

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

DEPARTAMENTO DE INFORMÁTICA

MESTRADO EM INFORMÁTICA

RÔMULO HENRIQUE ARPINI

A FRAMEWORK TO SUPPORT THE

ASSIGNMENT OF ACTIVE STRUCTURE AND

BEHAVIOR IN ENTERPRISE MODELING

APPROACHES

VITÓRIA, AUGUST 2012

RÔMULO HENRIQUE ARPINI

A FRAMEWORK TO SUPPORT THE

ASSIGNMENT OF ACTIVE STRUCTURE AND

BEHAVIOR IN ENTERPRISE MODELING

APPROACHES

Dissertação submetida ao Programa

de Pós-Graduação em Informática da

Universidade Federal do Espírito

Santo como requisito parcial para a

obtenção do grau de Mestre em

Informática.

VITÓRIA, AUGUST 2012

RÔMULO HENRIQUE ARPINI

A FRAMEWORK TO SUPPORT THE

ASSIGNMENT OF ACTIVE STRUCTURE AND

BEHAVIOR IN ENTERPRISE MODELING

APPROACHES

Dissertação submetida ao Programa de Pós-Graduação em Informática da

Universidade Federal do Espírito Santo como requisito parcial para a obtenção do

grau de Mestre em Informática.

Aprovada em 31 de agosto de 2012.

COMISSÃO EXAMINADORA

Prof. Dr. João Paulo Andrade Almeida

Universidade Federal do Espírito Santo (UFES)

(Orientador)

Prof. Dr. Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo (UFES)

Profa. Dra. Renata Mendes de Araujo

Universidade Federal do Estado do Rio de Janeiro

(UNIRIO)

VITÓRIA, AUGUST 2012

ABSTRACT

The need to relate the various architectural domains captured in partial descriptions of

an enterprise is addressed in virtually all enterprise modeling approaches. One of these

domains, namely that of organizational behavior, has received significant attention in

recent years in the context of business process modeling and management. Another

important domain, that of organizational structure is strongly inter-related with the

process domain. While the process domain focuses on “how” the business process

activities are structured and performed, the organizational structure domain focuses on

“who” performs these activities, i.e., which kinds of entities in an organization are

capable of performing work.

Given the strong connection between the organizational behavior and organizational

resources, we argue that any comprehensive enterprise modeling technique should

explicitly establish the relations between the modeling elements that represent

organizational behavior, called here behavioral elements, and those used to represent

the organizational resources (organizational actors) involved in these activities, called

here active structure elements.

Despite the importance of the relations between these architectural domains, many of

the current enterprise architecture and business process modeling approaches lack

support for the expressiveness of a number of important active structure allocation

scenarios. This work aims to overcome these limitations by proposing a framework for

active structure assignment that can be applied to enterprise architecture and business

process modeling approaches. This framework enriches the expressiveness of existing

techniques and supports the definition of precise active structure assignments. It is

designed such that it should be applicable to a number of enterprise architecture and

business process modeling languages, i.e., one should be able to use and apply different

(enterprise and business process) modeling languages to the framework with minor

changes.

Keywords: Enterprise Architecture, Enterprise Architecture Modeling, Business

Process modeling, Organizational Modeling, Active Structure, Active Structure

Assignment, BPMN, ArchiMate.

LIST OF FIGURES

Figure 1 - Creation Patterns (RUSSEL et al., 2010) ... 8
Figure 2 - ArchiMate Framework (THE OPEN GROUP, 2009a)................................. 11

Figure 3 - Fragment of Business Layer Metamodel (THE OPEN GROUP, 2009a) 11
Figure 4 - Process, Actor and Role (THE OPEN GROUP, 2009a) 12

Figure 5 - Business Colaboration and Interactions (THE OPEN GROUP, 2009a)........ 13
Figure 6 - Example of Business Process Model in ARIS (SANTOS JR.; ALMEIDA;

GUIZZARDI, 2010b).. 15
Figure 7 - Fragment of the Metamodel Adapted from (SANTOS JR.; ALMEIDA;

PIANISSOLLA, 2011) .. 16
Figure 8 - Excerpt of DoDAF Performer Metamodel (LANKHORST, 2005) 19

Figure 9 – Excerpt of the Process Definition Metamodel (WFMC, 2008) 21
Figure 10 - ActivityPartition Usage (OMG, 2010b) ... 23

Figure 11 - A Process Example (OMG, 2011) ... 26
Figure 12 - Fragment of the BPMN metamodel centered in ResourceRole, adapted from

(OMG, 2011) .. 27
Figure 13 - Fragment of the metamodel centered in Participant, adapted from (OMG,

2011) .. 28
Figure 14 - A Collaboration Diagram (OMG, 2011) .. 28

Figure 15 - Assignment Framework Architecture .. 40
Figure 16 - Design-time and Run-time models .. 41

Figure 17 - The different metamodeling levels and their dependencies 42
Figure 18 - Organizational metamodel .. 44

Figure 19 - The Behavioral Occurrence Metamodel .. 48
Figure 20 - Assignment Metamodel .. 51

Figure 21 - The possible outcomes of ClassBasedAssignment of type Obligation 55
Figure 22 - The possible outcomes of an ExpressionBasedAssignment of type

Obligation ... 57
Figure 23 - Determinism levels ... 63

Figure 24 - BPMN integration into the Assignment framework 72
Figure 25 - UML Class Diagram Profile to the Organizational Metamodel 73

Figure 26 - Example of a BPMN model .. 75
Figure 27 - Example of an organizational model ... 76

Figure 28 - Example of an assignment model .. 79
Figure 29 - Multiple Participants in black-boxes Pools .. 83

Figure 30 - Creating metamodel instances ... 85
Figure 31 - Snapshot of an excerpt of the organizational repository 86

Figure 32 - OCL expression evaluation ... 87
Figure 33 - Example of an ArchiMate model with the Process view 94

Figure 34 - Organizational Structure view ... 95
Figure 35 - An assignment constraint in ArchiMate applied to the framework 96

Figure 36 - Example Class Diagram (OMG; 2010a) .. 109

LIST OF TABLES

Table 1 - Summary of current support ... 31

Table 2 - Support for the “creation” Workflow Resource Patterns in the reviewed

approaches .. 33

Table 3 - The possible outcomes of two of assignments in a ConjunctiveAssignment .. 65
Table 4 - Support of workflow resource patterns in the assignment framework 69

Table 5 - Summary of the organizational structure concepts from ArchiMate to the

organizational metamodel of our framework ... 91

Table 6 - Basic OCL Types and their values .. 110
Table 7 - Some operations in OCL primitive types .. 110

SUMMARY

1. INTRODUCTION ... 1

1.1 Motivation .. 1

1.1 Objectives ... 3

1.2 Approach .. 4

1.3 Structure ... 6

2. SUPPORT FOR THE ASSIGNMENT OF ACTIVE STRUCTURE AND BEHAVIOR

IN ENTERPRISE MODELING APPROACHES ... 7

2.1 Workflow Resource Patterns .. 7

2.2 ArchiMate ... 10

2.2.1 Workflow Resource Patterns Support in ArchiMate .. 13

2.3 ARIS .. 14

2.3.1 Workflow Resource Patterns Support in ARIS ... 17

2.4 DoDAF .. 17

2.4.1 Workflow Resource Patterns Support in DoDAF .. 19

2.5 XPDL ... 20

2.5.1 Workflow Resource Patterns Support in XPDL... 21

2.6 UML Activity Diagrams ... 22

2.6.1 Workflow Resource Patterns Support in UML Activity Diagrams ... 24

2.7 BPMN ... 25

2.7.1 Workflow Resource Patterns Support in BPMN ... 29

2.8 Support Summary ... 31

2.9 Conclusions ... 34

3. ASSIGNMENT FRAMEWORK ... 37

3.1 Requirements/Assumptions ... 37

3.2 Framework Architecture Overview ... 39

3.3 Organizational Metamodel ... 43

3.4 Assumptions on a Behavioral Metamodel .. 47

3.5 Behavioral Occurrence Metamodel .. 48

3.6 Assignment Metamodel .. 50

3.6.1 SimpleAssignment .. 52

3.6.2 DirectAssignment ... 53

3.6.3 ClassBasedAssignment ... 54

3.6.4 ExpressionBasedAssignment .. 56

3.6.5 AttributeBasedAssignment ... 59

3.6.6 ConstraintBasedAssignment ... 60

3.6.7 HistoryBasedAssignment .. 61

3.6.8 OrganizationalBasedAssignment... 61

3.6.9 ResultBasedAssignment ... 62

3.6.10 SimpleAssignments and determinism levels ... 63

3.6.11 ComplexAssignment .. 64

3.6.12 ConjunctiveAssignment ... 65

3.6.13 DisjunctiveAssignment ... 68

3.6.14 Assignments specified at different levels of abstraction ... 68

3.7 Evaluation ... 69

4. APPLICATION TO BPMN .. 71

4.1 BPMN Metamodel Integration .. 71

4.2 UML Class Diagram Profile for Organizational Modeling ... 73

4.3 Example .. 75

4.3.1 BPMN model .. 75

4.3.2 Organizational Model ... 76

4.3.3 Assignment Model ... 77

4.3.4 Considerations and Limitations ... 82

4.4 Prototype ... 84

4.5 Related Work .. 87

5. APPLICATION TO ARCHIMATE .. 90

5.1 Organizational Structure Constructs Mapping .. 90

5.2 Behavioral constructs integration and limitations .. 92

5.3 Example .. 93

5.3.1 Behavioral and Organizational models .. 93

5.3.2 Assignment Model ... 95

5.3.3 Conclusions .. 96

6. CONCLUDING REMARKS .. 97

6.1 General Conclusions ... 97

6.2 Future Work ... 99

7. REFERENCES .. 102

APPENDIX A: OCL USAGE .. 108

1

1. Introduction

1.1 Motivation

Several approaches to enterprise modeling manage the complexity of an organization by

describing the organization from different perspectives focusing on: (i) organizational

structure (with actors, roles and organizational units); (ii) organizational behavior

(structured into business processes, activities, and more recently, services); (iii)

information systems that support organizational behavior, and (iv) technical

infrastructure to support information systems.

The need to relate the various perspectives captured in partial descriptions of an

enterprise is addressed in virtually all enterprise modeling approaches and has been

recognized in Zachman (1987): “each of the different descriptions has been prepared for

a different reason, each stands alone, and each is different from the others, even though

all the descriptions may pertain to the same object and therefore are inextricably related

to one another.”

This need has led to the development of relations between architectural domains in

enterprise architecture and enterprise modeling approaches (LANKHORST, 2005). One

of these domains, namely that of organizational behavior, has received significant

attention in recent years in the context of business process modeling and management.

Business process modeling addresses the way enterprises organize their work and

resources showing how they contribute to fulfilling the enterprise‟s strategies (SHARP;

MCDERMOTT, 2001). Another important domain, namely that of organizational

structure, is strongly inter-related with the process domain. While the process domain

focuses on “how” the business process activities are structured and performed, the

organizational structure domain focuses on “who” performs these activities, i.e., which

kinds of entities in an organization are capable of performing work.

The relationship between both domains and how an activity will be assigned to an

organizational entity is commonly captured in process models by associating a role, an

organizational unit or a human to each activity or task (AALST; HEE, 2002). In BPMN

(OMG, 2011), for instance, entities that will perform the activities are often modeled in

2

“swim lanes” and “pools”, which may represent a role or an organizational human or

other kinds of organizational concepts.

Organizational entities that perform work are often called resources in enterprise

modeling and business process modeling approaches. According to Russel, Hofstede

and Edmond (2005), a resource is an entity that is capable of performing activities, and

may be classified as a human or non-human resource. We focus here on human

resources. A human resource is typically a member of an organization, which is a

formal grouping of resources that can undertake activities pertaining to a common set of

business objectives. They usually have a specific position within that organization, and

may also have specific privileges associated with it. They may also be members of an

organizational unit, which is a permanent group of resources within an organization.

In many approaches, a human resource may have one or more associated roles

(RUSSEL; HOFSTEDE; EDMOND, 2005), which in general serve as a classification

mechanism for resources with similar job roles or responsibilities. Further, individual

resources may possess capabilities that may be used to consider their suitability to

undertake certain activities. Capabilities are often specialized into skills, qualifications

or other attributes, such as previous working experience. Each resource may also have a

schedule with future commitments (i.e., activities that the resource committed to

undertake) and a history with the resource‟s past activities. Finally, a resource may have

direct relationships with other resources, such as direct report and delegate

relationships.

Given the strong connection between the organizational behavior and organizational

resources, we argue that any comprehensive enterprise modeling technique should

explicitly establish the relations between the modeling elements that represent

organizational behavior, called here behavioral elements, and those used to represent

the organizational resources (organizational actors) involved in these activities, called

here active structure elements.

The relations enable the basic expression of distribution of work between the various

organizational resources, a relation that is historically discussed as division of labor,

with its acknowledgment dating from a long time ago, as Plato (1992) mentions: “Well

3

then, how will our state supply these needs? It will need a farmer, a builder, and a

weaver, and also, I think, a shoemaker and one or two others to provide for our bodily

needs.” Adam Smith also recognized the importance of the division of labor in

organizations, stating that “growth is rooted in the increasing division of labor.”

(SMITH, 2008).

Properly representing the assignment of active structure elements and behavioral

elements at design time is important to allow the comprehensive analysis of an

Enterprise Architecture, e.g., from the perspectives of accountability, authorization, and

responsibility of organizational actors with respect to the activities they execute. The

assignment of active structure and behavioral elements also supports business process

enactment and later phases of process management, such as monitoring and evaluation,

as observed in (MUEHLEN, 2004).

Although most of the techniques offer some support for establishing these relations, the

levels of support and expressiveness they offer vary significantly (ARPINI; ALMEIDA,

2012). Several of these, such as BPMN and UML activity diagrams are considered to

offer simplistic support, as seen in the work by Awad et al. (2009), failing to provide

required expressiveness with respect to active structure assignment (e.g., as evidenced

by a low coverage of Workflow Resource Patterns (RUSSEL et al., 2006; WOHED et

al., 2006). Since many of these approaches are based solely on business process models,

they fail to identify relations with rich organizational structure models and are thus

unable to express active structure assignment based on organizational relations.

1.1 Objectives

The main objective of this work is to address these limitations by defining a framework

for active structure assignment for enterprise architecture and business process

modeling approaches. This framework should enrich the expressiveness of existing

techniques and should be applicable to a number of enterprise architecture and business

process modeling languages, i.e., one should be able to use and apply different

behavioral languages to the framework with minor changes.

4

A specific objective of our work is to apply the framework to enrich the expressiveness

of BPMN, which represents a widely employed business process modeling technique.

Different from most of the current proposals of extensions of BPMN active structure

assignment capabilities, our work should not rely on modifying the BPMN metamodel

to provide the required expressiveness, thus maintaining the interoperability between

BPMN models. Finally, an additional objective of our work is to investigate the

application of the framework to a second technique (namely ArchiMate) in order to

provide some evidence in favor of the generality of the framework.

1.2 Approach

Initially, we conducted a study to review the active structure assignment support in

some of the widely enterprise and business process modeling techniques and

frameworks, including ArchiMate (THE OPEN GROUP, 2009a), ARIS (SCHEER,

2000), DoDAF (US DEPARTMENT OF DEFENSE, 2011), BPMN (OMG, 2011),

XPDL (WFMC, 2008) and UML (OMG; 2010b).

Our review was done initially through a bottom-up approach: we analyzed and extracted

the constructs that are used to define the assignments at design-time in each of the

techniques. In addition, we have performed a top-down analysis considering the

desirable requirements for the expression of assignments. This top-down analysis was

performed employing Workflow Resource Patterns to evaluate the expressiveness of the

various techniques, similarly to what has been done in (AWAD et al., 2009), (MEYER,

2009), (RUSSEL; HOFSTEDE; EDMOND, 2005), (WOHED et al., 2006).

The literature review showed us that the current support in the various techniques is

extremely simplistic in the active structure assignment domain, justifying the need for a

comprehensive framework for active structure assignment.

To address the identified limitations, a framework for active structure assigned has been

proposed. A main requirement for this framework has been to avoid modification or

heavyweight extension of currently employed modeling languages. Thus, the

framework should be applicable to existing and widely used business process modeling

5

and organizational modeling approaches, enriching their capabilities in the expression

of active structure assignment.

The framework is designed using technologies that are driven by the MDA (Model-

Driven Architecture) principles (KLEPPE; WARMER; BAST, 2003), in particular

using the Eclipse Modeling Framework (EMF, 2012), as a de facto standard for Model-

Driven Engineering. EMF is used to define all the proposed metamodels and relations

between architectural domains. The assignment component of the framework is

proposed as a metamodel that is dependent of behavioral and organizational

metamodels, as complex assignments require information available across many

enterprise aspects that may be represented in different models, like the organizational

model.

Since assignments must consider some specific organizational aspects often not covered

in business process modeling techniques (such as BPMN), we have defined our own

abstract organizational language (using an organizational metamodel) that is embodied

into the framework. This language captures the general organizational concepts to cover

a range of assignments and model a complex organization. This allows us to represent

expressive organization-based assignments.

Further, since assignments are often dependent on a history of past activities, we have

defined a behavioral occurrence metamodel, which allows us to define assignments

based on historical information.

In order to offer full support a number of the considered patterns we have proposed a

mechanism to represent sophisticated expressions for complex assignments based on the

Object Constraint Language (OCL) (OMG; 2010a). A prototype including support for

OCL-based assignments was developed to demonstrate the feasibility of the approach.

To demonstrate the applicability of the framework to existing languages, we apply it to

BPMN. This makes possible to evaluate the assignment framework and see how it helps

to support the assignment requirements. The application prototype developed to BPMN

specifically demonstrates the feasibility of the framework using current available tools.

6

The proposal of application of the assignment framework to ArchiMate serves to

provide some evidence in favor of the generality of the framework.

1.3 Structure

This work is structured in six chapters. The content of each one is briefly described in

the following:

 In Chapter 2 we review the support for the assignment of active structure and

behavior in enterprise modeling approaches, presenting the Workflow Resource

Patterns as a requirements framework and reviewing the current support of some

modeling techniques, namely ArchiMate, ARIS, DoDAF, XPDL, UML 2.0

Activity Diagram and BPMN.

 In Chapter 3 we present the proposed assignment framework. We discuss the

framework‟s general architecture and explain how each metamodel is integrated

into this general architecture. Further, we show how the metamodel may be used

in conjunction to define rich and expressive assignments. An evaluation of the

framework with respect to the Workflow Resource Patterns is presented.

 In Chapter 4 we apply our framework to BPMN, showing how assignment is

defined considering this specific technology. We also define a UML Class

Diagram profile to enable the representation of the generic organizational

metamodel. Finally, we illustrate the approach showing the range of assignments

possible.

 In Chapter 5 we show how the framework could be applied to ArchiMate,

defining a mapping of ArchiMate organizational constructs to the organizational

metamodel of the assignment framework and showing how the behavioral

elements from ArchiMate could be integrated into the assignment framework.

Ultimately, we use the same example of Chapter 4 to illustrate the approach in

ArchiMate and show how one could model assignments on it.

 In Chapter 6 we conclude our work, discussing its contributions, limitations and

proposing future work that may be developed based on this work.

7

2. Support for the Assignment of Active Structure and Behavior in

Enterprise Modeling Approaches

In this section, we analyze and review the support of the different kinds of active

structure assignment in enterprise modeling techniques and frameworks, including

ArchiMate, DODAF, and ARIS. Since we believe that these frameworks will be used in

the description of an Enterprise Architecture in tandem with the detailed description of

business processes, we also discuss the support for active structure allocation in

processes modeling techniques. Instead of addressing an exhaustive list of business

process and workflow modeling techniques, we have included here developments that

we believe are representative of a large number of process techniques. First, we have

included XPDL, since it was conceived as an interchange format for a number of

process-related products, including “execution engines, simulators, BPA modeling

tools, Business Activity Monitoring and reporting tools” (SHAPIRO, 2000). Second, we

have addressed the support provided in UML 2.0 Activity Diagrams and BPMN 2.0

because of their wide acceptance to represent business processes.

We employ Workflow Resource Patterns to evaluate the expressiveness of the resource

perspective in many process technologies and tools (similarly to what has been done for

various techniques in (AWAD et al., 2009; MEYER, 2009; RUSSEL, HOFSTEDE,

EDMOND, 2005; WOHED et al., 2006) and we will also use it as requirements to

design our proposed assignment framework. We present each of the techniques in

sequel, dedicating a sub-section in the review of each technique to discuss how they

support the Workflow Resource Patterns.

2.1 Workflow Resource Patterns

The Workflow Resource Patterns form a comprehensive catalog of common types of

resource allocation constraints. They were developed by the Workflow Patterns

Initiative, with the goal of providing a conceptual basis for process technology. The

Workflow Resource Patterns capture the various ways in which resources are

represented and utilized in process technologies and have been use to compare a number

of commercially available workflow management systems and business process

modeling languages (RUSSEL et al., 2010).

8

We focus here on the core set of patterns that deals with task allocation to human

resources and that are specified at design time, restricting the range of human resources

that can undertake particular work items that correspond to the tasks. These are called

the “creation patterns”. Figure 1 illustrates this. The creation patterns come into effect

when a work item (instance of a task) is first created.

Figure 1 - Creation Patterns (RUSSEL et al., 2010)

The Direct Distribution pattern (WRP-01) captures the ability to specify the identity of

the resources to which the work items will be distributed. It is particularly useful when

we want a task to be performed by a specific resource.

The Role-based Distribution pattern (WRP-02) captures the ability to specify that a

work item is to be performed by resources that fulfill a specific role. For instance, we

may want to specify that the task „Review technical report‟ is to be performed by a

manager. So if this pattern is supported by a process technology, there must exist the

role concept.

The Deferred Distribution pattern (WRP-03) captures the ability to specify that the

identification of the resource(s) that will be distributed to instances of a task will be

deferred until runtime. To support this pattern, the process technology must have some

mechanism to specify that a task will not be assigned to a specific resource until

runtime. For instance, we may want to specify that the identity of the resource who will

perform the task „Review paper‟ will be deferred until runtime.

9

The Authorization pattern (WRP-04) captures the ability to specify privileges that a

resource have regarding the execution of a work item, for example, defining whether a

resource is authorized to execute or delegate a work item.

The Separation of Duties pattern (WRP-05) captures the ability to specify that two work

items must be performed by different resources. For instance, if we have a task whose

result is a report that will be audited by a following task, we may want to guarantee that

the two tasks will be performed by different resources. So the process technology that

supports this pattern must have some mechanism to specify some kind of

interdependence between work items.

The Case Handling pattern (WRP-06) is a specific approach based on the premise that

all the tasks in a process or sub-process are related and must be performed by the same

resource.

The Retain Familiar pattern (WRP-07) captures the ability to specify that the resource

who will undertake a work item is the same that undertook the previous one. It is

particularly useful when there are sequential tasks and also may help minimizing the

switch time. For instance, we may want that the same resource who performed the task

„Identify applicants‟ to be the performer of the task „Select suitable applicants‟. It is a

more flexible version of the WRP-06 Case Handling pattern.

The Capability-Based Distribution pattern (WRP-08) captures the ability to allocate

resources to work items based on specific capabilities they must have, so there must

exists some mechanism that allows to specify resource‟s capabilities and to use these

when deciding the performer of a task. For instance, we may want that the task “Audit

Critical Project” to be performed by an auditor with previous work experience on this

job greater than ten years.

The History-Based Distribution pattern (WRP-09) captures the ability to distribute tasks

to the resources based on the history of execution they have in the tasks. For instance,

we may want that the task “Conduct Heart Surgery” to be performed by a surgeon that

already carried out similar procedures before. The operationalization of this pattern

requires information about previous executions.

10

The Organizational Distribution pattern (WRP-10) captures the ability to distribute

tasks to the resources based on their positions within an organization and their relations

with other resources. Therefore, the process technology that supports this pattern must

assume an organizational model with positions and some relationships between them.

For instance, the task “Approve Project Budget” must be performed by the manager

directly superior to the Project Manager that performed the task “Elaborate Project

Budget”.

The Automatic Execution pattern (WRP-11) captures the ability to perform a task

without needing to be allocated to a specific human resource. Therefore, there must

exist some way to declare a task to be automatic and it will be performed without any

human interference. For instance, the task „Calculate balance‟ may be performed

automatically based on functionality implemented in an information system.

2.2 ArchiMate

ArchiMate is a modeling language that offers an integrated architectural approach that

describes and visualizes the different architecture domains and their underlying relations

and dependencies, aiming to offer an unambiguous specification and descriptions of

enterprise architecture‟s components and specially their relationships with a consistent

alignment (THE OPEN GROUP, 2009a). The language is currently standardized by

The Open Group in its version 1.0 and used to support architectural descriptions

produced using TOGAF (THE OPEN GROUP, 2009b).

The language distinguishes three layers with different abstraction levels: (i) the business

layer, which offers products and services to external customers, realized in the

organization by business processes performed by business actors; (ii) the application

layer, which supports the business layer with application services which are realized by

software applications; and (iii) the technology layer, which offers infrastructural

services for software applications. Each one of these layers includes modeling

constructs to represent active structure elements, behavioral elements and passive

structure elements, as shown in Figure 2.

11

Figure 2 - ArchiMate Framework (THE OPEN GROUP, 2009a)

We focus on the concepts of the business layer, whose metamodel is presented in Figure

3. The abstract concept Business Behavior Element groups all concepts related to the

behavioral structure. The link with the active structure is done through the assignment

relationship, which allows a modeler to relate a Business Behavior Element to a

Business Role. A Business Role may, in turn, be related to a Business Actor through an

assignment relationship.

Figure 3 - Fragment of Business Layer Metamodel (THE OPEN GROUP, 2009a)

A Business Actor is an organizational entity capable of performing behavior, and

performs the behavior assigned to one or more Business Roles. Business Roles are

defined as a named specific behavior of a business actor in a particular context.

A Business Role may be assigned to one or more business processes or Business

Functions. Business Processes are defined as units of internal behavior or collections of

causally-related units of internal behavior intended to produce products or services,

while Business Functions are defined as units of internal behavior that group behavior

22 Technical Standard (2009)

2. The Application Layer supports the business layer with application services which are

realized by (software) applications.

3. The Technology Layer offers infrastructure services (e.g., processing, storage, and

communication services) needed to run applications, realized by computer and

communication hardware and system software.

The general structure of models within the different layers is similar. The same types of concepts

and relations are used, although their exact nature and granularity differ. In the next chapters, we

will specialize these concepts to obtain more concrete concepts, which are specific for a certain

layer. Figure 3 shows the central structure that is found in each layer.

In line with service orientation, the most important relation between layers is formed by “used

by” relations, which show how the higher layers make use of the services of lower layers. (Note,

however, that services may not only be used by elements in a higher layer, but also by elements

in the same layer, as is shown in Figure 3.) A second type of link is formed by realization

relationships: elements in lower layers may realize comparable elements in higher layers; e.g., a

“data object” (Application layer) may realize a “business object” (Business layer); or an

“artifact” (Technology layer) may realize either a “data object” or an “application component”

(Application layer).

3.6 The ArchiMate Framework

The aspects and layers identified in the previous sections can be organized as a framework of

nine “cells”, as illustrated in Figure 5. The cells in this framework are a subset of the cells in, for

example, the Zachman framework [5], [9]. Often used architectural domains can be projected

into this framework; Figure 5 shows an example of this.

It is important to realize that the classification of concepts based on conceptual domains, or

based on aspects and layers, is only a global one. It is impossible to define a strict boundary

between the aspects and layers, because concepts that link the different aspects and layers play a

central role in a coherent architectural description. For example, running somewhat ahead of the

later conceptual discussions, (business) functions and (business) roles serve as intermediary

concepts between “purely behavioral” concepts and “purely structural” concepts.

Technology

Application

Business

Environment

Passive

structure
Behavior Active

structure

Process

domain

Information

domain

Data

domain

Organization

domain

Product

domain

Application domain

Technical infrastructure domain

Figure 5: Architectural Framework

12

according to some criteria, such as knowledge, resources and skills. A Business Service

is an externally observable behavior that is realized internally by Business Behaviour

Elements. A Business Service may be assigned to a role‟s Business Interface.

Figure 4 shows a small example of active structure assignment in ArchiMate, relating

process, role and actor. The “ArchiSurance” actor is composed of two departments,

namely, “Luggage Insurance Department” and “Travel Insurance Department”. The

“Travel Insurance Department” is assigned to the “Travel Insurance Seller” role, which

is associated with the “Take out Insurance” process. Whichever actor is assigned to the

“Travel insurance seller role” will perform the “Take out insurance process”. In this

specific example, the process should be performed by the “Travel Insurance

Department”. The example also reveals the assignment of the “Offering travel

insurance” service (a behavioral element), by the means of a Business Interface

provided by the “Travel insurance seller” role and realized by the “Take out insurance”

process.

Figure 4 - Process, Actor and Role (THE OPEN GROUP, 2009a)

A Business Collaboration is defined as a temporary configuration of two or more roles,

resulting in specific collective behavior in a particular context. Unlike the case in which

a Business Process or Function is assigned to a single Role, Business Collaborations

aggregates two or more Roles, meaning it represents a collective effort which may be

more than the sum of the behavior of the separate roles. Collaborations are assigned to

Business Interactions, which are used to describe the behavior that takes places within

these collaborations. Figure 5 shows how both Business Collaboration and Business

Interaction may be used. “Combined Insurance Seller” is the collaboration that

aggregates the “Travel insurance seller” and “Luggage insurance seller” roles. The

“Take out combined insurance” interaction involves the execution of the “Prepare travel

13

policy” process, performed by the “Travel insurance seller” role, and the “Prepare

luggage policy” process, performed by the “Luggage insurance seller” role.

Figure 5 - Business Colaboration and Interactions (THE OPEN GROUP, 2009a)

2.2.1 Workflow Resource Patterns Support in ArchiMate

ArchiMate provides direct support to the Direct Distribution, Role-based Distribution

and Automatic Execution patterns. Direct Distribution is fully supported because a

Business Actor may be explicitly “assigned to” a Business Role which in its turn may be

“assigned to” a Business Behavioral Element. Role-based Distribution is also fully

supported by omitting the assignment of a Business Actor to a Business Role. Automatic

Execution is supported by specifying an assignment relationship between an application

component (part of a system) and a business process.

Since ArchiMate is aimed predominantly to model enterprise architectures at design-

time, it cannot be said to fully support Deferred Distribution, as run-time support (from

an execution environment) is not in the scope of the language and framework.

Nevertheless, it is possible to state that is supports Deferred Distribution partially since

it enables one to omit assignment for a particular behavioral element. We assume that

this leaves certain flexibility for runtime assignment, hence characterizing the partial

support for the pattern.

Organizational-based Distribution is also partially supported as one may define an

organizational model in ArchiMate, and use the roles and actors in this model in the

assignment. Business roles may be composed of other business roles; and the same can

14

be said of business actors. Nevertheless, relations between roles and between actors

cannot be used in the assignment.

The remaining “creation patterns” are not supported. ArchiMate lacks an integrated

authorization framework (not supporting the Authorization pattern), lacks the possibility

of relating the performers of processes (not supporting the Separation of Duties, Case

Handling and Retain Familiar patterns), does not consider that business actors or

business roles may have specific attributes to characterize them (not supporting the

Capability-based Distribution pattern). Further, it does not aim at considering execution

history (not supporting the History-based Distribution pattern).

2.3 ARIS

ARIS (Architecture for integrated Information Systems) method (SCHEER, 2000) is

structured in four inter-related views (organizational, data, control and function) that

support the description of an organization and its information system. The framework

includes three abstraction layers (requirements, design and implementation), dealing

with different levels of details, separating specific concerns. The organizational view

describes all the hierarchy of an organization, i.e., the communication and relationship

between organizational units and reveals the roles of the individuals in an organization,

whereas the functional view is used to describe the tasks performed by the organization

(SCHEER, 2000). The control view shows the relationship between the business

processes of an organization and the remaining entities of the organization

(organizational structure, resources, information) of the business environment (DAVIS,

2001). We focus on the control view at the requirements level.

Business processes in ARIS are modeled in Event-driven Process Chains (EPCs), whose

main elements include Functions, Events and Rules. Functions are the main behavioral

concept, representing organizational activities. Functions of an EPC can be placed

within swim-lanes, as shown in the example of Figure 6. In this example, a “Client”

performs the “Request Purchase” Function, while a “Seller” performs the “Analyze

purchase request” and the “Finish purchase” or the “Inform Client” Functions,

depending on whether the purchase is approved.

15

Figure 6 - Example of Business Process Model in ARIS (SANTOS JR.; ALMEIDA; GUIZZARDI, 2010b)

In our analysis, we consider the metamodel excavated in (SANTOS JR.; ALMEIDA;

PIANISSOLLA, 2011), where the authors have identified that the ARIS toolset

recognizes the following relations between the active structure (represented by the

abstract metaclass Participant) and behavioral (represented by Function): is technically

responsible for, carries out, is IT responsible for, decides on, must be informed about,

contributes to, accepts, has consulting role in, must be informed on cancellation and

must inform about result of. Carries out is the main relationship, indicating who will be

responsible for performing the function, and is one of the relationships represented in

Figure 7.

16

Figure 7 - Fragment of the Metamodel Adapted from (SANTOS JR.; ALMEIDA; PIANISSOLLA, 2011)

Figure 7 also shows the organizational concepts used to describe the potential

participants in the organizational activities, they are: Organization Unit Type,

Organization Unit, Position, Person Type, Person, Group and Employee Variable. All

of these concepts can be related with the Function concept through all the

aforementioned relations. These elements are used in the so-called Organization Charts,

which allows one to capture hierarchical and others active structure specific relations.

ARIS has a rich set of elements to describe organizational structure at instance-level and

type-level. An Organizational Unit represents “an entity that is responsible for

achieving organizational goals”, being a real-world entity. An Organizational Unit Type

is described as “a type of organization unit, i.e., an element that represents the common

features (duties, responsibilities, etc.) of a set of organization units”. A Position

represents “the smallest organizational unit possible. The responsibilities and duties of a

position are defined in the Position Description”. A Position Type represents a “type of

position, i.e. an element that represents the common features (duties, responsibilities,

etc.) of a set of positions”. A Person “is used to represent a person who is assigned to an

organization”. A Person Type represents a “generalization of person, i.e., an element

that represents the common features (duties, responsibilities, feature, etc.) of a set of

17

people”. A Group represents “a group of employees (person) or a group of

organizational units (Organizational Unit) that cooperate to achieve a goal”. Finally, the

semantics of the EmployeeVariable metaclass is not discussed in the ARIS

documentation. ARIS also has a rich set of relations between those organizational

structure elements, which include hierarchical relations (of technical and managerial

nature), delegation relations, etc. We refrain from discussing them here due to space

constraints. 3

2.3.1 Workflow Resource Patterns Support in ARIS

The EPC implemented by ARIS toolset provides direct support to the Direct

Distribution, Role-based Distribution and Automatic Execution patterns. Direct

Distribution is fully supported because a Person, an Organization or a Group may be

defined as the performer of a function (through the “carries out” relation). Role-based

Distribution is also fully supported because Person Types and Positions may carry out a

function, and both may assume the notion of role. Automatic Execution is also fully

supported because one may allocate the concepts of Application System and

Application System Type that represent computer and software applications to functions

(DAVIS, 2001).

As a function may be defined without the need to specify which kind of Participant will

be the performer, we consider that Deferred Distribution is partially supported.

Organizational-based Distribution is also partially supported as there exists in ARIS an

organizational metamodel (excavated and presented in (SANTOS JR.; ALMEIDA;

GUIZZARDI, 2010a)), and it does consider concepts of Position, Position Type, and

others. But as it does not consider the more complex relationships when defining the

assignment, it only provides a partial support.

The remaining “creation patterns” are not supported.

2.4 DoDAF

The Department of Defense Architecture Framework (DoDAF) is a comprehensive

framework and conceptual meta-model that has been designed specifically to meet the

18

business and operational needs of the US Department of Defense (US DEPARTMENT

OF DEFENSE, 2011). Although the focus of the framework is clearly oriented to

military systems, it can be extended to architectures that are more general

(LANKHORST, 2005), and provides concepts to model behavioral and active structure

concepts.

In DoDAF, a Performer represents who may execute an Activity, and an activity

represents specific operational actions. DoDAF introduces a few concepts to address the

relation between performers and activities. A fragment of the metamodel with

Performer and its related concepts is shown on Figure 8.

Performer is a type of Resource. A Performer may be further specified into one of the

following types: (i) System, which is defined as “a functionally, physically, and/or

behaviorally related group of regularly interacting or interdependent elements”, (ii)

Service, described as a “Performer to enable access to a set of one or more resources,

such as Information, Data, Material and Performers”; (iii) OrganizationType, which is

the type of an individual Organization. For example, we may have a

“ForProfitOrganization” and “NonProfitOrganization” types; or (iv) PersonType, which

defines a category of IndividualPersons that share common skills. A PersonType may

also be used to represent a role that may be played with a more general PersonType,

through the personTypePartofPerformer relation.

19

Figure 8 - Excerpt of DoDAF Performer Metamodel (LANKHORST, 2005)

2.4.1 Workflow Resource Patterns Support in DoDAF

DoDAF provides direct support to the Direct Distribution, Role-based Distribution and

Automatic Execution. Direct Distribution is fully supported because an

IndividualPerformer may be defined as the performer of an Activity, and that includes

Organizations and IndividualPersons. Role-based Distribution is supported because

there does exist the concept of PersonType, which may assume the notion of role.

Automatic Execution is also fully supported because the performer may be a Service,

which may be any software to a business service.

As an activity may be defined without the need to specify what type of Performer will

perform the activity, then Deferred Distribution is partially supported. Although it does

have an organizational structure built-in, it is very basic and in regards to the

Capability-based Distribution, we consider that it is partially supported because there

may exist rules that constrain the performers of the activities, and these rules may refer

to the skills that a PersonType has within an organization.

The remaining “creation patterns” are not supported.

20

2.5 XPDL

XPDL (XML process definition language) (WFMC, 2008) was developed by the

Workflow Management Coalition (WfMC) to support the interchange of workflow

process definitions (AALST, 2004).

The topmost entity of an XPDL 2.1a model is a Package, which includes one or more

process definitions (HAVEY, 2005) and one or more Participant definitions. A

Participant represents the “description of resources that can act as the performer of the

various activities in the process definition” (WFMC, 2008). Process definitions in a

Package automatically “inherit” the Participants defined on that Package.

Figure 9 depicts the basic set of entities and relations for the exchange of process

definitions. The entity Participant is further classified into one of the following basic

types (WFMC, 2008): (i) Resource, when the participant represents a specific resource

agent; (ii) ResourceSet, when the participant represents an aggregation of resources; (iii)

Organizational Unit, when the participant represents a department or any other unit

within an organization model; (iv) Human, when the participant represents is a single

person; (v) System, when the participant represents an automatic agent; (vi) Role, when

the participant is a placeholder for a human which can perform a specific function. Note

that XPDL does not provide a clear semantics for each one of the basic types.

Figure 9 shows an association between the Participant entity and a Resource Repository

or Organizational Model, meaning that the Participant declaration may refer

organizational structure definitions outside the scope of the specification, but which

may be used with the extensibility mechanisms provided by XPDL.

21

Figure 9 – Excerpt of the Process Definition Metamodel (WFMC, 2008)

In XPDL, a Process is structured into Activities. The link between the active structure

and Activity, is given by the performer relationship. The Participant identifiers that are

used in this relationship must be declared either in the surrounding Process Definition or

inherited from the surrounding Package declaration or coming from external packages,

like an Organizational Model. The specification mentions the use of expressions to

define the Participants of an Activity, without specifying exactly the syntax and

semantics of these expressions. The specification also mentions that when the

expression evaluation returns an empty set of performers or when it returns a non-

unique performer, then this must be handled by the execution engine of the Workflow

System and is outside the scope of the specification.

2.5.1 Workflow Resource Patterns Support in XPDL

XPDL provides direct support to the Direct Distribution and Role-based Distribution.

Direct Distribution is fully supported because a human or a specific resource may be

22

defined as the performer of an activity. Role-based Distribution is also fully supported

because there exists the notion of role and it may be used when defining the performer

of an activity. Automatic Execution is also fully supported because the performer may

be a System, considered to be an automatic agent.

As an activity may be defined without the need to specify which kind of Participant

will be the performer, we consider that Deferred Distribution is partially supported.

The remaining “creation patterns” are not supported.

2.6 UML Activity Diagrams

UML is a standardized general-purpose language that aims “to provide system

architects, software engineers, and software developers with tools for analysis, design,

and implementation of software-based systems as well as for modeling business and

similar processes” (OMG; 2010b).

The modeling concepts of UML are grouped into language units represented by

different diagrams, which consists of tightly-coupled modeling concepts that provide

users the ability to represents aspects of a system under study according to a particular

formalism. For instance, the Activity Diagram groups concepts related to behavior

modeling.

UML 2.0 does not provide a specific language unit to model an organization; however,

as shown on the work by Dumas, Aalst and Hofstede (2005), general organizational

structures can be modeled by UML class diagrams, and concrete organizations can be

treated as instances of these general organizational structures.

Activity diagrams can also be used for process modeling in UML. An Action is one of

the main constructs of an activity diagram, and a fundamental unit of behavior

specification, taking a set of inputs and transforming them on a set of outputs (though

either or both sets may be empty). An action represents a single step within an Activity,

that is, one that is no further decomposed (OMG; 2010b).

23

The connection of the active structure to the process models is done within an activity

diagram using the notational element ActivityPartition, which divide the nodes and

edges to constrain and show a view of the contained nodes. Constraints vary according

to the type of element that the partition represents, which may be one of the following

(OMG; 2010b): (i) Classifier, meaning that the behaviors of invocations contained by

the partition are the responsibility of instances of the classifier representing the

partition. Thus different instances of the same classifier may execute the contained

actions; (ii) Instance, imposing the same constraints as a classifier-based partition, but

requiring a particular instance of the classifier. (iii) Part, meaning that the behaviors

contained in the partition will be executed by parts of the same instance of a structured

classifier. (iv) Attribute and Value, meaning that certain attributes are restricted to

certain values. The specification includes an example of a partition representing a

location attribute and sub-partitions representing specific values of that attribute, such

as “Rio de Janeiro” (OMG; 2010b). Nevertheless, this latter kind of partitioning is not

well documented in the specification, as it does not specify whether the attributes apply

to actions inside the sub-partition or to objects (instances) executing the actions. Figure

10 exemplifies multidimensional partitioning.

Figure 10 - ActivityPartition Usage (OMG, 2010b)

The actions “Receive Order” and “Fill Order” in Figure 10 are performed by an instance

of the “Order Processor” class, situated in “Seattle”, but not necessarily the same

24

instance for both. Although the “Make Payment” action is contained within the

“Seattle/Accounting” partitions, its performer and location are not specified by these

partitions since this action is stereotyped as «external».

2.6.1 Workflow Resource Patterns Support in UML Activity Diagrams

In this section we basically summarize the results of the work done by Russel et al.

(2006), which evaluated the suitability of UML in regards to a number of workflow

patterns, including the Workflow Resource Patterns (RUSSEL et al., 2010).

Activity Diagrams provide direct support to the Direct Distribution and Role-based

Distribution, as it is possible to define as a partition a specific instance of a classifier,

thus allowing the definition of specific single resources. Although there is not the

concept of role in Activity Diagrams, it is possible to define the performer of an

ActivityPartition as a Classifier, which may be used to be a role. As there may exist

CallActions that invoke behavior from some target object, which may be a non-human

object, we consider that the WRP-11 is directly supported.

Russel et al. (2006) considers that the remaining patterns are not supported in UML

Activity Diagrams, however, we consider that UML offers partial support to Deferred

Distribution, Capability-based Distribution and Organizational-based Distribution. We

consider that Deferred Distribution is partially supported because it is possible to define

actions that do not belong to any partition, thus deferring the identity of the resource

that may perform the action. We consider that Capability-based Distribution is also

partially supported because although there is no organizational model, it is possible to

use the attributes and values as the performers of the ActivityPartition, so the support

may be inferred. Lastly, we consider it to offer partial support to Organizational-based

Distribution because although it lacks any kind of reference to an organizational

metamodel, it is possible to infer some kind of organizational hierarchy through the use

of sub-partitions.

The remaining “creation patterns” are not supported.

25

2.7 BPMN

Business Process Modeling Notation (BPMN) is a standard graphical notation for

business process modeling adopted by the OMG. Its main goal is to provide a notation

that is easy to understand by all business users (WHITE, 2004). The BPMN 2.0

specification clearly states that the language is constrained to support only concepts of

modeling applicable to business processes, meaning that other domains of an

organization are out of scope, with one of them being the domain of organization

modeling (OMG, 2011). Although BPMN does not include elements for organizational

modeling the specification clearly assumes the existence of these elements when

defining who will be responsible for a process or for the execution of an activity.

BPMN defines a number of diagrams to model business processes under a certain

perspective. We focus here on the Process and Collaboration Diagrams, not explicitly

discussing Choreography (a specialization of Collaboration) and Conversation (a

specialized use of Collaborations) (OMG, 2011).

The Process Diagram is used to model a business process internal to an organization. It

essentially describes a sequence or flow of Activities in an organization with the

objective of carrying out work. This type of diagram does not include a textual nor

graphical way to explicitly specify the responsible for the Process or the activities

contained within it. Nevertheless, Lanes can be used informally for that purpose. As

discussed in the specification, “the meaning of the Lanes is up to the modeler” (OMG,

2011). In practice, “Lanes are often used for such things as internal roles (e.g., Manager,

Associate), systems (e.g., an enterprise application), an internal department (e.g.,

shipping, finance), etc.” (OMG, 2011). Figure 11 shows a small example of a Process

defined in BPMN. Activities are represented by rectangles with rounded corners, and

represent points in a Process where work is performed, being the main behavioral

concept in the language. An Activity is an abstract metaclass specialized into either a

Sub-Process or a Task (which in turn is further specialized into specific kinds of tasks).

26

Figure 11 - A Process Example (OMG, 2011)

Although BPMN does not provide graphical or textual elements to represent the

performers of activities in process diagrams, the metamodel includes elements to define

them. Figure 12 shows the main concepts and associations related to this aspect of the

language. The Resource metaclass is used to specify resources that may be referenced

by activities. These resources may be human resources or any other resource assigned to

an activity during process runtime. Resources are defined at type-level, e.g., “Professor”

and “Student”. Specific resources (instances such as, e.g., “João Paulo” and “Rômulo”)

would be described in a deployment phase, which is outside the scope of the

specification (OMG, 2011), and may be addressed in a BPMN-conformant

infrastructure. A modeler may characterize resources by defining its properties using

ResourceParameters (OMG, 2011). The assignment of active structure to behavior may

be defined by the modeler using the ResourceRole element shown in Figure 12. The

assignment may be done by defining either: (i) an association between the ResourceRole

and a ResourceAssignmentExpression or (ii) between the ResourceRole and a Resource.

27

Figure 12 - Fragment of the BPMN metamodel centered in ResourceRole, adapted from (OMG, 2011)

In the former case (i), the modeler provides an Expression written in natural language or

in a formal expression of choice (by default formal expressions are defined in XPath

(CLARK; DEROSE, 1999). This expression is used at runtime to assign resource(s) to a

ResourceRole element.

In the latter case (ii), a specific resource (type) is selected at modeling time. Optionally,

the modeler may define which parameters of the resource specified may be used or

overridden through the definition of an Expression, that may also use data of the

instance task in which the resource is being referred.

Figure 12 shows that a ResourceRole may be further specialized in a Performer,

meaning that the resources selected must be the ones responsible for the execution of

the activity (“A performer can be specified in the form of a specific individual, a group,

a position or role in an organization, or an organization” (OMG, 2011)).

In addition to the Process Diagram, BPMN defines a Collaboration to describe the

interactions (messages exchange) between two or more business entities. These business

entities are called Participants in the scope of a Collaboration and are represented

graphically as pools. A Participant can be a specific entity (PartnerEntity, e.g. a

company) or a more generic one (PartnerRole, e.g. a buyer). However, there are no

graphical elements o distinguish these concepts, with all being done in natural language.

A Participant may be associated with a Process in a Collaboration, meaning that it is

28

responsible for the execution of the process. Figure 13 shows the metaclass Participant

and its main associations.

Figure 13 - Fragment of the metamodel centered in Participant, adapted from (OMG, 2011)

Figure 14 shows an example of a Collaboration Diagram. “Financial Institution” and

“Supplier” are the Participants. Each one of them is assigned to a process.

Figure 14 - A Collaboration Diagram (OMG, 2011)

If activities are represented in a collaboration, they may also be allocated to perfomers

using the mechanisms discussed for the process diagram. We believe this may cause

certain semantic problems in the language, because it allows modelers to mix activity-

level assignment and process-level assignment with no consistency rules. (Performer is

defined at activity level, i.e., a performer is assigned to an activity defined in a process,

“being the resource that will perform or be responsible for an activity”, while

Participants are defined at process-level. The metamodel does not define relations or

constraints involving the metaclasses Performer and Participant.)

29

2.7.1 Workflow Resource Patterns Support in BPMN

Although the support of BPMN for the Workflow Resource Pattern has been considered

in the past, for instance the one performed by members of the Workflow Resource

Patterns initiative in (WOHED et al., 2006), we perform here our own analysis,

consolidating several evaluations such as those in (MEYER, 2009; GROSSKOPF,

2007; CABANILLAS, RESINAS, RUIZ-CORTÉS, 2011; STROPPI, CHIOTTI,

VILLARREAL, 2011) and considering new concepts introduced in the BPMN 2.0

specification (OMG, 2011).

BPMN 2.0 offers direct support to Direct Distribution and Role-Based Distribution,

both through the Pool construct which represents a Participant in the process and may

be a business entity (a company) or a more general business role (WOHED et al., 2006).

At the activity level, BPMN 2.0 also supports Role-Based Distribution through the

Performer metaclass, which may be related to an Activity and associated with a

Resource.

Automatic Execution is also directly supported through the Service Task, which is a

Task that “uses some sort of service, which could be a Web service or an automated

application.” (OMG, 2011).

BPMN provides partial support to three others patterns. As it is possible to have no

performers defined (either at activity or process level), we consider that it offers partial

support to Deferred Distribution. It also offers partial support to the Capability-based

Distribution (at activity level), as one may use the metaclass ResourceParameters to

characterize Resource, and that may be used when defining the Performer. We consider

this support partial since capabilities (represented here as resource parameters) cannot

be captured in a general organizational model, and cannot be used at process level.

Lastly, BPMN provides partial support to Organizational-based Distribution, because

Pools have participants and may also have sub-partitions called Lanes. Nevertheless,

Lanes may be used to organize Pools using arbitrary criteria (for example, it may be

used to represent geographical locations, or the level of importance of the tasks within a

Lane). Thus, while the modelers may employ Lanes to determine organizational roles

and positions and define a basic organizational structure to categorize activities, this is

30

informal and lacks semantics. Because of this, we disagree with the work by Meyer

(2009) which considers BPMN to fully support Organizational-based Distribution. The

remaining “creation patterns” are not supported (WOHED et al., 2006; GROSSKOPF,

2007).

31

2.8 Support Summary

Table 1 summarizes the constructs of the approaches reviewed, presenting the constructs they adopt to model the active structure domain; the

constructs they adopt to model the behavioral domain; and the constructs to express the relations between active structure and behavior.

Table 1 - Summary of current support

Active Structure Domain

Relations between Active Structure and

Behavioural Domain

Behavioral

Domain

Main Concepts

Relations Between

Concepts
Main Concepts

ArchiMate 1.0
Business Actor, Business Role, and

Business Collaboration

A Business Actor may be

assigned to a Business Role

and a Business

Collaboration aggregates

Business Roles.

A Business Role is assigned to a Business Behavior Element,

with different semantics when used to relate different kinds of

elements.

Business Behavior Element,

specialized into Business

Process, Business Function,

Business Interaction and a

Business Event

DODAF 2.02

Performer, which may be a System,

Service, PersonType or

OrganizationType; and

IndividualPerformer, which may be a

specific Organization or

IndividualPerson

IndividualPerson is instance

of PersonType;

Organization is instance of

OrganizationType;

part-whole relations

activityPerformedByPerformer,

Rule, ruleConstrainsActivityPerformedByPerformer, Condition,

activityPerformableUnderCondition,

Measure, measureOfTypeActivityPerformedByPerformed,

measureOfTypeActivityPerformableUnderCondition

Activity

ARIS Organization Unit Type, Organization Numerous relations, which An element of the active structure domain may be related to a Function

32

Unit, Position, Person Type,

Employee Variable, Person, Group

are omitted here due to

space constraints - see

(SANTOS JR.; ALMEIDA;

PIANISSOLLA, 2011).

Function through these relations: is technically responsible for,

carries out, is IT responsible for, decides on, must be informed

about, contributes to, accepts, has consulting role in, must be

informed on cancellation and must inform about result of.

XPDL 2.1a

Participant may be a Resource,

Resource Set, Organizational Unit,

Role, Human or System.

None.

A Process includes the definition of Participants. The link

between an Activity and a Participant defines the performer

attribute, which may be defined using expressions. Participant

identifiers are used in the performer attribute and must be

declared in the surrounding process definition or coming from

external packages, like an organizational model.

Activity, Process

UML 2.0

Activity

Diagram

No specific elements, although active

structure can be represented through

class diagrams and object diagrams

(DUMAS; AALST; HOFSTEDE,

2005).

Associations in class

diagrams and links in object

diagrams (when these

diagrams are used to

represent active structure).

Partitions are contained within Activities, constraining and

providing a view on the Actions performed in Partitions. May be

used to indicate who/what will perform the actions contained

within it, referring to an element such as Classifier, Instance,

Part,

Attribute and Value.

Activity and Action, which

represents a single step

within an Activity, that is,

one that is no further

decomposed.

BPMN 2.0

Resource, PartnerRole and

PartnerEntity.

None.

A Resource may be associated to an Activity through the

Performer metaclass. A Performer may explicitly specify a

Resource who will perform the activity or an Expression that

returns Resources that will perform the activity.

A Participant of a Collaboration may refer to a PartnerRole or a

PartnerEntity who will participate in the Collaboration. A

Participant may also explicitly refer to a Process, which in turn

contains Activities.

Collaboration, Process,

Activity

33

Table 2 summarizes the support for the workflow resource “creation patterns” in the

reviewed approaches; „+‟ stands for full support; „+/-‟ stands for partial support; „-‟

stands for no support.

Table 2 - Support for the “creation” Workflow Resource Patterns in the reviewed approaches

 ArchiMate ARIS DoDAF XPDL

UML

Activity

Diagram

BPMN

WRP-01: Direct Distribution + + + + + +

WRP-02: Role-Based

Distribution
+ + + + + +

WRP-03: Deferred

Distribution
+/- +/- +/- +/- +/- +/-

WRP-04: Authorization - - - - - -

WRP-05: Separation of

Duties
- - - - - -

WRP-06: Case Handling - - - - - -

WRP-07: Retain Familiar - - - - - -

WRP-08: Capability-Based

Distribution
- - +/- - +/- +/-

WRP-09: History-Based

Distribution
- - - - - -

WRP-10: Organizational

Distribution
+/- +/- - - +/- +/-

WRP-11: Automatic

Execution
+ + + + + +

34

2.9 Conclusions

A mature approach to enterprise modeling should clearly establish relations between the

various architectural domains addressed. In this section, we have reviewed the

mechanisms employed in ArchiMate, DODAF, ARIS, XPDL, UML and BPMN to

support the assignment of active structure including the review of their support to the

Workflow Resource Patterns. We can observe in our analysis that most of the

approaches offer simplistic support for the active structure assignment, including few

modeling constructs to relate each of the architectural domains.

With respect to the coverage of the workflow resource patterns by the various surveyed

techniques, we can observe that Direct Distribution, Role-Based Distribution and

Automatic Execution are directly supported by all of them. Deferred Distribution is

considered to be partially supported by all of them, because they allow the modeler to

refrain from specifying the performer of the behaviors. We consider this kind of support

partial, since full support would require not only to defer identification of a resource but

also would require some run-time mechanism for resource identification (RUSSEL et

al., 2010). Authorization is not supported by any of them, because they consider the

assigned performer to be the one that will execute a behavior, not discussing other range

of privileges that resources may have in regards to behavioral elements. Separation of

Duties, Case Handling and Retain Familiar are not supported by any of them, because

they ignore the interdependences between performers of behavioral elements. History-

Based Distribution is also not supported by any of them. Given the need to refer to past

executions of tasks in history-based distribution, the lack of support for this pattern is

not surprising as the approaches cover mainly aspects of design-time. Capability-Based

Distribution is partially supported in DoDAF, UML 2.0 Activity Diagram and BPMN,

because they offer some kind of mechanism to allow one to specify some properties that

resources may have and to use that when defining the assignment. However, because

they do not offer a full-fledged mechanism to allow the specification of resource

properties and their types and to use that when describing the assignment, we consider

the support for this pattern “partial”. Ultimately, Organizational Distribution is partially

supported in ArchiMate, ARIS, UML and BPMN because they allow one to define a

basic organizational structure and use its hierarchy to define the assignment, but

because they do not offer the possibility to both define complex organizational structure

35

and use organizational relationships when defining the assignment, we consider the

support for this pattern “partial”.

With respect to ArchiMate, Business Actors are assigned to Business Behavioral

Elements indirectly, through the Business Role element. The language also includes a

notion of Business Collaboration which may be used to assign a behavioral element to

several Business Actors (through an aggregation of Business Roles). The objective of

the language is to establish a high level abstract view on an enterprise architecture, and

thus the language cannot be used to model details of the assignment.

DoDAF, in its turn, offers more expressiveness when considering the constraints on its

assignment relation, defining Conditions under which the Activity should be performed

and Rules on the Performer, possibly including quantitative constraints using a notion

of Measure.

Regarding ARIS, we observed that it is the only one of the studied languages to define

relationships beyond assignment or responsibility for behavior execution. The relations

between active structure elements and behavioral elements include technical

responsibility, participation in decision making, general contribution, general interest in,

need to consult and inform, etc. Nevertheless, the semantics of each of the different

relations is not discussed explicitly, and can only be superficially inferred from the

names of the meta-associations.

Regarding XPDL, which is designed with the main goal to provide interoperability

between workflow systems, the support for active structure assignment is rather

primitive: it only identifies a direct relationship between a Participant and an Activity.

XPDL makes no assumptions on the organization model (beyond defining a list of

participant types, whose semantics is poorly defined.) The specification also mentions

that expressions may be used to define the performers of activities, but a language for

these expressions is not defined.

UML provides the generic mechanism of ActivityPartitions which can be used to define

the classes or instances which execute actions in an activity diagram. The same

mechanism can be used to capture any other criteria which modelers may define for

36

grouping actions. The construct is similar to that of Lanes in BPMN, although specific

stereotypes facilitate the identification of the types of partitions in a model, defining

more precise semantics for each of them.

With respect to BPMN, the assignment of the performers may be done directly or

through expressions. Differently from XPDL it provides a default language for such

expressions. Nevertheless, it only assumes the existence of attributes in a (external)

resource model. No kinds of relations between resources (performers) are assumed, and

thus the expressions cannot take advantage of using relationships between active

structure elements. Further, we have identified some issues in the combination of

process-level and activity-level assignment relations. Some of the limitations in BPMN

to address the assignment of active structure and behavior have been addressed in

(AWAD et al., 2009) and (MEYER, 2009), which propose an extension to BPMN in

order to support various kinds of active structure allocation proposed by the Workflow

Resource Patterns.

37

3. Assignment Framework

In this chapter we discuss the Assignment framework, which is centered on an

Assignment metamodel and includes a number of related metamodels to enable the

expression of a wide range of assignments. We first discuss the requirements and

assumptions for the framework. We then present the framework‟s overall architecture,

presenting its dependencies and relationships with other metamodels, and discuss how

they are integrated with each other. We also discuss in details the elements of each

metamodel involved with the various kinds of assignments, showing how the

framework satisfies the various requirements. The framework is presented

independently of process or enterprise modeling techniques.

3.1 Requirements/Assumptions

In this section we consider the requirements and assumptions for the framework

proposed in this work and which should be applicable to technologies for active

structure assignment. We consider the set of Workflow Resource Patterns discussed in

Chapter 2 as a requirements framework and thus assume in this work that they all must

be somehow supported in an expressive assignment technique. Further, the analysis of

the constructs of the various enterprise architecture approaches and business process

languages surveyed in Chapter 2 provides us with some mechanisms that must be

incorporated in the framework and that are often tied to resource patterns too. These sort

of “bottom-up” requirements are incorporated here.

First of all, there must be some support to manually specify at design-time the resource

to which the instances of a behavioral element will be assigned. This is directly related

to the Direct Distribution pattern (WRP-01). Further, it must be possible to specify the

assignment of instances of a behavioral element to agents that fulfill a specific role in an

organization. This is directly related to the Role-Based Distribution pattern (WRP-02).

The premise that one must not force the designer to prescribe the assignment at design-

time must also be supported, which is related to the Deferred Distribution pattern

(WRP-03). When there is no assignment specified to a behavior, we assume the

38

assignment is the least restrictive, because, in principle, any entity may perform it at

run-time.

In order to support the Authorization pattern (WRP-04), there should be support to an

authorization framework dealing with the privileges that resources may have in regards

to the execution of instances of a task. The supported authorization framework should

focus on the privileges that may be specified at design-time concerning the performers

of behavioral elements. We envision that beyond specifying the resources that are

authorized to perform behavioral elements such a framework may also allow the

specification of prohibitions and obligations, incorporating features from access control

(e.g. (BOTHA; ELOFF, 2001), (BOTHA, 2001), (AHN; SANDHU, 2000) and (ZHOU,

2008)), policy-based approaches (e.g. (ISO, 2010), (BRUCKER et al., 2012)) and

compliance techniques (KHARBILI et al., 2011) currently missing in all of the

approaches surveyed in Chapter 2.

Various techniques for behavioral specification adopt a hierarchical approach in which

behavioral elements may be further decomposed into finer-grained behavioral elements

(e.g., from high-level “processes” to fine-grained “tasks”). In these cases, the

framework should enable the assignment of behavioral elements at any level of

aggregation or abstraction. If there is an assignment to a behavioral element that is

further refined into others, the composing behavioral elements must be performed by

the active structure element assigned to the “container” behavioral element. This is

more general than, but hinted by the Case Handling pattern (WRP-06).

The framework should be able to support the specification of the assignment of a

behavioral element based on interdependence with other behavioral elements. This is

hinted by the Separation of Duties pattern (WRP-05) and Retain Familiar pattern

(WRP-07).

Given the prominence of organizational roles, capabilities and relations in the

distribution of work, the framework should allow the specification of the assignment by

means of the properties that resources have in regards to the organization. This is

directly related to the Capability-Based Distribution pattern (WRP-08) when attributes

of resources are used when defining the assignment and to Organizational Distribution

39

(WRP-10) pattern because the organizational relationships are used when defining the

assignment. This is also indirectly related to History-Based Distribution pattern (WRP-

09) because the past executions of resources may also be seen as characterizing

resources, and also indicative of a resources capabilities in performing similar or related

tasks.

Some of the techniques surveyed, such as BPMN and XPDL, consider that the details of

assignments may have to be specified in Expressions. This is necessary, for example, to

specify Capability-Based Distribution, representing what is called a “capability

function” (RUSSEL et al., 2010). In this case, an expression represents this function.

Expressions may also be used to support the definition of more complex assignments,

possibly combining various patterns. The assignment framework should support the

precise specification of complex assignments, possibly through a formal expression

language.

3.2 Framework Architecture Overview

Figure 15 provides a general overview of the Assignment Framework architecture. The

middle layer shows the core of the assignment framework and aims at covering the

range of assignments to be expressed. It includes an Assignment metamodel which is

integrated with an external Behavioural metamodel, an Occurrence metamodel and

Organizational metamodel. The external Behavioral metamodel is shown in dashed

lines, as it is in fact a placeholder for a specific metamodel of the technique being

extended by the framework. The metamodels in this middle layer provide the

metaclasses and meta-associations which will define the elements that may be part of

the various kinds of assignments.

The top layer shows the Ecore metametamodel, which is instantiated by all the

metamodels in the middle layer, represented by the instanceOf relationships. The

OCLEcore package is built-in feature of the Eclipse Modeling Framework (EMF) that

allows a designer to use OCL for queries and constraints on the instantiating

metamodels. These queries will be used in the run-time environment to be able to

satisfy the expression-based requirements stated in the previous section. The bottom

layer shows how the model-based runtime environment works when the framework is

40

applied. Assignment, Behavioral, Occurrence and Organizational models populate an

organizational repository. OCL queries referencing the models will be evaluated as

required to satisfy particular assignments in the Assignment model.. For a discussion of

how OCL is used and a brief explanation of its main concepts, one may refer to

Appendix A.

Figure 15 - Assignment Framework Architecture

Figure 16 shows the distinct phases the models are defined in the environment. We

assume the Behavioral model is defined at design-time, and focus also on the design-

time specification of active structure assignment (although active structure assignment

may refer to runtime information as we will see in the following). An Organizational

model is defined and modified at design-time and run-time in order to accommodate a

changing organizational structure. An Occurrence model deals only with run-time

information, getting populated automatically by a process-aware application or a

41

process enactment environment (such as a workflow system or business process

management engine).

Figure 16 - Design-time and Run-time models

The framework is designed such that it can be applied as a lightweight extension to

existing technologies. As a consequence, the assignment metamodel is built to be as

loosely-coupled as possible. Its concepts are used to assign the behavioral to the

organizational elements, therefore we cannot avoid specifying this dependency

relationship in the metamodel level at some degree. Hence, the assignment metamodel

is not entirely independent of the behavioral and organizational metamodel that may be

chosen because we still need to have an insight of the behavioral and active structure

elements present in the metamodels to be able to define which one of them may be

covered by the assignment metamodel.

42

Figure 17 - The different metamodeling levels and their dependencies

Figure 17 shows the basic relationships between the metamodels as well as the levels of

modeling that they deal with. As we can see, the behavioral metamodel covers the

behavioral aspects at type level, defining the type of processes and activities that will be

instantiated at process run-time. The occurrence metamodel is considered to be at

instance level, as it represents actual occurrences of processes and activities defined in a

behavioral model. Suppose we have an activity called “Send report” defined in a

behavioral model (at type level). The records of execution(s) of this activity are

represented at instance level and are covered in the occurrence metamodel (i.e., are

instances of metaclasses in the occurrence metamodel).

The organizational metamodel is considered to cover both levels, as seen in many

modeling techniques, such as ARIS. For instance, in an organizational model there will

be type level elements, for instance positions like „Engineer‟, „Manager‟ and instance

level elements, like the humans that work at the organization being modeled, i.e.,

„John‟, „Paul‟, etc.

The occurrence metamodel depends on the behavioral metamodel to determine the

processes or activities in the behavioral model that are instantiated in particular

occurrences. It also depends on the organizational metamodel because it refers to the

particular individuals that performed the behaviors. The Assignment metamodel

43

depends on all the other metamodels in the framework because it needs to be able to

refer to specific activities in the behavioral model, possible past occurrences of

activities in the occurrence model and resources in the organizational model. We will

see how these dependencies are used in assignments in the subsequent sections.

The behavioral model is independent of the other metamodels, and is only referred to by

other metamodels. This is an important characteristic of the approach as it enables us to

employ previously existing behavioral metamodels (such as, e.g., the BPMN

metamodel) without alteration. In order to cope with different behavioral metamodels,

the relation between the Assignment metamodel and the behavioral metamodel is

parameterized (this is discussed further in sections 3.4 and 3.5 employing an abstraction

of the various behavioral metamodels and the generic capabilities of EMF.)

3.3 Organizational Metamodel

Many of the surveyed modeling techniques include elements to model organizational

elements. Nevertheless, there is a wide range of differences in the coverage of concepts,

ranging from very simplistic (e.g., BPMN, with no organizational relations) to

sophisticated (e.g., ARIS, with various kinds of relations). Unfortunately, there is no

standard or reference model developed for this domain yet (although there were some

efforts, such as, e.g., an Organizational Structure Metamodel effort of the Object

Management Group (OMG, 2009)). Thus, we have consolidated many of these elements

into an abstract organizational metamodel, which provides us with basic elements

required for organizational-based assignments.

The metamodel was designed to provide more general organizational concepts while

also covering all the desired requirements/assumptions. As discussed in Chapter 1, we

focus on human resources, thus leaving out non-human resources from the model. The

organizational metamodel is shown in Figure 18.

44

Figure 18 - Organizational metamodel

The organizational metamodel has the OrganizationalModel metaclass, which will serve

as the container for all the elements that comprise a specific organizational model.

These elements are what we call the ActiveStructureElements, the topmost abstract

class that subsumes almost all the concepts defined in the metamodel. It also has an

attribute called name of type String, defining that all ActiveStructureElements will be

named. In a model, the value of this attribute must also be unique, i.e., there must not

exist two elements with the same name, assuring that there won‟t be name clashes in an

instantiating model. An ActiveStructureElement is further specialized into two classes:

ActiveStructureIndividual, which is the topmost class covering active structure elements

at the instance level and ActiveStructureClassifier, which is the topmost class covering

active structure elements at the type level.

An ActiveStructureIndividual may be an ActiveStructureAgent, which in its turn may be

an OrganizationalUnit, a Group or a Human. A Human represents the persons that work

in an organization. An OrganizationalUnit is composed of other ActiveStructureAgents,

meaning it is a functional complex entity with parts (other ActiveStructureAgents)

playing various roles. For instance, we may have the OrganizationalUnit „Petrobras‟ that

is composed of the OrganizationalUnits „Engineering Department‟ and „Human

Resources Department‟. When the agents that are components of an OrganizationalUnit

change or even cease to exist, the OrganizationalUnit will remain the same. An

45

OrganizationalUnit also has the notion of persisting through time. A Group is also a

whole to ActiveStructureAgents, but the difference to an OrganizationalUnit is that a

group is considered temporary, being constituted with mandates for specific tasks. In

addition, a group may be a functional complex or a collective (GUIZZARDI, 2005), i.e.,

the entities that are members of a Group may play the same role in the scope of the

group. For instance, we may have the Group „Project X Committee‟, which has as

members Humans that perform the „Functional Manager‟ or „Project Manager‟ role that

will analyze the feasibility of the specified project; or we may have a Group of Humans

that perform the „Programmer‟ role, in this case all the agents composing the Group

play the same role. In case the Group is a functional complex, if some

ActiveStructureAgent leaves the group or cease to exist, the identity of the Group also

changes. A Group also has the notion of being temporary, meaning that it will not

persist through time.

An ActiveStructureAgent may also have Attributes that characterizes then. For instance,

a Human named „João Paulo‟ may have an Attribute „experience as professor‟, with its

value set to 10 (years) in a given time.

An ActiveStructureRelator represents a relation between two or more

ActiveStructureAgents. For instance, we may have an ActiveStructureRelator

„SupervisionJoaoPauloRomulo‟ that relates a specific human named „Joao Paulo‟ to

another specific human named „Romulo‟. This relationship between two or more

ActiveStructureAgents, which we call mediates, is ordered, because each part being

mediated has a different role in the relationship. In the previous example, for instance,

„Joao Paulo‟ is the „Supervisor‟ and Romulo is the „student being supervised‟.

An ActiveStructureClassifier may be an ActiveStructureClass or an

ActiveStructureRelatorClassifier. An ActiveStructureClass is the main element for being

the one that will represent the various types that are defined within an organization and

they may have Properties, which are the types of attributes that agents may have. The

isOfType relationship to DataType represents the specific data type of Property. For

instance, we have the Property „Experience‟, which is of the type „Integer‟. This

Property must be of one ActiveStructureClass, for instance an ActiveStructureClass

called „Position‟. An ActiveStructureRelatorClassifier represents a relation between two

46

or more ActiveStructureClasses. For instance, consider a „Supervision‟

ActiveStructureRelatorClassifier, which mediates the ActiveStructureClasses

„Professor‟ and „Master Student‟. This mediates relationship is nonUnique, such that

we can model a relationship with elements which are instances of the same

ActiveStructureClass. For instance, we may have a „reports To‟ relationship between

persons (instances of the same ActiveStructureClass „Person‟). An

ActiveStructureRelatorClassifier may be further specialized into a MeronymicClassifier,

which in its turn may be further classified into an MemberOfMeronymicClassifier and

ComponentOfMeronymicClassifier relator classifiers. The

MemberOfMeronymicClassifier metaclass must be such that its relator instances mediate

only a Group and its members. Similarly, the ComponentOfMeronymicClassifier

metaclass must be such that its relator instances mediate only an OrganizationalUnit and

its components. Thus, to ensure that, we defined two OCL invariant constraints, which

are shown below:

An ActiveStructureClassifier may also be superclass of another class. For instance, the

ActiveStructureClass „Engineer‟ is superclass of the ActiveStructureClass „Civil

Engineer‟. The ActiveStructureRelatorClassifier „Supervision‟ is a superclass of the

ActiveStructureRelatorClassifier „SupervisionMasterDegree‟.

As the Assignment framework is designed to be as general and generic as possible, the

organizational metamodel has been defined to enable flexibility concerning the typing

of ActiveStructureAgents, Attributes and ActiveStructureRelators. In other words, one

may choose at model level whether to type those elements or not. Concerning

ActiveStructureAgents, we may have, for instance, Humans that are instance of the

ActiveStructureClass „Professor‟, while others being instances of the

ActiveStructureClasses „Manager‟, or others that are instance of both, or we may also

have Humans that don‟t instantiate any ActiveStructureClass at all. This flexibility

allows us to cope with approaches that are typed and those that do not include the

context MemberOfMeronymicClassifier

 inv validMember:

 instanceOfRC->collect(

 mediates->at(1))->forAll(

 oclIsKindOf(Group));

context ComponentOfMeronymicClassifier

 inv validComponent:

 instanceOfRC->collect(

 mediates->at(1))->forAll(

 oclIsKindOf(OrganizationalUnit));

47

concept of a type for organizational resources. Attributes represent particularized

properties such as Joao Paulo‟s experience as a professor (measured in years), (let us

call this „JoaoPauloExperienceAsProfessor‟) which is an Attribute of the Human „Joao

Paulo‟, and this Attribute may also be instance of the Property „Experience‟, which is of

the Datatype „Integer‟. So the value of the Attribute that is instance of this must be

parsed to an integer type. Concerning ActiveStructureRelators, we may have, for

instance, an ActiveStructureRelator „SupervisionJoaoPauloCarlos‟ that mediates the

Humans „Joao Paulo‟ and „Carlos‟. The mediates eReference owned by an

ActiveStructureRelator is ordered, such that the various roles in the relationship can be

distinguished even if the relator is not typed. If the relator is typed (i.e., when it is

related to an ActiveStructureRelatorClassifier) the mediated elements must respect the

types of the mediates eReference owned by an ActiveStructureRelatorClassifier. For

example, if there is a „SupervisionJoaoPauloCarlos‟ ActiveStructureRelator which

mediates the Humans „Joao Paulo‟ and „Carlos‟, with this ActiveStructureRelator being

instanceOf the „Supervision‟ ActiveStructureRelatorClassifier, then „Joao Paulo‟ and

„Carlos‟ must conform to the ActiveStructureClasses that the

ActiveStructureRelatorClassifier is mediating.

3.4 Assumptions on a Behavioral Metamodel

Our framework assumes that a behavioral metamodel includes elements that represent

the units of behavior that will be assigned to perform some work. In the reviewed

techniques, these elements are often called Activities, Tasks or Processes. In some of

those techniques, Activity is a more general concept while Task is a specialized Activity

that represents the most refined unit of work, as is the case in XPDL and BPMN.

Further, in some of the reviewed techniques, Process is considered a special unit of

behavior that may include other units of behavior, as is the case in XPDL and BPMN. A

behavioral metamodel may or may not consider Activities, Tasks and Processes as

specializations of a more abstract metaclass. For example, XPDL and BPMN do not

have such a more abstract metaclass, while ArchiMate includes only the more abstract

Business Processes.

Given the possible variations in behavioral metamodels, in order to cope with most of

the modeling techniques, the assignment metamodel must be able to assign active

48

structure elements to any of the elements that represent units of behavior. We assume

thus that the behavioral metamodel may have two separate types of behavior elements

(which we call conveniently activity and process) or a single type of behavior element

(either an activity or a process).

3.5 Behavioral Occurrence Metamodel

Since we need to be able to specify assignments based on the history of execution of

activities, we are required to refer to past executions. The behavioral occurrence

metamodel was created to define the structure of information of these past executions

and its main elements are shown in Figure 19.

Figure 19 - The Behavioral Occurrence Metamodel

The main element of the metamodel is the BehavioralOccurrence abstract metaclass,

which represents the actual occurrence of some behavior. It has a start date and time and

an end date and time, with the former being the point in time in which the behavior

begins to occur and the latter being the point in time in which the behavior ceases to

occur.

A BehavioralOcurrence has a number of relationships to metaclasses of other

metamodels. The instanceOfActivity relationship shows that a BehavioralOccurrence

may instantiate an “activity” concept from some behavioral metamodel, meaning that

the BehavioralOccurrence is an actual performance (instance level) of the referred

49

“activity” (type level). In order to avoid the direct integration of an existing metamodel

of a process technology, we use EMF generic capabilities to parameterize the

occurrence metamodel. Thus, the “A” metaclass that is being referred to is a parameter

of the metamodel and will be replaced when this metamodel is instantiated by a

metaclass of an existing behavioral metamodel of a specific process technology (e.g.

BPMN) with the similar behavioral concept of an activity (e.g. Activity in BPMN). The

participation relationship shows that a BehavioralOccurrence may have the participation

of an ActiveStructureAgent of the organizational metamodel previously presented,

meaning that the ActiveStructureAgent is responsible for the performance of that

BehavioralOccurrence.

Lastly, a result relationship has been included to represent the result of some piece of

behavior. Given the generic nature of “results”, this is typed with the generic metaclass

EObject. In general, a behavior occurrence may create, change, select or destroy an

EObject. The cases in which it creates, changes or selects an EObject may be relevant

for the assignment of a future behavior which refers to the resulting EObject. We may

have, for instance, an activity called „Define the person to head the expedition‟, in

which the BehavioralOccurrences of this activity will select an already existing Human

that will be heading a future expedition.

BehaviouralOcurrences are further specialized into SimpleBehaviourOcurrence and

ComplexBehaviouralOcurrences. A SimpleBehavioralOccurrence represents the

execution of a behavior that may not be further divided in finer grained behaviors (often

called „tasks‟ or „atomic activities‟ in process modeling techniques). The

instanceOfActivity relationship of a SimpleBehavioralOccurrence must refer to an

activity of the behavioral metamodel that is atomic, i.e., that is not further subdivided. A

ComplexBehavioralOccurrence is composed of two or more BehavioralOccurrences

and represents a single execution of a behavior that may be further decomposed into

finer grained behaviors (often represented by processes and subprocesses in process

modeling techniques). A ComplexBehavioralOccurrence may also have a relationship

to a process concept of a behavioral metamodel, which is reflected in the “P” parameter

of the instanceOfProcess meta-association. Thus, a ComplexBehavioralOcurrence may

refer to either an activity through the instanceOfActivity relationship or refer to a process

50

through the relationship instanceOfProcess. The fragment below shows an OCL

invariant constraint named „eitherProcessOrActivityDefined‟ to guarantee that:

In case it refers to an activity, it means that the activity being instantiated by the

ComplexBehavioralOccurrence must be one that is not atomic, i.e., must be an activity

that may be further decomposed in finer-grained behavior elements, like a sub-process

in BPMN, which is an activity that is composed of other activities. In case it refers to a

process, it means that the ComplexBehavioralOccurrence represents a single execution

of the process being instantiated. The composing BehavioralOccurrences of a

ComplexBehavioralOccurrence must have a start date and time that precedes those of

each of the composing BehavioralOccurrences and an end date and time that follows

those of each of the composing BehavioralOccurrences.

3.6 Assignment Metamodel

Figure 20 shows the Assignment metamodel.

context ComplexBehavioralOccurrence

 inv eitherProcessOrActivityDefined:

 instanceOfActivity.oclIsUndefined() xor instanceOfProcess.oclIsUndefined()

51

Figure 20 - Assignment Metamodel

An AssignmentModel represents the specification of assignments, including thus at least

one Assignment, which captures the relation between the behavioral and organizational

models.

Assignment is the top-level abstract metaclass and represents either a

SimpleAssignment or a ComplexAssignment. There must be at most one Assignment

for each behavior present in the behavioral model and it is the metaclass that establishes

the relationship to the behavioral model through either the ofAnActivity or the

ofAProcess relationships, one of which must be set for an Assignment. The fragment

below shows an OCL invariant constraint named „eitherProcessOrActivityDefined‟ to

guarantee that.

 Similarly to the behavioral occurrence metamodel, the “A” and “P” metaclasses are

parameters of this metamodel and will be replaced when this metamodel is instantiated

context Assignment

 inv eitherProcessOrActivityDefined:

 ofAnActivity.oclIsUndefined() xor ofAProcess.oclIsUndefined()

52

by metaclasses that represent the different types of behavior elements in the behavioral

metamodel (“A” stands for activity and “P” stands for process).

In the sequel, we discuss the metaclass SimpleAssignment and its specializations.

Subsequently, we discuss how SimpleAssignments may be used to compose

ComplexAssignments.

3.6.1 SimpleAssignment

SimpleAssignment is an abstract metaclass that is further specialized into the various

different types of SimpleAssignments, which we discuss in the following sections. All

SimpleAssignments must have an AssignmentType, which may be one of the following:

 Obligation, stating that the active structure element(s) referred to in the

assignment must perform the referred behavioral element (e.g. must be an

instance of that class, must be that specific agent, all depending on the

specialization of SimpleAssignment).

 Prohibition, stating that the active structure element(s) referred to in the

assignment may not perform the referred behavioral element (e.g. cannot be the

one that performed a previous activity).

Often found in deontic logic theories, these two types are usually accompanied by a

third type, namely permission, which we chose not to include as an explicit third type of

Assignment because we assume in our model that everything that is not explicitly

prohibited is permitted. In other words, permission is the default assignment type in the

absence of assignments for a behavior element. As a consequence, the absence of an

assignment model allows any active structure element to perform any behavior element,

not constraining the performance of activities and processes in any way. We chose this

approach to avoid forcing the modeler to explicitly state the entities that would be

permitted to perform the behaviors, which would often lead to models that are

unnecessarily verbose.

53

3.6.2 DirectAssignment

A DirectAssignment determines at design-time the specific agent (OrganizationalUnit,

Group or Human) involved in the assignment. A DirectAssignment of type Obligation

determines at design-time the agent who must execute all instances of the referred

behavior element, either a process or an activity. This is the only type of assignment for

which we know at design-time what real-world entity will perform all instances of the

referred behavioral element, and thus is an assignment with the highest level of

determinism.

For example, if we would like to specify that the Human „Romário‟ should be set as the

performer of the activity „Analyze World Cup 2014 expense‟, we should use a

DirectAssignment of type Obligation. As so, „Romário‟ will be responsible for the

execution of every instance of the aforementioned activity. In the case of

DirectAssignment involving an OrganizationalUnit, when we assign for instance the

activity „Sign Contract‟ to the OrganizationalUnit „Petrobras‟, we mean that literally the

OrganizationalUnit is responsible for the execution of the activity, even if in the end a

Human will be the one that will perform the activity of signing the contract (acting in

the name of the organization). Similarly, when there is a DirectAssignment to a Group,

when we assign for instance the activity „Debug the source code‟ to the Group

„Debugging Programmers‟, we mean that the entire Group is collectively responsible for

the execution of the activity.

A DirectAssignment of type Prohibition specifies that one real-world entity (i.e., one

Human, Group or OrganizationalUnit) is not allowed to perform any instance of that

referred behavioral element. Considering an organizational model with many active

structure elements, there is still a high level of indetermination in the execution of the

instances of the referred behavioral element. This type of Assignment would be used,

for instance, if we would like to specify that „Roberto Jefferson‟ is prohibited to

perform the activity „Verify reports of corruption in government‟. With this assignment,

any other agent that is not „Roberto Jefferson‟ could be chosen to be the performer of

each occurrence of the activity. The identity of the agent that will perform the referred

behavior will only be known at run-time and the selection of the performer is dependent

of run-time infrastructure policies, which is outside the scope of this work.

54

3.6.3 ClassBasedAssignment

A ClassBasedAssignment determines at design-time an ActiveStructureClass for the

assignment. A ClassBasedAssignment of type Obligation determines at design-time

that the performer who must execute all instances of the referred behavior element must

be an instance of the referred ActiveStructureClass. We would use a

ClassBasedAssignment of type Obligation, for instance, if we would like to specify that

an instance of the ActiveStructureClass „Professor‟ must perform the activity „Analyze

Students‟ Exams‟.

As an ActiveStrutureClass is a type level entity, this means that at run-time, an

ActiveStructureAgent must be chosen to perform an instance of the selected behavior in

case it is of type Obligation. From the perspective of the assignment framework, the

exact instant in which the assignment is evaluated and the ActiveStructureAgent is

chosen will be defined non-deterministically at run-time and may happen at any

moment after the behavioral element of the referred assignment is enabled (i.e., when its

preconditions and dependencies are satisfied) and before its execution has started. There

may exist zero, one, or many ActiveStructureAgents that instantiate the selected

ActiveStructureClass when the assignment is evaluated. For the type Obligation, run-

time mechanisms, which are outside the scope of this work, are required to deal with the

cases in which no agent instantiate the selected class and in which several agents

instantiate the selected class. For instance, the run-time infrastructure may randomly

choose one particular agent to perform an activity in the case several agents instantiate

the selected class. In any case, the identity of the real-world entity that will perform

each instance of the behavior will only be known at run-time, as the extension of the

class may change arbitrarily at run-time. Figure 21 shows the possible outcomes of a

ClassBasedAssignment of type Obligation at the moment of the evaluation of the

assignment. When there is only one agent instantiating the referred

ActiveStructureClass, the agent to be assigned will be fully determined and no further

actions from the run-time infrastructure are required. This means that the assignment is

then considered independent of run-time policies. When there are many agents that

instantiate the referred ActiveStructureClass, the run-time infrastructure must choose

one instance to be the performer based on its own policies. This means that the

assignment is then considered dependent of run-time policies. Ultimately, when there is

55

no agent that instantiates the referred ActiveStructureClass, the run-time infrastructure

must invoke its exception handling mechanisms to deal with this case.

Figure 21 - The possible outcomes of ClassBasedAssignment of type Obligation

A ClassBasedAssignment of type Prohibition specifies that any real-world entity that is

an instance of that ActiveStructureClass is not allowed to perform any instance of the

referred behavior. This applies to all possible cases, irrespective of whether there is one,

many or none agents that are instances of the ActiveStructureClass. The run-time

infrastructure will have to choose one agent that is not an instance of the referred

ActiveStructureClass to perform the assigned behavior. Specifically in the scenario

where every agent is instance of the referred ActiveStructureClass, exception handling

mechanisms from the run-time infrastructure would be required, since every single

agent is prohibited. Finally, if there is only one agent that is not instance of the referred

class, the assignment exactly determines which will be the performer.

In the case of a ClassBasedAssignment that refers to a non-atomic (higher-level)

behavior, we should consider the consequences for the assignment of the contained

(finer-grained) behaviors. In fact, we consider that assignments applied to non-atomic

behaviors are propagated from the container behavior to the containing behaviors. This

means that each assignment is evaluated separately (when each of the containing

behaviors is enabled) and thus different agents may be chosen to perform each one of

the containing behaviors.

56

3.6.4 ExpressionBasedAssignment

An ExpressionBasedAssignment defines at design-time an OCL expression that will be

evaluated at run-time constraining the possible ActiveStructureAgents that will perform

the referred behavior. It is a metaclass that can be further specialized into various

specific types, satisfying a variety of expressiveness requirements. But before

proceeding to the types of ExpressionBasedAssignments defined, we firstly discuss the

structure of the OCL expression that must be built.

The first thing that needs to be determined in an OCL expression is its context. In

ExpressionBasedAssignments, the context will always be the newly created

BehavioralOccurrence of the referred behavior of the ExpressionBasedAssignment.

This behavioral occurrence is created non-deterministically at runtime after the

occurrence is enabled (i.e., when its preconditions and dependencies are satisfied). That

is mandatory because many of the requirements demand information that is only

available during the performance of the behavior. We may want to reference

information of the result of the execution of previous activities in the on-going instance

of a process, or we may want to reference performers of previous activities in the on-

going instance of a process. For instance, we may want that the specific agent that

performed the previous activity A in a specific instance of a process to be the performer

of the next activity B. In this case, the identity of the agent will only be known when the

performer for A is known at process run-time. Similarly to what we have discussed for

class-based assignment, the exact instant in which the expression is evaluated will be

defined non-deterministically at run-time and may happen at any moment after the

behavioral occurrence of the referred behavior is enabled and before its execution has

started.

Another thing to note concerns the return type that the OCL expression may have. The

OCL expression may return a single ActiveStructureAgent, a set of

ActiveStructureAgents (which may also be an empty set) or a single

ActiveStructureClass. Any other return types are considered invalid in the framework

and would indicate an error in the specification of the assignment.

57

Figure 22 - The possible outcomes of an ExpressionBasedAssignment of type Obligation

Figure 22 shows all the possible outcomes an ExpressionBasedAssignment of type

Obligation. If the evaluation of the expression returns a single ActiveStructureAgent,

then the assignment is straightforward and is independent of run-time policies. If the

evaluation of the expression returns a set of ActiveStructureAgents, and there is only

agent in the set, then it is independent of run-time policies; if there are many agents in

the set, then the run-time infrastructure must choose an agent in this set based on its

own policies (i.e., the assignment is dependent of run-time policies); if it is an empty

set, then the run-time infrastructure must invoke its exception handling mechanism to

deal with this case. If the evaluation of the expression returns an ActiveStructureClass,

then the same outcome discussed in the ClassBasedAssignment section applies here.

Ultimately, if the evaluation of the expression returns the OclInvalid type (resulting

from an invalid expression, e.g., when trying to select an element from an empty

collection), the run-time infrastructure must invoke its exception handling mechanism to

deal with this case.

In case of type Prohibition, if the assignment prohibits all agents, exception handling

mechanisms are required; if it prohibits all but one agent, then there is an exact

determination of the performer, and if the evaluation of the assignment prohibits just

some agents, then the run-time infrastructure must choose an agent that is not prohibited

based on its own policies.

58

Similarly to what is discussed in ClassBasedAssignment, an

ExpressionBasedAssignment that refers to a non-atomic behavior will also propagate

the assignment to the containing behaviors.

Having the context and the return types that the OCL expression must have, we now

proceed to start how the expression itself may be written. That will entirely depend on

what kind of expression one may want to write. We may want to write an expression

that will select agents based on some criteria; or we may want to write an expression

that will select agents based on the repository of execution of the processes (the

previously finished BehavioralOccurrences); and, of course, we may want to write an

expression that will select agents based on the information of the actual on-going

BehavioralOccurrence of a process, which may be referred through the aforementioned

context. These various kinds of ExpressionBasedAssignment are going to be addressed

in the following sections.

In case we want to select the performer based on an organizational model, we first need

to determine from which organizational metaclass we want to start navigating. If we

want to select an ActiveStructureAgent, we should probably start the expression with

ActiveStructureAgent.allInstances(). In fact, we may write an expression to assign a

specific ActiveStructureAgent to the referred behavior of the assignment, like we

already may do using a DirectAssignment. For example, if we would like to specify that

the Human „Romário‟ should be set as the performer of the activity „Analyze World

Cup 2014 expense‟, we could have written an ExpressionBasedAssignment of type

Obligation that is composed of the following expression:

genericOrganizationalMetamodel::ActiveStructureAgent.allInstances()->select (name = 'Romário')

The expression firstly starts with the name of the organizational metamodel package,

„genericOrganizationalMetamodel‟, given that the context of the expression is actually

in another package (behavioraloccurrence). We may also write an expression to define

the assignment by means of an ActiveStructureClass, like with the

ExpressionBasedAssignment of type Obligation that is composed of the following

expression:

genericOrganizationalMetamodel::ActiveStructureClass.allInstances()->select (name = 'Professor')

59

Thus the evaluation of this expression returns a single ActiveStructureClass and thus the

actual performer will be an ActiveStructureAgent that is instance of the resulting

ActiveStructureClass, like in the ClassBasedAssignment.

Note that several expressions may have the same effect in terms of the implied

assignment. For example, the assignment above (for “Romário”), could have been

written as a prohibition with the following expression:

genericOrganizationalMetamodel::ActiveStructureAgent.allInstances()->select (
 name <> 'Romário')

This expression prohibits agents that are not the ActiveStructureAgent „Romário‟ to

perform the referred behavior. In other words, the performer of the referred behavior

would have to be the ActiveStructureAgent „Romário‟.

3.6.5 AttributeBasedAssignment

AttributeBasedAssignment is a specific ExpressionBasedAssignment that defines an

OCL expression that consists of selecting the ActiveStructureAgent to be assigned based

on the Attributes it may have within an organization. For example, we may want to

express that only Humans with at least one year of employment may be assigned to the

activity „Go on holidays‟. To do so, we may have an AttributeBasedAssignment of type

Obligation that consists of the following expression:

genericOrganizationalMetamodel::Property.allInstances()->select (
 name = 'Employment')->collect(hasAttributes)->select (

 value.toInteger()>1).characterizedAgent

This expression firstly selects the Property that is named „Employment‟ and then

collects every Attribute that is instance of the Property, filtering the

ActiveStructureAgents that has the value of the attribute greater than the value of one.

Similarly, one could express the same constraint using an AttributeBasedAssignment of

type Prohibition. The difference in the expression would be that instead of selecting the

agents that have one year or more of employment, we would select the ones that have

less than one year.

60

3.6.6 ConstraintBasedAssignment

ConstraintBasedAssignment is a specific ExpressionBasedAssignment that defines an

OCL Expression that consists of selecting the ActiveStructureAgent to be assigned

based on the execution of a previous behavior (a previous BehavioralOccurrence) in the

same “case” (within the same higher-level BehavioralOccurrence). A

ConstraintBasedAssignment of type Prohibition determines that the

ActiveStructureAgent that performed a previous instance of an activity is not allowed to

perform the activity, thus directly supporting the Separation of Duties pattern (RUSSEL

et al., 2010). For example, we may want to determine that the performer of the activity

„Analyze report‟ must not be the same agent that performed the previous instance of the

activity „Write report‟. To do so, we may write a ConstraintBasedAssignment of type

Prohibition that consists of the following expression:

self.isContained.contains->select(

 instanceOfActivity.name = 'Write report').participation

This expression firstly navigate through the BehavioralOccurrence of the process that

contains the BehavioralOccurrence of the activity „Analyze report‟, then it selects the

BehavioralOccurrence of the activity „Write report‟ and navigate through the

participation relationship, returning the ActiveStructureAgent which has performed the

„Write report‟ activity in the given BehavioralOccurrence of the process, he is the one

that is prohibited of performing „Analyze report‟. This ExpressionBasedAssignment

starts with „self‟, indicating that the context of interpretation is the behavior occurrence

which is the subject of the assignment.

A ConstraintBasedAssignment of type Obligation determines that the

ActiveStructureAgent that performed a previous instance of an activity must be the one

to perform the activity in which we are defining the assignment, thus directly supporting

the Retain Familiar pattern (RUSSEL et al., 2010). We may write different

ConstraintBasedAssignments with the same effect by varying the AssignmentType. We

could have written an expression of type Obligation and selected the agents that are not

the one that performed the previous activity.

61

3.6.7 HistoryBasedAssignment

HistoryBasedAssignment is a specific type of ExpressionBasedAssignment that defines

an OCL expression that consists of selecting the ActiveStructureAgent to be assigned

based on the history of ActiveStructureAgents in relation to the previous performances

of behaviors (e.g. how many times the agent participated in BehavioralOccurrences of

an activity). For example, we may want to assign the ActiveStructureAgent who has

performed the activity „Manage Project‟ more than ten times (the one who has more

than ten participations in BehavioralOccurrences of this activity) to be the one that will

perform the activity „Explain the basics of project management‟. To do so, we may have

a HistoryBasedAssignment of type Obligation that consists of the following expression:

let manageProject:
Set (SimpleBehavioralOccurrence) =
SimpleBehavioralOccurrence.allInstances()->select (

instanceOfActivity.name = 'Manager Project')
in
manageProject.participation->asSet()->select (

agent | manageProject->select (
participation = agent)->size() >= 10)

This expression firstly select all the SimpleBehavioralOccurrences and select the ones

that are instances of the activity „Manage Project‟ and then get the set of all the

ActiveStructureAgents that participated in BehavioralOccurrences of the activity. Then

we count the times that each ActiveStructureAgent participated in the

BehavioralOccurrences of the referred activity and then select the ones that participated

more than times in the BehavioralOccurrences of the referred activity.

An assignment with the same effect could have written with a HistoryBasedAssignment

of type Prohibition specifying an expression that selects every ActiveStructureAgent

that performed the activity ten times or less.

3.6.8 OrganizationalBasedAssignment

OrganizationalBasedAssignment is a specific type of ExpressionBasedAssignment that

defines an OCL expression that consists of selecting the ActiveStructureAgent to be

assigned based on the organizational relationships that it has with other organizational

concepts. For example, we may want to assign the ActiveStructureAgent who is the

62

manager of the Human „Carlos‟ to be the one that will perform the activity „Analyze

student performance‟. To do so, we may have an OrganizationalBasedAssignment of

type Obligation that consists of the following expression:

genericOrganizationalMetamodel::ActiveStructureRelatorClassifier.allInstances()->select(
 name='Management')->any(true).instanceOfRC->select(
 mediates->at(2).name='Carlos').mediates->at(1)

This expression firstly select the ActiveStructureRelatorClassifier named „Management‟

and then navigates through all the ActiveStructureRelators of it and then select the ones

in which „Carlos‟ is the second element of the mediation relationship (we assume the

convention that the second element of a „Management‟ relationship is the element being

managed.) Finally, we select his/her managers by picking up the first agent in the

ActiveStructureRelator mediation relationship.

3.6.9 ResultBasedAssignment

ResultBasedAssignment is a specific type of ExpressionBasedAssignment that defines

an OCL expression that consists of selecting the ActiveStructureAgent to be assigned

based on the result of the instance of a previous behavior (the result of a previous

BehavioralOccurrence). For example, we may want to assign the Group „Management

Committee‟ that was the result of the previous instance of the activity „Define

Committee‟ to be one that will perform the activity „Analyze Project Feasibility‟. To do

so, we may write a ResultBasedAssignment of type Obligation that consists of the

following expression:

self.isContained.contains->select(
 instanceOfActivity.name = 'Define Committee').result

This expression firstly navigate through the BehavioralOccurrence of the process that

contains the BehavioralOccurrence of the activity „Analyze Project Feasibility‟, then it

select the BehavioralOccurrence of the activity „Define Committee‟ and selects the

Group through the result of the BehavioralOccurrence.

63

3.6.10 SimpleAssignments and determinism levels

As we briefly discussed in some of the types of SimpleAssignment before, there is a

varying level of determinism concerning the range of agents that may perform the

assigned behaviors in the various types of assignment. Figure 23 summarizes the types

in regards to this.

Figure 23 - Determinism levels

Note that we are talking about determinism in real-world scenarios of organizations, so

we consider them to be populated by many agents, and these agents playing various

roles, and so on. Extreme and unlikely scenarios like an organization composed of one

or few agents are excluded from this assessment.

The highest level of determinism comes from the DirectAssignment of type Obligation:

the identity of the performer will be defined at design-time, and the chosen agent will be

responsible for the execution of every instance of that behavior. On the other hand, the

lowest level of determinism comes when there is no assignment defined to a behavior:

any agent may be chosen to be the performer. A DirectAssignment of type Prohibition

has the next lowest level of determinism: doing an assignment of this type, we are only

forbidding at design-time a specific agent of an organization to be able to perform some

behavior.

A ConstraintBasedAssignment is slightly less deterministic than a DirectAssignment in

both assignment types: in type Obligation, the agent that will be the performer of some

64

behavior will be the one that performed a previous behavior. But unlike

DirectAssignment, the identity of the agent is unknown at design time because it

depends on who performed the previous instance of the previous behavior, and this

agent may also change because of this nature in each occurrence of the behavior. In type

Prohibition, the agent that will be prohibited to perform some behavior will be only

known at run-time.

In the case of ClassBasedAssignments and the other ExpressionBasedAssignments

(AttributeBasedAssignment, HistoryBasedAssignment,

OrganizationalBasedAssignment and ResultBasedAssignment), determinism varies

greatly. The highest level of determinism from these would come with an expression

which chooses only one agent in the end. In the case of a ClassBasedAssignment, the

highest level of determinism would come when the ActiveStructureClass chosen is one

that is instantiated by only a few agents in an organization and it is of type Obligation.

For instance, we may want the president of a company to perform the activity „Sign

Marketing Contracts‟. Usually, there is only one Human at an organization that is

instance of the ActiveStructureClass „President‟, so there is a high level of determinism

in this case.

For the ExpressionBasedAssignments, the AssignmentType does not directly interferes

the level of determinism. This is because an ExpressionBasedAssignment with

different type (Obligation or Prohibition) may have the same effect (as we discussed in

the ExpressionBasedAssignment and its types sections).

3.6.11 ComplexAssignment

A ComplexAssignment is an abstract metaclass that specifies types of Assignment

which contains two or more assignments to a specific behavior. It may be a

ConjunctiveAssignment or a DisjunctiveAssignment. We will see how each one of these

may be used in the following.

65

3.6.12 ConjunctiveAssignment

ConjunctiveAssignment is a specific type of ComplexAssignment indicating that all the

composing Assignments must be satisfied at the same time during the run-time

evaluation of the composing Assignments. Each instance of this type of

ComplexAssignment refers to a specific behavior, so it may be used when a

SimpleAssignment is not expressive enough to define the assignment of a behavior. For

example, we may have a ConjunctiveAssignment composed of a

AttributeBasedAssignment of type Obligation as an expression that queries the

Professors with at least 5 years of experience in an organizational model, and a

HistoryBasedAssignment of type Obligation indicating that the professor must have

performed that task at least five times. This type of ComplexAssignment does not have

an AssignmentType: this will come from the composing SimpleAssignments, as we

may want to combine Assignments with different AssignmentTypes. For instance, we

may write a ConjunctiveAssignment to the activity „Analyzing World Cup 2014

expenses‟ with a DirectAssignment of type Prohibition, selecting the agent „Joao Paulo

Cunha‟ and a ClassBasedAssignment of type Obligation selecting the

ActiveStructureClass „Deputy‟.

Nevertheless, some assignments types are conflicting with others, so they must not be

allowed to be in a ConjunctiveAssignment. For example, it makes no sense to define a

conjunction between two DirectAssignments of type Obligation that refer to different

agents. Table 3 shows the possible outcomes of the conjunction of a pair of assignments

based on their evaluations (which may select one, many or no agents) and based on their

types (Obligation or Prohibition). Since conjunction is commutative, the table is

symmetric along the diagonal.

Table 3 - The possible outcomes of two of assignments in a ConjunctiveAssignment

Obligation

One agent B

Obligation

Many agents (set SB)

Obligation

No agent

Prohibition

(One, Many, No

agent)

Obligation

One agent A

IRP if A and B are

the same agent.

EHM otherwise.

IRP if A is contained

in SB.

EHM otherwise.

EHM

IRP if A is not

prohibited.

EHM if so.

Obligation

Many agents

(set SA)

IRP if B is

contained in SA.

IRP if only one agent

intersects.

EHM

IRP if prohibition

applied to all agents

but one in the

66

EHM otherwise. DRP if a set of agents

intersects.

 EHM if there is no

intersection.

obligation set.

DRP if prohibition

does not apply to two

or more agents in the

obligation set.

EHM if prohibition

applies to all agents in

the obligation set.

Obligation
No agent

EHM EHM EHM EHM

Prohibition

(One, Many,

No agent)

IRP if

B is not

prohibited.

EHM if so.

IRP if prohibition

applied to all agents

but one in the

obligation set.

DRP if prohibition

does not apply to two

or more agents in the

obligation set.

EHM if prohibition
applies to all agents in

the obligation set.

EHM

IRP if the union of

both prohibitions

include all agents but

one.

DRP if the union of

both prohibitions

excludes at least two

agents in the set.

EHM if the union of
both prohibitions

includes all agents.

Legend:

IRP: Independent of run-time infrastructure

DRP: Dependent of run-time infrastructure

EHM: Exception handling mechanism

The first line of the table shows the possible outcomes when the first composing

assignment is of type Obligation and returns only one agent. If the second composing

assignment is also of type Obligation and returns only one agent, if it is the same agent

then no further actions from the run-time infrastructure are required. Otherwise,

exception handling mechanisms of the runtime infrastructure are required. If the second

composing assignment is also of type Obligation and returns a set of agents, if the agent

of the first composing assignment is contained in the set then no further actions from the

run-time infrastructure are required. Otherwise, exception handling mechanisms are

required. If the second composing assignment is also of type Obligation and returns no

agent, then exception handling mechanisms are required. If the second composing

assignment is of type Prohibition, then if it does not prohibit the agent obliged of the

first assignment, then no further actions from the run-time infrastructure are required.

Otherwise, exception handling mechanisms are required.

New combination scenarios include when the first and the second assignments are of

type Obligation and both return many agents. If the intersection of the both sets is only

67

one agent, then no further actions from the run-time infrastructure are required. If the

intersection is a set of agents, then the run-time infrastructure must choose one agent of

the set based on its own policies. If the intersection is empty, exception handling

mechanisms are required. If the first composing assignment is of type Obligation and

return many agents and the second is of type Prohibition, prohibiting every single but

one agent, then no further actions from the run-time infrastructure are required. If it

does not prohibit two or more agents of the first composing assignment, then the run-

time infrastructure must choose one of them based on its own policies. If it prohibits

every single agent of the first composing assignment, then exception handling

mechanisms are required. In case one of the composing assignments is of type

Obligation and when evaluated selects no agents, then exception handling mechanisms

are always required. If the two composing assignments are of type Prohibition, the

conjunctive assignment is independent of run-time policies if the union of both

prohibition assignments includes all agents but one. If the union of both composing

assignments of type Prohibition includes agents but leaves at least two agents out of it

then the run-time infrastructure must choose one that is not on the set of the union based

on its own policies. If the union includes all agents, then exception handlings

mechanisms must be invoked.

We generalize this analysis for conjunctive assignments with more than two composing

assignments, by first considering every assignment of type prohibition APi to have the

same effect of a corresponding assignment of type obligation (AOi) that selects all

agents that were not selected in APi. In this view, the resulting conjunctive assignment

includes only assignments of type obligation, including original assignments of type

obligation and those that represent corresponding assignments of type prohibition (AOi).

The set of possible performers for the conjunctive assignment is given by the

intersection of all the agents selected by the composing assignments. If there is at least

one composing assignment that selects no agents, then exception handling mechanisms

are required (as the intersection is empty). If the intersection of the composing

assignments results in only one agent, then no further actions from the run-time

infrastructure are required, as the assignment is fully determinate. If the intersection of

the composing assignments has two or more agents, then the run-time infrastructure

must choose one of these based on its own policies.

68

3.6.13 DisjunctiveAssignment

DisjunctiveAssignment is a specific type of ComplexAssignment indicating that at least

one of the composing assignments must be satisfied during the run-time evaluation of

the composing Assignments. For example, we may have a DisjunctiveAssignment

composed of a ClassBasedExpression which indicates that the performer must have a

civil engineering role or a AttributeBasedAssignment indicating that the performer must

be a human with at least 5 years of experience in managing construction site projects.

The assignments in a DisjunctiveAssignment result in a complex assignment with a

lower level of determinism (when compared to the composing assignments).

Similary to the case of ConjunctiveAssignment, we consider the effects of

DisjunctiveAssignment by first considering every assignment of type prohibition APi to

have the same effect of a corresponding assignment of type obligation (AOi) that selects

all agents that were not selected in APi. In this view, the resulting disjunctive

assignment includes only assignments of type obligation, including original assignments

of type obligation and those that represent corresponding assignments of type

prohibition (AOi). The set of possible performers for the disjunctive assignment is given

by the union of all the agents selected by the composing assignments. If the union of the

composing assignments results in only one agent, then no further actions from the run-

time infrastructure are required, as the assignment is fully determined. If the union of all

composing assignments is empty, then exception handling mechanisms are required.

Lastly, if the union of the composing assignments results in a set with at least two

agents, then the run-time infrastructure must choose an agent based on its own policies.

3.6.14 Assignments specified at different levels of abstraction

When the assignment refers to a high-level behavioral element (such as a process), that

means the assignment is applicable to all finer-grained elements (ultimately atomic

behavior elements) that are contained within the high-level behavioral element. For

instance, if one defines a ClassBasedAssignment for a process containing several

activities, the semantics of this assignment is equivalent to the semantics of several

ClassBasedAssignments for each of the activities within that process. In other words,

the assignment applies transitively with respect to the behavior refinement hierarchy.

69

If more than one assignment is applied (directly or transitively) to a behavioral element,

the semantics is equivalent to that of a ConjunctiveAssignment. Thus, the assignments

defined for higher-level behavioral elements and the assignment defined for the finer-

grained behavioral element must be considered in conjunction to determine the

semantics of the assignment. This implies that, there must be consistency through the

“chain” of assignments at the various levels of behavior refinement in order to avoid the

specification of assignments with undefined semantics.

3.7 Evaluation

Table 4 describes how each of the considered Workflow Resource Patterns is satisfied

in the assignment framework.

Table 4 - Support of workflow resource patterns in the assignment framework

Patterns
Covering Metamodel

Concepts
Support description

WRP-01:
Direct

Distribution
DirectAssignment

The pattern is supported by the DirectAssignment metaclass (of type
Obligation). This assignment specifies the human agent which will
be responsible for every single execution of the referred behavior.

We could also specify a direct assignment to a group of human
agents defined in the organizational model, so that will mean that the
group as a whole will be responsible for the execution of the referred

behavior.

WRP-02:
Role-Based
Distribution

ClassBasedAssignment

The pattern is supported by the ClassBasedAssignment metaclass (of
type Obligation), in which the assignment specifies a class defined

within the organization and thus only agents that are instances of that
class perform the activity.

WRP-03:
Deferred

Distribution

ResultBasedAssignment
(with expressions)

The pattern is supported partially at design time by the absence of

assignment for the behavioral element. ResultBasedAssignment may
also be considered as a kind of Deferred Distribution because the

resource to which a work item will be allocated will only be known
at run-time, and it may change based on the result of previous work

items.
Full support for this pattern is outside the scope of this work, as it

concerns runtime support.

70

WRP-04:

Authorization

SimpleAssignment,

AssignmentType

SimpleAssignments have an AssignmentType, which may assume
the values „obligation‟ or „prohibition‟. In the absence of an

assignment defined to a behavior, any agent defined in the
organizational model is permitted to perform the behavior.

WRP-05:
Separation of

Duties

ConstraintBased-

AssignmentConstraint-
BasedAssignment (with

expressions)

The pattern is supported by the ConstraintBasedAssignment
metaclass, in which the the assignment will be specified by the
means of an OCL expression that will refer to the actual performer of
a previous activity in a given instance of a process and will have the
„prohibition‟ AssignmentType.

WRP-06:
Case Handling

ConstraintBased-
Assignment (with

expressions),
(DirectAssignment at

process level)

 The pattern is supported by the ConstraintBasedAssignment of type
Obligation, specifying that each activity of the process must be

performed by a same agent.

WRP-07:
Retain

Familiar

ConstraintBased-

Assignment

A more flexible pattern of the Case Handling pattern discussed
before, this pattern is supported by the ConstraintBasedAssignment

metaclass, in which the assignment will be specified by the means of

an OCL expression that will refer to the actual performer of a
previous activity in a given instance of a process and will have the

Obligation AssignmentType.

WRP-08:
Capability-

based
Distribution

AttributeBased-
Assignment

The pattern is supported by the AttributeBasedAssignment metaclass,
in which the assignment will be specified by the means of an OCL
expression and will directly refer to the attributes that an agent has

within an organization.

WRP-09:
History-based
Distribution

HistoryBased-
Assignment

The pattern is supported by the HistoryBasedAssignment metaclass,
in which the assignment will be specified by the means of an OCL

expression and will directly refer to a repository of previous
executions of the activities and process.

WRP-10:
Organizationa

l Distribution

Organizationalbased-
Assignment

The pattern is supported by the metaclass
OrganizationalBasedAssignment metaclass, in which the assignment

will be specified by the means of an OCL expression and will

directly refer to the relationships that agents have within an
organization.

WRP-11 –
Automatic
Execution

-
Not directly supported by any of the assignments.

Additional support includes the definition of complex assignments by the means of a

ConjunctiveAssignment and a DisjunctiveAssignment.

71

4. Application to BPMN

In order to show the applicability of the general approach presented in Chapter 3 to a

widely employed business process modeling technique, we present in this chapter the

application of the assignment framework to BPMN. This enables us to: (i) instantiate

the framework with respect to a concrete behavioral metamodel (that of BPMN) and (ii)

illustrate the application of the approach in a concrete usage scenario which exercises

the expressiveness of the assignment framework.

Of all the process technologies analyzed in Chapter 2, we have opted for BPMN due to

its wide adoption for communicating business processes (maximizing potential impact)

and its simplistic mechanisms for the assignment of active structure to behavioral

concepts (emphasizing that the extended technique will profit from significantly

increase support).

In the sequel, we show the fragments of the BPMN metamodel that interest us, and

show how they are integrated into the assignment framework. Since BPMN does not

provide constructs for organizational modeling, we define a UML class diagram profile

for the organizational metamodel concepts defined and presented in the previous

section. This provides us with all the behavioral and organizational elements required.

Finally, we present an example with a specific organizational model (concerning a

university), a BPMN model (concerning the writing and defense of a master‟s work),

and define the assignment model that will enrich the relationships between the

behavioral aspects of the BPMN model to the organizational model.

4.1 BPMN Metamodel Integration

In BPMN, all the work that is performed in the scope of a particular business process is

represented through the Activity concept (OMG, 2011), which is the abstract class for all

the concrete Activity types, like a SubProcess and a Task. Thus, the Activity metaclass

will be the direct target of the relationship instanceOfActivity of the

BehavioralOccurrence metaclass, presented in section 3.5. It will also be the direct

target of the ofAnActivity relationship of the SimpleAssignment metaclass presented in

section 3.6.1.

72

In BPMN, Process is described as “a sequence or flows of activities in an organization

with the objective of carrying out work” and they “can be defined at any level from

enterprise-wide processes to processes performed by a single person”. Process is not

considered to be a higher level Activity, it only is comprised of Activities, thus Process

(graphically represented as Pools in collaboration diagrams) will also be a direct target

of the instanceOfProcess relationship of the BehavioralOccurrence metaclass,

presented in section 3.5. It will also be the direct target of the ofAProcess relationship

of the SimpleAssignment metaclass presented in section 3.6.1.

Process is used in process diagrams and in collaboration Diagrams. In process

diagrams, there is only one Process to each diagram defined. In collaboration diagrams,

Processes represent the internal behavior of the Participants, which are graphically

represented by Pools. There may exist many processes in collaboration diagrams, and

assignments may be defined at their level.

We consider BPMN Choreography and Conversation diagrams outside the scope of this

integration and focus here on Process Diagrams and the more general Collaboration

Diagrams.

Figure 24 - BPMN integration into the Assignment framework

Figure 24 summarizes how the BPMN metamodel is integrated into the assignment

framework. The assignment may be done through an Activity or a Process, and because

73

of that, a BehavioralOccurrence will be or an instance of an Activity or an instance of a

Process.

4.2 UML Class Diagram Profile for Organizational Modeling

We now define a UML Class Diagram Profile for the Organizational metamodel,

allowing us to define Organizational models in a well-known concrete syntax. Figure 25

summarizes the profile using a UML 2.0 Profile Diagram.

Figure 25 - UML Class Diagram Profile to the Organizational Metamodel

74

ActiveStructureClass and ActiveStructureRelatorClassifier are the only metaclasses at

type level and both stereotypes extend the UML concept of Class. Human, Group,

OrganizationalUnit and ActiveStructureRelator are entities at instance level, therefore,

all of them extend the concept of an Object, i.e., an entity that is instance of a Class.

Regarding the meta-associations we adopt the following stereotypes:

(i) componentOf, which stereotype extends the Composition metaclass . When applied

to relate UML InstanceSpecifications it concerns ActiveStructureAgents which are

components of an OrganizationalUnit. When applied to relate UML Classes, it concerns

a ComponentOfMeronymicClassifier relating ActiveStructureClasses;

(ii) memberOf, which stereotype extends the Aggregation metaclass. When applied to

relate UML InstanceSpecifications it concerns ActiveStructureAgents which are

members of a Group. When applied to relate UML Classes, it concerns a

MemberOfMeronymicClassifier relating ActiveStructureClasses.

(iii) mediates, which stereotype extends the Association metaclass. It is applied to

represent the relationship that exists between an ActiveStructureRelator and

ActiveStructureAgents and between an ActiveStructureRelatorClassifier and

ActiveStructureClasses.

There is a superclass relationship that is applicable to either an ActiveStructureClass or

an ActiveStructureRelatorClassifier. As this relationship shares the same semantics of

the standard generalization metaclass in UML class diagram, we use that instead of

defining an additional stereotype in the profile. . The instanceOf relationship that agents

have to classifiers is also natively supported by UML, as it is possible to specify the

classifier of which an object is an instance.

Attributes and Properties will be represented directly by the Property metaclass from

UML.

75

4.3 Example

We now present an example to show how the assignment framework may be used. We

will first present a BPMN model, then an Organizational Model, and ultimately, the

Assignment model, showing how we can build an expressive and complete set of

assignments using the framework.

4.3.1 BPMN model

Figure 26 - Example of a BPMN model

Figure 26 shows the business process model that will be the subject of this illustration.

The process begins with a master‟s student writing his dissertation‟s first version, which

is the first activity of the process. After concluding this activity, the student submits the

manuscript for review. Then a professor, which supervises his master‟s degree, analyzes

the dissertation. The outcome of this activity defines which activity will follow. If the

professor considers that there are issues on the text that must be addressed, he/she

submits his considerations to the student, and the student then considers that to rewrite

the dissertation. These activities will keep getting performed until the professor

approves the dissertation text. Then, the next step of the process will be the activity in

which the professor defines the examination board to that dissertation‟s defense and

76

schedules the defense. Afterwards, when the scheduled time arrives, the master‟s

student defends his dissertation and the next activity will be the evaluation of the

dissertation and presentation, performed by the examination board. There may be two

outcomes for this activity: the acceptance or the rejection of the dissertation, ending the

process.

4.3.2 Organizational Model

Figure 27 shows a small example showing an organizational model.

Figure 27 - Example of an organizational model

 class Organizational Mo...

«ActiveStructureClass»

Professor

- Experience: int

«ActiveStructureClass»

Student

- GPA: float

«ActiveStructureClass»

Master Student

«Human»

Romulo :Master

Student

«Human»

Joao Paulo :Professor
«Human»

Carlos :Master Student

«Human»

Paulo :Student

«Human»

Giancarlo :Professor

«Human»

Falbo :Professor

«ActiveStructureRelator»

Superv isaoRomuloJP :Superv ision

«Group»

RomuloDefenseDissertationGroup

«ActiveStructureClass»

UndergraduateStudent

«ActiveSctrutureRelatorClassifier»

Superv ision

«OrganizationalUnit»

UFES :Univ ersity

«OrganizationalUnit»

ComputerScienceDepartment :

Department

«ActiveStruct...

Department

«ActiveStruct...

Univ ersity

«OrganizationalUnit»

DepartmentOfAppliedInformatics

«OrganizationalUnit»

UNIRIO :Univ ersity

«Human»

Renata :Professor

«componentOf»

«mediates» «mediates»

«mediates» «mediates»

«componentOf»

«componentOf»

«componentOf»

«memberOf»

«componentOf»

«memberOf» «memberOf»

«componentOf»

«componentOf»

«componentOf»«componentOf»

77

The classifiers defined in this organizational model include the classes „Professor‟, with

the attribute „Experience‟ typed as „Integer‟, which will represent the experience in

years of the „Professor‟. „Student‟ has the attribute „GPA‟ typed as „Real‟, representing

the grade point average of a student. „Student‟ is also further specialized in „Master

Student‟ and „Undergraduate Student‟. „University‟ has „Department‟ as components.

The only relator classifier defined was „Supervision‟, which mediates the classes

„Student‟ and „Professor‟.

The agents defined include the humans „Paulo‟, which is instance of „Student‟,

„Romulo‟ and „Carlos‟, both being instances of „Master Student‟ and finally, „Joao

Paulo‟, „Falbo‟, „Giancarlo‟ and „Renata‟ being instances of „Professor‟. „Joao Paulo‟,

„Falbo‟ and „Renata‟ are also members of the group

„RomuloDefenseDissertationGroup‟, which will have a brief existence in the

organizational model. The relator „SupervisionRomuloJP‟ mediates „Romulo‟ and „Joao

Paulo‟.

„Renata‟ is a component of the „DepartmentOfAppliedInformatics‟ department which in

its turn is a component of the „UNIRIO‟ University. The remaining humans (except

„Paulo‟) and the only group are components of the „ComputerScienceDepartment‟

department, which in its turn is also a member of the UFES University.

4.3.3 Assignment Model

The following assignment constraints were identified when we designed the business

process model:

 Activity „Write Dissertation First Version‟

 The activity must be performed by a Master Student. Sub-Process „Work on

Dissertation‟, which encompasses the activities „Submit for Review‟ and

„Rewrite Dissertation‟

o The sub-process, i.e., all the activities contained within the sub-process,

must be performed by the same agent that performed the previous

activity „Write Dissertation First Version‟.

 Activity „Defend Dissertation‟

78

o Must be performed by the same agent that performed the previous

activities „Work on Dissertation‟ and „Write dissertation first version‟

o Students that have a grade point average below 7.0 are not allowed to

defend a dissertation, thus they cannot perform these activities.

 Activity „Analyze Dissertation‟

o The agent to be assigned should have performed this activity at least

three times before.

o The agent must have at least 5 years of experience as a professor.

o The agent should be a supervisor of the specific student that wrote the

dissertation (performed the previous activity „Write Dissertation‟).

 Activity „Submit observations for consideration‟

o The activity must be performed by the same agent that performed the

previous activity „Analyze Dissertation‟.

 Activity „Approve Dissertation text‟

o The activity must be performed by the same agent that performed the

previous activity „Analyze Dissertation‟.

 Activity „Define examination board‟

o The activity must be performed by the same agent that performed the

previous activity „Analyze Dissertation‟.

 Pool „Examination Board‟, which encompasses the activities „Evaluate

Dissertation and Presentation‟, „Accept Dissertation‟, „Reject Dissertation‟

o The activity must be performed by the group that was defined in the

previous activity „Define Examination Board‟.

With these requirements in mind, we designed the assignment model. The result can be

seen in Figure 28.

79

Figure 28 - Example of an assignment model

As seen in Figure 28, the mapping of the assignment constraints to the assignment

model concepts was very straightforward: each assignment constraint resulted in an

instance of the corresponding metaclass of the assignment metamodel. We now describe

the model in details.

The first defined assignment is a ClassBasedAssignment of type Obligation. In this

case, an ActiveStructureClass of the organizational model namely the „Master Student‟

class is referred to in the assignment.

The next defined assignment is a ConstraintBasedAssignment of type Obligation to the

sub-process „Work on Dissertation‟, to ensure that the one who will perform this sub-

process will be the same agent that performed the instance of the previous activity

„Write Dissertation First Version‟. This assignment contains the following OCL

expression:

self.isContained.contains->select(

 instanceOfActivity.name = 'Write Dissertation First Version')->any(true).participation

The context of the expression is self, which refers to the newly created behavioral

occurrence of the sub-process „Work on Dissertation‟. It starts navigating through the

behavioral occurrence of the process that contains the newly created behavioral

occurrence, and then selects the agent which was the performer of the previous activity

80

„Write Dissertation First Version‟ (“any(true)” is required in the expression because

“select” returns an OCL collection, even in the case in which only one element is

contained in the collection).

We apply a ConjunctiveAssignment to the activity „Defend Dissertation‟. The first

composing assignment in the conjunction is a ConstraintBasedAssignment of type

Obligation, to ensure that the one who will perform this activity will be the same agent

that performed the instance of the previous sub-process „Work on Dissertation‟ and the

activity „Write Dissertation First Version‟. As the agent that performed these two

behaviors are the same, we can use the same expression defined at the sub-process

„Work on Dissertation‟ to this assignment:

self.isContained.contains->select(
 instanceOfActivity.name = 'Write Dissertation First Version')->any(true).participation

The second composing assignment is an AttributeBasedAssignment of type Prohibition,

to ensure that a „Master Student‟ with a GPA of a value less than „7.0‟ is prohibited to

perform the activity. This assignment contains the following OCL expression:

genericOrganizationalMetamodel::ActiveStructureClass.allInstances()->select(
 name = 'Master Student')->collect(hasProperty)->select(

 name = 'GPA')->collect(hasAttributes)->select(
 value.toReal()<7.0).characterizedAgent

The expression firstly starts querying the „Master Student‟ class and then collects all its

properties. Then, it specifically selects the „GPA‟ property and collects all the attributes

that instantiate this property, and then selects the ones with a value lower than „7.0‟.

Finally, it returns the agents that carry these attributes (and hence satisfy the required

constraints).

Next, we have a ConjunctiveAssignment to the activity „Analyze Dissertation‟. The first

composing assignment is an OrganizationalBasedAssignment of type Obligation, to

ensure that the agent analyzing the dissertation should be a supervisor of the specific

student that performed the instance of the activity „Write Dissertation First Version‟

according to the organizational model. This assignment contains the following OCL

expression:

genericOrganizationalMetamodel::ActiveStructureRelatorClassifier.allInstances()->select(

81

 name='Supervision')->any(true).instanceOfRC->select(
 mediates->at(2).name=self.isContained.isContained.contains.oclAsType(ComplexBehavioralOccurrence)->select (

 instanceOfProcess.name = 'Student').contains->select(
 instanceOfActivity.name = 'Write Dissertation First Version')->any(true).participation.name).mediates->at(1)

The expression firstly selects the „Supervision‟ relator classifier and then selects the

relators that are instances of it and have as the „Supervised‟ agent the same one that

performed the activity „Write Dissertation First Version‟ and then returns the agents that

are „Supervisors‟ of the aforementioned agent. The second composing assignment is an

AttributeBasedAssignment of type Obligation, to ensure that the supervising professor

have at least five years of experience. This assignment contains the following OCL

expression:

genericOrganizationalMetamodel::ActiveStructureClass.allInstances()->select (
 name = 'Professor')->collect (hasProperty)->select(
 name = 'Experience')->collect (hasAttributes)->select (

 value.toInteger()>5).characterizedAgent

The expression firstly starts querying the „Professor‟ class and then collects the property

named „Experience‟, and then collects all the attributes that are instances of the

„Experience‟ property, and then returns the agents that has a value greater than „5‟ in the

aforementioned attribute.

The last composing assignment is a HistoryBasedAssignment of type Obligation, to

ensure that the supervising professor has at least analyzed some dissertation three times.

This assignment contains the following OCL expression:

let analyseDissertation:
Set (SimpleBehavioralOccurrence) =
SimpleBehavioralOccurrence.allInstances()->select (

instanceOfActivity.name = 'Analyze Dissertation')

in
analyseDissertation.participation->asSet()->select (

agent | analyseDissertation->select (
participation = agent)->size() >= 3)

The context of the expression is self, which refers to the newly created behavioral

occurrence of the activity „Analyze Dissertation‟ the assignment is referring to. It starts

navigating through the behavioral occurrence of the process that contains the newly

created behavioral occurrence, and then select the agent which has performed this same

activity at least three times. Only an agent that satisfies all these three composing

assignments will be able to perform the activity.

82

Next we have the same ConstraintBasedAssignment of type Obligation, which will be

the assignment to three different activities: „Submit Considerations‟, „Approve Text‟

and „Define Examination Board‟. It has the following OCL expression:

self.isContained.contains->select(
 instanceOfActivity.name = 'Analyze Dissertation')->any(true).participation

The expression starts by navigating through the behavioral occurrence of the process

that contains the newly created behavioral occurrence of each referred activity, and then

returns the agent that performed an instance of the „Analyze Dissertation‟ activity. In a

given instance of the process, there may be multiple behavioral occurrences of the

„Analize Dissertation‟ activity, but all of them will be performed by the same agent, so

it is not necessary to see the end time of all of them to see which one was the last.

Lastly, there is a ResultBasedAssignment of type Obligation to the process

„Examination Board‟, to ensure that the group that will be the performer will be the one

that was defined in the „Define Examination Board‟ activity. The process encompasses

the activities „Evaluate Dissertation and Presentation‟, „Accept Dissertation‟ and „Reject

Dissertation‟. This assignment contains the following OCL expression:

self.isContained.contains.oclAsType(ComplexBehavioralOccurrence)->select(
 instanceOfProcess.name = 'Professor')->collect(contains)->select(

 x | x.instanceOfActivity.name = 'Define Examination Board')->any(true).result

The context of the expression is self, which refers to the newly created behavioral

occurrence of the process graphically represented by the „Examination Board‟ pool,

which the assignment is referring to. It starts navigating through the collaboration

diagram that contains the referred pool and then selects the pool „Professor‟; then it

navigates through the activity whose result is the group for which we want to assign the

referred process.

4.3.4 Considerations and Limitations

We discussed the integration of BPMN into our assignment framework, but regarding

specifically the integration of Process, there are some noteworthy considerations. In

collaboration diagrams, there are multiple participants involved, thus there are mult iple

pools. For the sake of not having our framework dependent of specific BPMN concepts,

83

in our integration we do not consider that a complex behavioral occurrence may also be

a collaboration diagram, although it is clearly the case and our own example needed to

navigate through a collaboration diagram to specify some assignments. Thus, there will

exist behavioral occurrences in behavioral occurrence models representing those that

won‟t be instances of a process and neither of an activity, an exception of what we

stated in section 3.5.

Figure 29 - Multiple Participants in black-boxes Pools

Figure 29 shows an example that has some peculiarities in regards to collaboration

diagrams. Firstly, both pools represent participants without referring a process, therefore

the details (e.g. activities) of each of them is not shown. Nevertheless, the message

flows exchanged between then clearly shows that they are send and receive tasks (or

events) that have been omitted for modeling reasons. This suggests that some

collaboration models may require assignments in regards to the content of the message

flows between the pools. We consider these special cases of ResultBasedAssignments,

but do not currently address them in the scope of our integration.

Figure 29 also shows a pool with a multi-instance marker, i.e., in an instance of that

collaboration diagram there are multiple instances of the „Supplier‟ process and only

one of the „Manufacturer‟ process. In such cases, we did not define of how we may

differentiate each instance of the collaboration, thus we chose to not support this

multiple instances marker in our assignments.

84

4.4 Prototype

To test the integration of our framework to BPMN, we have developed a prototype to

simulate a working environment. It was implemented using the native EMF capabilities

to manipulate models that are built in Ecore.

Our example BPMN model was designed and edited in the STP BPMN Modeler
1
. The

modeler is implemented on top of EMF and generates two files, one with layout

information and the other holding the XMI content of the BPMN model, thus allowing

us to serialize and load the model with ease.

An organizational repository containing the organizational model based on the

organizational metamodel and the occurrences of behaviors information based on the

occurrence metamodel are also required.

We simulate the required organizational repository by creating dynamic instances of the

corresponding metamodels as shown in Figure 30. Through this mechanism we created

a behavioral occurrence model and an organizational model and populated them.

1 http://www.eclipse.org/stp/bpmn

85

Figure 30 - Creating metamodel instances

Figure 31 shows a snapshot of the organizational repository. It is presented in a tree-

view using the Sample Ecore Model Editor. We purposely decide to collapse some

information to not bring overwhelmingly large information. Also omitted from the

figure are the properties (attributes and not containment associations) of each node.

In the Behavioral Occurrence model, there are three complex behavioral occurrences of

the collaboration diagram defined in section 4.3.3: „ExampleDiagram1‟,

„ExampleDiagram2‟ and „ExampleDiagram3‟. The first two executions of the

collaboration diagram are already finished, and the third one is still unfinished, so there

will be assignments to be still evaluated and performed on it. The complex behavioral

occurrences of the collaboration diagram contain three other complex behavioral

occurrences each, representing the occurrence of the processes defined in the BPMN

model. The occurrence of each process contains all the other occurrences of the

activities contained within the process, including the occurrences of activities that were

performed more than once (e.g. the activity „Analize Dissertation‟).

86

Figure 31 - Snapshot of an excerpt of the organizational repository

Having the organizational repository snapshot we just mentioned, we tested and ran the

OCL expressions that we previously defined in the assignment model. To initially

assess and test the expressions, we used the OCLInEcore
2
 console. In Figure 32 we

show an OCL expression and its result.

2 http://help.eclipse.org/helios/topic/org.eclipse.ocl.doc/tutorials/oclinecore/oclInEcoreTutorial.html

87

Figure 32 - OCL expression evaluation

Note that this approach uses the native EMF environment to prototype our framework,

however, no integration to a runtime environment (such as a business process engine)

has been implemented. Nevertheless, using the EMF capabilities and the OCL API we

have been able to run the expressions programmatically. This may be used in future

work to integrate the framework in an existing run-time infrastructure.

4.5 Related Work

Recently, numerous works have been proposed to extend BPMN to support the

workflow resource creation patterns. In (AWAD et al., 2009), the authors extend the

BPMN metamodel to include concepts related to human resources to accomplish the

work presented in a process. Roughly, the extended metamodel includes run-time

concepts, like Case and WorkItem, respectively instances of Process and Task. Thereby,

the extended BPMN metamodel mixes design-time and run-time elements, which is

undesirable from the process model management perspective and also characterize a

88

heavyweight extension of the language. It is possible to define the assignments to

activities using OCL constraints.

The work proposed by Meyer (2009) has a similar premise, extending the BPMN

metamodel to support the resource perspective, taking into account not only the creation

patterns, but all of the workflow resource patterns. Furthermore, it also specifies a set of

advanced resource patterns which the author considers to be new patterns identified in

newly presented scenarios. The perspective is formally represented through three

models: an organizational metamodel, a metamodel, and a task lifecycle model.

Similarly to (AWAD et al., 2009), the metamodel which extends BPMN also includes

design-time and run-time elements, like Case and Work Item. Being a bit more

restrictive, it only considers the allocation of resources to tasks, not considering the

allocation to Processes.

Grosskopf (2007) firstly does an assessment of BPMN and BPDM (OMG, 2007) in

regards to a considered set of relevant workflow resource patterns. He then proposes a

metamodel extension based on BPDM, introducing new associations and attributes to

capture the not yet supported patterns. He considers the existence of an expression

language to define allocation constraints, although he only considers abstractly, not

defining any semantics for the expressions that can be built because he considers that to

be a technical choice.

Cabanillas, Resinas and Ruiz-Cortés (2011) define a Resource Assignment Language

(RAL), which is a “textual language to express resource assignments in the activities of

a business process in BPMN”. RAL is used considering an extension of the BPMN

metamodel that include organizational features. As a limitation, the history of past

executions is not considered in RAL. The approach supports all creation patterns except

the history-based distribution pattern.

Similarly to the previously related works, Stroppi, Chiotti and Villarreal (2011) propose

a heavyweight extension to the BPMN 2.0 metamodel to support the modeling and

visualization of the resource perspective. The proposed BPMN extension is also

validated against a large set of the workflow resource patterns, going beyond the

creation patterns. Differently from the previously mentioned efforts, the authors extend

89

BPMN with its built-in extension mechanisms, which allow attaching additional

attributes and elements to BPMN elements. As it uses the own BPMN mechanism for

extending, it keeps the models interchangeable because the standard elements are not

modified. The extension is divided in three aspects: resource structure, work distribution

and authorization. The resource structure is concerned with the characterization of

resources, and regarding to this, this work extends the Resource and

ResourceParameters concepts of BPMN. The work distribution aspect is concerned

with how the work is advertised and assigned to specific resources for execution,

extending the UserTask concept of BPMN. The authorization aspect is concerned with

the privileges that a resource has with regard to check and progress the work distributed

to them.

Finally, differently from our approach all the works cited here (but (AWAD et al.,

2009)) consider the allocation of resources to activities, not considering the allocation to

Processes. Further, none of the approaches explicitly include deontic notions such as

prohibition as a primitive element.

90

5. Application to ArchiMate

In this chapter, we discuss how our framework may also be applied in ArchiMate.

While BPMN aims to provide detailed business process models, ArchiMate aims to

provide a high-level description of enterprise architecture, not focusing on the details of

business process behavior. In addition, while BPMN explicitly states that the

organizational domain is out of the scope of the language, ArchiMate offers constructs

to model organizations and, as seen in Chapter 2, it also provides some relationships to

assign organizational elements and behavioral elements.

The first subsection of this chapter explains how the organizational constructs of

ArchiMate should be mapped to the constructs of the organizational language defined in

our framework.

Further, we discuss how the ArchiMate behavioral concepts may be integrated into the

framework and we model the same example business process model presented in the

previous chapter using ArchiMate constructs. Finally, we discuss the differences of the

assignment model when ArchiMate is applied to the framework, comparing to the

approach using BPMN.

5.1 Organizational Structure Constructs Mapping

To determine and define our mapping from the proposed organizational metamodel to

the ArchiMate organizational structure constructs, we mostly refer to the definitions and

examples from the official ArchiMate documentation (THE OPEN GROUP, 2009a).

Business Actor is one of the main elements to model organizational actors of ArchiMate

and based on the definition and the proposed interpretation of the concept by the work

of Almeida and Guizzardi (2008), we consider it to be mapped to the

ActiveStructureAgent metaclass.

Business Role is defined as “named specific behavior of a business actor participating

in a particular context”. Business Roles may be assigned to many Business Actors. We

consider this concept is directly mapped to an ActiveStructureClass.

91

Business Collaboration is another active structure concept in ArchiMate and is defined

as “a (temporary) configuration of two or more business roles resulting in specific

collective behavior in a particular context”. The word temporary used in the

specification seems to imply that it is related to the concept of Group, specifically, to

types of Group, because it aggregates two or more Business Roles.

Table 5 summarizes the mapping also including ArchiMate‟s relations of aggregation,

composition and specification. Aggregation and composition are mapped into the

MemberOfMeronymicClassifier and ComponentOfMeronymicClassifier metaclasses,

respectively. The Specialization relationship is mapped into the superclass/subclass

meta-association from the metamodel (and we consider it is only used between Roles

and between Collaborations). As we can also observe from the table, a number of

metaclasses from the organizational metamodel of the proposed framework have no

mapping to ArchiMate constructs. This is due to the high-level nature of ArchiMate.

(The consequence is that organizational relations and actor‟s attributes cannot be

visualized in an ArchiMate model, and only represented in our organizational model.)

Table 5 - Summary of the organizational structure concepts from ArchiMate to the organizational metamodel

of our framework

ArchiMate Construct Framework Organizational Metamodel

Business Actor ActiveStructureAgent

(Human, OrganizationalUnit, Group)

Business Role ActiveStructureClass

Business Collaboration ActiveStructureClass (referring to types of

Groups)

Aggregation MemberOfMeronymicClassifier

Composition ComponentOfMeronymicClassifier

Specialization Superclass

92

Not Available ActiveStructureRelatorClassifier,

ActiveStructureRelator, Attribute, Property

5.2 Behavioral constructs integration and limitations

As we previously discussed, the behavioral occurrence metamodel and the assignment

metamodel depend on some behavioral concepts. Both metamodels have generic classes

(namely Activity and Process) that must be replaced by the corresponding concepts from

the concrete language, in this case, ArchiMate.

ArchiMate has a number of concepts that covers the behavioral aspects. In an excerpt of

its metamodel, shown in Figure 3, we see that Business Event, Business Function,

Business Process and Business Interaction are considered to be Business Behavior

Elements. We must now identify which one of them must replace the Process and

Activity concepts through the definitions given in the official documentation (THE

OPEN GROUP, 2009a).

Business Event is discarded as a potential candidate, because it is described as

“something that happens (internally or externally) and influences behavior (business

process, business function, business interaction)”. They trigger or are triggered by

behavior. Thus, it is not a concept that may have an assignment to an active structure

element to perform the event.

Business Process is described as “a unit of internal behavior or collection of causally-

related units of internal behavior intended to produce a defined set of products and

services”. It describes an internal behavior that must also be assigned to a Business

Role. It may be used to describe atomic processes, the ones that may not be further

subdivided, or to describe complex processes that are composed of other processes.

Therefore, it seems to be related to the concept of Activity.

Business Function is described as “a unit of internal behavior that groups behavior

according to, for example, required skills, knowledge, resources, etc., and is performed

by a single role within the organization”. Although this seems to imply that Business

93

Functions could be subject of assignment in our framework, business functions do not

have a definite temporal extension and thus, unlike ArchiMate‟s Business Processes,

Business Functions are incompatible with our notion of behavior elements (and would

be incompatible with history-based assignments, since we cannot talk about past

occurrences of a function).

The last behavioral concept, Business Interaction is described as “a unit of behavior

performed as a collaboration of two or more business roles”. It is like a process that is

performed by multiples roles in a Business Collaboration. It may also be decomposed in

smaller units. Because of its nature, the roles that compose the collaboration generally

have to perform some behavior themselves to accomplish the interaction as a whole.

Like a Business Process, a Business Interaction is a unit of behavior that may be

composed into smaller interactions or may also be an atomic collaborative behavior.

Therefore, it also seems to be related to the concept of Activity.

In order to integrate the assignment framework with ArchiMate, we should bind the

Activity generic concept to ArchiMate‟s Business Process and Business Interaction

concepts. The expressive assignments described in the framework would be

superimposed in ArchiMate‟s (simple) assignments involving these concepts.

To implement the binding without affecting the ArchiMate metamodel, we would bind

Activity to a Business Behavior Element, and assure by the means of an OCL invariant

that only Business Process and Business Interactions may be used, ruling out the

possibility of referring to Business Events and Business Functions in the assignment.

5.3 Example

5.3.1 Behavioral and Organizational models

In this section we revisit the example presented in Chapter 4. Figure 33 shows

ArchiMate model capturing the behavioral elements that will be subject to assignment,

and further representing assignments using the simplistic ArchiMate assignment

relation. Our aim was to translate the BPMN model and Processes were mapped to

either Business Processes or Business Interactions (in the case of the behavior

94

performed by the „Examination Board‟). Accordingly, the Participants of the Pools

representing the processes were mapped to either Business Roles or Business

Collaborations (in the case of „Examination Board‟). Business Roles are assigned to

Business Processes, which are further decomposed into others Business Processes and

the only Business Collaborations are assigned to Business Interactions, which are

further decomposed into others Business Interactions. The roles and the collaboration

are also part of an organizational model whose view is shown in Figure 34.

Figure 33 - Example of an ArchiMate model with the Process view

The organizational model shown in Figure 34 represents the organizational model in

ArchiMate (in conformance with the model presented in section 4.3.2). As discussed

previously, the organizational metamodel defined in the assignment framework is more

expressive than ArchiMate and Attribute, Property, ActiveStructureRelatorClassifier

and ActiveStructureRelator have no correspondence in ArchiMate. In order to perform

the integration (and enable organizational-based assignments, as well as attribute-based

assignments), one must map the organizational model in ArchiMate to an organizational

model defined in the assignment framework and enrich it with the other constructs the

last has.

95

Figure 34 - Organizational Structure view

5.3.2 Assignment Model

The assignment constraints defined in section 4.3.1 are also applied here: they are

constraints defined in natural language that should be applied to any technology. The

constraints were represented in an assignment model with BPMN integrated into the

framework. This assignment model does not changes when applied to ArchiMate. What

changes would be how it would be graphically represented (its concrete syntax). For

instance, Direct Assignment could be directly represented in ArchiMate when only one

business actor is assigned to a business role and the business role is assigned to a

business process (or only a business actor is assigned to business collaboration). Role-

based assignment is directly represented with the assignment relationship between a

business role and a business process (or a business collaboration and business

interaction). Expression-based assignments changes would be that there is the need to

add the expression-based assignments in the assignment relationship of ArchiMate. This

could be done as shown in Figure 35, when a result-based assignment enriches the

assignment relationship, precisely specifying what „Examination Board‟ will perform

the assigned business interactions.

96

Figure 35 - An assignment constraint in ArchiMate applied to the framework

5.3.3 Conclusions

The proposal of integration to ArchiMate discussed in this chapter provides some

evidence in favor of the generality of the assignment framework. Nevertheless,

differently from the application to BPMN discussed in Chapter 4, we have not

implemented a prototype to test and simulate assignment constraints in ArchiMate

models. In the future, we intend to address that by selecting an ArchiMate metamodel

(preferably one built in EMF) and performing a full-fledged application of the

framework. That would enable us to further refine the proposal of this chapter and could

provide us with some feedback to improve the generality of the assignment framework.

97

6. Concluding Remarks

6.1 General Conclusions

This work has introduced an assignment framework to enrich the expressiveness of

existing enterprise and business process modeling techniques and support the definition

of precise active structure assignments. We have proposed a model-driven framework

that employs an organizational metamodel, a behavioral occurrence metamodel and an

assignment metamodel. The resulting assignment metamodel is able to express all of the

creation workflow resource patterns involving allocation of organizational agents.

Further, the approach supports an expressive constraint language to define sophisticated

assignments.

To apply our framework to existing business process modeling or enterprise architecture

modeling languages, the generic behavioral concepts referred to by the behavioral

occurrence metamodel and the assignment model must be bound to specific concepts

from the metamodels of the adopted languages. We have applied the framework to

BPMN, using the concepts of activity and process, and to ArchiMate, using the concept

of business process. We believe that the framework could be applied to some of the

other reviewed modeling techniques, such as UML activity diagrams (binding to action

and activity), XPDL (binding to activity and pool) and ARIS (binding to the concept of

function). As some of these offer support to model organizational structures,

transformations to/from our organizational metamodel would be required for full

integration of our approach.

In contrast to the other works that we previously discussed, our approach is more

general because it is not dependent of a specific business process technology. As such,

the referred behavioral metamodel will not need to be heavily modified (as we can

observe when applying to BPMN). With the behavioral occurrence metamodel, we have

also covered the aspect of execution history that is required in some of the patterns,

without the need of modifying the behavioral metamodel (differently from e.g. (AWAD

et al., 2009) and (MEYER, 2009), which requires such modification). We have also

proposed an organizational metamodel which is general enough to model human

resources and organizational structures for the perspective of assignment.

98

Regarding the assignment metamodel, we defined some assignment metaclasses that

directly refer to organizational concepts to specify the assignment, in particular to refer

to specific agents or to classes of agents. Other assignments are based on (OCL)

expressions, which are used to query organizational resources and behavioral

occurrences models. These assignments are categorized into attribute-based assignment,

constraint-based assignment, history-based assignment, organizational-based

assignment, and result-based assignment. The result-based assignment is not directly

addressed in any of the considered workflow resource patterns, but was identified when

studying the assignment domain and when trying to apply the assignment model in

particular scenarios (like the one we provided). More complex assignments may also be

defined using conjunctive and disjunctive assignments.

Ultimately, we can briefly list the contributions of our work in the following:

1. A bottom-up review of the active structure assignment mechanisms in widely

used enterprise architecture frameworks and business process languages,

presenting the constructs that each one adopts to cover the assignment. A review

of these approaches against the considered set of workflow resource patterns.

Through these analyses we identified that the reviewed approaches offer

simplistic constructs and mechanisms in regards to the specification of the

assignment of the active structure elements to the behavioral elements.

2. The definition of an assignment framework consisting of an organizational

metamodel, a behavioral occurrence metamodel and an assignment metamodel,

employing generic mechanisms that ease the integration of existing languages

into the proposed framework. One can design an organizational model, refer to

the execution history of behavior and finally define expressive assignments

using all this information through the assignment framework.

3. The application of the framework to a standard in business process modeling

and a widely used language to design business process model, namely BPMN.

We show which BPMN concepts will be integrated into the framework,

replacing the generic assumed concepts, and we show some considerations and

limitations in regards to BPMN models and how the assignment framework

99

covers them. We also present a UML class diagram profile to model the

organizations in a well-known syntax and finally we illustrate assignments in an

example, consisting of an organizational model, a BPMN model and an

assignment model that is related to both of them.

4. A prototype implementation of the framework. This implementation has been

applied to a concrete and available BPMN tool, which has allowed us to

simulate a runtime environment and test the expression assignment constraints.

We believe this prototype could be used as part of other tools to extend them

with capabilities to define and manage expressive assignments.

5. A preliminary study of how the framework could be applied to a general

language to model enterprise architecture, namely ArchiMate. We show how the

organizational structure language of ArchiMate may be mapped to our

organizational metamodel and how the behavioral concepts required by the

framework may be replaced by the ArchiMate behavioral concepts. We then

design the same business process example presented in the BPMN chapter using

the ArchiMate constructs and show how the assignment model would be

defined.

The application of the results of this work in practice should aid organizations in

managing how the work is distributed. This should help them in analyzing the relation

between organizational activities and organizational actors, considering the perspectives

of responsibility, authorization and accountability.

6.2 Future Work

Future work will firstly focus on use cases to validate the usability of the proposed

framework. These use cases may reveal lack of expressiveness that may require

extension of the assignment framework proposed here. Furthermore, we should define

an integration of the approach in a process aware system considering the runtime

environment, giving support to the actual execution of the assigned behaviors, like in

jBPM. This may support us in addressing other workflow resource patterns that mostly

focus on the dynamics of allocation at run-time (beyond the “creation patterns”).

100

A consistency analysis of assignment models should also be considered in future

research, because as of now, the modeler is responsible to design the assignment

constraints and also verify if they are indeed evaluating as expected. They could return

unforeseen active structure elements, or they may never return anything at all. In a

conjunctive assignment, the composing assignments may also be conflicting with each

other and there should be a way to highlight that to the modeler.

We also consider that ontology-based semantics should be defined to all the meta-

concepts defined in the framework using the Foundational Ontology (UFO)

(GUIZZARDI, 2005) as basis, to ensure that the organizational metamodel, behavioral

occurrence metamodel and the assignment metamodel indeed have well-founded

semantics. Further, we should define a formal semantics for the notions of obligation

and prohibition using deontic logics (MCNAMARA, 2010).

When testing the applicability of the framework in some very simple examples we have

already identified that some expression-based assignments may occur several times in

models. This is an indication that the reuse of previously-defined expressions or parts of

an expression should be considered. In (THOM; REICHERT; IOCHPE, 2009) and

(THOM et al., 2008), for example, activity patterns that are considered to be recurrent in

business process models are defined and empirically evidenced in real-world process

models. Thus, having a way to define expressions patterns to be reused based on

gathered empirical evidence may also have promising results.

Defining a simpler concrete syntax for the assignment expressions should also be target

in future research, because expressions are often poorly readable depending on the type

of the expression assignment. An end user environment could transform expressions in

a simpler concrete syntax into OCL in our framework, thus profiting from the well-

defined syntax, semantics and interpretation tooling for OCL.

We also envision the applicability of the framework in others domains of study, for

example the domain of project management, which, similarly to business process

management, is concerned with distribution of work. Further research should be

conducted to investigate how the framework could be applied in such domains and to

consider how they would benefit from rich assignment capabilities.

101

Finally, the organizational metamodel proposed should also be extended to include the

management of non-human resources as well as the combined assignment of human and

non-human resources to behavioral elements.

102

7. References

AHN G.; SANDHU, R. Role-based authorization constraint specification. ACM Trans.

Inf. Syst. Sec. 3, 4 (Nov.), 2000.

AKEHURST, D. H.; BORDBAR, B. On Querying UML Data Models with OCL.

Proceedings of the 4th International Conference on The Unified Modeling Language,

Modeling Languages, Concepts, and Tools, p.91-103, October 01-05, 2001.

ALMEIDA, J. P. A.; GUIZZARDI, G. A Semantic Foundation for Role-Related

Concepts in Enterprise Modelling. In: Proc. 12th Int‟l IEEE EDOC Conference, IEEE

Computer Society Press, pp 31–40, 2008.

ARPINI, R. H.; ALMEIDA, J. P. A. On the support for the assignment of active

structure and behavior in enterprise modeling approaches. In Proceedings of the 27th

Annual ACM Symposium on Applied Computing (SAC '12), pp 1686 – 1693, 2012.

AWAD, A.; GROSSKOPF, A.; MEYER, A.; WESKE, M. Enabling resource

assignment constraints in bpmn. Technical report, Business Process Technology –

Hasso Plattner Institute, 2009.

BOTHA, R. A. CoSAWoE – A Model for Context-sensitive Access Control in Workflow

Environments, South Africa, 2001.

BOTHA, R. A.; ELOFF, J. H. P. Separation of duties for access control enforcement in

workflow environments. IBM Syst. J. 40, 666–682, 2001.

BRUCKER, A. D.; HANG, I.; LUCKEMEYER, G.; RUPAREL, G. SecureBPMN:

Modeling and enforcing access control requirements in business processes. In

SACMAT. ACM Press, 2012.

CABANILLAS, C.; RESINAS, M.; RUIZ-CORTÉS, A. Towards the definition and

analysis of resource assignments in BPMN 2.0, tech. rep., Universidad de Sevilla, 2011.

CLARK, J.; DEROSE, S. XML path language (XPath) version 1.0. Technical report,

World Wide Web Consortium (W3C) Recommendation, 1999.

103

DAVIS, R. Business Process Modelling with ARIS - A Practical Guide, Springer, 2001.

DUMAS, M.; van der AALST, W. M. P.; ter HOFSTEDE, A. H. M. Process Aware

Information Systems: Bridging People and Software Through Process Technology.

Wiley-Interscience, 2005.

GOGOLLA, M.; RICHTERS, M. On Constraints and Queries in UML; Proc. UML'97

Workshop The Unified Modeling Language - Technical Aspects and Applications',

1997.

GROSSKOPF, A. An extended resource information layer for BPMN. tech. rep., BPT,

2007.

GUIZZARDI, G. Ontological Foundations for Structural Conceptual Models. Ph.D.

Thesis. University of Twente, The Netherlands, 2005.

HAVEY, M. Essential Business Process Modeling. O'Reilly Media, Inc., 2005.

ISO - International Organization for Standard. Information Technology – Open

Distributed Processing – Reference Model – Foundations. Final Draft International

Standard, ISO/IEC10746-2, 2010.

KHARBILI, M. E.; MA, Q.; KELSEN, P.; PULVERMUELLER, E. Corel: Policy-

based and model-driven regulatory compliance management. In Proceedings of the 15th

IEEE International EDOC Conference, 2011.

KLEPPE, A.; WARMER, J.; BAST, W. MDA Explained: The Model Driven

Architecture: Practice and Promise, 2003.

LANKHORST M., et al. Enterprise Architecture at Work - Modelling, Communication,

and Analysis. Springer, 2005.

MANDEL, L.; CENGARLE, M. V. On the Expressive Power of OCL. FM'99 - Formal

Methods, World Congress on Formal Methods in the Development of Computing

Systems, Toulouse, France, Springer LNCS 1708, pp 854 – 874, 1999.

104

MEYER, A. Resource Perspective in BPMN: Extending BPMN to Support Resource

Management and Planning. Master‟s Thesis, Hasso Plattner Institute, 2009.

MUEHLEN, M. Z. Organizational Management in Workflow Applications – Issues and

Perspectives. Information Technology and Management, 5 (3-4), pp 271-294, 2004.

RUSSEL, N.; ter HOFSTEDE, A.H.M; EDMOND, D. Workflow resource patterns:

Identification, representation and tool support. In Proceedings of the 17th Conference

on Advanced Information Systems Engineering (CAiSE05), volume 3520 of Lecture

Notes in Computer Science, pp 216–232, 2005.

Object Management Group (OMG). Organization Structure Metamodel (OSM) 3rd

initial submission. OMG document, bmi/09-08-02, 2009.

Object Management Group (OMG). Business Process Definition Metamodel. (BPDM) -

Final Submission, 2007.

Object Management Group (OMG). Business Process Modeling Notation (BPMN) 2.0

Specification. OMG document, formal/2011-01-03, 2011.

Object Management Group (OMG). Object Constraint Language specification version

2.2. OMG document, formal/2010-02-01, 2010a.

Object Management Group (OMG). The Unified Modeling Language: Superstructure.

Version 2.3, OMG document, formal/2010/05/03, 2010b.

PLATO (Author); GRUBE, G. M. A. (Translator); Reeve, C. D. C (Editor). The

Republic. 2nd edition. Hackett Publishing Company, 1992.

RUSSEL, N.; ter HOFSTEDE, A.H.M.; EDMOND, D; van der AALST, W.M.P.

Workflow Resource Patterns. Technical report, Queensland University of Technology,

Australia, 2010. http://www.workflowpatterns.com/patterns/resource, last accessed at

17/05/2011.

RUSSEL, N.; van der AALST, W. M. P.; ter HOFSTEDE, A. H. M.; WOHED, P. On

the suitability of UML 2.0 activity diagrams for business process modelling. Pages 95–

105

104 of: APCCM '06: Proceedings of the 3rd Asia-Pacific conference on Conceptual

modelling. Darlinghurst, Australia, Australia: Australian Computer Society, 2006.

SANTOS JR., P. S.; ALMEIDA, J. P. A.; PIANISSOLLA, T. L. Uncovering the

Organizational Modelling and Business Process Modelling Languages in the ARIS

Method. International Journal of Business Process Integration and Management

(IJBPIM), Vol. 5, No. 2, pp 130-143, 2011.

SANTOS JR., P. S.; ALMEIDA, J. P. A.; GUIZZARDI, G. An Ontology-Based

Semantic Foundation for Organizational Structure Modeling in the ARIS Method. In

Joint 5th International Workshop on Vocabularies, Ontologies and Rules for The

Enterprise (VORTE) - International Workshop on Metamodels, Ontologies and

Semantic Technologies (MOST), Vitória, Espírito Santo. Proceedings of the 2010 14th

IEEE International Enterprise Distributed Object Computing Conference Workshops

(EDOCW 2010). Los Alamitos, CA : IEEE Computer Society Press, 2010a.

SANTOS JR, P.S.; ALMEIDA, J. P. A.; GUIZZARDI, G. An Ontology-Based Semantic

Foundation for ARIS EPCs, In: 25th ACM Symposium on Applied Computing

(Enterprise Engineering Track), 2010b.

SCHEER, A. W. ARIS – Business Process Modeling (3rd edition), Springer, 2000.

SHAPIRO, R. M. XPDL 2.2: Incorporating BPMN 2.0 Process Modeling Extensions, in

Fischer, L. (ed.), 2010 BPM and Workflow Handbook, Future Strategies, Inc., 2010.

SHARP, A.; MCDERMOTT, P. Workflow Modelling Tools for Process Improvement

and Application Development. Artech House, 2001.

SMITH, A. (Author); SUTHERLAND, K. (Editor). An Inquiry into the Nature and

Causes of the Wealth of Nations: A Selected Edition. Oxford Paperbacks, 2008.

STROPPI, L.; CHIOTTI, O.; VILLARREAL, P. A BPMN 2.0 Extension to Define the

Resource Perspective of Business Process Models, XIV Congresso Iberoamericano in

Software Engineering (CIBSE), Rio de Janeiro, Brasil, 2011.

The Eclipse Modeling Framework. http://www.eclipse.org/emf/, last access at

02/02/2012.

106

The Open Group. ArchiMate Technical Standard. 2009a.

http://www.opengroup.org/archimate/doc/ts_archimate/, last accessed at 21/05/2011.

The Open Group. TOGAF Version 9. 2009b.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/, last accessed at 06/09/2011.

THOM, L. H.; REICHERT, M.; IOCHPE, C. Activity Patterns in Process-aware

Information systems: Basic Concepts and Empirical Evidence. In: IJBPIM -

International Journal of Business Process and Information Management, 2009.

THOM, L. H.; REICHERT, M.; IOCHPE, C.; CHIAO, C.M.; HESS, G. N. Inventing

Less, Reusing More, and Adding Intelligence to Business Process Modeling. In: 19th

International Conference on Database and Expert Systems Applications (DEXA '08),

Turin, Italy. Springer, LNCS 5181, pp. 837-850, 2008.

US Department of Defense. DoD Architecture Framework Version 2.02,. http://cio-

nii.defense.gov/sites/dodaf20/, last accessed at 25/05/2011.

van der AALST, W. M.P.; van HEE, K. M. Workflow Management: Models, Methods,

and Systems. MIT press, Cambridge, MA, 2002.

van der AALST, W.M.P. Business Process Management Demystified: A Tutorial on

Models, Systems and Standards for Workflow Management, LNCS, Vol. 3098, pp 1-64,

2004.

WARMER, J.; KLEPPE, A. The Object Constraint Language: Getting Your Models

Ready for MDA. Addison Wesley, second edition, 2003.

Workflow Management Coalition (WfMC), Process Definition Interface – XML

Process Definition Language (XPDL). WfMC Standards, WFMC-TC-1025, The

Workflow Management Coalition, 2008.

WHITE S. A. Introduction to BPMN. IBM White Paper, 2004.

WOHED, P.; van der AALST, W.M.P.; DUMAS, M.; ter HOFSTEDE, A.H.M.;

RUSSEL, N. Pattern-based Analysis of BPMN - An extensive evaluation of the Control-

flow, the Data and the Resource Perspectives. BPM Center Report BPM-06-17, 2006.

http://cio-nii.defense.gov/sites/dodaf20/
http://cio-nii.defense.gov/sites/dodaf20/

107

ZACHMAN, J. A Framework for Information Systems Architecture. IBM Systems

Journal, Vol. 26, No. 3, pp 276-292, 1987.

ZHOU, W. Authorization Constraints Specification and Enforcement. Journal of

Information Assurance and Security, 3 (1), pp 38-50, 2008.

MCNAMARA, P. Deontic Logic. Stanford Encyclopedia of Philosophy, 2010,

http://plato.stanford.edu/entries/logic-deontic/, last accessed at 25/06/2012.

108

APPENDIX A: OCL USAGE

Structural diagrams, such as UML class diagrams, are typically not refined enough to

provide all the relevant aspects of a specification. There is the need to describe

additional constraints about the models. Often these constraints are described in natural

language. However the practice has shown that this inevitably leads to ambiguities.

Thus, formal languages have been developed to write unambiguous constraints. Most of

them usually had a traditional disadvantage of requiring persons with a strong

mathematical background to be used, bringing difficulties to the average modelers to

use (OMG; 2010a).

OCL has been developed to fill this gap. It is a formal language that is easy to read and

write and it has been developed as a business modeling language. It is a pure

specification language thus an OCL expression won‟t have any side effects, not

changing anything in the model. That means that the state of a system will never change

because of an evaluation of an OCL expression. Although OCL was originally designed

for describing constraints about models, its ability to navigate models and form

collection of objects has led to its usage as a query language, as seen, for instance, in

(MANDEL; CERGARLE, 1999), (GOGOLLA; RICHTERS, 1997) and (AKEHURST;

BORDBAR, 2001).

In the remainder of this section we introduce the main concepts of OCL, and give some

examples, all based on Figure 36. For a complete documentation of the language, we

suggest the read of the OCL specification (OMG; 2010a), where the remainder of this

section is also based on. For those who are unfamiliar with OCL and want a reference

manual and explanations in a relatively informal way, we recommend the reading of the

work by Warmer and Kleppe (2003).

109

Figure 36 - Example Class Diagram (OMG; 2010a)

Basic Elements

Every OCL expression is written in the context of an instance of a specific type. Firstly,

to specify the type that will be the context, we use the reserved word context. To refer to

the instance of the specified type, the reserved word self is used. Suppose the following

example:

context Company inv:
self.numberOfEmployees > 50

In the example, the context will be the class „Company‟ and self will refer to every

single instance of this class. The reserved word inv in the above example indicates that

the expression will be an invariant constraint, which means that every instance of the

specified context must evaluate to true for the model, or else it would be in an invalid

110

state. Thus, the model would only be valid if every instance of „Company‟ has more

than fifty employees.

Basic Types

In OCL, there is a number of basic types that are predefined and available to the

modeler at all times. These basic types, with the corresponding examples of their

values, are shown inTable 6.

Table 6 - Basic OCL Types and their values

Type Values

Boolean true, false

Integer 1, 10, -2, 2134, …

Real 0.8, 300.74, …

String „To be or not to be...‟

OCL also defines a number of operations that are used on the predefined types. Table 7

gives examples of that.

Table 7 - Some operations in OCL primitive types

Type Operations

Boolean and, or, xor, not, implies, if-then-else

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

111

String concat(), size(), substring()

Collection, Set, Bag, Sequence, and Tuple are basic types as well that have major roles

in OCL expressions. We talk about them in the following.

Retyping

In some cases, it is desirable to use a property of an object which is defined in a subtype

of the current type of the object. When you are certain that the actual type of an object is

it subtype, the object may have his re-type it by using the operation oclAsType

(OclType). This operation does not change the object, only its type in the context of the

operation.

Suppose we have an object and types Type1 and Type, which are different types. We

could write:

objeto.oclAsType(Type2)

This will only be valid if, at evaluation time, Type2 is a subtype of the type of the object

and the object is also an instance of the subtype.

Let expressions

Often there are occasions in which a sub-expression is used more than once in an

expression. In such cases, we may use let expressions which allows one to define a

variable that can be used in the OCL expressions. The example below illustrates how it

may be used:

context Person inv:
 let income : Integer = self.job.salary->sum() in
 if isUnemployed then
 income < 100

 else
 income >= 100
 endif

112

In this we defined the variable income, which has as declared type Integer and its initial

value set to self.job.salary->sum().

allInstances operation

An important operation that is predefined in OCL and is applicable to all classifiers in a

given model, is the allInstances operation. The example bellow illustrates its use.

Person.allInstances()

The above excerpt of an expression would return the collection of all instances of

Person.

Type checking

The operation oclIsTypeOf (Type) returns true if the type of self and Type are exact the

same, otherwise it returns false. For instance:

context Person
inv: self.oclIsTypeOf(Person)
inv: self.oclIsTypeOf(Company)

The first invariant of the above example returns true. The second one returns false. If

one would want to check if Type is the exact same or any of the supertypes, it may use

the operation oclIsKindOf (Type).

Collections

The Collection type is the type that we most used when defining queries to define the

assignments. It is a predefined type which defines a large number of operations to allow

the modeler to manipulate the collections. OCL distinguishes three different collection

types: (i) Set, which does not contain duplicate elements; (ii) Bag, which may contain

duplicate elements; (iii) Sequence, which is like a Bag but the elements are ordered.

When we navigate in the model through relationships with multiplicity greater than one,

we would have as the return type a Collection. In the following we show some

important predefined operations that permit us to manipulate collection in a flexible and

powerful way.

113

select operation

When we have a collection and we are interested in only a subset of it that conforms to a

certain criteria, we may use the select operation. It has as a parameter a special sintax

which allows one to specify the elements from the collections that we want to appear in

the new subset. This is done through a boolean expression. In the below example, we

obtain a subset of persons that has age greater than fifty and states that this collection is

not empty:

context Company inv:
self.employee->select(age > 50)->notEmpty()

As shown, the context of the boolean expression in the argument of the operation is

actual element of the collection on which the select operation was invoked. Thus the

property age is considered in the context of a Person.

In the above example, it is impossible to refer to the persons themselves, it may only

refer to properties of them (e.g. age). To allow that, there is another syntax to refer to

each person explicitly:

context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

The above example is identical to the previous one. With the sole difference being the

presence of the p element, which iterates over each member of the collection and

evaluates it by the boolean expression specified after the „|‟.

collect operation

As shows in the previous sub-section, the select operation always results in a sub-

collection of the original collection. When it is desired to specify a collection that is

derived from other collection, containing different objects from the original collection

(i.e. it is not a sub-collection), we may use the collect operation. The below example

show its usage:

self.employee->collect(person | person.birthDate)

114

In the above example, we specify the collection of birthDates for all employees in the

context of a company.

