# UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS HUMANAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

Suscetibilidade à extinção em aves da Mata Atlântica

Valdemir Pereira de Sousa

## UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS HUMANAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

## Suscetibilidade à extinção em aves da Mata Atlântica

Valdemir Pereira de Sousa

Orientador: Prof. Dr. Sérgio Lucena Mendes

Dissertação submetida ao Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal) da Universidade Federal do Espírito Santo como requisito parcial para a obtenção do grau de Mestre em Biologia Animal

Dados Internacionais de Catalogação-na-publicação (CIP) (Biblioteca Central da Universidade Federal do Espírito Santo, ES, Brasil)

S725s

Sousa, Valdemir Pereira de, 1979-

Suscetibilidade à extinção em aves da Mata Atlântica / Valdemir Pereira de Sousa. – 2011.

53 f.: il.

Orientador: Sérgio Lucena Mendes.

Dissertação (Mestrado em Biologia Animal) – Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais.

1. Aves. 2. Vida selvagem - Conservação. 3. Mata Atlântica - Conservação. 4. Extinção (Biologia). 5. Método filogenético comparativo. I. Mendes, Sérgio Lucena, 1960-. II. Universidade Federal do Espírito Santo. Centro de Ciências Humanas e Naturais. III. Título.

CDU: 57

## Suscetibilidade à extinção em aves da Mata Atlântica

#### Valdemir Pereira de Sousa

Dissertação submetida ao Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal) da Universidade Federal do Espírito Santo como requisito parcial para a obtenção do grau de Mestre em Biologia Animal

| Prof. Dr. | Sérgio Lucena Mendes – Orientador, UFES |
|-----------|-----------------------------------------|
|           | Prof. Dr. Rômulo Ribon, UFV             |
|           | Prof. Dr. Albert David Dichtfield, UFES |

Prof. Dr. Francisco Candido Cardoso Barreto, UFES

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Vitória, ES Julho, 2011

#### Agradecimentos

Há muitas pessoas às quais devo agradecer. Entretanto, as aqui citadas foram imprescindíveis para tornar a conclusão desse curso possível.

Meus sinceros agradecimentos:

Ao meu orientador, Prof. Dr. Sérgio L. Mendes, por me aceitar como orientando e por sucessivas vezes relevar os meus "sumiços" e contratempos e pelos diálogos curtos, polidos, objetivos e, acima de tudo, experientes que incentivaram e contribuíram para a conclusão desse trabalho.

"Às meninas": Andressa Gatti, Bertha Nicolaevsky, Carol Loss, Dani Moreira, Flávia Machado e Luana Centoducatte por sempre estarem dispostas a me ajudar de alguma forma. Em especial, à Andressa Gatti pela imensa ajuda durante os Seminários II. Muito obrigado mesmo!

Ao Gabriel dos Santos (jovem "padawan"): inestimável ajuda na compilação dos dados. Espero um dia retribuir a sua imensa contribuição.

Ao Prof. Dr. Marcus Vital pela imensa boa vontade em responder as minhas dúvidas via e-mail.

Ao Prof. Dr. Leandro Juen por ter me auxiliado em algumas análises e ter compartilhado um pouco do seu conhecimento, mesmo sem nos conhecermos pessoalmente.

Por último, um especial agradecimento à minha esposa Priscila e ao meu pequeno João, por serem minha inspiração e força-motriz. A vocês que foram pacientes e que se privaram da minha presença, muito obrigado.

## Sumário

| Resumo                                                                | 06 |
|-----------------------------------------------------------------------|----|
| Abstract                                                              | 07 |
| 1. Introdução                                                         | 08 |
| 2. Material e métodos                                                 | 09 |
| 2.1. Delimitações da área de estudo e compilação da lista de espécies |    |
| 2.2. Compilação das variáveis em estudo                               |    |
| 2.3. Análises estatísticas e abordagens dos métodos comparativos      | 11 |
| 3. Resultados                                                         | 13 |
| 4. Discussão                                                          | 14 |
| 4.1. Variáveis preditoras do risco de extinção                        | 14 |
| 4.2. Variáveis não-preditoras do risco de extinção                    |    |
| 5. Referências Bibliográficas                                         | 22 |

### Lista de tabelas

| <b>Tabela 1</b> Coeficientes de correlação de <i>Pearson</i> entre os valores das nove variáveis usadas neste estudo com 665 aves da Mata Atlântica                                                                        | 30 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Tabela 2</b> Coeficientes de determinação (R <sup>2</sup> ) e <i>p</i> -valores das análises da <i>PVR</i> predizendo valores do componente filogenético para nove caracteres de 665 espécies de aves da Mata Atlântica | 31 |
| <b>Tabela 3</b> Coeficientes de regressão (β) e <i>p</i> -valores da análise de regressão múltipla entre as variáveis independentes e o risco de extinção para 665 espécies de aves da Mata Atlântica.                     | 31 |
| Tabela 4 Lista de espécies de aves ocorrentes na Mata Atlântica brasileira                                                                                                                                                 | 32 |
| Lista de figuras                                                                                                                                                                                                           |    |
| <b>Figura 1</b> Autovalores extraídos da matriz de distâncias filogenéticas entre 665 espécies de Aves da Mata Atlântica                                                                                                   | 29 |
| <b>Figura 2</b> Relação entre duas, das três variáveis do modelo de regressão: <i>abundância relativa</i> e <i>número de habitats explorados</i> , sobre o risco de extinção para 665 espécies de Aves da Mata Atlântica.  | 29 |
| <b>Figura 3</b> A Relação entre duas das três variáveis do modelo de regressão: <i>abundância relativa</i> e <i>altitude máxima</i> , sobre o risco de extinção para 665 espécies de Aves da Mata Atlântica                | 30 |

#### Resumo

A Mata Atlântica é uma dos 34 hotspots da biodiversidade mundial. O Brasil lidera o número de espécies de aves ameaçadas de extinção com 123 espécies, das quais 76 (61,8%) estão na Mata Atlântica. As evidências empíricas sugerem que algumas espécies são extremamente vulneráveis por possuírem uma combinação de características que acentuam o risco a extinção. O presente estudo analisou a influência de um grupo de características da história natural das espécies (sensibilidade a distúrbios, abundância relativa, número de habitats explorados, zona de altitude preferencial, altitudes mínimas e máximas exploradas, massa corporal e extensão da distribuição geográfica) sobre a suscetibilidade à extinção em Aves da Mata Atlântica, levando em consideração os efeitos da filogenia. O método filogenético comparativo empregado foi a Regressão por Autovetores Filogenéticos (Phylogenetic Eigenvector Regression, PVR). As análises resultaram em um modelo que combinou três características (abundância relativa, número de habitats explorados e altitude máxima) como melhores preditores do risco de extinção. Os resultados obtidos sugerem que aves caracteristicamente raras, que são limitadas a menores altitudes e que são mais especialistas quanto ao habitat explorado tendem a ser mais suscetíveis às ameaças que conduzem à extinção. As demais variáveis testadas não apresentaram relação significativa com o risco de extinção para o grupo de dados estudado. Estudos sobre os padrões de extinção são importantes para subsidiar tomadas de decisão em planejamentos estratégicos para a conservação das espécies.

#### **Abstract**

The Atlantic Forest is one of 34 global biodiversity hotspots. Brazil leads the number of species of endangered birds with 123 species, of which 76 (61.8%) are in the Atlantic Forest. Empirical evidence suggests that some species are extremely vulnerable because they have a combination of features that enhance the risk of extinction. The present study analyzed the influence of a group of natural history characteristics of species (sensitivity to disturbances, relative abundance, number of exploited habitats, preferred area of altitude, minimum and maximum elevations explored, body weight and extent of the geographical range) on the susceptibility to extinction in birds of the Atlantic Forest, considering the effects of phylogeny.. The comparative phylogenetic method employed was Phylogenetic Eigenvector Regression, PVR. The analysis resulted in a model that combines three characteristics (relative abundance, number of habitats exploited and maximum elevation) as the best predictors of extinction risk. The results suggest that birds typically rare, altitudes and specialist limited to lower more to the habitat exploited tend to be more susceptible to threats that lead to extinction. The other variables tested showed no significant relationship with the risk of extinction for the data group studied. Studies on the patterns of extinction are important to support decision making in strategic planning for the conservation of species.

#### 1. Introdução

A Mata Atlântica é uma das 34 regiões mundiais elencadas com o status de hotspots da biodiversidade mundial (Mittermeier et al. 2005) No Brasil, a Mata Atlântica abriga quase metade de todas as espécies de aves que ocorrem no país. Em escala global, o Brasil lidera o número de espécies de aves ameaçadas de extinção com 123 espécies (Birdlife International 2008), das quais 76 (61,8%) estão na Mata Atlântica, com pelo menos uma espécie Extinta na Natureza e 13 Criticamente em Perigo.

A extinção é um processo natural que ocorre ao acaso em uma escala temporal ecológica e geológica (McKinney 1997). Entretanto, até muito recentemente não havia conhecimento suficiente para responder a uma questão aparentemente simples: "por que algumas espécies estão ameaçadas enquanto outras estão aparentemente seguras?" (Bennet & Owens 2008). A Lista Vermelha de Espécies Ameaçadas de Extinção (IUCN Red list of threatened species — www.redlist.org) revela que algumas famílias de aves são notavelmente mais ameaçadas do que outras. O que poderia explicar a variação no risco de extinção observada entre esses táxons?

Os motivos que fazem com que os táxons não sejam igualmente vulneráveis à extinção não são bem compreendidos. As evidências empíricas sugerem que algumas espécies são extremamente vulneráveis por possuírem uma combinação de características que acentuam o risco à extinção (Davies *et al.* 2004). A utilização de informações sistematizadas sobre a história natural e o modo de vida das espécies de aves possibilita inferir quais características podem estar associadas com a propensão à extinção (*e.g.* Owens e Bennet 2000, Gillespie 2001, Gage *et al.* 2004, Feeley *et al.* 

2007). Entretanto, estudos sobre a variação na suscetibilidade à extinção concentrados especificamente na avifauna da Mata Atlântica são ainda inexistentes.

A maioria das hipóteses sobre a variação no risco de extinção entre as espécies não foram rigorosamente testadas (Bennet e Owens 2008). Os testes estatísticos da vulnerabilidade diferencial entre os táxons têm enfrentado várias dificuldades, tais como informações incompletas sobre as espécies, a filogenia e as inter-relações entre as possíveis variáveis preditoras (McKinney 1997, Woodroffe & Ginsberg 1998). Como as espécies possuem ancestrais comuns no tempo, elas compartilham semelhanças em muitas das suas características por causa das características presentes no próprio ancestral (Diniz-Filho, 2000), e isso pode influenciar os resultados dos testes estatísticos do risco de extinção. Não obstante, abordagens que tratam o efeito filogenético tem recebido atenção apenas em pesquisas mais recentes

De 2000 a 2010 houve um acréscimo de 57 espécies de aves à Lista Vermelha da IUCN. Isso denota a necessidade de mais estudos sobre os padrões de extinção a fim de subsidiar tomadas de decisão em planejamentos estratégicos para a conservação das espécies. O presente estudo analisa a influência de um grupo de características da história natural e do modo de vida das espécies sobre a suscetibilidade à extinção em Aves da Mata Atlântica, levando em consideração os efeitos da filogenia.

#### 2. Material e métodos

#### 2.1 - Delimitações da área de estudo e compilação da lista de espécies

O estudo visou contemplar o maior número possível de espécies de aves de ocorrência conhecida dentro dos limites da Mata Atlântica brasileira. Os limites geográficos considerados são aqueles definidos pelo Instituto Brasileiro de Geografia e

Estatística para o Bioma Mata Atlântica, conforme disposto na Lei nº 11.428, de 22 de dezembro de 2006.

A lista de espécies de aves de ocorrência na Mata Atlântica foi compilada principalmente com base nos dados de Parker *et al.* (1996) e *Conservation International* (www.biodiversityhotspots.org), complementados por dados de Sick (1996) e Sigrist (2009). A fim de limitar à avifauna registrada na Mata Atlântica brasileira, foram consideradas somente as espécies que estão na *Lista de Espécies de Aves do Brasil* (CBRO 2009) classificadas como residentes.

#### 2.2 - Compilações dos dados das variáveis em estudo

As categorias de ameaça de extinção adotadas pela *União Internacional para Conservação da Natureza* (IUCN *Red list of threatened species* – www.redlist.org) foram empregadas como a variável resposta: *risco de extinção*. Os graus de ameaça foram tratados como variáveis contínuas (Purvis *et al.* 2000) da seguinte forma: *extinta na natureza* (nível 5), *criticamente em perigo* (nível 4), *em perigo* (nível 3), *vulnerável* (nível 2), *quase ameaçado* (nível 1) e *não preocupante* (nível 0).

Como variáveis independentes, foram reunidas informações dos seguintes atributos: 1) sensibilidade a distúrbios, 2) abundância relativa, 3) número de habitats explorados, 4) zona de altitude preferencial, 5) altitude mínima, 6) altitude máxima, 7) massa corporal, 8) comprimento corporal e 9) extensão da distribuição geográfica. As seis primeiras varáveis dessa lista seguiram Parker et al. (1996).

A classificação das espécies quanto à *sensibilidade a distúrbios ambientais* foi: (1) baixa; (2) média e (3) alta. Para a variável *abundância relativa* as categorias foram: (1) rara, (2) incomum, (3) pouco comum e (4) comum. Para as espécies que

apresentaram abundância intermediária entre as categorias apresentadas foi empregada a média aritmética entre os valores de duas categorias (*e.g.* 1,5 - de rara a incomum). Definições dessas categorias de abundância são encontradas em Terborgh *et al.*(1984, 1990). Em poucos casos, quando essa informação não estava disponível em Parker *et al.* (1996), o dado foi obtido da *Birdlife International* (www.birdlife.org).

O número de habitats explorados foi baseado no número de habitats usados pela espécie de acordo Parker et al. (1996), que definiu 41 tipos de vegetação na Região Neotropical. Esse parâmetro foi tratado como uma variável contínua que pode variar de 1 a 41. A zona de altitude preferencial (centro de abundância) foi adotada como: (1) tropical e subtropical de baixa altitude; (2) tropical submontano; (3) alto tropical e subtropical; (4) médio-montano; (5) alti-montano. As altitudes mínimas e máximas exploradas pelas espécies, em metros, foram usadas como variáveis contínuas.

A extensão da distribuição geográfica das espécies, em km², foi obtida da Birdlife International (www.birdlife.org). Para o tamanho corporal foram compilados dois tipos de informação: i) a massa corporal, em gramas, de acordo com Dunning (2008), complementados com informações coletadas em etiquetas de museus; e ii) o comprimento do corpo, em cm, que seguiu Sick (1997) e Sigrist (2009).

#### 2.3 - Análises estatísticas e abordagens dos métodos comparativos

A fim de testar a existência e a extensão da correlação entre as variáveis independentes, foi inicialmente conduzido um teste de correlação de *Pearson*. Nos casos em que ficou demonstrada forte correlação entre duas variáveis, somente uma delas foi selecionada para os testes de hipóteses. Essas análises foram realizadas no aplicativo *Statistica 9.0* (Stat Soft 2009).

Como o estudo baseia-se na variação interespecífica de caracteres, foi necessário o uso de métodos filogenéticos comparativos, em função da possível existência de um padrão filogenético nesses dados (Diniz-Filho 2000). O método empregado para minimizar o problema da inércia filogenética foi a *Regressão por Autovetores Filogenéticos* (*Phylogenetic Eigenvector Regression*, PVR) (Diniz-Filho *et al.* 1998). A PVR consiste em calcular uma matriz das distâncias filogenéticas entre as espécies, com base em uma filogenia pré-estabelecida, e extrair os autovetores e autovalores dessa matriz utilizando a *Análise de Coordenadas Principais* (*PCoA*).

Os autovetores podem ser utilizados como variáveis preditoras em uma *regressão múltipla*, na qual a variável resposta é o caráter de interesse e os valores do coeficiente de determinação (R<sup>2</sup>) são uma estimativa da inércia filogenética (Diniz-Filho *et al.* 2007). Os resíduos dos modelos ajustados representam as variações dos dados que são independentes da filogenia e, portanto, podem ser usados nos testes de hipóteses.

Não está disponível na literatura uma filogenia em nível de espécie relacionando todas as aves listadas neste estudo. A matriz de distância filogenética entre as espécies foi obtida a partir de uma filogenia originalmente com 5.895 espécies (Davis 2008). Foram excluídas das análises: i) espécies para as quais não foram encontrados dados de uma das variáveis estudadas; ii) espécies para as quais, ao menos, a posição do gênero não estava bem definida na filogenia. Assim, foi possível obter uma filogenia e uma a matriz de distância filogenética para 665 espécies.

A matriz de distância filogenética foi calculada no aplicativo *Mesquite 2.73* (Maddison & Maddison 2010) empregando o pacote *PDAP* e utilizando o modelo de distâncias arbitrárias (Pagel 1992). A *PCoA* foi realizada no aplicativo *Past 2.07* (Hammer *et al.* 2001). O número de autovetores usados na regressão múltipla da *PVR* 

foi determinado com base no critério de parada de *Broken Stick* (Legendre & Legendre 1998) conduzidos no aplicativo *R* (R Development Core Team 2010). A regressão múltipla da PVR, assim como a conduzida para testar a relação entre as variáveis independentes e o risco de extinção, foi realizada no aplicativo *Statistica 9.0* (Stat Soft 2009). Nos casos em que a inércia filogenética foi significativa, os resíduos dos modelos ajustados da *PVR* foram utilizados como substitutos dos valores das variáveis preditoras na análise de regressão múltipla do risco de extinção.

#### 3. Resultados

As compilações de informações sobre as Aves da Mata Atlântica resultaram em uma lista com 880 espécies, distribuídas em 82 famílias e 21 ordens (Tabela 4). Destas, foram analisadas 665 espécies, representando 76% das espécies da lista primária, distribuídas em 78 famílias e 21 ordens.

Os resultados do teste de correlação de *Pearson* revelaram coeficientes menores que 0.6 para todas as combinações entre as variáveis explanatórias, exceto entre a massa e o comprimento corporal. Neste caso, o coeficiente de correlação de *Pearson* foi maior que 0.8, evidenciando forte correlação entre essas variáveis (Tabela 1). Assim, optamos por manter somente a massa corporal como referencial do tamanho corporal. Os resultados sustentam autocorrelação de fraca a moderada entre as demais variáveis, o que não compromete significativamente as análises de regressão múltipla.

A PCoA resultou em 664 eixos de autovetores, dos quais os 22 primeiros eixos foram selecionados pelo critério de parada de Broken Stick e explicaram 86 % da variação nos dados (Figura 1). A regressão múltipla entre os 22 primeiros eixos de autovetores e as nove variáveis resultou em valores de  $R^2$  significativos para quase

todos os caracteres analisados. A única exceção foi para a *abundância relativa* ( $R^2 = 0.032$ ; p = 0.494) (Tabela 2). Isso indica a presença de inércia filogenética nos dados de todas as demais variáveis.

A regressão múltipla, entre as variáveis independentes (após extrair a inércia filogenética) e o risco de extinção resultou em um modelo que combinou três características: abundância relativa, número de habitats explorados e altitude máxima (Tabela 3). Essas variáveis foram negativamente associadas com o risco de extinção (Figuras 2 e 3), sendo que e o modelo de regressão explicou, aproximadamente, 18.0% da vulnerabilidade à extinção em Aves da Mata Atlântica ( $R^2 = 0.176$ ; p < 0.001). A variável de maior contribuição em predizer o risco de extinção foi a abundância relativa ( $\beta = -0.318$ ; p < 0.001).

#### 4. Discussão

#### 4.1 - Variáveis preditoras do risco de extinção

Os resultados obtidos sugerem que aves caracteristicamente raras, que são limitadas a menores altitudes e que são mais especialistas quanto ao habitat explorado tendem a ser mais suscetíveis às ameaças que conduzem à extinção. Por outro lado, as demais variáveis testadas, presumidamente preditoras, não apresentaram relação significativa com o risco de extinção para o grupo de dados estudado.

A despeito de ter sido baseada primariamente em impressões subjetivas de Parker *et al.* (1996), a *abundância relativa* foi a variável que apresentou o maior potencial em predizer o risco de extinção. Pelo menos três características correlatas podem ajudar a elucidar o potencial preditor da *abundância relativa* quanto à

suscetibilidade extinção: o tamanho da área de vida, a densidade populacional e a raridade natural.

Em geral, as espécies com menores abundâncias relativas (espécies "raras") são também aquelas que apresentam as mais extensas áreas de vida (*home range*). Espécies "raras" têm territórios muito grandes, algumas delas são nômades, a maioria está irregularmente distribuída e quase todas ocorrem em pequenos números ao longo de toda a sua área de distribuição (Parker *et al.*1996). Espécies em que indivíduos têm grandes áreas de vida são mais vulneráveis à perda de habitat e à degradação e, em particular, aos efeitos de borda (Woodroffe & Ginsberg 1998, Purvis *et al.* 2000). O aspecto altamente fragmentado dos remanescentes de Mata Atlântica reúne as condições que favorecem espécies que não requerem grandes áreas para obtenção de recursos.

A abundância relativa é também um reflexo da densidade populacional: quanto menor a densidade populacional, mais raramente a espécie é detectada ao longo de sua área de distribuição geográfica. Inúmeros trabalhos apontam a baixa densidade populacional como um dos fatores que predispõem as espécies ao maior risco de extinção (Pimm et al. 1988, Gaston 1994, McKinney 1997, Belovsky et al. 1999, Purvis et al. 2000, Vucetich et al. 2000, Fagan et al. 2001). O risco de extinção é maior para populações consistindo de poucos indivíduos do que aquelas com muitos (Pimm et al. 1988). Eventos estocásticos, catástrofes locais, lentas taxas de adaptação e ocorrência de endogamia são fatores que impactam mais severamente populações com poucos indivíduos e, por conseguinte, com baixa densidade populacional.

A *abundância relativa* pode, ainda, ser interpretada como uma forma de mensurar a raridade natural das espécies. A raridade tem sido conhecida na literatura como um preditor para a vulnerabilidade e um precursor para a extinção (Goerck 1997).

Explicações sobre a raridade diferencial entre as espécies são baseadas na história evolutiva, na distribuição espacial e na estrutura genética de um táxon em particular (Stebbins 1980). Não obstante, a raridade pode ser incrementada pela intervenção humana através da alteração do ambiente.

O número de habitats explorados foi tratado como indicativo do grau de especialização de habitat para uma dada espécie. A especificidade de habitat é uma das características de história natural para a qual se tem evidenciado associação com a suscetibilidade à extinção (Diamond *et al.* 1987, Newmark 1991, Kattan *et al.* 1994, Warburton 1997; Robinson 1999, Gillespie 2001, Feeley *et al.* 2007). A contribuição da especificidade de habitat sobre o aumento do risco de extinção, portanto, já era prevista pelas teorias em biologia da conservação. Uma explicação consistente para esses resultados pode ser baseada na perda de habitat provocada pela redução das coberturas florestais e pelo aspecto fragmentado dos remanescentes florestais.

A perda de habitat impacta mais severamente as espécies que são restritas a um ou a poucos habitats. Por conseguinte, espécies nessa condição são mais suscetíveis aos riscos que conduzem à extinção por serem menos resilientes e com baixo potencial de explorar outros recursos senão aqueles característicos de seu habitat natural. Esse fato reduz a chance das populações se recuperarem e persistirem após perturbações nas quais seus respectivos habitats são significativamente reduzidos ou degradados.

Diferentes táxons podem ser submetidos aos riscos de extinção por diferentes mecanismos ecológicos (Diamond 1984, Pimm *et al.* 1988, Pimm 1991). Fontes de risco de extinção que reduzem a disponibilidade de nichos, tal como a perda de habitat, devem ser mais perigosos para espécies que são ecologicamente especializadas (Brown, 1971, Diamond 1984, Brown & Maurer, 1989, Bibby 1995). O fato de espécies

especialistas tenderem a ser perdidas a partir de pequenos fragmentos é possivelmente devido ao fato de que fragmentos menores inerentemente contêm poucos tipos de microhabitats (Terborgh & Winter 1980).

Os resultados evidenciaram que a altitude máxima que uma espécie é capaz de explorar também é um fator que influencia na variação da suscetibilidade à extinção em Aves da Mata Atlântica. Uma provável hipótese para explicar esses resultados seria a de que, com menos de 8% da floresta original, os remanescentes de Mata Atlântica concentram-se em regiões de maiores altitudes. Na região da Mata Atlântica as coberturas florestais estão, na maioria dos casos, localizadas em locais de difícil acesso, principalmente pelo terreno ser íngreme e a inacessibilidade limitar o uso do solo (Cabral & Fiszon 2004, Cabral *et al.* 2007, Silva *et al.* 2007, 2008; Teixeira *et al.* 2009).

Assim, espécies que ao longo da sua história evolutiva desenvolveram o potencial de explorar altitudes mais elevadas e de difícil acesso, seja de maneira restrita ou não, estão menos suscetíveis aos riscos impostos pelas alterações ambientais antropogênicas. Por outro lado, aquelas espécies que têm a sua ocorrência limitada a poucos metros acima do nível do mar, têm seus habitats mais intensamente destruídos através da expansão das atividades humanas. Além disso, espécies que são capazes de explorar maiores altitudes talvez apresentem gradientes de distribuição altitudinal igualmente maiores, o que supostamente as torna mais resilientes aos distúrbios ambientais.

Durante a revisão bibliográfica não foram encontrados relatos de trabalhos que tenham empregado a variável *altitude máxima* como potencial preditora do risco de extinção. Contudo, há evidências de que a topografia influencia no padrão de fragmentação para muitas regiões, incluindo a Mata Atlântica brasileira (Miller *et al.* 

1996, Cabral & Fiszon 2004, Cabral *et al.* 2007, Silva *et al.* 2007,). Áreas com declives mais acentuados são menos usadas e mais propensas a permanecer florestadas (Ranta *et al.* 1998, Resende *et al.* 2002, Silva *et al.* 2007).

O presente estudo indica que espécies capazes de explorar altitudes mais elevadas estão relativamente mais seguras. Estes dados sugerem que a conservação das aves da Mata Atlântica depende da expansão das coberturas florestais em regiões de menores altitudes, além da manutenção das regiões de maiores altitudes.

#### 4.2 - Variáveis não-preditoras do risco de extinção

Vários estudos dão suporte à hipótese de que o grande tamanho corporal é um fator que aumenta o risco de extinção (Willis 1974, Leck 1979, Terborgh & Winter 1980, Karr 1982, Pimm *et al.* 1988, Gaston & Blackburn 1995, McKinney 1997, Owens & Bennet 2000, Gillespie 2001, Fagan *et al.* 2001 e Feeley *et al.* 2007).

Grandes espécies tendem a ter baixas densidades populacionais, lentos ciclos reprodutivos e grandes áreas de vida (Purvis *et al.* 2000). Todos esses fatores têm sido mostrados como correlacionados com o risco de extinção (Pimm *et al.* 1988). A despeito dos resultados obtidos em outros trabalhos, aqui não ficou evidenciado a relação ente o tamanho corporal e a suscetibilidade à extinção. As hipóteses sugeridas para explicar tais observações são: i) a correlação, mesmo que moderada, entre essa e outras variáveis empregadas no estudo; ii) o caráter meta-analítico do estudo e a exatidão dos dados empregados; iii) a metodologia empregada na qual houve a preocupação com o efeito da filogenia no conjunto de dados; iv) a real ausência de influência da variável sobre o risco de extinção em Aves da Mata Atlântica.

A classificação das espécies quanto à sensibilidade a distúrbios ambientais foi feita baseada em observações de campo, a partir de impressões intuitivas de que

algumas espécies são mais vulneráveis aos distúrbios antropogênicos do que outras (Parker *et al.* 1996). Para as aves da Mata Atlântica essa classificação não demonstrou ter validade para determinar quais espécies são mais ou menos sensíveis, uma vez que se assume que espécies mais sensíveis tenderiam também ser as mais ameaçadas. Não são conhecidos trabalhos que tenham empregado essa variável concomitantemente com um método filogenético comparativo, o que sugere que essa análise provavelmente seja inédita.

No presente trabalho, o conjunto de dados sobre a *altitude mínima* apresentou uma variação intraespecífica de valores bastante limitada. Das 665 espécies analisadas, 627 são encontradas em nível do mar (*altitude máxima* = 0). É provável que esse fator tenha exercido uma forte influência nesses resultados e que tenha tornado a variável inadequada para o estudo.

O estudo do efeito da zona de altitude preferencial não foi encontrado em nenhum trabalho prévio. Isso sugere que essa variável também tenha sido pela primeira vez testada em trabalhos dessa natureza. As hipóteses sugeridas para tentar explicar a inexistência de relação entre esse parâmetro e a suscetibilidade a extinção em aves da Mata Atlântica são: i) a correlação fraca e moderada entre essa variável e as altitudes mínimas e máximas, respectivamente; ii) a provável inexatidão dos dados de preferência altitudinal das espécies; iii) a real inexistência de relação dessa variável com o risco de extinção.

Os resultados aqui apresentados contrariam o pressuposto de que táxons com menor extensão de distribuição geográfica tendem a ser mais propensos aos riscos de extinção (Terborgh & Winter 1980, Angermeier 1995, Newmark 1994, Mckinney 1997, Purvis *et al.* 2000, Feeley et *al.* 2007). O tamanho da distribuição geográfica é um dos

parâmetros empregados pela *IUCN* como critério para classificar as espécies quanto ao status de conservação. Portanto, esperava-se que esse parâmetro fosse revelado como preditor do risco de extinção. Contudo, é possível que entre os fatores que foram preponderantes para a inclusão das espécies nas categorias da IUCN, a variável extensão da distribuição geográfica não tenha sido um parâmetro importante para as aves ocorrentes na Mata atlântica.

O presente trabalho pode ser classificado como um estudo meta-analítico (Diniz-Filho 2000), pois necessita de informações provenientes de diversos outros trabalhos para testar as hipóteses propostas. Dessa forma, tornou-se inviável uma análise que envolvesse todas as espécies inicialmente listadas, uma vez que as espécies para as quais faltaram dados foram excluídas. Entretanto, acredita-se que o tamanho da amostra analisada (76% das espécies inicialmente listadas) seja suficiente para dar consistência aos resultados e, portanto, permitir a extrapolação para o conjunto das aves da Mata Atlântica. Além disso, esse estudo provavelmente é pioneiro no uso da metodologia de *PVR* para uma amostra com tantas espécies.

A despeito de numerosos trabalhos sobre a suscetibilidade à extinção, até então eram desconhecidos estudos desta natureza voltados para as Aves da Mata Atlântica. Este estudo resultou em uma grande compilação de dados sobre a avifauna desse *hotspot* da biodiversidade, assim como permitiu localizar lacunas de informações sobre muitas espécies. Isso tende a incitar e a favorecer pesquisas futuras voltadas para a compreensão de outros aspectos da biologia e da conservação das espécies. O modelo de predição gerado sugere a necessidade de ações de conservação voltadas para espécies raras, especialistas e de altitudes mais baixas. A predição à extinção é uma importante ferramenta em Biologia da Conservação, pois possibilita um eficiente parâmetro para a

distribuição de recursos voltados para a conservação das espécies. Assim, compreender os mecanismos ecológicos que sustentam a extinção é fundamental para a conservação.

#### Referências Bibliográficas

- Angermeier, P. L. (1995) Ecological attributes of extinction-prone species: loss of freshwater fishes of Virginia. *Conservation Biology* 9: 143–158.
- Bennet, P. M. & Owens, I. P. F. (2008) Variation in extinction risk and species richness.Pp. 165–167 em: P. M. Bennet & I. P. F. Owens, eds. *Evolutionary ecology of birds*.Oxford, UK: Oxford University Press.
- Belovsky, G. E., Mellison, C., Larson, C., Van Zandt, P. A. (1999) Experimental studies of extinction dynamics. *Science* 286: 1175–1177.
- BirdLife International (2008) Some countries are particularly important for threatened birds. Presented as part of the Birdlife state of the world's birds website. Disponível em: <a href="http://www.birdlife.org/datazone/sowb/casestudy/112">http://www.birdlife.org/datazone/sowb/casestudy/112</a>. Acesso: 18/06/2011.
- BirdLife International (2010) IUCN Red List for birds. Disponível em: <a href="http://www.birdlife.org">http://www.birdlife.org</a> Acesso: 03/02/2010.
- Brown J. H. (1971) Mammals on mountaintops: non-equilibrium insular biogeography. *American Naturalist* 105: 467-478.
- Brown J. H. & Maurer B. A. (1989) Macroecology: the division of food and space among species on continents. *Science* 243: 1145-1150.
- Bibby, C. J. (1995) Recent past and future extinctions in birds. Pp. 98–110 em: J. H. Lawton & R. M. May, eds. *Extinction rates*. Oxford, UK: Oxford University Press.
- Cabral, D. C. & Fiszom, J. T. (2004) Padrões sócio-espaciais de desflorestamento e suas implicações para a fragmentação florestal: estudo de caso na Bacia do Rio Macacu, RJ. *Scientia Forestalis* 66: 13-24.

- Cabral, D. C., Freitas, S. R., Fiszon, J. T. (2007) Combining sensors in landscape ecology: imagery-based and farm-level analysis in the study of human-driven Forest fragmentation. *Sociedade & Natureza* 19: 69–87.
- Comitê Brasileiro de Registros Ornitológicos (2009) *Listas das aves do Brasil*. *Versão* 9/8/2009. Disponível em: <a href="http://www.cbro.org.br">http://www.cbro.org.br</a>>. Acesso em: 23/10/2009.
- Conservation International (2005) Terrestrial Vertebrate Species Search. Disponível em: <www.biodiversityhotspots.org> Acesso em: 29/12/2009.
- Davis, K. E. (2008) Reweaving the tapestry: a supertree of birds. PhD thesis, University of Glasgow.
- Davies, K. F., Margules, C. R., Lawrence, J. F. (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. *Ecology* 85: 265–271.
- Diamond, J. M. (1984) "Normal" extinctions of isolated populations. Pp. 191–246 em:M. H. Nitecki, ed. *Extinctions*. Chicago, USA: University of Chicago Press.
- Diamond, J. M., Bishop, K.D. & Balen, S. V. (1987) Bird survival in an isolated Javan woodland: island or mirror? *Conservation Biology* 1: 132–142.
- Diniz-Filho, J. A. F., Sant'Ana, C. E. R, Bini, L. M. (1998) An eigenvector method for estimating phylogenetic inertia. *Evolution* 52: 1247-1262.
- Diniz-Filho, J. A. F. (2000) Métodos Filogenéticos Comparativos. São Paulo, Brasil: Ed. Holos.
- Diniz-Filho, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. F. L. V. B., Hawkins, B. A. (2007) Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. *Ecography* 30: 598-608.

- Dunning, J. B. (2008) *CRC Handbook of avian body masses*. 2nd. Boca Raton, USA: CRC Press.
- Fagan, W. F., Meir, E., Prendergast, J., Folarin, A., Karieva, P. (2001) Characterizing population vulnerability for 758 species. *Ecology Letters* 4: 132–138.
- Feeley, K. J., Gillespie, T. W., Lebbin, D. J., & Walter, H. S. (2007). Species characteristics associated with extinction vulnerability and nestedness rankings of birds in tropical forest fragments. *Animal Conservation* 10: 493–501.
- Gage, G. S., Brooke, M. de L., Symonds, M. R. E. & Wege, D. (2004) Ecological correlates of the threat of extinction in Neotropical bird species. *Animal Conservation* 7: 161-168.
- Gaston, K. J. (1994) Rarity. London, UK: Chapman & Hall.
- Gaston, K. J. & Blackburn, T. M. (1995) Birds, body size and the threat of extinction. *Philosophical Transactions of the Royal Society* B 347: 205–212.
- Goerck, J. M. (1997) Patterns of rarity in the birds of the Atlantic forest of Brazil. Conservation Biology 11:112–118.
- Gillespie, T. W. (2001) Application of Extinction and Conservation Theories for Forest Birds in Nicaragua. *Conservation Biology* 15: 699-709.
- Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontologia Electronica* 4(1): 9pp.
- IUCN (2011) IUCN Red List of Threatened Species. Version 2011.1. <a href="http://www.iucnredlist.org">http://www.iucnredlist.org</a>. Acesso: 16/06/2011.

- Karr, J. R. (1982) Population variability and extinctions in the avifauna of a tropical land-bridge island. *Ecology* 63:1975–1978.
- Kattan, G. H., Lopez, H. A. & Giraldo, M. (1994) Forest fragmentation and bird extinctions: San Antonio eighty years later. *Conservation Biology* 8: 138–146.
- Leck, C. F. (1979) Avian extinctions in an isolated tropical wet-forest preserve, Ecuador. *Auk* 96: 343–352.
- Legendre, P. & Legendre, L. (1998) *Numerical Ecology*. 2nd. Amsterdam, Netherlands: Elsevier Science BV.
- McKinney, M. L. (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. *Annual Review of Ecology and Systematics* 28: 495–516.
- Maddison, W. P. & Maddison, D. R. (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. Disponível em: <a href="http://mesquiteproject.org">http://mesquiteproject.org</a>.
- Miller, J. R., Joyce, L. A., Knight, R. L., King, R. M. (1996) Forest roads and landscape structure in the southern Rocky Mountains. *Landscape Ecology* 11: 115–127.
- Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J. & da Fonseca, G. A. B. (2005) *Hotspots revisited: earth's biologically richest and most threatened terrestrial ecoregions*. Monterrey, Mexico: Cemex, Conservation International e Agrupacion Sierra Madre.
- Newmark, W. D. (1991) Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara Mountains, Tanzania. *Conservation Biology* 5: 67–78.

- Newmark, W. D. (1994) Extinction of mammal populations in western North American national parks. *Conservation Biology* 9: 512–526.
- Owens, I. P. F & Bennett, P. M. (2000). Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. *Proceedings of National Academy of Sciences of United States of America*: 97, 12144–12148.
- Parker, T. A., III, Stotz, D. F., Fitzpatrick, J. W. (1996) Ecological and distributional databases.
  Pp. 113–436 em: D. F. Stotz, J. W. Fitzpatrick, T. A. Parker, III, & D. K. Moskovits, eds. *Neotropical bird ecology and conservation*. Chicago, USA: University of Chicago Press.
- Pimm, S. L., Jones, H. L., Diamond, J. (1988) On the risk of extinction. *American Naturalist* 132: 757-785.
- Pimm, S. L. (1991) *The Balance of Nature*. Chicago, USA: University of Chicago Press.
- Purvis, A., Gittleman, J. L., Cowlishaw G. & Mace, G. M. (2000) Predicting extinction risk in declining species. *Proceedings Royal Society of London B* 267: 1947–1952.
- Purvis, A. (2008) Phylogenetic Approaches to the study of extinction. *Annual Review of Ecology and Systematics* 39: 301–319.
- R Development Core Team (2010) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Ranta, P., Blom, T., Niemelä, J., Joensuu, E., Siitonen, M. (1998) The fragmentation Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodiversity and Conservation 7: 385–403.

- Resende, M., Lani, J. L., Rezende, S. B. (2002) Pedossistemas da Mata Atlântica: considerações pertinentes sobre a sustentabilidade. Revista Árvore 26: 261–269.
- Robinson, W. D. (1999) Long-term changes in avifauna of Barro Colorado Island, Panama, a tropical forest isolate. *Conservation Biology* 13: 85–97.
- Sick, H. (1997) Ornitologia brasileira. Rio de Janeiro, Brazil: Ed. Nova Fronteira.
- Sigrist, T. (2009) *Avifauna brasileira: Guia de Campo Avis Brasilis*. São Paulo, Brazil: Ed. Avis Brasilis.
- Silva, W. G., Metzger, J. P., Simões, S., Simonetti, C. (2007). Relief influence on the spatial distribution of the Atlantic Forest cover on the Ibiúna Plateau, SP. *Brazilian Journal of Biology* 67: 631–637.
- Silva, W. G., Metzger, J. P., Bernacci, L. C., Catharino, E. L. M., Durigan, G., Simões,
  S. (2008) Relief influence on tree species richness in secondary forest fragments of
  Atlantic Forest, SE, Brazil. *Acta Botanica Brasilica* 22: 589–598.
- Stat Soft, Inc. (2009) STATISTICA, version 9.0 trial. Tulsa, Stat Soft Inc.
- Stebbins, G. L. (1980) Flowering plants, evolution above the species level. Cambridge, USA: Harvard University Press.
- Teixeira, A. M. G., Soares-Filho, B. S., Freitas, S. R., Metzger, J. P. (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. *Forest Ecology and Management* 257: 1219–1230.
- Terborgh, J., Winter, B. (1980) Some causes of extinction. Pp. 119–133 em: M. E.Soulé, B.A. Wilcox, eds. *Conservation Biology: An Evolutionary-Ecological Perspective*. Sunderland, UK: Sinauer.

- Terborgh, J. W., Fitzpatrick, J. W. & Emmons, L. (1984) Annotated checklist of bird and mammal species of Cocha Cashu Biological Station, Manu National Park, Peru. *Fieldiana Zool.*, n.s., nº 21.
- Terborgh, J. W., Robinson, S. K., Parker III, T. A., Munn, C. A. & Pierpont, N. (1990)
  Structure and organization of an Amazonian forest bird community. *Ecological Monographs* 60: 213-238.
- Vucetich, J. A., Waite, T. A., Qvarnemark, L., Ibargüen, S. (2000) Population variability and extinction risk. *Conservation Biology* 14: 1704–1714.
- Warburton, N.H. (1997) Structure and conservation of forest avifauna in isolated rainforest remnants in tropical Australia. Pp. 190–208 em: W. F, Laurence & R.O. Bierregaard, eds. *Tropical forest remnants*. Chicago, USA: University of Chicago Press.
- Willis, E. O. (1974) Populations and local extinctions of birds on Barro Colorado Island, Panama. *Ecological Monographs* 44:153–169.
- Woodroffe, R. & Ginsberg, J. R. (1998) Edge effects and the extinction of populations inside protected areas. *Science* 280: 2126–2128.

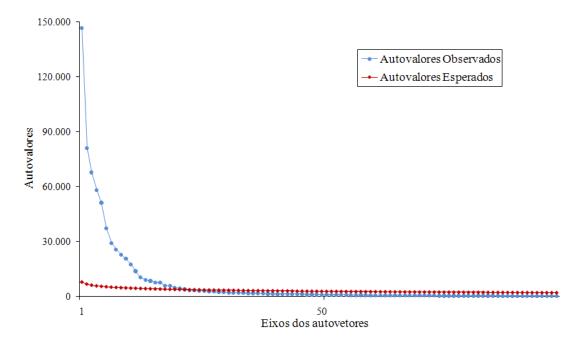
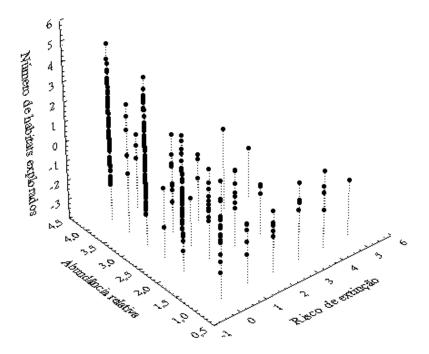
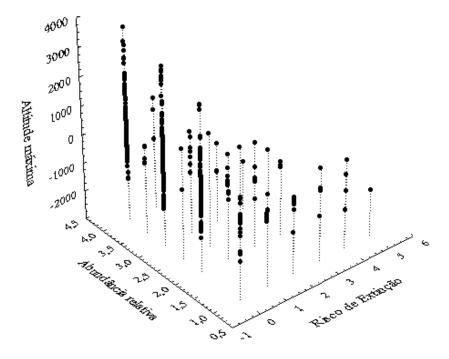





Figura 1 – Autovalores extraídos da matriz de distâncias filogenéticas entre 665 espécies de Aves da Mata Atlântica. São mostrados apenas os cem primeiros autovalores para comparação com os autovalores esperados pela distribuição *Broken Stick*. Apenas 22 autovalores observados são maiores que os esperados ao acaso por essa distribuição.



**Figura 2.** Relação entre duas, das três variáveis do modelo de regressão: *abundância relativa* e *número de habitats explorados*, sobre o risco de extinção para 665 espécies de Aves da Mata Atlântica.



**Figura 3.** Relação entre duas das três variáveis do modelo de regressão: *abundância relativa* e *altitude máxima*, sobre o risco de extinção para 665 espécies de Aves da Mata Atlântica.

**Tabela 1.** Coeficientes de correlação de *Pearson* entre os valores das nove variáveis usadas nesse estudo com 665 aves da Mata Atlântica. *Sens*: sensibilidade a distúrbios; *Rel*: abundância relativa; *Hab*: número de habitats explorados; *ZnAlt*: zona de altitude preferencial; *Min*: altitude mínima; *Max*: altitude máxima;: *Mas*:massa corporal; *Comp*: comprimento corporal; *DGeo*:extensão da distribuição geográfica. \*p < 0.05.

| Variáveis | Rel    | Hab    | ZnAlt  | Min    | Max    | Mas    | Comp   | DGeo   |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Sens      | -0,46* | -0,55* | 0,07   | 0,11*  | -0,28* | 0,04   | 0,08*  | -0,19* |
| Rel       |        | 0,35*  | -0,11* | -0,11* | 0,21*  | -0,14* | -0,15* | 0,17*  |
| Hab       |        |        | -0,03  | -0,13* | 0,34*  | -0,04  | -0,02  | 0,17*  |
| ZnAlt     |        |        |        | 0,53*  | 0,37*  | -0,05  | -0,11* | -0,09* |
| Min       |        |        |        |        | 0,16*  | -0,07  | -0,10* | -0,09* |
| Max       |        |        |        |        |        | -0,05  | -0,05  | 0,18*  |
| Mas       |        |        |        |        |        |        | 0,82*  | 0,05   |
| Comp      |        |        |        |        |        |        |        | 0,10*  |

**Tabela 2.** Coeficientes de determinação  $(R^2)$  e *p*-valores das análises da *PVR* predizendo valores do componente filogenético para nove caracteres de 665 espécies de aves da Mata Atlântica. p < 0.05\*.

| Caracteres morfológicos e do modo de vida das espécies | $\mathbf{R}^2$ | p       |
|--------------------------------------------------------|----------------|---------|
| Sensibilidade a distúrbios                             | 0.062          | 0.006*  |
| Abundância relativa                                    | 0.032          | 0.494   |
| Número de habitats explorados                          | 0.102          | <0.001* |
| Zona de altitude                                       | 0.079          | <0.001* |
| Altitude mínima                                        | 0.067          | 0.002*  |
| Altitude máxima                                        | 0.068          | 0.001*  |
| Massa corporal                                         | 0.314          | <0.001* |
| Comprimento corporal                                   | 0.355          | <0.001* |
| Extensão da distribuição geográfica                    | 0.120          | <0.001* |

**Tabela 3.** Coeficientes de regressão ( $\beta$ ) e p-valores da análise de regressão múltipla entre as variáveis independentes e o risco de extinção para 665 espécies de aves da Mata Atlântica. p < 0.05\*.

| Variáveis independentes<br>(caracteres morfológicos e do modo de vida das espécies) | β      | p        |
|-------------------------------------------------------------------------------------|--------|----------|
| Resíduos da sensibilidade a distúrbios                                              | -0.027 | 0.547    |
| Abundância relativa                                                                 | -0.318 | < 0.001* |
| Resíduos do número de habitats explorados                                           | -0.105 | 0.018*   |
| Resíduos da zona de altitude                                                        | 0.040  | 0.363    |
| Resíduos da altitude mínima                                                         | 0.048  | 0.242    |
| Resíduos da altitude máxima                                                         | -0.098 | 0.021*   |
| Resíduos da massa corporal                                                          | 0.065  | 0.071    |
| Resíduos da extensão da distribuição geográfica                                     | -0.011 | 0.772    |

**Tabela 4.** Lista de espécies de aves ocorrentes na Mata Atlântica brasileira CI: *Conservation International*, (2005), PK: Parker *et al.* (1996); SI: Sick (1996); TS: Sigrist (2008). As espécies que foram excluídas das análises são seguidas das identificações: <sup>1</sup>Espécie não reconhecida pela *Birdlife International*. <sup>2</sup>Espécie excluída por falta de informações sobre alguma das características da história natural e do modo de vida. <sup>3</sup>Espécie excluída por ausência de informações filogenéticas.

| Nome do Táxon             | Fonte bibliográfica |
|---------------------------|---------------------|
| Tinamiformes              |                     |
| Tinamidae                 |                     |
| Crypturellus noctivagus   | CI/PK               |
| Crypturellus obsoletus    | CI/PK               |
| Crypturellus parvirostris | CI/PK               |
| Crypturellus soui         | CI/PK               |
| Crypturellus tataupa      | CI/PK               |
| Crypturellus undulatus    | CI                  |
| Crypturellus strigulosus  | TS                  |
| Crypturellus variegatus   | HS/PK               |
| Nothura boraquira         | CI                  |
| Nothura maculosa          | CI                  |
| Rhynchotus rufescens      | CI/PK               |
| Tinamus solitarius        | CI/PK               |
| Anseriformes              |                     |
| Anhimidae                 |                     |
| Anhima cornuta            | CI                  |
| Chauna torquata           | CI                  |
| Anatidae                  |                     |
| Dendrocygna autumnalis    | CI                  |
| Dendrocygna bicolor       | CI                  |
| Dendrocygna viduata       | CI/PK               |
| Coscoroba coscoroba       | CI                  |
| Cairina moschata          | CI/PK               |
| Sarkidiornis melanotos    | CI/PK               |
| Callonetta leucophrys     | CI                  |
| Amazonetta brasiliensis   | CI                  |
| Anas bahamensis           | CI/PK               |
| Anas cyanoptera           | CI                  |
| Anas flavirostris         | CI                  |
| Anas georgica             | CI                  |
| Anas platalea             | CI                  |
| Anas sibilatrix           | CI                  |
| Anas versicolor           | CI                  |
| Netta erythrophthalma     | CI/PK               |
| Netta peposaca            | CI                  |
| Mergus octosetaceus       | CI/PK               |
| Heteronetta atricapilla   | CI                  |
| Nomonyx dominicus         | CI/PK               |
| Galliformes               |                     |

| Nome do Táxon                    | Fonte bibliográfica |
|----------------------------------|---------------------|
| Cracidae                         |                     |
| Ortalis motmot <sup>3</sup>      | CI/PK               |
| Penelope jacucaca <sup>2</sup>   | CI                  |
| Penelope obscura                 | CI/PK               |
| Penelope superciliaris           | CI/PK               |
| Aburria jacutinga                | CI/PK               |
| Crax blumenbachii                | CI/PK               |
| Crax fasciolata                  | CI                  |
| Pauxi mitu                       | CI/PK               |
| Odontophoridae                   |                     |
| Odontophorus capueira            | CI/PK               |
| Podicipediformes                 |                     |
| Podicipedidae                    |                     |
| Rollandia rolland <sup>3</sup>   | CI                  |
| Tachybaptus dominicus*           | CI/PK               |
| Podilymbus podiceps              | CI/PK               |
| Podicephorus major <sup>3</sup>  | CI                  |
| Podiceps occipitalis             | CI                  |
| Procellariiformes                |                     |
| Procellariidae                   |                     |
| Pterodroma arminjoniana          | PK                  |
| Pelecaniformes                   |                     |
| Phaethontidae                    |                     |
| Phaethon aethereus               | CI/PK               |
| Phaethon lepturus                | PK                  |
| Sulidae                          |                     |
| Sula dactylatra                  | CI/PK               |
| Sula sula                        | CI/PK               |
| Sula leucogaster <sup>2</sup>    | CI/PK               |
| Phalacrocoracidae                |                     |
| Phalacrocorax brasilianus        | CI/PK               |
| Anhingidae                       |                     |
| Anhinga anhinga                  | CI/PK               |
| Fregatidae                       |                     |
| Fregata magnificens <sup>2</sup> | CI/PK               |
| Ciconiiformes                    |                     |
| Ardeidae                         |                     |
| Tigrisoma lineatum               | CI/PK               |
| Tigrisoma fasciatum              | CI/PK               |
| Cochlearius cochlearia           | CI/PK               |
| Botaurus pinnatus                | CI/PK               |
| Ixobrychus exilis                | CI/PK               |
| Ixobrychus involucris            | CI/PK               |
| Nycticorax nycticorax            | CI/PK               |
| Nyctanassa violacea              | CI/PK               |

| Nome do Táxon                      | Fonte bibliográfica |
|------------------------------------|---------------------|
| Butorides striata                  | CI/PK               |
| Bubulcus ibis                      | CI/PK               |
| Ardea cocoi                        | CI/PK               |
| Ardea alba                         | CI/PK               |
| Syrigma sibilatrix                 | CI/PK               |
| Pilherodius pileatus               | CI/PK               |
| Egretta tricolor                   | CI                  |
| Egretta thula                      | CI/PK               |
| Egretta caerulea                   | CI/PK               |
| Threskiornithidae                  |                     |
| Eudocimus ruber                    | CI/PK               |
| Plegadis chihi                     | CI/PK               |
| Mesembrinibis cayennensis          | CI/PK               |
| Phimosus infuscatus <sup>3</sup>   | CI/PK               |
| Theristicus caudatus               | CI                  |
| Platalea ajaja                     | CI/PK               |
| Ciconiidae                         |                     |
| Ciconia maguari                    | CI                  |
| Jabiru mycteria                    | CI                  |
| Mycteria americana                 | CI/PK               |
| Cathartiformes                     |                     |
| Cathartidae                        |                     |
| Cathartes aura                     | CI/PK               |
| Cathartes burrovianus              | CI/PK               |
| Coragyps atratus                   | CI/PK               |
| Sarcoramphus papa                  | CI/PK               |
| Falconiformes                      |                     |
| Accipitridae                       |                     |
| Leptodon forbesi                   | CI/PK               |
| Leptodon cayanensis                | CI/PK               |
| Chondrohierax uncinatus            | CI/PK               |
| Elanoides forficatus               | CI/PK               |
| Gampsonyx swainsonii               | CI                  |
| Elanus leucurus                    | CI/PK               |
| Rostrhamus sociabilis              | CI/PK               |
| Harpagus bidentatus                | CI/PK               |
| Harpagus diodon                    | CI/PK               |
| Ictinia plumbea                    | CI/PK               |
| Circus cinereus                    | CI                  |
| Circus buffoni                     | CI                  |
| Accipiter poliogaster <sup>2</sup> | CI/PK               |
| Accipiter superciliosus            | CI/PK               |
| Accipiter bicolor                  | CI/PK               |
| Accipiter striatus                 | PK                  |
| Geranospiza caerulescens           | CI/PK               |

| Nome do Táxon                    | Fonte bibliográfica |  |
|----------------------------------|---------------------|--|
| Leucopternis lacernulatus        | CI/PK               |  |
| Leucopternis albicollis          | CI                  |  |
| Leucopternis polionotus          | CI/PK               |  |
| Buteogallus aequinoctialis       | PK                  |  |
| Buteogallus urubitinga           | CI/PK               |  |
| Heterospizias meridionalis       | CI/PK               |  |
| Harpyhaliaetus coronatus         | CI                  |  |
| Busarellus nigricollis           | CI                  |  |
| Parabuteo unicinctus             | CI                  |  |
| Percnohierax leucorrhous         | CI/PK               |  |
| Rupornis magnirostris            | CI/PK               |  |
| Buteo albicaudatus               | CI/PK               |  |
| Buteo melanoleucus               | CI                  |  |
| Buteo nitidus                    | CI/PK               |  |
| Buteo brachyurus                 | CI/PK               |  |
| Buteo albonotatus                | CI                  |  |
| Morphnus guianensis              | CI/PK               |  |
| Harpia harpyja                   | CI/PK               |  |
| Spizaetus tyrannus               | CI/PK               |  |
| Spizaetus melanoleucus           | CI/PK               |  |
| Spizaetus ornatus                | CI/PK               |  |
| Falconidae                       |                     |  |
| Ibycter americanus               | CI                  |  |
| Caracara plancus                 | PK                  |  |
| Milvago chimachima               | CI/PK               |  |
| Milvago chimango                 | CI                  |  |
| Herpetotheres cachinnans         | CI/PK               |  |
| Micrastur ruficollis             | CI/PK               |  |
| Micrastur mirandollei            | CI/PK               |  |
| Micrastur gilvicollis            | PK                  |  |
| Micrastur semitorquatus          | CI/PK               |  |
| Falco sparverius                 | CI/PK               |  |
| Falco rufigularis                | CI/PK               |  |
| Falco deiroleucus                | CI                  |  |
| Falco femoralis                  | CI                  |  |
| Gruiformes                       |                     |  |
| Aramidae                         |                     |  |
| Aramus guarauna                  | CI/PK               |  |
| Rallidae                         |                     |  |
| Coturnicops notatus              | CI/PK               |  |
| Micropygia schomburgkii          | CI                  |  |
| Rallus longirostris <sup>2</sup> | CI/PK               |  |
| Aramides ypecaha                 | CI                  |  |
| Aramides mangle <sup>3</sup>     | CI/PK               |  |
| Aramides cajanea                 | CI/PK               |  |

| Nome do Táxon                     | Fonte bibliográfica<br>CI/PK |  |
|-----------------------------------|------------------------------|--|
| Aramides saracura <sup>3</sup>    |                              |  |
| Amaurolimnas concolor             | CI/PK                        |  |
| Laterallus viridis                | CI/PK                        |  |
| Laterallus melanophaius           | CI/PK                        |  |
| Laterallus exilis                 | CI/PK                        |  |
| Laterallus leucopyrrhus           | CI/PK                        |  |
| Porzana flaviventer               | CI/PK                        |  |
| Porzana albicollis                | CI/PK                        |  |
| Neocrex erythrops                 | CI                           |  |
| Pardirallus maculatus             | CI/PK                        |  |
| Pardirallus nigricans             | CI/PK                        |  |
| Pardirallus sanguinolentus        | CI/PK                        |  |
| Gallinula chloropus               | CI/PK                        |  |
| Gallinula melanops                | CI/PK                        |  |
| Porphyrio martinica               | CI/PK                        |  |
| Porphyrio flavirostris            | CI/PK                        |  |
| Fulica armillata                  | CI                           |  |
| Fulica rufifrons                  | CI                           |  |
| Fulica leucoptera                 | CI                           |  |
| Heliornithidae                    |                              |  |
| Heliornis fulica                  | CI/PK                        |  |
| Eurypygidae                       |                              |  |
| Eurypyga helias                   | CI                           |  |
| Cariamidae                        |                              |  |
| Cariama cristata                  | CI/PK                        |  |
| Charadriiformes                   |                              |  |
| Charadriidae                      |                              |  |
| Vanellus cayanus                  | CI                           |  |
| Vanellus chilensis                | CI/PK                        |  |
| Charadrius wilsonia               | CI/PK                        |  |
| Charadrius collaris               | CI/PK                        |  |
| Haematopodidae                    |                              |  |
| Haematopus palliatus              | CI/PK                        |  |
| Recurvirostridae                  |                              |  |
| Himantopus melanurus <sup>1</sup> | CI/PK                        |  |
| Scolopacidae                      |                              |  |
| Gallinago paraguaiae              | CI/PK                        |  |
| Gallinago undulata                | CI/PK                        |  |
| Jacanidae                         |                              |  |
| Jacana jacana                     | CI/PK                        |  |
| Rostratulidae                     |                              |  |
| Nycticryphes semicollaris         | CI                           |  |
| Laridae                           |                              |  |
| Chroicocephalus maculipennis      | CI/PK                        |  |
| Chroicocephalus cirrocephalus     | CI/PK                        |  |

| Nome do Táxon                       | Fonte bibliográfica |  |
|-------------------------------------|---------------------|--|
| Larus dominicanus <sup>2</sup>      | CI/PK               |  |
| Sternidae                           |                     |  |
| Anous minutus                       | PK                  |  |
| Anous stolidus <sup>2</sup>         | PK                  |  |
| Gygis Alba <sup>2</sup>             | PK                  |  |
| Onychoprion fuscatus <sup>2</sup>   | CI/PK               |  |
| Sternula superciliaris              | CI/PK               |  |
| Phaetusa simplex                    | CI/PK               |  |
| Gelochelidon nilótica <sup>2</sup>  | CI/PK               |  |
| Sterna hirundinacea                 | CI                  |  |
| Sterna trudeaui                     | CI                  |  |
| Thalasseus sandvicensis             | CI/PK               |  |
| Thalasseus maximus                  | CI                  |  |
| Rhynchopidae                        |                     |  |
| Rynchops niger                      | PK                  |  |
| Columbiformes                       |                     |  |
| Columbidae                          |                     |  |
| Columbina passerina                 | CI                  |  |
| Columbina minuta                    | CI                  |  |
| Columbina talpacoti                 | CI/PK               |  |
| Columbina squammata                 | CI/PK               |  |
| Columbina picui                     | CI                  |  |
| Claravis pretiosa                   | CI/PK               |  |
| Claravis godefrida                  | CI/PK               |  |
| Uropelia campestris³                | CI                  |  |
| Columba livia                       | PK                  |  |
| Patagioenas speciosa                | CI/PK               |  |
| Patagioenas picazuro                | CI/PK               |  |
| Patagioenas maculosa                | CI                  |  |
| Patagioenas cayennensis             | CI/PK               |  |
| Patagioenas plumbea                 | CI/PK               |  |
| Zenaida auriculata                  | CI/PK               |  |
| Leptotila verreauxi                 | CI/PK               |  |
| Leptotila rufaxilla                 | CI/PK               |  |
| Geotrygon violacea                  | CI/PK               |  |
| Geotrygon montana                   | CI/PK               |  |
| Psittaciformes                      |                     |  |
| Psittacidae                         |                     |  |
| Ara ararauna                        | CI                  |  |
| Ara chloropterus <sup>3</sup>       | CI/PK               |  |
| Ara severus                         | PK/SI               |  |
| Primolius maracana                  | CI/PK               |  |
| Diopsittaca nobilis                 | CI/PK               |  |
| Aratinga acuticaudata <sup>3</sup>  | CI                  |  |
| Aratinga leucophthalma <sup>3</sup> | CI/PK               |  |

| Nome do Táxon                           | Fonte bibliográfica |  |
|-----------------------------------------|---------------------|--|
| Aratinga auricapillus³                  | CI/PK<br>CI/PK      |  |
| Aratinga jandaya                        |                     |  |
| Aratinga aurea                          | CI/PK               |  |
| Pyrrhura cruentata <sup>2</sup>         | CI/PK               |  |
| Pyrrhura frontalis                      | CI/PK               |  |
| Pyrrhura leucotis <sup>2</sup>          | CI/PK               |  |
| Pyrrhura griseipectus <sup>2</sup>      | PK/TS               |  |
| Myiopsitta monachus                     | CI                  |  |
| Forpus xanthopterygius <sup>3</sup>     | CI/PK               |  |
| Brotogeris tirica                       | CI/PK               |  |
| Brotogeris chiriri                      | CI                  |  |
| Touit melanonotus <sup>2</sup>          | CI/PK               |  |
| Touit surdus <sup>2</sup>               | CI/PK               |  |
| Pionopsitta pileata                     | CI/PK               |  |
| Pionus menstruus                        | CI/PK               |  |
| Pionus maximiliani <sup>3</sup>         | CI/PK               |  |
| Amazona pretrei                         | CI/PK               |  |
| Amazona brasiliensis                    | CI/PK               |  |
| Amazona rhodocorytha                    | CI/PK               |  |
| Amazona aestiva                         | CI/PK               |  |
| Amazona amazonica                       | CI/PK               |  |
| Amazona farinosa                        | CI/PK               |  |
| Amazona vinacea                         | CI/PK               |  |
| Triclaria malachitacea                  | CI/PK               |  |
| Cuculiformes                            |                     |  |
| Cuculidae                               |                     |  |
| Piaya cayana                            | CI/PK               |  |
| Coccyzus melacoryphus                   | CI/PK               |  |
| Coccyzus euleri                         | CI/PK               |  |
| Crotophaga major                        | CI/PK               |  |
| Crotophaga ani                          | CI/PK               |  |
| Guira guira                             | CI/PK               |  |
| Tapera naevia                           | CI/PK               |  |
| Dromococcyx phasianellus                | CI/PK               |  |
| Dromococcyx pavoninus                   | CI/PK               |  |
| Neomorphus geoffroyi                    | CI/PK               |  |
| Strigiformes                            |                     |  |
| Tytonidae                               |                     |  |
| Tyto alba                               | CI/PK               |  |
| Strigidae                               |                     |  |
| Megascops choliba                       | CI/PK               |  |
| Megascops atricapilla <sup>3</sup>      | CI/PK               |  |
| Megascops sanctaecatarinae <sup>2</sup> | CI                  |  |
| Pulsatrix perspicillata <sup>3</sup>    | CI/PK               |  |
| Pulsatrix koeniswaldiana <sup>3</sup>   | CI/PK               |  |

| Nome do Táxon                         | Fonte bibliográfica |  |
|---------------------------------------|---------------------|--|
| Bubo virginianus                      | CI/PK               |  |
| Strix hylophila <sup>3</sup>          | CI/PK               |  |
| Strix virgata                         | CI/PK               |  |
| Strix huhula                          | CI                  |  |
| Glaucidium hardyi <sup>3</sup>        | PK/SI               |  |
| Glaucidium mooreorum²                 | CI/TS               |  |
| Glaucidium minutissimum               | CI/PK               |  |
| Glaucidium brasilianum                | CI/PK               |  |
| Athene cunicularia                    | CI/PK               |  |
| Aegolius harrisii                     | CI/PK               |  |
| Asio clamator <sup>3</sup>            | CI/PK               |  |
| Asio stygius                          | CI                  |  |
| Asio flammeus                         | CI                  |  |
| Caprimulgiformes                      |                     |  |
| Nyctibiidae                           |                     |  |
| Nyctibius grandis                     | CI                  |  |
| Nyctibius aethereus                   | CI/PK               |  |
| Nyctibius griseus                     | CI/PK               |  |
| Nyctibius leucopterus                 | CI/PK               |  |
| Caprimulgidae                         |                     |  |
| Lurocalis semitorquatus               | CI/PK               |  |
| Chordeiles pusillus                   | CI/PK               |  |
| Chordeiles acutipennis                | CI/PK               |  |
| Podager nacunda                       | CI                  |  |
| Nyctidromus albicollis                | CI/PK               |  |
| Nyctiphrynus ocellatus                | CI/PK<br>CI/PK      |  |
| Caprimulgus rufus <sup>3</sup>        |                     |  |
| Caprimulgus sericocaudatus            | CI                  |  |
| Caprimulgus longirostris              | CI/PK               |  |
| Caprimulgus maculicaudus <sup>3</sup> | CI/PK               |  |
| Caprimulgus parvulus <sup>3</sup>     | CI/PK               |  |
| Macropsalis forcipata <sup>2</sup>    | CI/PK               |  |
| Hydropsalis torquata                  | CI/PK               |  |
| Eleothreptus anomalus <sup>3</sup>    | CI/PK               |  |
| Apodiformes                           |                     |  |
| Apodidae                              |                     |  |
| Cypseloides fumigatus                 | CI/PK               |  |
| Cypseloides senex                     | CI/PK               |  |
| Streptoprocne zonaris                 | CI/PK               |  |
| Streptoprocne biscutata               | CI/PK               |  |
| Chaetura spinicaudus                  | CI/PK               |  |
| Chaetura cinereiventris               | CI/PK               |  |
| Chaetura meridionalis                 | PK/CI               |  |
| Panyptila cayennensis <sup>3</sup>    | CI/PK               |  |
| Tachornis squamata                    | CI/PK               |  |

| Nome do Táxon                               | Fonte bibliográfica |  |
|---------------------------------------------|---------------------|--|
| Ramphodon naevius <sup>3</sup>              | CI/PK               |  |
| Trochilidae                                 |                     |  |
| Glaucis dohrnii <sup>3</sup>                | CI/PK               |  |
| Glaucis hirsutus                            | CI/PK               |  |
| Phaethornis squalidus <sup>3</sup>          | CI/PK               |  |
| Phaethornis idaliae <sup>3</sup>            | CI/PK               |  |
| Phaethornis ruber                           | CI/PK<br>CI/PK      |  |
| Phaethornis pretrei                         |                     |  |
| Phaethornis eurynome                        | CI/PK               |  |
| Phaethornis malaris <sup>3</sup>            | CI                  |  |
| Phaethornis margarettae <sup>1</sup>        | PK                  |  |
| Campylopterus largipennis                   | CI                  |  |
| Eupetomena macroura <sup>3</sup>            | CI/PK               |  |
| Aphantochroa cirrochloris <sup>3</sup>      | CI/PK               |  |
| Florisuga fusca                             | CI/PK               |  |
| Colibri serrirostris                        | CI/PK               |  |
| Anthracothorax nigricollis                  | CI/PK               |  |
| Chrysolampis mosquitus                      | CI                  |  |
| Stephanoxis lalandi <sup>3</sup>            | CI/PK               |  |
| Chlorostilbon lucidus                       | CI/PK               |  |
| Chlorostilbon notatus <sup>3</sup>          | CI/PK               |  |
| Lophornis magnificus <sup>3</sup>           | CI/PK               |  |
| Lophornis chalybeus <sup>3</sup>            | CI/PK               |  |
| Discosura longicaudus                       | CI/PK               |  |
| Discosura langsdorffi                       | CI/PK               |  |
| Thalurania furcata                          | CI                  |  |
| Thalurania watertonii                       | CI/PK               |  |
| Thalurania glaucopis                        | CI/PK               |  |
| Hylocharis sapphirina                       | CI/PK               |  |
| Hylocharis cyanus                           | CI/PK               |  |
| Hylocharis chrysura                         | CI                  |  |
| Leucochloris albicollis <sup>3</sup>        | CI/PK               |  |
| Polytmus guainumbi                          | CI/PK               |  |
| Amazilia leucogaster <sup>2</sup>           | CI                  |  |
| Amazilia versicolor                         | CI/PK               |  |
| Amazilia fimbriata <sup>3</sup>             | CI/PK               |  |
| Amazilia lactea <sup>3</sup>                | CI/PK               |  |
| Clytolaema rubricauda <sup>3</sup>          | CI/PK               |  |
| Heliothryx auritus                          | CI/PK               |  |
| Heliactin bilophus <sup>3</sup>             | CI                  |  |
| Heliomaster longirostris                    | CI                  |  |
| Heliomaster squamosus                       | CI/PK               |  |
| Heliomaster squamosus  Heliomaster furcifer | CI                  |  |
| Calliphlox amethystina <sup>3</sup>         | CI/PK               |  |
| Trogoniformes                               | CI/1 K              |  |

| Nome do Táxon                         | Fonte bibliográfica |  |
|---------------------------------------|---------------------|--|
| Trogonidae                            |                     |  |
| Trogon viridis                        | CI/PK               |  |
| Trogon surrucura                      | CI/PK               |  |
| Trogon curucui                        | CI/PK               |  |
| Trogon rufus                          | CI/PK               |  |
| Trogon collaris                       | CI/PK               |  |
| Coraciiformes                         |                     |  |
| Alcedinidae                           |                     |  |
| Megaceryle torquata                   | CI/PK               |  |
| Chloroceryle amazona                  | CI/PK               |  |
| Chloroceryle aenea                    | CI/PK               |  |
| Chloroceryle americana                | CI/PK               |  |
| Chloroceryle inda                     | CI/PK               |  |
| Momotidae                             |                     |  |
| Baryphthengus ruficapillus            | CI/PK               |  |
| Momotus momota                        | CI                  |  |
| Piciformes                            |                     |  |
| Galbulidae                            |                     |  |
| Brachygalba lugubris                  | CI                  |  |
| Jacamaralcyon tridactyla <sup>3</sup> | CI/PK               |  |
| Galbula ruficauda                     | CI/PK               |  |
| Bucconidae                            |                     |  |
| Chelidoptera tenebrosa                | CI/PK               |  |
| Malacoptila striata <sup>3</sup>      | CI/PK               |  |
| Monasa morphoeus                      | CI/PK               |  |
| Monasa nigrifrons                     | CI                  |  |
| Nonnula rubecula                      | CI/PK               |  |
| Notharchus macrorhynchos              | CI/PK               |  |
| Nystalus chacuru                      | CI/PK               |  |
| Nystalus maculatus                    | CI                  |  |
| Picidae                               |                     |  |
| Campephilus robustus                  | CI/PK               |  |
| Celeus lugubris                       | CI                  |  |
| Celeus flavescens                     | CI/PK               |  |
| Celeus flavus                         | PK                  |  |
| Celeus torquatus                      | CI/PK               |  |
| Colaptes campestris <sup>3</sup>      | CI/PK               |  |
| Colaptes melanochloros <sup>3</sup>   | CI/PK               |  |
| Dryocopus galeatus                    | CI/PK               |  |
| Dryocopus lineatus                    | CI/PK               |  |
| Melanerpes candidus                   | CI/PK               |  |
| Melanerpes flavifrons                 | CI/PK               |  |
| Veniliornis affinis                   | PK                  |  |
| Veniliornis maculifrons               | CI/PK               |  |
| Veniliornis passerinus                | CI                  |  |

| Nome do Táxon                                     | Fonte bibliográfica |  |
|---------------------------------------------------|---------------------|--|
| Veniliornis spilogaster                           | CI/PK               |  |
| Veniliornis mixtus                                | CI                  |  |
| Piculus aurulentus                                | CI/PK               |  |
| Piculus chrysochloros                             | CI/PK               |  |
| Piculus flavigula                                 | CI/PK               |  |
| Picumnus albosquamatus                            | CI                  |  |
| Picumnus cirratus                                 | CI/PK               |  |
| Picumnus exilis                                   | CI/PK               |  |
| Picumnus fulvescens <sup>2</sup>                  | CI                  |  |
| Picumnus limae <sup>2</sup>                       | CI                  |  |
| Picumnus nebulosus                                | CI/PK               |  |
| Picumnus pygmaeus                                 | CI                  |  |
| Picumnus temminckii                               | CI/PK               |  |
| Ramphastidae                                      |                     |  |
| Pteroglossus bailloni                             | CI/PK               |  |
| Pteroglossus aracari                              | CI/PK               |  |
| Pteroglossus castanotis                           | CI                  |  |
| Ramphastos dicolorus                              | CI/PK               |  |
| Ramphastos toco                                   | CI/PK               |  |
| Ramphastos vitellinus                             | CI/PK               |  |
| Selenidera maculirostris                          | CI/PK               |  |
| Passeriformes                                     |                     |  |
| Melanopareiidae                                   |                     |  |
| Melanopareia torquata                             | CI                  |  |
| Thamnophilidae                                    |                     |  |
| Batara cinerea                                    | CI/PK               |  |
| Biatas nigropectus <sup>2</sup>                   | CI/PK               |  |
| Cercomacra brasiliana <sup>2</sup>                | CI/PK               |  |
| Cercomacra laeta                                  | CI/PK               |  |
| Drymophila malura                                 | CI/PK               |  |
| Drymophila ferruginea                             | CI/PK               |  |
| Drymophila genei                                  | CI/PK               |  |
| Drymophila ochropyga                              | CI/PK               |  |
| Drymophila rubricollis                            | CI/PK               |  |
| Drymophila squamata                               | CI/PK               |  |
| Dysithamnus mentalis                              | CI/PK               |  |
| Dysithamnus plumbeus                              | CI/PK               |  |
| Dysithamnus stictothorax <sup>2</sup>             | CI/PK               |  |
| Dysithamnus xanthopterus <sup>2</sup>             | CI/PK               |  |
| Formicivora erythronotos <sup>2</sup>             | CI/PK               |  |
| Formicivora grisea                                | CI/PK               |  |
| Formicivora grisea  Formicivora iheringi          | CI/T K              |  |
| Formicivora ineringi<br>Formicivora littoralis    | CI/PK               |  |
| Formicivora intoraiis<br>Formicivora melanogaster | CI/T K              |  |
| Formicivora metanogaster<br>Formicivora rufa      | CI/PK               |  |

| Nome do Táxon                           | Fonte bibliográfic |  |
|-----------------------------------------|--------------------|--|
| Formicivora serrana                     | CI/PK              |  |
| Herpsilochmus atricapillus              | CI                 |  |
| Herpsilochmus longirostris <sup>3</sup> | CI                 |  |
| Herpsilochmus rufimarginatus            | CI/PK              |  |
| Hypoedaleus guttatus                    | CI/PK              |  |
| Mackenziaena leachii                    | CI/PK              |  |
| Mackenziaena severa                     | CI/PK              |  |
| Myrmeciza loricata <sup>2</sup>         | CI/PK              |  |
| Myrmeciza ruficauda²                    | CI/PK              |  |
| Myrmeciza squamosa <sup>3</sup>         | CI                 |  |
| Myrmorchilus strigilatus                | CI                 |  |
| Pyriglena atra <sup>3</sup>             | CI/PK              |  |
| Pyriglena leuconota                     | CI/PK              |  |
| Pyriglena leucoptera                    | CI/PK              |  |
| Rhopornis ardesiacus <sup>3</sup>       | CI                 |  |
| Stymphalornis acutirostris <sup>2</sup> | CI                 |  |
| Taraba major                            | CI/PK              |  |
| Terenura maculata                       | CI/PK              |  |
| Terenura sicki                          | CI/PK              |  |
| Thamnomanes caesius                     | CI/PK              |  |
| Thamnophilus caerulescens               | CI/PK              |  |
| Thamnophilus doliatus                   | CI                 |  |
| Thamnophilus palliatus <sup>3</sup>     | CI/PK              |  |
| Thamnophilus punctatus <sup>3</sup>     | CI/PK              |  |
| Thamnophilus ruficapillus               | CI/PK              |  |
| Thamnophilus torquatus <sup>3</sup>     | CI                 |  |
| Thamnophilus aethiops <sup>3</sup>      | PK                 |  |
| Myrmotherula fluminensis <sup>2</sup>   | CI/PK              |  |
| Myrmotherula gularis <sup>3</sup>       | CI/PK              |  |
| Myrmotherula minor <sup>3</sup>         | CI/PK              |  |
| Myrmotherula snowi <sup>2</sup>         | CI                 |  |
| Myrmotherula unicolor <sup>3</sup>      | CI/PK              |  |
| Myrmotherula axillaris                  | PK                 |  |
| Myrmotherula urosticta <sup>3</sup>     | CI/PK              |  |
| Conopophagidae                          |                    |  |
| Conopophaga lineata                     | CI/PK              |  |
| Conopophaga melanops <sup>3</sup>       | CI/PK              |  |
| Grallariidae                            |                    |  |
| Grallaria varia                         | CI/PK              |  |
| Hylopezus nattereri                     | CI/PK              |  |
| Rhinocryptidae                          | <del></del>        |  |
| Merulaxis ater <sup>3</sup>             | CI/PK              |  |
| Merulaxis stresemanni <sup>2</sup>      | CI/PK              |  |
| Psilorhamphus guttatus <sup>3</sup>     | CI/PK              |  |
| Scytalopus indigoticus                  | CI/PK              |  |

| Nome do Táxon                              | Fonte bibliográfica |  |
|--------------------------------------------|---------------------|--|
| Scytalopus iraiensis <sup>2</sup>          | CI                  |  |
| Scytalopus psychopompus                    | CI/PK               |  |
| Scytalopus speluncae                       | CI/PK               |  |
| Formicariidae                              |                     |  |
| Formicarius colma                          | PK                  |  |
| Chamaeza campanisona                       | CI/PK               |  |
| Chamaeza meruloides                        | CI/PK               |  |
| Chamaeza ruficauda                         | CI/PK               |  |
| Scleruridae                                |                     |  |
| Sclerurus mexicanus                        | CI/PK               |  |
| Sclerurus caudacutus                       | PK                  |  |
| Sclerurus scansor                          | CI/PK               |  |
| Dendrocolaptidae                           |                     |  |
| Campylorhamphus falcularius                | CI/PK               |  |
| Campylorhamphus procurvoides               | CI                  |  |
| Campylorhamphus trochilirostris            | CI                  |  |
| Dendrocincla turdina <sup>1</sup>          | CI/PK               |  |
| Dendrocolaptes certhia                     | PK                  |  |
| Dendrocolaptes platyrostris                | CI/PK               |  |
| Glyphorynchus spirurus <sup>3</sup>        | CI/PK               |  |
| Lepidocolaptes angustirostris              | CI                  |  |
| Xiphorhynchus fuscus                       | CI/PK               |  |
| Lepidocolaptes squamatus                   | CI/PK               |  |
| Sittasomus griseicapillus <sup>3</sup>     | CI/PK               |  |
| Xiphocolaptes albicollis                   | CI/PK               |  |
| Xiphocolaptes falcirostris                 | CI                  |  |
| Xiphorhynchus guttatus                     | CI/PK               |  |
| Dendroplex picus <sup>3</sup>              | CI                  |  |
| Furnariidae                                | CI                  |  |
| Cinclodes pabsti                           | PK                  |  |
| Acrobatornis fonsecai <sup>2</sup>         | CI                  |  |
| Anabacerthia amaurotis <sup>3</sup>        | CI/PK               |  |
| Anabazenops fuscus <sup>2</sup>            | CI/PK               |  |
| Anumbius annumbi                           | CI/PK               |  |
| Automolus leucophthalmus                   | CI/PK               |  |
| Certhiaxis cinnamomeus                     | CI/PK               |  |
| Cichlocolaptes leucophrus <sup>2</sup>     | CI/PK<br>CI/PK      |  |
|                                            | CI/PK<br>CI/PK      |  |
| Clibanornis dendrocolaptoides <sup>3</sup> |                     |  |
| Cranioleuca obsoleta                       | CI/PK               |  |
| Cranioleuca pallida                        | CI/PK               |  |
| Cranioleuca semicinerea                    | CI                  |  |
| Cranioleuca vulpina                        | CI                  |  |
| Limnoctites rectirostris <sup>3</sup>      | PK                  |  |
| Furnarius figulus                          | CI/PK               |  |
| Furnarius leucopus                         | CI                  |  |

| Nome do Táxon                                         | Fonte bibliográfica |  |
|-------------------------------------------------------|---------------------|--|
| Furnarius rufus                                       | CI/PK               |  |
| Heliobletus contaminatus <sup>3</sup>                 | CI/PK               |  |
| Hylocryptus rectirostris                              | CI                  |  |
| Leptasthenura setaria                                 | CI/PK               |  |
| Leptasthenura striolata                               | CI/PK               |  |
| Limnornis curvirostris                                | CI                  |  |
| Lochmias nematura                                     | CI/PK               |  |
| Oreophylax moreirae <sup>3</sup>                      | CI/PK               |  |
| Phacellodomus erythrophthalmus                        | CI/PK               |  |
| Phacellodomus ferrugineigula <sup>2</sup>             | PK                  |  |
| Phacellodomus ruber                                   | CI                  |  |
| Phacellodomus rufifrons                               | CI                  |  |
| Phacellodomus striaticollis                           | CI                  |  |
| Syndactyla dimidiata <sup>3</sup>                     | CI                  |  |
| Philydor atricapillus                                 | CI/PK               |  |
| Philydor lichtensteini                                | CI/PK               |  |
| Philydor novaesi <sup>3</sup>                         | CI/PK               |  |
| Philydor rufum <sup>3</sup>                           | CI/PK               |  |
| Phleocryptes melanops                                 | CI/PK               |  |
| Pseudoseisura cristata <sup>2</sup>                   | CI                  |  |
| Synallaxis albescens                                  | CI                  |  |
| Synallaxis cinerascens                                | CI/PK               |  |
| Synallaxis frontalis                                  | CI                  |  |
| Synallaxis hypospodia <sup>3</sup>                    | CI                  |  |
| Synallaxis infuscata <sup>3</sup>                     | CI/PK               |  |
| Synallaxis ruficapilla                                | CI/PK               |  |
| Synallaxis scutata                                    | CI                  |  |
| Synallaxis spixi                                      | CI/PK               |  |
| Synallaxis cinérea <sup>2</sup>                       | CI                  |  |
| Syndactyla rufosuperciliata <sup>3</sup>              | CI/PK               |  |
| Thripophaga macroura <sup>2</sup>                     | CI                  |  |
| Xenops minutus                                        | CI/PK               |  |
| Xenops rutilans                                       | CI/PK               |  |
| Tyrannidae                                            | CHIK                |  |
| Conopias trivirgatus <sup>2</sup>                     | CI/PK               |  |
| Contopus cinereus                                     | CI/PK               |  |
| Culicivora caudacuta <sup>2</sup>                     | CI                  |  |
| Elaenia chiriquensis                                  | CI                  |  |
| Elaenia cristata <sup>3</sup>                         | CI                  |  |
| Elaenia (Histala<br>Elaenia flavogaster               | CI/PK               |  |
| Elaenia jiavogasier<br>Elaenia mesoleuca <sup>3</sup> | CI/PK<br>CI/PK      |  |
| Elaenia mesoieuca<br>Elaenia obscura <sup>3</sup>     | CI/PK<br>CI/PK      |  |
|                                                       |                     |  |
| Elagnia parvirostris <sup>3</sup>                     | CI                  |  |
| Elaenia ridleyana <sup>3</sup>                        | CI/PK               |  |
| Elaenia spectabilis <sup>3</sup>                      | CI                  |  |

| <br>Nome do Táxon                    | Fonte bibliográfic |
|--------------------------------------|--------------------|
| Griseotyrannus aurantioatrocristatus | CI                 |
| Empidonomus varius                   | CI/PK              |
| Euscarthmus meloryphus               | CI/PK              |
| Euscarthmus rufomarginatus           | CI                 |
| Arundinicola leucocephala            | CI/PK              |
| Fluvicola albiventer                 | CI/PK              |
| Fluvicola nengeta                    | CI/PK              |
| Fluvicola pica                       | CI                 |
| Gubernetes yetapa                    | CI                 |
| Hemitriccus diops                    | CI/PK              |
| Hemitriccus furcatus <sup>2</sup>    | CI/PK              |
| Hemitriccus kaempferi <sup>2</sup>   | CI/PK              |
| Hemitriccus margaritaceiventer       | CI                 |
| Hemitriccus mirandae <sup>2</sup>    | CI                 |
| Hemitriccus nidipendulus             | CI/PK              |
| Hemitriccus obsoletus                | CI/PK              |
| Hemitriccus orbitatus                | CI/PK              |
| Hemitriccus striaticollis            | CI                 |
| Hemitriccus zosterops                | CI/PK              |
| Hirundinea ferruginea                | CI/PK              |
| Hymenops perspicillatus              | CI                 |
| Knipolegus cyanirostris              | CI/PK              |
| Knipolegus lophotes                  | CI/PK              |
| Knipolegus nigerrimus                | CI/PK              |
| Lathrotriccus euleri                 | CI/PK              |
| Legatus leucophaius                  | CI/PK              |
| Leptopogon amaurocephalus            | CI/PK              |
| Machetornis rixosa                   | CI/PK              |
| Megarynchus pitangua                 | CI/PK              |
| Mionectes oleagineus                 | CI/PK              |
| Mionectes rufiventris                | CI/PK              |
| Corythopis delalandi                 | CI/PK              |
| Muscipipra vetula                    | CI/PK              |
| Myiarchus ferox                      | CI/PK              |
| Myiarchus swainsoni                  | CI/PK              |
| Myiarchus tuberculifer               | CI/PK              |
| Myiarchus tyrannulus                 | CI/PK              |
| Myiobius atricaudus                  | CI/PK              |
| Myiobius barbatus                    | CI/PK              |
| Myiodynastes maculatus               | CI/PK              |
| Myiopagis caniceps                   | CI/PK              |
| Myiopagis gaimardii                  | CI                 |
| Myiopagis viridicata                 | CI/PK              |
| Myiophobus fasciatus                 | CI/PK              |
| Myiornis auricularis <sup>2</sup>    | CI/PK              |

| Nome do Táxon                          | Fonte bibliográfica |
|----------------------------------------|---------------------|
| Myiozetetes cayanensis                 | CI/PK               |
| Myiozetetes similis                    | CI/PK               |
| Onychorhynchus swainsoni               | CI/PK               |
| Ornithion inerme                       | CI/PK               |
| Phaeomyias murina                      | CI/PK               |
| Phyllomyias burmeisteri <sup>3</sup>   | CI/PK               |
| Phyllomyias fasciatus                  | CI/PK               |
| Phyllomyias griseocapilla <sup>2</sup> | CI/PK               |
| Phyllomyias reiseri <sup>3</sup>       | CI                  |
| Phyllomyias virescens <sup>3</sup>     | CI/PK               |
| Phylloscartes beckeri <sup>2</sup>     | CI                  |
| Phylloscartes ceciliae                 | CI/PK               |
| Phylloscartes difficilis               | CI/PK               |
| Phylloscartes eximius                  | CI/PK               |
| Phylloscartes kronei                   | CI/PK               |
| Phylloscartes oustaleti                | CI/PK               |
| Phylloscartes paulistus                | CI/PK               |
| Phylloscartes sylviolus                | CI/PK               |
| Phylloscartes ventralis                | CI/PK               |
| Philohydor lictor                      | CI/PK               |
| Pitangus sulphuratus                   | CI/PK               |
| Platyrinchus leucoryphus               | CI/PK               |
| Platyrinchus mystaceus                 | CI/PK               |
| Polystictus superciliaris <sup>3</sup> | CI                  |
| Pseudocolopteryx flaviventris          | CI                  |
| Pseudocolopteryx sclateri              | CI/PK               |
| Pyrocephalus rubinus                   | CI/PK               |
| Ramphotrigon megacephalum              | CI/PK               |
| Rhynchocyclus olivaceus                | CI/PK               |
| Rhytipterna simplex                    | CI/PK               |
| Satrapa icterophrys                    | CI/PK               |
| Serpophaga nigricans                   | CI/PK               |
| Serpophaga subcristata                 | CI/PK               |
| Sirystes sibilator                     | CI/PK               |
| Sublegatus modestus                    | CI                  |
| Suiriri suiriri                        | CI                  |
| Tachuris rubrigastra                   | CI/PK               |
| Todirostrum cinereum                   | CI/PK               |
| $To diros trum\ poliocephalum^2$       | CI/PK               |
| Poecilotriccus plumbeiceps             | CI/PK               |
| Poecilotriccus senex <sup>2</sup>      | CI                  |
| Tolmomyias flaviventris                | CI/PK               |
| Tolmomyias poliocephalus               | CI/PK               |
| Tolmomyias sulphurescens               | CI/PK               |
| Tyrannus albogularis <sup>3</sup>      | CI                  |

| Nome do Táxon                       | Fonte bibliográfica |
|-------------------------------------|---------------------|
| Tyrannus melancholicus              | CI/PK               |
| Tyrannus savana                     | CI/PK               |
| Xenopsaris albinucha                | CI                  |
| Xolmis cinereus <sup>3</sup>        | CI                  |
| Xolmis dominicanus <sup>3</sup>     | CI/PK               |
| Xolmis irupero                      | CI                  |
| Xolmis velatus <sup>2</sup>         | CI                  |
| Zimmerius gracilipes <sup>1</sup>   | CI/PK               |
| Alectrurus tricolor                 | CI                  |
| Attila phoenicurus                  | CI/PK               |
| Attila rufus                        | CI/PK               |
| Attila spadiceus                    | CI/PK               |
| Camptostoma obsoletum               | CI/PK               |
| Capsiempis flaveola                 | CI/PK               |
| Casiornis fuscus                    | CI                  |
| Casiornis rufus                     | CI                  |
| Cnemotriccus fuscatus               | CI/PK               |
| Colonia colonus                     | CI/PK               |
| Cotingidae                          |                     |
| Calyptura cristata <sup>2</sup>     | CI/PK               |
| Carpornis cucullata                 | CI/PK               |
| Carpornis melanocephalus            | CI/PK               |
| Cotinga maculata <sup>3</sup>       | CI/PK               |
| Lipaugus lanioides <sup>3</sup>     | CI/PK               |
| Lipaugus vociferans                 | PK                  |
| Phibalura flavirostris <sup>3</sup> | CI/PK               |
| Procnias averano                    | CI/PK               |
| Procnias nudicollis                 | CI/PK               |
| Pyroderus scutatus                  | CI/PK               |
| Tijuca atra <sup>2</sup>            | CI/PK               |
| Tijuca condita <sup>3</sup>         | CI/PK               |
| Xipholena atropurpurea <sup>3</sup> | CI/PK               |
| Pipridae                            |                     |
| Chiroxiphia caudata                 | CI/PK               |
| Chiroxiphia pareola                 | CI/PK               |
| Ilicura militaris                   | CI/PK               |
| Machaeropterus pyrocephalus         | CI                  |
| Machaeropterus regulus              | CI/PK               |
| Manacus manacus                     | CI/PK               |
| Neopelma aurifrons                  | CI/PK               |
| Neopelma chrysocephalum             | CI/PK               |
| Neopelma pallescens                 | CI                  |
| Pipra fasciicauda                   | CI                  |
| Dixiphia pipra                      | CI/PK               |
| Pipra rubrocapilla                  | CI/PK               |

| Nome do Táxon                          | Fonte bibliográfica |
|----------------------------------------|---------------------|
| Piprites chloris                       | CI/PK               |
| Piprites pileata                       | CI                  |
| Tityridae                              |                     |
| Oxyruncus cristatus                    | CI/PK               |
| Schiffornis turdina                    | CI/PK               |
| Schiffornis virescens                  | CI/PK               |
| Laniocera hypopyrra                    | CI/PK               |
| Laniisoma elegans                      | CI/PK               |
| Iodopleura pipra                       | CI/PK               |
| Tityra cayana                          | CI/PK               |
| Tityra inquisitor                      | CI/PK               |
| Tityra semifasciata                    | CI/PK               |
| Pachyramphus castaneus <sup>3</sup>    | CI/PK               |
| Pachyramphus marginatus                | CI/PK               |
| Pachyramphus polychopterus             | CI/PK               |
| Pachyramphus validus                   | CI/PK               |
| Pachyramphus viridis                   | CI/PK               |
| Vireonidae                             |                     |
| Cyclarhis gujanensis                   | CI/PK               |
| Hylophilus amaurocephalus <sup>2</sup> | CI/PK               |
| Hylophilus muscicapinus <sup>3</sup>   | CI                  |
| Hylophilus pectoralis <sup>3</sup>     | CI                  |
| Hylophilus poicilotis                  | CI/PK               |
| Hylophilus thoracicus                  | CI/PK               |
| Vireo gracilirostris <sup>3</sup>      | CI/PK               |
| Vireo olivaceus                        | CI/PK               |
| Corvidae                               | 04711               |
| Cyanocorax caeruleus <sup>3</sup>      | CI/PK               |
| Cyanocorax chrysops                    | CI/PK               |
| Cyanocorax cyanomelas <sup>3</sup>     | CI                  |
| Cyanocorax cyanopogon <sup>3</sup>     | CI                  |
| Hirundinidae                           |                     |
| Alopochelidon fucata <sup>3</sup>      | CI/PK               |
| Pygochelidon melanoleuca               | CI/PK               |
| Atticora tibialis                      | CI/PK               |
| Progne tapera                          | CI/PK               |
| Progne chalybea                        | CI/PK               |
| Pygochelidon cyanoleuca                | CI/PK               |
| Stelgidopteryx ruficollis              | CI/PK               |
| Tachycineta leucorrhoa                 | CI/PK               |
| Tachycineta albiventer                 | CI/PK               |
| Troglodytidae                          | CITI                |
| Campylorhynchus turdinus               | CI/PK               |
|                                        | CI/PK<br>CI         |
| Cistothorus platensis                  |                     |
| Pheugopedius genibarbis <sup>3</sup>   | CI/PK               |

| Nome do Táxon                          | Fonte bibliográfica |
|----------------------------------------|---------------------|
| Cantorchilus leucotis                  | CI                  |
| Cantorchilus longirostris <sup>3</sup> | CI/PK               |
| Troglodytes musculus                   | CI/PK               |
| Donacobiidae                           |                     |
| Donacobius atricapilla <sup>3</sup>    | CI/PK               |
| Polioptilidae                          |                     |
| Polioptila dumicola                    | CI                  |
| Polioptila lactea <sup>3</sup>         | CI/PK               |
| Polioptila plumbea                     | CI                  |
| Ramphocaenus melanurus                 | CI/PK               |
| Turdidae                               |                     |
| Cichlopsis leucogenys                  | CI/PK               |
| Turdus flavipes <sup>3</sup>           | CI/PK               |
| Turdus albicollis³                     | CI/PK               |
| Turdus amaurochalinus³                 | CI/PK               |
| Turdus fumigatus <sup>3</sup>          | CI/PK               |
| Turdus leucomelas <sup>3</sup>         | CI/PK               |
| Turdus rufiventris <sup>3</sup>        | CI/PK               |
| Turdus subalaris <sup>1</sup>          | CI/PK               |
| Mimidae                                |                     |
| Mimus gilvus                           | CI/PK               |
| Mimus saturninus                       | CI/PK               |
| Motacillidae                           |                     |
| Anthus correndera                      | CI                  |
| Anthus hellmayri                       | CI/PK               |
| Anthus lutescens                       | CI/PK               |
| Anthus nattereri <sup>3</sup>          | CI/PK               |
| Coerebidae                             |                     |
| Coereba flaveola                       | CI                  |
| Thraupidae                             |                     |
| Chlorophanes spiza                     | CI/PK               |
| Cissopis leverianus                    | CI/PK               |
| Compsothraupis loricata <sup>3</sup>   | CI                  |
| Cyanerpes cyaneus                      | CI/PK               |
| Cypsnagra hirundinacea                 | CI                  |
| Dacnis cayana                          | CI/PK               |
| Dacnis nigripes                        | CI/PK               |
| Eucometis penicillata                  | CI                  |
| Habia rubica                           | CI/PK               |
| Hemithraupis flavicollis               | CI/PK               |
| Hemithraupis guira                     | CI                  |
| Hemithraupis ruficapilla               | CI/PK               |
| Nemosia pileata                        | CI/PK               |
| Nemosia rourei <sup>2</sup>            | CI/PK               |
| Neothraupis fasciata                   | CI                  |

| Nome do Táxon                          | Fonte bibliográfic |
|----------------------------------------|--------------------|
| Orchesticus abeillei <sup>3</sup>      | CI/PK              |
| Orthogonys chloricterus <sup>2</sup>   | CI/PK              |
| Pipraeidea melanonota                  | CI/PK              |
| Piranga flava                          | CI/PK              |
| Pyrrhocoma ruficeps                    | CI/PK              |
| Ramphocelus bresilius                  | CI/PK              |
| Ramphocelus carbo                      | CI                 |
| Schistochlamys melanopis               | CI/PK              |
| Schistochlamys ruficapillus            | CI/PK              |
| Stephanophorus diadematus <sup>3</sup> | CI/PK              |
| Tachyphonus coronatus                  | CI/PK              |
| Tachyphonus cristatus                  | CI/PK              |
| Tachyphonus rufus                      | CI                 |
| Tangara cayana                         | CI                 |
| Tangara cyanocephala                   | CI/PK              |
| Tangara cyanoventris <sup>3</sup>      | CI/PK              |
| Tangara desmaresti                     | CI/PK              |
| Tangara fastuosa <sup>2</sup>          | CI/PK              |
| Tangara peruviana <sup>3</sup>         | CI/PK              |
| Tangara preciosa <sup>3</sup>          | CI/PK              |
| Tangara seledon                        | CI/PK              |
| Tangara velia                          | CI                 |
| Tangara cyanomelaena <sup>1</sup>      | CI/PK              |
| Tangara brasiliensis <sup>3</sup>      | PK                 |
| Tersina viridis                        | CI/PK              |
| Thlypopsis sordida                     | CI/PK              |
| Thraupis bonariensis                   | CI                 |
| Thraupis cyanoptera <sup>3</sup>       | CI/PK              |
| Thraupis ornata <sup>3</sup>           | CI/PK              |
| Thraupis palmarum³                     | CI/PK              |
| Thraupis sayaca <sup>3</sup>           | CI/PK              |
| Trichothraupis melanops <sup>3</sup>   | CI/PK              |
| Conirostrum bicolor                    | CI/PK              |
| Conirostrum speciosum                  | CI/PK              |
| Emberizidae                            |                    |
| Cyanoloxia moesta                      | CI/PK              |
| Ammodramus humeralis                   | CI/PK              |
| Arremon flavirostris <sup>3</sup>      | CI/PK              |
| Arremon semitorquatus <sup>2</sup>     | CI/PK              |
| Arremon taciturnus <sup>3</sup>        | CI/PK              |
| Charitospiza eucosma <sup>2</sup>      | CI                 |
| Coryphaspiza melanotis <sup>3</sup>    | CI                 |
| Coryphospingus cucullatus              | CI/PK              |
| Coryphospingus pileatus                | CI/PK              |
| Donacospiza albifrons <sup>3</sup>     | CI/PK              |

| Nome do Táxon                         | Fonte bibliográfica |
|---------------------------------------|---------------------|
| Emberizoides herbicola                | CI                  |
| Emberizoides ypiranganus <sup>3</sup> | PK                  |
| Embernagra longicauda <sup>3</sup>    | CI                  |
| Embernagra platensis                  | CI                  |
| Gubernatrix cristata <sup>3</sup>     | CI                  |
| Haplospiza unicolor                   | CI/PK               |
| Sporophila angolensis                 | CI/PK               |
| Sporophila maximiliani <sup>3</sup>   | CI/PK               |
| Paroaria capitata <sup>3</sup>        | CI                  |
| Paroaria coronata                     | CI                  |
| Paroaria dominicana <sup>3</sup>      | CI                  |
| Poospiza lateralis³                   | CI/PK               |
| Poospiza thoracica <sup>3</sup>       | CI/PK               |
| Poospiza nigrorufa <sup>3</sup>       | PK                  |
| Sicalis citrina <sup>3</sup>          | CI                  |
| Sicalis flaveola                      | CI/PK               |
| Sicalis luteola                       | CI                  |
| Sporophila albogularis <sup>3</sup>   | CI                  |
| Sporophila ardesiaca <sup>2</sup>     | CI/PK               |
| Sporophila bouvreuil                  | CI/PK               |
| Sporophila caerulescens               | CI/PK               |
| Sporophila cinnamomea <sup>2</sup>    | CI                  |
| Sporophila collaris                   | CI/PK               |
| Sporophila falcirostris <sup>2</sup>  | CI/PK               |
| Sporophila hypoxantha                 | CI                  |
| Sporophila leucoptera                 | CI/PK               |
| Sporophila lineola <sup>3</sup>       | CI                  |
| Sporophila melanogaster <sup>3</sup>  | CI/PK               |
| Sporophila nigricollis                | CI/PK               |
| Sporophila palustris                  | CI                  |
| Sporophila plumbea                    | CI/PK               |
| Sporophila frontalis <sup>2</sup>     | CI/PK               |
| Tiaris fuliginosus                    | CI/PK               |
| Volatinia jacarina                    | CI/PK               |
| Zonotrichia capensis                  | CI/PK               |
| Cardinalidae                          |                     |
| Caryothraustes canadensis             | CI/PK               |
| Cyanoloxia brissonii                  | CI/PK               |
| Cyanoloxia glaucocaerulea             | CI/PK               |
| Saltator atricollis                   | CI                  |
| Saltator coerulescens                 | CI                  |
| Saltator fuliginosus <sup>2</sup>     | CI/PK               |
| Saltator maxillosus <sup>3</sup>      | CI/PK               |
| Saltator maximus                      | CI/PK               |
| Saltator similis                      | CI/PK               |

| Nome do Táxon                            | Fonte bibliográfica |
|------------------------------------------|---------------------|
| Parulidae                                |                     |
| Basileuterus culicivorus                 | CI/PK               |
| Basileuterus flaveolus                   | CI                  |
| Basileuterus leucoblepharus <sup>3</sup> | CI/PK               |
| Geothlypis aequinoctialis                | CI/PK               |
| Parula pitiayumi                         | CI/PK               |
| Phaeothlypis rivularis                   | CI                  |
| Icteridae                                |                     |
| Agelasticus cyanopus                     | CI/PK               |
| Chrysomus ruficapillus                   | CI/PK               |
| Cacicus cela                             | CI/PK               |
| Cacicus chrysopterus                     | CI/PK               |
| Cacicus haemorrhous                      | CI/PK               |
| Procacicus solitarius                    | CI                  |
| Curaeus forbesi <sup>2</sup>             | CI/PK               |
| Gnorimopsar chopi                        | CI/PK               |
| Icterus cayanensis                       | CI/PK               |
| Icterus jamacaii                         | CI/PK               |
| Agelaioides badius                       | CI                  |
| Molothrus bonariensis                    | CI/PK               |
| Molothrus rufoaxillaris                  | CI                  |
| Psarocolius decumanus                    | CI/PK               |
| Molothrus oryzivorus                     | CI/PK               |
| Sturnella superciliaris                  | CI/PK               |
| Xanthopsar flavus                        | CI/PK               |
| Pseudoleistes guirahuro                  | PK                  |
| Fringillidae                             |                     |
| Carduelis magellanica                    | CI/PK               |
| Carduelis yarrellii                      | CI/PK               |
| Chlorophonia cyanea                      | CI/PK               |
| Euphonia chalybea                        | CI/PK               |
| Euphonia chlorotica                      | CI/PK               |
| Euphonia cyanocephala                    | CI/PK               |
| Euphonia pectoralis                      | CI/PK               |
| Euphonia violacea                        | CI/PK               |
| Euphonia xanthogaster                    | CI/PK               |
| Estrildidae                              |                     |
| Estrilda astrild <sup>2</sup>            |                     |
| Passeridae                               |                     |
| Passer domesticus                        | CI/PK               |