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Abstract 

Mapping and localization are fundamental problems in autonomous robotics. 

Autonomous robots need to know where they are in their operational area to 

navigate through it and to perform activities of interest. In this work, we 

present an image-based mapping and localization system that employs Virtual 

Generalizing Random Access Memory Weightless Neural Networks (VG-

RAM WNN) for localizing an autonomous car. 

 In our system, a VG-RAM WNN learns world positions associated with 

images and three-dimensional landmarks captured along a trajectory, in order 

to build a map of the environment. During the localization, the system uses its 

previous knowledge and uses an Extended Kalman Filter (EKF) to integrate 

sensor data over time through consecutive steps of state prediction and 

correction. The state prediction step is computed by means of our robot’s 

motion model, which uses velocity and steering angle information computed 

from images using visual odometry. The state correction step is performed by 

integrating the VG-RAM WNN learned world positions in combination to the 

matching of landmarks previously stored in the robot’s map. Our system 

efficiently solves the (i) mapping, (ii) global localization and (iii) position 

tracking problems using only camera images.  

 We performed experiments with our system using real-world datasets, 

which were systematically acquired during laps around the Universidade 

Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our 

experimental results show that the system is able to learn large maps (several 

kilometres in length) of real world environments and perform global and 

position tracking localization with mean pose precision of about 0.2m 

compared to the Monte Carlo Localization (MCL) approach employed in our 

autonomous vehicle. 
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Resumo 

Localização e Mapeamento são problemas fundamentais da robótica 

autônoma. Robôs autônomos necessitam saber onde se encontram em sua área 

de operação para navegar pelo ambiente e realizar suas atividades de interesse. 

Neste trabalho, apresentamos um sistema para mapeamento e localização 

baseado em imagens que emprega Redes Neurais Sem Peso do Tipo VG-RAM 

(RNSP VG-RAM) para um carro autônomo. 

 No nosso sistema, uma RNSP VG-RAM aprende posições globais 

associadas à imagens e marcos tridimensionais capturados ao longo de uma 

trajetória, e constrói um mapa baseado nessas informações. Durante a 

localização, o sistema usa um Filtro Estendido de Kalman para integrar dados 

de sensores e do mapa ao longo do tempo, através de passos consecutivos de 

predição e correção do estado do sistema. O passo de predição é calculado por 

meio do modelo de movimento do nosso robô, que utiliza informações de 

velocidade e ângulo do volante, calculados a partir de imagens utilizando-se 

odometria visual. O passo de correção é realizado através da integração das 

posições globais que a RNSP VG-RAM com a correspondência dos marcos 

tridimensional previamente armazenados no mapa do robô. 

Realizamos experimentos com o nosso sistema usando conjuntos de 

dados do mundo real. Estes conjuntos de dados consistem em dados 

provenientes de vários sensores de um carro autônomo, que foram 

sistematicamente adquiridos durante voltas ao redor do campus principal da 

UFES (um circuito de 3,57 km). Nossos resultados experimentais mostram 

que nosso sistema é capaz de aprender grandes mapas (vários quilômetros de 

comprimento) e realizar a localização global e rastreamento de posição de 

carros autônomos, com uma precisão de 0,2 metros quando comparado à 

abordagem de Localização de Monte Carlo utilizado no nosso veículo 
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autônomo. 

  

 

  



 11 

Acknowledgements 

I would like to give a very special thanks to my supervisor Alberto 

Ferreira De Souza for his friendship, encouragement, attention, support, 

kindness, and invaluable advice throughout these 2 years.  

I would also like to give thanks to Franco Machado from Mogai 

company for his support and for allowing me to do my master’s degree while 

working in several other research projects. 

My thanks to my professors Thiago Oliveira dos Santos, Claudine 

Badue, Mariella Berger and my friends Filipe Wall Mutz, Lucas de Paula 

Veronese, Bruno Oliveira, Avelino Forechi and all other friends of the 

Departamento de Informática at UFES for their encouragement, advice, and 

criticism.  

I gratefully acknowledge the financial support of the Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and UFES.  

Finally, but by no means the least, I wish to thank my family (specially 

my mother, Ivanda Maria Pedrini Lyrio),  and my girlfriend, Gabriela Gomes 

Antunes, whose, despite all the problems and difficulties, were always 

supporting me. A very special thanks to you! 

 



 12 

  



 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family 

 



 14 



 15 

Contents 

Chapter 1 Introduction ...................................................................................... 20 
1.1 Motivation .................................................................................................. 23 
1.2 Objectives ................................................................................................... 23 

1.3 Contributions .............................................................................................. 24 
1.4 Organization of this Dissertation ............................................................... 24 

Chapter 2 Related Work .................................................................................... 26 

Chapter 3 Image-Based Mapping and Localization with VG-RAM WNN .. 29 
3.1 VG-RAM WNN ......................................................................................... 31 
3.2 VG-RAM Image-Based Mapping (VIBM) ................................................ 33 

3.2.1 VIBM Architecture ................................................................................. 33 

3.2.2 Mapping ................................................................................................. 35 
3.2.3 Detection of Characteristic Points ......................................................... 36 

3.3 VG-RAM Image-Based Global Localization (VIBGL) ............................. 38 
3.3.1 Global Localization ................................................................................ 38 

3.4 VG-RAM Image-Based Position Tracking (VIBPT) ................................. 38 

3.4.1 Extended Kalman Filter (EKF) .............................................................. 40 
3.4.2 Localization with EKF ........................................................................... 41 

3.4.3 Visual Odometry .................................................................................... 44 
3.4.4 Visual Search of Landmarks .................................................................. 44 
3.4.5 Outliers Removal .................................................................................... 47 

Chapter 4 Experimental Methodology ............................................................. 48 
4.1 Autonomous Vehicle Platform ................................................................... 48 
4.2 CARMEN Robot Navigation Toolkit ........................................................ 50 

4.3 Datasets ...................................................................................................... 51 
4.4 Metrics........................................................................................................ 52 

4.4.1 Global Localization Metrics .................................................................. 52 

4.4.2 Position Tracking Metrics ...................................................................... 53 

Chapter 5 Chapter 5 Experiments .................................................................... 55 

Chapter 5 Chapter 5 Experiments .................................................................... 55 
5.1 VIBGL ....................................................................................................... 55 

5.1.1 Classification Accuracy ......................................................................... 55 
5.1.2 Positioning Error ................................................................................... 57 
5.1.3 Qualitative Results ................................................................................. 58 

5.2 VIBPT ........................................................................................................ 60 
5.2.1 Positioning Error ................................................................................... 60 

5.2.2 Localization Noise .................................................................................. 61 
5.2.3 Localization Displacement ..................................................................... 63 

Chapter 6 Discussion .......................................................................................... 67 
6.1 Critical Assessment of this Research Work ............................................... 68 

6.1.1 Unreliable Initialization ......................................................................... 68 



 16 

6.1.2 The Kidnapped Robot Problem .............................................................. 69 

6.1.3 VG-RAM WNN Time Performance ........................................................ 69 

Chapter 7 Conclusions ....................................................................................... 70 
7.1 Summary .................................................................................................... 70 

7.2 Conclusions ................................................................................................ 71 
7.3 Future Work ............................................................................................... 71 

Glossary ..................................................................................................................... 74 

Bibliography ............................................................................................................. 76 

 



 17 

List of Figures 

Figure 1.1: Examples of VIBML results for a full lap around the Federal University 

do Espírito Santo (UFES). Red cars denote the poses estimated by VIBML. 

Green-marked images are samples of true-positives image-pose pairs outputted 

by VIBML, while the red-marked one is a sample of a false-positive. ............. 21 
Figure 3.1: The VIBML system architecture. The VIBM subsystem (bounded by a 

red rectangle) uses images and associated global poses and characteristics 

points’ (or landmarks’) positions to build the map of the environment, which is 

represented internally by the contents of the memories of its neurons. The 

VIBGL subsystem (bounded by a blue rectangle) uses previously acquired 

knowledge – the map – to output the global poses where these images were 

captured. The VIBPT subsystem (bounded by a green rectangle) uses an 

Extended Kalman Filter (EKF) to integrate sensor data over time through 

consecutive steps of state prediction and correction.  The state prediction step is 

computed by means of our robot’s motion model, which uses odometry 

information,  and the state correction step is performed by integrating the global 

poses estimated by VIBGL with the matching of landmarks previously stored in 

the map. .............................................................................................................. 30 

Figure 3.2:  Illustration of the VIBM subsystem. VIBM employs a u × v VG-RAM 

WNN Neural Layer of neurons with m-size memory. Each neuron is connected 

to two processed versions of the Input Image (Cropped Input and Gaussian-

Filtered Cropped Input) through two sets of synapses, S1 and S2 (exemplified for 

one neuron in yellow and orange respectively). S1 = {s1,1, …, s1,p} and S2 = 

{s2,1, …, s2,q} are subsets of S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1   S2, 

where S is the set of synapses of each neuron. This set of synapses samples the 

neuron’s inputs as a vector of bits I = {i1,1, …, i1,p, i2,1, …, i2,q}. The Neural 

Layer shows an example of activation pattern based on the binary input vectors 

I and labels t of the learned pairs L = (I, t). Each neuron responds with the label 

tj associated with the input Ij that is the closest to the binary input vector I 

extracted from the Cropped Input and the Gaussian-Filtered Cropped Input. The 

labels t are indexes to geo-tagged images. ......................................................... 34 
Figure 3.3: (a) Scene image. (b) Initial saliency map computed by iNVT. (c) Image 

saliencies detected by iNVT. (d) Depth map computed by LIBELAS. ............. 37 
Figure 3.4: Error in the global pose of an image estimated by VIBGL. Given a query 

imagei, VIBGL outputted the global_posej associated with imagej. Nevertheless, 

imagei might be captured at a global_posei slightly different from global_posej.

 ............................................................................................................................ 39 
Figure 3.5: Parameters of the velocity motion model of a car-like robot. ................. 42 
Figure 3.6: Visual Search of  map-stored 3D landmarks in the image currently 

observed by the  robot. ....................................................................................... 44 
Figure 3.7: Example of a training instance of the VG-RAM WNN architecture for 

visual search. (a) Training image and characteristic point to search for (green 

dot). The Log-Polar for the  Training Image. (c) Neurons activation. ............... 46 



 18 

Figure 3.8: Example of a test instance of our VG-RAM WNN architecture for visual 

search. ................................................................................................................. 46 
Figure 4.1. Intelligent and Autonomous Robotic Automobile (IARA) with the 

mounted-on Point Grey Bumblebee XB3 camera (marked in green) used in 

experiments. Learn more about IARA at www.lcad.inf.ufes.br. ....................... 49 
Figure 4.2: Full lap around the university campus with an extension of about 3.57 

kilometers. Source: Google Maps (http://maps.google.com.br). ....................... 51 
Figure 5.1. Classification accuracy for different maximum number-of-frames 

allowed using UFES-2012 dataset for training and UFES-2014 dataset for test.

 ............................................................................................................................ 56 
Figure 5.2. Positioning Error Distribution between Ie and Iq using the UFES-2012 

dataset for training and the UFES-2014 dataset for testing. .............................. 57 
Figure 5.3. True positive qualitative results for VIBGL's frame estimation. ............. 58 
Figure 5.4. False positive qualitative results for VIBGL's frame estimation. ............ 59 

Figure 5.5 - Comparison between VIBPT's Positioning Error and  VIBGL's 

Positioning Error. ............................................................................................... 60 

Figure 5.6 - IARA’s OGM-MCL localization noise using UFES-2012 dataset for 

mapping and localization. .................................................................................. 61 
Figure 5.7 - VIBPT’s localization noise using UFES-2012 dataset for mapping and 

localization. ........................................................................................................ 62 

Figure 5.8 - IARA's MCL Localization Displacement. Distance between UFES-2014 

and UFES-2012 trajectory's poses are in blue columns. The localization noise 

regarding IARA's MCL is plotted as error bars (in red). ................................... 64 

Figure 5.9 - VIBPT Localization Displacement. Distance between UFES-2014 and 

UFES-2012 trajectory's poses are in blue columns. The localization noise 

regarding VIBPT subsystem is plotted as error bars (in red). ............................ 65 
Figure 7.1. UFES campus's trajectory image from Google StreetView..................... 72 

 



 19 

List of Tables 

Table 3.1: VG-RAM WNN neuron lookup table. ...................................................... 32 
Table 3.2: The EKF algorithm [THR05].................................................................... 40 

 



 20 

Chapter 1  

Introduction 

Mapping and localization are fundamental problems in autonomous 

robotics. Autonomous robots need to know where they are in their operational 

area to navigate through it and to perform activities of interest. Therefore, they 

need consistent maps of the environment and the ability to localize themselves 

in these maps using sensor data.  

The localization problem can be branched along a number of sub-

problems according to the nature of the environment and the initial knowledge 

that a robot has about its location [THR05]. Considering the type of initial 

knowledge, we can qualify the localization problem into three different 

branches: global localization, position tracking and the kidnapped robot 

problem. 

Global localization is the ability to resolve the robot’s position in a 

previously learned map, given no information other than that the robot is 

around someplace in the map. Once the initial robot’s position is found in the 

map, the position tracking is the problem of keeping track of that position over 

time. Generally, the global localization problem is harder than position 

tracking and the kidnapped robot problem is even more difficult than global 

localization. In the kidnapped robot problem, a well localized robot is moved 

to an unknown place and it needs to relocalize itself. The solution of the 

kidnapped robot problem ensures that the robot has the appropriate abilities to 
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recover from localization failures. 

Many probabilistic approaches have been proposed to solve the 

localization sub-problems mentioned above [THR05, BEE04, DIS01, 

BUR96]; however, some of these sub-problems are more difficult to solve 

than others. Global localization, for instance, is more challenging than position 

tracking, and localization and mapping are currently harder to perform with 

cameras than with Light Detection and Ranging (LIDAR) systems. 

Nevertheless, the development of efficient mapping and localization 

techniques based on cameras is relevant for the widespread use of these 

techniques, because cameras are much cheaper than laser system and the 

amount of information (color, depth, resolution) that they provide is relatively 

higher than that delivered by LIDARs. 

In this work, we present a novel image-based mapping and localization 

approach which employs Virtual Generalizing Random Access Memory (VG-

RAM) Weightless Neural Networks (WNN) [LUD99], dubbed VG-RAM 

Image-Based Mapping and Localization (VIBML) (Figure 1.1)  

 The VIBML system efficiently solves the problems of mobile robot 

mapping, global localization and position tracking using only camera images. 

 

Figure 1.1: Illustration of VIBML performing global localization and position 

tracking around the UFES’ campus. VIBML uses previously learned image-pose pairs 

stored in a neural map to estimate global poses (red cars) from currently observed 

images. VIBML’s neural position tracking keeps a smooth trajectory (green dots), 

even in case of global localization failure (purple car). 
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But, although VIBML performs mapping and localization, it does not map the 

environment and simultaneously localizes the robot (it is not a Simultaneous 

Mapping and Localization (SLAM) system [THR05, DIS01]). 

The VIBML system mimics the human capacities of learning about a 

place, recognizing a previously learned area and localizing itself while moving 

through the environment as well. Memorizing images of places and labels 

associated with them (road names, addresses, etc.) and then, in later moments, 

to remember the labels when the same images are seen again is a task that 

humans perform very well. Similarly, in the mapping phase, VIBML receives 

images of the environment, positions (labels) where images were captured, as 

well as characteristic points that belong to these images. Subsequently, it 

learns associations between the images, positions and the images’ 

characteristic points and represent them as a map of the environment (it learns 

about a place). In the localization phase, VIBML receives images of the 

environment and uses its previously acquired knowledge – "the map" – to 

output the positions and the characteristic points representing the places the 

system believes these images were captured. Finally, it uses those positions 

and characteristic points to perform global localization (it recognizes a place) 

and position tracking (it localizes itself while moving through the 

environment). 

We have tested  the VIBML system with a set of mapping and 

localization experiments using real-world datasets. These datasets consist of 

data from various sensors acquired systematically during laps performed by an 

autonomous car in a 3.57 km long circuit. These datasets were constructed for 

this work and are made publicly available with the corresponding ground-truth 

at www.lcad.inf.ufes.br/log. 

Our results shown that our system, purely based on camera images, is 

capable of localizing robots on large maps (several kilometers in length). Our 

system was able to localize an autonomous car for a distance of 3.57km 

around the Universidade Federal do Espírito Santo (UFES), with a mean 

difference of 0.2m when compared to the Occupancy Grid Mapping (OGM) 

file:///C:/Users/Alberto/Documents/Alunos/Lauro/Mestrado/www.lcad.inf.ufes.br/log
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and Monte Carlo Localization (MCL) solutions [THR05], employed in our 

autonomous car. In addition, VIBML was able to localize our autonomous car 

with average positioning error of 1.12m and with 75% of the poses with error 

below 1.5m. 

1.1 Motivation 

With the knowledge advancement in the field of probabilistic robotics 

[THR05, BEE04, DIS01, BUR96], today, is possible to implement an 

autonomous vehicle, i.e, a passenger vehicle able to drive itself without any 

assistance, given its starting position and a desired destination [BUE07, 

DAR11, ROL02, ROU11].  

The role played by an autonomous car can be performed by a trained 

human being (able to drive) without much difficulty thanks to its capabilities 

of visual cognition, like depth perception, object and edge recognition, colour 

processing and so on. 

We believe that the eyes has a very important role when someone drives 

a car. In traffic, someone usually makes use of all its human senses to drive. 

But the vision sense is responsible for much of the work. Detect a sign traffic, 

localize itself and identify the lane’s boundaries are tasks that our brain plays 

simultaneously using the inputs coming from our eyes [DEL94, JOC95]. 

The motivation of this work is to better understand the cognitive aspects 

related to the vision when someone drives a car. In this work we are  

particularly interested on how human beings learn about a place, and then, 

with the acquired knowledge, recognizes that place and is able to localize 

themselves in that, only using the eyes. 

1.2 Objectives 

The objectives of the present work are to build a system able to mimic the 

human skill of mapping and localization using mathematical-computational 
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models inspired in the human biology, and to compare it to the currently used 

probabilistic approaches for mapping and localization of the literature. 

With these goals, we rely on the cognitive aspects of human vision to 

develop computational models for mapping, global location and position 

tracking that could be integrated into a platform for autonomous driving.   

In order to replace the currently used localization systems, which makes 

use of sensors as LIDARs (which are very expensive!) for mapping and 

localization, our system only use cameras, a sensor that is very similar to the 

human eye, and very cheap.   

1.3 Contributions  

The main contributions of this work are: 

1. Conception of an Image-Based approach that uses VG-RAM 

WNNs for mapping and localization – the VIBML – capable of 

localizing robots in GPS-denied condition with a low investment 

cost, since only cameras are used. 

2. Comparison of the VIBML’s performance with other probabilistic 

approaches, specifically, Monte Carlo Localization in Ocuppancy 

Grid Maps using LIDARs ˗˗ like the Velodyne HDL 32-E 

[THR05]. 

3. Building of sensor data logs, benefiting the widespread 

development of algorithms in the field of autonomous robotics. 

1.4 Organization of this Dissertation 

This dissertation is organized as follows. After this introduction, Chapter 2 

presents the related literature for this work. Chapter 3 describes the VIBML 

system and the mapping, global localization and positioning tracking 

subsystem in details. Chapter 4 presents the methodology used to carry out the 

experiments to evaluate the VIBML system and the metrics used in the 

evaluation. In Chapter 5, we describe the experiments used for investigating 



 25 

the localization performance of VIBML’s global localization and position 

tracking subsystems. In Chapter 6 we make a discussion and a critical 

assessment of this work by examining the limitations of our system with 

respect to robot’s pose initialization, the problem of kidnapped robot and the 

processing time of the subsystems. Chapter 7 presents a summary of this 

dissertation, its conclusions, and suggests future directions for improving the 

VIBML system. 
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Chapter 2  

Related Work  

Most of the work on robotics vision in the last decade relied on visual 

features with certain degree of invariance to affine transformations [LOW99, 

BAY06] (e.g. rotation, translation, scale) for providing robust landmarks for 

mapping and localization [SSE01, WOL02]. Se et al. [SSE01], for instance, 

developed a vision-based indoor mobile robot SLAM algorithm using stereo 

and Scale Invariant Feature Transform (SIFT), while Wolf et al. [WOL02] 

used invariant features based on image histograms for indoor localization 

using cameras. Both approaches (and many similar ones) are mainly 

conceived as map-based indoor localization and may not be suitable for large 

outdoor environments, as our approach is. In addition, the continuous global 

localization problem is not solved completely in this works. For instance, in 

the work of Se, they are not able to perform global localization as VIBML 

does, because the matching of SIFT features is done only locally. 

Several more recent works focus on situations in which only the initial 

position of the robot is given. In the seminal work of Nister et al., for example 

[NIS04], visual features present in pairs of consecutive video frames are 

matched and estimation of the camera motion is computed from the feature 

tracks. This technique (named visual odometry) is very useful to estimate the 

motion of a mobile system; however, visual odometry does not keep a map of 

the environment. Davison et al., in another seminal work [DAV07], developed 
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a SLAM algorithm that tracks a large set of image features from monocular or 

stereo video and builds a 3D map of features. Lategahn et al. [LAT11] also 

track a large set of features from stereo images using the EKF SLAM and 

compute dense feature maps using them. A similar approach was proposed by 

Geiger et al. [GEI11], where a sparse feature matcher in conjunction with a 

visual odometry algorithm were used for generating maps of consistent 3D 

point-clouds. In spite of their capabilities for visual odometry and/or map 

construction, none of these techniques is suitable for continuous global 

localization.  

RatSLAM [MIL08] is a biologically inspired SLAM approach that uses a 

simplified visual odometry in addition to appearance-based image template-

matching for building maps consisting of simulated cells activations. The 

system performance was evaluated on a 66 km long urban street, with many 

loops. Results showed that RatSLAM is capable of building maps online, 

close loops and re-localize through sequences of familiar visual scenes, i.e. it 

is capable of global localization; however, this global localization requires 

several image frames, while VIBML needs only one image to remember the 

pose of a previously learned place.  

RatSLAM was tested in conjunction with FAB-MAP [GLO10] that is 

another appearance-based SLAM. FAB-MAP [CUM08] is similar to our 

work, since it allows continuous global localization by detecting that an image 

is similar to a previously learned image. However, FAB-MAP is based in the 

bag-of-words image retrieval systems developed in the computer vision 

community [SIV03] and its learning algorithm is costly, while VIBML is 

based on WNN that learns in one shot. In addition, FAB-MAP does not have 

position tracking functionalities as VIBML has.  

SeqSLAM [MIL12] is another state-of-the-art appearance-based SLAM 

that calculates the best candidate matching of an image within a segment of a 

sequence of previously seen images. Although this approach can handle 

normal and extreme conditions in environment appearance even for long 

running distances, SeqSLAM needs to process a long sequence to recognizes a 
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previously seen place and it is not able to perform position tracking.  
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Chapter 3  

Image-Based Mapping and Localization with 

VG-RAM WNN 

The VG-RAM Image-Based Mapping and Localization (VIBML) system is 

composed of three main subsystems: VG-RAM Image-Based Mapping 

(VIBM), VG-RAM Image-Based Global Localization (VIBGL), and VG-

RAM Image-Based Position Tracking (VIBPT).  

The VIBM subsystem (bounded by a red rectangle in Figure 3.1) is 

responsible to create an internal representation of the environment. It firstly 

receives images of the environment captured by a stereo camera as well as the 

poses (position and orientation) where these images were captured. Then, it 

detects characteristics points on the received images, and computes their three 

dimensional positions (3D landmarks) using distance information from a depth 

map computed by a stereo matching algorithm. Finally, VIBM learns about 

the images, the associated poses and landmarks’ positions, and constructs the 

map of the environment, which is represented internally by the contents of the 

memories of its VG-RAM neurons – the Neural Map. 

The VIBGL subsystem (bounded by a blue rectangle in Figure 3.1) is 

responsible for the system start up and for continuous global localization. It 

receives images of the environment and uses the previously acquired 

knowledge – the Neural Map – to output the poses and associated landmarks’ 
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positions where these images were captured. 

 

The VIBPT subsystem (bounded by a green rectangle in Figure 3.1) is 

responsible for keeping track of new poses over times. It employs an Extended 

Kalman Filter - EKF [THR05, SIM06] to integrate sensor readings over time 

through consecutive steps of state prediction and correction. The state 

prediction step is computed by means of our robot’s motion model, which uses 

velocity and steering angle information computed from images using visual 

odometry [GEI11]. The state correction step is performed in two steps. 

In the first step, VIBPT receives an image of the environment and 

consults VIBGL for the most similar image and respective 3D landmarks in 

the Neural Map. Subsequently, VIBPT projects the 3D landmarks outputted by 

 

Figure 3.1: The VIBML system architecture. The VIBM subsystem (bounded by a 

red rectangle) uses images and associated global poses and characteristics points’ (or 

landmarks’) positions to build the map of the environment, which is represented 

internally by the contents of the memories of its neurons. The VIBGL subsystem 

(bounded by a blue rectangle) uses previously acquired knowledge – the map – to 

output the global poses where these images were captured. The VIBPT subsystem 

(bounded by a green rectangle) uses an Extended Kalman Filter (EKF) to integrate 

sensor data over time through consecutive steps of state prediction and correction.  

The state prediction step is computed by means of our robot’s motion model, which 

uses odometry information,  and the state correction step is performed by integrating 

the global poses estimated by VIBGL with the matching of landmarks previously 

stored in the map. 
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VIBGL back to the camera’s coordinate system (2D coordinates of 

characteristic points) and searches for these characteristic points in the 

previously received image of the environment, using an approach for visual 

search based on VG-RAM WNN [SOU13]. Once the correspondences for 

each characteristic point is found, VIBPT computes their three dimensional 

positions (3D observations) using the distance information from a depth map 

computed by a stereo matching algorithm and corrects the robot’s local pose 

by adjusting it in proportion to the difference between the 3D landmarks and 

the 3D observations using a measurement model.  

In the second step, VIBPT adjusts the robot’s local pose by fusing the 

corrected local pose with the global pose estimated by VIBGL, which ensures 

that the local pose error is bounded by the global pose error. 

In the next section we explain in details the basic component of all 

VIBML's subsystems, the VG-RAM WNN. 

3.1 VG-RAM WNN 

The VG-RAM WNN is a very effective machine learning technique that offers 

easy implementation and fast training procedure, thanks to its simplicity 

[LUD99]. Such neural networks comprise a set of neural layers composed of 

VG-RAM neurons connected to other layers through synapses. 

A basic network architecture comprises two layers: an input layer and a 

neural layer. Differently from weighted neural networks, that store knowledge 

in their synapses, in VG-RAM WNNs each neuron of a neural layer has a set 

of weightless synapses S = {s1, …, sp}. The data read from the corresponding 

input layer through the synapses are transformed in a vector of bits 

I = {i1, …, ip} (one bit per synapse). Each bit of this vector is computed using 

a synapse mapping function that transforms non-binary values from the input 

layer in binary values.  

The VG-RAM WNN neurons store knowledge in private local memories 

that work as look-up tables and keep sets L = {L1, …, Lj, …, Lm} of pairs Lj = 
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(Ij, tj), where Ij is a binary input vector and tj is its corresponding output label. 

The binary input vectors are extracted from the input layers via the set S of 

synapses of each neuron, while the output labels t are the learned neurons’ 

output-values for each binary input vector I.  

The VG-RAM WNN supervised training and test work as follows. 

During training, an input pattern and its expected output pattern are set in the 

input layer and the output of the VG-RAM WNN neural layer respectively. 

Firstly, each neuron extracts a binary input vector I from the input layer, via its 

set of synapses S (one bit per synapse). Secondly, the expected output label t is 

set in the output of the corresponding neuron in the neural layer. Finally, this 

input-output pair L = (I, t) is subsequently stored into the neuron’s look-up 

table (see Table 3.1). 

During test, an input pattern is set in the input layer and each neuron 

extracts a binary input vector I from the given input pattern via its set of 

synapses S. The neurons subsequently use I to search and find, in their look-up 

tables, the input Ij, belonging to the learned input-output pairs Lj = (Ij, tj) that is 

the closest to the I vector extracted from the input layer. Finally, the output of 

the neuron receives the label value tj of this Lj input-output pair. In case of 

more than one pair Lj with an input Ij at the same minimum distance of the 

extracted input I, the output value tj is randomly chosen among them. 

Table 3.1: VG-RAM WNN neuron lookup table. 

Lookup Table s1 s2 s3 Y 

L1 1 1 0 t1 

L2 0 0 1 t2 

L3 0 1 0 t3 

 ↑ ↑ ↑ ↓ 

input 1 0 1 t2 

 

Table 3.1 shows the lookup table of a VG-RAM WNN neuron with three 

synapses (s1, s2 and s3). This lookup table contains input-output pairs Lj = (Ij, 

tj), which were stored during the training phase (L1, L2 and L3). During the test 

stage, when an input vector (input) is presented to the network, the VG-RAM 

WNN test algorithm calculates the distance between this input vector and each 
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input of the input-output pairs stored in the lookup table. In the example of 

Table 3.1 the Hamming distance from the input to entry L1 is two, because 

both s2 and s3 bits do not match the input vector. The distance to entry L2 is 

one, because s1 is the only non-matching bit. The distance to entry L3 is three, 

as the reader may easily verify. Therefore, for this input vector, the algorithm 

evaluates the neuron’s output, Y, as class 2, since it is the output value stored 

in entry L2. 

It is important to note that the Hamming distance between two binary 

patterns can be efficiently computed at machine code level in current 64-bit 

CPUs and GPUs of personal computers using two instructions: one to identify 

the bits that differ in 64-bit segments of the two binary patterns, i.e. a bit-wise 

exclusive-or instruction; and another to count these bits, i.e. a population count 

instruction. 

3.2 VG-RAM Image-Based Mapping (VIBM) 

3.2.1 VIBM Architecture 

The VIBM subsystem employs a VG-RAM WNN architecture that captures 

holistic and feature-based aspects of input images by using two different 

synaptic interconnection patterns. Figure 3.2 shows an overview of the VIBM 

subsystem. VIBM uses a single Neural Layer with u × v VG-RAM WNN 

neurons with m-size memory. This Neural Layer is connected to two input 

layers, (i) Cropped Input and (ii) Gaussian-Filtered Cropped Input, according 

to two different synaptic interconnection patterns, S1 and S2, respectively. 

S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are subsets of 

S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1  S2, where S is the set of synapses 

of each neuron of the VIBM’s  Neural Layer. 

Each neuron samples the Cropped Input and the Gaussian-Filtered 

Cropped Input in two different ways: holistically, with S1; and feature-based, 

with S2. The set of synapses S1 samples the Cropped Input holistically because 

it is defined according to a uniform random interconnection pattern that covers 
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the whole Cropped Input; while S2 samples the Gaussian-Filtered Cropped 

Input featured-based because it is defined according to a Normal distribution 

centered in the position of the neuron mapped to this input (see Figure 3.2 and 

[SOU08] for details about the feature-based synaptic interconnection pattern). 

 

The synaptic mapping function that maps non-binary image pixels to 

  

Figure 3.2:  Illustration of the VIBM subsystem. VIBM employs a u × v VG-RAM 

WNN Neural Layer of neurons with m-size memory. Each neuron is connected to two 

processed versions of the Input Image (Cropped Input and Gaussian-Filtered 

Cropped Input) through two sets of synapses, S1 and S2 (exemplified for one neuron 

in yellow and orange respectively). S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are subsets 

of S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1   S2, where S is the set of synapses of each 

neuron. This set of synapses samples the neuron’s inputs as a vector of bits I = {i1,1, 

…, i1,p, i2,1, …, i2,q}. The Neural Layer shows an example of activation pattern based 

on the binary input vectors I and labels t of the learned pairs L = (I, t). Each neuron 

responds with the label tj associated with the input Ij that is the closest to the binary 

input vector I extracted from the Cropped Input and the Gaussian-Filtered Cropped 

Input. The labels t are indexes to geo-tagged images. 

Synapses

S1

i1,1 i1,2 ... i1,p i2,1 i2,2 ... i2, q t

L1 1 0 ... 1 0 0 ... 1

L2 1 0 ... 0 1 0 ... 0

... ... ... ... ... ... ... ... ... ...

Lm 1 1 ... 0 1 0 ... 1

Neuron

Memory

Look-up Table

Synapses

S2

u

v

Input Image

Neural Layer

Gaussian-Filtered Cropped InputCropped Input

Neuron Outputs
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binary values is a minchinton cell type [MIT98] that works as follows. Each 

pixel is treated as an integer y = b × 256 × 256 + g × 256 + r, where b, g, and r 

are the blue, green and red color channels. The non-binary pixel value y read 

by each synapse is subtracted from the non-binary pixel value y read by the 

subsequent synapse in the set of synapses of each neuron, 

S = {s1,1, …, s1,p, s2,1, …, s2,q}. The value read by the last synapse, s2,q, is 

subtracted from the value read by the first, s1,1. If a negative value is obtained, 

the bit corresponding to that synapse is set to one; otherwise, it is set to zero. 

The two input layers, Cropped Input and Gaussian-Filtered Cropped 

Input, are processed versions of the Input Image. While the Cropped Input is 

simply a region of interest defined in the input image, the Gaussian-Filtered 

Cropped Input is the result of a Gaussian filter applied to this region of interest 

(see Figure 3.2 for an example).  

The region of interest was defined in order to remove irrelevant pixel 

information from the input image. In our case, the bottom of the image is 

cropped out to eliminate static part of the car roof visible in the field of view 

of a mounted-on camera. The Gaussian filter, in the other hand, is used as a 

low-pass image filter. Since a feature-based synaptic interconnection pattern is 

used to sample this input layer, high-frequency attenuation is necessary to 

remove spurious high-frequency information irrelevant for localization. 

3.2.2 Mapping 

The VIBM subsystem learns images from the environment and associated 

global poses and 3D landmarks (i.e., the Neural Map). Let global_posej be the 

global pose of the imagej and Uj be the set of 3D landmarks of imagej. Let also 

T = {T1, …, Tj, ..., T|T|} be a set of triplets Tj = (imagej, global_posej, Uj) 

presented to VIBM. In the mapping phase (or training), the imagej of each 

triplet Tj is set as the VIBM’s Input Image and the corresponding index j is 

copied to the output of each neuron of VIBM’s Neuron Layer. Then, all 

neurons are trained to output j when sampling from imagej via Cropped Input 

and Gaussian-Filtered Cropped Input images.  
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The contents of all neurons’ memories - the Neural Map – are dumped to 

a file, for a posteriori usage. In the localization phase (or test) (Section 3.3 and 

Section 3.4), the map file is loaded to the neurons’ memories and the index j 

learned by the neurons can be used for recovering posej, imagej or Uj. 

In the following section, we describe how the characteristic points 

required by the VIBM’s learning procedure are detected. In Section 4.1 we 

describe how the global poses are computed. 

3.2.3 Detection of Characteristic Points  

To detect image characteristic points, the VIBM subsystem employs the iLab 

Neuromorphic Tookit Vision C++ Tool (iNVT, pronounced "invent") [ITT98, 

NAV05]. iNVT is a set of C++ classes for the development of neuromorphic 

models of vision. Particularly, we use the iNVT neuromorphic model that is 

inspired in visual attention. This model estimates which elements of a scene 

are likely to attract the attention of human observers. These elements are 

considered the characteristic points or saliencies of an image. 

Figure 3.3 illustrates the detection of characteristic points on an image. 

Given an input image (Figure 3.3 (a)), the iNVT’s visual attention model 

computes an initial saliency map (Figure 3.3 (b)). This saliency map is a 

combination of feature-maps which represent local discontinuities of an 

image, in the modalities of color, intensity and orientation. A winner-takes-all 

neural network detects the points of highest contrast in the salience map and 

draws the focus of attention towards these locations, which are considered 

saliencies (Figure 3.3 (c)). For each shift of the focus of attention, an 

inhibition process is performed in order to prevent that saliency to be detected 

twice, basically this inhibition process works by erasing the found saliency in 

the saliency map. After this inhibition process occurs, the saliency map is 

update and the above steps (detection of highest contrast, shift of attention and 

inhibition) are repeated until a certain number of saliencies is computed. 

To compute the three dimensional positions of detected saliencies, VIBM 

employs the Library for Efficient Large-scale Stereo Matching (LIBELAS) 
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[GEI10]. Given a pair of stereo images, LIBELAS computes a depth map 

(Figure 3.3 (d)).  

 

A depth map is an image where each pixel represents the distance between the 

camera position and the surface of objects from a world scene. Using the 

information of distance stored in the depth map, and the stereo camera’s 

projective parameters, VIBM can compute the three dimensional positions of 

saliencies (3D landmarks). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.3: (a) Scene image. (b) Initial saliency map computed by iNVT. (c) Image saliencies 

detected by iNVT. (d) Depth map computed by LIBELAS. 
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3.3 VG-RAM Image-Based Global Localization (VIBGL) 

3.3.1 Global Localization 

To perform global localization, the VIBGL subsystem uses the same VIBM’s 

architecture. As a matter of fact, the VIBGL is only the representation of the 

VIBM’s test phase. 

At initialization, the VIBGL subsystem firstly loads the map of the 

environment – the Neural Map – stored in the map file to its neurons’ 

memories (Section 3.2).  

At runtime, given a query image, VIBGL infers a global pose based on 

the previously acquired knowledge. The query image is set as VIBGL’s Input 

Image and all neurons compute their outputs, which are indexes (32-bit 

integers). Each neuron infers an index based on the input binary vectors 

extracted by their synapses. The number of votes for each index is counted and 

the network outputs the index j with the largest count. The index j is used to 

recover the imagej, global_posej or the 3D landmark set Uj, that are outputted 

by VIGBL. 

3.4 VG-RAM Image-Based Position Tracking (VIBPT) 

In order to perform activities of interest, autonomous robots need to know its 

initial pose (global localization) and to keep track of its new poses over time 

with small uncertainty (position tracking). The VIBGL, subsystem of VIBML, 

efficiently solves the global localization problem, but it does not solve the 

position tracking problem, because the uncertainty about the global pose is not 

negligible. 

The major restriction of VIBGL is that it estimates the robot’s global 

pose using previously acquired knowledge – the map – without performing 

any correction on the estimated global pose. When VIBGL is building its 

internal representation of the environment (using the VIBM architecure), it 

learns that a particular imagej was captured at global_posej. After that, in 

localization phase, when another arbitrary imagei, (similar to the imagej) is 
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presented to VIBGL, it outputs that the inferred image pose is exactly 

global_posej. Nevertheless, this is not necessarily true, since the imagei may 

have been captured at global_posei , that is slightly different of the VIBGL’s 

outputted global_posej (see Figure 3.4). In this way, the VIBGL’s estimated 

global_posej  may contain a displacement error that needs to be corrected to 

best approximate the real global_posei. 

 

To overcome this problem and turn VIBML into a full localization 

system, we built the VIBPT subsystem, which integrates the VIBGL’s 

estimated global poses with the matching of landmarks previously stored in 

the map in order to provide a more reliable and precise robot’s pose. For that, 

VIBPT employs an Extendend Kalman Filter (EKF) that operates in two steps: 

the state prediction step and the state correction step. In the state prediction 

step, EKF uses our robot’s motion model and velocity information to estimate 

a local pose. In the state correction step, EKF firstly corrects the local pose by 

the matching of landmarks previously stored in the map, and subsequently 

fuses the corrected local pose with the global pose estimated by VIBGL, 

which ensures a local pose error bounded by the global pose error. 

 

Figure 3.4: Error in the global pose of an image estimated by VIBGL. Given a query 

imagei, VIBGL outputted the global_posej associated with imagej. Nevertheless, 

imagei might be captured at a global_posei slightly different from global_posej. 
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3.4.1 Extended Kalman Filter (EKF) 

The Kalman Filter (KF) is a recursive filter that estimates the state of a linear 

system [THR05]. At a given time, it uses its previous knowledge about the 

system’s state and sensor measurements to compute a predicted value of the 

state and the covariance matrix of the estimation error. The Extended Kalman 

Filter (or EKF) is a KF that linearizes the non-linear dynamics about the 

system around the previous state estimates [THR05]. It is a sub-optimal 

method and is reliant on the noise of the system being Gaussian distributed. 

Table 3.2 shows the EKF algorithm. The EKF represents the system’s 

state X at time t by means of the mean    and the covariance    of a 

multivariate Gaussian distribution. In general, on each iteration, the EKF tries 

to keep the system’s state estimate updated, by computing consecutive state 

predictions and corrections steps.  

Table 3.2: The EKF algorithm [THR05]. 

  

1: Algorithm Extended_Kalman_Filter (               ) 
 2:                          
 3:                        

      
 4:                   

           
      

   

 5:                                  
 6:                           
 7:          return       
  

 

In the state prediction step, the EKF predicts the state estimate by 

employing a continuous nonlinear function,           , that governs the 

system state transition model (lines 1 and 2 of Table 3.2).  This model 

describes how the system state     
 
 
 , evolves over time. Given a 

command    and the previous state mean     , the function            

computes the predicted state mean    . In the correction step (lines 4 to 6 of 

Table 3.2), the EKF receives observations    as input and uses them to correct 

the predicted state mean     by comparing the observations    with the 

expected measurements computed by the system’s measurement model, that is 
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governed by the non-linear function       . 

The system’s covariance      is also updated in the process. At 

prediction, EKF uses the Jacobian Gt plus an additive Gaussian noise with 

zero mean, Rt,   to update the previous covariance      to a new covariance,    . 

The Jacobian Gt is the derivative of the function   with respect to the previous 

state        
    
    

 , and evaluated at the command    and the previous state 

mean      (line 2). At correction, EKF uses the Jacobian Ht plus an additive 

Gaussian noise with zero mean, Qt,   to correct the predicted    . The Jacobian 

Ht is the derivative of the function   (measurement model) with respect to the 

robot location, and evaluated at the predicted mean     (line 6). Qt is an 

additive Gaussian noise with zero mean that represents the sensor’s noise.  

3.4.2 Localization with EKF 

In this work, we used the EKF in the context of mobile robot localization 

[THR05] and implemented it employing the Bayesian Filtering Library (BFL 

[KLA01]).  

The system state transition model was defined by means of the velocity 

motion model of an autonomous car. This velocity motion model considers the 

kinematics of a car-like robot and assumes that we can control it through 

translational velocity and steering wheel angle commands.  

The system measurement model was split in two components: a linear 

measurement model and a landmark measurement model [THR05, SIM06]. 

Firstly, we used a simple linear measurement model with additive Gaussian 

noise to fuse the global pose (estimated by VIBGL) with the local pose 

(estimated by VIBPT in the EKF state prediction step). In this way, VIBPT 

can guarantee that the local pose does not drift so much over time and the 

uncertainty about the local pose is bounded by the global pose error. 

Subsequently, we used the landmark measurement model to update the 

previous global correction, by matching  the detected landmarks observed in 

the sensor data (3D observations) along a trajectory, with landmarks stored in 
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the map (3D landmarks).  

3.4.2.1  State Prediction Step 

Our EKF implementation employs the velocity motion model of a car-like 

robot in the state prediction step. 

Let   and   be the car’s location, given by the midway of the two rear 

wheels;   the car’s orientation;   the distance between the front and rear 

wheels’ axles;   the car’s translational velocity;   the steering wheel angle, 

given by the average of the angle of the right and left front wheels; as 

illustrated in Figure 3.5.  

 

Also, let            be the state of the car at time   and          

the control command at time  . So, after the small    time interval, the car will 

be at state                 given by the   function: 

 

 
  
  

  

     
 
 
 
     

        
        

     
    

 

           , 

 

 

( 1 ) 

 

where          is a Gaussian distribution with zero mean and covariance   , 

which represents the noise of the velocity motion model. 

To compute         , the VIBPT subsystem uses velocity and 

 

Figure 3.5: Parameters of the velocity motion model of a car-like robot. 
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steering angle information computed from images using visual odometry 

(Section 3.4.3). 

3.4.2.2 State Correction Step 

To perform the correction step, we firstly used a simple linear measurement 

model with additive Gaussian noise to fuse the global (VIBGL) and local 

(VIBPT) predicted poses [SIM06].  

Secondly, we employed the landmark measurement model [THR05] to 

compare the range-and-bearing of map-stored landmarks (3D landmarks) with 

landmarks observed in the sensor data (3D observations). To compute the 

Euclidean distance (range) and the orientation angle (bearing) between the 

robot’s local pose and the expected 3D landmark’s position in the map we 

used the Equation ( 2 ), that represents the function   

 

 
  
 

  
 
 

   
  
 

  
    

         
    

 

        
       

       

           , 
 

( 2 ) 

 

 

where        
  is the coordinates of the i-th landmark in the map, detected 

at time t; (x, y) is the coordinates of the robot’s local position,   is the robot’s 

orientation; and         is a Gaussian distribution with zero mean and 

covariance   , which represents the sensor’s noise. 

Finally, we computed the mean correction by updating it proportionally 

to the displacement between the i-th 3D landmark’s measurement   
  computed 

using ( 2 ) and the 3D observations currently made by sensors (line 5 of Table 

3.2). 

In order to compute the correspondences between landmarks detected by 

sensors (3D observations) with landmarks stored in the map (3D landmarks), 

the VIBPT subsystem used a visual search approach based on VG-RAM 

WNN [SOU13] (Section 3.4.4). 
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3.4.3 Visual Odometry 

The VIBPT subsystem employs the Library for Visual Odometry 2 

(LIBVISO2) [GEI11] in order to compute         . LIBVISO2 estimates 

the relative displacement between two consecutive positions of a camera over 

time using the stereo images captured in these positions. Given the relative 

displacement between two consecutive camera poses,          can be 

computed by: 

   
   

     
 

  
 and 

 

( 3 ) 
 

    atan2   
  

  
     , ( 4 ) 

 

where    and    are the relative displacements in the   and   coordinates, 

respectively, and    is the displacement in the orientation.  

3.4.4 Visual Search of Landmarks 

Figure 3.6 shows how the VIBPT system performs the matching between the 

3D landmarks previously stored in the Neural Map with the 3D observations 

currently made by the robot. 

 

Firstly, the VIBPT subsystem consults VIBGL for the most similar 

image (left image in Figure 3.6) and respective 3D landmarks (blue sphere in 

 

Figure 3.6: Visual Search of  map-stored 3D landmarks in the image currently 

observed by the  robot. 
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Figure 3.6), to the image currently seen by the robot (right image in Figure 

3.6).  

Then, VIBPT reprojects the 3D landmarks outputted by VIBGL back to 

the camera’s coordinate system (left-blue arrow in Figure 3.6) (2D coordinates 

of characteristic points) and searches for these characteristic points in the 

image seen by the robot, using a visual search approach based on VG-RAM 

WNN [SOU13] (green arrow in Figure 3.6). 

Once the correspondences for each characteristic point is found, VIBPT 

computes their three dimensional positions, the 3D observations (red sphere in 

Figure 3.6), using the distance information from a depth map computed using 

the LIBELAS stereo matching algorithm [GEI10] (right-blue arrow in Figure 

3.6). 

Using the map-stored 3D landmark and its correspondence found by VG-

RAM Visual Search, VIBPT computes two measurement vectors: the expected 

measurement vector (3D landmarks), represented by the distance and angle 

between the robot’s local pose and the pose of the landmark stored in the map. 

And the observation measurement vector (3D observations), represented by 

the distance and angle between the robot’s pose and the 3D landmark found 

correspondence. Finally, the expected measurement and observation 

measurement vectors are used by the landmark measurement model via the 

EKF’s measurement model to correct the robot poses proportionally to the 

displacement between the two above mentioned vectors. 

3.4.4.1 Context Application 

Figure 3.7 shows an example of a training instance of our VG-RAM WNN 

architecture for visual search. 

In Figure 3.7, the network is trained to detect the curb of the street on the 

image. Figure 3.7(a) shows the training image with the centre of attention 

marked with a green dot; Figure 3.7(b) shows the log-polar mapping of the 

VG-RAM WNN’s input onto the network neural layer; and Figure 3.7(c) 

shows the output of the neural layer after training. 

As the Figure 3.7(c) shows, neurons with receptive field over or near the 
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center of attention are trained to produce outputs with values higher than zero 

(white or gray), while those with receptive field far from the center of 

attention are trained to output zero (black). 

 

Figure 3.8 shows an example of a test instance of our VG-RAM WNN 

architecture for visual search, where neurons of the network, trained to detect 

the curb, generate their outputs according to the image region monitored by 

their receptive fields. Figure 3.8(a) shows the test image with the found centre 

of attention marked with a green dot; Figure 3.8(b) shows the output of the 

VG-RAM WNN’s neural layer. Figure 3.8(b) shows that neurons with the 

centre of their receptive fields over or near the centre of attention generate 

higher outputs. 

 

  

(a) (b) 

Figure 3.8: Example of a test instance of our VG-RAM WNN architecture for visual 

search. 

 

  

(a) (b) 

 

 

 

(c) 

Figure 3.7: Example of a training instance of the VG-RAM WNN architecture for visual 

search. (a) Training image and characteristic point to search for (green dot). The Log-Polar 

for the  Training Image. (c) Neurons activation. 
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3.4.5 Outliers Removal 

Although the VIGBL subsystem usually estimates global poses with an 

acceptable accuracy, it might sometimes predict a global pose that is far from 

the actual robot´s global pose. Such a wrong prediction causes a bad 

measurement integration in the VIBPT's linear measurement model. To 

minimize this issue, we choose the best global pose estimation,   , to be used 

in the linear measurement model among all global poses,  , estimated by 

VIBGL. The choice is based on how close the global pose is from the previous 

local pose,  , estimated by VIBPT as in Equation ( 5 ): 

          
           

           
          

 
  

 
 ( 5 ) 

Hence, the smaller the Euclidean distance between the VIBGL's estimated 

global pose,  , and the previous VIBPT's estimated local pose,  , is, the 

greater are the chances of   being the best global pose estimation,   . If the 

distance between these two poses is larger than a pre-defined threshold, there 

is a high chance of the estimated global pose,  , being an outlier and, 

therefore, it is discarded by the system. In this implementation, VIBGL returns 

three guesses for the global pose   (i.e., the three most voted poses) to choose 

the best estimation for the VIBPT correction step, as described above. 
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Chapter 4  

Experimental Methodology 

 

In this chapter, we present the experimental methodology used to evaluate the 

VIBML system. We start by presenting the autonomous vehicle platform used 

to acquire the datasets, follow by describing the CARMEN Robot Navigation 

Toolkit employed to implement the VIBML system and the datasets used for 

the experiments. We finish by describing the methodology and metrics used in 

the experiments.  

4.1 Autonomous Vehicle Platform 

We collected the data to evaluate the VIBML system’s performance using the 

Intelligent and Autonomous Robotic Automobile – IARA (Figure 4.1). IARA 

is an experimental robotic platform based on a Ford Escape Hybrid that is 

currently being developed at Laboratório de Computação de Alto 

Desempenho – LCAD (High-Performance Computing Laboratory – 

www.lcad.inf.ufes.br) of Universidade Federal do Espírito Santo – UFES 

(Federal University of Espírito Santo – Brazil). 

Our robotic platform has several high-end sensors, including: two Point 

Grey Bumblebee XB3 stereo cameras and two Bumblebee 2 stereo cameras; 

one Light Detection and Ranging (LIDAR) Velodyne HDL 32-E; and one 

http://www.lcad.inf.ufes.br/
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GPS-aided Attitude and Heading Reference System (AHRS/GPS) Xsens 

MTiG (Figure 4.1). To process the data coming from the sensors, the platform 

has four Dell Precision R5500 (2 Intel Xeon 2.13 GHZ, 12 GB  RAM, 2 SSDs 

of 120GB on RAID0 and GPU cards Tesla C2050). We implemented many 

software modules for IARA that currently allows for its autonomous operation 

(such as modules for mapping, localization, obstacle avoidance, navigation, 

etc.; see video of IARA autonomous operation at 

http://youtu.be/zE7np6tgCHc and videos about other IARA’s software 

modules at http://www.youtube.com/user/lcadufes).   

 

To build the datasets used in this work, we used IARA’s frontal 

Bumblebee XB3 left camera to capture images (640x480 pixels), and IARA’s 

Occupancy Grid Mapping - Monte Carlo Localization (OGM-MCL) system to 

capture associated global poses.  

The OGM-MCL system works by fusing visual odometry, Global 

Positioning System (GPS) pose and Inertial Measurement Unit (IMU) data 

from IARA’s sensors into a precise fused odometry using a Particle Filter, and 

then localizes the robot on a previously created occupancy grid map. The 

OGM-MCL system uses the fused odometry and the vehicle’s motion model 

(suitable for vehicles with Ackermann steering) to predict the vehicle’s pose 

and correct it by performing the matching between the IARA’s Velodyne 

 

Figure 4.1. Intelligent and Autonomous Robotic Automobile (IARA) with the mounted-on 

Point Grey Bumblebee XB3 camera (marked in green) used in experiments. Learn more 

about IARA at www.lcad.inf.ufes.br. 

http://youtu.be/zE7np6tgCHc
http://www.youtube.com/user/lcadufes
http://www.lcad.inf.ufes.br/
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HDL-32 data with a previously created occupancy grid map. The global poses 

computed by IARA’s OGM-MCL system have precision of about 0.5m. 

4.2 CARMEN Robot Navigation Toolkit 

All the VIBML system’s modules were implemented using the CARMEN 

Robot Navigation Toolkit. CARMEN is an acronym for the popular and 

widely used "Carnegie Mellon Robot Navigation Toolkit", a collection of open 

source software (http://carmen.sourceforge.net/home.html), designed at the 

Carnegie Mellon University (CMU) to control mobile robots.  

The toolkit guaranteed to its developers the victory in the Defense 

Advanced Research Projects Agency (DARPA) Grand Challenge 2005 

(http://archive.darpa.mil/grandchallenge05) and the second place in DARPA 

Urban Challenge (http://archive.darpa.mil/grandchallenge/index.asp). 

CARMEN allows abstracting most of the implementation details of a robotic 

system that incorporates sensors, algorithms for planning, navigation and 

control, freeing the programmer to focus on issues of the highest level.  

CARMEN is modular, service oriented and provides basic primitives for 

robot navigation, including: base and sensor control, registration, detection 

and obstacle avoidance, localization, path planning and mapping. 

CARMEN enables the development of systems consisting of multiples 

executable programs (or modules) that communicate together according to the 

publish-and-subscribe paradigm. As stated by this paradigm, a sensor module, 

for instance, can be implemented by a separate executable program that sends 

(publish) messages with sensor’s data for any modules that sign (subscribe to) 

these messages. A filter module can sign messages of various modules, 

manipulate them with algorithms of interest, and post messages with their 

results for various other modules that request them.  

A module that publishes a message does not need to know who receives 

it; thus avoids problems like dead lock and starvation that hinder the 

programming of distributed systems (autonomous robot control systems are 

http://carmen.sourceforge.net/home.html
http://archive.darpa.mil/grandchallenge05
http://archive.darpa.mil/grandchallenge/index.asp
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inherently distributed). 

4.3 Datasets 

For the experiments, we have used two laps data acquired in different dates. 

Basically, for each lap, IARA was driven with an average speed of about 30 

km/h around the UFES campus. A full lap around the university campus has 

an extension of about 3.57 km (Figure 4.2). During the laps, image and global 

pose data were synchronously acquired. 

 

The first lap data was recorded in October 3
rd

 2012 (UFES-2012), while 

the second lap data was recorded in April 18
th

 2014 (UFES-2014). The 

difference in days between the recording of the first and the second lap data is 

almost two years. Such time difference resulted in a challenging testing 

scenario since it captured substantial changes in the campus environment. 

Such changes includes differences in traffic conditions, number of pedestrians, 

and changes in lighting condition. Also, there were substantial building 

infrastructure modifications alongside the roads in between dataset recording.  

To evaluate the effect of learning different numbers of images (the more 

images the VIBGL, subsystem of VIBML, learns, the more labels it has to 

 

Figure 4.2: Full lap around the university campus with an extension of about 3.57 

kilometers. Source: Google Maps (http://maps.google.com.br). 
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differentiate) the UFES-2012 lap data were sub-sampled at four different 

intervals: 1 meter, 5 meters, 10 meters, and 15 meters. After sub-sampling the 

UFES-2012, four datasets were created: 1-meter spacing dataset with a total of 

2,223 image-pose pairs, a 5-meters dataset with a total of 444 image-pose 

pairs, a 10-meters dataset with 222 image-pose pairs, and a 15-meters dataset 

with 148 image-pose pairs. The UFES-2014 dataset was not sub-sampled, 

since it was only used for test purposes. All datasets mentioned above are 

available at: http://www.lcad.inf.ufes.br/log. 

4.4 Metrics 

In order to validate our system, we have run a set of localization experiments. 

In all experiments, the training and test datasets were from different dates, 

except in the Localization Noise experiment of the VIBPT subsystem, where 

we used the same dataset for training and test.  

In other experiments, the sub-sampled datasets from UFES-2012 were 

used to teach the VIBM subsystem about a trajectory (training the system), 

and the UFES-2014 dataset was used to test the performance of the system by 

comparing VIBML’s estimated poses with the output poses from IARA’s 

OGM-MCL system, along the learned trajectory.  

4.4.1 Global Localization Metrics 

In order to evaluate the VIBGL subsystem, we used two distinct metrics to 

measure the VIBGL’s classification accuracy and the VIBGL’s positioning 

error. 

Firstly, we measured the VIBGL’s classification accuracy by means of 

how many image-pose pairs the VIBGL subsystem estimates correctly. 

Secondly, we measured the VIBGL’s positioning error by means of how close 

de VIBGL’s estimated poses pi are to the poses pj estimated by the IARA’s 

OGM-MCL system. For this, we compute the Mean Absolute Error (MAE) of 

the Euclidean distance between these two set of poses. The MAE is given by 

http://www.lcad.inf.ufes.br/log
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Equation ( 6 ) 

     
 

 
          

 

          

 
( 6 ) 

 

 

where,   is the number of image-pose pair compared,    is the VIBGL’s 

estimated pose and    is the pose estimated by the IARA’s OGM-MCL 

system. 

4.4.2 Position Tracking Metrics 

In order to evaluate the VIBPT sub-system, we firstly, measured the VIBPT’s 

positioning error by means of how close de VIBPT’s estimated poses pi are to 

the poses pj estimated by the IARA’s OGM-MCL system. For this, we 

employed the MAE metric used in global localization (Equation ( 6 )) to 

compute the average distance between these two set of poses. In addition, we 

compared the VIBML performance improvement when using positioning 

tracking rather than global localization only. 

 Secondly, we compared the VIBPT and the OGM-MCL systems by  

measuring the localization noise and the localization displacement regarding 

the IARA’s OGM-MCL pose estimates in a full trajectory around the UFES’ 

campus and compare it against to the localization noise and the localization 

displacement regarding the VIBPT’s pose estimates. 

 To measure the localization noise of each one of the localization 

systems, we basically run a set of experiments, using the same dataset (UFES-

2012) for training and test. Firstly, we measured the Euclidean distance of the 

estimated poses between the experiments and calculate their standard 

deviations. Subsequently, we calculate the mean of these standard deviations 

using the Square Root of the Pooled (or weighted) Variances (SRPV 

[HEA10]), defined in Equation ( 7 ). 
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where   is equal to the number of experiments performed and    is the 

standard deviation of the Euclidean distance of the estimated poses between 

the experiment i and i-1. 

 To measure the localization displacement of each one of the 

localization systems, we run two experiments. The first one using the UFES-

2012 dataset for training and test, and the second one using the UFES-2012 

dataset for training and the UFES-2014 for test. Basically, in both experiments 

we recorded the trajectory estimated by the VIBPT and OGM-MCL system 

and we measured the MAE of the Euclidean distance (Equation ( 6 )) between 

the estimated poses in the two experiments for both systems. 
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Chapter 5    

Experiments 

In this chapter, we show and discuss the outcomes of our experiments. We 

firstly present the experiments performed to evaluate VIBGL in three parts: 

classification accuracy, positioning error, and qualitative results. 

Subsequently, we present the experiments carried out to analyse VIBPT. 

5.1 VIBGL  

5.1.1 Classification Accuracy 

This section shows the relationship between the amount of frames learned by 

the VIBGL system and its classification accuracy. We measured the system 

classification accuracy in terms of how close the VIBGL’s estimated image-

pose pair,                          , is to the correct image-pose pair, 

                         , for a given query image             . The 

image-pose pairs Ie and Ic belong to the training dataset, while the image Iq 

belongs to the test dataset. Ideally, Ie is equal to Ic if VibGL is correct in its 

estimate, since both image-pose pairs Ic and Ie belongs to the training dataset. 

Figure 5.1 shows the classification accuracy results obtained using 

UFES-2012 dataset for training and UFES-2014 dataset for testing. The 

vertical axis represents the percentage of image-pose pairs    that were within 
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an established maximum number-of-frames distance from the image-pose pair 

  . The number-of-frames distance is equal to the amount of image-pose pairs 

that one has to go forward or backwards in the training dataset to find    from 

the corresponding   , and is represented as the horizontal axis. Finally, the 

curves of the graph of Figure 5.1 show how the accuracy increases with the 

allowed maximum number-of-frames distance for the different training 

datasets. 

 

As the graph of Figure 5.1 shows, VIBGL’s classification accuracy 

increases with the maximum allowed number-of-frames and reaches a plateau 

at about 5 frames for all training datasets. However, for the UFES-2012 1-

meter spacing training dataset, the VIBGL classification uncertainty is large in 

the beginning of the curve due to the similarity between images in the near-by 

image-pose pairs. If one does not accept any system error (number-of-frames 

allowed equal zero), the accuracy is only about 33% when the system is 

trained with the 1-meter spacing dataset. But, if one accepts as correct an 

image-pose pair up to 5 frames ahead or behind the correct image-pose pair, Ic, 

the accuracy increases to about 97%. On the other hand, when using a dataset 

with a larger spacing between image-pose pairs for training, the system 

accuracy increases more sharply. For example, when the system is trained 

 

Figure 5.1. Classification accuracy for different maximum number-of-frames allowed using 

UFES-2012 dataset for training and UFES-2014 dataset for test. 
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with the 5-meter spacing dataset, with an allowed number-of-frames equal to 

1, the classification rate is about 85%.  

Although the VIBGL might show better accuracy when trained with 

large-spaced datasets, the positioning error of the system increases. This 

happens because one frame of error for the 1-meter training dataset represents 

a much smaller error in meters than one frame of error with large-spaced 

training dataset (e.g., 10m).  

5.1.2 Positioning Error 

We performed experiments to evaluate the relationship between the spacing 

between image-pose pairs learned by VIBGL and the positioning error of its 

estimated poses compared to the IARA’s OGM-MCL poses.  

The results of these experiments are shown in Figure 5.2 as box-plots 

having mean, inter-quartile range and whiskers of the error distribution for the 

1-meter, 5-meters, 10-meters and 15-meters training datasets. Box-plots are 

shown for the setup UFES-2012 as training and UFES-2014 for test. 

 

The horizontal axis of Figure 5.2 shows training datasets spacing 

intervals, while the vertical axis shows the distance of the estimated image-

pose pair Ie to the given image Iq. As the graph of Figure 5.2 shows, the 

positioning error increases as the spacing between training image-pose pairs 

 

Figure 5.2. Positioning Error Distribution between Ie and Iq using the UFES-2012 

dataset for training and the UFES-2014 dataset for testing. 
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increases, but not linearly. The average error is larger than 1m for the 1-meter 

spacing training dataset, but smaller than the spacing of the other datasets. The 

performance of VIBGL with the 1-meter dataset can be explained by the fact 

that with more images, the VIBGL’s VG-RAM WNN has more difficulty to 

differentiate between images. 

5.1.3 Qualitative Results 

To visualize the qualitative results for VIBGL’s estimated positions, we 

extracted two samples of matched frames along the UFES campus: the first 

one having five true positive samples (Figure 5.3), and the second one having 

three false positive samples (Figure 5.4).  

 

Input (UFES-2014) Output (UFES-2012) 

 

Figure 5.3. True positive qualitative results for VIBGL's frame estimation. 
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Figure 5.3 shows examples of true positive frames using the UFES-2012 

dataset as training dataset. As it can be seen, the frames were matched despite 

changes in sunlight position and shadows (third and fifth), road infrastructure 

(first and fourth rows), car movements (second row) and loss of leaves on the 

trees (first, second and fifth rows). 

Figure 5.4 shows examples of false positive frames using the UFES-2012 

as training dataset. The system seems to fail at places with certain similarity, 

e.g., the sky-shape in the first and third rows looks the same. Moreover, in the 

third row, the two frames were captured in a place with similarities in the lane. 

Although this facts can explain those bad results, we must perform a deep 

investigation to understand why the VG-RAM WNN's neurons miss their 

estimates on those images. 

An online demo video shows the VIBGL’s performance on a complete 

lap around the university campus (see video at http://youtu.be/PMif-

W6L2EY). In the video, we used the 1 meter-spacing UFES-2012 dataset for 

training and the 1 meter-spacing UFES-2014 dataset for testing. 

 

More information about the VIBGL subsystem and about VIBGL’s 

Input (UFES-2014) Output (UFES-2012) 

 

Figure 5.4. False positive qualitative results for VIBGL's frame estimation. 

http://youtu.be/PMif-W6L2EY
http://youtu.be/PMif-W6L2EY
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performance can be found in [LYR14].  

5.2 VIBPT 

5.2.1 Positioning Error 

 We measured the VIBPT’s positioning error by means of how close de 

VIBPT’s estimated trajectory are to the trajectory by the IARA’s OGM-MCL 

system. For this, we employed the MAE metric used in global localization 

(Equation ( 6 )) to compute the average distance between these two set of 

poses. In addition, we compared the VIBPT performance improvement when 

using positioning tracking rather than global localization (VIBGL) only. 

The results of these experiments are shown in Figure 5.5 as box-plots 

having mean, inter-quartile range and whiskers of the error distribution for 

VIBPT and VIBGL using the 1-meter spacing dataset. Box-plots are shown 

for the setup UFES-2012 as training and UFES-2014 for test. 

 

As expected the VIBPT's positioning error is smaller than VIBGL's 

positioning error. Due the EKF's correction step (landmark matches) there is a 

reduction of about 60 centimeters in the VIBML average positioning error. 

Furthermore, the positioning error distribution turns more sharp, where 75% of 

the VIBPT's poses have a positioning error bellow 1.5 meters. 

 

Figure 5.5 - Comparison between VIBPT's Positioning Error and  VIBGL's 

Positioning Error. 
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5.2.2 Localization Noise 

In order to show the equivalence between the VIBPT and the OGM-MCL 

system, we evaluated the localization noise of the VIBPT subsystem of 

VIBML and IARA’s OGM-MCL system. For this, we run a set of experiments 

using the same dataset (UFES-2012) with 1-meter spacing between images, 

for mapping and localization. 

Firstly, we recorded the IARA’s OGM-MCL estimated poses by running 

the OGM-MCL system 10 times along the UFES’ campus trajectory and 

storing the estimated poses, pi, for each one of the individual laps, L. Then, for 

each pose pm,i of Lm, we measured the Euclidean distance between pm,i and the 

corresponding pose, pn,i of lap Ln, for all 10 laps, and calculated the average 

and standard deviation of these distances. Finally, we used the above 

mentioned SRPV metric, defined in Equation ( 7 ), to compute the mean of 

these standard deviations. The same steps were followed to compute the 

VIBPT’s localization noise.  

5.2.2.1 IARA’s OGM-MCL Noise 

Figure 5.6 shows, for the IARA’s OGM-MCL system, the average of the 

Euclidean distance between each pose pm,i of lap Lm and the corresponding 

pose pn,i of lap Ln, for all 10 laps.  

 

Figure 5.6 - IARA’s OGM-MCL localization noise using UFES-2012 dataset for mapping and 

localization. 
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estimated by the IARA’s OGM-MCL system along the UFES’ campus 

trajectory, while the vertical axis represents the average of the Euclidean 

distances. As the graph in Figure 5.6 shows, except for a few poses, the poses 

estimated in each one of the 10 laps are very close (less than 1m distance).  

To summarize the results show in Figure 5.6 we used the SRPV metric 

(Equation ( 7 )). We found that the localization noise (mean of the standard 

deviations) of the IARA’s OGM-MCL system is about 0.16m. It is important 

to note that the resolution of the grid-map of IARA’s OGM-MCL is 0.2m. So, 

a SRPV of 0.16m highlights the good precision of this system. 

5.2.2.2 VIBPT Noise 

Figure 5.7 shows, for the VIBPT system, the average of the Euclidean distance 

between each pose pm,i of lap Lm and the corresponding pose pn,i of lap Ln, for 

all 10 laps.  

 

In the Figure 5.7, the horizontal axis represents the order, i, of the poses 

estimated by the VIBPT subsystem along the UFES’ campus trajectory, while 

the vertical axis represents the average of the Euclidean distances. As the 

graph in Figure 5.7 shows, except for a few poses, the poses estimated in each 

one of the 10 laps are very close (less than 0.5m distance).  

To summarize the results shown in Figure 5.7 we used the SRPV metric 

 

Figure 5.7 - VIBPT’s localization noise using UFES-2012 dataset for mapping and 

localization. 
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(Equation ( 7 )). We found that the localization noise (mean of the standard 

deviations) of the VIBPT system is about 0.07m. 

Comparing the graphs in Figure 5.6 and Figure 5.7, we can see that the 

localization noise relative to the VIBPT subsystem is considerably smaller 

than the noise relative to the IARA’s OGM-MCL system. 

Although the EKF, used in VIBPT, and the Particle Filter used in the 

IARA’s OGM-MCL system are comparable algorithms, the particle filter has 

a worse performance when used with a number of particles lower than or close 

to 1000 units [MAN08]. In the present case, this would explain the higher 

noise regarding the IARA’s OGM-MCL system, since its implementation uses 

only 1000 particles units. 

5.2.3 Localization Displacement 

The localization displacement regarding the VIBPT subsystem and the 

IARA’s OGM-MCL system was evaluated by running two localization 

experiments relative to each one of the systems. 

In order to perform these experiments, we firstly built two preliminary 

maps using the 1-meter spacing UFES-2012 dataset: an occupancy grid map 

for the IARA’s OGM-MCL system, and a Neural Map for the VIBPT 

subsystem. Subsequently, we test both of these systems using the mentioned 

maps on the UFES-2012 dataset in the first experiment, and on the UFES-

2014 dataset in the second experiment.  

Finally, we computed the localization displacement by measuring the 

MAE of the Euclidean distance (Equation ( 6 )) between the estimated 

trajectories in the two experiments, for both systems.  

5.2.3.1 IARA’s OGM-MCL Localization Displacement 

Figure 5.8 shows the localization displacement result for IARA’s OGM-

MCL module. In Figure 5.8 the horizontal axis represents the order of the 

poses along the UFES’ campus trajectory, while the vertical axis represents 

the Euclidean distance between the estimated trajectories, in meters. Each 

column (in blue) represents the Euclidean distance between the UFES-2012 
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and UFES-2014 trajectory’s poses, estimated by the IARA’s OGM-MCL 

system. To summarize the results shown in Figure 5.8 we used the MAE 

metric (Equation ( 6 )). We found that the localization displacement (mean of 

the Euclidean distances) of the IARA’s OGM-MCL system is about 2.40m. 

 

5.2.3.2 VIBPT Localization Displacement 

Figure 5.9 shows the localization displacement result for the VIBPT 

subsystem. In Figure 5.9  the horizontal axis represents the order of the poses 

along the UFES’ campus trajectory. The vertical axis represents the Euclidean 

distance between the estimated trajectories, in meters. Each column (in blue) 

represents the Euclidean distance between the UFES-2012 and UFES-2014 

trajectory’s poses, estimated by the VIBPT subsystem.  

 To summarize the results shown in Figure 5.9 we used the MAE metric 

(Equation ( 6 )). We found that the localization displacement (mean of the 

Euclidean distances) of the IARA’s OGM-MCL system is about 2.61m. 

Comparing the graphs in Figure 5.8 and in Figure 5.9, as well as the MAE of 

both systems, it is possible to observe that the two systems are equivalents. As 

can be seen in both graphs, the curves are exactly the same for almost the 

whole trajectory, except for the section of poses from 1385 to 2077, where the 

VIBPT system have a poor performance compared to the IARA’s OGM-MCL 

 

Figure 5.8 - IARA's MCL Localization Displacement. Distance between UFES-2014 and 

UFES-2012 trajectory's poses are in blue columns. The localization noise regarding IARA's 

MCL is plotted as error bars (in red). 
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system. This is explained by the fact that in this log's section, the VIBGL 

subsystem outputs bad global pose estimates sequentially (see Figure 5.10), 

which causes the VIBPT subsystem to treat them as outliers. Without a 

reliable global pose and 3D landmarks during so much time, the VIBPT 

subsystem needs to update its robot's pose estimate using only the visual 

odometry input. But, once the visual odometry drifts over time the VIBPT's 

pose estimates has a big error. 

 

Although the localization displacement of the system VIBPT is greater 

than the IARA’s OGM-MCL system, it is only about 1.31 standard deviations 

far away of the OGM-MCL system mean. 

 

Figure 5.9 - VIBPT Localization Displacement. Distance between UFES-2014 and UFES-

2012 trajectory's poses are in blue columns. The localization noise regarding VIBPT 

subsystem is plotted as error bars (in red). 
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Output (UFES-2012) Input (UFES-2012) 

 

Figure 5.10. Samples of the VIBGL's output global pose for poses from 1385 to 2077. 
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Chapter 6  

Discussion 

Our results have shown that the VIBML system, purely based on camera 

images, is able of localizing robots on large maps. Our system was able to map 

an area of about 3.57km around the UFES’ campus, and then locate the IARA 

robotic platform in this map, with a mean difference of 0.2m when compared 

to the OGM-MCL approach currently employed in IARA. 

As our system uses only images, it does not need any external device, 

such a GPS, to work. It can be easily adapted to GPS-denied applications and 

integrated with systems like Google StreetView (where positioning 

information about the captured images is provided) to perform continuous 

global localization in Google Maps without the need of communication 

networks or GPS data.  

Many approaches have been proposed to solve the mapping and 

localization problems using images, as the VIBML subsystem do [MIL08, 

GLO10,  SIV03, MIL12];  however, some of these approaches do not cover 

continuous global localization and position tracking simultaneously, and don’t 

work with a single input image as the VIBML works.  

Our system efficiently solves the problems of mobile robot mapping, 

global localization and position tracking using only camera images. In a brief 
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analogy to human beings, the VIBML system has the skills to learn about a 

certain area (mapping); recognizes a previously learned place by consulting its 

memories (global localization); and once at a well-known place, localizes 

itself while navigates through the environment (position tracking). 

6.1 Critical Assessment of this Research Work 

In this Section, we discuss some of the main shortcomings of our work, 

focusing on: (i) unreliable initialization, (ii) the kidnapped robot problem, and 

(iii) the time performance of our system as a whole.  

6.1.1 Unreliable Initialization 

As shown in Section 5.1, the VIBGL subsystem of VIBML is a good global 

localizer. It can perform global localization with classification accuracy of 

about 95% (Figure 5.1) and positioning error smaller than 1.8m (Figure 5.2). 

However, although these numbers speak in favour of VIBGL, the accuracy of 

95% results in unreliable initialization.  

When an image is presented to VIBGL, it examines its VG-RAM 

WNN’s memories and returns the pose estimate based on the memory that best 

fits the input image. This first pose estimate is sent to the VIBPT subsystem of 

VIBML to initialize the EKF – there is no special treatment to check whether 

this first pose estimate is correct or if it is a false positive. This can cause 

initialization failures in some situations. In such cases, the system may believe 

it is in a certain place whereas, in fact, it is in a completely different place. We 

have not observed any such situation in our experiments, however. 

This problem was not treated in this work, but it can be resolved in many 

ways. For instance, we could wait for the first five VIBGL's estimations, and 

choose the robot's pose based on the average between the poses outputted by 

the VIBGL subsystem. 
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6.1.2 The Kidnapped Robot Problem 

Even though VIBML can perform continuous global localization, it cannot 

reliably solve the Kidnapped Robot Problem [THR05].  

Once the robot is properly localized, VIBML interprets that the global 

pose estimates computed by the VIBGL subsystem are close to the VIBPT 

subsystem estimates (see Section 3.4.5). If not, the global pose estimates are 

treated as outliers and the system remains with its estimative about the last 

robot’s pose. So, in a hypothetical kidnapped condition, when the robot is 

moved to another place, the VIBML system does not know how to 

differentiate this situation from a VIBGL outlier pose estimate. However, in 

the context of our problem of interest (autonomous cars), a kidnapped robot 

situation is very unlikely and, we believe, does not need to be handled by the 

VIBML system. 

6.1.3 VG-RAM WNN Time Performance 

Although the VIBML subsystem can resolve the problems of mapping, global 

localization and position tracking, and has been shown to be a comparable 

localization system to another one in the literature, it is not suitable to real-

time usage. 

When analysing the time performance of the overall system, we identify 

that the system’s modules that consumes most of the system’s resources are 

the VG-RAM WNNs. Specifically, the implementation of such neural 

networks were made using inefficient filters for translation, scale and 

Gaussian blurring, that spend most of the computational time. 
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Chapter 7  

Conclusions 

In this chapter, we present a brief summary of this work, our conclusions and 

directions for future work. 

7.1 Summary  

In this work, we presented and evaluated a novel image-based mapping and 

localization approach that employs VG-RAM WNNs, dubbed VG-RAM 

Image-Based Mapping and Localization (VIBML).  

We start discussing relevant related works, comparing their advantages 

and shortcomings with respect to VIBML. We show that, different than other 

approaches, our system is able to learn about a place with a single image as 

input and to perform continuous global localization. We, then, presented the 

subsystems of VIBML: (i) VG-RAM Image-Based Mapping (VIBM), (ii) VG-

RAM Image-Based Global Localization (VIBGL), and (iii) VG-RAM Image-

Based Position Tracking (VIBPT). Finally, to show that our system solves the 

problems of mobile robot mapping, global localization and position tracking, 

we performed a set of experiments regarding the global localization and 

position tracking mechanisms, and compared them to the Occupancy Grid 

Mapping and Monte Carlo Localization (OGM-MCL) approach used in our 

autonomous vehicle, IARA. Our experimental results show that VIBML is 
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equivalent to IARA’s OGM-MCL system. 

7.2 Conclusions 

Our findings show that the VIBML system is able to perform mapping, global 

localization and position tracking using only cameras images with 

performance comparable to the OGM-MCL approach employed in IARA, 

which uses LIDARs and grid-maps for localization. 

In the mapping phase, VIBML receives images of the environment, the 

positions where they were captured, as well as characteristic points belonging 

to these images. Subsequently, it learns associations between the images, 

positions and the images’ characteristic points, and uses them as a map of the 

environment. In the localization phase, VIBML receives images of the 

environment and uses its previously acquired knowledge – “the map” – to 

output the positions and the characteristic points representing the places the 

system believes these images were captured. Finally, it uses the position and 

the characteristic points to perform global localization and position tracking. 

We have tested VIBML in a set of mapping and localization experiments 

using real-world datasets. Our results show that our system, purely based on 

camera images, is capable of localizing robots on large scale maps (several 

kilometers in length) – our system was able to localize an autonomous car in a 

circuit of 3.57km around the Universidade Federal do Espírito Santo, with a 

mean difference to the OGMMCL approach of 0.2m. In addition, VIBML was 

able to localize our autonomous car with average positioning error of 1.12m 

and with 75% of the poses with error below 1.5m. 

7.3 Future Work 

The VIBML system opens several avenues of future research. In the near 

future, we plan to investigate the shortcomings of our system and to extend its 

functionalities to perform localization in widely used image-maps, like the 

Google Street View. 
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One of the shortcomings of the current version of VIBML is unreliable 

initialization, i.e., it may believe at start up that it is in a certain place when in 

fact it is not. To try and solve this problem we will investigate better 

mechanisms for global localization initialization, based on the fact that the 

VIBGL subsystem of VIBML cannot guarantee its output is bounded by the 

surroundings of the real robot’s position at initialization time.  

Another shortcoming is poor performance in terms of time. To overcome 

this, we plan to implement parallel versions of the translation, rotation and 

Gaussian filters used in our implementation. These filters consume the most of 

the computational resources and, since they operate on images data structures, 

they can be easily parallelized using OpenMP or CUDA enabled GPUs. 

The Kidnapped Robot Problem cannot be handled by VIBML and is one 

of its shortcomings as well. Although unlikely to occur in autonomous cars – 

our main topic of interest –, this problem can frequently occur with indoor 

robots. So, to extend the range of applications of VIBML, we will investigate 

in future works mechanisms for solving this VIBML problem. 

We also plan to study the possibility of using VIBML as a replacement 

of GPS systems so that robots deprived of such devices or in gps-denied 

environments (where there is no GPS signal) can localize themselves using 

only images. For this, we will study how to train our system to output 

positioning information from georeferenced images. One example of database 

of such georeferenced images that we plan to use in this endeavour is that of 

the Google StreetView application (see Figure 7.1). 

 

 

Figure 7.1. UFES campus's trajectory image from Google StreetView. 
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As the Google StreetView database covers most of the roads and cities of 

the world, we believe it will soon be possible to use the VIBML system and 

the Google database to localize cell phone devices without the need of GPS 

data.  
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Glossary 

BFL Bayesian Filtering Library  

CARMEN CARMEN Robot Navigation Toolkit  

CMU Carnegie Mellon University  

DARPA Defense Advanced Research Projects Agency  

EKF Extended Kalman Filter  

GPS Global Positioning System  

IARA Intelligent and Autonomous Robotic Automobile  

IMU Inertial Measurement Unit  

iNVT iLab Neuromorphic Tookit Vision C++ Tool  

KF The Kalman Filter  

LCAD Laboratório de Computação de Alto Desemplenho 

LIBELAS Library for Efficient Large-scale Stereo Matching  

LIBVISO2 Library for Visual Odometry 2  

LIDAR Light Detection and Ranging  

MAE Mean Absolute Error  

OGM-MCL Occupancy Grid Mapping - Monte Carlo Localization  

SIFT Scale Invariant Feature Transform 

SLAM Simultaneous Mapping and Localization  
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SRPV Square Root of the Pooled Variances  

UFES Universidade Federal do Espírito Santo 

VG-RAM Virtual Generalizing Random Access Memory  

VIBGL VG-RAM Image-Based Global Localization  

VIBM VG-RAM Image-Based Mapping  

VIBML VG-RAM Image-Based Mapping and Localization  

VIBPT VG-RAM Image-Based Position Tracking  

WNN Weightless Neural Networks  
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