-founded 

ontological theories in the philosophical sense (see (BUREK et al., 2006; FIELDING 

et al., 2004), for instance). An example of an ontologically well-founded modeling 

language is OntoUML, which was the language here used to create the Ontology 

Reference Model for the ITU-T G.800. 

Especially in complex domains – i.e., domains with complex concepts, relations, and 

constraints – and in domains with potentially serious risks of interoperability problems 

(the domain specified in the Recommendation ITU-T G.800 fits in both cases), a 

supporting ontology engineering approach should be able to:  

a. allow the conceptual modelers and domain experts to be explicit, regarding 

their ontological commitments, which enables them to expose subtle 

distinctions between models to be integrated and to minimize the chances of 

running into a False Agreement Problem (GUARINO, 1998); 
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b. support the user in justifying their modeling choices and providing a sound 

design rationale for choosing how the elements in the universe of discourse 

should be modeled in terms of language elements (GUIZZARDI et al., 2009). 

The modeling method here adopted is the one defined in (BARCELOS; GUIZZARDI; 

GARCIA, 2013) and presented in subsection 3.3.1. 

4.2 THE RECOMMENDATION ITU-T G.800 

The primary purpose of a transport network is to transfer user information from a 

sender at one location to a receiver at another location (ITU-T, 2010, 2012a). The 

objectives of the network architecture (functional model) specification are to support 

the description of the generic characteristics of transport networks in a way that is 

independent of the technology and of the physical architecture (ITU-T, 2010). The 

recommendations ITU-T G.800, ITU-T G.805, and ITU-T G.809 define a common 

language and symbols used in the specification of transport and management 

functionalities, which are essential for network design and management (ITU-T, 

2010). These are international standards defined by the International 

Telecommunication Union (ITU) – the United Nations specialized agency for 

information and communication technologies7. 

Considering a telecommunication network as a complex network that can be 

described in a number of different ways depending on the particular purpose of the 

description, these recommendations describe the network as a transport network 

from the viewpoint of the information transfer capability (ITU-T, 2010, 2012a). These 

recommendations describe the functional architecture of transport networks in a 

technology-independent way, providing a set of constructs (definitions and 

diagrammatic symbols) and the semantics that can be used to describe the 

considered viewpoint (ITU-T, 2012a). 

The recommendation’s importance is justified by the fact that the architecture there 

presented serves as the basis for several other ITU-T recommendations – e.g. 

                                            
7
 http://www.itu.int/ 
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G.803, G.872, I.326, G.8010/Y.1306 (ITU-T, 2010). These recommendations 

standardize specific technological platforms (e.g., Ethernet and Optical Transport 

Network), network management and control (e.g. the Multiprotocol Label Switching 

Transport Profile and the Automatically Switched Optical Network), performance 

evaluation, and functional specification of equipment (ITU-T, 2000b, 2010). A visual 

schema of the importance of the ITU-T G.805 to other technologies is presented in 

Figure 4-2. 

 

Figure 4-2 – Technologies defined over the functional architecture of the ITU-T G.805. Adapted 

from (ITU-T, 2010) 

The importance of the recommendations is highlighted by the many works that intend 

to explain and manipulate the concepts there defined – e.g., (BARCELOS et al., 

2011; DIJKSTRA et al., 2007; FORTUNE, 2015) – to provide conceptual basis for the 

development of computational applications that solve technology-specific network 

problems. Examples of applications based on these three recommendations can be 

found in (DIJKSTRA et al., 2008, 2009; VAN DER HAM et al., 2006). The NDL (VAN 

DER HAM et al., 2006), previously presented in chapter 2 and used in many network 

projects, is strongly based on the functional elements defined by the 

recommendations ITU-T G.805 and ITU-T G.800 (XU et al., 2009). 

As can be seen in (ITU-T, 2010), the first generic functional architecture 

recommendation was the ITU-T G.805, which describes connection-oriented 

networks and was used as the basis for ITU-T G.803 (SDH) and ITU-T G.872 (OTN) 

architecture recommendations. The next generic functional architecture 

recommendation was the ITU-T G.809, which describes connectionless networks and 
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was used as the basis for ITU-T G.8010/Y.1306, the Ethernet functional architecture 

(ITU-T, 2010). Finally, the ITU-T G.800 was developed to provide a common 

framework to describe both connection-oriented and connectionless networks. The 

descriptions in ITU-T G.800 are fully compatible with the descriptions derived from 

the earlier recommendations (i.e., the ITU-T G.805 and the ITU-T G.809) although 

some of the terminology has been modified (ITU-T, 2010). 

4.2.1 Recommendation’s Main Concepts 

This functional and structural model proposed in the ITU-T G.800 (and in the 

recommendations unified by it, i.e., the ITU-T G.805 and the ITU-T G.809) provides a 

high level of abstraction for the basic elements in a network and defines relevant 

concepts to simplify network descriptions. Two of its main concepts are partitioning 

(some elements can be part of others or be composed of others of the same kind) 

and layering (each technology is inside a layer and different aspects of a complex 

network can be viewed from different layers). These concepts allow a high degree of 

recursion (i.e., reuse of the common specification). Partitioning is important to 

describe routing aspects, administrative domain boundaries and the subnetwork (a 

recursive definition for a not well-known network, e.g., a cloud network) (BARCELOS 

et al., 2016). 

Furthermore, the recommendation defines the client/server relationship between 

vertically-adjacent layers, which is also a recursive paradigm because any particular 

server layer could itself be a client of another server layer (ITU-T, 2010). The 

information flow between the two network ends (called source and sink ends) is 

performed through adjacent layers up to the real (i.e., physical) transmission at the 

lowest layer. These adjacent layers have a client/server relationship where a lower-

level layer (server) provides the transport services to the higher-level layer (client). 

For instance, an example of a client/server relationship occurs between the Optical 

Channel (OCh) and the Optical Multiplex Section (OMS) layers in Optical Transport 

Networks (OTN) – this technology’s layer structure is going to be important for the 

provisioning example in chapter 6. It is important to observe that client/server 

relationship is not dependent on information flow directionality (uni or bi-directional). 
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It only depends on the network layer organization (technology and protocols) 

(BARCELOS et al., 2016). 

Besides partitioning, layering, and client/server relationship, other important 

definitions are the Transport Processing Functions (TPF) and the Reference Points. 

TPFs are blocks that process information that passes through them by their input and 

output ports. There are three types of TPFs: Termination Function (TF), Adaptation 

Function (AF), and the Layer Processor Function. The TPFs are, together with 

Matrices, Subnetworks, Physical Media (PM), and Forwarding Functions (elements 

defined in the recommendation), the available Transport Functions. A Reference 

Point represents a binding between an input and an output of different instances of 

TPFs and other physical components. There are three types of Reference Points: 

Access Point, Connection Point, and Termination Connection Point. The elements 

that represent the information transfer between Reference Points are the Transport 

Entities, which can be Network Connections, Access Transport Entities, Channel 

Forwarding Transport Entities, Matrix Connections, or Link Connections. 

The ITU-T G.800 contains, in addition to a textual description of the main concepts 

and its relationships (in natural language, available in English8), a visual language to 

represent the same concepts (BARCELOS et al., 2016). An example of an abstract 

transport network using the visual language defined in the ITU-T G.800 is presented 

in Figure 4-3. 

                                            
8
 http://www.itu.int/rec/T-REC-G.800-201202-I/ 
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Figure 4-3 – Example of the ITU-T G.800 visual notation. From (ITU-T, 2012a) 

Despite the relative small number of architectural components defined (directly or 

indirectly, inheriting concepts from the ITU-T G.805 and the ITU-T G.809) in the 

Recommendation ITU-T G.800, the numerous possibilities of relation between them 

makes it a large and complex knowledge domain (BARCELOS et al., 2016; 

FORTUNE, 2015) – hence, telecommunications companies are prone to error when 

implementing this recommendation. 

4.2.2 Recommendation’s Criticisms 

As the ITU-T G.805 is the basis for many network standards, due to its fundamental 

importance, it is essential for this recommendation to be clear, complete, and 

unambiguous, thus eliminating the spread of problems for all its referring documents. 

However, despite the visible importance of this recommendation, its document does 

not contemplate an adequate and precise information model for the represented 

domain concepts. An ontological analysis of this standard, presented in (BARCELOS 

et al., 2011), revealed that four different types of ontological deficiencies (for 

instance, Construct Overload, Construct Excess, Construct Redundancy, and 

Incompleteness) are present in the recommendation. Ambiguities in this standard 

were also reported in (DIJKSTRA et al., 2008). More recently, it was shown that the 

recommendation’s   formal specification is also not precise enough to define the 
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intended domain (BARCELOS et al., 2016). According to (ITU-T, 2010), the 

descriptions provided in ITU-T G.800 are fully compatible with the descriptions from 

the recommendations ITU-T G.805 and ITU-T G.809, although some of the 

terminology has been modified. In fact, the ITU-T G.800 inherits most of the already 

identified problems, resulting in formalization with ambiguities, contradictions, 

representation gaps, and inconsistencies.  

As the recommendation’s text makes clear, since the transport network is a large and 

complex network with various components, an appropriate network model with well-

defined functional entities is essential for its design and management (ITU-T, 2012a). 

Once the ontological deficiencies are identified, an Ontology Reference Model should 

be built to represent correctly the domain, providing a precise definition of 

technology-independent multi-layer transport networks. The importance of truly 

ontological distinctions (available in Ontology Reference Models built with 

ontologically well-founded languages) is discussed in (BARCELOS et al., 2016). 

4.3 THE RECOMMENDATION ITU-T G.800 ONTOLOGY REFERENCE MODEL 

A first endeavor for the development of an ontology for transport networks based on 

the ITU-T G.805 and on the ITU-T G.872 (the recommendation that defines the 

architecture of Optical Transport Networks), named Ontology for Optical Transport 

Networks (OOTN), was presented in (BARCELOS et al., 2009). However, even 

though the OOTN was successfully used for mapping classical concepts of Virtual 

Topology Design and Routing and Wavelength Assignment applications, it was built 

with a lightweight ontology language (OWL), which, as presented in (GUIZZARDI et 

al., 2009), does not have enough expressivity to represent correctly a domain. 

Regarding this, an OntoUML Ontology Reference Model was built for the ITU-T 

Recommendation G.805. The first version of this ontology was presented in 

(MONTEIRO et al., 2010), and the final version was presented in (BARCELOS, 

2011). This ontology is in accordance with the three-phased ontology engineering 

defended in (GUIZZARDI, 2007). During the development of the ontology, an 

ontological evaluation was performed (BARCELOS et al., 2011). This ontological 
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evaluation reported that four different types of ontological deficiencies were identified 

in the ITU-T Recommendation G.805. 

It is important to mention that, at the development time of the works presented in 

(MONTEIRO et al., 2010) and in (BARCELOS et al., 2011), the methodology and the 

tools were not available (especially the method to build the reference model 

presented in (BARCELOS; GUIZZARDI; GARCIA, 2013) and the validation functions 

provided by OLED). The ITU-T G.800 ontology here presented has significant 

semantic and correctness improvement over the ITU-T G.805 ontology used in those 

works. The latest version of the ITU-T G.800 also has extensions to include Site and 

Equipment concepts. The relation between these three parts of the ontology is 

presented in Figure 4-4.  

 

Figure 4-4 – The three ontologies of the Ontology Reference Model 

The lower level of this ontology is the Recommendation ITU-T G.800 Ontology. This 

level contains the most specific elements that compose a transport network. The 

second level of abstraction is the Simple Equipment Ontology, which presents 

network elements with a higher level of abstraction: equipment and interfaces. The 

third level of abstraction is the Simple Site Ontology, used for grouping equipment 

over sites. It is important to mention that both the Simple Equipment and Simple Site 

ontologies are just a way to raise the abstraction over the ITU-T G.800 elements, 

thus, all relations presented in these ontologies are derived from the ITU-T G.800 

relations. In the next sections, we are going to present briefly the three ontologies 

that are part of the ITU-T G.800 Ontology Reference Model. The ITU-T G.800 

Ontology is not going to be fully presented and described because of its great size 

Simple Site Ontology
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ITU-T Rec. G.800 Ontology

uses

uses



97 

and complexity – however, its complete version is available for download in the 

thesis shared folder: https://goo.gl/L1UPv4. 

4.3.1 The ITU-T G.800 Ontology 

The ITU-T G.800 OntoUML ontology has five main packages, according to the 

Recommendation definitions: Transport Function, Layer Network, Reference Points, 

Transport Entities, and Topological Components. Its scope includes the architectural 

characteristics of the recommendation: its elements and their relations (in general, 

the architectural components presented in the recommendation’s chapter 6). An 

example of a diagram from the Recommendation ITU-T G.800 OntoUML ontology, 

representing Termination Functions and its different types, is presented in Figure 4-5. 

 

Figure 4-5 – Example of a diagram from the Rec. ITU-T G.800 OntoUML Ontology 

The domain has a strong characteristic that cannot be clearly observed in its textual 

description, but that is evidenced by the ontology modeling: the dependency relation 

between network architectural components. The ontology model clearly distinguishes 

Transport Functions, elements whose bindings are represented by Reference Points, 

which, by its turn, are elements that have the information transfer between them 

represented by Transport Entities. This element dependence is illustrated in Figure 

4-6.  
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Figure 4-6 – Relation between different architectural components 

The dependence between the architectural components was identified by the first 

complete ontology modeling of the ITU-T G.805, presented in (BARCELOS, 2011) – 

this fact also highlights the strong relation between the ITU-T G.800 and the ITU-T 

G.805 recommendations. An architectural restructuring proposal for the ITU-T G.805 

is also presented in (BARCELOS, 2011). 

In order to illustrate the ontology magnitude, the ITU-T G.800 OntoUML ontology has 

32 packages, 85 diagrams, 450 classes, and more than 450 OCL rules. 

4.3.2 The Simple Equipment Ontology 

The Simple Equipment Ontology defines the Equipment concept. The complete 

OntoUML ontology is represented in two diagrams, presented in Figure 4-7 and 

Figure 4-8. 
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Figure 4-7 – Equipment composition at the Simple Equipment OntoUML Ontology 

As can be seen in Figure 4-7, three main classes are created in this ontology: 

Equipment, Input Interface, and Output Interface. Equipment is composed of 

Transport Functions (except from the Physical Media – restricted by an OCL rule) 

and of Input and Output Interfaces. These interfaces are mapped to one input or 

output from the Transport Functions that is composing the Equipment (ensured by 

other OCL rules). 

 

Figure 4-8 – Equipment interfaces’ bindings and connections 
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As stated in Figure 4-8, equipment interfaces can be related to other network 

elements by two distinct relations (derived from relations defined in the ITU-T G.800): 

interface binds and interface connects. The interface binds relationship represents 

the input and output association that is represented by a Reference Point in the ITU-

T G.800 ontology. The interface connects relationship, by its turn, is mapped to the 

relations between the G.800 elements that are represented by connections. In the 

lowest layer network, equipment interfaces are connected directly to the Physical 

Media inputs and outputs. 

4.3.3 The Simple Site Ontology 

The Simple Site Ontology is the Ontology Reference Model highest network level of 

abstraction: it defines the Site concept. The complete OntoUML ontology is also 

represented in a single diagram, presented in Figure 4-9. 

 

Figure 4-9 – The complete Simple Site OntoUML Ontology 

According to the ontology, every site is composed of one or more Equipment. Note 

that, due to the OntoUML’s weak supplementation restriction (GUIZZARDI, 2005) 

over the Site composition by Equipment, its composition was broken in two different 

relationships. Sites can only be of type Source and Sink when they have a connects 

relationship. This relation is associated with the equipment relations that are inside 

the sites. This derivation is provided by OCL rules. 
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5 AN ONTOLOGY-BASED TECHNOLOGY-INDEPENDENT 

MULTI-LAYER TRANSPORT NETWORKS PROVISIONING 

TOOL 

Besides the Ontology Reference Model presented in chapter 4, in this thesis we 

intend to also contribute to the provisioning of technology-independent multi-layer 

transport networks with a semantically improved computational tool. Hence, using the 

ontology-driven development method presented in chapter 3, we have created a 

Knowledge-based System (KBS) Provisioning Tool9. As a KBS, the provisioning tool 

is composed of three main parts: a knowledge base, a reasoning engine, and the 

provisioning logic, just like illustrated in Figure 5-1. 

 

Figure 5-1 – The ontology-based provisioning tool parts 

This chapter will present all the components and functionalities of the KBS. For a 

better comprehension of the software, we are going to decompose the Provisioning 

Tool, just like in Figure 5-2, and present the parts in different sections. 

                                            
9
 Although the provisioning tool and its related conceptual and computational artifacts are a 

contribution of this thesis, the software coding was performed by the researcher Freddy Brasileiro 

Silva. 
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Figure 5-2 – Decomposition of the provisioning tool 

Knowledge-based systems are usually composed of two main parts (STEFIK, 1995): 

a knowledge-base and a reasoning engine, just like represented in Figure 5-3. 

 

Figure 5-3 – Provisioning tool decomposition in knowledge base and reasoning engine 

The knowledge base of the provisioning tool is going to be presented in section 5.1. 

In this section, the knowledge base is divided into its two composing parts (the 

Terminological Box and the Assertional Box) and their characteristics are detailed. As 

we have already addressed the importance of reasoning engines in subsection 3.3.2, 

in this chapter, in section 5.2, we are going to present the HermiT (SHEARER; 

MOTIK; HORROCKS, 2008), which is the reasoning engine present in the 

provisioning tool. The other important part of the KBS is the implemented 

provisioning logic, which is going to be presented in section 5.3.  

Limitations of the provisioning tool are presented in chapters 5 and 6 in a distributed 

manner, according to the related topic. It must be said, however, that the software 

does not present a graphical interface, what can be considered one of the tool most 

important limitations. The implementation of a graphical interface that helps the 

network operation is left for future work. 
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5.1 THE KNOWLEDGE BASE 

Knowledge bases contain rich information of entities and their relations and are very 

useful resources for Artificial Intelligence related applications (WANG; WANG; GUO, 

2015). According to (NEELAKANTAN; ROTH; MCCALLUM, 2015), knowledge bases 

have been of increasing interest in both industry and academia. As depicted by 

(ZHAO et al., 2015), these artifacts are extremely useful for human-like reasoning, 

query expansion, coreference resolution, question answering (e.g., Siri, Speaktoit, 

iris, SimSimi), information retrieval and other Natural Language Processing tasks like 

relation extraction, semantic parsing, etc. 

Knowledge bases can be divided into two main parts: (i) a schema, where the 

knowledge types are structured, and (ii) the data or information that is present in the 

schema, corresponding to instances or individuals (STEFIK, 1995). Considering the 

hierarchy of model levels (ATKINSON; KUHNE, 2003), the schema represents the 

model level (frequently called M1), while the data or information corresponds to a 

lower level, which represents user data (sometimes called M0) (ATKINSON; KUHNE, 

2003). In languages based on Description Logics (e.g., OWL), the knowledge base 

schema is known as the Terminological Box (TBox), while the user data is known as 

the Assertional Box (ABox) (HORROCKS, 2008). The division of the provisioning tool 

knowledge base in its two parts is represented in Figure 5-4.  

 

Figure 5-4 – Decomposing the knowledge base in TBox and ABox 
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The provisioning tool TBox and ABox are going to be described, respectively, in 

subsections 5.1.1 and 5.1.2. The separation present in Figure 5-4 is important 

because there are substantial differences in the creation and use of the two parts of 

the knowledge base. The information presented in this subsection is complemented 

with the information present in subsection 5.3.1, which describes the input stage of 

the provisioning logic. In this section, the practical use of each one of the knowledge 

base parts is detailed. The red line dividing the TBox and the ABox in two parts, 

represented in Figure 5-4, indicates a performance technique that consists in using 

two different models, as it is going to be presented in subsection 5.1.1.2. 

5.1.1 The Terminological Box 

In order to be used in a KBS, a knowledge base must be implemented in some kind 

of computational artifact. Hence, the TBox of the provisioning tool is implemented as 

an OWL file. The tool TBox is the ITU-T G.800 OWL Computational Ontology, which 

is the result of the ontology-driven development method described in section 3.3, as 

represented in Figure 5-5. 

 

Figure 5-5 – Different ontology models used and their relation 
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The provisioning tool TBox is indirectly based on the ITU-T G.800 Ontology 

Reference Model, which has been used as the basis for the development of an ITU-T 

G.800 Provisioning OntoUML design model with SWRL rules (the existing traceability 

of the models from the different levels is also represented in Figure 5-5). Following 

the ontology-based development method here adopted, the design model was 

transformed, with the use of the OOTOS transformation (presented in subsection 

3.3.3.1), resulting in the OWL ITU-T G.800 Provisioning Computational Ontology, 

which is the TBox itself. 

In the next subsection (5.1.1.1) we are going to present (almost completely) the ITU-

T G.800 OntoUML Provisioning Design Model. The OWL Computational Ontology 

that is the provisioning tool TBox is presented in subsection 5.1.1.2. 

5.1.1.1 The ITU-T G.800 OntoUML Design Model for Provisioning of Transport 

Networks 

The OntoUML Design Model developed for the provisioning domain is a simple 

model with five diagrams and a total of 48 classes and 19 SWRL rules. Considering 

the number of classes and rules in the Ontology Reference Model, from which it is 

based, the design model can be considered a huge simplification of the reference 

model. The development of the design model was oriented by the requirements and 

definitions of the provisioning tool. 

OntoUML Diagrams 

Although some authors, e.g., (ASSMAN; ZSCHALER; WAGNER, 2006), argue that 

the design model is not an ontology, we have used OntoUML, an ontology language, 

for the formalization of the design model for provisioning of transport networks. This 

decision was taken because of two main factors: (i) OntoUML is an expressive 

language, which results in better-formalized models; and (ii) its usage allows us to 

transform the design model to the OWL Computational Ontology via the OOTOS 

transformation. 
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The design model first diagram, presented in Figure 5-6, specifies the hierarchy of 

transport functions that are made available in the provisioning tool. Within the 

software, the user can manage Matrices, Adaptation Functions, and Termination 

Functions. The complexity of Transport Function types is here reduced to simplify the 

software operation by the user. It can be noted that some transport functions that are 

formalized in the ITU-T G.800 OntoUML Ontology Reference Model are not available 

in the design model, such as the Layer Processor Function. This reduction, however, 

configures a limitation of the provisioning tool with relation to the domain (i.e., the tool 

operates just over a portion of the domain). 

A special case occurs with the Matrix concept, which was modified to increase the 

usability of the software through a design decision. In the design model, as can be 

seen in Figure 5-6, the Matrix is presented in two possibilities, Source and Sink. 

However, the design model concepts of Source and Sink Matrices refer to the same 

Matrix concept in the Ontology Reference Model, i.e., there is a controlled case of 

construct redundancy. 

 

Figure 5-6 – Taxonomy of transport function 

The diagram presented in Figure 5-7 specifies the main relationships used in the 

network provisioning tool. It presents the Equipment composition (named hasPart) by 

Transport Functions and by Input and Output Interfaces, as well as the mappings 

(relation maps) from these interfaces to the transport function inputs and outputs. In 
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addition, the relations int_binds, tf_binds, and eq_binds are also formalized. These 

relations, which are derived relations between concepts of the same class (i.e., they 

are self-associations (GOMAA, 2011)), have an important use in the provisioning tool 

algorithm. As derived relations, they have associated derivation rules, which are the 

rules 8 to 10, in Table I-1, from the Appendix I – SWRL Rules. 

 

Figure 5-7 – Main relations of the design model 

Another important relation defined in the diagram presented in Figure 5-7 is the path. 

This relation indicates that an interface is being used in a specific path. This relation 

differs from the int_binds relation as the path relation indicates a logical relation, 

representing an information transfer, while the int_binds relation indicates a physical 

relation between interfaces. For a path to exist, first the interfaces must be bound 

(with the relation int_binds). 

The int_binds relation relates interfaces from different equipment, while the path 

relation relates interfaces from the same equipment and interfaces from different 

equipment, just like represented in Figure 5-8. In this figure, interfaces are 

represented as white arrows and equipment are represented as squares. 
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Figure 5-8 – Different use of the relations int_binds and path 

The int_binds and the path relations are directly associated with, respectively, the 

circuit provisioning and the connection provisioning capabilities of the software. This 

association is better described in section 5.3. 

Figure 5-9 presents all the specific compositions of the Transport Functions (defined 

in the diagram presented in Figure 5-6) by Port (Inputs and Outputs). 

 

Figure 5-9 – Inputs and outputs in the design model 
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Figure 5-10 presents half of the diagram that formalizes all possible bindings 

between input and output ports. Differently from the Ontology Reference Model, in 

this diagram, the relations that formalize the bindings are not material relations, but 

formal relations. This happens because we are not interested in manipulating the 

Reference Points that are used as relators in the Ontology Reference Model. 

 

Figure 5-10 – Fragment of the allowed bindings between inputs and outputs 

For a better visualization, instead of representing the entire diagram, the complete list 

of allowed bindings is represented in Table 5-1. 

Table 5-1 – Allowed bindings according to the design model 

From To Comment 

Adaptation Function Sink Input Termination Function Sink Output Adaptation Functions can only 

bind Termination Functions Adaptation Function Source Output Termination Function Source Input 

Adaptation Function Sink Output Adaptation Function Source Input 
This is the unique case of Sink to 

Source binding 

Matrix Sink Input Adaptation Function Sink Output Matrices can only bind 

Adaptation Functions Matrix Source Output Adaptation Function Source Input 

Termination Function Sink Input PM Output 
There are three different binding 

possibilities from a Termination 

Function Sink Input 

Termination Function Sink Input Matrix Sink Output 

Termination Function Sink Input Adaptation Function Sink Output 
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Termination Function Source Output PM Input 
There are three different binding 

possibilities from a Termination 

Function Source Output 

Termination Function Source Output Matrix Source Input 

Termination Function Source Output Adaptation Function Source Input 

Finally, the diagram presented in Figure 5-11 represents the Layer Network concept 

and its relations with the transport functions and with other Layer Networks. As can 

be seen, a Layer Network is defined by some Termination Functions, has a relation 

with Matrices (Matrices hasLayer a specific Layer Network), and Adaptations adapts 

from and to some Layer Network. In addition, a Layer Network instance is a client of 

other Layer Network instance. 

 

Figure 5-11 – Layer network relationships 

All the relations here presented have associated integrity and derivation rules, which 

are presented in Table I-1, from the Appendix I – SWRL Rules. 

SWRL Rules 

Despite the natural choice of OCL for the formalization of the integrity and inference 

rules of the design model, we chose to formalize these rules directly in Semantic 

Web Rule Language (SWRL). This decision was taken because of the small size of 

the model and because of the simplicity and small number (only 19) of the rules. 

Consequently, the rules formalized for the design model are going to be the same 

rules used in the OWL Computational Ontology, which are the rules directly present 

in the provisioning tool. All the nineteen rules associated with these two artifacts are 

presented in the Appendix I – SWRL Rules. 
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5.1.1.2 The ITU-T G.800 OWL Ontology for Transport Network Provisioning 

With the design model specified in OntoUML, the OOTOS transformation is used to 

generate the OWL Computational Ontology. This OWL ontology is used as the 

provisioning tool knowledge base. However, intending a better performance of the 

provisioning tool, the OWL Computational Ontology here developed is not a single 

OWL file, instead, it is composed of two different OWL ontologies: the Consistency 

Model and the Inference Model, just like presented in Figure 5-12. 

 

Figure 5-12 – OWL ontology models in the knowledge base 

Performance is a well-known problem in the semantic web community, where there is 

a tradeoff between the expressivity of the knowledge representation artifact (i.e., the 

ontology) and the scalability of the systems used to process them (HORROCKS, 

2008). Reasoning in the classical paradigm (the class of languages which OWL is 

part) is difficult for any reasonably expressive ontology language (PATEL-

SCHNEIDER; HORROCKS, 2006). Performance issues are outside the scope of this 

thesis. However, to situate better the reader, a brief discussion about the provisioning 

tool performance is presented in section 6.4. 

Although high performance is not a requirement of the provisioning tool, the tool 

development tried to reach acceptable execution times. The technique here 

presented makes use of two different OWL files in order to contribute to better 

reasoning times in the provisioning tool. While the Consistency Model is a heavy 

(highly axiomatized) ontology, the Inference Model is a lighter ontology – thus 

allowing a faster reasoning. Instead of using the reasoning in the Consistency Model, 
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we just use the validate and the isValid functions made available by JENA, an open 

source Java framework for building semantic web and linked data applications 

(CARROLL et al., 2004). As it is going to be presented, the SWRL rules are only 

attached to the Inference Model, not to the Consistency Model. 

The use of the two OWL ontologies as a unique knowledge base is almost 

transparent to the user. Regarding this separation, the unique action that the user 

must take is to provide two inputs containing the models, as it is going to be 

presented in the description of the provisioning tool logic (section 5.3). 

Differently from what is presented in Figure 5-5, not just one, but two different 

transformations from the design model to OWL ontologies are necessary to create 

the knowledge base. The Consistency Model and the Inference Model used in the 

provisioning tool can be found in the thesis shared folder (https://goo.gl/L1UPv4). 

The Consistency Model 

The generation of the Consistency Model uses the OOTOS transformation with its 

default settings, just as it is implemented in OLED. In this transformation, just the 

OntoUML to OWL part of the OOTOS transformation is used – i.e., there is no 

transformation from OCL to SWRL. The use of the OOTOS transformation 

guarantees a consistent resulting OWL file (when the OntoUML model used as input 

is well built, as in this case). The resulting OWL ontology, i.e., the Consistency 

Model, is graphically presented in Figure 5-13. 
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Figure 5-13 – Taxonomy representation (left box) and OntoGraf representation (right box) 

Figure 5-13 illustrates two different graphical representations of the Consistency 

Model generated using Protégé10, a largely used ontology editor. In its left box, 

Figure 5-13 represents the ontology taxonomy with classes up to the fourth level in 

the hierarchy. The right box of the figure presents the OntoGraf11 representation of 

the ontology, representing the taxonomy up to the third level in the hierarchy and the 

relations that the presented classes have between them. In this box, it can be noted 

that the concepts with more relations are Equipment, Interface, and Transport 

Function, while the concept with less relations are the Ports. 

Using the Protégé DL Expressivity tool, the expressivity of the Description Logic (DL) 

of the generated ontology can be evaluated – as can be seen in Figure 5-14, it is of 

type ALCIQ(D). Figure 5-14 is a snapshot of the Protégé DL Expressivity tool 

interface, modified to present only the ontology expressivity symbols. 

                                            
10

 http://protege.stanford.edu/ 

11
 http://protegewiki.stanford.edu/wiki/OntoGraf 
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Figure 5-14 – Consistency Model DL expressivity 

The metrics of the Consistency Model can be visualized using the Protégé Ontology 

Metrics tool. An adapted snapshot of this tool can be seen in Figure 5-15. 

 

Figure 5-15 – Consistency Model metrics 

We can see from Figure 5-15 that, according to the Ontology Metrics tool, the 

Description Logic of the Consistency Model is of type ALCRIQ(D). This result differs 

from the one presented in the DL Expressivity tool, as it presents the R extension. 

The R extension means the existence of limited complex role inclusion axioms, 

reflexivity and irreflexivity, or role disjointness. As these axioms really occur in the 
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ontology, we can consider the evaluation made by the Ontology Metrics tool more 

precise than the one made by the DL Expressivity tool. 

Analyzing Figure 5-15, we can also see that the ontology has 48 classes, 84 object 

properties (relations between classes) and just one data property (relation between 

classes and data types). Not represented in Figure 5-15, the ontology also has one 

(1) DataPropertyDomain axiom and one (1) DataPropertyRange axiom. 

The Inference Model 

The OWL Inference Model is also generated via the OntoUML to OWL part of the 

OOTOS transformation – again, the OCL to SWRL part is not used. A difference 

between this model creation and the Consistency Model creation is that, in the latter 

case, the transformation is performed in a modified OOTOS transformation, which is 

implemented in the Menthor12 tool, a fork project from OLED. Menthor implemented 

OOTOS transformation allows the user to parameterize the transformation, including 

or excluding OWL axioms according to his or her objectives. The parameterization 

used in the generation of the Inference Model is represented in Figure 5-16. 

 

Figure 5-16 – Parameters used in the Inference Model generation 

With the intention to reach better reasoning performance, the transformation is 

parameterized to create a lighter OWL ontology, with simple logics – i.e., with 

reduced complexity. As can be seen in Figure 5-16, the transformation is configured 

                                            
12

 http://www.menthor.net/ 
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to remove cardinality transformation, disjointness, and association binary properties. 

The Generalization sets and “UFO structure” options are also kept unchecked. The 

result of the transformation is then manually combined with the same SWRL rules of 

the design model (fully presented in the Appendix I – SWRL Rules) to create the 

complete Inference Model. 

An intrinsic characteristic of transformations from more expressive models to less 

expressive models is the loss of expressivity. This loss of expressivity occurs in the 

transformation from the design model to the Inference Model and, as this model is 

less axiomatized than the Consistency Model, it allows more unintended states. 

However, this situation does not configure a problem because the Inference Model is 

just used to perform inferences through SWRL rules. The consistency of the model is 

only verified in the Consistency Model, not in the Inference Model. The reduction of 

complexity of OWL can be observed in Figure 5-17, which pictures the Description 

Logic of the Inference Model as being the ALHI(D). 

 

Figure 5-17 – Inference Model DL expressivity 

The reduced number of axioms in the Inference Model can be clearly noted in Figure 

5-18. When comparing the information from Figure 5-18 (Inference Model metrics) 

with the one from Figure 5-15 (Consistency Model metrics), we can observe that the 

number of classes, object properties, and data properties of the model are the same. 

However, it can also be observed that the number of axioms has decreased 35,92% 



117 

(from 710 to 455), and that the number of logical axioms has decreased 44,19% 

(from 577 to 322). Considering the class axioms, the number of SubClassOf axioms 

is also the same, but the count of all other axioms has been reduced to zero, just like 

the number of the DisjointObjectProperty axioms (which are Object Property axioms). 

 

Figure 5-18 – Inference Model metrics 

Not depicted in Figure 5-18, this ontology also has one (1) DataPropertyDomain 

axiom and one (1) DataPropertyRange axiom. 

In order to illustrate briefly how the Inference Model can simplify reasoning, we have 

performed a simple test with the Hermit reasoner (version 1.3.8) inside the Protégé 

editing tool. This test aimed to verify the reasoning time for non-populated models 

(i.e., just their TBoxes). The reasoning was performed five times, the maximum and 

the minimum values found in tests 1 to 5 were eliminated, and the final value consists 

in the average of the three remaining values. The results of the test, presented in 

Table 5-2, indicate that the Inference Model takes 5,37% of the Consistency Model 

reasoning time. 
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Table 5-2 – Reasoning comparison for consistency and Inference Models 

Test Number 
Consistency Model  

Reasoning Time (ms) 
Inference Model  

Reasoning Time (ms) 

1 1056 63 

2 972 47 

3 1200 78 

4 1035 62 

5 1114 47 

Average (ms) 1068,33 57,33 

It is important to emphasize that this test was performed just to provide minor 

evidences that the lower complexity of the Inference Model allows it to have a better 

reasoning time than the Consistency Model. However, this test cannot be considered 

sufficient, as the reasoning functions applied to each one of the models are different, 

also because, when populated, there is an increase in the complexity of the models. 

5.1.2 The Assertional Box 

In Figure 5-12, the knowledge base of the provisioning tool is composed of two 

different OWL files, both with their respective TBoxes and ABoxes – transparently 

implemented to the user. Even though the two models do not contain the same 

information in their TBoxes, they must have the same information in their ABoxes at 

all moments (represented by the orange double arrow in Figure 5-12). I.e., the 

ABoxes must be kept synchronized and work as a single ABox during software 

execution. These two ABoxes must be populated with the same instances and 

relations between instances every time an operation is performed in the ABox (e.g., 

just like a distributed database works), as the existence of different information may 

lead to inconsistencies. Considering this, hereafter the ABoxes are going to be 

treated as a single one. 

Once the TBoxes (both the Consistency Model and the Inference Model) are 

available, the ABox must be populated to create the software knowledge base. I.e., 

the network elements must be provided as instances to be treated by the 

provisioning tool. The population of the knowledge base is performed by inputting a 

network specification (an abstraction of a real network). This specification is written in 
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a defined format, which is defined in accordance with the OWL knowledge base – 

and thus, build upon the concepts of the Recommendation ITU-T G.800. The 

specification format is presented in the Appendix II – Input TXT Files Structure. The 

population process is represented in Figure 5-19. 

 

Figure 5-19 – Network specification 

In Figure 5-19, a group of people abstracts the reality (i.e., a real network) according 

to the concepts of the Recommendation ITU-T G.800 to build a specification, which is 

going to be used to create the provisioning tool ABox. In the figure, a group of people 

is building a specification according to a common conceptualization, what reduces 

the possibility of semantic problems. However, a single person (e.g. a network 

operator) could perform this stage alone, if necessary. The network is formalized in a 

structured document, in this case, a text file. 

One of the requirements of the provisioning tool is that it must operate according to 

different equipment states. Regarding this, the ABox is going to be populated with 

two different information: the network elements that are already installed or 

operational, which are going to be called declared equipment; and the elements 

that are not installed or operational, but that are available to be used in the network. 

This latter type of equipment is going to be called here possible equipment. For the 

provisioning tool, the declared equipment must be provided as input (i.e., it is 

mandatory), while the user can provide possible equipment or not (i.e., it is optional). 

Figure 5-20 represents this situation. More information about the input of the 

provisioning tool can be found in subsection 5.3.1, which deals with the input 

according to the software algorithm. 

Reality Conceptualization Formalization

Abstracted in Formalized in

***
Equipment: 

x,;

Input_Interfac
e: x1,x2;

Output_Interf
ace:y1,y2;

Terminati....
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Figure 5-20 – ABox constitution 

Once the inputs are defined in a structured text file (.txt), they pass through a 

transformation to OWL instances, which will form the ABox. The instances generated 

from the transformation of the input files are loaded into the computer memory using 

the JENA Ontology Application Programming Interface (API). In memory, together 

with the previous loaded TBox, the knowledge base of the provisioning tool is 

completed. This situation is represented in Figure 5-21. 

 

Figure 5-21 – Knowledge base formation 

A question that may occur is: why use a text file for the network formalization instead 

of directly writing it in OWL? OWL has a markup syntax that resembles the 

HyperText Markup Language (HTML) one, which makes difficult the writing directly 

on it. Some ontology editors aim to reduce this problem with a user-friendly graphical 

interface – like the highly used Protégé. However, even with the use of these editors, 
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it is still difficult to insert all information when dealing with a large number of 

individuals – which is, in most cases, the situation of the networks declarations. The 

writing of the information in a simple structured text file may facilitate this process.  

The structured text file has its syntax completely presented in Appendix II – Input 

TXT Files Structure. The provisioning tool expects correct input files to execute the 

provisioning. No syntax or semantic treatments of the inputs are performed by the 

provisioning tool: inconsistency checking is left to the reasoner after the 

transformation to OWL. A better treatment of the input files is considered a future 

work. 

5.2 HERMIT: THE PROVISIONING TOOL REASONING ENGINE 

According to (DENTLER et al., 2011), a reasoner is a program that infers logical 

consequences from a set of explicitly asserted facts or axioms and typically provides 

automated support for reasoning tasks such as classification, debugging and 

querying. The reasoning engine performs a central function in the transport network 

provisioning tool: it is responsible for performing the inferences (and the consistency 

checking) in the Inference Model. To accomplish this objective, the chosen reasoner 

must be able to support ABox and SWRL reasoning, to support Java (the 

provisioning tool implementation language), as well as it must have a fast algorithm. 

Regarding this, the HermiT13 (SHEARER; MOTIK; HORROCKS, 2008) reasoning 

engine version 1.3.8 was used in the implementation of the provisioning tool. 

HermiT is a sound and complete OWL reasoner that implements a fast reasoning 

algorithm, the hypertableau calculus (DENTLER et al., 2011). According to 

(ABBURU, 2012; DENTLER et al., 2011), besides its fast reasoning algorithm, 

HermiT presents other important features. Some of them are: (i) reasoning support 

for TBox, ABox, and SWRL rules; (ii) its support for OWL API (it uses OWL API 3.4.3, 

which is backwards compatible with OWL APIs 3.3.x, 3.2.x and 3.1.x); (iii) its open 

                                            
13

 http://hermit-reasoner.com/ 
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license, GNU Lesser General Public License (GLGPL); and (iv) its compatibility with 

Java 1.5 or higher (ABBURU, 2012; DENTLER et al., 2011). 

According to (SHEARER; MOTIK; HORROCKS, 2008), HermiT uses an improved 

blocking strategy and an optimization that tries to reuse existing individuals rather 

than generating new ones. HermiT also incorporates a number of other 

optimizations, such as a more efficient approach for handling nominal (concepts that 

refer to a particular individual in the ABox), and various techniques for optimizing 

ontology classification. The developer’s tests show that HermiT is usually much faster 

than other reasoners when classifying complex ontologies, and that it is already able 

to classify a number of ontologies which no other reasoner has been able to handle 

(SHEARER; MOTIK; HORROCKS, 2008). The good performance is verified in other 

reasoners evaluations, like (KANG; LI; KRISHNASWAMY, 2012) and (DENTLER et 

al., 2011) – the latter performs a comparison of reasoners for a specific scenario 

(OWL 2 EL profile). 

Regarding the Consistency Model, for performance purposes, instead of using the 

reasoner in this model, we just use JENA validate and isValid functions. These 

functions use JENA built-in reasoner to detect when constraints are violated by some 

data set14. As just consistency-related functions are performed (i.e., inferences are 

not verified), a better performance is expected when using these functions. 

5.3 THE PROVISIONING TOOL LOGIC 

The ontology-based KBS provisioning tool implementation logic is composed of three 

main phases, as represented in Figure 5-22: (i) the Input Stage, (ii) the Setup Stage, 

and (iii) the Provisioning Stage. The third stage can be divided in Manual 

Provisioning and Automatic Provisioning. In Figure 5-22, the wheels in the top right 

corner of the boxes represent the moments when the reasoning engine is executed. 

                                            
14

 https://jena.apache.org/documentation/inference/ 
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Figure 5-22 – Stages of the provisioning tool logic 

In the next subsections, we are going to present the provisioning tool logic divided in 

the three stages represented in Figure 5-22. To present the software logic, we are 

going to use a simplified flowchart with just four shapes: terminal, process, decision, 

and an adapted cloud to indicate links between different parts of the represented 

flowchart. For the process shape, we use the blue color to represent user interaction, 

the gray color to represent internal processes, and the purple color to represent 

reasoning. Our intention here is to use a high level of abstraction in the graphical 

representation and then make detailed textual explanations of each flowchart step. 

The complete provisioning tool flowchart can be observed in Figure 5-23. 
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Figure 5-23 – Complete provisioning tool flowchart 

For a better visualization and comprehension, we are going to divide and present the 

flowchart in three pieces, corresponding to the stages presented in Figure 5-22, in 

subsections 5.3.1 to 5.3.3. 
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5.3.1 Input Stage 

The first stage of the provisioning tool is the Input Stage, represented in Figure 5-24. 

In this stage, the load and the population of the provisioning tool knowledge base 

occurs, as well as some initial verifications. 

 

Figure 5-24 – Provisioning tool Input Stage 

The flowchart process and decision shapes, presented in Figure 5-24, are going to 

be detailed in the next paragraphs. 

Enter Consistency Model and Enter Inference Model: The two first processes are 

the input of the two parts of the provisioning tool TBox by the user. As presented in 

section 5.1, the TBox consists of two different OWL ontologies, one for the execution 

of inferences (the Inference Model) and the other one for consistency checking (the 

Consistency Model). The manual input of the TBox parts in the provisioning tool was 

chosen because this would let the provisioning tool more flexible for modifications or 

updates. For example, depending on which modification is made, a newer version of 

the ontology models can be generated without affecting the provisioning tool logic. It 

should be highlighted that the correct development of a new knowledge base should 

always be done according to the ontology-based development method here adopted. 
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Enter Declared Equipment and Enter Possible Equipment: These two steps 

consist in the population of the inserted TBox with the network data. In these steps, 

the individuals and their relations will be provided by the user and will form (later, in 

the Generate ABox process) the provisioning tool ABox, as represented in Figure 

5-20. 

The inputs that form the ABox are two structured TXT files: the declared equipment 

and the possible equipment. The former has a structured declaration of the elements 

(equipment, their components, and the relationships between them) that are already 

operational in a network and that are going to be provisioned. The declared 

equipment is an obligatory input for the software operation, but the possible 

equipment declaration is optional. After being input, these text files are then 

translated to OWL instances (i.e., an ABox). The ABox and the input TBox form the 

provisioning tool knowledge base. 

Treat Inputs: In the Treat Inputs process, the TXT files are verified for syntactical 

problems. Other small treatments are also performed, for example: instances with 

different names (case sensitively) are set as disjoint from each other; and repeated 

layers must be ignored. 

Generate ABox: Once the inputs are treated, they are transformed to the OWL 

ABox, which is going to be used in the provisioning tool. Just like presented in 

subsection 5.1.2, the provisioning tool ABox is, in fact, two separate ABoxes that are 

kept updated in a transparent way to the user. At the end of this process, the 

knowledge base is complete (with the TBox and the ABox). 

After the Generate ABox process, the Input Stage continues with three verifications. 

These verifications evaluate if any mistake in the inputs prevents the software 

execution. Such verification is necessary to reduce the processing time when there is 

a problem and to warn the user to correct the problem. In all these verifications, when 

a problem is identified, the final procedure is called – what is represented in the 

flowchart in Figure 5-24 as a red cloud. If no problems are identified, the software 

execution continues. 

The final procedure, presented in Figure 5-25, can indicate a correct or an incorrect 

completion of the software execution. Besides the Input Stage, the final procedure 
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can also be invoked in the last stage of the software, the Provisioning Stage. Within 

this procedure, the Inform User process prints an informative text to the user to 

indicate the execution result – i.e., the correct end is reported or, in case of failures or 

errors, a description of the problem (and of what have caused it) is reported. An 

example of error that invokes the final procedure is an inconsistency detection by the 

reasoner. In both cases, i.e., representing a correct or problematic execution, the 

OWL knowledge base is saved and made available to the user in the Save OWL 

process. In the case of an error, after the end of the software execution, the user can 

analyze the informed text and the OWL knowledge base made available to verify the 

cause of the problems. 

 

Figure 5-25 – Provisioning tool final procedure 

Back to the Input Stage, the first of the three verifications is “Are there at least two 

declared equipment?”, which verifies if at least two equipment are declared (i.e., if 

the declared equipment TXT file contains at least two equipment declarations). As 

the provisioning is performed from an input interface of an equipment to the output 

interface of other equipment, there must be at least two equipment so the 

provisioning can happen. 

The second verification, “Are the interfaces correct?”, is about the correctness of the 

interfaces that were specified in the declared equipment input. Four verifications are 

performed in this verification to guarantee the minimum conditions for the 

provisioning to happen: 

1. Is there at least one equipment that contains an output interface that maps an 

output port of a source component? 

2. Is there at least one equipment that contains an input interface that maps an 

input port of a source component? 

3. Is there at least one equipment that contains an output interface that maps an 

output port of a sink component? 

Inform User Save OWLFrom last stage
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4. Is there at least one equipment that contains an input interface that maps an 

input port of a sink component? 

The four verifications above do not ensure that the declared equipment specification 

is free of errors – it only intends to reduce the probability of problems. 

The third and final verification of this step is the “Is there an equipment composed of 

PM?”, which verifies if there is at least one equipment that contains a physical 

medium (PM) in the declared equipment or in the possible equipment declarations. 

I.e., there must be at least one PM, which can be of types declared or possible. 

Equipment with physical medium are required as they are the only way to transport 

the information from the source part of the network to the sink part of the network. 

Run Reasoner: After the three verifications, as can be seen in Figure 5-24, the 

software execution proceeds to the Run Reasoner process. This process is an 

abstraction of other processes and decisions, which composes the reasoning 

procedure presented in Figure 5-26. As can be noted, the complete flowchart, 

presented in Figure 5-23, does not present the Run Reasoner process, but its 

composing parts. Besides the Input Stage, the reasoning procedure is also called at 

the end of the third stage of the provisioning tool execution. 

 

Figure 5-26 – Reasoning procedure 

The reasoning procedure is composed of two processes and one verification. In the 

first process, the HermiT reasoner is used to perform inferences. The inferences are 

performed according to the nineteen rules presented in Appendix I – SWRL Rules. 

The indirect relations int_binds, eq_binds, tf_binds, and path are especially important 

for the provisioning tool, as these relationships are directly queried in the next stages. 

no

Proceed to next stage

Proceed to 
final procedure

Any inconsistency 
found?

yes
Check 

Consistency
Perform 

Inferences



129 

In the second process, the consistency of the model is evaluated using the validate 

and the isValid functions available in the JENA framework. If the reasoner founds any 

inconsistency, then the final procedure is invoked. If no problem is found, the 

software execution proceeds to its next stage, which is the Setup Stage. 

5.3.2 Setup Stage 

Figure 5-27 represents the processes in the second stage of the provisioning tool 

execution, the Setup Stage. This is a simple stage composed of only three 

processes: Select INT_Source, Select INT_Sink, and Set Mode (Automatic or 

Manual). 

 

Figure 5-27 – Provisioning tool Setup Stage 

Select INT_SOURCE: INT_SOURCE is the input interface to be provisioned. The 

user must choose the INT_SOURCE from a list of candidate interfaces – i.e., input 

interfaces that are mapped to input ports of source components. 

Select INT_SINK: INT_SINK is the output interface to be provisioned. The user must 

choose the INT_SINK from a list of candidate interfaces – i.e., output interfaces that 

are mapped to output ports of sink components. 

Set Mode (Automatic or Manual): The user must now choose between the two 

available provisioning modes: automatic or manual. The Provisioning Stage has 

different flows according to the option selected in this process. The manual and the 

automatic modes are going to be described, respectively, in subsections 5.3.3.1 and 

5.3.3.2.  
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5.3.3 Provisioning Stage 

The Provisioning Stage is the third and last stage of the tool execution. The 

connection provisioning and the circuit provisioning of the network happens in this 

stage, which can be considered the most important one.  

This stage implements two distinct executions, which depend on the provisioning 

mode (automatic or manual) selected in the Set Mode process (from the Setup 

Stage). This section describes the logics of these two different modes: the Manual 

Provisioning, presented in subsection 5.3.3.1, and the Automatic Provisioning, 

presented in subsection 5.3.3.2.  

At the end of this stage (independently of the choice for the automatic or manual 

modes), the reasoning procedure is invoked to verify inferences and the consistency 

of the knowledge base, which was modified during the provisioning processes. If 

inconsistencies are found, the final procedure is invoked. If no inconsistencies are 

found, the user may choose if he or she wants to provision another path or finish the 

software execution (i.e., finish the network provisioning). 

5.3.3.1 Manual Provisioning 

The manual provisioning mode’s flowchart is represented in Figure 5-28. 

 

Figure 5-28 – Manual provisioning flowchart 

Select VAR_OUT
VAR_OUT = 
INT_SINK?

Run Reasoner

yes

no

From last stage

Are there VAR_IN 
candidates?

Are there 
VAR_OUT 

candidates?
yes

yes
Proceed to 

final procedure

Proceed to 
final procedure

no

noSelect VAR_IN
Binds VAR_OUT 

with VAR_IN

Set Path Relation



131 

The manual provisioning is iteratively performed based on two variables: VAR_OUT 

and VAR_IN, which represents the interfaces (an output and an input interface, 

respectively) selected by the user in the path to be provisioned. Using Figure 5-29, 

we are going to exemplify the manual provisioning and the use of these variables and 

of its associated relations. 

 

Figure 5-29 – Use of variables in the manual provisioning 

Figure 5-29 represents four steps of the manual provisioning of a simple network with 

just two equipment. The represented steps are the VAR_OUT selection, the VAR_IN 

selection, the binds VAR_OUT with VAR_IN (int_binds assignment), and the set path 

relation (path assignment). In Figure 5-29, equipment are represented as blue boxes 

and equipment interfaces are represented as arrows. INT_SOURCE and INT_SINK 

are the desired interfaces to be provisioned. The information about which interfaces 

are INT_SOURCE and INT_SINK was provided by the user in the Input Stage. 

Select VAR_OUT: The selection of a VAR_OUT interface is the first step of the 

manual provisioning. The VAR_OUT corresponds to an output interface of an 

equipment that is going to be in the provisioned path. The VAR_OUT is chosen from 

a list of pre-selected candidates, evaluated by the decision “Are there VAR_OUT 

candidates?” in the flowchart. If no VAR_OUT candidate is found, then there is a 

problem in the provisioning (i.e., the network cannot be provisioned through the 

currently selected path). Considering the first iteration in the manual provisioning, 

where no VAR_IN have already been chosen by the user, the absence of VAR_OUT 

candidates probably indicates a bad network description. Considering later iterations, 

the absence of VAR_OUT candidates indicates that the user has chosen to provision 

a path through interfaces that do not allow new connections or there are no 
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interfaces that are internally connected with the selected VAR_IN (or INT_SOURCE, 

depending on the iteration). If no candidates are available, the final procedure is 

invoked. In this procedure (presented in Figure 5-25), the software indicates the 

problem to the user and is terminated. 

The selection of VAR_OUT candidate interfaces considers three points: 

1. Type of interface: it must be an output interface; 

2. Availability: the VAR_OUT candidates must not be bound to other interfaces;  

3. Physical relation: the transport function that contains the ports that are 

mapped to the candidate interfaces must have a tf_binds relation with the 

transport function that contains the port that is mapped to the INT_SOURCE (if 

VAR_IN is not set yet – e.g., in the first step of Figure 5-29, i.e., the first 

iteration) or to the VAR_IN (in any other case). In brief, a series of bound ports 

must exist to allow the information flow. 

An example of the selection of VAR_OUT candidates is illustrated in Figure 5-30. 

 

Figure 5-30 – Example of VAR_OUT candidates’ selection 

In Figure 5-30, the interfaces in the black circles are not candidates, as they do not 

comply with the third restriction rule presented in the list (regarding physical 

relations). The bound interfaces (represented in purple) are not candidates, as they 

do not comply with the second rule. As can be seen in Figure 5-30, only the available 

interfaces (represented as blue arrows) that have a physical relation to 

INT_SOURCE or VAR_IN are listed as VAR_OUT candidates (inside the red circles). 
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This transitive relation is necessary to allow the information flow from INT_SOURCE 

or VAR_IN to VAR_OUT. 

Special restrictions must be established for matrices, which are the transport 

functions that implement network protection (inside subnetworks, e.g. in 

recommendations ITU-T G.873.1 and ITU-T G.798). If the protection rules were not 

implemented, a user could perform (de)multiplexing in a matrix, what is not allowed 

by the transport network recommendations. These implemented restrictions are: 

1. The interface that maps the output of a source matrix can only have one path 

relation. The same restriction applies to the interface that maps the input port 

of a sink matrix. This restriction is represented in Figure 5-31. 

 

Figure 5-31 – Matrix protection special case 

2. The second restriction is that the information source and destination must be 

the same for the protection case. When an input interface that maps the input 

port of a source matrix is evaluated as an VAR_IN candidate, it must be 
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is already provisioned – i.e., if it contains a path relation). If the interface is 

already provisioned, to allow a new provisioning, the current INT_SOURCE 

and the current INT_SINK must already have a path relation with this interface 

(guaranteeing that the information source and destination are the same, and 
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observed when choosing the output interface that maps an output port of a 

sink matrix as VAR_OUT. 

However, these rules are only verified by the provisioning tool when an interface 

directly maps a matrix port. If the input or output ports of the matrix are not directly 

mapped by an interface, then just part of the restriction is going to be verified or, in 

the case that there is no direct mapping, no restriction is going to be verified. This 

lack of verification is a limitation of the provisioning tool with relation to the domain. It 

was a design decision in order to simplify the implementation, allowing better 

performance of the software. Improvements in this sense are left for future work. 

Continuing with the software logic, the user must choose a VAR_OUT from the list of 

candidates. All the interfaces selected as VAR_OUT during the provisioning process 

are kept in a data structure for the later path relation attribution (see Set Path 

Relation process). Once a VAR_OUT is selected, a first verification should be made: 

“VAR_OUT = INT_SINK?”. If the answer is positive, then the provision of the 

networks is over, as the desired output interface was already reached by a path. If 

this happens, the Set Path Relation process is executed. 

If the result is negative, then the objective of the provision was not reached yet, and 

the path (i.e., the circuit provisioning and connection provisioning) must continue to 

be built. This is done by selecting an input interface, which is represented as 

VAR_IN. This situation can be observed in the second step of Figure 5-29, which 

represents a situation where VAR_OUT not equals INT_SINK and, hence, a VAR_IN 

must be selected. 

Select VAR_IN: The VAR_IN corresponds to an input interface that is going to be in 

the provisioned path. However, before the selection of the VAR_IN, another question 

must be answered: Are there VAR_IN candidates? A negative answer to this 

decision box, represented in Figure 5-28, indicates that something went wrong with 

the provisioning process: the user was trying to create a path in an unsupported way. 

Once this happens, the final procedure is called, the user is informed of the problem, 

and the provisioning algorithm is finished. As future work, the algorithm could be 

made more robust and, instead of finishing the provisioning algorithm, it could make 

a rollback to the last state when there were available paths (i.e., it could be back to 
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the last valid provisioning option, when there was at least one VAR_IN or VAR_OUT 

available). Another possibility could be the following: the software could check one 

step further to see if the displayed interfaces have other possible bindings or not. 

The VAR_IN candidates’ selection is performed considering the following restrictions: 

1. Type of interface: it must be an input interface; 

2. Availability: the VAR_IN candidates must not be bound to other interfaces;  

3. Layer hierarchy: the VAR_IN candidate must be part of: 

a. a matrix that is in the same layer that has the transport function that 

contains the port that is mapped to VAR_OUT; or 

b. a transport function (except matrices) that is in a layer that has a client-

server relation with the layer that has the transport function that 

contains the port that is mapped to VAR_OUT; 

4. Allowed bindings: the interfaces must map the transport functions’ ports that 

can be bound together. There are 11 cases of allowed relations, which are 

presented in Table 5-1; 

5. No loop: the VAR_IN must not be the INT_SOURCE. 

Besides the five listed restrictions, the restrictions considering the protection 

performed by matrices (presented in the VAR_OUT selection process) must also be 

observed. An example of VAR_IN candidates’ selection is presented in Figure 5-32.  

 

Figure 5-32 – Example of VAR_IN candidates’ selection 
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In Figure 5-32, we can see that the interfaces inside the black circle indicated by the 

number one are not candidates, as they do not comply with the allowed bindings rule 

(rule number 4). The interface in the black circle indicated by the number two is not a 

candidate because it does not comply with the layer hierarchy rule (rule number 3). 

All interfaces inside the green circles are VAR_IN candidate interfaces. 

Just like happens with the interfaces selected as VAR_OUT, the interfaces selected 

as VAR_IN during the provisioning tool execution are also kept in a data structure for 

the future path relation assignment (at the Set Path Relation process). 

Binds VAR_OUT with VAR_IN: Once a VAR_OUT and a VAR_IN are selected, 

these interfaces must be physically related in order to allow the information transfer. 

The relation that represents this physical relation between interfaces is the int_binds 

relation. When considering the whole path, we name the process of performing the 

physical connection from the source interface to the destination interface a circuit 

provisioning. The circuit provisioning is directly related to the int_binds relation. 

The provisioning tool, instead of directly assigns the int_binds relation between the 

interfaces, assigns the binds relation between the ports that are mapped to the 

interfaces to be bound. Later, with the reasoning of the model, an SWRL rule (to be 

more specific, the rule number 08 of the table presented in Appendix I – SWRL 

Rules) guarantees the int_binds relation between the interfaces. The third step in 

Figure 5-29 represents the assertion of this relation once a VAR_IN is selected. 

When the binding is performed, the software continues the provisioning with a new 

VAR_OUT selection. 

Set Path Relation: The final process of both the manual provisioning and the 

automatic provisioning is the assignment of the path relation between the interfaces 

that are in the path that were provisioned. 

Once all interfaces (INT_SOURCE, and all VAR_INs and VAR_OUTs that were 

selected during the provisioning process) in the path are known (i.e., they are stored 

in the already mentioned data structure) and physically connected through the 

int_binds relation, the information transfer should be represented by the path relation. 
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This process is here named connection provisioning. The path relation assignment is 

represented in the fourth step of Figure 5-29. 

The path relation connects all interfaces in a path, representing the logical 

connection between them – i.e., the path relation represents the information transfer 

from the source interface to the destination interface, through all intermediate 

interfaces between these two. 

5.3.3.2 Automatic Provisioning 

The second available provisioning mode is the automatic mode, which has the 

processes represented in Figure 5-33. 

 

Figure 5-33 – Automatic provisioning flowchart 

This provisioning mode discovers all possible paths from INT_SOURCE to INT_SINK 

according to some user-defined criteria (restrictions and priority). The user must 

select one of the paths found to provision the network. The main steps of this 

provisioning mode are represented in Figure 5-34. 
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Figure 5-34 – Simple example of the automatic provisioning steps 

All processes of this provisioning mode are going to be described in this section. 

When possible, Figure 5-34 is going to be used as an example for the processes. 

Set Restrictions: Differently from the manual provisioning, where a single path is 

established with the user’s direct supervision, the automatic provisioning verifies all 

possible paths between INT_SOURCE and INT_SINK. This discovery of paths is 

performed using the same verifications and variables (VAR_IN and VAR_OUT) of the 

manual provisioning. However, depending on the size of the network to be 

provisioned, a huge number of paths can be found between two points. Considering 

this, the user can optionally set restrictions to limit the number of paths to be found. 

The definition of the restrictions has two objectives: 

a) to simplify the user’s selection of a path: the restrictions are going to make the 

Find Paths process to return only the paths desired by the network operator. 

With a restricted list, (i) paths that are not desired cannot be selected by the 

user, eliminating human errors in the network provisioning, and (ii) and the 

user’s task to select the best provisioning option is largely simplified, saving 

time; and 

b) to improve the software performance: the restrictions are verified every time 

an interface that can be part of the path is discovered in the Find Paths 

process. If in one of these verifications the path that is being discovered does 

not fit the restrictions, the software closes the non-compliant path discovery 

execution thread, saving processing time and reducing the time spent to return 

to the user the possible paths.  
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1. the maximum number of paths to be found; 

2. the maximum number of interfaces in a path (size of the path); 

3. the maximum number of new bindings in a path; and 

4. the maximum number of interfaces of possible equipment in a path (when the 

possible equipment definition is available). 

The first restriction (maximum number of paths) sets an upper limit to the number of 

paths that are going to be found in the Find Paths process and exhibited to the user. 

As an example, in Figure 5-34, the number of all the possible paths in that network is 

3 – setting this restriction on that network would reduce this number to 1 or 2 paths, 

according to the user’s definition. 

The maximum size of the path (i.e., maximum number of interfaces) restriction 

guarantees that all paths that are going to be exhibited to the user have an allowed 

size according to the operator’s definition. I.e., no paths with a number of interfaces 

greater than the limit are going to be exhibited. In the provisioning tool, the size of a 

path is counted by the total number of (input or output) interfaces in it (including 

INT_SOURCE and INT_SINK, and interfaces from declared or possible equipment). 

Using Figure 5-34 as an example, the size of all paths there represented is 4. 

The maximum number of new bindings restriction sets a limit to the number of new 

physical connections that are accepted during the provisioning of the network. The 

new bindings, represented by the int_binds relation, are new physical connections 

between equipment. Once again, using the network presented in Figure 5-34, it is 

required at least one physical connection to perform the provisioning between 

INT_SOURCE and INT_SINK. This required physical connection is represented in 

the third step of this figure. 

The fourth and last restriction, which is the maximum number of interfaces of possible 

equipment in a path, restricts the number of possible equipment that can be used in a 

network with the intention to prioritize the equipment of that network that are already 

operational (i.e., the declared equipment). The lower number of interfaces of this type 

of equipment means that a smaller number of possible equipment is used in the 

network, ensuring savings. However, this restriction is only available to the user if an 
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input file with possible equipment were previously provided (in an optional process in 

the Input Stage – presented in the subsection 5.3.1). 

The effect of the use of each one of these restrictions during the automatic discovery 

of the paths is going to be better explained in the Find Paths process. 

Set Priority: Once the restrictions over the maximum number of paths are defined, 

the automatically discovered paths must be allocated in this defined number to be 

returned to the user. This allocation must be based on a criterion defined by the user, 

which is defined in this process. To define a criterion, the user must prioritize a path 

characteristic. Three priority options are given to the user: 

1. the number of interfaces in the path (size of the path); 

2. the number of new bindings in the path; and 

3. the number of interfaces of possible equipment in the path (when the possible 

equipment definition is available). 

Every time a new path is found in the Find Paths process and accomplishes all 

restrictions defined in the Set Restrictions process, it is allocated in a vector in 

increasing order according to the priority here established. The size of the vector was 

previously defined by the user in the maximum number of paths restriction. If the 

vector is already full and a new path found has a smaller value of the priority criterion 

than the path in the last position of the vector, then the path that occupies the last 

position is replaced by the new path in the vector, which is reordered according to the 

priority criterion. By the end of this process, the paths are exhibited to the user 

ordered by the priority criterion. 

To conclude this process, it must be said that the third option (number of interfaces of 

possible equipment) is exhibited to the user only when a possible equipment 

specification was previously provided by the user. Both this process and the previous 

process happen before the first stage of the example provided in Figure 5-34. 

Find Paths: In this process, which can be considered the most important process of 

the automatic provisioning, all possible paths that fit in the restrictions provided by 

the user are found and exhibited. The provisioning tool path finding – according to 

the restrictions and to the priority set – is represented by the step 1 of Figure 5-34. 
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The automatic path finding uses the same processes and variables presented in the 

manual provisioning mode. I.e., the same iterative process that consists of the 

selection of VAR_OUT and VAR_IN variables are performed. However, instead of 

building a single and final path, this process uses a multiway tree structure to 

discover all possible paths. By the end of the path finding, all possible paths identified 

are allocated in a vector sized accordingly to the value of the restriction maximum 

number of paths. To better illustrate the path finding process, consider the simple 

example network presented in Figure 5-35. 

 

Figure 5-35 – Example of network to be automatically provisioned 

The left part of Figure 5-35 represents an abstraction of the network presented in the 

right part of the same figure. The network is composed of three defined equipment 

(D1, D2, and D3) and a single possible equipment (P1). In the example, the interface 

1 is the INT_SOURCE and the interface 18 is the INT_SINK – i.e., a path must be 

established from the interface 1 to the interface 18. In this network, the interface 11 

from D2 is already physically bound with the interface 15 from D3 (represented by 

the int_binds red arrow in the right part of Figure 5-35). 

The abstraction of the network, in the left part of Figure 5-35, shows all the network’s 

interfaces, representing them as candidates to be in a path or not. The candidates 

are represented in green, while the interfaces that are not candidates are 

represented in red. By candidates, we mean all interfaces that may form a path. In 

this case, the green interfaces are all VAR_IN candidates, all VAR_OUT candidates, 

and interfaces 11 and 15, which are not VAR_IN or VAR_OUT candidates (as they 
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are already bound) but that may be in a path. For the candidates, the equipment 

internal interfaces’ relations (in orange) and the physical bindings between different 

equipment interfaces (in black) are represented. The dashed line in interfaces 8, 9, 

12, and 13 indicates that these interfaces are from possible equipment. 

Figure 5-36 represents the multiway tree structure used to discover all possible paths 

when automatically provisioning the example presented in Figure 5-35. As can be 

seen in the top of the figure, no restrictions (represented by the number -1) were set 

for this example. In this example, the provisioning tool returns three paths to the user, 

called Path X, Path Y, and Path Z in Figure 5-36. 

 

Figure 5-36 – Example of unrestricted automatic path provisioning 

The paths that can be provisioned, which is the partial result of the provisioning 

process, are then displayed to the user, which may choose one among all 

possibilities. Besides the tree structure, Figure 5-36 also presents a table with all the 

attributes of each path (the attributes are related to the restrictions that the user can 

set). Note that, although all paths found in this example have exactly the same size 

(6 interfaces), this does not happen in all cases. 

Regarding the different restriction that the user may apply, we have already 

presented how the maximum number of paths restriction acts on the path finding 
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(defining the size of the vector that allocates the found paths). However, how do the 

other restrictions act in the path finding process? Every time that a new node (an 

interface) is included in the tree, the paths’ attributes are verified: the number of 

interfaces, the number of new bindings, and the number of interfaces of possible 

equipment. If, during the verification of the restrictions, it is confirmed that the path is 

not a possible solution – i.e., the path does not fit into the restrictions – then the 

continuation of that branch of the tree is interrupted (saving memory use, processing 

time, and improving performance). Only the paths that accomplish the restrictions are 

allocated in the final vector of possible paths that are going to be presented to the 

user. An example of this verification is presented in Figure 5-37, which presents the 

results of the path finding for the same network presented in Figure 5-35. Differently 

from Figure 5-36, which is based on the same network and does not have 

restrictions, in the example of Figure 5-37, the restriction of maximum number of new 

bindings is set to 1 (max_bind = 1) and the restriction of maximum number of 

interfaces of possible equipment is set to 0 (max_pos_int = 0). 

 

Figure 5-37 – Example of restricted automatic path provisioning 

It can be observed, in Figure 5-37, that two of the three paths that could be formed 

when no restrictions are applied were aborted during the construction of the tree 

structure. The first interrupted path corresponds to the Path Z of Figure 5-36. This 

path is interrupted because it is verified that it contains one possible interface, while 

the restriction defines that it should have none. The second interrupted path, which 

corresponds to the Path X of Figure 5-36, is interrupted because it is verified that it 
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has two int_binds relations, i.e., two new bindings, what violates the defined 

restriction for a maximum of one new binding. In the example of Figure 5-37, the only 

path that is in accordance with the defined criteria is the Path Y. 

Moreover, it should be explained how the priority criterion influences the path finding 

process. In two cases, the defined priority acts just in the ordination of the vector of 

paths that is going to be shown to the user. The first one is the case where there is 

no restriction about the maximum number of paths, and the second case is when the 

number of possible paths found is smaller than the number set in the restriction. 

However, when the number of possible paths is greater than the defined restriction, 

the priority criterion has a more important role in the path finding process. In this 

situation, the priority defines which paths are going to be returned to the user and 

which paths are not going to be returned. As the vector has a limited number of 

paths, some paths that were already allocated in the vector can lose their places to a 

recently found path that have a smaller value of the defined priority. Figure 5-38 

presents an example, for a same set of possible paths, of how different restrictions 

and priorities present different results to the user. 

 

Figure 5-38 – Examples of restrictions’ and priority’s influence over automatic path finding 

Figure 5-38 have two main parts: the left part, which presents the paths found, and 

the right part, which presents the vector of possible paths being mounted while the 

paths are being found.  

In the left part of Figure 5-38, there are six different paths from INT_SOURCE 

(represented as a green circle) to INT_SINK (red circle). These paths are discovered 

in the exact sequence presented in the figure (P1, P2, …, P6). The blue circles 
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represent declared interfaces and the purple circles represent interfaces from 

possible equipment. Black lines represent already existing bindings (abstracting the 

fact that they are internal or external from the equipment) and red lines represent 

new bindings. The values of triples in the right part of the paths indicate, respectively, 

the size of the path (i.e., its total number of interfaces), the number of new bindings, 

and the number of interfaces from possible equipment. 

In the right part of Figure 5-38, there are three executions of the provisioning tool. All 

presented executions have the same restriction on the vector’s size of a maximum of 

3 paths. This restriction is indicated by the vector’s three boxes. The executions, 

however, have different restrictions on the maximum number of interfaces, new 

bindings, and interfaces of possible equipment. These three restrictions are 

respectively indicated as values of a triple represented in the right side of the 

execution name (above the column of vectors). Inside the triple, the number indicated 

in red represents the priority criterion chosen. The final vector with the result of the 

path finding process is highlighted in yellow in Figure 5-38. 

The first execution (E1) does not impose any practical restriction to the paths that are 

found, because its defined restrictions are higher than the paths’ attributes. P1 and 

P2, both with size 6, when found, are allocated in the vector. When P3 is found, it is 

inserted in the vector in the first position, as it has size 4 and the prioritized attribute 

is the path size (number of interfaces). With all positions of the vector occupied, as 

P4 and P5 have the same size of the path of the last position of the vector (size 6), 

they are not allocated in the vector. Finally, as P6 have size 4, it is allocated in the 

second position of the vector (as the first position also has size 4) and, by doing this, 

it moves P1 to the third position and eliminates P2 as an answer to be shown to the 

user. 

The E2 execution imposes a size restriction of 4 interfaces in its paths. Regarding 

this, in this execution, every time that a path with a higher number of interfaces is 

identified, the path finding of the rest of this path is not performed. Therefore, 

differently from what is represented in Figure 5-38 (which shows complete paths), the 

paths P1, P2, P4, and P5 are aborted by the provisioning tool before their INT_SINKs 

are reached. In E2, just paths P3 and P6 are presented to the user, as these are the 

only paths with size smaller than or equal to 4. 
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Finally, in E3, the last execution, the main restriction is the number of interfaces from 

possible equipment, and the priority is set to the number of new bindings. The 

defined restriction only eliminates the finding of the path P2, which has two new 

bindings. In this execution, even though P1 have a higher size than P6, P1 is made 

available to the user and P6 is not, because of the defined priority criterion. 

By the end of this process, a list of possible paths is provided to the user, which must 

choose, in the next process, a single path to be provisioned. 

Select Path for Provisioning: Once the paths are found, they are listed to the user 

according to their position in the vector, which is defined by the priority criterion 

defined in the Set Priority process. The user must choose a unique path to be 

provisioned. The selection of a unique path among all paths made available by the 

provisioning tool is represented by the step 2 of Figure 5-34. 

Bind Path: This process is equivalent to the Binds VAR_OUT with VAR_IN process 

of the manual provisioning. With the path selected and all its composing interfaces 

known, these interfaces must be physically connected to allow the information 

transfer: i.e., the circuit provisioning must occur.  

In this step, the int_binds relation is assigned between the interfaces to be physically 

connected, resulting in the network’s circuit provisioning. In fact, just like happens in 

the manual provision, the asserted relation is the binds relation between the ports 

that are mapped to the interfaces to be bound – the int_binds relations are then 

inferred by the reasoner’s execution. The step 3 of Figure 5-34 represents this 

process. 

Set Path Relation: Once all interfaces in the path are known and bound, the 

information transfer should be represented by the path relation, resulting in the 

network’s connection provisioning. This process is represented in step 4 of Figure 

5-34. By the end of this process, the network provisioning (consisting in both the 

circuit provisioning and the connection provisioning) is complete and the desired 

source and destination interfaces are able to provide services. 

To conclude, as can be seen in the complete provisioning tool flowchart (Figure 

5-23), this stage is the same already presented in the manual provisioning. To 
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simplify the process’ explanation, even though this is a single process, it is presented 

duplicated, in both Figure 5-28 – Manual provisioning flowchart and in Figure 5-33 – 

Automatic provisioning flowchart. 

The complete provisioning process can be observed in a practical example in the 

next chapter, when examples of manual provisioning and automatic provisioning are 

going to be presented for a transport network with a specific technology: the OTN 

technology. 
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6 ONTOLOGY-BASED PROVISIONING IN AN OPTICAL 

TRANSPORT NETWORK 

In chapter 5, we have presented the conceptual and computational issues of the 

implemented knowledge-based system for transport networks provisioning. However, 

only technology-independent examples were used during that chapter to illustrate its 

functionalities. Technology independence is one of the software main advantages, 

allowing it to be used for a multitude of ITU-T G.800 compliant transport network 

technologies. To provide a more realistic use of the provisioning tool, as well as to 

highlight its use in a specific transport network technology, the provisioning tool is 

going to be applied to a more elaborated network with a specific-technology: the 

Optical Transport Network (OTN) (ITU-T, 2012b). 

The specific aspects concerning the OTN layered structure, characteristic 

information, client/server layer associations, network topology, and layer network 

functionality are provided in the Recommendation ITU-T G.872 (ITU-T, 2012b), which 

describes the functional architecture of optical transport networks using the concepts 

defined in the ITU-T G.800 and ITU-T G.805 recommendations. 

One of the main characteristics of the Optical Transport Networks is that they enable 

operations, administration, and management of connections that are transparent to 

their clients (ITU-T, 2010). The functionality of OTN comprises of providing transport, 

aggregation, routing, supervision, and survivability of client signals that are 

processed in both optical and digital domains (ITU-T, 2012b). OTN has the capability 

to wrap any service into a digital optical container and thus enable service 

transparency that provides the flexibility to support all traffic types: voice, video, and 

data – i.e., it seamlessly combines multiple networks and services into a common, 

future-ready infrastructure (ITU-T, 2010). 

The fact that its architecture is defined in terms of the ITU-T G.800 was the main 

reason why an OTN network was chosen as an example in this chapter. Besides 

that, it was also considered that the OTN technology is becoming the current 

predominant multiplexing hierarchy now being used on clients with service 
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bandwidths ranging from 1 Gbit/s to 100 Gbit/s (ITU-T, 2010) and beyond (COLE, 

2011; YAMAZAKI; TOMIZAWA; MIYAMOTO, 2012). 

The example’s settings, including the network and its equipment definitions, are 

presented in section 6.1. The next two sections correspond to an automatic 

provisioning (section 6.2) and a manual provisioning (section 6.3) of the defined 

network. Finally, to conclude this chapter, a brief discussion on the provisioning tool 

performance is going to be presented in section 6.4. 

6.1 EXAMPLE SETTINGS 

Figure 6-1 represents the square topology that is going to be provisioned manually 

and automatically in the two examples of this chapter. 

 

Figure 6-1 – Topology to be provisioned 

The topology presented in Figure 6-1, representing an OTN network, is composed of 

four nodes and has two different equipment types: EQ1 and EQ4 are OTN Switches, 

while EQ2 and EQ3 are amplifiers. These equipment are connected through four 

links, here called pm12, pm13, pm24, and pm34. To be used in the provisioning tool, 

these links are also defined as equipment (i.e., links are specified as equipment 

containing physical media, as presented in subsection 6.1.1). 
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The internal composition of each one of these equipment and links is going to be 

described in subsection 6.1.1 using the notation presented in Table 6-1. Although 

different, this notation is inspired by the ITU-T G.800 notation. 

Table 6-1 – Possible elements and their colors 

 

Complementing the information provided in Table 6-1, in the next figures, the 

interfaces and ports, when already physically bound, are represented as a single 

purple arrow. When not bound, the interfaces and ports are represented as individual 

blue arrows. 

The OTN layer hierarchy used for the specification of the equipment in this example 

is presented in Figure 6-2. According to the provisioning tool requirements, all 

equipment elements (except the Physical Media, which is never inside a layer 

network) are described inside one of these layers. Both the declared and the possible 

equipment declarations contain a description of the layer hierarchy presented in this 

figure, with minor modifications that are going to be presented. 

Figure Type Color Indication

To equip.: Input Interface/Port

From equip.: Output 

Interface/Port

Blue: Available single element

Purple: pair of bound 

elements

White: single not specified
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Physical Media Blue: no defined directionality

Termination Function, 

Adaptation Function and 

Matrix (respectively)

Yellow: Source TF

Orange: Sink TF

(TF = Transport Function)

Layer Network Blue: no defined directionality
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Figure 6-2 – OTN layer hierarchy used in the example 

6.1.1 Equipment Internal Structure Definition 

The internal structure of each one of the equipment that are part of the four-node 

topology used in this example are going to be presented in this section. 

6.1.1.1 Definition of the Physical Media Equipment 

The Physical Media Equipment, presented in Figure 6-3, corresponds to the links in 

the topology of Figure 6-1. The physical media are the network elements responsible 

for the information transfer below the lowest layer network and are implemented as 

optical fibers, copper cables, etc., depending on the transport technology. As in the 

example we are working with OTN networks, the physical media correspond to 

optical fibers. 

Due to a design consideration, the provisioning tool requires that the physical media 

must be inside an equipment. In this example, the Physical Media Equipment, 

represented in Figure 6-3, is defined as an equipment composed of two physical 
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media transport functions. The composition by two distinct physical media intends to 

allow a single Physical Media Equipment to be used for bidirectional information 

transfer. 

 

Figure 6-3 – Physical Media Equipment 

As can be seen in Figure 6-3, the equipment has, in each one of its sides, one input, 

and one output. 

6.1.1.2 Definition of the Amplifier 

The equipment 2 and 3 (EQ2 and EQ3) of the example network presented in Figure 

6-1 are amplifiers (AMP). The internal structure of the amplifiers used in this example 

is depicted in Figure 6-4. 

 

Figure 6-4 – Amplifier (AMP) internal structure 

As can be seen in Figure 6-4, the AMP used in the example has a duplicated pair of 

source and sink elements, allowing bidirectional information transfer. All transport 
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functions that compose the Amplifier are at the Optical Transmission Section (OTS) 

OTN layer. 

6.1.1.3 Definition of the OTN Switch 

The OTN Switch is an equipment that performs low-order to high-order signal 

multiplexing, as well as wavelengths and time slots switching (DILEM et al., 2013). In 

the provisioning example of this chapter, we are going to use the OTN Switch 

equipment architecture proposed in (DILEM et al., 2013), which focuses on the 

functionality provided by ITU-T recommendations, especially the ITU-T G.798 (ITU-T, 

2012c). The main features of OTN Switches are explored in the architecture 

proposed in (DILEM et al., 2013): the multiplexing and switching of signals in optical 

and electrical domains. 

The proposed architecture can be seen in Figure 6-5. In the proposal, the OTN 

Switch is divided into six different modules that process and/or treat the (electrical or 

optical) signals. The modules are the Client Interface Card (CIC), the Optical Data 

Unit (ODU) Switch, the Network Interface Card (NIC), the Wavelength Selective 

Switch (WSS), the Optical Interface Card (OIC), and the Controller Card. From these 

six modules, we are here interested in the first five – the controller card is not used in 

the provisioning example because it does not treat and transport information: it is 

responsible for controlling and managing the other five modules, which are the ones 

that treat and transport information. 
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Figure 6-5 – OTN Switch architecture. From (DILEM et al., 2013) 

Nevertheless, the ITU-T G.800 Ontology Reference Model does not contemplate the 

module concept – consequently, neither do the design model and the provisioning 

tool. They also do not allow equipment composition by other equipment. Considering 

these restrictions, in this example, the OTN Switch modules are going to be defined 

as equipment to the provisioning tool. It is important to operate directly over the 

modules, instead of operating on the OTN Switch itself, because of two reasons. The 

first one is that with a fine-grained abstraction, a more refined provisioning can be 

performed (more interfaces can be operated). The second one is that modules can 

be presented as already operational in an OTN Switch (as declared equipment) or 

they can be presented as not operational, but available for use (as possible 

equipment). Consequently, the OTN Switch, here, is just an abstraction – it is the 

aggregation of all modules that are part of it. Once the modules are represented as 

equipment, each one of them is going to have its internal structure (formed by ITU-T 

G.800 elements) described. 

The first OTN Switch module is the Client Interface Card (CIC), a module that is 

responsible for adapting/recovering the client signal that is entering/leaving the OTN 
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network. Different types of client signals, with different characteristics, can 

communicate with the CIC, for instance, 10G-100G Ethernet, MPLS-TP, SDH, and 

also lower order OTN signals (DILEM et al., 2013). Figure 6-6 represents, in its left 

part, the CIC as presented in (DILEM et al., 2013); and in its right part, the CIC 

simplification used in the example here presented. The same display pattern of 

Figure 6-6 is adopted for the presentation of all other OTN Switch modules. Note 

that, as (DILEM et al., 2013) uses an example with a client signal of type 10 Gigabit 

Ethernet, the same client signal is going to be used in the example provided in this 

chapter. 

 

Figure 6-6 – Client Interface Card definition 

The second OTN Switch module used here is the ODU Switch, which is presented in 

Figure 6-7. The ODU Switch is responsible for the digital switching of the ODU 

signals inside the OTN Switch. This switching can be configured automatically (by a 

control plan, such as OpenFlow, GMPLS, etc.) or manually (by the network operator 

intervention) (DILEM et al., 2013). 
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Figure 6-7 – ODU Switch and WSS definitions 

As can be seen in Figure 6-7, the ODU Switch is differently implemented in (DILEM 

et al., 2013) and in the OTN example here defined. While (DILEM et al., 2013) 

represents the internal structure of the ODU Switch with a subnetwork, we used the 

matrix to implement this module. This was necessary because, as a design decision, 

considering that the subnetwork concept definition by the recommendations ITU-T 

G.805 and ITU-T G.800 presents ontological deficiencies (BARCELOS, 2011), 

subnetworks are not allowed in the provisioning tool. However, as matrices represent 

the limit to the recursive partitioning of a subnetwork (ITU-T, 2012a), this substitution 

does not constitute a problem. For simplification purposes, the ODU Switch used in 

the example has exactly two matrices (one source and one sink), each one with two 

pairs of input and output ports. 

Also represented in Figure 6-7, the Wavelength Selective Switch (WSS) is the 

module in which an optical signal can be routed, protected, added, or dropped 

from/to an aggregated WDM signal (DILEM et al., 2013). Just like happens with the 

ODU Switch, in this example, for the same reasons, the WSS has matrices in its 

internal structure instead of subnetworks. 

Another OTN Switch module here used is the Network Interface Card (NIC). This 

module is responsible for providing a digital end-to-end path, insert management 
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information and error corrections (Forward Error Correction), and to provide the 

functionality (when necessary) of one or more ODU multiplexing stages. It is inside 

the NIC that the electrical-optical conversion occurs (DILEM et al., 2013). The NIC’s 

internal structure is presented in Figure 6-8. 

 

Figure 6-8 – Network Interface Card definition 

As already mentioned, in this example we adopt a client signal of type 10 Gigabit 

Ethernet, just like (DILEM et al., 2013). Consequently, the layer structure used in the 

example differs from the “pure” OTN layer hierarchy presented in Figure 6-2. In the 

example here presented, the ODU layer is divided in two: the ODU2e and the ODUk. 

While the CIC and the ODU Switch implement transport functions of the former layer, 

the NIC’s first layer is the latter. 

The final module of the OTN Switch here used is the Optical Interface Card (OIC), 

presented in Figure 6-9. The OIC performs the treatment of the optical signal, i.e., the 
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multiplexing and demultiplexing of different optical channels in a single fiber, just like 

the amplification and the compensation of the dispersion (DILEM et al., 2013). 

 

Figure 6-9 – Optical Interface Card definition 

Hereafter, in the figures that illustrate this chapter, the modules presented in this 

subsection are going to be presented in a higher abstraction, as independent 

equipment. For a better illustration of the network, these equipment are going to be 

represented as named colored rectangles, each one with their corresponding 

interfaces. 

6.1.2 Declared Network and Possible Equipment 

As presented in chapter 5, the provisioning tool can accept two network descriptions 

as inputs: the declared equipment, which consists of the equipment that are already 

operational on the network; and optionally the possible equipment, which consists of 

equipment that are available to be used, but that are not installed or operational. Both 

the declared equipment and the possible equipment used in the example are going to 

be presented and described in this section. The complete specification of these 

equipment (i.e., the complete structured text file), however, is not provided in this 

OIC as defined in Dilem et al. OIC as used in the example
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thesis because of its large size. Just like all other necessary information, the 

specifications can be found in the thesis shared folder: https://goo.gl/L1UPv4. 

The network formed by the declared equipment, represented in Figure 6-10, 

corresponds to the topology presented in Figure 6-1. In this network, four equipment 

are available: two OTN Switches and two amplifiers. In addition, the four links in 

Figure 6-10 (pm12, pm13, pm24, and pm34) are also declared as equipment. 

 

Figure 6-10 – Declared equipment available in the example 

Just like previously said, the OTN Switches (EQ1 and EQ4) are represented by its 

modules, here declared as independent equipment. The amplifiers (EQ2 and EQ3) 

are single equipment, as well as the four physical media. In summary, the network 

presented in Figure 6-10 has 19 declared equipment. 
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As can be seen in Figure 6-10 there are resources available and physical bindings 

already established to provision a path from equipment EQ1 to EQ4 via EQ3. 

However, there are no resources already available on the network for provisioning a 

path from EQ1 to EQ4 via EQ2.  

The OTN Switches represented in Figure 6-10 are declared with partial capacity. 

Regarding this, two considerations can be made. The first one is that their available 

slots are empty (i.e., there are no installed modules). In this case, possible 

equipment can be used to provide full capacity to the OTN Switches, allowing new 

paths. The second consideration is that the available slots have installed modules 

that are not operational. In this second case, the not operational equipment constitute 

possible equipment, not declared ones. The possible equipment made available in 

this example are represented in Figure 6-11. They are one CIC (CIC P1), two NICs 

(NIC P1 and NIC P2), and one OIC (OIC P1). 

 

Figure 6-11 – Possible equipment available in the example 

Once the network to be provisioned is presented with its declared equipment and 

possible equipment, in subsection 6.1.3, the desired information transfer is 

presented. 

6.1.3 Information Transfer to be Provisioned 

The example consists on the provisioning of an information transfer (i.e., a 

connection), represented as an orange dotted line in the topological view of the 

network in Figure 6-12, from EQ1 to EQ4. 

NIC
P1

OIC
P1

NIC
P2



161 

 

Figure 6-12 – Topological representation of the paths to be provisioned 

In the example, the information transfer presented in the left part of Figure 6-12 must 

be protected in the electrical domain. To implement the desired connection, two 

paths must be provisioned: (i) a working path, which is the main information transfer 

path, and (ii) a protection path, which is an alternative in case of failure of the working 

path. Both the working path and the protection path must share the same source and 

destination interfaces (i.e., the same INT_SOURCE and INT_SINK). It can be 

observed, in the right part of Figure 6-12, the restrictions that apply to the paths to be 

provisioned. 

The first path to be provisioned is the working path, in section 6.2. The provision of 

this path must demand a minimum intervention in the network, using the 

infrastructure already available. On this path, the priority to be set is the use of the 

minimum number of new bindings. In addition, the provisioning of this path must use 

the automatic provisioning mode available in the KBS. 

The second path to be provisioned, the protection path, intends to protect the 

information transfer of the working path in the electrical domain. Therefore, it is 

desired that the two provisioned paths do not share the same optical fibers because, 

in case of a failure (e.g., a broken fiber) in one of the paths, the information transfer 

can continue on the other provisioned path. The provisioning of the protection path, 

presented in section 6.3, must be performed in the manual mode of the provisioning 

tool. 
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6.2 AUTOMATIC PROVISIONING OF THE WORKING PATH 

At the beginning of the provisioning process, it is necessary to provide as input the 

inference and the consistency models, as well as the declared and possible 

equipment declarations. This first step can be seen in Figure 6-13. 

 

Figure 6-13 – Loading of the knowledge base, declared, and possible equipment 

Figure 6-13 is a screen capture of the provisioning tool execution. Other images from 

this section and from the next section are also screen captures, however, some of 

them present modifications and arrangements to better illustrate the software 

execution. Besides the content of the images here presented, the software also 

provides intermediate execution and processing information, which are not presented 

because they are not relevant for the comprehension of the paths’ provisioning. In 

addition, marks and other editions are also included in some images when it is 

necessary to highlight part of the information presented. 

Back to the provisioning of the working path, the second step is the selection of the 

source interface (INT_SOURCE) and the destination interface (INT_SINK), as can be 

observed in Figure 6-14. The selected source and sink interfaces to be provisioned 

are, respectively, in_int_so_EQ1_CIC_01 (from equipment EQ1_CIC_01) and 

out_int_sk_EQ4_CIC_01 (from equipment EQ4_CIC_01). 
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Figure 6-14 – INT_SOURCE, INT_SINK, and provisioning mode selection 

As can be seen in the last line of Figure 6-14, the two provisioning modes are made 

available to the user, which must choose one. According to the requirements defined 

in subsection 6.1.3, the provisioning path must be automatically provisioned and, 

hence, this mode was here selected. 

Two important steps of the automatic path provisioning are presented in Figure 6-15. 

This figure represents the definition of the restrictions that apply in the path finding 

process, as well as the selection of the priority. 

 

Figure 6-15 – Restrictions and priority definitions 

In Figure 6-15, it can be observed that the only restriction imposed was the maximum 

number of paths to be returned to the user, which was set as 2. By the end of the 

path finding process, there are going to be at most two paths to be evaluated by the 

user, which may choose the best option among them. No maximum value was 

defined for the other three restrictions available (number of interfaces in a path, 

number of new bindings, and number of interfaces from possible equipment). In 
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addition, as previously defined, the working path must demand a minimum 

intervention in the network and, hence, the minimum number of new bindings was 

the selected priority.  

Once the restrictions and the selected priority are set, the path finding process is 

executed. The result of this process is exhibited in Figure 6-16, which exhibits the 

two candidate paths required by the user. Other interesting information in Figure 6-16 

is the path finding execution time: the provisioning tool took 2,401 seconds to find the 

two candidate paths. 

 

Figure 6-16 – Path selection options 

The two candidate paths’ attributes and composing interfaces can be observed in 

Figure 6-16. Even though the two candidate paths have the same size (26 interfaces 

each one) and the same number of interfaces from possible equipment (both do not 

have any), the attribute of interest for the path selection is the number of new 

bindings, which is highlighted in red in Figure 6-16. Regarding this attribute, the first 

candidate path does not have any new binding, while the second candidate has one. 

Therefore, as can be seen in the last line of Figure 6-16, the first path was the 

chosen option to be provisioned in the network – i.e., the first candidate path was 

chosen as the working path. 

A combined topological view and transport view of the provisioned working path can 

be seen in Figure 6-17. In this figure, the working path is represented as a red dotted 

line in the topological view (in the center of the figure) and, in the transport view, it is 

represented by its composing interfaces (also in red). 
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Figure 6-17 – Combined topological and transport view of the provisioned working path 

In Figure 6-17, it can be seen that the working path goes from EQ1 to EQ4 through 

EQ3. Hence, as the protection path must use different fibers from the working path, it 

obligatorily has to use EQ2 and its related physical media (pm12 and pm24). In 

addition, it can be observed that no interfaces from possible equipment were used in 

the working path provisioning. 

Finally, by the end of the provisioning of the working path, as can be seen in Figure 

6-18, the provisioning tool validates the current knowledge base’s state and returns 

this information to the user. In case of success of the validation, the user can choose 

to provision another path or not. As we intend to provision the protection path, in this 

example, the answer was positive, as can be seen in Figure 6-18. 
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Figure 6-18 – Validation checking and new provisioning option 

Differently from the provisioning of the working path, the provisioning of the 

protection path has to be done with the manual provisioning mode, according to the 

requirements presented in subsection 6.1.3. 

6.3 MANUAL PROVISIONING OF THE PROTECTION PATH 

The provisioning of the protection path begins with the selection of the source and 

destination of the provisioning (i.e., INT_SOURCE and INT_SINK, respectively). 

However, differently from the first executed provisioning (i.e., the working path 

provisioning), the already provisioned interfaces are informed to the user. This 

difference is represented by red marks in Figure 6-19. 

 

Figure 6-19 – Manual provisioning 

However, as we want to provision a protection path, the same interfaces of the last 

example were selected: in_int_so_EQ1_CIC_01 (from equipment EQ1_CIC_01) and 

out_int_sk_EQ4_CIC_01 (from equipment EQ4_CIC_01). These interfaces are, 

respectively, INT_SOURCE and INT_SINK. This selection, as well as the selection of 
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the manual provisioning mode (a previously defined requirement of the protection 

path provisioning), is presented in Figure 6-19. 

The manual provisioning mode consists in iterative steps in which the user is 

required to choose the input interfaces (VAR_INs) and the output interfaces 

(VAR_OUTs) that compose the path to be provisioned until a selected output 

interface equals the defined destination interface (INT_SINK). All iterations of the 

provisioning of the protection path are presented in Figure 6-20 and in Figure 6-23. 

These figures contain selected parts of the provisioning result mounted together in 

chronological order. The first part of the protection path’s provisioning is represented 

in Figure 6-20, which corresponds to the selection of the interfaces of EQ1. 

 

Figure 6-20 – First part of the manual provisioning (provisioning of EQ1 modules) 

As can be seen in Figure 6-20, while the interfaces are being selected by the user, 

the provisioning tool presents the current provisory path (i.e., the path that is being 

mounted) with all its composing interfaces and attributes.  

As the working path must be protected in the electrical domain, the protection path to 

be provisioned uses the ODU Switch to duplicate the information transfer and hence 

implement the protection. The use of a second output port of this equipment (i.e., the 

port which is not being used by the working path) in the protection path is 

represented by the red mark in Figure 6-20. In addition, Figure 6-20 illustrates that 

not only declared equipment was used in the provisioning of the protection path, 



168 

possible equipment were also required in order to allow the information transfer 

through the desired optical fibers. The selection of interfaces from possible 

equipment is represented in orange in Figure 6-20 and in Figure 6-22. 

The purple mark in Figure 6-20 represents an important limitation on the provisioning 

tool. This mark highlights an example of invalid interface that is offered to the user as 

a correct provisioning candidate. However, the candidate interface is invalid with 

relation to the domain, not with relation to the software algorithm. I.e., even though 

the candidate interfaces respect all the restrictions and definitions established in the 

provisioning tool algorithm, it does not respect a domain aspect: the geographical 

position of the equipment. Without this important consideration, the software cannot 

know the distance between the network equipment, which may be kilometers away 

one from the other. In the example highlighted in purple in Figure 6-20, an interface 

from EQ4 is exhibited as a candidate to be directly bound to an interface from EQ1, 

what clearly does not respect the topology presented in Figure 6-1. 

An interesting example of this limitation of the provisioning tool would be observed if, 

instead of selecting the minimum number of new bindings in the automatic 

provisioning of the working path, we had selected the minimum number of interfaces 

as the priority. In such case, the first path that would be returned to the user by the 

tool path finding process is represented in Figure 6-21. 
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Figure 6-21 – Invalid network provisioning 

As can be seen in Figure 6-21, the returned path would have only 18 interfaces (and 

also 6 new bindings, and 8 interfaces from possible equipment), while the path 

actually provisioned has 26 interfaces. However, this smaller path is invalid and, 

hence, it should not be considered by the provisioning tool user. The suggested path 

is invalid because it does not respect the topology presented in Figure 6-1: it does 

not use any amplifier to transfer information from EQ1 to EQ4 and directly binds 

interfaces from these equipment. 

The suggestion of false candidate interfaces caused by the provisioning tool 

limitation in dealing with the geographical position of equipment is recurrent and can 

be found more times in Figure 6-20 and in Figure 6-22. This problem forces the 

network operator to evaluate carefully all the provisioning results (in both automatic 

and manual modes) in order to assure a valid provisioning. The solution of this 

problem is considered a future work and it involves the redesign of the provisioning 

tool. As the Ontology Reference Model already provides the necessary attributes and 

concepts for this solution, a second version of the design model should reflect these 

pm12

CIC
01

NIC
01

OIC
01

WSS

ODU 
Switch

CIC
02

O
TN

 S
w

it
ch

 –
EQ

 4

CIC
01

NIC
01

OIC
01

WSS

ODU 
Switch

CIC
02

OIC
02

O
TN

 S
w

it
ch

 –
EQ

 1

pm24

A
M

P
 –

EQ
 2

NIC
P1

OIC
P1



170 

necessary concepts, as well as the implementation should be modified to treat them. 

These concepts are the latitude and longitude attributes that every Transport 

Processing Function and Matrix have in the Ontology Reference Model, as well as 

the site concept (a site aggregates equipment in a given location) that can be found 

in the site ontology presented in subsection 4.3.3. 

Back to the provisioning of the protection path, in Figure 6-22 the reminder of the 

provisioning iterations can be observed. In this provisioning process, the requirement 

that the protection path must not share any optical fiber with the working path was 

considered. As can be seen in Figure 6-17, the working path uses pm13 and pm34, 

and, because of that, the protection path must use pm12 and pm24. The use of these 

two physical media is represented in Figure 6-22 by blue marks, indicating the use of 

the interfaces of the Physical Media Equipment in the intermediate path (i.e., the 

protection path that was being mounted). 
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Figure 6-22 – Second part of the manual provisioning 

The red mark in Figure 6-22 indicates that the electrical protection that began in the 

ODU Switch of EQ1 is terminated in the ODU Switch of EQ4. In addition, as in Figure 

6-20, the orange marks in Figure 6-22 shows that interfaces from possible equipment 

were used in the provisioning of the protection path.  

Finally, by the selection of INT_SOURCE as VAR_OUR, represented in the last line 

of Figure 6-22, the path is complete and the consistency of the knowledge base’s 

resulting state is verified by the reasoner. When no problem is found, the provisioning 

process is finished and the user must answer if he or she would like to provision 

another path. In case of a negative answer, the performed network provisioning is 

saved as an OWL file, which is made available to the user. These last steps are 

represented in Figure 6-23. 
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Figure 6-23 – End of provisioning process 

The final topological view of the network provisioning is presented in Figure 6-24. As 

it can be seen, the working path goes from EQ1 to EQ4 through EQ3, passing on 

pm13 and pm34, while the protection path goes from the same source to the same 

destination by a different route, passing through EQ2 instead of EQ3, using pm12 

and pm24. Moreover, Figure 6-24 shows that the two paths have an intersection, 

which is represented as an orange dotted line. 

 

Figure 6-24 – Topological representation of the provisioned paths 

The same provisioned network can be seen in Figure 6-25 using a transport view 

instead of a topological view. Note that the network contains both the declared 

equipment and the possible equipment, as both were used in the network 

provisioning. This figure also represents, with the same colors used in Figure 6-24, 

the two provisioned paths (by means of its composing interfaces). In addition, 

possible equipment are differentiated from the declared equipment by a red border in 

Figure 6-25. 
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Figure 6-25 – Representation of the provisioned paths at the complete network 

Using the representation of Figure 6-25, it can be seen that the working path could 

be provisioned using only declared equipment, while the protection path required 

three possible equipment to be provisioned.  

All interfaces that are part of each one of the provisioned paths are seen in Figure 

6-25. However, as the names of these interfaces are not displayed in the figure, they 

are provided in Table 6-2, as well as the name of the equipment that contains these 

interfaces. In this table, the interfaces shared by both paths are presented in bold. In 

addition, the Table 6-2 also contains the attribute values for both paths. 
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Table 6-2 – Paths' attributes and interfaces 

 Working Path Protection Path 

Num. of 
Interfaces 

26 26 

New 
bindings 

0 7 

Int. of 
Poss. Eq. 

0 6 
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1. in_int_so_EQ1_CIC_01 

 from: EQ1_CIC_01 
2. out_int_so_EQ1_CIC_01 

 from: EQ1_CIC_01 
3. in_int01_so_EQ1_ODUSwitch 

 from: EQ1_ODUSwitch 
4. out_int01_so_EQ1_ODUSwitch 

 from: EQ1_ODUSwitch 
5. in_int01_so_EQ1_NIC_01 

 from: EQ1_NIC_01 
6. out_int_so_EQ1_NIC_01 

 from: EQ1_NIC_01 
7. in_int01_so_EQ1_WSS 

 from: EQ1_WSS 
8. out_int01_so_EQ1_WSS 

 from: EQ1_WSS 
9. in_int_so_EQ1_OIC_01 

 from: EQ1_OIC_01 
10. out_int_so_EQ1_OIC_01 

 from: EQ1_OIC_01 
11. in_int01_Physical_Media_13 

 from: Physical_Media_13 
12. out_int01_Physical_Media_13 

 from: Physical_Media_13 
13. in_int01_EQ3_AMP 

 from: EQ3_AMP 
14. out_int01_EQ3_AMP 

 from: EQ3_AMP 
15. in_int01_Physical_Media_34 

 from: Physical_Media_34 
16. out_int01_Physical_Media_34 

 from: Physical_Media_34 
17. in_int_sk_EQ4_OIC_02 

 from: EQ4_OIC_02 
18. out_int_sk_EQ4_OIC_02 

 from: EQ4_OIC_02 
19. in_int02_sk_EQ4_WSS 

 from: EQ4_WSS 
20. out_int01_sk_EQ4_WSS 

 from: EQ4_WSS 
21. in_int_sk_EQ4_NIC_01 

 from: EQ4_NIC_01 
22. out_int01_sk_EQ4_NIC_01 

 from: EQ4_NIC_01 
23. in_int01_sk_EQ4_ODUSwitch 

 from: EQ4_ODUSwitch 
24. out_int01_sk_EQ4_ODUSwitch 

 from: EQ4_ODUSwitch 
25. in_int_sk_EQ4_CIC_01 

 from: EQ4_CIC_01 
26. out_int_sk_EQ4_CIC_01 

 from: EQ4_CIC_01 

1. in_int_so_EQ1_CIC_01 

 from: EQ1_CIC_01 
2. out_int_so_EQ1_CIC_01 

 from: EQ1_CIC_01 
3. in_int01_so_EQ1_ODUSwitch 

 from: EQ1_ODUSwitch 
4. out_int02_so_EQ1_ODUSwitch 

 from: EQ1_ODUSwitch 
5. in_int01_so_POSSIBLE_NIC_P1 

 from: POSSIBLE_NIC_P1 
6. out_int_so_POSSIBLE_NIC_P1 

 from: POSSIBLE_NIC_P1 
7. in_int02_so_EQ1_WSS 

 from: EQ1_WSS 
8. out_int02_so_EQ1_WSS 

 from: EQ1_WSS 
9. in_int_so_POSSIBLE_OIC_P1 

 from: POSSIBLE_OIC_P1 
10. out_int_so_POSSIBLE_OIC_P1 

 from: POSSIBLE_OIC_P1 
11. in_int01_Physical_Media_12 

 from: Physical_Media_12 
12. out_int01_Physical_Media_12 

 from: Physical_Media_12 
13. in_int01_EQ2_AMP 

 from: EQ2_AMP 
14. out_int01_EQ2_AMP 

 from: EQ2_AMP 
15. in_int01_Physical_Media_24 

 from: Physical_Media_24 
16. out_int01_Physical_Media_24 

 from: Physical_Media_24 
17. in_int_sk_EQ4_OIC_01 

 from: EQ4_OIC_01 
18. out_int_sk_EQ4_OIC_01 

 from: EQ4_OIC_01 
19. in_int01_sk_EQ4_WSS 

 from: EQ4_WSS 
20. out_int02_sk_EQ4_WSS 

 from: EQ4_WSS 
21. in_int_sk_POSSIBLE_NIC_P2 

 from: POSSIBLE_NIC_P2 
22. out_int01_sk_POSSIBLE_NIC_P2 

 from: POSSIBLE_NIC_P2 
23. in_int02_sk_EQ4_ODUSwitch 

 from: EQ4_ODUSwitch 
24. out_int01_sk_EQ4_ODUSwitch 

 from: EQ4_ODUSwitch 
25. in_int_sk_EQ4_CIC_01 

 from: EQ4_CIC_01 
26. out_int_sk_EQ4_CIC_01 

 from: EQ4_CIC_01 

To conclude this section, it is important to mention that the provisioning tool and all 

the files that are necessary to reproduce the example here presented can be found in 

the thesis shared folder: https://goo.gl/L1UPv4. 
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6.4 DISCUSSION ON THE PROVISIONING TOOL PERFORMANCE 

In this section, an overview about the provisioning tool performance is provided. 

However, first, it must be emphasized that performance is not a requirement of the 

software and is out of the thesis scope. Hence, this issue will not be here addressed 

in depth – some performance information is provided so the user can have a better 

comprehension about the provisioning tool. 

To perform an evaluation of the provisioning tool execution time, the total 

provisioning time is split in its composing parts, which are: 

i. Include Time: the time to include all instances from the input specification in 

the knowledge base; 

ii. Reasoning Time: the reasoner’s execution time after the loading of the 

instances in the knowledge base; 

iii. Path Finding Time: the time to execute the automatic path finding and return 

the possible candidate paths to the user; 

iv. Overhead Time: is the processing time not directly related to the network 

provisioning activities, calculated from total time minus the previous three 

measured times. 

Once again, the total provisioning time is the sum of its four composing parts. In this 

section, the total time is measured from the include time to the end of the path finding 

time. I.e., the time to apply the object properties that represent the path provisioning, 

the time to perform the last consistency checking, and the time to save the OWL file 

are not evaluated in this section. 

To execute a set of tests, a specific Java software was developed to evaluate the 

performance of the provisioning tool. Although not in the scope of this thesis, the 

tester is provided in the thesis shared folder. 

The network presented in Figure 6-26 was used in the performance test here 

presented. This network has, as possible equipment, its lowest layer with four 

equipment: two source equipment and two sink equipment. All these equipment are 

composed of exactly one adaptation function (with one input and one output) bound 
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with a termination function (also with one input and one output). This file also 

contains the declaration of two physical media.  

 

Figure 6-26 – Test network with N layers 

The upper layers of the test network, presented in Figure 6-26, are specified as 

declared equipment. The test consists in variations of the number of layers declared 

in the possible equipment file, ranging from 1 to 3 layers. In all tests, the upper layers 

are always composed of four equipment: two source equipment and two sink 

equipment. All these equipment are composed of exactly one adaptation function 

(with one input and one output) bound with a termination function (also with one input 

and one output), which is bound to a matrix (with three ports – one input, when 

source, or two inputs, when sink). 

In the test here performed, any restrictions were defined (i.e., there are no 

restrictions on the number of paths, their sizes, number of new bindings, or number 

of interfaces from possible equipment). The resulting times of the execution of the 

test for the network presented in Figure 6-26, with N ranging from 1 to 3, is presented 

in Table 6-3. 

L1
L0

L2
LN

Source
Port

Sink
Port

Fi
xd

e
 p

o
rt

io
n

 in
 a

ll 
te

st
s

(f
ile

: 
p

o
ss

ib
le

)
P

o
rt

io
n

 t
h

at
 a

re
 in

cr
e

as
e

d
 in

 t
e

st
s

(f
ile

: 
d

e
cl

ar
e

d
)



177 

Table 6-3 – Path finding time for no limits set 

Execution Times 1 Layer 2 Layers 3 Layers 

Include Time (ms) 2.432,67 3.995,00 5.716,33 

Reasoning Time (ms) 2.646,00 2.644,67 2.730,33 

Path Finding Time (ms) 338,33 12.392,33 1.018.576,00 

Overhead Time (ms) 1.084,00 1.604,33 2.215,67 

Total Time (ms) 6.500,67 20.671,33 1.029.206,33 

Within the presented times, it can be observed that, while the reasoning time is 

almost constant when varying the number of layers, the include time and the 

overhead time are better approximated by polynomial functions, and, more 

importantly, the path finding time (the execution of the provisioning algorithm 

presented in this thesis) presents an exponential characteristic. 

Using the data provided in Table 6-3, the relevancy of the path finding time with 

relation to the other evaluated times can be observed in the graphs presented in 

Figure 6-27. 

 

Figure 6-27 – Proportion of each evaluated time when varying the number of layers 

It can be clearly noted in Figure 6-27 that, when more layers are added to the 

network (i.e., the bigger the network is), most time the path finding will spend. The 

exponential characteristic of the path finding time can be better visualized in Figure 

6-28, where the path finding time is approximated by an exponential curve, 

represented in red. 
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Figure 6-28 – Exponential characteristic of the path finding when no restrictions are defined 

The exponential running time here presented can also be found in the work 

presented in (KUIPERS; DIJKSTRA, 2009), which defined path finding algorithms for 

multi-layer graphs. The work there presented also demonstrated the NP-complete 

nature of the multi-layer path finding problem, which a step of the network 

provisioning process (DIJKSTRA et al., 2009). However, it is important to highlight 

that, as presented in section 2.5, the problem there addressed differs from the one 

we address in this thesis. 

The problems related to this exponential characteristic of the path finding times when 

dealing with no limitations can be observed, for example, when the number of layers 

in the test is set to four. In this case, the provisioning tool reports an 

OutOfMemoryError: Java heap space. However, it is important to highlight that in a 

real provisioning case, it is unlikely that the provisioning tool would be used to find all 

paths from two points or that no restrictions would be defined. In real situations, the 

network operator will need just some options to evaluate which is the best path to be 

provisioned. Hence, the network operator (i.e., the provisioning tool user) would use 

the restrictions available (number of paths, size of the path, number of new bindings, 

and number of interfaces from possible equipment) in order to just evaluate the paths 

that most fit in the provisioning strategy.  

The use of the restrictions allows the provisioning tool execution in networks with a 

higher number of elements and in a smaller time. The software performance 
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improvement can be observed when restrictions are set, as also tested in the 

provisioning tool. As the performed test involves many executions of the provisioning 

tool and considering that this is a complementary discussion, only the results of the 

test are here presented to illustrate the restrictions’ importance. The complete test 

information and its results can be found in the thesis shared folder. Six categories of 

restrictions were created for this other test. These categories are:  

 NL: unlimited, where no limit is defined; 

 L1: limited maximum number of paths; 

 L2: limited maximum number of interfaces in a path; 

 L3: limited maximum number of new bindings; 

 L4: limited maximum number of interfaces from possible equipment; 

 AL: limited defined for all parameters. 

In the NL category, just one test was performed, as there are no restrictions to be 

varied (i.e., it is the same test already presented in this section). For the other five 

categories, five executions were performed. The restrictions are related to the 

executions’ number: the higher the number, fewer restrictions were imposed. The 

mean total provisioning time of all categories tested can be visualized in Figure 6-29. 

 

Figure 6-29 – Restriction tests representing the restrictions’ use importance 
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It can be observed in Figure 6-29 that the highest provisioning time was observed in 

the NL category. For all other categories, as more restrictions are imposed, the path 

finding times are smaller – this happens because fewer paths are found. 

To conclude, all tests were performed on a Windows 8.1 Pro 64 bits, in an Intel Core 

i5-3570 CPU with 3.40 GHz and 8,00 GB of memory. No other special pre 

configurations were made for the test. 



181 

7 CONCLUSION 

Provisioning is an important activity in the configuration of networks. The ITU-T 

Recommendation M.3400 defines network provisioning as the "procedures which are 

necessary to bring an equipment into service, not including installation" (ITU-T, 

2000a). Resource and service provisioning are recent challenges in communication 

network planning (MATERA; LISTANTI; PIÓRO, 2015) and are important activities in 

paradigms of the future networking, like service-oriented networks (ESCALONA et 

al., 2011), cloud networking (HOUIDI et al., 2011a), and network virtualization 

(SCHAFFRATH et al., 2009). 

In this thesis chapter 2, the most recent studies in service provisioning and in 

infrastructure provisioning were presented, as well as the works that have already 

used ontologies somehow for network provisioning. In addition, related works 

proposed in the literature concerning network models and path finding in technology-

independent multi-layer transport networks were presented and discussed. 

Five major problems related to the infrastructure layer’s provisioning solutions were 

pointed out: (i) the absence of formal semantics and lack of interoperability, (ii) the 

need for automation, (iii) the limited consideration of network equipment, (iv) the 

technology dependence, and (v) the limited layering considerations. Regarding these 

important identified problems, this thesis investigated if the use of semantic 

technologies, especially ontologies, can solve the lack of interoperability in the 

transport network area and if these technologies can be the basis for a computational 

solution that can provision technology-independent multi-layer transport networks 

considering the equipment states. The adopted hypothesis was that the use of a well-

founded Ontology Reference Model of the Recommendation ITU-T G.800 is able to 

give precise semantics to the transport network area, allowing interoperability, and 

that the use of this Ontology Reference Model in a rigid ontology-based development 

method can generate a software that is able to provision technology-independent 

multi-layer transport networks considering the equipment states. Regarding this 

hypothesis, the thesis general objective was to develop an ontology-based 
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provisioning solution for technology-independent multi-layer transport networks. To 

accomplish the general objective, three specific objectives were defined: 

 SO1: the development of an Ontology Reference Model for technology-

independent multi-layer transport networks based on a recognized 

international standard, the Recommendation ITU-T G.800, and built with an 

expressive well-founded ontology language to the definition of precise 

semantics and to allow communication, learning, and interoperation; 

 SO2: the development of a semantically improved network model for the 

provisioning of technology-independent multi-layer transport networks, here 

called OWL Computational Ontology. This computational artifact must be 

generated from the Ontology Reference Model (SO1) through a rigid ontology 

engineering; and 

 SO3: the development of an ontology-based network provisioning knowledge-

based system that uses the OWL Computational Ontology (SO2) as a 

knowledge base. This system must be able to perform circuit provisioning and 

connection provisioning on a technology-independent multi-layer transport 

network, considering the equipment state. 

To accomplish the desired objectives, the MDA ontology-based development method 

used to develop the provisioning tool knowledge base was presented in this thesis 

chapter 3. This method is composed of three phases, each one with a respective 

artifact: the Ontology Reference Model, the design model, and the OWL 

Computational Ontology. The three phases of the ontology-based development 

method were described, as well as their respective implementation technologies. 

The Recommendation ITU-T G.800 Ontology Reference Model built to define precise 

semantics to the transport network area, eliminating semantic deficiencies and 

allowing interoperation, was presented in chapter 4. The Recommendation ITU-T 

G.800, which is the standard that describes the functional architecture of transport 

networks in a technology-independent way, was modeled using OntoUML. OntoUML 

is a highly expressive well-founded ontology language that has been successfully 

employed in a number of industrial projects in several different domains 

(ALBUQUERQUE; GUIZZARDI, 2013). In chapter 4, the thesis SO1 was achieved. 



183 

The use of the Ontology Reference Model in the MDA ontology-based development 

method results in the knowledge base of the desired KBS provisioning tool – 

accomplishing the thesis SO2. The provisioning tool, divided into its main parts (its 

knowledge base, reasoning engine, and domain logics), is presented in chapter 5. As 

desired, this software is able to provision technology-independent multi-layer 

transport networks considering the networks equipment states. Hence, the thesis 

SO3 was also achieved. 

In chapter 5, conceptual and computational issues of the implemented knowledge-

based system for transport networks provisioning were demonstrated on technology-

independent examples. However, the technology independence is one of the 

software main advantages, allowing it to be used in a multitude of ITU-T G.800 

compliant transport network technologies. To provide a more realistic use of the 

provisioning tool, as well as to highlight its use in a specific transport network 

technology, in chapter 6, the provisioning tool was applied to an Optical Transport 

Network (OTN). In this chapter, two paths were provisioned, a working path and a 

protection path, using, respectively, the automatic and the manual provisioning 

modes available in the KBS provisioning tool. 

Considering that (1) an Ontology Reference Model of the Recommendation ITU-T 

G.800 was created, and that it was built with a well-founded ontology language within 

a rigid ontology engineering, resulting in a model capable of giving precise semantics 

to the transport network area, and thus allowing interoperability. Considering also 

that (2) a rigid ontology-based development method was here used to (3) generate a 

KBS provisioning tool that is able to provision technology-independent multi-layer 

transport networks aware of the network’s equipment states. As well as considering 

that this tool was tested in a technology-specific example, being able to achieve the 

desired results (i.e., to perform the circuit and connection provisioning of an OTN 

transport network), it can be concluded that the thesis hypothesis is confirmed. 
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7.1 THESIS MATERIAL 

We provide in this thesis a shared folder with all the material related to the thesis. 

The links to access this folder are: 

 https://goo.gl/L1UPv4 – Shortened link 

 https://drive.google.com/folderview?id=0B5G6gMOt9j5lQ1JyVHhGOEJmenM

&usp=sharing – Complete link 

In the shared folder, the reader can find: 

 the Recommendation ITU-T G.800 OntoUML Ontology Reference Model, 

 the OntoUML design model, 

 the OWL Consistency Model and the OWL Inference Model, 

 the provisioning tool Java file 

 the Java performance tester, test information and results discussed in section 

6.4, 

 the declared equipment and the possible equipment specifications used in the 

example of chapter 6, and 

 the specification described in this thesis Appendix II. 

7.2 FUTURE WORKS 

This thesis intended to demonstrate that an Ontology Reference Model can define 

precise semantics to the transport network area and that it can be used in a rigid 

ontology-based development method to generate a software that is able to provision 

technology-independent multi-layer transport networks considering the networks 

equipment states. Positive results indicate that the objective was achieved. However, 

both the Ontology Reference Model and the provisioning tool can be significantly 

improved in future works to cover better the intended domain, as well as to be 

extended to other domains and applications. Regarding this, the first category of 

future works to be here presented concerns the already known limitations of the 

provisioning tool, which were presented in chapters 5 and 6. 
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One of the most important limitations of the current version of the provisioning tool is 

the absence of a graphical interface. The development of a graphic interface can 

provide a visual representation of the network to be provisioned and would 

significantly improve the user’s comprehension about what is happening in the paths’ 

provisioning, performing then an important role and, hence, being desired for future 

implementations. 

Designed to provide an easy network provisioning to the user, the current version of 

the provisioning tool has a restriction on the representation of the complete transport 

network domain. The software ease of use is important; however, by adopting this 

restriction, the software becomes limited because it cannot operate on all real 

networks. I.e., currently, the provisioning tool can only operate on the real networks 

that use the same concepts that are available in it. An example of this restriction can 

be observed for the transport processing functions. While the ITU-T G.800 OntoUML 

Ontology Reference Model formalizes all these concepts, the design model 

formalizes just a reduced set of them (e.g., it does not represent the Layer Processor 

Function). We encourage here the creation of a second version of the provisioning 

tool with less domain restrictions. However, in the development of this second 

version, the tradeoff that exists between the quantity of concepts to be managed and 

the execution time (reasoning time, path finding time, etc.) must be observed. The 

exponential characteristic of the current implementation of the path finding process is 

a limitation of the provisioning tool, preventing its execution in large networks. 

Regarding this tradeoff, optimization techniques may be employed to allow the 

execution of the provisioning tool in an acceptable time. 

Still concerning simplifications implemented in the current provisioning tool version, 

another future work is a strong treatment on the rules that are verified by the 

provisioning tool in the case of network protection, which is performed in matrices. 

The current implementation, as presented in chapter 5, does not verify all possible 

cases of occurrences of this situation and may lead to problems in more complex 

networks. 

The last case of future work that can be classified in the category of already known 

limitations of the provisioning tool is the non-representation of the geographical 

positions of the networks equipment. This problem leads to situations where invalid 



186 

candidate interfaces are offered to the user during the network provisioning. As 

already discussed and exemplified in chapter 6, solution proposals involve the use of 

the geographical position attribute that is present in the ITU-T G.800 Reference 

Model, as well as the use of concepts from the Simple Site Ontology. 

Regarding the provisioning tool algorithm improvement, a better treatment of the 

problematic situations in the manual provisioning can be thought as future works. 

When no VAR_IN candidate or no VAR_OUT candidate is found, the algorithm could 

be more robust and, instead of finishing the provisioning algorithm, it could make a 

rollback to the last valid state. The verification of possible interfaces one step further, 

to see if the displayed interfaces have other possible bindings or not, is another 

possibility. 

Another interesting future work is the implementation of a software to generate valid 

network declarations to be used as input files in the network provisioning. The 

software, a graphical equipment studio, could use the same design model used in the 

provisioning tool to perform semantic validations. Together with a syntactical 

validation, the generation of valid inputs can be guaranteed. This input generator 

could be implemented coupled or not to the provisioning tool. In addition, a visual 

interface for this software would considerably help the declaration of networks. A 

graphical equipment editor for transport networks have already been developed in 

(ANHOLETTI, 2014). Although based on the same standard of the provisioning tool, 

the equipment editor presented in (ANHOLETTI, 2014) does not use the same 

metamodel of the work here presented and, hence, it cannot be directly coupled to 

this work. We encourage modifications on the editor presented in (ANHOLETTI, 

2014) to make it compatible with the provisioning tool. 

This version of the provisioning tool uses a three layered ontology structure, 

represented in Figure 4-4, to create the design model that is then transformed to the 

provisioning tool knowledge base. As future works, other ontology layers could be 

developed and coupled to the Ontology Reference Model, increasing its domain 

representation (vertically, including new levels of abstractions about the concepts 

already defined; or horizontally, including new technologies and concepts). Once in 

the Ontology Reference Model, the new ontologies could be used in the development 

of a new and extended design model, which could be transformed to the provisioning 
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tool knowledge base. An example of a possible extension of the provisioning tool is 

the modeling of network standards that deal with specific technologies. A candidate 

technology-specific recommendation to be modeled is the Recommendation ITU-T 

G.872 (ITU-T, 2012b), which specifies the Optical Transport Networks. Attributes that 

can be included to deal with specific transport technologies are suggested in 

(DIJKSTRA et al., 2008). For the lower layers, (DIJKSTRA et al., 2008) says that 

power levels, signal degradation, cable length, and optical dispersion should be 

used; and for higher layers, the modeling of delay and jitter are suggested. 

The provisioning tool here defined claims to perform network provisioning. However, 

network provisioning can be interpreted in two forms: in the first one, the provisioning 

is performed in the software network abstraction; and in the second form, the 

provisioning is performed in the real physical network. As presented in chapter 5, this 

tool is able to perform the first form of provisioning: its results are physical and logical 

relations inside the software network model, saved as an OWL output file. As the 

software does not have any direct connection to the real network to be provisioned, 

the network operator must replicate the results of the tool provisioning process in the 

real network to be configured. The automated configuration of the real network can 

be implemented in future developments of the provisioning tool. In these newer 

versions, the provisioning tool can output network configuration files that can be 

manipulated the network – e.g., by using the YANG data model and the NETCONF 

protocol (SCHONWALDER; BJORKLUND; SHAFER, 2010). Such procedure would 

eliminate intermediate human errors and reduce the network provisioning time. With 

this future implementation, the network tool can be classified in the group of fully 

automated provisioning mechanisms defined in (DOVERSPIKE; YATES, 2012) and 

presented in this thesis in subsection 2.2.2. 

To conclude this thesis, the last future work here suggested is the possible 

integration of the provisioning tool with NDL and its related tools and languages. The 

provisioning tool could benefit from the extensive experience that the NDL language 

and related tools have, as well as it could help to improve the semantics of NDL. 
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7.3 PUBLICATIONS 

Five works were published during the development of this thesis. All published works 

concerns the use of ontologies and were cited in this document. The relation 

between four of these works and the models used in this thesis can be found in 

Figure 7-1. 

 

Figure 7-1 – Contributions of the published works to the thesis 

In this subsection, we present in chronological order the list of the published works 

and their corresponding abstracts. 

ODISE 2012 – Identification of Semantic Anti-Patterns in Ontology-Driven 

Conceptual Modeling via Visual Simulation (SALES; BARCELOS; GUIZZARDI, 

2012) 

The construction of large-scale reference conceptual models and ontologies is a 

complex engineering activity. To develop high quality models, a modeler must have 

the support of expressive engineering tools such as theoretically well-founded 

modeling languages and methodologies, ontological patterns and computational 

environments. Patterns and Anti-Patterns are known to be an efficient way to reuse 

knowledge from experts’ successful past experiences. This paper proposes a set of 

Semantic Anti-Patterns for ontology engineering. These anti-patterns capture error 

prone modeling decisions that can result in the creation of models that allow for 

unintended model instances (representing undesired state of affairs). The anti-
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patterns presented here have been empirically elicited through an approach of 

ontology conceptual models validation via visual simulation. 

Ontobras 2013 – An Automated Transformation from OntoUML to OWL and 

SWRL (BARCELOS et al., 2013) 

OntoUML and OWL are ontology languages appropriated to different knowledge 

representation levels. In order to have better knowledge representation and 

reasoning capabilities in OWL ontologies, an Ontology Engineering should be used – 

which corresponds to the transformation of a conceptual model ontology language, 

such as OntoUML, to a computational ontology language, such as OWL. This paper 

aims to bridge the expressivity gap between these languages through a Model Driven 

Architecture automated transformation from OntoUML to OWL with SWRL rules that 

contributes to (i) make easier the OWL creation from OntoUML, (ii) eliminate the 

human errors in this process, (iii) improve the resultant OWL ontology semantics. 

Ontobras 2013 – Na Ontology Reference Model for Normative Acts 

(BARCELOS; GUIZZARDI; GARCIA, 2013) 

Normative Acts are important legislative and regulatory documents made by different 

governmental organs. Every year, a huge amount of information is provided in 

Normative Acts by these organs without control, i.e., there is no effective way to 

verify redundancies, inconsistencies, cross-impact and ambiguities. In this paper, we 

propose a domain ontology for Normative Acts based on official documents (the 

Brazilian Constitution and the Redaction Manual of the Presidency of the Republic) 

as a reference model that can be used to improve communication, interoperation and 

automation of Normative Acts. The reference model is built with a highly expressive 

well-founded language within a methodology that ensures its quality. 

CNSM 2014 – An Ontology-based Approach to Improve SNMP Support for 

Autonomic Management (MONTEIRO et al., 2014) 

The SNMP protocol remains a broadly adopted technology in the Internet 

management framework and its MIB was proposed to guarantee interoperation. In 

order to enable the management of new equipment, the human manager must 

compile the correlated MIB file (MIB description) and choose the right objects to 
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manage an implicit knowledge. This paper presents an ontology-based approach and 

a Semantic SNMP extension to improve the framework's autonomic support. 

Computer Standards & Interfaces 2016 – On the Importance of Truly 

Ontological Distinctions for Standardizations: a Case Study in the Domain of 

Telecommunications (BARCELOS et al., 2016) 

Standards are documents that aim to define norms and common understanding of a 

subject by a group of people. In order to accomplish this purpose, these documents 

must define its terms and concepts in a clear and unambiguous way. Standards can 

be written in two different ways: by informal specification (e.g. natural language) or 

formal specification (e.g. math-based languages or diagrammatic ones). Remarkable 

papers have already shown how well-founded ontology languages provide resources 

for the specification's author to better distinguish concepts and relations meanings, 

resulting in a better specification. This paper has the objective to expose the 

importance of truly ontological distinctions for standardizations. To achieve this 

objective, we evaluate a math-based formal specification, in Z notation, using a well-

founded ontology language for a telecommunications case study, the ITU-T 

Recommendation G.805. The results confirm that truly ontological distinctions are 

essential for clear and unambiguous specifications. 
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APPENDIX I – SWRL RULES 

All eleven Semantic Web Rule Language (SWRL) rules here presented are part of 

the design model and are part of the provisioning tool knowledge base. 

Table I-1 – Design Model and Inference Model SWRL Rules 

ID SWRL Rule 

1 

Termination_Function(?v1), Termination_Function(?v7), DifferentFrom(?v1,?v7), Port(?v2), 

Port(?v3), Port(?v5), Port(?v6), DifferentFrom(?v2,?v3), DifferentFrom(?v2,?v5), 

DifferentFrom(?v2,?v6), DifferentFrom(?v3,?v5), DifferentFrom(?v3,?v6), DifferentFrom(?v5,?v6), 

Physical_Media(?v4), Layer_Network(?v8), Layer_Network(?v9), componentOf(?v1,?v2), 

componentOf(?v4,?v3), componentOf(?v4,?v5), componentOf(?v7,?v6), binds(?v2,?v3), 

binds(?v5,?v6), defines(?v1,?v8), defines(?v7,?v9) -> SameAs(?v8,?v9) 

2 

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), 

Adaptation_Function(?v4), Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), 

binds(?v2,?v3), defines(?v1,?v8) -> adapts_from(?v4,?v8) 

3 

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), 

Adaptation_Function(?v4), Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), 

binds(?v2,?v3), adapts_from(?v4,?v8) -> defines(?v1,?v8) 

4 

Termination_Function(?v7), Port(?v5), Port(?v6), DifferentFrom(?v5,?v6), 

Adaptation_Function(?v4), Layer_Network(?v9), componentOf(?v4,?v5), componentOf(?v7,?v6), 

binds(?v5,?v6), defines(?v7,?v9) -> adapts_to(?v4,?v9) 

5 

Termination_Function(?v7), Port(?v5), Port(?v6), DifferentFrom(?v5,?v6), 

Adaptation_Function(?v4), Layer_Network(?v9), componentOf(?v4,?v5), componentOf(?v7,?v6), 

binds(?v5,?v6), adapts_to(?v4,?v9) -> defines(?v7,?v9) 

6 

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Physical_Media(?v4), 

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), defines(?v1,?v8), 

binds(?v2,?v3) -> Layer_Network.isLast(?v8, true) 

7 
Adaptation_Function(?v4), Layer_Network(?v8), Layer_Network(?v9), DifferentFrom(?v8,?v9), 

adapts_from(?v4,?v8), adapts_to(?v4,?v9) -> client_of(?v8,?v9) 
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ID SWRL Rule 

8 
Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Interface(?v4), Interface(?v5), 

DifferentFrom(?v4,?v5), maps(?v4,?v2), maps(?v5,?v3), binds(?v2,?v3) -> int_binds(?v4,?v5) 

9 

Equipment(?v1), Equipment(?v6), DifferentFrom(?v1,?v6), Interface(?v4), Interface(?v5), 

DifferentFrom(?v4,?v5), componentOf(?v1, ?v4), componentOf(?v6,?v5), int_binds(?v4,?v5) -> 

eq_binds(?v1,?v6) 

10 
Transport_Function(?v1), Port(?v2), Port(?v3), Transport_Function(?v4), componentOf(?v1,?v2), 

componentOf(?v4,?v3),binds(?v2,?v3)->tf_binds(?v1,?v4) 

11 Matrix(?v1), Layer_Network (?v2), hasLayer(?v1,?v2) -> Layer_Network.isLast (?v2, false) 

12 

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Matrix(?v4), 

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3), 

defines(?v1,?v8) -> hasLayer(?v4,?v8) 

13 

Termination_Function(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Matrix(?v4), 

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3), 

hasLayer(?v4,?v8) -> defines(?v1,?v8) 

14 

Matrix(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Adaptation_Function(?v4), 

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3), 

hasLayer(?v1,?v8) -> adapts_from(?v4,?v8) 

15 

Matrix(?v1), Port(?v2), Port(?v3), DifferentFrom(?v2,?v3), Adaptation_Function(?v4), 

Layer_Network(?v8), componentOf(?v1,?v2), componentOf(?v4,?v3), binds(?v2,?v3), 

adapts_from(?v4,?v8) -> hasLayer(?v1,?v8) 

16 

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom 

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2), 

componentOf(?v5,?v3), binds(?v2,?v3), adapts_from(?v4,?v1) -> adapts_from(?v5,?v1) 

17 

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom 

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2), 

componentOf(?v5,?v3), binds(?v2,?v3), adapts_from(?v5,?v1) -> adapts_from(?v4,?v1) 
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ID SWRL Rule 

18 

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom 

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2), 

componentOf(?v5,?v3), binds(?v2,?v3), adapts_to(?v4,?v1) -> adapts_to(?v5,?v1) 

19 

Layer_Network (?v1), Adaptation_Function (?v4), Adaptation_Function(?v5), DifferentFrom 

(?v4,?v5), Port(?v2), Port(?v3), DifferentFrom (?v2,?v3), componentOf(?v4,?v2), 

componentOf(?v5,?v3), binds(?v2,?v3), adapts_to(?v5,?v1) -> adapts_to(?v4,?v1)  
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APPENDIX II – INPUT TXT FILES STRUCTURE 

In this appendix, the syntax of the provisioning tool input files is presented. The 

provisioning tool has two input files, which are (i) the declared equipment and (ii) the 

possible equipment. Together, these equipment compose the network to be 

provisioned. 

Both input files share the same syntax, which is here specified in Extended Backus-

Naur Form (EBNF). Besides the EBNF description, a visual representation of the 

specification syntax is going to be presented using railroad diagrams. Both the 

formalization of the syntax and the generation of visual representation were 

performed in the Railroad Diagram Generator15. 

The equipment declaration (i.e., the input file) is composed of three main parts: the 

instance population, the object property population, and the data property population. 

The beginning of the file, as well as the separation between its three parts, and the 

end of the file are represented by a separator, in this case, the three asterisks (***). 

The division of the network description in three parts is represented in Figure II-1. 

 

Figure II-1 – Network declaration parts 

As can be seen in Figure II-1, all the declaration parts are optional. An input file 

without information does not make sense and, hence, it must be avoided. The 

provisioning tool expects correct input files to execute the provisioning. No syntax or 

semantic treatments of the inputs are performed by the provisioning tool. 

                                            
15

 http://bottlecaps.de/rr/ui 
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As an example of the description here presented, we are going to present the 

complete declaration of the amplifier used in chapter 6 (defined in subsection 

6.1.1.2). This amplifier can be visualized in Figure II-2. 

 

Figure II-2 – Amplifier used in the network declaration example 

Even though the syntax specification presented in Figure II-1 generates a single file, 

we are going to present the amplifier description in three parts in this appendix for 

didactical purposes. 

The first part of the network declaration is the instance population, presented in 

Figure II-3. 

 

Figure II-3 – Instance population definition 

In Figure II-3, Class_Name correspond to the OWL classes available in the 

provisioning tool knowledge base. The declaration of Instance_Name is case 

sensitive. The instance population for the amplifier presented in Figure II-2 can be 

seen in Table II-1. 

Table II-1 – Amplifier’s instance population 

*** 
Layer_Network: ODU2e, ODUk, OTU, OCh, OMS, OTS; 
 
Equipment: AMP; 
 

A
M

P

O
TS

2 21 1
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Input_Interface: in_int01_AMP, in_int02_AMP; 
 
Output_Interface: out_int01_AMP, out_int02_AMP; 
 
AF_Source: af01_so_AMP, af02_so_AMP; 
 
AF_Sink: af01_sk_AMP, af02_sk_AMP; 
 
TF_Source: tf01_so_AMP, tf02_so_AMP; 
 
TF_Sink: tf01_sk_AMP, tf02_sk_AMP; 
 
Input: in_af01_so_AMP, in_af01_sk_AMP, in_tf01_so_AMP, in_tf01_sk_AMP,  
 in_af02_so_AMP, in_af02_sk_AMP, in_tf02_so_AMP, in_tf02_sk_AMP; 
 
Output: out_af01_so_AMP, out_af01_sk_AMP, out_tf01_so_AMP, out_tf01_sk_AMP,  
 out_af02_so_AMP, out_af02_sk_AMP, out_tf02_so_AMP, out_tf02_sk_AMP; 

The second part of the declaration is the object property declaration, which can be 

seen in Figure II-4. This declaration defines the relation between the network 

elements. 

 

Figure II-4 – Object property population definition 

As represented in Figure II-4, the object property declaration is composed of the 

property to be set between two instances and these two instances, which are named 

source and target. The amplifier’s object property declaration can be seen in Table 

II-2. 

Table II-2 – Amplifier’s object property population 

*** 
 
client_of: (ODU2e, ODUk), (ODUk, OTU), (OTU, OCh), (OCh, OMS), (OMS, OTS); 
 
componentOf: (AMP , in_int01_AMP), (AMP , out_int01_AMP),  
  (AMP , in_int02_AMP), (AMP , out_int02_AMP); 
 
adapts_from: (af01_so_AMP , OMS), (af01_sk_AMP , OMS),  
  (af02_so_AMP , OMS), (af02_sk_AMP , OMS); 
 
adapts_to: (af01_so_AMP , OTS), (af01_sk_AMP , OTS),  
  (af02_so_AMP , OTS), (af02_sk_AMP , OTS); 
 
defines: (tf01_so_AMP , OTS), (tf01_sk_AMP , OTS),  
 (tf02_so_AMP , OTS), (tf02_sk_AMP , OTS); 
 
componentOf: (AMP , af01_so_AMP), (AMP , af01_sk_AMP), (AMP , af02_so_AMP), (AMP , 
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af02_sk_AMP),  
  (AMP , tf01_so_AMP), (AMP , tf01_sk_AMP), (AMP , tf02_so_AMP), (AMP , tf02_sk_AMP); 
 
componentOf: (af01_so_AMP , in_af01_so_AMP), (af01_so_AMP , out_af01_so_AMP), (af01_sk_AMP , 
in_af01_sk_AMP), (af01_sk_AMP , out_af01_sk_AMP), (tf01_so_AMP , in_tf01_so_AMP), (tf01_so_AMP , 
out_tf01_so_AMP), (tf01_sk_AMP , in_tf01_sk_AMP), (tf01_sk_AMP , out_tf01_sk_AMP),  
  (af02_so_AMP , in_af02_so_AMP), (af02_so_AMP , out_af02_so_AMP), (af02_sk_AMP , 
in_af02_sk_AMP), (af02_sk_AMP , out_af02_sk_AMP), (tf02_so_AMP , in_tf02_so_AMP), (tf02_so_AMP , 
out_tf02_so_AMP), (tf02_sk_AMP , in_tf02_sk_AMP), (tf02_sk_AMP , out_tf02_sk_AMP); 
 
binds: (in_af01_sk_AMP , out_tf01_sk_AMP), (out_af01_sk_AMP , in_af01_so_AMP), (out_af01_so_AMP , 
in_tf01_so_AMP),  
 (in_af02_sk_AMP , out_tf02_sk_AMP), (out_af02_sk_AMP , in_af02_so_AMP), (out_af02_so_AMP , 
in_tf02_so_AMP); 
 
maps: (in_int01_AMP , in_tf01_sk_AMP), (out_int01_AMP , out_tf01_so_AMP),  
 (in_int02_AMP , in_tf02_sk_AMP), (out_int02_AMP , out_tf02_so_AMP); 

Finally, the last part of the description concerns the declaration of the data properties, 

which are related to the attributes of the network. The specification of this declaration 

can be seen in Figure II-5. Just like the object property population, this declaration is 

composed of the property to be set between two instances and these two instances. 

 

Figure II-5 – Data property population definition 

As can be seen in the design model, the only class attribute defined is the isLast 

Boolean attribute of the class Layer Network and, hence, this is the only data 

property available. In the amplifier example, the OTS layer must be set as the last 

layer, as can be observed in Table II-3. 

Table II-3 – Data properties' declaration 

*** 
 
Layer_Network.isLast: (OTS, true, boolean); 
 
*** 

The concatenation of the three parts of the amplifier example here presented results 

in its complete description. The text file with this description can be found in the 

thesis shared folder. 
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In the declarations, spaces and line breaks in the input files are ignored. In addition, 

the user must know that every individual declared with a different name is set as 

disjoint from each other in the knowledge base. If a same individual is declared twice 

(for example, in two different classes), only one individual is created in the knowledge 

base. 


