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“The competent programmer is fully aware of the strictly limited size of his own skull; therefore 

he approaches the programming task in full humility, and among other things he avoids clever 

tricks like the plague.” 

- Edsger W. Dijkstra 
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ABSTRACT 

Ontology-driven conceptual modeling is the activity of capturing and formalizing how a 

community perceives a domain of interest, using modeling primitives inherited from a 

foundational ontology. OntoUML is an example of a language that supports such 

activity, whose design derives from the Unified Foundational Ontology (UFO). 

Ontologies, in the sense of reference conceptual models, are useful in many fields. 

They include model-driven development of software systems, development of 

knowledge-based application (in the context of Semantic Web), semantic 

interoperability between information systems, and evaluation of modeling languages, 

to cite some. Regardless of the application, the quality of an ontology is directly related 

the quality of the results. 

Ontology and conceptual model quality encompasses a vast range of criteria. The 

validation activity aims to improve the domain appropriateness of a model. This means 

to help improve modeler’s confidence in saying: “I built the right model for my domain”. 

This thesis presents a validation framework usable by “managers” of the ontology 

world, i.e. modelers that are not experts in validation, logics and formal methods. The 

framework contains techniques and tools to help modelers systematically improve the 

quality of their models without demanding costly learning requirements. We build our 

framework on two conceptual pillars: model simulation and anti-patterns. 



 

RESUMO 

Modelagem conceitual orientada por ontologias é atividade de capturar e formalizar a 

forma que uma comunidade entende e classifica um domínio de interesse, usando 

para isso primitivas de modelagem herdadas de uma ontologia de fundamentação. 

OntoUML é um exemplo de linguagem para esse tipo de atividade, cujo meta-modelo 

é definido com base na Unified Foundational Ontology (UFO). 

Ontologias, enquanto modelos conceituals de referência, são utilizadas para diversos 

fins. Dentre eles, destacam-se o desenvolvimento de sistemas de informação por 

abordagens orientadas a modelos, o desenvolvimento de aplicações para web-

semântica (knowledge-based applications), a interoperabilidade semântica entre 

sistemas e a avaliação de linguagens de modelagem. Independente do propósito para 

o qual está sendo desenvolvida, a qualidade da ontologia está diretamente 

relacionada a qualidade dos resultados de sua aplicação. 

Qualidade de ontologias e de modelos conceituais em geral, abrangem um vasto 

leque de critérios. A atividade de validação, no entanto, tem como objetivo aumentar 

um subconjunto desses critérios apenas, para que modeladores tenham confiança de 

que eles capturaram corretamente a conceituação a cerca de um domínio em suas 

ontologias.   

Essa dissertação propõe um framework de validação utilizável por “gerentes” do 

mundo das ontologias, isto é, modeladores que conhecem a linguagem de modelagem 

mas não tem conhecimentos profundos de validação, lógica e métodos formais. Esse 

framework contém técnicas e ferramentas para sistematicamente ajudar modeladores 

a melhorarem a qualidade de seus modelos, sem que para isso requeira dispendiosos 

estudos prévios. O framework de validação é construído em cima de dois pilares: 

simulação de modelos e anti-padrões. 
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 INTRODUCTION 

1.1 CONTEXTUALIZATION 

Ontology-driven conceptual modeling is the activity of capturing and formalizing how a 

community perceives a domain of interest, using modeling primitives inherited from a 

foundational ontology. This new branch of conceptual modeling improves traditional 

techniques by taking into consideration ontological properties, such as rigidity, identity 

and dependence (GUARINO; WELTY, 2009), all derived from a foundational ontology.  

The reference ontology, product of such activity, serves a variety of purposes, which 

include:  

 schema generation for knowledge bases (TBox), in the Semantic Web context 

(BARCELOS et al., 2013; ZAMBORLINI; GUIZZARDI, 2010); 

 semantic interoperability between agents, systems and/or organizations 

(CALHAU; FALBO, 2010; GONÇALVES; GUIZZARDI; FILHO, 2011; NARDI; 

FALBO; ALMEIDA, 2013); 

 model-driven software development, as means for generating code (PERGL; 

SALES; RYBOLA, 2013) and information models (CARRARETTO; ALMEIDA, 

2012); 

 standardization of a shared vocabulary for a community (in the sense of a 

reference model of consensus), as the service core ontology – UFO-S (NARDI 

et al., 2013) and the normative acts model (BARCELOS; GUIZZARDI; GARCIA, 

2013); 

 evaluation of modeling languages, as Azevedo et al (2011) perform for the 

ArchiMate enterprise architecture modeling language and Guizzardi et al. 

(2013) for the i* goal modeling language;  

Recently, the interest in more expressive languages for conceptual modeling has 

increased, as it is evidenced by a request of the the Object Management Group (OMG) 

for language proposals for the Semantic Information Model Federation (OMG, 2011a). 
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OntoUML is an example of such language. Its meta-model has been designed to 

comply with the ontological distinctions and axioms of a theoretically well-grounded 

foundational ontology, named the Unified Foundational Ontology (UFO) (GUIZZARDI, 

2005). 

OntoUML has been successfully employed in a number of industrial projects in several 

different domains, such as Oil and Gas (GUIZZARDI et al., 2010), Complex Digital 

Media Management (CAROLO; BURLAMAQUI, 2011), Telecommunications 

(BARCELOS et al., 2011), and Government (BASTOS et al., 2011; MPOG, 2011).  

This thesis discusses the validation of OntoUML models. Particularly, we investigate 

techniques centered on the concepts of anti-pattern and model simulation. We aim to 

develop approaches that do not demand users to learn complex and time-consuming 

languages and methods. We strive to make ontology validation accessible for 

“Managers”. By managers, we do not mean the position commonly encountered in 

organizations, but the manager metaphor: someone who has a general knowledge 

about the technical processes, but is not an expert on them. We argue that this is the 

profile of a significant part of the ontology engineers.  They are people with basic 

knowledge on the modeling language, on ontology engineering methods and validation 

tools. They are not, however experts in them, particularly in logics and formal methods, 

skills required for validation tasks. 

1.2 MOTIVATION 

The importance of formalizations that accurately capture their intended 

conceptualization has been recognized by both the traditional conceptual modeling 

(MOODY et al., 2003) and the semantic web (GANGEMI et al., 2006; SURE et al., 

2004; VRANDEČIĆ, 2009)  communities. As in the semantic web, the shared nature of 

ontology-driven conceptual models highlights the need of accurately defining them. 

Other ontologists are likely to reuse the ontologies we develop, possibly in ways that 

we cannot predict. Therefore, guaranteeing that we accurately formalized our 

ontologies is very important to guarantee a consistent reuse.  
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If ontologies are used in the context of model-driven software development, they play 

a key role in the process and directly affect the quality of the generated software  

products (MARÍN et al., 2010). Since model-driven processes generate software from 

a set of complimentary conceptual models, the models describe all the behavior, data 

and functionalities of a system. Thus, semantic errors in the model imply possible 

problems in the generated system. 

Furthermore, in the cases where an ontology-driven conceptual model gives rise to 

semantic web applications, validation is also important. Vrandečić (2010) argues that, 

by improving ontology quality, reuse will increase, since others will gain confidence in 

the released ontologies. Besides, it facilitates integration and lower maintenance costs 

of ontologies. 

If we use ontologies as reference models to achieve semantic interoperability, 

problems in their formalization may imply in data integration issues. An example of this 

type of problem is commonly known as the false agreement problem (GUARINO, 

1998). An example of false agreement would be two classes stated as equivalent when 

in fact they formalize distinct concepts. For this reason, avoiding interoperability errors 

is particularly important on scenarios where data is valuable and the error tolerance is 

low. 

This work is not only motivated by the importance of producing high-quality models but 

also by the recognition that it is complex to systematically guarantee such feature. 

Guizzardi (2010) makes a parallel between construction of large reference conceptual 

models and the programming of large computer systems, referencing the famous E. 

W. Dijkstra’s ACM Turing lecture entitled “The Humble Programmer” (DIJKSTRA, 

1972). Guizzardi’s argument is that we, as “Humble Ontologists”, must acknowledge 

the limitations of the human mind to address the large and fast increasingly intrinsic 

complexity of building ontologies. For this reason, conceptual modelers and ontologists 

should surround themselves with a number of suitable engineering tools to facilitate 

the tasks and improve the results of all activities in ontology engineering. As discussed 

in (GUIZZARDI, 2010), among these tools, we have modeling languages, e.g. 

OntoUML, and methodologies, e.g. NeOn (SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ; 

FERNÁNDEZ-LÓPEZ, 2012) and SABiO (FALBO; MENEZES; ROCHA, 1998), 

patterns and anti-patterns, as well as automated supporting environments for model 
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construction, verification and validation (BENEVIDES et al., 2010b; BRAGA et al., 

2010). 

Even though many recognize the importance of model quality and that guaranteeing it 

requires appropriate tool support, we argue that the wide adoption of such tools and 

techniques constantly faces a barrier: the learning curve. Many approaches require 

modelers to learn complex methods and languages. Furthermore, their validation 

capacity is directly dependent on their skills using these techniques. Although 

advanced knowledge on logics and formal methods are very useful for ontologists, we 

cannot expect every modeler to have such knowledge. To tackle this problem, we seek 

inspiration in (JANSSEN et al., 1999). In their work, entitled “Model Checking for 

Managers”, the authors propose an abstraction layer to allow untrained users to use 

model checking techniques on the validation of business process models. Our 

hypothesis is that we can do something analogous for ontology-driven conceptual 

modeling: develop easy to use tools and techniques that provide useful validation 

capabilities for OntoUML. 

1.3 RESEARCH GOALS 

The main goal of our research is to develop a validation framework for ontology-driven 

conceptual modeling. This framework should guide users throughout the validation 

process and aid them in systematically producing higher quality OntoUML models. 

Most importantly, it must not require any additional method or technique learning, such 

as processes or languages.  

Our plan to achieve the main goal consists of the following specific goals: 

 Revisit the simulation-based validation method proposed for OntoUML to 

reduce its learning requirements; 

 Identify recurrent modeling decisions (anti-patterns) that are prone to lead to 

domain misrepresentation and develop an approach to use them to increase 

model quality; 

 Develop adequate tool support for proposed approaches; 

 Empirically assess the proposed techniques and tools. 
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1.4 THESIS STRUCTURE 

We organized the remainder of this thesis as follows:  

Chapter 2 (Theoretical Foundations) presents the ontological theory used throughout 

this thesis. Initially, an overview of the discipline of ontology-driven conceptual 

modeling is given. In the following, we present the most relevant ontological properties 

defined by UFO. Lastly, we briefly review OntoUML abstract and concrete syntax, 

presenting the fundamental concepts required to understand the remaining of this 

thesis.  

Chapter 3 (Revisiting OntoUML2Alloy) concerns model simulation. We first present the 

motivation to revisit the transformation from OntoUML to Alloy, then the required 

notions of the Alloy language. In the sequence, we detail the new mappings of the 

transformation, followed by a comparison to the previous approaches. Lastly, we 

elaborate on the simulation scenarios that make the simulation tool more accessible 

for all users. 

Chapters 4, 5, 6 and 7 are all anti-pattern related. Chapter 4 (Anti-patterns in Ontology-

driven Conceptual Modeling) discusses our view on anti-patterns: definition, properties 

and inter-relations.  We also elaborate on their role in ontology-driven conceptual 

modeling validation. 

Chapter 5 (The Anti-Pattern Catalogue), presents the anti-pattern catalogue, defining 

their structure, context and refactoring solutions. For each anti-pattern type, we present 

an example encountered in a real model and the appropriate solution for it. 

Chapter 6 (Uncovering Semantic Anti-Patterns) elaborates on the methods we used 

for uncovering anti-patterns: empirical analysis, foundational ontology evaluation and 

modeling language analysis.  

Chapter 7 (Evaluating the Anti-Pattern Catalogue), presents and discusses the results 

of a study to evaluate the anti-pattern catalogue. We performed this analysis in the 

context of a project named “Modelo de Gestão da Informação e Conhecimento” 

(MGIC), conducted in cooperation with the Brazilian government.  
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Chapter 8 (Tool Support) discusses the implementation strategies and the tool we 

developed throughout this thesis to support our proposals.  

Chapter 9 (Conclusions), discusses results, shortcomings, related works and 

questions that still demand further investigations. 

Annex A (Alloy), presents an overview of the Alloy language, describing its semantics 

and syntax. We also review how to analyze structural models using Alloy. 

Annex B (Auxiliary Alloy Modules) provides the complete source code of the auxiliary 

Alloy modules used in the transformation from OntoUML to Alloy.  

Appendix A (Noteworthy Conceptual Models) discusses some distinguished OntoUML 

models we have in our repository, providing a more detailed description of the 

formalized domain, as well as discussions of their applications and further structural 

details.  

Appendix B (Anti-Pattern Analysis Flows) presents the diagrams to analyze 

occurrences of all anti-patterns. 
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 THEORETICAL FOUNDATIONS 

2.1 ONTOLOGY-DRIVEN CONCEPTUAL MODELING 

Mylopoulos (1992) defines conceptual modeling as the activity of formally describing 

relevant properties of a given domain for the purposes of understanding and 

communication. Expressivity is the main concern of such endeavor, which aims to 

accurately capturing domain knowledge and all it nuances. Unlike programs, which are 

supposed to be “read” by computers, we design conceptual models so other humans, 

not machines, can read and understand them. 

Although employed for conceptual modeling, traditional techniques have not solely 

focused the main purpose of this activity: capturing domain knowledge. UML and ER 

are examples of such techniques. UML is designed to comply with an object-oriented 

view of software design, whilst ER (CHEN, 1976) to encounter a positive trade-off 

between conceptualization and implementation. The additional concerns of traditional 

approaches impair the expressivity of models produced by them, limiting its ability to 

capture domain knowledge.  

In addition, traditional modeling languages do not clearly define their ontological 

commitments (GUARINO, 1998). This notion refers to the relation between the 

construct of a language and the real world concept it is supposed to represent. This 

commitment represents an agreement to use the shared vocabulary in a coherent and 

consistent manner in a given context. 

The lack of expressivity and absence of explicit ontological commitment encountered 

in traditional methods, impair their capability to represent more precisely domain 

knowledge (GUIZZARDI, 2005, chap. 8). Models specified in such languages are 

prone to be ambiguous, incomplete and mix conceptual and implementation concerns. 

Note that we mean by ambiguity the real world meaning of language constructs and 

not its formal meaning.  

The aforementioned language shortcomings, which affect the quality of conceptual 

models, emerge in the context of information systems, which is one of the main 
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applications of conceptual modeling. Low quality models influences the overall results 

of information system development. Moreover, the new reality of information 

technology, which requires systems to interoperate, further enhances the need of 

precisely defining meaning in conceptual models.  

To overcome the aforementioned shortcomings, researchers argue that conceptual 

modeling and thus, conceptual modeling languages, should be driven by foundational 

ontologies (EVERMANN; WAND, 2005; GUIZZARDI, 2005; RECKER et al., 2011). 

These foundations are the most abstract, domain independent system of categories 

used by humans to describe and understand reality. The argumentation is built upon 

how ontology can better address important notions required in conceptual modeling, 

such as part-whole relations (GUIZZARDI, 2009) and specialization (COSTAL; 

GÓMEZ; GUIZZARDI, 2011) for structural conceptual modeling. 

Guarino (1994) introduces the idea of the Ontological level in conceptual modeling. He 

differentiates it from the epistemological level by defining the concerns of these two 

levels. The ontological level is concerned with the nature of things, whilst the 

epistemological level’s motivation is toward information demands. This view is also 

supported by Guizzardi (2010) for Ontology Engineering. 

Proposed in (GUIZZARDI, 2005), the Unified Foundational Ontology (UFO) is an 

example of foundational ontology which is used to support an ontology-driven 

conceptual modeling language, named OntoUML. Cognitive Science, Linguistic, and 

Philosophy theories grounds UFO. Furthermore, the foundational ontology addresses 

important issues in structural conceptual modeling, such as identity and part-whole 

theory. 

The ontology-driven conceptual modeling discipline thus, is akin to conceptual 

modeling. It is the activity of formally capturing domain knowledge driven by ontological 

foundations. Its main concern is to describe the nature of things that exist, their 

properties and relations, focusing on expressivity. The product of such activity is the 

ontology conceptual model (or reference conceptual model). 

We take a moment here to highlight the duality of the ontology term. On one hand, we 

have these models that focus on accurately representing a domain of interest: the 

reference conceptual model. On the other hand, we have ontologies as the artificial 



25 

intelligence community defines them: reasoning artifacts that are the core of the 

semantic web. Notice that the main difference between them regards computational 

efficiency and expressivity. Ontology, as a reference conceptual model, is a very 

expressive description of reality, designed to be used and understood by humans. It 

does not meet, however, the demands for automated reasoning. Ontologies, as 

reasoning artifacts, are much less expressive on purpose. The reason is that the 

languages developed to build them were designed to be computationally efficient, and 

to allow automated reasoning, querying and so on. Resource Description Framework 

(RDF) (W3C, 2014) and Web Ontology Language (OWL) (W3C, 2012) are languages 

suitable to represent ontologies in the latter sense.  

2.2 THE UNIFIED FOUNDATIONAL ONTOLOGY  

In this section, we explain the theory defined in the foundational ontology alongside its 

reflection in the OntoUML syntax. 

2.2.1 Individuals and Universals 

The most fundamental notions in UFO are the concepts of individuals and universals, 

i.e. things and their types. Universals are space-time independent concepts that define 

patterns of features, like person, football match, sculpture, being heavier than, and so 

on. Individuals, conversely, are particular things that instantiate universals in space 

and time. You and me are individuals that instantiate the universal “Person”, as the 

2014 World Cup Final between Germany and Argentina instantiates football match, 

the statue of David instantiates sculpture, and the relation that holds between a person 

that weighs 80 kg and another that weights 60kg instantiates “being heavier than”.  

The concepts of universal, individual and the instantiation relation that holds between 

them are primitives of UFO’s theory. The theory assumes as universals all the things 

that can be instantiated and, as individuals, everything that instantiates universals. The 

instantiation relation only holds between individuals and universals, and imply that the 

individual has every characteristic assigned for the universal, e.g. if the universal 
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person defines features as height and weight, every individual must have a value for 

them.  

To those familiar with traditional conceptual modeling techniques, universals are 

commonly referred to as classes, e.g. UML (OMG, 2011b) and OWL (W3C, 2012), 

entities, as in ER (CHEN, 1976), associations (as in UML), properties (as in OWL), and 

so on. Individuals, on the other hand, are usually known as objects, as in UML and 

ORM (HALPIN; MORGAN, 2008), instances, to cite a few. 

The theory, though, does not exclude the possibility of something to behave 

simultaneously like an individual and a universal. Take for example, the token labeled 

as “Lion”. From one perspective, it is a universal, since it defines a group of features 

(e.g. being a carnivore, having four pawns, having fur) and has identifiable instances, 

like Simba and Mufasa (from the children’s cartoon Lion King). From another 

perspective, we can understand this token as an individual, which instantiates the 

“Species” universal, which defines another group of features, like scientific name, 

morphology and the capability to become extinct. Other instances of “Species” would 

be “Tiger”, “Crocodile” and “Dog”. 

To refer to universals that have other universals as instances, UFO assigns the name 

of higher-order universals (hou). Notice that the universal recursion is unlimited. There 

are second-order universals, whose instances are first-order universals, but also third, 

fourth or even fifth-order universals, although these are rarely used. The closest 

concept to second-order universals in traditional conceptual modeling techniques is 

UML’s powertype, a class whose instances are other classes. 

Another important definition in the foundational theory is that of a universal’s extension. 

It corresponds to a function that returns the set of all individuals that instantiate a 

universal in a given moment of time.  

Furthermore, universals of the same order can be related to one another through 

generalizations (or specialization) relations. This particular type of binary relation 

defines a universal as the parent (or the super-type) of another universal, the child (or 

the subtype). By specializing a universal, one defines a subset of individuals that 

instantiate the parent universal and share some characteristics. From an extensional 

point of view, it always holds that every individual that instantiates a subtype also 
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instantiate the super-type. To exemplify, consider the first-order universals Person and 

Student. The latter is a subtype of the former because a student is a person enrolled 

in an educational institution. 

Figure 1 illustrates these basics definitions in UFO: the generic category of things 

specialized in Universal and Individual. The rest of the concepts defined by the 

foundational ontology that we are going to present in this thesis specialize one of these 

two concepts. 

  

Figure 1. Basic UFO definitions. 

Furthermore, Figure 2 depicts a layered perspective of universals and individuals. At 

the top, we represent the meta-conceptual level, which contains the universals defined 

in UFO, as the “Kind Universal” (we come back to its definition later). In the model 

level, we represent the specializations of Individual types. The figure illustrates two 

examples: the “Functional Complex” type, defined in UFO, and the “Person” type, 

defined in domain ontologies, i.e. in OntoUML models in general. Individuals, as Luke 

and Joe, which instantiate the universal “Person”, compose the last level, labeled as 

Instance Level.   

The syntax of OntoUML, as defined in (GUIZZARDI, 2005) and updated in 

(ALBUQUERQUE; GUIZZARDI, 2013), only allow for the specification of first-order 

universals.  

When creating a class or an association in OntoUML, a modeler is defining a new first-

order universal. The embedded stereotype represents an instantiation relation 

between the formalized universal and the second order universal identified by the 

stereotype name. To improve readability, OntoUML suppress the name “universal” 

from the stereotype representation. Furthermore, the relation of “subtype of” between 

domains classes, like "Person”, and first-order universals of the foundational ontology 
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is implicit.  We discuss the first-order universals detailed in UFO in the following 

sections. 

 

Figure 2. Universals, individuals and their relations in UFO. 

2.2.2 Singular Individuals and Relations  

The most basic classification of universals in UFO regards the distinction between 

monadic and relation universals. The former refers to meta-classes whose instances 

are first-order universals that can only be instantiated by singular individuals. For 

example, “Thesis” is a first-order universal that instantiates a monadic universal 

because its instances, like this work you are reading, are singular individuals. 

Conversely, relation universals are meta-concepts that apply to groups of two or more 

individuals, e.g. “being married to” is a first-order universal that instantiates this 

second-order universal.  

Monadic universals are further specialized into endurants and perdurants universals, 

which aggregate classes that have endurant and perdurant individuals, respectively.  

Individuals are endurants if persist through time keeping their identity and are present 

as a whole whenever they are present (e.g. a ball, a tree). Perdurants, more commonly 

known as events, are the opposite: they are individuals that are composed of temporal 

parts, i.e., they do not exist in a moment, but happen throughout time (e.g. a fall, a 

football match)   
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Relation universals are refined into formal and material relation universals. The former 

is a meta-category applied to relations types that can hold between two individuals 

without the support of additional individuals. The latter category, conversely, only hold 

if there is an additional individual, the truth-maker of the relation. The instantiation and 

generalization relations are examples of formal relations. “Being married to”, is an 

example of material relation, since it only holds if an instance of marriage exists.  

OntoUML’s design allows the representation of both monadic and relation universals: 

the former through the representation of classes and the latter through the 

representation of associations. Although the current OntoUML meta-model  does not 

provide support for modeling events, researchers are investigating this extension 

(GUIZZARDI; WAGNER, 2012; MARTINS; DE ALMEIDA FALBO, 2008). 

2.2.3 Basic Ontological Properties: Rigidity, Identity and Dependency 

In addition to the basic aforementioned ontological categories, UFO defines some 

basic ontological properties whose combinations define the more concrete types of 

universals. UFO inherit these properties from OntoClean (GUARINO; WELTY, 2009). 

UFO distinguishes universals according to their rigidity meta-property. Simply put, 

rigidity regards the necessity (in the modal sense) of individuals to instantiate given 

universals throughout time. Rigid universal are the ones whose instances necessarily 

instantiate them while existing, i.e., if an individual instantiate a rigid universal in a 

given moment, in every other moment it exists, it must also do so. Examples of rigid 

universals are Person, Car, Marriage, and Window. Conversely, anti-rigid universals 

are the ones whose instances contingently instantiate them, i.e., if an individual 

instantiate an anti-rigid universal, there is at least one possible moment in which the 

individual exists and do not instantiate it. Examples of anti-rigid universals are Student, 

Spouse, and Child.  Lastly, UFO defines as semi-rigid universals the ones that behave 

as rigid for some individuals and as anti-rigid for others. To exemplify, consider a 

domain in which people are necessarily eligible for insurances (like life insurances), 

houses, however, are only eligible for insurances if their market value is superior to 

US$ 100k. The universal Insurable Item, a common super-type of Person and 
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Insurable House, is semi-rigid because it is a necessary condition for people and an 

eventual one for houses, since their price may change. 

The identity principle of an individual is a sort of “function” that asserts whether two 

individuals are the same or not. It is also, what allows one to count individuals. Sets 

(as in the mathematical notion) have one of the most simple identity principles: two 

sets are the same if, and only if, they contain the same individuals. Individuals must 

always follow a unique identity principle that cannot change through its existence. The 

nature of the relations between universals and identity principles of their instances 

differentiates universals: some aggregate individuals that follow the same identity 

principle, some aggregate others that follow different ones and some provide the 

identity principle for their instances. 

Dependency is an ontological property that involves two first-order universals, u1 and 

u2. One says that u1 depends on u2, if every instance of u1 must participate in a relation 

with instances of u2. In this work, the relevant dependency types are:  

 specific dependency, characterized if while instantiating the dependent class, 

an individual cannot change the instance of the relation that characterizes the 

dependency (e.g. a living person has an specific dependency to her brain);  

 existential dependency, a stronger version of specific dependency, but instead 

of instantiating, while existing, instances of the dependent class cannot change 

the instances of the universal they depend on (e.g. a person dependency to her 

brain is also existential – since the universal “Person” is rigid);  

 generic dependency, a more relaxed form of dependency, in which every 

instance of the dependent class must participate in the relation that 

characterizes the dependency, but this relation instance might change 

throughout time (e.g. a person has an generic dependency to their hearts); 

In the following subsections, we use these basic notions to define the more particular 

types of things that can exists according to UFO’s conceptualization. 
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2.2.4 Substantials and Moments 

UFO refines endurants into substantials and moments, which applies on both the meta-

class and the class hierarchies. 

Moments (or tropes) are individuals that can only exists in other individuals (e.g. a 

headache, an intention, an object’s weight), i.e. they are existentially dependent of the 

individuals they exist in, their bearers. Moments are the objectification of properties of 

individuals. Existential dependency is a necessary condition, but not sufficient for 

something to be a moment. Besides it, a moment must inhere in its bearer. 

Furthermore, moments inhere in exactly in one individual, even though, they can be 

existentially dependent on more than one. 

Bearers can be moments themselves. For instance, the intensity of someone’s 

headache is a moment, inhering in another moment, a headache, which inheres in a 

person. UFO prevents an infinite regression in the inherence chain by requiring the 

chain to end on a substantial, another type of individual that does not inhere in any 

individual. 

Substantials are endurants that do not inhere in other individuals. They have are highly 

independent individuals, like a table, a car or the portion of lemon juice inside a glass. 

Throughout this thesis, we also refer to substantials as objects. 

2.2.5 Substantial Classification 

Figure 3 presents UFO’s classification of substantials. In the hierarchy on the left side 

of the figure, we present the meta-concepts, identifying with thicker borders those that 

have a direct mapping as OntoUML stereotypes. On the right side of the figure, we 

present the only three exclusive types of substances that exist according to UFO: 

functional complexes, quantities, and collections. Regardless of the types defined by 

domain ontologies, all substances individuals are instances of one of these following 

three types.  
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Figure 3. UFO’s hierarchy of substantials. 

The Quantity class stands for substantials that are maximal amounts of matter. It 

encompasses individuals with defined identity principles but undefined counting 

principles. Examples are the portion of coffee inside a cup, or the contents of a wine 

bottle. The Function Complex type stands for individuals that are composed by 

heterogeneous parts that contribute in different way to the function of the whole (e.g. 

a Car, which composed by motor, chassis, bumper, etc.). Lastly, Collection stands for 

individuals that have a homogeneous internal structure, in the sense that all its parts 

play the same role w.r.t. it, the one of being a part of it. From a linguistic perspective, 

mass nouns usually refer to quantities, whilst collective nouns usually refer to 

collections. 

UFO’s meta-universal hierarchy for substantials classifies the aforementioned types. 

The first level of refinement differentiates classes according to the identity principle of 

their instances. Sortal Universals aggregate classes whose instances follow the same 
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identity principle. Conversely, Non-Sortal Universals (or also known as Mixin Class 

Universals) qualify classes whose instances follow different identity principles. If we 

assume that chassis identify cars, and geographical and spatial dimensions identify 

real states properties, the Car and the Real State classes both fall into the sortal 

category. Now, if we consider the domain of an auction, which amongst other things, 

auctions houses and cars, the type Auctioned Item would be a non-sortal one. 

Both Sortal and Non-Sortal Universal are specialized according to the rigidity meta-

property. Sortal Universal is refined in Rigid and Anti-Rigid Sortal Universals. Non-

Sortals are specialized into Category, which aggregates rigid non-sortal classes, 

RoleMixin, whose extension contains only anti-rigid non-sortal classes, and Mixin, 

which stands for semi-rigid non-sortal classes. These last three meta-classes have 

direct mappings to OntoUML stereotypes of analogous names. 

Moreover, Rigid Sortal Universals can be further differentiate w.r.t. the characteristic 

of their classes to providing (or not) identity principles for their instances. Subkind 

universals stand for rigid sortal classes that do not define identity principles, whilst 

Substance Sortal Universals (or Ultimate Sortal Universals) are the ones that do 

provide identity for their individuals. Substance Sortals Universals are also distinguish 

by the nature of the instances of the classes they characterize. The Kind Universal 

aggregates first-order universals that refine the functional complex category. Collective 

Universal does that for collections and Quantity, for quantities. 

Lastly, anti-rigid sortal classes can instantiate Role or Phase Universals. The former 

characterize classes whose instantiations are due to a change in a relational property, 

i.e., the establishment of destruction of a relation. The latter captures anti-rigid sortal 

types that qualify individuals accordingly to changes in intrinsic properties. For 

instance, the Student class is an instance of the role universal because people 

instantiate it when enrolling in an education institution. Child and Sick, on the other 

hand, are phases because they capture changes in intrinsic properties (i.e., moments). 
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2.2.6 Moment Classification 

As for substantials, UFO also refines the definition of moments. Figure 4 depicts the 

hierarchy of moment classes, as well as its higher order counter-part. Once more, 

thicker lines highlight the meta-classes that give rise to OntoUML’s stereotypes.  

 

Figure 4. UFO's hierarchy of moments. 

As we previously discussed, a moment is an individual that inhere in another individual, 

i.e., an objectification of an individual’s property. Relators are moments that represent 

objectifications of relational properties, whilst Intrinsic Moment stands for moments that 

objectify intrinsic properties of the bearer.  
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The Intrinsic Moment class is further specialized into Quality and Mode. Qualities are 

objectification of properties that evaluate into a certain value space. Mass is an 

example of quality, which can be evaluated in terms of a positive numeric value in a 

kilogram or pound scale.  Other examples are height, volume, color, name, date. 

Modes, conversely, represent unstructured intrinsic properties, like someone’s 

intention to do something or belief in something. 

UFO distinguishes qualities according to their measurability (ALBUQUERQUE; 

GUIZZARDI, 2013). A Nominal Quality refers to social conventions and provides a 

name for an individual, like birth names, passport numbers, postal codes, etc.  One 

cannot measure a nominal quality in a scale because they are just lexical combinations 

that follow a determined structure. Measurable Qualities, conversely, are the ones 

whose values fall into a scale. Examples are the currency value, a scale of positive 

decimal values, and the weight of a car, measured in grams, pounds, tons and so on. 

Furthermore, UFO classifies qualities with respect to the capability of cognitive agents 

to measure them. Some qualities, usually physical ones, like color, length, and weight, 

are directly perceivable by sensorial apparatus, thus referred to as Perceivable 

Qualities. Others, like the currency value of an asset, are not. UFO classifies the latter 

type as Non-Perceivable Qualities.  

The Qua Individual is a particular type of Mode. They refer to unstructured moments 

that an individual acquires when in a particular context, usually when playing roles. For 

instance, consider the individual Barack Obama. While playing the role of the president 

of the United States of America, he acquires a qua-individual, Obama-Qua-President, 

which provides him a set of powers and duties, like attending determined events. 

Moreover, we can think of him as a father, Obama-Qua-Father, which entails him 

different properties, like having a child and legally answering for his offspring.  

Coming back to the Relators, the objectification of relational properties (or their truth-

makers), are in fact composed by relational qua-individuals. Take for instance the 

relation of being married to, which holds between two people. If we say that Barack 

Obama is married to Michelle Obama, it is because there exists an instance of the 

relator Marriage composed by Michelle-Qua-Wife-Of-Obama and Obama-Qua-

Husband-Of-Michelle. 
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2.2.7 Relation Universals 

Figure 5 depicts UFO’s hierarchy of relation universals. Differently from substantials 

and moments, we only represent the universals as classes, since the corresponding 

individuals would be represented as lines, associations in our UML-like syntax. Once 

more, we represent the relation universals that can be directly instantiated in OntoUML 

models with thicker borders than the rest. 

  

Figure 5. UFO’s hierarchy of relation universals. 

The first distinction between the types of relations regards the conditions required for 

them to hold. Material Relation Universals capture types of relations that require 

additional entities to hold, i.e. instances of relator types. The relation “researching at”, 

which holds between a researcher and a research institution, is classified as material 

because it requires a social agreement for it to be true, like an employment contract. 

Opposed to the material relations, there are the formal relations, which can hold 

between individuals despite the existence of other entities. 

UFO further classifies formal relations as internal and external, whether they imply or 

not in existential dependency between the related types (in one of both directions). The 

only external relation described in UFO is the Domain Comparative Formal Relation 

(DCFR), which stands for relations that are reducible to the comparison of values of 



37 

qualities that characterized the related individuals. For instance, the relation “being 

taller than” is a DCFR because it can be reduce to the comparison of the height 

property of two individuals. Internal relations, conversely, are not reducible in this way. 

There are three types of internal relations in UFO. The first, labeled as 

Characterization, stands for the inherence relation that holds between moments and 

the individuals they characterize. The second, named Mediation, represents the 

relations between individuals and the truth-makers of material relations. Lastly, 

Derivations represent the relation between Material relations and their truth-makers, 

called Relators.  

Orthogonally to the formal and material classification, relations can be Meronymic, or 

as more commonly known in by the conceptual modeling community, part-whole 

relations. Despite further classifications, every part-whole relations obey a set of 

additional axioms:  

 weak supplementation, which states that every whole must be composed by at 

least two parts;  

 irreflexivity, individuals cannot be a part of themselves;  

 asymmetry, if ‘a’ is part of ‘b’, ‘b’ cannot be part of ‘a’;  

 acyclicity, an individual cannot be in its part-hood transitive closure (part of its 

parts, or parts of parts of its parts, and so on).  

Moreover, all meronymic relations have the following additional Boolean meta-

properties:  

 isEssential, which implies an existential dependency from the whole to the part;  

 isInseparable, which captures an existential dependency from the part to the 

whole;  

 isImmutablePart, a specific dependency from the whole to the part; 

 isImmutableWhole, a specific dependency from the part to the whole; 

 isShareable, a boolean meta-property that, when set to true, forbids an 

individual to compose more than one whole of the same type. 

UFO defines the particular types of meronymic relations proposed in UFO based on 

the type of individuals that can act as the whole, and as the part, combined with some 

particular values for the meta-properties.  
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The ComponentOf Universal stands for meronymic relations that hold between 

functional complexes (e.g. the relation between a car and its engine, the relation 

between the human body and a heart). By default, no meta-property value is set. 

Furthermore, the MemberOf relation Universal stands for part-whole relations defined 

between Collections and their members (e.g. Band-Member, Puzzle-Piece, Wolf Pack-

Wolf), i.e., a membership relation. MemberOf relations can hold between collections 

(as the whole) and functional complexes (as the members) or between two collections. 

The SubCollectionOf universal qualifies relations that hold between collections and 

their sub-collections (e.g. Deck-Heart Cards, Amazon Forest-Brazilian Part of the 

Amazon Forest). Lastly, there is the SubQuantityOf relation universal, which stands for 

part-whole relations that hold between quantities (e.g. Beer-Water; Concrete-Sand). 

By default, the SubQuantityOf relation is inseparable and non-shareable. 

2.3 QUALITY CRITERIA FOR ONTOLOGIES 

To assess the quality of an ontology, we must understand it as an engineering artifact. 

By viewing ontologies as artifacts, we consider them as something intentionally made 

by agents, envisioning a subsequent use or purpose. Therefore, a good ontology is 

one that is adequate for its intended uses.  

To guide modelers in systematically producing good ontologies, the research 

community proposed through time, many different measurements or criteria. Vrandečić 

presents a survey in (2009), in which he compares and consolidates a common set of 

quality criteria. These criteria regard different aspects of an ontology, such as its 

syntax, semantics, usability, understandability and so on. Although we understand the 

importance of all these different aspects of ontology quality, we focus in this thesis on 

the semantic dimension. That means that we are mostly concerned on how faithful a 

formalization is to the way a community understands a portion of reality.  

We use four semantic measurements to guide the development of the validation 

framework we propose in this thesis: 

 precision: measures if the ontology has problems of under-constraining, i.e., if 

it allows instantiations that were not intended by the modeler;  
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 coverage: measures if the ontology has problems of over-constraining, i.e., if it 

does not allow desired instantiations; 

 scope: measures if the ontology formalizes every concept, property and 

relationship required to explain a domain, and only them; 

 classification: measures if the modelers chose the appropriate categories of 

the foundational ontology do describe the domain entities; 

Precision and coverage are measurements built upon the notions of intended and 

possible instantiations of an ontology (GANGEMI et al., 2005). On one hand, intended 

models refer to all possible ways a modelers wants her ontology to be instantiated. 

More technically, the set of admissible states of affairs defined by the conceptualization 

the ontology is capturing. On the other hand, possible instantiations refer to all valid 

instantiations of the ontology. Therefore, intended instantiations are “things” the 

modeler wanted to say and the possible instantiations the “things” that she actually 

said.  

Precision refers to the amount of unintended instantiations, i.e. if the model “allows” 

more instantiations than desired. It is the ratio between intended instantiations by all 

possible instantiations. To exemplify, consider the “married to” relation, which holds 

between two people. In a common sense ontology about marriage, if a person can 

marry herself, the ontology is not precise. 

Coverage regards whether the model allows all intended instantiations. To exemplify, 

consider again the “married to” relation. If my community understands that a marriage 

can hold between people of the same gender, as well as between people of different 

ones and my ontology only allows the latter to happen, it has coverage issues. 

Precision and coverage, therefore, identify problems of under-constraining or over-

constraining in an ontology, respectively. Adapted from (GANGEMI et al., 2005), 

Figure 6 classifies how good an ontology is only by evaluating these two quality criteria.  
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Figure 6. Intended and possible model instantiations, adapted from (GANGEMI et al., 2005). 

Scope measures if the modeler managed to capture all the concepts, properties and 

relationships that are relevant for describing a given domain of interest, but only those. 

As an example, consider a common sense ontology about cars. The ontology would 

have scope problems if it describes a car having only wheels as parts, leaving out the 

bumper, the windshield, the engine and so on. 

The classification criteria assess how adequate are the modelers choice to represent 

a concept in terms of the meta-categories of the foundational ontology being used. For 

instance, consider the concept of car and the “married to” relation. According to UFO, 

a car is a functional complex, because it is something that persists through time 

keeping its identity and its parts play different functions regarding it. In addition, the 

“married to” relation should be classified as material according to UFO, because it only 

holds between to people if, in the past, an event occurred that lead to the creation of a 

relator between them: the marriage. If a modeler represents a car as a quantity or the 

“married to” relation of formal, it indicates an ontological classification issue.  

We are not claiming here that there is only one way to classify concepts according to 

a foundational ontology. We agree that different communities might classify the same 

terms in a different way. The goal of the ontological classification criteria is to identify 

inconsistent decisions. 
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2.4 ONTOLOGY VALIDATION 

In order to improve the overall semantic quality of an ontology, an appropriate 

language, based on a foundational ontology, should be used to design the model 

(GUARINO, 1998). Nonetheless, it is not enough to guarantee that modelers will only 

produce good models. To assert that, one would have to believe that users make no 

mistakes while constructing the model and trust that they fully understand the theories 

that support the modeling language.  

In order to improve the semantic quality of models in a systematic way, users should 

perform validation. We understand validation as an activity that aims to improve the 

semantic aspect of the model, making it closer to the intended conceptualization. Many 

approaches have already been proposed for this end, such as model simulation 

(BENEVIDES et al., 2010a), model testing (TORT; OLIVÉ, 2010) and the application 

of formal methods (QUERALT; TENIENTE, 2012). 

A modeler can say that she validated her ontology if she has the confidence to say: “I 

built the right model for this domain”. In order for a modeler to mean that truly, she 

must assess a number of quality criteria. A validated ontology must cover all relevant 

concepts within the shared conceptualization (scope). Furthermore, the user must 

classify the formalized concepts using the appropriate ontological meta-categories 

(classification). Moreover, the ontology must not allow instantiations that do not 

correspond to admissible states of affairs (precision), at the same time that all 

admissible states should refer to ontology instantiations (coverage). 

At this point, we want to point the difference between verification and validation, since 

the community uses these terms with many different names, and sometimes even as 

synonyms. We understand these as complementary activities that should be 

performed in a model, but which aim to identify completely different types of problems. 

As we said, validation is concerned with the semantic dimension of the ontology. 

Verification, conversely, refers to the syntactical part. Therefore, we understand 

verification as the activity of checking if one specified the ontology following all the 

syntactical constraints of the adopted modeling language.  Although we see the 

verification as an important first step, syntactical errors are out of the scope of the 

research presented in this thesis.  
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 REVISITING ONTOUML2ALLOY 

Conceptual model simulation is an approach to automatically generate model 

instances and check properties through the usage of lightweight formal methods, e.g. 

Alloy (JACKSON, 2012). The assumption is that by visually inspecting possible 

instantiations, a modeler can sort out admissible and non-admissible model 

instantiations. By recurrently performing this analysis, modelers improve model 

precision. In addition, modelers can also “demand” the generation of particular model 

instances that are expected to hold. If she encounters no model instance, her model 

has an over-constraining problem. 

Model validation through the usage of Alloy has been initially proposed for UML 

(BORDBAR; ANASTASAKIS, 2005). Inspired by them, the approach has been applied 

to OntoUML (BENEVIDES et al., 2010b; BRAGA et al., 2010).  Although these authors 

propose to use Alloy, a lightweight formal method, their proposal is not as “user 

friendly” as it might seem. One should not understand lightweight formal method as an 

“easy to use” method.  

This chapter revisits the proposed transformations from OntoUML to Alloy to make the 

validation approach more accessible for “managers”, i.e., conceptual modelers that are 

not expert in logics and formal methods.  We accomplish that by providing guidance 

on how to use the simulation capabilities, that is, relating desired model properties to 

pre-defined test cases, proposed as validation scenarios.   

We start by motivating the need to redefine the mappings of the original 

transformations from OntoUML to Alloy. In the following, we specify the new mappings 

and compare to the previous. Lastly, we define and discuss the simulation scenarios, 

detailing the types of properties tested by them. For a detailed explanation of the Alloy 

language, refer to Annex A. 
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3.1 WHY REVISIT ONTOUML2ALLOY? 

We revisit the transformation from OntoUML to Alloy because of multiple reasons. It 

starts with the evaluation reported in (SALES, 2012), in which a series of tests are 

performed to evaluate the transformation rules and the tool support of Benevides’ and 

Braga’s proposals. That report identifies coverage issues in both proposals, especially 

regarding meta-attributes, like readOnly (used to formalize specific dependencies) or 

the enforcement of the weak supplementation axiom on part-whole relations (a whole 

to be composed at least by two distinct parts). In addition, the report identifies that 

some transformation rules did not work as anticipated. That is the case for the 

transformation of OntoUML categories into Alloy functions, which syntactically 

precludes the specification of relations to categories, and the implicit transformation of 

generalizations, which makes multiple inheritance unfeasible in some cases. Lastly, 

the report lists many implementation bugs, which results in both syntactically and 

semantically problems in the generated Alloy specification. 

Furthermore, we argue that both proposals adopt a demanding assumption: users only 

simulate syntactically correct OntoUML models. In fact, we claim the exact opposite: 

users will most likely provide partial and/or wrong models. Thus, the design of a sound 

model transformation must anticipate and cope with difficulties that may arise from ill-

defined models. 

We refer to partial OntoUML models as the ones that have syntactical issues but one 

can still be fixed by adding new elements to them. An example is a role class specified 

without its characterizing relational dependency (mediation). Another example is a 

class stereotyped as subkind, which does not inherit any identity from an ultimate sortal 

(kind, quantity or collective). We claim that users are likely to validate partial models. 

Firstly, because OntoUML models grow quickly in size and one must separate relevant 

fractions to be able to understand the results of the simulations. We do not assume 

that every relevant model fragment is syntactically valid. Secondly, because the 

simulation technology itself poses a size limitation, thus users are required to crop their 

models in order for the analyzer to be able to provide the results. Finally, because 

users can, on purpose, partially define models. For example, the core ontology of 

services, named UFO-S (NARDI et al., 2013), specify only mixins and no sortals. This 
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lack of identity providers generates many syntactical errors, but they are all intentional, 

since the authors designed the ontology to be a generic reference model, which should 

not comprise the identity of individuals.  

By wrong models, we mean those that cannot become syntactically valid only by 

adding new elements. At least one element must be deleted or have its stereotype 

changed (in the case of classes and associations). An example of a wrong model is 

one that has a class stereotyped as kind specializing a class stereotyped as relator. 

The only ways to rectify such model is to change the stereotype of the classes or 

remove the generalization between them.  

The argument to anticipate simulations of models with such nature is two-fold. First, 

we argue that no modeling language will cover all modeling necessities for formalizing 

all concepts in every domain, even sophisticated languages like OntoUML, which 

complies with a foundational ontology. An example of such shortcomings, in OntoUML, 

is the lack of support for representing higher-order classes (e.g. Species, Car Model), 

i.e. classes whose instances are other classes. Whenever modelers are confronted 

with problems like this, they either accept the limitation and do not model the concept, 

or (what is more likely) propose a work-around, i.e., use the language in an unexpected 

way to cope with the modeling problem. The problem is that, solutions of this nature 

are not always syntactically valid. So, if a simulation is exclusively accepts valid 

models, we limit its usage in cases like this. The evidence encountered in the models 

we gathered during this research (see Section 6.1), substantiates the claim that 

syntactical errors are recurrent. 

The second argument to support the simulation of models that cannot become 

syntactically valid only by adding new elements is that the Alloy specifications 

generated from OntoUML models should be as faithful as possible from its source. A 

logical inconsistency in the original model should generate the exact same 

inconsistency on the produced model. This way, modelers can directly assess the 

logical consequences of their decisions. For example, OntoUML assumes that every 

object must have an identity and that kinds are identity providers. Thus, all kinds in a 

model are automatically disjoint, i.e., no individual can ever instantiate more than one 

kind. Now, if one specifies a kind as a subtype of another kind, it generates a logical 

inconsistency on the child class, which will have an empty extension. We argue that 
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this same problem inconsistency should appear in the Alloy specification, instead of 

forbidding the user to simulate. 

The last reason we revisit the OntoUML to Alloy transformation is because they are 

designed and implemented using an outdated OntoUML meta-model, proposed by 

Benevides (2010). The new version, called RefOntoUML, is proposed by Carraretto 

(2010), who points some limitations regarding Benevides’ original metamodel 

implementation, like its incompatibility with the rules for constructing UML 2.0 profiles, 

its lack of support for some language constructs and the undesirable mixture between 

concrete, and abstract syntax. Carraretto’s meta-model has also been updated to 

provide support for modeling qualities (ALBUQUERQUE; GUIZZARDI, 2013), and is 

currently the basis for all development of conceptual modeling tools in NEMO.  

3.2 ONTOUML2ALLOY 2.0 

In this section, we present the refactored structure of the transformation from OntoUML 

to Alloy. In Section 3.2.1, we present the adopted World Structured inherited from 

Benevides’ proposal (2010b). In Section 3.2.2 we discuss the Alloy module that 

contains the predicates to enforce most ontological properties defined in the OntoUML, 

like rigidity and dependency. Moreover, Section 3.2.3 describes the skeleton structure 

of the Alloy specifications we generate. In the sequence, Section 3.2.4 details every 

step of the transformation, i.e. what is the corresponding specification pattern in Alloy 

of each OntoUML construct. Lastly, in Section 3.2.5, we discuss the parameters for the 

new transformation, introduced to cope with the challenges of simulating partial 

models. 

3.2.1 World Structure Module 

The world structure we use in our transformation is the one proposed in (BENEVIDES 

et al., 2010a). For the sake of simplicity, we refrain from making repeated references 

to this work in this Section. 
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A world represents a possible instantiation of the ontology in a given moment, i.e. a 

model snapshot. It is the representation of a possible state of affairs according to the 

conceptualization formalized by the ontology. An existence relation relates a world to 

individuals, i.e. individuals exist in worlds. Within a world, an individual can instantiate 

types and be related to other individuals through the instantiation of associations. We 

refer to the set containing all individuals that exist in a world as its population. 

Succession relations interconnect Worlds. The real world meaning of a world being a 

successor of another is that, from a given state of affairs, identified by the first world, a 

sequence of events can occur, leading to the second world. Notice that in the proposed 

branch structure, every world can have at most one predecessor, but any number of 

successors. Furthermore, a world cannot be directly or indirectly successor of itself, 

making the branching structure resemble an n-ary tree. 

A world branch is a set of worlds that succeed one another. The structure resembles 

a directed graph, in which the worlds are nodes, and the accessibility relations are the 

edges. World branches have an additional constraint that requires every word in the 

branch to be accessible or access any other, directly or indirectly. 

The structure comprises four world categories: Past, Future, Counterfactual and 

Current worlds. A current world stands for the current state of things, an analogy to the 

present time. Future worlds present possible state of affairs that can become true if we 

continue to move through time from the current world.  Past worlds, conversely, are 

the ones were true and led to the current world. They present the outcomes of a series 

of events that lead to the current situation. Finally, the counterfactual worlds depict 

situations that could have happen if something went differently in the past. 

Every generated branch in the simulation must have exactly one current world, 

randomly chosen by the simulation. The others worlds are classified relatively to it. If 

the current world is a direct or indirect successor of a given world, it is classified a past 

world. Conversely, Future Worlds are direct or indirect successor of the Current World, 

signature. Lastly, a Counterfactual World is one that does not lead to the current world 

and follows from it. Instead, it is an alternative future of a past world.  

The last constraint imposed on the world branch structure is the continuous existence. 

It forbids an individual from existing again in a branch if it ceases to exist at one point. 
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To exemplify, consider a linear branch composed by w1, w2 and w3, such that w1 leads 

to w2 and w2 leads to w3. If an individual x exists in w1, but ceases to exist in w2, it 

cannot exist again in w3. The continuous_existence predicate enforces this constraint 

in the world structure module. 

We define a constraint not on the branches themselves, but on the relation between 

individuals and the worlds in which they exist. Moreover, the predicate 

elements_existence, states that every individual must exist in at least one world. 

The representation of the aforementioned world structure in Alloy follows in Listing 1. 

Listing 1. World Structure module in Alloy.

module world_structure[World] 1 

 2 

some abstract sig TemporalWorld extends World{ 3 

    next: set TemporalWorld -- Immediate next moments. 4 

}{ 5 

    this not in this.^(@next) -- There are no temporal cicles. 6 

    lone ((@next).this) -- A world can be the immediate next momment 7 

of at maximum one world. 8 

} 9 

one sig CurrentWorld extends TemporalWorld {} { 10 

     next in FutureWorld 11 

} 12 

 13 

sig PastWorld extends TemporalWorld {} { 14 

     next in (PastWorld + CounterfactualWorld + CurrentWorld) 15 

     CurrentWorld in this.^@next -- All past worlds can reach the 16 

current moment. 17 

} 18 

 19 

sig FutureWorld extends TemporalWorld {} { 20 

    next in FutureWorld 21 

    this in CurrentWorld.^@next -- All future worlds can be reached by 22 

the current. 23 

} 24 

 25 

sig CounterfactualWorld extends TemporalWorld {} { 26 

 next in CounterfactualWorld 27 

 this in PastWorld.^@next -- All past worlds can reach a 28 

counterfactual 29 

} 30 

 31 

--Objects cease to exist and come back in the future 32 

pred continuous_existence [exists: World->univ] { 33 

 all w: World, x: (@next.w).exists | (x not in w.exists) => (x 34 

not in ((w.^next).exists)) 35 

} 36 

 37 

--All elements must exists in at least one world 38 

pred elements_existence [elements: univ, exists: World->univ]{ 39 

 all x: elements | some w: World | x in w.exists 40 

} 41 
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3.2.2 Ontological Properties Module 

In order to characterize an OntoUML model as an Alloy specification properly, we 

defined another auxiliary module, which builds upon the World module presented in 

the last section.  We define seven predicates, namely: antirigidity, rigidity, 

elements_existence, immutable_target, immutable_source and derivation. 

Listing 2 provides the complete specification of the ontological properties module. 

Listing 2. Ontological Properties module in Alloy. 

module ontological_properties[World] 1 

 2 

/*run this predicate to verify if there the class is actually anti-3 

rigid. Parameterized the predicate with the class name.*/ 4 

pred antirigidity[class:set univ->univ, class_type: univ, exists:univ-5 

>univ] { 6 

 all x:class_type | #World>=2 implies (some disj w1,w2:World | x 7 

in w1.exists and x in w1.class and x in w2.exists and x not in 8 

w2.class) 9 

} 10 

 11 

/*this predicate states that a class is rigid.*/ 12 

pred rigidity[class: univ->univ,  class_type: univ, exists:univ->univ] 13 

{ 14 

 all w1:World,  p:univ | p in w1.exists and p in w1.class implies 15 

all w2:World | w1!=w2 and p in w2.exists implies p in w2.class 16 

} 17 

 18 

/*predicate to make the target association end is immutable*/ 19 

pred immutable_target [source_class:World->univ, assoc: univ->univ-20 

>univ]{ 21 

 all w1:World, x:univ |x in w1.source_class implies all w2:World 22 

| x in w2.source_class implies  x.(w1.assoc)=x.(w2.assoc) 23 

} 24 

 25 

/*predicate to make the target association end is immutable*/ 26 

pred immutable_source [target_class:World->univ, assoc: univ->univ-27 

>univ]{ 28 

 all w1:World, x:univ |x in w1.target_class implies all w2:World 29 

| x in w2.target_class implies (w1.assoc).x = (w2.assoc).x 30 

} 31 

 32 

/*states that the material relation is derived from the relator*/ 33 

pred derivation [material: World->univ->univ->univ, mediation1: World-34 

>univ->univ, mediation2: World->univ->univ], relator : World->univ, 35 

mediated_class1:World->univ, mediated_class2:World->univ] { 36 

 all w: World, x: w.mediated_class1, y: w.mediated_class2, r: 37 

w.relator | x -> r -> y in w.material iff x in r.(w.mediation1) and y 38 

in r.(w.mediation2) 39 
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The antirigidity predicate does what its name suggests: it enforces the exemplification 

of anti-rigidity for a given class. In natural language, the predicate means that every 

individual that instantiates an anti-rigid class in any world must exist at least in one 

other world and do not instantiate the class (if the world branch has more than one 

world). Naturally, this predicate only affects the simulations if the scope of the World 

signature is greater than one. 

In the same way, the rigidity predicate characterizes rigid types. The predicate states: 

for all worlds and individuals, if an individual x exists in a world w and it is in the 

extension of a class c, then for every other worlds w’, such that w is different than w’, 

x existing in w’ it implies that x is in the extension of c.  

The predicates entitled immutable_source and immutable_target formalize specific 

dependencies in each direction of an association. The readOnly meta-attribute (owned 

by the Property meta-class on the meta-model) and the isEssential, isInseparable, 

isImmutablePart and isImmutableWhole meta-attributes (owned by part-whole 

relations) capture specific dependencies in OntoUML models. Even though there are 

distinctions of specific and existential dependencies (the latter is a “stronger” version 

of the former), we do not specify other predicates. This design decision comes from 

the fact that specific dependency combined with rigid dependent classes implies in 

existential dependency. Furthermore, anti-rigid existentially dependent types imply in 

“pseudo” rigid dependent classes. Therefore, adding more predicates would only make 

the transformation more complicated and add no additional expressivity.  

The predicate that formalizes specific dependency means that for every instance x of 

the dependent class that exists in a world w, for all world w’, if x exists and instantiates 

the dependent class, the individuals to which x is connected to in w are equal to the 

ones x is connected to in w’. 

We also define the derivation predicate. It formalizes the derivation of material relations 

from relators. Its definition reads, in natural language, that a material instance (defined 

by a triple of source class x relator x target) only occurs if, and only if, an instance of a 

mediation connecting the source class to relator exists, alongside another connecting 

the target class to the relator. 
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3.2.3 Skeleton Specification 

Listing 3 illustrates the common structures we include in every Alloy specification 

generated according to our transformation from OntoUML to Alloy. 

Listing 3. Skeleton structure of a generated Alloy module.

module Model 1 

 2 

open world_structure[World] 3 

open ontological_properties[World] 4 

open util/relation 5 

open util/sequniv 6 

open util/ternary 7 

open util/boolean 8 

 9 

sig Object {} 10 

sig Property {} 11 

sig DataType {} 12 

 13 

abstract sig World { 14 

  exists: some Object+Property, 15 

}{} 16 

 17 

fact additionalFacts { 18 

 continuous_existence[exists] 19 

 elements_existence[Object+Property,exists] 20 

} 21 

 22 

fun visible : World->univ { exists } 23 

 24 

run { } for 10 but 3 World, 7 int  25 

 

The first line, module Model, is the module declaration. Every instance of the OntoUML 

meta-model starts with one element name that act as the root of all other elements. It 

can be either a RefOntoUML::Model or a RefOntoUML::Package. In both cases, its 

name defines the name of the produced Alloy module. 

Following, we declare six module importations in sequence. The first, open 

world_structure[World], is the importation of the module that contains the world 

structure and the relation between worlds, as described in section 3.2.1. The second, 

open ontological_properties[World], is the importation of the ontological properties 

module, which is required to use the predicates listed in section 3.2.2. The last four are 

importation of Alloy’s standard utility libraries. The line open util/relation imports 

the library that contains predicates to specify binary properties, like reflexivity and 

transitivity. The next line, open util/sequniv imports a library that enables the use of 

ordered relations (required for the implementation of the isOrdered meta-attribute). 
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Further, the line open util/ternary imports module containing functions to manipulate 

triples, which we will use for handling material relations. At last, we write open 

util/ternary, which imports the Boolean module, require in the transformation of 

Boolean attributes. 

After the module importations, there are three signatures declarations. The first, sig 

Object{}, is only created if the inputted model has at least one object class, i.e., one 

class stereotyped as Kind, Collective, Quantity, Role, Phase, RoleMixin, Mixin or 

Category. It represent the set of all object individuals, regardless of the types it 

instantiates. Analogously, the declaration sig Property{} is only created if there is at 

least one moment class in the model, i.e., stereotyped as Relator or Mode. It also 

comprises the set of all properties, regardless of the types they instantiate. Finally, the 

line sig DataType{}, is created if any custom datatype is specified (integers, for 

example, are mapped into Alloy’s default corresponding type. 

The only signature that will appear in every generated Alloy specification is the World 

signature. The declaration abstract sig World contains states that the worlds is 

abstract so every world will be either a Past, Future, Current or Counterfactual world, 

as defined in the world structure module. This signature always contains the field 

declaration exists: some Object+Property, which defines the relation between 

individuals (objects and properties) and the worlds in which they exist. Note that the 

word “some” precedes the field declaration. This means that every world must have 

something existing in it. In addition, we intentionally excluded the Datatype signature 

from the field declaration because we adopt the vision that data types are atemporal 

entities.  

Additionally, we declare a fact block named additionalFacts. It serves the exclusive 

purpose of calling two predicates already discussed in the world structure module: 

continuous_existence[exists], prohibiting elements to cease to exist and then come 

back to life; and elements_existence[Object+Property,exists], requiring every 

individual to exist in at least one world. 

In the sequence, fun visible : World->univ { exists } declares a function that 

returns all things that exist. This declaration has no effect on the simulation what so 
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ever, it is just a workaround we kept from (BRAGA et al., 2010) to facilitate the 

customization of the Analyzer’s visualization tool used to show simulation results. 

The last line, run {} for 10 but 3 World, 7 int is just a command to generate a 

unrestricted simulation with at most 10 atoms of the signature Object, 10 atoms of 

Property and 10 atoms of DataType distributed along 3 atoms of signature World. The 

expression “7 int” refers to the range of integers considered in the simulation: from 2-7 

to 27-1.  

3.2.4 Transformation Rules 

In the following subsections, we detail our mappings of OntoUML elements to Alloy 

expressions. We present the mappings grouped by the type of OntoUML element they 

are related to. 

3.2.4.1 Classes 

We map every class, regardless of its stereotype, into a field declaration within the 

World signature, as shown in Table 1. Each class-generated field relates every world 

to a subset of things that exist in that world. If the transformed class is an object 

(stereotyped as kind, quantity, collective, subkind, role, phase, roleMixin, mixin or 

category) the field’s type is the projection of the Object signature, as in ObjectClass: 

set exists:>Object. Conversely, we translate classes stereotyped as relator or mode 

into fields that map to the projection of the Property signature, as in PropertyClass: 

set exists:>Property. Notice that by declaring each field with the set multiplicity, we 

state that it is optional for world to have an instance of a class. 

To distinguish between rigid, anti-rigid and semi-rigid classes, we use the rigidity 

predicates discussed in the ontological properties module. For every rigid class, 

stereotyped as kind, collective, quantity, subkind, category, relator, mode or quality, 

we call the rigidity predicate, as in rigidity[RigidClass,Object,exists]. The first 

parameter corresponds to the class name, the second, to the signature used in its 

definition (Object or Property) and the third is always world’s “exists” field. For every 
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anti-rigid class, we only call the anti-rigidity predicate if the corresponding parameter 

is set to true (see more about transformation parameters in section 3.2.5). We enforce 

anti-rigidity by calling the predicate antirigidity[AntirigidClass,Object,exists]. 

Lastly, semi-rigid classes do not require any further constraining. 

Table 1. Class mapping to Alloy. 

OntoUML Alloy 

ObjectClass, 
PropertyClass 

abstract sig World { 

  ObjectClass: set exists:>Object 

  PropertyClass: set exists:>Property 

} 

RigidClass fact rigid { 

  rigidity[RigidClass,Object,exists] 

} 

AntirigidClass fact antirigid { 

  antirigidity[AntirigidClass,Object,exists] 

} 

isAbstract fact abstract { 

  all w: World | w.AbstractClass = w.Subtype1 + w.Subtype2 

+ … + w.Subtype-n 

} 

- 
-- additional facts 

abstract sig World {}  

{ 

  exists:>Object in ObjectClass1 + … + ObjectClass-n 

  exists:>Property in PropertyClass1 + … + PropertyClass-n 

} 

  

In summary, we represent classes as binary relations between worlds and the 

corresponding set of individuals, Object for substantials and Property for moments. 

Thus, the expression World.Class refers to every individual that instantiate the class 

in any world, whilst the expression w.Class (w being a particular World), returns the 

individuals that instantiate Class in w. 

3.2.4.2 Associations 

In general, we map an association between the classes “Source” and “Target” as a 

ternary relation between World, the source and target classes, as in association: set 

Source -> Target. We declare all association fields within the World signature. As we 
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did for classes, we always declare associations using the “set” constraint, in order 

make it optional for a world to have an instance of the association.  

If a material association, however, is derived from a relator (through a derivation), the 

mapping is slightly modified. In these cases, we do not map the material relation as a 

triple, but as a quadruple, the fourth dimension being the relator the truth-maker of the 

material relation. Thus, a material association between classes “Source” and “Target”, 

whose truth-maker is “Relator”, generates the following field declaration: material: 

set Source -> Relator -> Target.  

Amongst all types of associations, derivations are the only ones that we do not map 

into fields within the World signature. In order to translate a derivations embedded 

meaning, we generate a fact to correlate the instantiation of the corresponding material 

to the instantiation of the mediations connected to the respective relator. Table 2 shows 

the mapping. 

Whenever an association contains at least one end set as ordered (isOrdered=true), 

the general mapping into ternary fields must be transformed into a 4-ary field, just like 

for derived material associations. This time, instead of adding a relator as the fourth 

dimension, we add Alloy’s primitive “Int” signature, which generates the following 

declaration: association: set Source set -> set Int set -> set Target. The 

integer dimension provides the “position” of the relation. Adding the integer dimension, 

however, is not enough to characterize an ordered relation. To do that, we add the 

following expression, within a fact block: all w:World, x: w.Class | 

isSeq[x.(w.association)]. In natural language, this expression is translated as “for 

all worlds w, the individuals that every instance x of Class is connected through 

association, compose a sequence”. The expression implies that an orderly assignment 

of numbers to the instances of an association, starting from zero and growing one by 

one, without skipping numbers. We complete the mapping of ordered relations by 

adding an expression to forbid the relation between two individuals more than once 

through the same association.  

Finally, the mapping of meronymics, characterizations and mediations is not limited to 

the ternary field declaration. For each association stereotyped as ComponentOf, 

MemberOf, SubQuantityOf, SubCollectionOf, Mediation and Characterization, an 
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additional fact block is generated, which contains the expression: all w: World | 

acyclic[w.association,w.Source]. This fact defines these associations as acyclic, 

implying anti-reflexivity (e.g. an individual cannot compose itself) and anti-symmetry 

(e.g. if ‘a’ composes ‘b’, ‘b’ does not compose ‘a’), as prescribed in UFO. 

Table 2. Mapping of OntoUML Associations in Alloy.  

OntoUML Alloy 

Association abstract sig World { 

  association: set Source -> Target 

} 

Material 
(connected to a 
derivation) 

abstract sig World { 

  material: set Source -> Relator -> Target 

} 

Derivation fact derivation { 

  all w: World, x: w.Source, y: w.Target, r: w.Relator | x 

-> r -> y in w.material iff x in r.(w.mediation1) and y in 

r.(w.mediation2) 

} 

Ordered 
Association 
(isOrdered=true) 

abstract sig World { 

  association: set Source set -> set Int set -> set Target 

} 

 

fact ordering { 

  all w:World, x: w.Class | isSeq[x.(w.association)] 

  all w:World, x: w.Class,  y:w.OrderedClass | lone 

x.((w.association).y) 

} 

  

3.2.4.3 Properties: Association Ends and Attributes 

The OntoUML metamodel specifies the Property construct for association ends and 

attributes because they share a great deal of meta-characteristics, like multiplicity and 

immutability (formalized by the isReadOnly meta-attribute). Thus, we define a general 

mapping for properties, making distinctions for ends and attributes only when 

necessary. 

As we discussed in the previous section, associations give rise to fields within the world 

signature. The transformation of attributes specified within classes is quite similar. We 

create a ternary field within the “World” signature for unordered attributes and a 4-ary 
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for ordered ones. The difference is that instead of specifying using the related elements 

in the specification, we use the owner class and the attribute’s type. Table 3 details 

this mapping. 

Going back to properties in general, we map them into Alloy functions that take, as 

parameters, an instance of the owner class and a particular world, and return 

individuals of the property’s type. A function generated from an attribute would have a 

header like fun property [x: World.Class,w: World] : set DataType. The function’s 

body accesses the individuals connected to ‘x’ through a particular attribute or 

association. Its specification varies according to the property type (attribute or 

association). Besides, source association ends are defined differently if they are in the 

source or in the target of the association. Finally, their definition also depends on 

whether a ternary or 4-ary field formalizes the association. Once more, Table 3 details 

all these possibilities. 

The definition of property multiplicity depends on its value. For properties defined using 

the common multiplicity values, i.e., zero-one, exactly one, zero-many or one-many, 

we embed the restriction in the respective association or attribute mapping within the 

world signature. For example, we map the association “fatherOf”, between a father and 

his offspring as parentOf: set Father one -> some Offspring, because a father has 

at least one child, who has exactly one father.  

Whenever custom multiplicities are specified, we enforce them through the 

specification of an additional fact, as in all w:World, x:w.Owner | 

#property[x,w]>=lower and #property[x,w]<=upper. To define the custom 

multiplicity, we use the former defined functions. 

Another meta-characteristic a property has is entitled readOnly. This feature is used to 

capture specific and existential dependency in OntoUML models (e.g. that is why every 

mediation must be have readOnly=true in the end connected to the mediated type). If 

a property is defined as readOnly, a following fact is generated 

immutable_target[Source,association]. This example refers to an end that is the 

source of the association. If it were the target, “Source” would be replaced for Target 

and if it were an attribute, the substitution would be for the owner Class. As we 
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previously showed, the immutable predicates are defined in the ontological properties 

module (for more details, refer back to Section 3.2.2). 

The last association properties covered by our transformation are the subsetted and 

redefined properties. For this mapping we adopt the formal subsetting and redefinition 

semantics defined in (COSTAL; GÓMEZ; GUIZZARDI, 2011). The semantics of 

subsetting is that a property p1 subsets a property p2 if, for every x that instantiates 

the owner of p1, the set of individuals x is related through p1 is a subset of the set of 

individuals x is related through p2. The semantics of redefinition is similar, but instead 

of an inclusion constraint, we have an equality one, i.e., the individuals related through 

p1 and p2 are the same. Assuming these definitions, we map p1 subsetting p2 as: all 

w:World, x:w.Owner | p1[x,w] in p2[x,w]. Furthermore, we map p1 redefining p2 

as: all w:World, x:w.Owner | p1[x,w]=p2[x,w]. 

Table 3 summarizes all mappings related to association ends: 

Table 3. Mapping of attributes and association ends into Alloy 

OntoUML Alloy 

Attribute  
(within a class) 

abstract sig World { 

  -- unordered attribute 

  attr1: set Class set -> Datatype 

  -- ordered attribute 

  attr2: set Class set -> set Int set -> set Datatype 

} 

Property -- Attribute 

fun property [x: World.Class,w: World] : set DataType { 

  x.(w.attribute) 

} 

 

--Source AE 

fun property [x: World.Opposite,w: World] : set 

World.Type { 

  (w.association).x 

} 

 

--Target AE 

fun property [x: World.Opposite,w: World] : set 

World.Type { 

  x.(w.association) 

} 

 

--Source AE – Material or Ordered 

fun property [x: World.Opposite,w: World] : set 

World.Type { 

  (select13[w.association]).x 

} 
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--Target AE – Material or Ordered 

fun property [x: World.Opposite,w: World] : set 

World.Type { 

  x.(select13[w.association]) 

} 

Default Multiplicity -- 0..1 = lone; 1..1 = one; 1..* = some; 0..* = set  

abstract sig World { 

  attribute: set Class set -> some Datatype 

  association: set Source lone -> one Target 

} 

Custom Multiplicity -- Attribute (Class: class that owns the attribute)  

fact { 

  all w:World, x:w.Class | #property[x,w]>=lower and 

#property[x,w]<=upper 

} 

 

--AE (Opposite: type of the end opposite to the property)  

fact { 

  all w:World, x:w.Opposite | #property[x,w]>=lower and 

#property[x,w]<=upper 

} 

property1 subsets 
property2 
(subsettedProperty) 

-- Opposite: type of the end opposite to the property 

fact subsetting { 

  all w:World, x:w.Opposite | property1[x,w] in 

property2[x,w] 

} 

property1 redefines 
property2 
(redefinedProperty) 

-- Opposite: type of the end opposite to the property 

fact redefinition { 

  all w:World, x:w.Opposite | property1[x,w]= 

property2[x,w] 

} 

isReadOnly fact associationProperties {  

  immutable_target[Source,association] -- Source AE 

  immutable_source[Target,association] -- Target AE 

  immutable_target[Class,attribute] -- Attribute 

} 

3.2.4.4 Meronymic Properties 

Meronymic is a very particular type of relation. As we discussed in Chapter 2, the 

foundational ontology imposes many constraints on them, like anti-reflexivity, anti-

symmetric, weak supplementation, and so on. Furthermore, OntoUML prescribes a set 

of meta-properties exclusively regarding Mereology, which modelers can customize, 

as the isEssential and isExtensional meta-properties of part-whole relations. In this 
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section, we describe the refactored mapping of these meronymic constraints and meta-

properties. 

We start with the mapping of the weak supplementation axiom, which traces back to 

UFO. The axiom states that every whole must contain at least two proper parts, 

because a whole contains a single part, the whole and the part are the same individual. 

In order to forbid ontological inconsistent models at the syntactical level, OntoUML 

contains an embedded constraint regarding whole specification: the sum of the lower 

bound cardinalities on the part ends of the meronymics directly or indirectly connected 

to a whole must be greater or equal to two. Although very restrictive, it is not enough 

to forbid every inadmissible model instantiation. Wholes composed by parts that have 

a common intersection might bypass this constraint. In order to cope with that and 

enforce a minimum of two parts, even if the cardinality constraints are not properly 

defined, we add a fact block for each meronymic, containing the following expression: 

all w: World, x: w.Whole | #(part_1[x,w]+ … + part_n[x,w])>=2. This constraint 

is not concerned with the actual defined cardinality defined for the relations, but only 

in enforcing the two minimum parts. 

A meronymic relation, as defined in the foundational ontology, must always be anti-

reflexive, anti-symmetric and acyclic. This means that no individual can be part of itself, 

that if ‘a’ is part of ‘b’, then ‘b’ is not part of ‘a’, and that an individual cannot be an 

indirect part of itself, respectively. Since acyclic implies anti-reflexivity and anti-

symmetry, we only include the following expression: all w: World | 

acyclic[w.meronymic,w.Whole], which meronymic relations as acyclic. 

Now we discuss meronymic meta-attributes and their respective mappings. We start 

discussing isEssential and isImmutablePart. If a modeler defines a part-whole relation 

as essential, it means that the instances of the whole are existentially dependent on 

the instances of the part. Simply put, throughout the existence of the whole, its parts 

may never change. Immutable parts are a weaker version of essential parts. Instead 

of an existential dependency, they characterize a specific dependency. Therefore, the 

constraint would read, “While instantiating a whole type, the same parts must compose 

an individual”. When set to true, we enforce both meta-attributes by making a predicate 

call, as in: immutable_target[Whole,meronymic]. 
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Opposed to the previous constraints, there is isInseparable and isImmutableWhole. 

They also capture existential and specific dependencies, but this time, from the part to 

the whole. If a part composes an inseparable whole, it must always do so while it exists. 

If a part composes an immutable whole, it means that whilst instantiating the part type, 

it composes the same wholes. We enforce these meta-attributes through a single 

predicate call: immutable_source[Part,meronymic].  

In the following, we map the isShareable meta-attribute. One of the solutions to solve 

the semantic gap identified in UML, regarding the difference between Aggregation and 

Composition (GUIZZARDI, 2005, chap. 8), isShareable is a multiplicity constraint. 

When set to true for an association, it means that a part can compose at most one 

instance of the respective whole and when it does, it cannot compose any other whole. 

We achieve that in Alloy by creating a fact block that contains two expressions:  

 all w:World, x : w.Part | lone whole[x,w], which enforces the composition 

of at most one whole; and  

 all w:World, x : w.Part | some whole[x,w] implies no (whole_1[x,w] + … 

+ whole_n[x,w]), which forbids the composition of wholes of any other type.  

Lastly, we present the mapping for the isExtensional meta-property, which can only be 

set on collectives. This property is redundant, because it means that every part-whole 

relation connected to the collective has readOnly set to true in the part end. For the 

sake of correctness, even if the modeler does not set all relations as read only, we 

generate the expressions as if she had done it. 

Table 4 lists the summary of all mappings regarding meronymic constrains and meta-

properties. 

Table 4. Mapping of meronymic constraints and meta-properties. 

OntoUML Alloy 

Weak 
Supplementation 
Axiom 

fact weakSupplementationConstraint { 

 all w: World, x: w.Whole | #(part_1[x,w]+ … + 

part_n[x,w])>=2 

} 

Acyclic Meronymics fact acyclic { 

  all w: World | acyclic[w.meronymic,w.Whole] 

} 

 



61 

-- ordered association 

fact acyclic { 

  all w: World | acyclic[select13[w.meronymic],w.Whole] 

} 

isEssential and 
isImmutablePart 

fact associationProperties {  

  immutable_target[Whole,meronymic] 

} 

isInseparable and 
isImmutableWhole 

fact associationProperties {  

  immutable_source[Part,meronymic] 

} 

isShareable fact nonShareable { 

  all w:World, x : w.Part | lone whole[x,w]  

  all w:World, x : w.Part | some whole[x,w] implies no 

(whole_1[x,w] + … + whole_n[x,w]) 

} 

isExtensional fact associationProperties {  

  immutable_target[Whole,meronymic1] 

  immutable_target[Whole,meronymic2] 

  … 

} 

3.2.4.5 Relator and Mode Constraints 

Simply put, relators are objectification of material relations. As we discussed in Chapter 

2, UFO assigns an axiom upon relators that requires every instance to mediated at 

least two disjoint entities. The reflection of this axiom on OntoUML is a syntactical 

constraint that requires the sum of the lower bound cardinality of all mediations, directly 

or indirectly connected to a relator, to be greater or equal to two. This constraint suffers 

from the same problem of weak supplementation: it has a “loophole”. Whenever all 

mediated types can be simultaneously instantiated by the same individual. To enforce 

the desired ontological constraint, regardless of the syntactical rule, we create fact 

blocks containing the following expression: all w: World, x: w.Relator | 

#(mediated_1[x,w]+ … + mediated_n[x,w])>=2. This rule specifies that every relator 

instance mediate at least two distinct individuals, regardless of how many mediations 

are connected to the relator. 

Ontologically, mediation associations are internal relations used to connect object 

types to relators, with the particular property of characterizing an existential 

dependency from the relator to the mediated type. Syntactically, this means that the 
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target end of every mediation (the end connected to the mediated type) must be set as 

readOnly=true. The existential dependency captured by a mediation is mapped as a 

predicate call, as in immutable_target[Relator,mediation]. 

Characterizations are very similar to mediations, but instead of specifying relational 

properties, it formalizes the relation between an intrinsic property (either a mode or a 

quality) and the individual it characterizes, the property’s bearer. A property can 

characterize other intrinsic properties, objects or even relators. An object, however, 

must always be the “ultimate” bearer. For example, if James has a 38⁰ fever, we 

interpret that the temperature is a quality that inheres in the James’ fever, which is a 

mode that inheres in James, and object. OntoUML has two syntactical rules to enforce 

these ontological notions:  

 every intrinsic property must be directly connected to a unique characterization 

relation; and  

 every mode must be directly or indirectly characterize an object class or a 

relator.  

Just like in the relator rule and the weak supplementation, the syntax is not enough to 

enforce the complete ontological definition. Particularly, for recursive characterization 

definitions, intrinsic properties can indirectly characterize themselves. To forbid that, 

we include a single fact that forbid cycles in the combined extension of all 

characterizations: all w: World | acyclic [w.charac1 + w.charac2, w.Mode1 + 

Quality2]. The expression calls the acyclic predicate, defined in the util/relation 

module, passing as parameters the union of all characterizations and the union of all 

intrinsic properties. 

Finally, as characterizations impose existential dependencies (the property depends 

on the characterized individual), each generates a call to the immutable predicate, just 

like mediations. Table 5 summarizes the mappings involving relators, mediations, 

modes, qualities and characterizations. 

Table 5. Mapping of relators, mediations, modes, qualities and characterizations. 

OntoUML Alloy 

Existential 
dependency 

fact associationProperties {  

  immutable_target[Relator,mediation] 

  immutable_target[Mode,characterization] 
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  immutable_target[Quality,characterization] 

} 

Acyclic 
Characterization 

fact acyclic { 

  all w: World | 

acyclic[w.characterization1+w.characterization2,w.Mode1+Mod

e2] 

} 

Relators Rule fact relatorConstraint { 

  all w: World, x: w.Relator | #(mediated_1[x,w]+ … + 

mediated_n[x,w])>=2 

} 

3.2.4.6 Datatypes 

As classes, datatypes characterize a set of individuals that share common 

characteristics. Thus, they can participate in associations, own attributes and be 

specialized into other datatypes. Unlike classes, instances of datatypes do not exist in 

time, and their values define their identities. For example, if two persons weigh 80 kg, 

the same instance of the weight datatype (a point in the quality dimension) 

characterizes both persons.  

The particular features of datatypes impose a transformation that follows a completely 

different path than the one for class. To start, since datatypes are atemporal, we cannot 

declare them as fields of the world signature. Thus, we represent them as individual 

signatures that subset the general datatype signature, e.g. sig CustomDatatype in 

DataType {}. 

The reason we declare a general datatype signature and make every custom datatype 

be included in it, is because Alloy only allows multiple inheritance if all parents are 

overlapping a priori (JACKSON, 2012). This design decision, though, requires the 

specification of additional constraints. First, we must declare that every instance of the 

general datatype is an instance of the ones declared in the model. We do that in an 

additional fact block, through the expression DataType = Datatype1 + … + Datatype2. 

To compete the specification, we add a disjointness constraint, for datatypes that: (i) 

are not specializatios of one another; (ii) do not share a common super-type; and (iii) 

do not share a common subtype. This constraint is enforced through the expression 

disj[Datatype1, (Datatype-2+Datatype-n)]. 
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By changing the way we specify datatypes, we invalidate the mapping of attributes and 

associations involving exclusively datatypes. The mapping of attributes changes from 

fields of the world signature to fields of the owner type, as in attribute: one Int.    

OntoUML does not prescribe any stereotype for defining associations between 

datatypes. So whenever one that relates two datatypes is inputted, the transformation 

ignores the stereotype and generates a field declaration within the datatype connected 

to the source of the association, as in association: one CustomDatatype. We map 

multiplicities analogously to the way we map multiplicities for associations between 

classes, but this time, without projecting on the world signature, as in: all x: 

CustomDatatype | #x.association>=lower and #x.association<=upper.  

Table 6. Mapping of datatypes and related elements and constraints in Alloy 

OntoUML Alloy 

Datatype sig CustomDatatype in DataType {} 

Attribute  
(within a datatype) 

sig CustomDatatype in DataType { 

  attribute: one Int 

} 

Association  
(between datatypes) 

-- ignores stereotypes 

sig CustomDatatype1 in DataType { 

  association: one CustomDatatype2 

} 

 

fact multiplicity { 

  all x: CustomDatatype1 | #x.association>=lower and 

#x.association<=upper 

  all x: CustomDatatype2 | #association.x>=lower and 

#association.x<=upper 

} 

Datatype identity fact datatype_identity{ 

  all x,y : LeafDatatype | x.attr1=y.attr1 and 

x.attr2=y.attr2 implies x=y 

} 

Additional facts 
fact additionalDatatypeFacts { 

  DataType = Datatype1 + … + Datatype2 

  disj[Datatype1, … , Datatype-n] 

} 

Enumeration enum Enumeration {Literal1, Literal2, … , Literal-n} 

  

As we discussed in the beginning of this section, the identity of a datatype regard its 

properties values. To enforce that behavior, we add the following expression: all x,y 

: CustomDatatype | x.attr1=y.attr1 and x.assoc=y.assoc implies x=y. Note that 

this constraints includes the comparison of all attributes and association owned by a 
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datatype or inherited by it. Furthermore, we only generate such constraints for the leaf 

data-types, i.e. the ones that have no subtytpes.  

Lastly, the mapping of Enumerations, a particular type of Datatype that correspond to 

a discrete sequence of literals, is straightforward: enum Enumeration {Literal1, 

Literal2, Literal-n}. In Alloy, this declaration is a syntactical shortcut, equivalent 

to declaring sig Enumeration {} followed by one sig Literal1, Literal2, Literal-

n extends Enumeration {}. Differently from regular datatypes, enumerations do not 

support specialization, attributes or event relation between themselves. 

3.2.4.7 Primitive Types: Strings, Integers and Boolean 

OntoUML lacks a basic type library containing the most common types of data used, 

like string, char, natural, integer, floating point, Boolean, etc. Even so, we propose a 

few mappings of primitive types like these, in order to take advantage of Alloy’s basic 

types. To do that, we use the datatype’s name. If a type is named String (or string), 

instead of creating new datatype signature, it is mapped to Alloy’s embedded String. 

For integers, the same thing happens, a mapping to the primitive Integer signature. 

Lastly, we map Boolean types to a Bool signature, defined in a standard library. 

By mapping types to the primitive String signature instead of an ordinary signature, we 

provide modelers with the ability (and the obligation) to define a String range, i.e., the 

values a string may assume. This is required because the analyzer is not able to 

generate string values automatically. This mapping has a cognitive advantage, since 

the simulation will show actual strings, improving the readability of the generated 

worlds. Furthermore, it is compliant with datatype identity, since two strings with the 

same values are the same. This mapping, however, due to Alloy’s limitation, does not 

allow user to use complex string operations, only value assignments and comparisons 

are available.  

By mapping integer attributes to the primitive Int signature, we also increase the 

readability of the simulation results. In this case, Alloys support is more refined, so in 

addition to the ability of assigning values and comparing them, users are able to 

calculate sums of a set of integers, besides the basics arithmetic operations, like 
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addition, subtraction, multiplication, division and modulus. Alloy bounds the 

instantiation of the Int signature in a particular way. For each command, one can define 

the size of the integer set, like in run predicate for 5 but 7 int. This command 

generates 27 = 128 values, ranging from -64 to 63. 

Alloy provides no native support for storing primitive Boolean values in signature fields. 

To cope with this limitation, the designers developed an Alloy module as a work 

around, defining a signature named Bool, which is specialized in two singletons: True 

and False. Alloy provides support for Boolean operations through custom functions 

and predicates.  

Table 7. Mapping of String, Boolean and Integer. 

OntoUML Alloy 

String String 

String Possibilities all s: String | s="String1" or s="String2" or … or 

s="String-n" 

Boolean, Bool util/Bool 

Integer, Int Int 

Int range -- 7 int means 2^7 = 128 values, from -64 to 63 

run predicate for 5 but 7 int 

3.2.4.8 Generalizations and Generalization Sets 

In OntoUML, the generalization construct defines an inheritance relation between two 

classes. The class connected to the origin of the relation is the “child” class, and the 

other the “parent”. By defining a generalization, one states that the extension of the 

child class is included in the extension of the parent class. Furthermore, one asserts 

that the child inherits every property defined for the parent. In Alloy, we represent 

generalizations independently from the specification of the related classes, and since 

it does not make sense to talk about property inheritance, we only specify the extension 

inclusion, as in: Child in Parent.  

A Generalization Set (GS) is a group of Generalizations of a common supertype. It 

captures a common criterion of specialization for all subtypes and restricts their 
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instantiation. A specialization criterion is involved in the definition of why an instance 

of a type becomes an instance of one of its subtypes. To clarify, consider the types 

Person, Man, Woman, Child and Adult. A person is classified as Male or Female 

according to one’s gender, whilst is classified as Child or Adult through the evaluation 

of one’s age.  

Besides the group of generalizations, a GS has two Boolean meta-properties: isDisjoint 

and isCovering. The former regards the multiple instantiation of the respective child 

classes: if set to true, no individual can instantiate more than one subtype at the same 

time, if set to false, no restriction exists. Whenever set to true, the transformation 

generates the following expression:  disj[Subtype1, … , Subtype-n].The isCovering 

meta-property, if set to true, requires every instance of the common supertype to be 

an instance of at least one of the subtypes in the generalization set. To guarantee that, 

the transformation maps a complete GS to the following expression: Parent = 

Subtype1 + … + Subtype-n. 

Table 8 summarizes all mappings regarding generalizations and GS’s. 

Table 8. Mapping of generalizations and generalization sets. 

OntoUML Alloy 

Generalization fact generalization { 

  Child in Parent 

} 

Generalization Set fact generalization_set{ 

  disj[Subtype1, … , Subtype-n] -- isDisjoint=true 

  Parent = Subtype1 + … + Subtype-n -- isCovering=true  

} 

3.2.5 Transformation Parameters 

To cope with challenges of simulating partial OntoUML specifications and to provide 

modelers with flexibility during the validation, we propose the usage of transformation 

parameters. We discuss each of them in the following sub-sections. 
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3.2.5.1 Identity 

UFO, the foundational ontology that molds OntoUML, has an axiom that requires every 

object to follow an identity principle. This principle is a sort of function that allows us to 

differentiate individuals through space and time. According to the foundational 

ontology, ultimate sortal types (in OntoUML they are classes stereotyped as kind, 

quantity and collective) provide the individuation criteria for their instances. This axiom 

gives rise to several syntactical constraints in OntoUML. For example, no instance of 

an ultimate sortal can be a direct or indirect subtype of another ultimate sortal. Another 

example is that every subkind, role and phase must be a direct or indirect subtype of 

an ultimate sortal. A natural consequence of requiring a unique identity for individual is 

that all classes that provided identity are disjoint from one another, i.e., no individual 

can ever instantiate more than one ultimate sortal. In Alloy, we enforce this rule through 

the following expression:  

disj[Kind1,Kind2,Collective1,Quantity1] 

A partial model, however, may have some classes with an undefined identity principle. 

Structurally, that means that either a subkind, role or phase does not specialize an 

ultimate sortal, directly or indirectly, or a category, roleMixin or mixin does not 

generalize sortal classes. The former case occurs on model fragments formalizing only 

a subset of a class hierarchy, whilst the latter occurs on generic models that only define 

non-sortal classes. 

To cope with the undefined identities, we propose a parameterization that allows users 

to choose between enforcing the identity axiom or not. If enforced, the Alloy 

specification will state that every object is an instance of one ultimate sortal. We do 

that by making the set of all objects that exists in world to be equal to the union of 

ultimate sortals that exist in that world, like in the following code: 

all w:World | w.exists:>Object = 

(w.Kind1+w.Kind2+w.Collective1+…+w.Quantity1) 

 

If not enforced, the transformation will replace the previous Alloy expression with the 

one that enforces every object individual to be an instance of at least one object class. 

To do that, we make the projection of the Object signature on the things that exist in a 

world to be equal to the union of all object class extensions, like in the following code: 
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all w:World | w.exists:>Object = 

(w.Kind1+w.SubKind1+w.Collective1+…+w.Role1+w.Category1) 

 

Furthermore, note that, if two classes have no identity, we cannot say for sure that they 

are disjoint. A modeler might be simulating two subkinds that specialize the same kind, 

making them overlapping, or that specialize two different kinds, making them disjoint. 

In the same way, if the modeler were simulating multiple mixins, they would be 

overlapping if they generalize the same sortals. These mixins, however, would be 

disjoint if they generalize completely independent sortals.  

To cope with the aforementioned lack of information, we envision three possibilities. 

The first is to be conservative and state that every two distinct indentity-less classes 

are disjoint if they they are not direct or indirect subtypes of one another and they do 

not share a third class as a common subtype or supertype. The second is to be more 

liberal and state that if we cannot conclude that two classes are disjoint, then they 

might be overlapping. Lastly, we can refrain from making any pre-defined decision and 

interact with the modeler to decide which classes are overlapping and which are not. 

To exemplify these three alternatives to deal with identity issues in a partial model, 

consider the fragment depicted in Figure 7. The conservative approach would conclude 

that “Colored Object” and “Spherical Obejct” are overlapping, since these classes have 

a common super-type: “Physical Object”. It would also conclude that “Male” and “Child” 

are overlapping, since they have a common subtype: the subkind “Boy”. However, it 

would consider “Moving Object” and “Physical Object” as disjoint. The same decision 

would apply to “Male” and “Moving Object”, and so on. The liberal approach assumes 

that “everything is possible”. Therefore, there might be an instance of “Male”, which is 

also an instance of “Moving Object” and “Physical Object”. In the last alternative, the 

user would have to indicate for every possible combination of two top-level classes 

(classes without parents) if they are disjoint or not. For instance, the user might decide 

that “Moving Object” possibly overlaps with “Physical Object”, but they do not overlap 

with neither “Male” nor “Child”. 
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Figure 7. Partial OntoUML diagram with identity issues in all classes. 

If modeler decides for the conservative approach, the transformation will generate an 

expression for each top-level class, enforcing its disjointness with the union of every 

other top-level class. The following expression exemplifies the expression required for 

the category “Physical Object” in Figure 7. 

disj[PhysicalObject,(Male+Child+MovingObject)] 

 

Note that if some classes have identities and some do not, enforcing identity will limit 

the analyzer to generate branches in which the extension of identity-less classes are 

always empty. If no class has identity, enforcing the axiom causes the analyzer to 

generated only empty worlds.  

3.2.5.2 Weak Supplementation 

UFO’s part-whole theory prescribes that every whole contains at least two proper parts 

– the Weak Supplementation Axiom. This axiom’s reflection on the OntoUML syntax 

requires that the sum of the lower bound cardinalities of all meronymic relations 

connected to a whole must be equal or greater than 2. Although this syntactical rule 

restrict many undesired cases, it is not enough. In cases where the same individual 

can simultaneously instantiate multiple types that compose the same whole type, the 

model allows instantiations that break the weak supplementation axiom. To forbid 

these cases, we include one fact per whole in the alloy specifications, which constraints 

the minimum of parts in every whole individual: 

all w:World, x:w.Whole | #(x.part1[w]+x.part2[w])>=2 
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Every model that contains wholes connected to part-whole relations whose sum of their 

lower bound cardinalities, is less than two, automatically fails the weak 

supplementation axiom. We are not concerned here with all the possibilities one can 

fail the weak supplementation, but only a single case: wholes connected to exactly one 

meronymic relation whose cardinality in the part end is exactly one. We are only 

concerned with this case because the aforementioned Alloy fact will preclude the 

analyzer from generating any instances of the whole type. Moreover, we are only 

concerned with it because we learned that modelers might desire to analyze the 

behavior of a single part, or even the dynamics of an abstract class that really only has 

one part.  

To cope with the aforementioned problem, we provide users with a Boolean 

transformation parameter: the ability to enforce (or not) the weak supplementation 

axiom. If enforced, we include the aforementioned fact in the product of the 

transformation; otherwise, we just ignore it. 

3.2.5.3 Relator’s Rule 

The problem we address here is analogous to the weak supplementation one, 

described in the previous section. That is because relators are require to mediated at 

least two distinct individuals, in the same way that wholes are required to be composed 

at least two parts. The reflection on OntoUML’s syntax is that, for every relator, the 

sum of the lower bound cardinalities of all mediations directly or indirectly connected 

to it must be greater or equal to two. Again, just like for wholes, this constraint is 

“breakable” if the same individual can instantiate all types mediated by a relator. Our 

solution in the alloy code is analogous: 

all w:World, x:w.Relator | #(x.mediated1[w]+x.mediated2[w])>=2 

 

Unlike part-whole relations, mediations do not accept optional cardinality. Therefore, a 

relator fails the constraint in only two situations. First, if the relator has no direct/indirect 

mediation. Second, if it has exactly one mediation, with a cardinality of exactly one in 

the mediated end. Notice that if the aforementioned fact is included for relators that fail 

the constraint in the second case, the analyzer will not be able to generate worlds in 

which the relator has a non-empty extension. 
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To simulate a model containing a relator with the aforementioned problem 

successfully, one needs to relax the relator constraint. The transformation does that by 

ignoring the aforementioned cardinality Alloy expression. 

3.2.5.4 Anti-rigidity 

A class is anti-rigid if, and only if, its instantiation is a contingent situation, i.e., if any 

given individual instantiate an anti-rigid class in a world w, there is at least one possible 

world in which the same individual exists and does not instantiate the class. Notice that 

anti-rigidity is a matter of possibility, not of necessity. For example, consider the phases 

a person goes through life: Child, Adult and Elder. They are all anti-rigid classes, since 

a person’s age characterize them, which increases over time. Every person is born as 

a child, and if she lives until her 60’s, she goes through all the aforementioned phases. 

Now, if due to an unfortunate event, a child passes away, it will have only instantiated 

the first phase.  

To generate simulations that encompass all life cycle possibilities, we chose not to 

enforce anti-rigidity by default. Instead, we propose it as a transformation parameter. 

If one desires to inspect branches in which every individual “lives” enough to instantiate 

anti-rigid classes and cease to do, the following additional constraint is included in the 

Alloy specification: 

all x:World.AntiRigidClass | some disj w1,w2:World | x in w1.exists and x 

in w1.class and x in w2.exists and x not in w2.class 

3.3 COMPARISON TO PREVIOUS APPROACHES 

In this section, we compare our transformation from OntoUML to Alloy with the ones 

proposed by Benevides (2010b) and Braga (2010). We do that through four categories: 

Meta-model, World Structure, Coverage and Mapping. Throughout the comparison, we 

point the things we kept from the previous proposals and the things we improved upon.  
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3.3.1 Meta-model 

Benevides’ and Braga’s transformations are defined using the same meta-model, 

published in (BENEVIDES, 2010). As we already discussed in the motivation for 

revisiting these transformation, the OntoUML meta-model has been redesigned in 

(CARRARETTO, 2010), when it was baptized as Reference OntoUML (RefOntoUML), 

and updated in (ALBUQUERQUE; GUIZZARDI, 2013). Our transformation is 

compatible with RefOntoUML1, available on the OntoUML Lightweight Editor’s (OLED) 

website, maintained by the Ontology and Conceptual Modeling Research Group 

(NEMO). 

3.3.2 World Structure 

In our transformation, we adopt the world structure proposed by Benevides: a Kripke 

structure, containing past, future, current and counterfactual worlds, which we already 

discussed in the definition of the world module (see Section 3.2.1). Along with the 

structure, we kept two constraints proposed by Benevides. One that enforces 

continuous existence of individuals, i.e., states that if an individual exists in a world and 

ceases to exist in an immediate future, it cannot exist again in all future worlds. The 

other constraint forbids the appearance of empty worlds, i.e. worlds in which no 

individual exist. Although these constraints do not follow from UFO, they are useful to 

approximate the simulation to our common sense of existence through time. 

Braga’s approach represents the admissible instances of the ontology using the “State” 

concept, instead of World. On one hand, they are very similar, because they are both 

representations of a possible state of affairs, and thus, represent how individuals can 

exist and relate to one another in a given moment of time. They are not so alike, on 

the other hand, because states are not part of a more complex structure. They are just 

a linear ordered sequence of snapshots. Comparing the world and the state structures 

to well know data structures, we say that the former resembles an n-ary tree, whilst the 

latter a finite total order. 

                                            
1 The latest version of the RefOntoUML metamodel is available at: https://code.google.com/p/ontouml-
lightweight-editor/ 

https://code.google.com/p/ontouml-lightweight-editor/
https://code.google.com/p/ontouml-lightweight-editor/
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The reason we kept Benevides’ World structure, instead of Braga’s State structure, is 

that in a more complex structure, we can perform a more interesting analysis. 

Furthermore, if desired by the user, the world structure can generate a linear sequence 

of worlds. We discuss the generation of pre-defined world structures in the next 

section. 

Lastly, we kept from Braga’s proposal the Alloy function entitled “visible”. As we said 

before, it does not affect the simulation, but facilitates the user interface customization 

when inspecting the simulation results. 

3.3.3 Coverage 

Both previous approaches covered most of the ontological distinctions made by 

OntoUML, like rigidity, identity and existential dependency. They fall short, however, in 

mapping elements and meta-attributes inherited from UML that impose refined logical 

constraints and that are very useful in practice. 

Firstly, the previous approaches abstain from the explicit representation of 

association ends. Even though they do not contribute to the semantics generated 

specification, by defining them as Alloy functions, we improve the usability of the 

generated code and modularize the generation of other constraints, like multiplicity and 

weak supplementation, improving the readability of the generated code. Furthermore, 

the mapping of the association ends is required for the transformation to be compatible 

with the OCL mapping described in (GUERSON; ALMEIDA; GUIZZARDI, 2014). 

Both approaches also do not provide support for property subsetting and 

redefinition, and neither for association specialization. These simple mappings are 

very useful for modeling and often required, as we latter show in the Relation 

Specialization anti-pattern (see Section 5.17). We enforce all of them through the 

generation of constraints, following the semantics defined in (COSTAL; GÓMEZ; 

GUIZZARDI, 2011). 
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Furthermore, both previous approaches neglect the meta-property named isOrdered, 

owned by association ends and inherited from UML. We provide support for it by 

orderly assigning a natural numbers to each relation. 

The previous transformations also did not assign mappings for two meta-properties 

regarding part-whole theory, namely isExtensional, owned by collectives, and 

isShareable, owned by the four types of part-whole relations. We are aware that both 

features are redundant, i.e., imply the specification of particular values for other meta-

properties. IsExtensional means that every part-whole relation connected to the whole 

has isEssential set to true, whilst isShareable imply a maximum cardinality of one, on 

the whole end. We argue, however, that one cannot expect modelers to set all of these 

meta-properties, and thus, we map whatever a model defines. 

We also build upon the previous approaches, by providing special mappings for some 

very common primitive types of data, namely Integer, String and Boolean. By doing 

that, instead of mapping all data-types as additional signatures, we provide users with 

more resources to validate their models, since they are able to specify expressions 

using functions and predicates specially designed for these data types. In addition, we 

aim at diminishing the cognitive load of understanding the simulation results, assuming 

that one understands values like “John”, 1 or True, easier than “String0”, “Integer0” or 

“Boolean0”. 

Lastly, we define a basic support for the Quality meta-class, which was only added in 

the meta-model in Albuquerque’s update (ALBUQUERQUE; GUIZZARDI, 2013). As 

we previously shown, we only make no distinction between nominal, measurable and 

non-measurable qualities. 

Overall, our transformation covers a wider specter of the language, mainly regarding 

logical meta-properties and elements specified only in the more recent versions of the 

OntoUML meta-model. 
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3.3.4 Mapping 

In this section, we discuss the changes we made on mappings already defined by the 

previous approaches. In each case, we provide explanation for the reasons the change 

was required, as well as its associated benefits. 

The most impacting alteration we made regard class mapping. We map all classes as 

fields within the world signature, whilst the previous approaches only assigned such 

mapping for anti-rigid and semi-rigid classes. In addition, we separate the class 

mapping from the generalization mapping. These combined decisions allow the 

transformation to cope with partial models (e.g. subkinds without parents) and multiple 

inheritance, unfeasible in the previous approaches.  

We also take a different approach regarding rigidity. By mapping all classes as fields, 

we do not commit to rigidity, anti-rigidity or anti-rigidity. We enforce them through 

additional facts. We also argue that the way we deal with anti-rigidity is more useful 

than the previous approaches. Benevides always enforces anti-rigidity, whilst Braga 

never do so. Since both approaches are useful in different situations, we added a 

parameter to the transformation, providing the user the decision at run time. 

The previous approaches map categories as Alloy functions, unlike the other type of 

classes. We assume that this decision was motivated to obtain better performance on 

the analyzer. The problem is that it turns out to be the source of many representation 

problems. First of all, the mapping does not handle categories that are not ultimately 

specialized in sortal types, a common situation for partial models or core ontologies, 

like UFO-S (NARDI et al., 2013). Furthermore, it precludes the definition of role mixins 

as subtypes of categories, a very common modeling construction.  

Braga and Benevides propose the representation of relations containing an existential 

dependency (readOnly=true on at least one of the association ends) as fields of the 

dependent classes signatures. Mainly, we changed that because of the new class 

mapping, but even if we had not, the original mapping does not account for bidirectional 

dependency or anti-rigid types as the dependents. We map every association as 

signature fields and enforce the existential dependency through additional facts. 
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The particular case of material associations also needed refactoring. The original 

proposal was to represent them as ternary fields within the World signature (e.g. 

{World, Source, Target}). The problem with this mapping is that it precludes multiple 

relations of the same type between two individuals. To solve this limitation, we propose 

materials to be mapped into a 4-ary relation, (e.g. {World, Source, Relator, Target}. 

Note that this mapping is limited to material relations connected to a Relator through a 

derivation. We still map undefined material associations as ternary relations. 

A side effect of changing material association representation is the need to redefine 

the derivation mapping. In our approach, instead of generating an extra field, we map 

the restriction into a fact. The results, however, are the same. 

Regarding part-whole theory, we improve the previous approaches by adding the 

Weak Supplementation axiom mapping for whole types, as well as the explicit 

enforcement of the common binary properties of part-whole relations: anti-reflexivity, 

anti-symmetry and acyclicity. We enforce the same properties for characterizations. 

Furthermore, we complement the relator mapping by enforcing the minimum of two 

distinct mediated types. 

Lastly, we map generalizations set as Braga proposed: a fact if set as disjoint and 

another if set as complete. We discarded Benevides proposal because it failed to 

handle multiple orthogonal generalization sets of a common supertype. 

3.3.5 General Remarks 

In summary, we propose in this chapter a more stable and complete transformation 

from OntoUML to Alloy. Besides the aforementioned improvements, we generate a 

more homogeneous specification, which are simpler to understand, since one can see 

the direct impact of each language construct. 

We aim to transform elements individually. For example, categories used to be a 

function, defined in term of its subtypes. Now every class has an independent 

transformation, as well as each generalization. The previous transformations often 

define mappings for modeling patterns, instead of mappings for each element 
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individually. Whenever one modifies these patterns, the previous transformations could 

not deal with it. Our design decision provides more stability for the transformation and 

a more faithful representation in Alloy, since we transform even inconsistencies in their 

original form.  

3.4 SIMULATION SCENARIOS 

Our main research goal is to provide a validation framework that requires little learning 

requirements. The refactored transformation from OntoUML to Alloy described in this 

chapter is a very promising tool for ontology validation, however it still requires users 

learn to yet another language. Modelers without any knowledge in Alloy could only use 

require unconstrained simulations, which is not efficient for validation. In addition, even 

though Alloy focuses on simplicity, one still needs to be well versed in logics to be able 

to explore its full potential. 

Furthermore, if we just provide a simulation tool, we face users with a dilemma: how 

should they simulate their models and which properties should they check? To cope 

with this problem, we propose a number of simulation scenarios, which users can 

parameterize and combine in order to validate their models. This approach is heavily 

inspired in (JANSSEN et al., 1999), an original work in which the authors show how 

model checking techniques can be applied to validate business process models, 

without users being trained in them. Just like Janssen and his colleagues, we transform 

the pre-defined scenarios in natural language sentences, which users can easily 

understand and that have direct mapping to Alloy predicates. 

Notice that we identify the parameterization of a scenario in the provided sentenced by 

using brackets ([]). It has two uses: first, to indicate the need to specify a numeric value, 

like “at least [n] instances of class”. Second, it can detail alternative options, like “[every 

/ no / at least / at most / exactly] worlds must have”.   

One of the tasks users perform when using the simulation tool is to generate a branch 

and assess whether it is admissible by the ontology or not. That implies having to 

process cognitively many things, like the generated world structure, the dynamics of 

object creation and destruction and the dynamics of the instantiation of anti-rigid types. 
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By the usage of pre-defined scenarios, users partially know what to expect from the 

simulation, diminishing the cognitive work facilitating one’s analysis. For example, if 

one requires all generated worlds to contain the same individuals, one would not need 

to keep track of object creation and destruction when moving throughout worlds. 

Although the simulation scenarios allow modelers to easily simulate their models and 

check some properties, they will not identify the source of the problem and point to 

solutions. For those cases, we propose a catalogue of anti-patterns, which we will 

present and discuss in Chapter 6. 

In the following subsections, we discuss the simulation scenarios, their relations and 

the kind of properties they are able to check.  

3.4.1 Branch Structure Constraints 

In the refactored OntoUML2Alloy transformation, we kept the Kripke’s World Structure 

proposed by Benevides. Thus, simulating a model randomly generates a finite world 

branch, i.e., a finite set of worlds connected through successor and predecessor 

relations.  

In order to help modelers specify or restrict the type of world structure they want to 

see, we propose a set of branch scenarios.  

3.4.1.1 Linear Branch 

This scenario defines that every simulation will generate a linear world structure, i.e., 

a branch in which exactly one world does not have a successor and exactly one does 

not have a predecessor. All the others worlds must have a predecessor and a 

successor. This structure is how we commonly think of things, a linear sequence of 

events. Therefore, it relieves users from the cognitive work of understand the world 

order. Figure 8 depicts an example of linear branch. 
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Figure 8. Example of a linear branch. 

We present the phrase that characterizes this scenario and its respective Alloy 

predicate in Table 9. 

Table 9. Linear Branch – scenario description. 

Sentence 

I want to see a linear story. 

Alloy Expression 

one w:World | no w.next  

one w:World | no next.w 

3.4.1.2 Alternative Futures 

This scenario defines a world branch composed by a unique world that leads to 

alternative futures, as depicted in Figure 9. It does not generate counterfactual or past 

worlds. Branches fitting this pattern are useful to analyze what can happen to an 

individual after a given situation. For instance, if a couple is married in a world, some 

possible futures are: they can either continue to be married, break up or even break 

up and marry other people. 

As we previously discussed, the world structure we adopt classifies worlds according 

to their position w.r.t. the current world. That means that more than one classification 

applies to the same structure, depending on where the current world is. In Figure 9, for 

instance, if we change the current world’s position from the starting point to one the 
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futures, the starting point would change to a past, all other futures would change to 

counterfactual and no world would be a future.  

 

Figure 9. Alternative futures example. 

Table 10 presents the natural language description of this scenario (as if by the 

modeler is demanding it) and the respective Alloy expression that a user should add 

to the Alloy specification (within either a fact or a predicate). 

Table 10. Alternative Futures – scenario description. 

Sentence 

I want to see different outcomes for a same situation. 

Alloy Expression 

-- alternative futures 

one w:World | no next.w && all w2:World | w!=w2 implies w2 in w.next 

 

3.4.1.3 Counterfactual Worlds 

Counterfactual worlds exemplify alternative possibilities in the past, i.e., alternative 

future worlds from a past world. This scenario is specified as a world branch that 

contains at least two distinct worlds, w1 and w2, which share a common past world and 

either w1 and w2 have a next world, as depicted in Figure 10. This type of scenario is 

also useful to analyze alternative turn of events. 
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Figure 10. Counterfactual world example. 

In Table 11, we present the sentence that express a user’s demand for this scenario. 

Furthermore, we provide the Alloy expression required to generate simulations with 

the structure previously described. 

Table 11. Counterfactual Worlds – scenario description. 

Sentence 

I want to see that things may have taken a different outcome in the past. 

Alloy Expression 

-- counterfactual_worlds 

some w1,w2:World | w1!=w2 && next.w1=next.w2 && (some w1.next or some 

w2.next) 

3.4.1.4 Branch Depth 

The depth of a branch corresponds to the number of consecutive worlds it has, i.e., a 

set of worlds within a branch that characterize a linear branch by themselves. Figure 

10, for instance, has a minimum depth of two and a maximum depth of three, 

(PastWorld -> CounterfacultWorld; PastWorld, CurrentWorld and FutureWorld). Notice 

that the Alternative Futures scenario implies an exact world depth of two, since all 

futures come directly from the same world. 
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Table 12 provides the representation of this scenario in natural language, alongside 

with the Alloy expression that characterizes it. 

Table 12. Branch Depth – scenario description. 

Sentence 

I want to see a story composed [at least / at most / exactly] of [n] consecutive worlds.  

Alloy Expression 

-- minimum_world_depth 

some w1, w2, w3:World | w2 in w1.next and w3 in w2.next 

 

-- maximum world depth 

no w1, w2, w3:World | w2 in w1.next and w3 in w2.next 

3.4.2 Content Constraints 

Content Constraint scenarios regard restricting the contents of worlds, instead of their 

branch structure. These scenarios are useful to help modelers customize the 

simulation and facilitate the generation of particular situations. Moreover, it provides 

users with some upfront knowledge about the worlds that the Alloy Analyzer will 

generate, facilitating the cognitive task of understanding the simulation results. 

Furthermore, this type of scenarios provides mechanisms to check models properties, 

like strong/weak satisfiability, or assert the possibility of an individual exemplifying the 

minimum value of an association’s cardinality. 

In the next sections, we propose 16 content scenarios users can combine for model 

validation. To illustrate each scenario, we use the OntoUML diagram depicted in Figure 

11, a simplification of an internship model developed by a master student in the context 

of a graduate course on Ontology Engineering at the Universidade Federal do Espírito 

Santo. The model describes that people can be students, if enrolled at educational 

institutions, and employees, when hired by an organization. Students may become 

interns at organizations, in which regular employees supervise them in their activities.  
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Figure 11. Internship conceptual model. 

3.4.2.1 Population Size 

The population of a world corresponds to the set of individuals that exist within that 

World, regardless of which types they instantiate (it includes both objects and 

properties). The population size scenario allows imposing upper and/or lower bounds 

for the size of a population. For instance, one may instruct the analyzer to generate 

worlds with at least four and at most eight individuals. 

 

Figure 12. World with population of four individuals. 
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Through the usage of this scenario, one can check if the model is weakly satisfiable, 

i.e., is there at least one world that complies to all the ontologies constraints and has 

at least one instance of at least one class. Our internship model proved to be weakly 

satisfiable, since it has the valid finite instantiation shown in Figure 12. This world has 

a population of four individuals: one person (who is also a student), one organization 

(which is also an educational institution) and two enrollments of the same student in 

the same institution. 

Table 13 provides the simple representation of this scenario in natural language, 

alongside with the Alloy expression that characterizes it. 

Table 13. Population Size – scenario description. 

Sentence 

I want to see a story with [at least / at most / exactly] [n] individuals. 

Alloy Expression 

all w: World | #w.exists = n 

3.4.2.2 Population Variability 

This scenario regards defining the variability of world population throughout the branch. 

One can define it as constant, where every world contains the same individuals, 

although they can instantiate different types. Conversely, one can set it as variable, 

forcing the generation of branches composed by worlds with necessarily different 

populations.  

Although a constant population will always have the same size, it is not true that a 

variable population must have different sizes. Two populations are different if they do 

not have the same elements, and they can still do that having the same number of 

individuals. Thus, one can combine this scenario with the population size without 

generating any inconsistencies.  

The main cognitive advantage of defining a constant population is that one does not 

need to be concerned with the dynamics of object creation and destruction. When 

inspecting a world, one can focus exclusively on the instantiation of anti-rigid types, or 



86 

which formal and meronymic relations are changing (material relations will not change 

constant because it requires the creation/destruction of new individuals: the relators). 

If enforcing a whole population to be constant or variable overly restricts world 

generation, one can optionally do it exclusively on the object or property population. In 

fact, one can even combine constant object population and variable property 

population, which is particularly useful to analyze role playing dynamics, as well as 

mode and quality variations. Remember that object individuals are the ones that 

instantiate kinds, collectives, quantities, categories, etc., whilst property individuals are 

the ones that instantiate relators, modes and qualities. 

To illustrate this scenario, we applied the constraint for constant population of object 

types to our internship example. We show, in Figure 13, the current world and in Figure 

14, the future world. Note that in both worlds the objects are the same. “Object1”, 

“Object3” are persons (represented by the white boxes) and “Object0” and  

“Object2” are organizations (represented by grey pentagons).  

 

Figure 13. Population Variability: constant objects scenario - Current world. 

 

Figure 14. Population Variability: constant objects scenario - Future world. 
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In addition, notice that defining a constant population is equivalent to defining constant 

object and property populations, since all things that exist in world are either objects or 

properties. The same is valid for defining variable populations. What one cannot do is 

define complete variability at the same time as defining a partial constant population.  

Table 14 provides a straightforward natural language description of this scenario with 

the two customizable points. The first, regarding if the population varies or not. The 

second, regarding which part of the world population the modeler wants to apply the 

constraint – the whole population, only objects or only properties. We provide the 

respective Alloy expression for each of the six possible combinations. 

Table 14. Population Variability – scenario description. 

Sentence 

I want to see a story where every moment [has the same / has different] [objects / properties / 
individuals].  
 

Alloy Expression 

-- variable population 

all w1,w2:World | w2!=w1 implies w1.exists!=w2.exists 

-- variable object population 

all w1,w2:World | w2!=w1 implies w1.exists:>Object!=w2.exists:>Object 

-- variable property population 

all w1,w2:World | w2!=w1 implies w1.exists:>Property!=w2.exists:>Property 

 

-- constant population 

all w1,w2:World | w1.exists=w2.exists  

-- constant object population   

all w1,w2:World | w1.exists:>Object=w2.exists:>Object  

-- constant property population 

all w1,w2:World | w1.exists:>Property=w2.exists:>Property  

3.4.2.3 Population Growth 

The Population Growth scenario defines constraints between worlds that are directly 

accessible. In the incremental scenario, no individual ceases to exist in the future. For 

instance, if x exists in world w0, then in all worlds that follow it, x must also exist. That 

does not exclude the possibility of new things being created in future worlds, but also 

does not require.  
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Conversely, in decrement branches, we reverse this constraint: if an individual does 

not exists in the initial world of the branch (the one that has no predecessor) it will 

never come to life. From a world to its next, individuals can keep existing, but none 

“comes to life”. Notice that there is intersection between incremental and decremental 

branches: the one where every world has the same individuals. Thus, specifying a 

scenario as both incremental and decremental is equivalent as defining it as constant.  

To exemplify, consider the two worlds depicted in Figure 15 (current world) and Figure 

16 (future world), parts of the same branch. We generated these worlds by enforcing 

an incremental scenario. From the current to the second world, we can see the creation 

of two individuals: “Property0”, an instance of Employment, and “Object0”, an instance 

of Person and Employee. Nonetheless, all the three individuals of the current world 

continue to exist in the future world. 

 

Figure 15. Population Growth (Incremental) scenario - Current World. 

  

Figure 16. Population Growth (Incremental) scenario - Future World. 
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Table 15 provides the representation of this scenario in natural language, as if a user 

is demanding to see it. The only possible customization regards being incremental or 

decremental branch structures. Therefore, we also provide two Alloy expressions in 

the table, one for each case. 

Table 15. Population Growth – scenario description. 

Sentence 

I want to see a story exclusively composed by individuals [coming to existence / ceasing to exist]. 

Alloy Expression 

-- incremental_worlds 

all w1, w2:World | w2 in w1.next implies w1.exists in w2.exists 

 

-- decremental_worlds 

all w1, w2:World | w2 in w1.next implies w2.exists in w1.exists 

3.4.2.4 Extension Size 

The extension of a class in a given world corresponds to the set of individuals that are 

currently instantiating it. This scenario proposes the definition of lower and/or upper 

bounds to the size of a class’ extension. Users can choose to enforce this constraint 

in all worlds or just a subset of them. For instance, one can require that the class 

Person always have exactly three objects instantiating it in every world in the generated 

branch.  

One can check three properties with this scenario: Class Liveness, Coexistence and 

Strong Satisfiability. A class is “live” if, and only if, there is at least one world in which 

it has an instance. In order to check that, one can require the generation of at least one 

world in which a class’ extension is greater than zero. Two or more classes coexist, if 

and only if, there is at least one world in which every class has at least one individual. 

Therefore, combining extension size constraints, one can assert coexistence. Lastly, 

a model is strongly satisfiable if all classes coexist, i.e., there is a world in which every 

class of the model has at least one instance.  

To illustrate the extension size, we use the world depicted in Figure 16. In it, we see 

that the extension of the class “Person” is equal to two. The extensions of the classes 

“Enrollment”, “Employment”, “Employee”, “Student”, “Organization”, “Employer” and 
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“Educational Institution” are all one. Lastly, the extension of “Internship”, “Intern”, 

“Supervisor” and “Internship Provider” are all zero. Regarding the aforementioned 

properties, the figure shows that the classes “Employee” and “Student”, for example, 

can coexist. Furthermore, every class with a non-empty extension is also “live”. 

Table 16 provides the representation of this scenario in natural language, alongside 

with the Alloy expression that characterizes it. 

Table 16. Extension Size – scenario description. 

Sentence 

I want to see a story composed [only / at least  / at most] by worlds with [at least / at most / exactly] 
[n] instances of [Class]. 

Alloy Expression 

all w: World | #w.Class = n  

3.4.2.5 Temporal Extension Size 

This scenario is very similar to Extension Size. The difference is that instead of defining 

the number of individuals that instantiate a class within a world, one can define the 

lower and/or upper bounds for the set containing all individuals that instantiate it 

throughout time. For example, if one defines a temporal extension of three for the class 

Person, there can only be tree distinct individuals in all worlds that instantiate Person. 

Notice that this is not the sum of the class’ extension in each world, but the sum of 

distinct individuals.  

To exemplify this scenario, we go back once more to the worlds depicted in Figure 15 

and Figure 16. The temporal extension of “Person” is two, whilst the temporal extension 

of “Organization”, “Enrollment”, “Employment”, “Employer” and “Educational 

Institutional” are all one.  

Lastly, we provide in Table 17 the representation of this scenario in natural language, 

alongside with the Alloy expression that characterizes it, which one can use within a 

fact or a predicate. 
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Table 17. Temporal Extension Size – scenario description. 

Sentence 

I want to see a story with [at least / at most / exactly] [n] instances of [Class]. 

Alloy Expression 

#World.Class = n 

3.4.2.6 Extension Variability 

In the Extension Variability scenario, instead of setting the variability nature of the 

entire world population, one sets it only on the extension of a class. On one hand, 

enforcing a variable extension for a class implies that the individuals that instantiate it 

will be different for any two worlds in every generated branch. On the other hand, a 

constant class extension means that the same set of individuals will instantiate it in 

every world of the branch. 

Notice that constant class extension is not rigidity, in the same way that a variable 

extension is not anti-rigidity. A rigid class varies its extension whenever an instance 

creation and destruction, because individuals cannot cease to instantiate it and still 

exist. An anti-rigid class, conversely, allows individuals to stop instantiating it and still 

exists. Therefore, it is possible to set variable and constant extensions for both kinds 

of classes.  

Requesting a variable extension for a rigid class implies a variable population, 

because, as we previously explained, extensions of rigid types only change with 

instance creation or destruction.  Thus, one cannot request variable extension for rigid 

classes and constant population.  

Table 18 provides the representation of this scenario in natural language, alongside 

with the Alloy expressions that characterize it. The first expression requires “Class” to 

have different extensions in all worlds, whilst the second requires all extensions to be 

equal. 
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Table 18. Extension Variability – scenario description. 

Sentence 

I want to see a story where the set of instances of [Class] [always / never] change from world to 
world 

Alloy Expression 

-- variable extension 

all w1,w2:World | w2!=w1 implies w1.Class!=w2.Class 

 

-- constant extension 

all w1,w2:World | w1.Class=w2.Class  

3.4.2.7 Extension Comparison 

The extension comparison scenario includes constraints in world generating that that 

restrict the extensions of two types. One can require that the extension of a class is 

totally included in the extension of another. In addition, one can enforce disjointness, 

when no individual is both extensions, and equality, when every element that is one 

extension also is in the other.  

To improve expressivity, we add the option to negate each of the three types of 

constraints. So we also request that a given class extension is not equal (or different), 

not disjoint (or overlapping) and not included in another class extension. 

We illustrate this scenario with Figure 17, a world generated by the Alloy Analyzer, 

which defined as constraints:  

 Equal extensions for classes “Student” and “Employee” 

 Different extensions for classes “Student” and “Intern” 

 Disjoint extensions for classes “Employer” and “Educational Institution” 

Furthermore, one of the practical applications of this scenario is to verify if allegedly 

concrete types can have instances that are not instances of one of its subtypes. To do 

that, one only needs to request that the extension of a concrete class is different from 

the union of its subtypes’ extensions. If the simulation generates at least one world, 

the concrete class behaves as expect. Otherwise, it is an indication that there might 

be something wrong with the model.  



93 

 

Figure 17. Extension Comparison scenario example. 

Lastly, we provide, in Table 19, the representation of the Extension Comparison 

scenario in natural language. Moreover, we provide different Alloy expressions that 

characterize different assignments for the provided phrase. Particularly, we 

characterize subsuming, identical and disjoint extensions for classes “Class1” and 

“Class2”. 

Table 19. Extension Comparison – scenario description. 

Sentence 

I want to see a story where, in [all / some / at least / at most / exactly] [n] world(s), the extension of 
[Class1] is [not] [equal to / included in / disjoint from] the extension of [Class2] 

Alloy Expression 

-- subsuming extensions in all worlds 

all w:World | w.Class1 in w.Class2 

 

-- identical extension in some world 

some w:World | w.Class1=w.Class2 

 

-- disjoint extension in some world 

#{w:World | disj[w.Class1,w.Class2]}=2 
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3.4.2.8 Extension Size Comparison 

Now, instead of comparing the individuals, we compare the size of the extensions of 

two classes within a world. Naturally, different sizes imply in different individuals in the 

extension, but same sizes do not imply in identical extensions.  

To exemplify this scenario, we once more use the world depicted in Figure 17. The 

extension size of “Enrollment”, “Employment”, “Student” and “Employee” is the size. 

They are all equal to two. Conversely, the extension of “Internship” is lower than the 

extension of “Student”. 

We provide the natural language representation of this scenario in Table 20, together 

with the respective Alloy expression, applicable to facts and predicates. 

Table 20. Extension Size Comparison – scenario description. 

Sentence 

I want to see a story where, in [all / some / at least / at most / exactly] [n] world(s), the number of 
[Class1] is [equal / greater / lesser] than the number of [Class2] 

Alloy Expression 

-- equal extensions in all worlds  

all w:World | #w.Class1=#w.Class2 

3.4.2.9 Multiple Instantiation 

The multiple instantiation scenario requires a given number of individuals to instantiate 

two or more types in the same world. Naturally, if one requires a multiple instantiation 

of two phases of the same partition, or the instantiation of two classes stereotyped as 

kind, the analyzer will find no results, since they are mandatorily disjoint. 

This scenario can be used either to verify the possibility of a desired multiple 

instantiation or to verify if an undesired one has been successfully forbidden. In the 

former, one wants the analyzer to encounter a possible world, whilst in the second, 

model is correct if the analyzer does not find any.  

We detail our proposal for explaining this scenario to modelers in natural language in 

Table 21. Note that on can customize the number of worlds ([n]) the constraint will be 
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applied, alongside to the number of individuals ([m]) target of the expression. 

Furthermore, we provide the Alloy expression that characterizes the scenario. 

Table 21. Multiple Instantiation – scenario description. 

Sentence 

I want to see a story where, in [at least / at most / exactly] [n] worlds, there are [at least / at most / 
exactly] [m] individuals that simultaneously instantiate [Class1, Class2]+. 

Alloy Expression 

#{w : World | #(w.Class1 & w.Class2)=m }=n 

3.4.2.10 Temporal Multiple Instantiation 

The temporal multiple instantiation scenario is the temporal projection of the last 

scenario. It does not impose a constraint directly in a world, but in the branch as a 

whole. This scenario specifies that a given number of individuals must instantiate a set 

of classes throughout the branch. A priori, the scenario imposes no restriction 

regarding multiple instantiation in the same world.  

Unlike the last scenario, one can require a temporal multiple instantiation of disjoint 

type. Phase partitions, for instance, can be exemplified when requiring at least one 

individual to instantiate every phase in the partition at least once. By doing that, one is 

able to inspect the dynamics of phase partition, i.e., in which way an individual can 

change phase. To exemplify, consider a phase partition of Person, composed by the 

phases: child, adult and elder. A person’s age defines the instantiation of these phases: 

children are at most 17 years old, adults are from 18 to 64 and elders, 65 or older. If 

those are the only constraints provided in the ontology, one will still be able to born as 

an elder and later become a child. Table 22 provides the representation of this scenario 

in natural language, alongside with the Alloy expression that characterizes it. 

Table 22. Temporal Multiple Instantiation – scenario description. 

Sentence 

I want to see a story where [n] individuals instantiate [Class1, Class2]+ throughout time. 

Alloy Expression 

#(World.Class1 & World.Class2)=n 
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3.4.2.11 Exclusive Instantiation 

This scenario intends to do the opposite of the multiple instantiation: generate worlds 

in which no individual simultaneously instantiate more than one of the types in the 

identified set. In a way, this scenario emulates a disjoint generalization set. 

We obtain an interesting simulation scenario by combining exclusive instantiation and 

multiple temporal instantiation: an alternate instantiation branch. Naturally, this 

combination is only useful if the types in the set are overlapping, otherwise, the 

exclusive instantiation is meaningless.  

Table 23 provides the representation of this scenario in natural language. Note that at 

the end of the sentence, we append “2+”. We intended it to show users that they must 

at least two anti-rigid classes must be selected. In the sequence, we provide the Alloy 

expression that characterizes this scenario, usable in a fact or a predicate. 

Table 23. Exclusive Instantiation – scenario description. 

Sentence 

I want to see a story where, in [all / some / at least / at most / exactly] [n] world(s), an instance of 
[CommonType] must instantiate only one of the following classes: [AntiRigidClass]2+ 

Alloy Expression 

all w:World, x:w.Class | (x in w.Class1 or x in w.Class2) and  

 not (x in w.Class1 and x in wClass2) 

3.4.2.12 Mandatory Anti-Rigidity 

As we previously discussed, we decided not to enforce anti-rigidity by default (for more 

details, please refer back to section 3.5). That does not mean, however, that a user 

cannot enforce anti-rigidity for one or even all anti-rigid types in a particular simulation.  

A user of the validation framework can apply the mandatory anti-rigidity scenario at 

most once for each anti-rigid class. When enforced, it means that if an individual 

instantiates the anti-rigid class in a given world, there is at least on other world, where 

the same individual exists and does not instantiate the anti-rigid class. Regardless 

whether the scenario has been applied for one or many anti-rigid classes, it requires a 
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minimum of two worlds; otherwise, the respective anti-rigid types will have no 

instances.  

We provide our natural language description of this scenario in Table 24. The two 

alternative Alloy expressions that can characterize this scenario are detailed. The first, 

a simplified version, makes a call for the “antirigidity” predicate, defined in the 

ontological properties module (see Section 3.2.2). The second is a detailed version, 

adapted from the aforementioned predicate’s content expression. 

Table 24. Mandatory Anti-Rigidity – scenario description. 

Sentence 

I want to see a story where all objects cease to be an instance of [AntiRigidClass] 

Alloy Expression 

-- simplified 

antirigidity[AntiRigidClass] 

 

-- detailed 

all x:class_type | some disj w1,w2:World | x in w1.exists and x in 

w1.class and x in w2.exists and x not in w2.class 

3.4.2.13 Pseudo-Rigid 

In the opposite direction of Mandatory Anti-Rigid, the pseudo rigid scenario emulates 

a rigid behavior in anti-rigid and semi-rigid classes. Meaning that if an individual 

instantiates an anti-rigid type in any world, it will have to do so in every other world in 

the generated branch, in future, past and counterfactual worlds. 

This approach might seem counterintuitive at first, but it is quite useful to analyze anti-

rigid classes that are subtypes of other anti-rigid classes, like a role as a subtype of a 

phase or a role as a subtype of another role. By emulating rigidity, one can focus 

exclusively in the dynamics involving the “still anti-rigid” subtypes. 

Users of the validation framework should cautiously use this scenario. Otherwise, they 

might misinterpret the simulation results. We make only one caveat: if the user applies 

the fake rigid constraint for a given role or phase, the constraint will not be propagate 

to all its anti-rigid ancestors. What happens is that when an individual instantiates the 
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fake rigid class, it will also rigidly instantiate all its ancestors. Individuals that only 

instantiate its ancestors, though, will not be affected.  

Table 25 provides the representation of this scenario in natural language. The only 

variability is the anti-rigid class’ name. Moreover, we provide two equivalent Alloy 

expressions that enforce the situation described by this scenario. First, we provide a 

simplified version, which uses a predicate defined in our ontological properties module 

(see Section 3.2.2). Secondly, we provide a longer version, which uses no predicate. 

The expressions are equivalent. 

Table 25. Pseudo-Rigid – scenario description. 

Sentence 

I want to see a story where individuals never cease to be an instance of [AntiRigidClass] 

Alloy Expression 

-- simplified 

rigidity[AntiRigidClass] 

 

-- detailed 

all x: World.Husband, w: World | x in w.exists implies x in w.Husband 

3.4.2.14 Association Changeability 

The association changeability scenario deals with the dynamics of creating and 

destructing associations between the individuals. Although associations are undirected 

in OntoUML, this scenario focuses individually in a single direction of the associations 

for the sake of emulating dependencies between individuals. This scenario is able to 

emulate UFO’s three types of dependencies: generic, specific and existential.  

As we discussed in Chapter 2, a generic dependency between two types exist if every 

instance of the dependent class must be connected to at least one individual of the 

dependee class, but it could change throughout time. A specific dependency exists 

when, while an individual instantiates the dependent type, it is always connected to the 

same individuals of the dependee type. Lastly, the existential dependency states that 

while existing, the dependent individual must be connected to the same individuals of 

the dependee class.  
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To exemplify the generic dependency, at least two-world branch structures are 

required. The respective Alloy predicate states that a given number of individuals 

necessarily change the individuals they connected through the association that 

contains the generic dependency. We emulate specific and existential dependencies 

following the same logic.  

To illustrate the type of worlds generated by this scenario, when configured to emulate 

generic dependency, we present two worlds composing the same branch. Figure 18.a 

depicts the current world and Figure 18.b the future one. Notice that the person 

identified by “Object0” works at the same organization in both world. Nonetheless, the 

individual has different employments with the component throughout time. 

(  (a)              (b)  

Figure 18. Association Changeability (Generic Dependency) - (a) Current World and (b) Future 

World 

 The practical utility of this scenario is three-fold. First, it has an educational utility: 

novice modelers can use it to understand better the difference between generic, 

specific and existential dependencies. Additionally, the scenario provides a way to 

verify whether associations in the model behave as expected. For instance, if an 

association should capture an existential dependency but requesting a generic 

dependency example produces results, there is something wrong with the ontology. 

Finally, it also allow users to “fix a variable” in world generation. For instance, consider 

that a modeler is simulating an ontology about marriage. What the modeler wants to 
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analyze is the variability of properties after two people get married. In this case, 

emulating an existential dependency between Husband and Wife is very useful. 

As a final remark, we recall that the rigidity of the dependent class is relevant when 

simulating different types of dependency. For instance, if the dependent is rigid, a 

specific dependency becomes an existential dependency. In addition, if the dependent 

is anti-rigid, but the class defines an existential dependency, it becomes rigid.  

In Table 26, we provide the representation of this scenario in natural language, 

identifying the variability of words using brackets. We also provide three possible Alloy 

expressions this scenario generates: one to emulate a generic dependency, another 

to simulate specific dependency and a last to simulate existential dependency. 

Table 26. Association Changeability – scenario description. 

 Sentence 

I want to see a story where, in [no / every / at least / at most / exactly] world(s), [no / every / at least 
/ at most / exactly] instance(s) of [Class1] is/are connected to the [same/different] instances of 
[Class2], through association [Association] 

Alloy Expression 

-- generic dependency example, with every / every 

all w1,w2: World | w1!=w2 implies (all x:w1.Class1 | x in w2.Class1 

implies x.class2[w1]!=x.class2[w2]) 

 

-- specific dependency example, with every / every 

all w1,w2: World | all x:w1.Class1 | x in w2.Class1 implies 

x.class2[w1]=x.class2[w2]) 

 

-- existential dependency example, with every / every 

all w1,w2: World | all x:w1.exists | x.class2[w1]=x.class2[w2]) 

3.4.2.15 Cardinality Value 

Every association must define minimum and maximum cardinalities on both ends. 

However, over-constraining a model can forbid situation in which they occur. In fact, 

heavily over-constrained models can even prevent the instantiation of an association 

as a whole.  

To verify the aforementioned properties on a model, we propose the Cardinality Value 

scenario. It consists in requesting the analyzer to generated a given number of worlds 
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in which <n> individuals are connected to <m> others through a desired association. 

We require users to specify this scenario individually for each association end. The 

<m> is the tested cardinality value. For instance, considered that a simple model, 

composed by a class Person connected to itself through an association named 

“heavier than”.  The cardinalities are zero or less on both ends. A possible scenario is 

to request that at least one world is generated in which at least one person is heavier 

than exactly two others are. If the Alloy Analyzer cannot find any instance, it is a 

suggestion that there is an over-constraining problem in the model.  

 

Figure 19. Cardinality Value scenario (at least three relations). 

To exemplify the usage of this scenario, consider the simulation presented in Figure 

19. To generate it, we defined a constraint that required ever instance of “Student” to 

participate in exactly three enrollments. By returning this world, the analyzer showed 

us that the association is live, i.e., it can be instantiated finitely. Furthermore, it evinces 

that the model allows a cardinality of three. Table 27 provides the representation of 

this scenario in natural language, alongside with the respective Alloy expression. 

Table 27. Cardinality Value – scenario description. 

Sentence 

I want to see a story where, in [no / every / at least / at most / exactly] world(s), [no / every / at least 
/ at most / exactly] instance(s) of [Class1] is/are connected to [at least / at most / exactly] [n] 
instances of [Class2, through association [Association] 

Alloy Expression 

all w: World | all x:w1.Class1 | #x.class2[w]=3 
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3.4.2.16 Association Depth 

Analogous to the Branch Depth scenario, Association Depth prescribes a minimum 

and/or a maximum number of consecutive connected elements to exist in given 

number of worlds. It only makes sense to define this scenario for associations that 

connected types that can be instantiated by the same elements. In fact, the 

associations that can be the subject of this scenario are the same ones that 

characterize an anti-pattern known as BinOver (for more details, please refer to its 

definition in Section 5.2) 

This scenario is useful to force the analyzer to generate more complex and interesting 

scenarios. Table 28 provides the representation of this scenario in natural language, 

alongside with the Alloy expression that characterizes it. 

Table 28. Association Depth – scenario description. 

Sentence 

I want to see a story where, in [no / every / at least / at most / exactly] world(s), [at most / at least / 
exactly] [n] instance(s) of [Class] is/are consecutively connected through [Association] 

Alloy Expression 

-- at least one / at most / n=2   

some w:World | no disj x1, x2, x3: w.Class | x2 in target[x1,w] and x3 in 

target[x2,w] 

 

-- every / at least / n=4 

all w:World | some disj x1, x2, x3, x4: w.Class | x2 in target[x1,w] and 

x3 in target[x2,w] and x4 in target[x3,w] 



103 

 ANTI-PATTERNS IN ONTOLOGY-DRIVEN CONCEPTUAL 

MODELING 

4.1 PATTERNS, ANTI-PATTERNS AND CODE SMELLS  

Design Patterns are effective standardized solutions for recurrent problems in software 

development. They consolidate experts’ knowledge about a solution for a type of 

problem, making it reusable by others.  

The Gang of Four’s seminal work (GAMMA et al., 1994) defines Design Patterns as 

being a tuple composed of four elements: a pattern name, a problem, a solution and 

the consequences of applying the solution to that type of problem. The problem 

describes when to apply the pattern. The solution describes the elements that are part 

of the design, alongside with its properties and relationships. The solution is not static, 

but adaptable, such that it works in different situations. The consequences discuss the 

trade-offs of applying the pattern’s solution to a given problem. 

Inspired by the Gang of Four’s work, Andrew Koenig coined the term “anti-pattern” 

(KOENIG, 1995).  His original definition states that an anti-pattern is just like a pattern, 

but it produces more bad consequences than good ones. In other words, anti-patterns 

are wrong solutions, usually adopted, or intuitively found, but with unpleasant 

consequences. Patterns are usually associated to anti-patterns as better solutions to 

the problem at hand. 

“The Blob” is an example of an anti-pattern for object-oriented software design 

(BROWN et al., 1998). Its authors described it as a procedural−style design, in an 

object-oriented environment, which cause one or few classes to aggregate most of the 

functionalities of the system, while the remainder classes just carry basic data or 

perform simple tasks.  

Then there are the code smells (or bad smells). Popularized in the late 90’s by Beck 

and Fowler in (1999), the idea of a code smell is a distinct code structure that 

“suggests” a further analysis because it is likely to produce maintainability and 

comprehensibility issues on the software being developed. The name smell conveys 
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the idea of symptom, that there might be something wrong. Their proposal is to use 

code smells as a base to refactoring the code.  

The most basic example of code smell presented by the authors is the ‘Duplicate 

Code”. It has a quite simple definition: if you have the same code structure in two 

different places, your program will improve by their unification.  

In the software development community, there are two views on code smells: purist 

and pragmatic. On one hand, the purist view perceives code smells as a certainty of a 

problem, using the term almost as a synonym to anti-pattern. The pragmatic view, on 

the other hand, perceives code smells as an indication of a possible error or bad 

practice, which requires particular analysis.  

In this thesis, we use the notions of design patterns, anti-patterns and code smells to 

ontology-driven conceptual modeling (ODCM). The type of problem we deal with is 

formalizing into an ontology the conceptualization about a domain. The solutions are 

the selection and combination of the modeling language constructs for representing 

concepts. Inappropriate solutions, in this context, lead to domain misrepresentations.  

We define anti-patterns in the context of ontology-driven conceptual modeling as the 

following: 

Definition (semantic anti-pattern): Combination of model elements that, albeit 

producing syntactically valid conceptual models, is prone to be the source of domain 

misrepresentations. An anti-pattern must have a defined structure and refactoring 

options associated to it. 

Note that our definition combines the ideas behind anti-patterns and code smells. On 

one hand, the identifiable structures capture recurrent modeling decisions that may not 

effectively solve the problem at hand. Moreover, combining them with appropriate 

solutions, our anti-pattern definition resembles the original. On the other hand, 

because our anti-patterns point to decisions that are not always wrong and mean to 

serve as a guide for modelers to validate (and refactor) their ontologies, they resemble 

code smells.  

Do not understand our notion of anti-patterns as synonym for error or a bad practice.  

Think of it as model fractions that are worth “putting under the microscope”. Unlike the 
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traditional meaning of anti-patterns, the modeling solution is not necessarily bad. 

Unlike code smells, the decisions do not imply maintainability or architectural issues. 

A relevant remark we make is that, for every modeling language, there should not exist 

a syntactically valid combination of constructs that always imply domain 

misrepresentation. Whenever identified such combination, it does not evidence an anti-

pattern but a syntactical restriction that should be included in the language.  

In the particular case of OntoUML, the incorporation of ontological constraints in its 

metamodel proscribes the representation of ontologically non-admissible states of 

affairs. However, as discussed in (BENEVIDES et al., 2010a), the language cannot 

guarantee that, in a particular model, only model instances representing intended state 

of affairs are admitted. This is because the admissibility of domain-specific states of 

affairs is a matter of factual knowledge, not a matter of consistent possibility 

(GUIZZARDI, 2010).  

In the remainder of this work, whenever we use the term “anti-pattern” unqualified, we 

mean with the aforementioned definition, not Koenig’s original one. 

4.2 TYPES OF SEMANTIC ANTI-PATTERNS 

We classify the different types of anti-patterns according to the nature of the problem 

it might indicate, i.e., according to how the modeling decision misrepresent the domain.  

A domain misrepresentation is a problem in the formalization process that generates 

an ontology. This process comprises materializing the conceptualization, the mental 

models shared by a community about a given domain, into a concrete artifact, the 

ontology. We are interested here in four types of formalization issues: ontological 

classification, scope shortcomings, under-constraining and over-constraining, which 

reflect the quality criteria for ontologies we discussed in Section 2.3. 

One can reduce the problem of building an ontology to the problem of classifying 

things. From this perspective, the ontologist job is to classify concepts using meta-

categories from the foundational ontology. An ontological classification issue points out 

a problem in this very mapping. It occurs when the meta-category used to classify a 
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given concept does not reflect how the experts understand that concept. In practical 

terms, it means the usage of the wrong construct to represent a concept.  

To exemplify the aforementioned issue, consider a simple ontology about marriages. 

If a modeler designs the relation that exists between a husband and his wife as formal 

instead of material, the model contains a classification issue.  

We classify anti-patterns that point to ontological classification problems as 

Classification Anti-Patterns. Note that this type of anti-pattern strongly relates to the 

quality criteria named Ontological Fitness.  

A scope shortcoming issue evidences the need for additional concepts, relationships 

or properties in the ontology. A simple example would be an ontology to capture the 

common understanding of vehicle, which states that it is only composed of wheels, 

leaving out the engine, doors, bumper, etc. 

If the problem “under the microscope” involves missing or unnecessary concepts or 

properties, we refer to it as a Scope Anti-Pattern. Fixing problems of this nature will 

obviously improve the scope quality of a model. Notice that it is not the goal of this 

research to evaluate the capability of the scope definition methods, but to check if there 

is a problem with the ontology. 

The under and over constraining issues are identified through the comparison of 

intended and possible instantiations of the ontology. On one hand, the intended set 

comprises the ones that correspond to valid abstraction of states of affairs from the 

adopted conceptualization. On the other hand, the possible instantiations corresponds 

to the set of every instantiation admissible by the ontology.  

An under constraining issue occurs when there is no valid state of affair that 

corresponds to a given instantiation. The over constraining issue is the opposite – there 

is no instantiation that corresponds to a valid state of affairs.  

To illustrate these types of problems, consider the model on Figure 20. It describes 

people’s roles and relevant properties in the context of a criminal investigation. Some 

of roles may be the detectives that investigate the crime, other the suspects of 

committing the crime, but also witnesses that are interrogated by the detectives about 

the crime. Each investigation has a detective who is responsible for it. Detectives are 
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ranked as officers and captains. Finally, since other relational properties are relevant 

in investigations, the model also represents parenthood and acquaintance (“person 

knows person”) relations among people.  

 

Figure 20. Partial OntoUML model of the domain of criminal investigation. 

The model in Figure 20 does not violate ontological rules. It would have done so, for 

example, had we placed Suspect as a super-type of Person, or had we represented 

the possibility of a Suspect or Witness without being related to Criminal Investigation 

(GUIZZARDI, 2005) (we assume here a suspect is a suspect in the context of an 

investigation and so is a witness). However, there are still unintended model instances 

(according to a conceptualization assumed here for this domain) that are represented 

by valid instances of this model. One example is one in which the Lead Detective of 

an investigation is also a Suspect on that investigation. Another example is one in 

which a Detective interrogates himself. A third one is one in which someone is his own 

parent (or a parent of one of her parents).  

This simple and relatively small model fragment actually contains 13 occurrences of 

semantic anti-patterns, but we will return to this point in Section 5. For now, what is 
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important is that both issues characterize what we define as Logical Anti-Patterns. 

Refactoring models based on this type of anti-pattern will improve the model’s 

accuracy. 

Note that this is not an exclusive categorization. An anti-pattern might present under 

constraining, scope and classification issues all together. 

4.3 RELATIONSHIPS AMONG ANTI-PATTERNS 

Throughout the development of the anti-pattern catalogue, we identified a set of 

relevant inter-pattern relationships that help characterize them individually and the 

repository as a whole. Besides, they are helpful in the tool support development.  

Firstly, anti-patterns may share an identification logic. That means that we can design 

algorithms to identify occurrences of different anti-patterns using the same strategy. 

That is the case when the structure of the anti-patterns is similar. Identifying relations 

of this nature is useful for tool development, especially regarding automatizing the 

identification. For the users, it is useful from a learning perspective, since everything 

they learn from one anti-pattern applies to the other. Whenever anti-patterns share 

identification logics, they also share refactoring plans. Identifying this additional type of 

relation is useful for the same reasons. 

Besides the aforementioned grouping, we relate anti-pattern w.r.t. the type of element 

or structural feature they analyze. For example, some anti-patterns are relator-

centered, whilst others are hierarchy-centered. Knowing this characteristic for an anti-

pattern is useful for two purposes. First, it suggest an order of investigation, e.g. 

hierarchy problems should precede to relator, or meronymic-centered issues. Second, 

because it allows one to use anti-patterns in combination with other methods to validate 

a particular aspect of the model. For instance, a modeler could use meronymic-

centered anti-patterns in combination with meronymic analysis patterns (GUIZZARDI, 

2009) to validate the mereological aspects of her ontology. 

Furthermore, we unveiled that adopting a particular solution for an anti-pattern 

occurrence might have the side effect of fixing or extinguishing another occurrence – 
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of the same anti-pattern type or not. For instance, if by fixing an occurrence one deletes 

a relator, all other anti-patterns occurrences in which the deleted relator participated 

would disappear. This beneficial side effect indicates that, by adopting an order, anti-

pattern analysis might become more efficient.  

Lastly, we identified a causality relationship amongst anti-patterns, i.e., the solution of 

one might generate an occurrence of another. In some cases, the generated anti-

pattern does not require further analysis, since it will always be a false positive. 

Conversely, by fixing an anti-pattern, one might generate another as side effect. In 

those cases, one can understand the analysis of the second anti-pattern as an 

extension of the first one.  

4.4 THE ROLE OF ANTI-PATTERNS IN ONTOLOGY VALIDATION 

As we discussed in the motivation section of this thesis, our main goal is to develop an 

ontology validation framework for managers. That means that we want to provide 

modelers with validation tools that require as minimum learning overhead as possible. 

Anti-patterns play a central role in this framework. 

Just like design patterns for software development, anti-patterns are a solution to reuse 

knowledge in conceptual modeling. In this case, instead of reusing certified solutions, 

we reuse recurrent problems and appropriate solutions for these problems.  

We propose to use anti-patterns in the following manner: first, the structures defined 

for each anti-pattern provide modelers a starting point in the validation process, i.e., 

after the modeling activity the anti-patterns confront them with their potentially 

problematic decisions. Secondly, the analysis flow defined for each anti-pattern guides 

the user through the process of review his decision, reaching a conclusion if it was 

appropriate one or not. Finally, the refactoring plans provide systematic instructions on 

how to modify their model in order to reach the desired outcome. Our proposal takes 

inspiration in (HARTMANN, 2001) in the sense of defining three steps for improving 

the model: problem detection, analysis and refactoring. 
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We do not claim our anti-pattern catalogue to be an exhaustive set of all recurrent 

“dangerous” conceptual modeling decisions. We argue that verifying and refactoring 

an ontology using the catalogue as a guide will improve the ontology’s precision, 

coverage, scope and classification. It is not, and should not be the only validation 

technique applied.  

Logical Anti-Patterns have the additional role of unveiling instance-level domain 

constraints, i.e., aid the modeler in the exploration of the domain by making her think 

of unusual situations allowed by the model. This will be clearer throughout the 

explanation of the catalogue in the next chapter, but suffice to say that the anti-patterns 

will unveil constraints that OntoUML constructs cannot express. Without the anti-

patterns, modelers are most likely not even to ask some questions to the domain 

experts. 

Finally, as we will discuss in detail in Chapter 8, with proper tool support, we argue that 

modelers can use anti-patterns without costly learning requirements. We fully 

automate the identification step, thus requiring no learning from the user side. 

Furthermore, we implement a wizard tool to guide the analysis flow. Lastly, the tool 

automatically runs pre-defined refactoring plans. 
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 THE ANTI-PATTERN CATALOGUE 

In this chapter, we present our catalogue of semantic anti-patterns for ontology-driven 

conceptual modeling.  

In order to facilitate learning, usage and comparison of the anti-patterns, we describe 

them following a consistent format. We discuss each anti-pattern initially in a textual 

unstructured way. In the sequence, for each anti-pattern, we present a table that 

summarizes the most important information discussed.  

The template we use to describe anti-patterns follows: 

 Name: uniquely identifies the anti-pattern and intends to convey a brief idea of 

its content. 

 Acronym: a short name to facilitate the documentation and communication 

about the anti-pattern. 

 Description: a natural language description of the generic structure that 

characterizes the anti-pattern. It also presents required constraints to 

characterize the anti-pattern occurrence, when necessary. 

 Justification: a brief discussion of why modelers should “put under the 

microscope” the model structure identified by the anti-pattern. 

 Type: identifies the types of the anti-pattern, which indicates the type of problem 

the structure suggests. The possible values are:  

o Logical, for under and over constraining issues,  

o Scope, for missing or unnecessary constructs; and  

o Classification, for errors in the choice of the meta-category used to 

represent a concept; 

 Feature: indicates the element of the OntoUML’s meta-model that is in the 

center of the anti-pattern. For instance, some anti-patterns focus on Relators, 

others on Mixins, and so on. 

 Structure: formal description that characterizes an occurrence of the anti-

pattern. Consists of pattern roles, constraints and a diagrammatic generic 
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example. Note that some anti-patterns have one or more structures, which we 

call variations2.  

o Pattern Roles: describes the elements that participate in the anti-pattern, 

their possible stereotypes and cardinalities. We give each pattern role a 

proper name. 

o Constraints: Logical expressions that must always be true to characterize 

an occurrence of the anti-pattern. Constraints can be general, involving 

multiple roles, or role-specific. 

o Generic Example: a figure that exemplifies the generic structure of the 

anti-pattern. When the anti-pattern has structural variations, we present 

multiple figures.  

 Refactoring Plan: Every anti-pattern must define a set of refactoring plans. 

These plans define a sequence of actions that modify the model in order to fix 

the domain misrepresentation issue. Some plans may be mutually exclusive, if 

they cannot be performed in the context of a single occurrence, or 

complementary, if they can. Note that some plans are only applicable to certain 

variations of the anti-pattern (identified by the tag [conditional]). The refactoring 

plans are composed mainly by the following types of actions: 

o Create Constraint (OCL): indicate the definition of addition of OCL 

invariants or derivation rules (e.g. making explicit how a relation is 

derived or forbidding instances to relate in a certain conditions). 

o Modify Element (Mod): indicate a change in a model element. The most 

frequent ones are stereotype changes (e.g. from Formal to Material or 

from Collective to Kind) and meta-property changes (e.g. isReadOnly 

from false to true). 

o New Element (New): indicate the creation of model elements. 

o Delete Element (Del): indicate the destruction of model elements. 

 Anti-Pattern Relations: indicate different types of relations between anti-

patterns (for a more elaborate discussion, please refer back to Section 4.3). The 

types of relations are: 

                                            
2 Some patterns contain multiple structures because they all generate the same type of problem and we 
can fix them using very similar actions. 
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o Group by Feature: indicate the anti-patterns that analyze the same 

feature of the current anti-pattern. 

o Group by Type: indicates the anti-patterns that have the same type of the 

current anti-pattern. 

o Causes: indicates that performing one of the proposed refactoring 

options might generate an occurrence of another anti-pattern. 

o Caused by: indicates the anti-patterns whose refactoring plans can 

generate the current anti-pattern. It is the inverse of the previous one. 

For each anti-pattern, we developed an analysis flow. We designed these flows as 

UML Activity Diagrams and they contain questions and pre-defined possible answers 

to guide the modeler in deciding whether an occurrence of the anti-pattern indeed is a 

mistake. At the end of the questionnaire, in addition to providing the previous answer, 

the flow identifies the appropriate refactoring solution and describes the steps to 

perform it. These analysis flows are the “blueprints” for the anti-pattern wizard we 

implemented (see Section 8.5). Due to organization reasons, we present them in 

Appendix B. 

Occurrences of an anti-pattern correspond to a particular set of elements represented 

in a particular model that “fit” the structure of an anti-pattern.  

To exemplify the structure of the anti-patterns, we present examples encountered in 

real models. In order to show how to analyze and refactor models using the anti-

patterns, we analyze the presented examples and discuss particular solutions for each 

case. Note that these examples are not included in the anti-pattern summary table. 

5.1 ASSOCIATION CYCLE (ASSCYC) 

The Association Cycle (AssCyc) occurs when an arbitrary number of types are 

connected through the same number of relations in a way that composes a cycle (in 

the same meaning defined in Graph Theory). In other words, one can start navigating 

relations from any type in the cycle and arrive back to the starting point without going 

through the same relation and visiting the same type more than once (except the 
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first/last). Notice that we intentionally use the term “relation”, because we mean both 

associations (material, formal, componentOf and so on) and generalizations. 

We argue in favor of analyzing this model structure because it allows two very 

characteristic instantiations scenarios: one in which there are cycles at the instance 

level, and another one where there is not. Our studies showed that usually, only one 

type of scenario could occur.  

Not all cycles, though, are occurrences of this anti-pattern. The first requirement is that 

two or more associations must compose it. Cycles exclusively composed of 

generalizations are excluded, because they are either a syntactical issue (when all 

generalizations are in the same direction) that should be forbidden, or just regular 

hierarchies. Cycles with only one association are most likely characterization of 

another anti-pattern, named BinOver, while with two association they usually 

characterize occurrences of RelSpec or RelOver. 

The second constraint that must hold, is that an occurrence cannot be exactly a 

characterization of the Relator Design Pattern (GUIZZARDI, 2005), i.e., one of the 

types is a relator that connects two other types by mediations, who are connected 

between themselves by a material. In addition, it cannot for a very simple reason: the 

derivation from the relator to the material relation imposes closed cycles at the instance 

level. For the same reason Derivations are not allowed because they are always used 

in the same way, connecting a relator to a material, and thus, always form cycles. 

The last constraint that must hold for a proper characterization of the AssCyc anti-

pattern is that every association in the cycle must be intentional. This requirement is 

justified because the semantic variability (open or closed instance-level cycles) has 

already been addressed by the derivation rule(s) created by the modeler. 

We propose three refactoring plans: first, to enforce the open cycle instantiation 

scenario at instance level through the specification of an OCL invariant; second, is an 

analogous solution to forbid instance level cycles; third, one of the associations is set 

as derived and its derivation OCL rule specified. 

Table 29 summarizes the description of the AssCyc anti-pattern. 
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Table 29. Characterization of the AssCyc anti-pattern. 

Name (Acronym) Description 

Association Cycle 
(AssCyc) 

This anti-pattern occurs when n types are connected through n relations 
forming a cycle, i.e. one can start navigating relations from a type and 
arrive back without using the same relation more than once and without 
visiting the same type more than once (except the first/last). 

Type Feature Justification 

Logical Association The analysis of two characteristic instantiation scenarios: one in which 
there are cycles at the instance level, and another one where there is not.  

Pattern Roles 

Mult. Name Possible Types 

3..* Rel-n Association (all but «derivation ») or Generalization 

3..* Type-n Class 

Constraints 

1. The relations must form a cycle, i.e., starting from every Typen, one can navigate the 
relations and arrive back to the same type using every relation exactly one time. 

2. The number of associations in the cycle must be greater than 2. 

3. Every association must be intentional (isDerived=false) 

4. The cycle cannot characterize a Relator Design Pattern. 

Generic Example 

 

Refactoring Plans 

1. [OCL] Enforce cycles: create OCL invariant to enforce instance level cycles according to 
following template (any type can be used as base): 

context Type-1 

inv: self.type2.oclAsType(Type-3).type4.asSet()->includes(self) 

2. [OCL] Forbid cycles: create OCL invariant to forbid instance level cycles according to the 
following template (any type can be used as base): 

context Type-1 

inv: self.type2.oclAsType(Type-3).type4.asSet()->excludes(self) 

 

Type-1 Type-2

Type-3

Type-4

-type4

Assoc-2 -type2

+type3

Assoc-3

+type1 -type2

Assoc-1

-type1
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3. [Mod/OCL] Derive association: set the selected association as derived and create an 
OCL derivation rule. Suggest template bellow:  

context Type-1 :: type3 : Bag(Type-3) 

derive: self.type2.oclAsType(Type-3).type4.asSet() = self.asSet() 
 

Anti-Pattern Relations 

Group by Feature (Association): BinOver, ImpAbs, RelComp, RelSpec 

Group by Type (Logical): BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Causes: none  

Caused by: MultDep 

 

To exemplify the AssCyc anti-pattern, consider the following fragment of the O3 

ontology (PEREIRA; ALMEIDA, 2014) depicted in Figure 21. The ontology describes 

a subset of the organizational domain. The most distinguished concepts are:  

 Formal Organization, like a company or a university;  

 Organizational Unit, which can be understood as departments of an 

organization;  

 Employee Type, which captures the notion of what is commonly  referred to as 

position, the official work post, like professor or manager; 

 Business Role is a class that formalizes the idea of particular functions or roles, 

played by members of an organization. Examples are PhD supervisor and tutor.  

  

Figure 21. Fragment of the O3 ontology that contains an occurrence of the AssCyc anti-pattern. 

The relations state that an organization has two or more units; a unit defines roles that 

employee can play; an organization defines positions to which people can be hired 

into; and that positions implied the possibility of playing certain business roles.  

«Kind»

Formal 

Organization

«hou»

Business Role

«Kind»

Organizational  

Unit

«hou»

Employee Type

+unit

0..*

defines
«Formal»

+role

1..*

+org

1«ComponentOf»

+unit

2..*

+org

1..*

defines

«Formal»

+type

1..*+type

1..*

cover

«Formal»

+role

1..*
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As aforementioned, the structure identified in Figure 21 allows the instantiations of 

open and closed cycles at the instance-level. Figure 22 presents a model instance that 

characterizes an open cycle. Notice that the organization defines an employee type 

(position) that covers business roles defined by organization units that are part of 

another organization. 

 

Figure 22. A possible instantiation of the O3 ontology, exemplifying an open instance cycle. 

 

Figure 23. A possible instantiation of the O3 ontology, exemplifying a closed instance cycle. 
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In another way, Figure 23 presents an instantiation that characterizes a closed cycle. 

Note that in this case, if a unit defines a business role, the organization it composes 

must define an employee type that covers such position. 

When confronted with both situations, the authors of O3 agreed that only instances like 

the one in are valid. Since they also concluded that all associations in the identified 

cycle are intentional, we propose the OCL invariant in Listing 4 to make the model 

more precise: 

Listing 4. OCL invariant generated to enforce closed cycles in the O3 fragment. 

context _'Formal Organization' 

inv acyclic: self.unit.role.type.org->includes(self) 

5.2 BINARY RELATION BETWEEN OVERLAPPING TYPES (BINOVER) 

To describe this anti-pattern we first define the concepts of overlapping and disjoint 

set of types.  

On one hand, a set of types is said to be overlapping if, and only if, there is at least 

one possible instantiation of the model in which at least one individual simultaneously 

instantiate all types in the set. The set containing Employer, Male and Adult types, for 

example, are overlapping, since there are many adult male workers in the world. We 

formally state this definition as follows: 

Definition (Overlapping Set): Let W  be a non-empty set of possible worlds, w  ∈ W  

be a specific world, T  the set of types, 𝑡 ∈ 𝑇 be a particular type, 𝑒𝑥𝑡𝑤(𝑡)3 the extension 

of a  t  in world w  and 𝑒𝑥𝑖𝑠𝑡𝑠(𝑤) the function that return all individuals that exists in a 

world w. A set of types is overlapping if there is at least one w, such that: 

∀𝑡, 𝑡′ ∈ 𝑇, ∃𝑥, 𝑥 ∈ 𝑒𝑥𝑖𝑠𝑡𝑠(𝑤) ∧ 𝑥 ∈ 𝑒𝑥𝑡𝑤(𝑡) ∧ 𝑥 ∈ 𝑒𝑥𝑡𝑤(𝑡′) 

Conversely, we classify a set of types as disjoint if, and only if, there is no possible 

instantiation in which an individual instantiate more than one type in the set. As an 

                                            
3 We use the function 𝑒𝑥𝑡𝑤(𝑡) as defined in (GUIZZARDI, 2005) 
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example, consider the types Adult, Child and Elder. No individual, at any point of time, 

can instantiate all these types simultaneously.  

Definition (Disjoint Set): Making the same conventions as in the previous definition, 

a set of types is disjoint, if for every w : 

∀𝑡, 𝑡′ ∈ 𝑇, 𝑡 ≠ 𝑡′ →  ∄𝑥, 𝑥 ∈ 𝑒𝑥𝑖𝑠𝑡𝑠(𝑤) ∧ 𝑥 ∈ 𝑒𝑥𝑡𝑤(𝑡) ∧ 𝑥 ∈ 𝑒𝑥𝑡𝑤(𝑡′) 

The Binary Relation Between Overlapping Types (BinOver) corresponds to an 

association, of any stereotype, that connected two types that compose an overlapping 

set.  It means that the same individual may instantiate both ends of the relationship. A 

given relation <R> between types <Source> and <Target> characterize a BinOver 

occurrence when: 

1. <Source> equals <Target> 

2. <Source> is a direct or indirect subtype of <Target>; 

3. <Target> is a direct or indirect subtype of <Source>; 

4. <Source> and <Target> are sortals (Subkind, Role or Phase) that share a 

common identity provider (Kind, Collective, Quantity) and there is no 

generalization set which makes them explicitly; 

5. <Source> and <Target> are relators that share a common super-type and there 

is no generalization set which makes them explicitly disjoint; 

6. <Source> and <Target> are modes that share a common super-type and there 

is no generalization set which makes them explicitly disjoint; 

7. <Source> and <Target> are mixins (Category, Mixin or RoleMixin) that directly 

or indirectly generalize at least one common sortal (Kind, Quantity, Collective, 

Subkind, Role, Phase); 

8. <Source> and <Target> are mixins (Category, Mixin or RoleMixin) that share a 

common mixin super-type and none of their subtypes are sortals; 

In our preliminary study, we reported structures (1) and (4) as being two different anti-

patterns, named Self-Type Relationship and Binary Relation Between Overlapping 

Subtypes respectively (SALES; BARCELOS; GUIZZARDI, 2012). After conducting 

further analysis, we decided to merge and expand them into the anti-pattern presented 

in this section. The reasoning for it is that, although they are different in structure, both 
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anti-patterns convey the same conceptual problems and the same set of solutions is 

admissible. 

The focus on the aforementioned structures arises from the fact that it is not always 

intuitive that the related types overlap. When they do, we learned that is useful to 

specify binary relation properties, like reflexivity or transitivity, in order to prevent 

misrepresentations of the domain.  

From our empirical studies, we learned that the most useful binary properties for 

conceptual modeling are reflexivity, symmetry, transitivity and cyclicity. We formally 

define each property in Table 30. For a detailed listing and description of more complex 

binary properties, please refer to (SCHMIDT; STROHLEIN, 1993). 

Table 30. Relevant binary properties for conceptual modeling. 

Binary Property Definition Example 

Reflexive ∀𝑥 ∈ 𝑋 → 𝑅(𝑥, 𝑥) is equal to 

Antireflexive ∀𝑥 ∈ 𝑋 → ¬𝑅(𝑥, 𝑥) is father of 

Symmetric ∀𝑥, 𝑦 ∈ 𝑋, 𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥) is brother of, is married to 

Antisymmetric ∀𝑥, 𝑦 ∈ 𝑋, 𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑥) → 𝑥 = 𝑦  greater or equal to (≥) 

Transitive ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧) → 𝑅(𝑥, 𝑧) is ancestor of 

Acyclic 
∀𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋, 𝑅(𝑥1, 𝑥2) ∧ 𝑅(𝑥2, 𝑥3) ∧ …

∧  𝑅(𝑥𝑛−1, 𝑥𝑛)  → ¬𝑅(𝑥𝑛, 𝑥1) 
is ancestor of 

   

The association’s stereotype heavily influences the possible refactoring alternatives 

the modeler can apply to association. For some types of relations, such as 

characterizations, mediations and part-whole relations, the language already embeds 

binary properties, whilst on others, such as material and formal relations, these 

constraints are defined by the modeler (or not). Table 31 presents the embedded 

binary properties values for the stereotypes of associations in OntoUML. In addition to 

the basic binary properties, we identify in the last column of the table if the language 

allows modelers to define associations with that particular stereotype connecting a 

class to itself.   
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Table 31. Binary property values embedded in OntoUML's associations. 

Stereotype Reflexivity Symmetry Transitivity Cyclicity Type-Reflexive 

Formal Undefined undefined undefined undefined Allowed 

Material Undefined undefined undefined undefined Allowed 

Mediation n.a. n.a. n.a. n.a. Forbidden 

Characterization Irreflexive Asymmetric n.a. Acyclic Forbidden 

ComponentOf Irreflexive Asymmetric Transitive Acyclic Allowed 

MemberOf Irreflexive Asymmetric Intransitive Acyclic Forbidden 

SubCollectionOf Irreflexive Asymmetric Transitive Acyclic Allowed 

SubQuantityOf Irreflexive Asymmetric Transitive Acyclic Forbidden 

      

We propose three refactoring alternatives for a BinOver occurrence: change the 

association’s stereotype, create OCL invariants to enforce a desired binary property 

and “force” the related types to be disjoint. Note that, if a modeler enforces the related 

types to be disjoint, she will not be able to set any binary property, since the relation 

will no longer have a the same individuals in the domain and range. 

Table 32 summarizes the description of the BinOver anti-pattern 

Table 32. Characterization of the BinOver anti-pattern. 

Name (Acronym) Description 

Binary Relation between 
Overlapping Types (BinOver) 

A binary relation whose end types are overlapping characterizes 
this anti-pattern. 

Type Feature Justification 

Logical Association Modelers often do not perceive by themselves that two or more 
types overlap. This anti-pattern makes them aware of that and 
confronts modelers with the possibility to specify binary relation 
properties, like reflexivity, transitivity and symmetry. 

Pattern Roles 

Mult. Name Possible Types 

1 binaryRelation Association (all but «derivation ») 

1 Source Class 

1 Target Class 
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Generic Example* 

 
*Note: the presented variations are illustrative and do not intend to cover all possibilities 

Refactoring Plans 

1. [Mod] Fix stereotype: change the stereotype of the relation to fit a desired binary property 

2. [OCL] Enforce binary property: create OCL invariant to enforce  a desired binary property 
(as long as it is compatible with the embedded constraints of the stereotype) 

3. [New] Enforce disjointness: make the related types disjoint by the specification of a 
disjoint generalization set. 

Anti-Pattern Relations 

Group by Feature (Association): AssCyc, ImpAbs, RelComp, RelSpec 

Group by Type (Logical): AssCyc, DecInt, FreeRole, ImpAbs, MultDep, PartOver, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Caused by: none 

Causes: none 

 

We extracted and adapted the small model fragment depicted in Figure 24 from the 

MGIC Ontology, in order to exemplify the BinOver anti-pattern. It regards Railway 

Systems, i.e., collections of railways that the Brazilian government concedes to private 

Source / Target
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Source Target
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Variation 2: Target subsets Source
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+domain

a..b binaryRelation
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companies. These systems are connected to one another, which the model formalizes 

as the “isConnectedTo” formal association. 

 

Figure 24. Fragment of the MGIC that exemplifies BinOver. 

This example fits the first structural possibility assigned for BinOver, an association 

that connects a type to itself. Figure 25 depicts two possible worlds. On the left, built 

using white boxes, is a representation of a possible world in which the relation of being 

connected is transitive and acyclic. On the right, composed by grey boxes, is a possible 

world in which the relation is both symmetric, reflexive, transitive and cyclic. In this 

case, the modelers chose to create a rule for make the relation symmetric and 

reflexive. 

 

Figure 25. On the left, in white, a possible world in which the “isConnectedTo” relation is 

transitive and acyclic; on the right, in grey, a world where “isConnectedTo” is reflexive, 

symmetric and cyclic 
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5.3 DECEIVING INTERSECTION (DECINT) 

An occurrence of the Deceiving Intersection anti-pattern occurs when a class, 

stereotyped as Subkind, Role, Phase, Mode or Relator, specializes two or more 

concrete types.  

We use the concept of concrete type to refer to types that can have instances that are 

not instances of any of its child types. From a structural perspective, that implies two 

things: first, the meta-attribute isAbstract of the concrete type must be set to false, and 

second, the meta-attribute isCovering of every generalization set which aggregates 

generalizations leading to the concrete type, must be set to false. Not that the definition 

of concrete type automatically rules out all three mixin classes, since the language 

requires that their isAbstract attribute is always set to false; 

The main driver to investigate this particular model structure is to help the modeler 

decide whether the subtype with multiple generalizations is intentional or derived by 

the intersection.  

On one hand, intentional subtyping refers to the characterization of subtypes by the 

addition of complementary characteristics. On the other hand, derived subtyping refers 

to the characterization of subtypes by evaluating a set of properties of the parent type 

(e.g. the restriction of a quality value).  To exemplify, consider the following types: 

Physical Object, which classifies every individual that have volume and mass; Colored 

Object, which classifies physical objects that are opaque and thus have a Color quality; 

and Black Object, used to qualify black things. By stating the Colored Object is a 

subtype of Physical Object, we are intentional subtyping, i.e. adding the characteristic 

of having the color quality. By stating that Black Object is a subtype of Colored Object, 

we are deriving: selecting every object that has a black color. 

Derivation by intersection (OLIVÉ, 2007) is a particular type of derivation subtyping, 

which states that if an individual instantiates every type in a pre-determined set, it also 

instantiates the subtype. For example, consider the type Employee, which represents 

people that have formal jobs, and the types Adult and Underage, which describes 

people over and under 18 years old respectively. If one desires to represent the 

concept of Underage Employee, i.e., the type of 18 years old or younger employees, 



125 

derivation by intersection is the solution. To address this constraint, we propose the 

creation of an OCL invariant (template provided in Table 33) 

In complement to the main motivation, the auxiliary reason to investigate this anti-

pattern is to verify if the multiple inheritance does not generate an empty extension for 

the type. That occurs when two or more parent types disjoint due to a generalization 

set. It also occurs when two or more parent types provide/inherit different identity 

principles (this condition only applies for sortals classes, naturally). 

Table 33 summarizes the description of the DecInt anti-pattern. 

Table 33. Characterization of the DecInt anti-pattern. 

Name (Acronym) Description 

Deceiving Intersection 
(DecInt) 

An occurrence of the DecInt anti-pattern occurs when a type 
specializes two or more concrete types 

Type Feature Justification 

Logical Hierarchy Investigate if the subtype with multiple generalizations is intentional or 
derived by the intersection (main) and if its extension is not empty.  

Pattern Roles 

Mult. Name Possible Types 

1 Type «subkind», «phase», «role», «mode» or «relator» 

2..* Parent-n All class stereotypes but «mixin», «roleMixin» and «category» 

Constraints 

1. The specialization of the parents into Type must be syntactically valid, e.g. if type is a 
relator, all its parents must also be relators.  

2. There must be at least two parents for which the following conditions evaluate to true: 

a. Parentn.isAbstract = false 

b. For all gs : Generalization Set whose common supertype is Parentn, 
gs.isCovering=true 

Generic Example 

 

Parent-1 Parent-2

Type

Parent-3
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Refactoring Plans 

1. [conditional] [Mod] Fix Generalization Set: can only be adopted if two or more parent 
types are made disjoint by a generalization set. The possible solutions are to remove the 
existing generalization set or set its isCovering property to true. 

2. [conditional] [Mod] Fix Identity Principle: can only be applied if Type is sortal (Subkind, 
role or phase) and they do not follow the same identity principle. The action consists on 
defining the single identity provider. 

3. [Mod/Del] Invert/Delete Generalization: consists of deleting and/or inverting one or more 
generalizations from Type to one of the identified parents. 

4. [OCL] Derived by Intersection: create an OCL derivation or invariant constraint to specify 
that the extension of type is derived by the intersection of the extensions of two or more 
concrete parents: 
context Parent1 

inv: (self.oclIsTypeOf(Parent2) and self.oclIsTypeOf(Parent2)) 

implies self.oclIsTypeOf(Type) 

Anti-Pattern Relations 

Group by Feature (Hierarchy): GenSet, MixIden, MixRig, UndefPhase 

Group by Type (Logical): AssCyc, BinOver, FreeRole, ImpAbs, MultDep, PartOver, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Causes: none  

Caused by: none 

 

Adapted from a model that formalizes FIFA’s official football rules, Figure 26 depicts a 

DecInt occurrence. The fragment partially describes the expulsion event (the famous 

red card) and states that a referee can expel both players and team officials (e.g. 

coach, doctor). It tries to simulate the RoleMixin pattern for disjoint roles that follow the 

same identity. 

 

Figure 26. Simplified fragment of the FIFA Football Model characterizing a DecInt occurrence. 
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By naming the roles as “Expelled Team Official” and “Expelled Player”, the modeler 

already “gives away” the intention of subtyping through intersection. Nonetheless, the 

model still allows a person to play the roles defined by “Expelled Member” and “Football 

Player” and not be an “Expelled Player”.  

One can solve this particular problem in more than one way. A simple solution to this 

particular case would be to set Expelled as abstract. Another would be to create a 

complete generalization set containing the generalizations from Expelled Team Official 

and Expelled Player to Expelled. Nonetheless, these solutions cannot be generically 

applied to every occurrence of the DecInt anti-pattern and thus, by default, the 

suggestion is to create the OCL invariant presented in Listing 5. 

Listing 5. OCL invariant enforcing derivation by intersection. 

context FootballPlayer 

inv: self.oclIsTypeOf(Expelled) implies self.oclIsTypeOf(ExpelledPlayer) 

5.4 RELATIONALLY DEPENDENT PHASE (DEPPHASE) 

As described in Chapter 2, phases and roles capture anti-rigid types, whose instances 

share the same identity principle. The main difference between them is that, on one 

hand, phases are instantiated when there is a change in an intrinsic property, such as 

a quality (e.g. age, color, weight) or a mode (e.g. disease, intention). On the other 

hand, roles are instantiated when there is an establishment of a relational property 

(e.g. becoming married, a student or a parent). OntoUML formalizes relational 

properties, in this sense, through associations stereotyped as mediation.  

Mixing the concept of phase and role is what generates an occurrence of the 

Relationally Dependent Phase (DepPhase) anti-pattern. Its simple identification 

structure, a phase connected to a mediation, is a hint that the model may be wrong.  

Three possible conclusions can arise through the analysis of a DepPhase occurrence. 

First, the modeler can conclude that she qualified the phase with the wrong stereotype 

and, in fact, it should be a role. Second, modelers can conclude that the phase does 

not own, but inherits the relational dependency. Reaching this conclusion leads to the 

creation of a new role type to act as the parent type of the phase. The last possible 
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conclusion is that the phase is characterized both by a change in an intrinsic property 

and the establishment of a relational property. In this last case, a modeler should keep 

the model as it is and the occurrence is a “false alarm”. 

Table 34 consolidates the description of the DepPhase anti-pattern. 

Table 34. Characterization of the DepPhase anti-pattern. 

Name (Acronym) Description 

Relationally Dependent Phase 
(DepPhase) 

A class stereotyped as «phase» connected to one or more 
«mediation» associations. 

Type Feature Justification 

Classification; 
Scope 

Phase; 
Relator 

Phases are instantiated when there is a change in an 
intrinsic property. Roles are instantiated when there is a 
change in a relational property. Selecting the phase 
stereotype for a class but connecting it to a mediation is 
“mixing up” the two meta-categories. 

Pattern Roles 

Mult. Name Possible Types 

1 Phase «phase» 

1..* Med-n «mediation» 

1..* Relator-n «relator» 

Generic Example 

 

Refactoring Plans 

1. [New/Mod] Make the role explicit: Create a «role» as a parent type of the phase and 
move the mediation it. 

 

«Phase»
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2. [Mod] Change phase to role: Change the stereotype of the phase to «role» 

 

Anti-Pattern Relations 

Group by Feature (Phase): UndefPhase 

Group by Feature (Relator): FreeRole, MultDep, RelOver, RelRig, RepRel 

Group by Type (Classification): GSRig, HetColl, HomoFunc, MixIden, MixRig, RelRig, 
UndefFormal, UndefPhase 

Group by Type (Scope): FreeRole, ImpAbs, MultDep, GSRig, HomoFunc, MixIden, MixRig, 
RelRig, UndefPhase 

Causes: none  

Caused by: none 

 

We use a structure found in the Quality Assurance Model to exemplify an occurrence 

of the DepPhase anti-pattern. The model, as a whole, describes concepts and 

properties relevant to process evaluation within organizations. There are standard 

processes defined by the organization, executed in particular projects. The appraiser 

evaluates these executions according to a set of criteria and identifies lessons learned, 

non-compliant items and problems.  

 

Figure 27. DepPhase occurrence identified in the Quality Assurance Model. 
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The simplified fragment in Figure 27 describes the categorization of the non-compliant 

items in the process. Note that there are 3 phases for such items: Identified, Cancelled 

and Registered, the latter being the relationally dependent phase. A non-compliant 

item becomes registered because of the identification of the cause and the creation of 

an issue, as represented by the model. The conclusion reached, thus, is that the 

registered phase is in fact a role.  

As a last remark, note the other two phases, identified and cancelled, also should not 

be classified as such. Cancelled represented items that were the target of a 

cancellation action. Identified is a type derived by exclusion (OLIVÉ, 2007), i.e. items 

that are not registered nor cancelled. The representation of the latter is in fact optional. 

As an alternative, one could model the generalization set as incomplete. 

5.5 FREE ROLE SPECIALIZATION (FREEROLE) 

The Free Role Specialization (FreeRole) anti-pattern occurs when a «Role» type 

connected to a «Relator» through a «Mediation» association, is specialized in other 

«Role» types, which do not directly own an additional «Mediation» association. 

As discussed in Chapter 2, roles are externally dependent types. That means that 

every role type must be directly or indirectly connected to a mediation, which defines 

it. The difference between direct and indirect connection is that, in the former, the type 

itself is connected, whilst in the latter one of its ancestors types is directly connected. 

The focus of this anti-pattern is on these indirect connected roles, or as we call them, 

free roles.  

The goal of the analysis is to identify instantiation condition for all free-roles. To help 

in this process, we propose four alternative role specialization patterns, namely: 

derived sub-role, intentional sub-role, material sub-role and role of role. 

The derived sub-role pattern applies to free-roles when they are instantiated 

according to a pre-determined set of conditions. For example, a person plays the role 

of student when she enrolls at an educational institution. Students are freshman if their 
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enrollment is at most one year old. If this example, the “Student” class would be defined 

as a role, whilst the “Freshman” class, a derived sub-role.  

The second alternative solution is setting the free role as a role of role, which assumes 

the specification of a new and independent relator to characterize the role 

specialization. A modeler should take this path when the event that gives rise to the 

relator that characterizes the free role is different from the one that characterizes the 

defined role. To exemplify, consider again the student concept. A person, when playing 

the student role, can become an intern, but to become one, they need a company to 

accept them in an internship, the independent relator. 

Notice that, a priori, an instance of the defined role type can become and cease to be 

an instance of the free roles defined as a derived sub-role or a role of role, while being 

connected to the same instance of the defining relator. 

The next role specialization pattern, named intentional sub-role, consists in 

specializing the defining relator and connecting it to the respective sub-role. To 

exemplify it, we once more go back to the student concept. Now, consider the concepts 

of undergraduate and graduate students. Even though both imply being a student, and 

thus, having an enrollment, they each require enrollments with particular 

characteristics. Graduate enrollments, for example, require (or at least assume the 

possibility of) a supervisor assignment. 

Lastly, we propose the material sub-role pattern, which modelers should apply to the 

free role when a particular subset of the defining relator defines it, but this particular 

subset does not imply in the addition of extra characteristics. To exemplify in the 

educational domain, consider that, in order to obtain their titles, graduate students must 

make a presentation of their thesis to a group of professors, the thesis committee. After 

the presentations, the committee provides a verdict: approved or failed.  Notice that in 

both cases, the model does not provide additional properties for the relator “Verdict”, 

only if it defines an approved thesis or a failed one. The difference from the material 

sub-role pattern to OntoUML’s traditional representation of roles is that, in the former 

the material relation is derived from a relator connected to a direct or indirect parent 

type of the role, whilst on the latter, the material is derived from a relator directly 

connected to the role. 
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Differently from the first two patterns, a modeler should apply the last two when the 

she wants to enforce an individual to always instantiate the free role while being 

connected to a particular instance of the defining relator.  

For didactical reasons, instead of showing an example encountered in one of the 

models of our repository. Figure 28 presents the application of all proposed role 

specialization patterns, using the examples previously discussed in the educational 

domain. To improve readability, we made some adaptations in the diagram. We hid 

the kind “Person” (super type of the roles “Student” and “Professor”), the relator 

between “Graduate Student” and “Thesis” and the roles of “Company” and 

“Educational Institution”. Furthermore, we represent the roles that characterize the 

application of the proposed patterns with thicker lines. A dashed line indicates the 

pattern type they represent.  

 

Figure 28. Application of the four role specialization patterns. 
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Table 35 consolidates the description of the FreeRole anti-pattern. 

Table 35. Characterization of the FreeRole anti-pattern. 

Name (Acronym) Description 

Free Role Specialization 
(FreeRole) 

A «role» type connected to a «relator» type through a 
«mediation» association, is specialized in one or more «role» 
types, which in turn are not connected to an additional 
«mediation» association 

Type Feature Justification 

Logical; 
Scope 

Role; Relator Identify the condition required for the instantiation of the 
subtypes of the role that are not connected to any relator, 
since no particular condition was defined. 

Pattern Roles 

Mult. Name Possible Types 

1 DefinedRole «role» 

1..* definingMediation-n «mediation» 

1..* DefiningRelator-n «relator» 

1..* FreeRole-n «role» 

Constraints 

Every free role must meet the following requirements: 

1. It cannot be directly connected to any mediation 

2. It cannot be a direct or indirect subtype of a RoleMixin that is directly connected to a 
mediation from a hierarchy path that does not go through DefinedRole. 

Generic Example 

 

Refactoring Plans 

1. [OCL] Set derived role as derived: The instantiation of a free role defined by a derivation 
rule, which can be defined as follows: 
context FreeRole-1 :: allInstances() : Set(FreeRole-1) 

derive : DefinedRole.allInstances()->select( x | <CONDITION>)  

 

«Role»

FreeRole-1

«Relator»

DefiningRelator

«Role»

DefinedRole

definingMediation

«Mediation»



134 

2.  [New] Add independent relator: a free role is defined by another relator which has no 
relation to DefiningRelator. Implies the creation of a relator and a mediation, like in the 
structure: 

 

3. [New] Add a redefining material relation: a free role is defined by a redefining material 
relation, like in the structure: 

 

Anti-Pattern Relations 

Group by Feature (Role): none 

Group by Feature (Relator): RelOver, RelRig, RepRel, UndefPhase 

Group by Type (Logical): GSRig, HetColl, HomoFunc, MixIden, MixRig, RelRig, UndefFormal, 
UndefPhase 

Group by Type (Scope): DepPhase, ImpAbs, MultDep, GSRig, HomoFunc, MixIden, MixRig, 
RelRig, UndefPhase 

Caused by: none 

Causes: none 

5.6 GENERALIZATION SET WITH MIXED RIGIDITY (GSRIG) 

Generalization Sets (GS) impose disjointness and completeness constraints in a group 

of generalizations that lead to the same parent type. Disjoint sets are the ones that 

forbid an individual to instantiate more than one subtype, whilst complete sets require 

an instance of the parent type to instantiate at least one of the subtypes in the set. 

A GS should only aggregate generalizations that follow a common specialization 

criterion, which is the type of property used to define why an instance of a type 
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becomes an instance of one of its subtypes. To clarify, consider the types Person, 

Man, Woman, Child and Adult. People are classified as Man or Woman according to 

their gender, whilst they are classified as Child or Adult through the evaluation of their 

age. 

The Generalization Set With Mixed Rigidity (GSRig) anti-pattern aims to identify 

structures that suggest the usage of two or more specialization criteria in a single GS, 

leading to classification or scope issues. The GSRig’s identification structure is a GS 

whose common parent type is rigid (stereotyped as «kind», «quantity», «collective», 

«subkind» and «category») and that has at least one generalization coming from a 

rigid type and one from an anti-rigid type (stereotyped as «phase», «role» and 

«roleMixin»).  

Although proposed to address classification and scope issues, a particular GSRig 

structure leads to inconsistency issues. This special case occurs when a disjoint and 

complete GS contains one or more rigid subtypes and exactly one anti-rigid subtype. 

The disjointness constraints, imposes that no individual created as an instance of one 

of the rigid subtypes will ever instantiate the anti-rigid type. The isCovering meta-

property set to true imposes that no individual, which instantiates the anti-rigid type 

since its creation, will ever cease to do so. In other words, the anti-rigid subtype 

“becomes” rigid. 

To determine if a GSRig occurrence indeed characterizes a modeling error, the 

modeler should start by analyzing the rigidity of the subtypes. If after analyzing, and 

possibly changing the subtypes’ stereotypes, all of them turn out to be rigid or anti-

rigid, the anti-pattern is fixed.  

The next investigation path focus on the common parent’s stereotype, but a modeler 

should only consider it if the subtypes inherit/provide different identity principles. 

Having rigid and anti-rigid subtypes is one of things that define a Mixin and it might be 

the case that the modeler should have used it to qualify the parent type.  

The third refactoring proposal starts by investigating the specialization criterion used 

for each subtype. If the modeler concludes that she used more than one, the 

occurrence characterizes a mistake. Therefore, the solution is to create additional GSs 

and move the generalizations accordingly. 
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The last refactoring plan is to create rigid subtypes that are the new direct parents of 

one or more anti-rigid subtypes. If the modeler opts to create only one rigid subtype, 

she can optionally set it as derived by the negation of the other rigid subtypes. 

 

Figure 29. Translated and simplified fragment of the MPOG Ontology Draft exemplifying the 

GSRig anti-pattern 

Now, we provide a GSRig example obtained from an ontology draft made by the 

Ministério do Planejamento, Orçamento e Gestão4 (MPOG), which discusses 

governmental view on organizational structures. Figure 29 depicts a hierarchy 

formalized in the draft that starts with the organization concept, the most generic 

classification they provide. In its refinements the concepts of public organizations 

(owned by the government) and companies (owned by the private sector) arise, the 

former being further refined in non-empresarial public organizations, like a ministry, 

and state-owned companies, like Infraero (responsible for managing Brazilian airports) 

and Petrobras (an oil and gas company). The former is an example of a fully public 

company (only the Brazilian government manages it) and the latter, of a semi-public 

one (a shared enterprise between the private and the public sectors). 

The GS that enforces every instance of “Public Organization” to be either a “Non 

Empresarial Public Entity” or a “State-Owned Company” characterizes the GSRig 

                                            
4 In English: Ministry of Planning, Budget and Management 
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occurrence. In fact, this occurrence also characterizes the logical inconsistency we 

previously mentioned, forcing phase to be rigid. The solution, though, is quite simple: 

change the stereotype of Public Organization and Organization to «mixin». 

Table 36 summarizes the main contents of the GSRig anti-pattern. 

Table 36. Characterization of the GSRig anti-pattern. 

Name (Acronym) Description 

Generalization Set with Mixed 
Rigidity (GSRig) 

A generalization set whose common super-type is rigid and 
from all its generalizations, at least one comes from an anti-
rigid type and at least one comes from a rigid type. 

Type Feature Justification 

Classification; 
Scope 

Hierarchy; 
Gen. Set 

Generalization sets groups generalizations leading to a 
common super-type, all defined using the same specialization 
criterion. If the super type is not a mixin and the subtypes 
have different rigidity properties, they probably do not belong 
in the same generalization set.  

Pattern Roles 

Mult. Name Possible Types 

1 GenSet Generalization Set 

1 RigidParent «kind», «quantity», «collective», «subkind» and «category» 

1..* Rigid-n «kind», «quantity», «collective», «subkind» and «category» 

1..* AntiRigid-n «phase», «role» and «roleMixin» 

Generic Example 

 
*Note: stereotypes are only illustrative 

Refactoring Plans 

1. [Mod] Fix subtype rigidity: choose the option if you conclude that one or more 
stereotype of the subtypes is wrong. Change them to achieve only rigid or anti-rigid 
subtypes for the generalization set. 

2. [New/Mod] Split generalization set: the generalization set aggregates multiple 
specialization criteria. Create additional generalization sets and move the respective 
generalizations. 
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3.  [New/Mod] Implicit rigid subtype: create rigid subtypes that are the new direct parents 
of one or more anti-rigid subtypes. If only one rigid subtype is created, the modeler can 
optionally set it as derived by negation of the other rigid subtypes. The following OCL 
template is proposed to achieve that: 

context NewRigid::allInstances() : Set(NewRigid) 

derive : RigidParent.allInstances()->select( x | 

not(x.oclIsTypeOf(Rigid1) or x.oclsIsTypeOf(Rigid2) or … or 

x.oclIsTypeOf(Rigidn)) 

Anti-Pattern Relations 

Group by Feature (Gen. Set): none 

Group by Feature (Hierarchy): DecInt, MixIden, MixRig, UndefPhase 

Group by Type (Classification): DepPhase, HetColl, HomoFunc, MixIden, MixRig, RelRig, 
UndefFormal, UndefPhase 

Group by Type (Scope): DepPhase, FreeRole, ImpAbs, MultDep, HomoFunc, MixIden, MixRig, 
RelRig, UndefPhase 

Causes: none 

Caused by: none 

5.7 HETEROGENEOUS COLLECTIVE (HETCOLL) 

As discussed in (GUIZZARDI, 2011), a collective is an entity whose parts (members) 

play the same role regarding it. If we say that a troupe is a collection of artists, we are 

implying that all artists just play the role of being part of the troupe. Conversely, 

functional complexes are entities whose parts play different roles regarding it. The CPU 

is a functional part of a computer, as well as the hard-drive, since the former is 

responsible for processing operations, whilst the latter for storing non-volatile data. 

The differentiation proposed on the meta-conceptualization does not imply that all 

modelers will characterize a particular entity type, like computer or troupe, in the same 

way. In fact, it is quite ordinary for the opposite to happen: intuitively assumed to be 

complexes characterized as collections and vice-versa. We can define the “Computer” 

concept as a collection, if we assume that all its parts only play the role of being part 

of a computer. In the same way, one can understand the troupe concept as a functional 

complex, if one assumes that it contains actors, dancers and singers, and that they 

contribute differently to the function of the troupe.  
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UFO does not define collectives, however, only by their membership relations. They 

can also be refined into sub-collections. Note that these type of parts provide further 

structure to the collection, but do not to differentiate roles played by their members. 

The troupe example, if modeled as a collective, could be refined into the singer, dancer 

and actors sub-collections, whose members are the artist who can sing, dance and 

act, respectively. The difference from functional complex view on troupe is that 

although segregated into sub-collections, all artists are still just members of the troupe. 

The Heterogeneous Collective (HetColl) anti-pattern identifies collectives that are 

composed by two different types of members, which is an indication that the modeler 

might have confused the collection and functional complex concepts or the 

membership and sub-collection relations. The identification algorithm is to find a type 

that only allows collection instances and that is connected (directly or indirectly – 

though one of its ancestor types) to two or more memberOf relations in the whole end.  

The characteristic of only allowing collection instances is true for a given type if:  

 it is stereotyped as collective;  

 if it is stereotyped as subkind, role or phase and is a direct or indirect sub-type 

of another type stereotyped as collective; or  

 it is stereotyped as mixin, category or roleMixin and all its direct or indirect sortal 

children obey the last two conditions. 

The key aspect to successfully analyze this anti-pattern is to identify the whole’s 

perspective towards the parts. If one concludes that the parts in fact play different roles 

w.r.t the whole, the refactoring plan is to change the nature of the whole to functional 

complex (if necessary, also change the nature of parts) and change the stereotype of 

the meronymic relations to componentOf. 

Setting the nature of a type t to collective, functional complex or quantity is a task that 

depends on the current stereotype of t. We exemplify it by explaining the process to 

change a type’s nature to that of a collection.   

 t is stereotyped as quantity or kind, change the stereotype to collective;  
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 t is stereotyped as subkind, role or phase, one can either change the stereotype 

of the current identity provider to collective, select another that is already 

stereotyped as collective or create a new one stereotyped as collective; and  

 t is stereotyped as category, mixin or roleMixin, repeat the process defined in 

the two previous items for every sortal subtype. 

During the analysis of the anti-pattern, however, one can conclude that the members 

indeed play the same role regarding the whole. In those cases, the proposed 

refactoring is to make this conclusion explicit by creating a type as the direct parent of 

all current types and merging all memberOf relations into one, which is connected to 

the new super type.  

A modeler should tale the last alternative when she concludes that the member types 

are in fact sub-collections, i.e., they are refinements of internal structure of the 

collective whole. To achieve this desired conceptualization, one must change the 

stereotypes of the memberOf relations to subCollectionOf and, if necessary, change 

the nature of the part types to collection. 

Table 37 summarizes the structure, identification and refactoring alternatives proposed 

for the HetColl anti-pattern. 

Table 37. Characterization of the HetColl anti-pattern. 

Name (Acronym) Description 

Heterogeneous Collective 
(HetColl) 

A collection type connected to two or more different member 
parts through «memberOf» relations. 

Type Feature Justification 

Classification Part-Whole The multiple part types, the main characteristic of this anti-
pattern, indicate that the modeler might have confused the 
concepts of collection and functional complex or the different 
relations of membership and sub-collection.  

Pattern Roles 

Mult. Name Possible Types 

1 
Whole 

«collective», «subkind», «phase», «role», «category», «roleMixin» and 
«mixin» 

2..* partOf-n «memberOf» 

2..* 
Part-n 

«kind», «collective», «subkind», «phase», «role», «category», 
«roleMixin» and «mixin», 
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Additional Constraints 

1. Only collections may instantiate the Whole 

2. Only collections and functional complexes may instantiate all Part-n 

3. Let M be the set of memberOf relations identified in an HetColl occurrence, w the class 
identified as the Whole, wholeType(r) the function that return the class connected to the 
whole end of a meronymic relation r, and ancestorSet(c) the function that returns all direct 
and indirect super types of a class c: 

∀ 𝑚 ∈ 𝑀, 𝑤ℎ𝑜𝑙𝑒𝑇𝑦𝑝𝑒(𝑚) = 𝑤 ∨  𝑤ℎ𝑜𝑙𝑒𝑇𝑦𝑝𝑒(𝑚) ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑆𝑒𝑡(𝑤)  
 

Generic Example 

 

Refactoring Plans 

1. [Mod] Set as functional parts: Change the collection nature of Whole to functional 
complex and change the stereotype of the partOf relations to «componentOf». If the part 
types are also not exclusively functional complexes, fix them to. 

 

2. [Mod] Set as sub-collections: Change the stereotype of the partOf relations to 
«subCollectionOf». If the part types are also not exclusively collections, enforce it. 

 

3. [Mod/Del] Set generic membership: Create a common direct parent type for all part 
types, remove all existing partOf relations and create a new one from the whole to the 
created parent. The stereotype of the parent is derived from the stereotype of the parts. 
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Anti-Pattern Relations 

Group by Feature (Part-Whole): HomoFunc, WholeOver, PartOver 

Group by Type (Classification): DepPhase, GSRig, HomoFunc, MixIden, MixRig, RelRig, 
UndefFormal, UndefPhase 

Causes: ImpAbs (3) 

Caused by: none 

 

We use as a HetColl occurrence example a fragment extracted from the IDAF model, 

which describes the domain of the Institute of Agricultural Protection, a governmental 

organization. Figure 30 presents a fragment that describes a particular type of work 

group, named Technical Administrative Support Group, which has employees that play 

the roles of being technical and/or administrative support. The cardinalities constraints 

defined in the part ends show that this type of work group requires employees 

performing different duties. If they play different roles, the work group should be a 

functional complex and not a collective and, thus, characterize a modeling error. 

 

Figure 30. Simplified fragment of the IDAF model that depicts the HetColl anti-pattern. 

Although the focus of the anti-patterns is not on the reason that leads modelers to 

make the error-prone decisions, we make an exception for HetColl. Our empirical 

experience in analyzing ontologies and discussing them with their respective authors 

indicates that whenever a collective noun (like fleet, group, pack) is used, modelers 

are most likely to represent it as a collective, without even analyzing the context of the 

particular conceptualization they are formalizing.  
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5.8 HOMOGENEOUS FUNCTIONAL COMPLEX (HOMOFUNC) 

The Homogeneous Functional Complex (HomoFunc) is the counter part of the HetColl 

anti-pattern. They are motivated for the same reasons but, in this case, functional 

complexes are under analysis. The identification structure is quite simple, a class that 

can only have functional complex instances directly connected to exactly one 

componentOf relation and indirectly connected to none. 

A type only allows instances of functional complex if:  

 it is stereotyped as kind;  

 if it is stereotyped as subkind, role or phase and is a direct or indirect sub-type 

of another type stereotyped as kind;  

 it is stereotyped as mixin, category or roleMixin and all its direct or indirect sortal 

children obey the last two conditions. 

As discussed in Chapter 2 and in the HetColl anti-pattern, functional complex have 

heterogeneous structures. That means having different types of part contributing in 

varied ways to the functionality of the whole. This anti-pattern investigates an allegedly 

homogenous structure of a functional complex. 

The first refactoring plan is to transform the functional part-hood in a membership. 

Change the nature of the whole to collection and the stereotype of the relation to 

memberOf. Modeler should execute this prescribed action if they intended to represent 

the homogeneous structure. 

Conversely, if a heterogeneous structure is intentional, the modeler should specify 

additional types of parts. That can be achieve in two different, but non-exclusive ways. 

First, through the creation of subtypes of the single functional part, alongside with extra 

componentOf relations. Second, through the specification of new functional parts, 

which do not related to the existing one. 

Note that specifying functional part-hood relations to overlapping subtypes 

characterize an occurrence of the WholeOver anti-pattern (see the definition in Section 

5.21). If that happens, the modeler should proceed to check this new occurrence after 

completing the current analysis. 
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Table 38 summarizes the description of the HomoFunc anti-pattern. 

Table 38. Characterization summary of the HomoFunc anti-pattern. 

Name (Acronym) Description 

Homogeneous Functional 
Complex (HomoFunc) 

A functional complex type connected to a single part through 
a «componentOf» relation. 

Type Feature Justification 

Classification; 
Scope 

Part-Whole If a whole is composed by a unique type of part, it is most 
likely that all of the part’s instances play the same role w.r.t. 
their whole. That homogeneous structure is not a 
characteristic of a functional complex. 

Pattern Roles 

Mult. Name Possible Types 

1 Whole «kind», «subkind», «phase», «role», «category», «roleMixin» and «mixin» 

1 Part «kind», «subkind», «phase», «role», «category», «roleMixin» and «mixin» 

1 partOf «componentOf» 

Additional Constraints 

1. Only functional complexes may instantiate the Whole 

2. Only functional complexes may instantiate the Part 

3. Whole is not indirectly connected, at the whole end, to any componentOf. 

4. partOf’s lower bound multiplicity of the part end must be greater or equal to 2 

Generic Example 

 

Refactoring Plans 

1. [Mod] Set as membership: Change the functional nature of Whole to and change the 
stereotype of the «componentOf» to «memberOf».  

 

2. [New] Add functional parts: Create one or more functional parts for Whole. 
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3. [New] Add part subtypes*: Create one or more subtypes of Part and connected them to 
Whole through exclusive «componentOf» relations. The original relation might be kept, but 
if so, the new relations must subset, redefine or specialize it.  

 

* Adopting this solution generates an occurrence of the WholeOver anti-pattern. 

Anti-Pattern Relations 

Group by Feature (Part-Whole): HetColl, WholeOver, PartOver 

Group by Type (Classification): DepPhase, GSRig, HetColl, MixIden, MixRig, RelRig, 
UndefFormal, UndefPhase 

Causes: WholeOver (3) 

Caused by: none 

 

Figure 31 brings an HomoFunc example extracted from the PAS 77 ontology. This 

model fragment formalizes a conceptualization regarding information technology 

architecture. Notice that the IT Architecture class is defined solely as composed by IT 

Componen, which in turn can be sites, plataforms, operating systems and data storage 

units. As is, the model treats all architectural parts in the same way, as being a 

component. If that is the case, the most appropriate solution would be to represent IT 

Architecture as a collective of IT Components. 

 

Figure 31. HomoFunc occurrence encountered in the PAS 77:2006 ontology. 
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5.9 IMPRECISE ABSTRACTION (IMPABS) 

An association R characterizes the logical anti-pattern named Imprecise Abstraction 

(ImpAbs) if at least one of the following holds:  

 R’s source end upper bound multiplicity is equal or greater than 2 and the Class 

connected to it has 2 or more subtypes;  

 (ii) R’s target end upper bound multiplicity is equal or greater than 2 and the 

Class connected to it has 2 or more subtypes 

ImpAbs indicates structures that can be too permissive, i.e. allow undesired model 

instantiations. Representing a generic relation (between super-types of a hierarchy) 

causes one to “lose control” on how many instances of a particular subtype an instance 

of the opposite type may be connected to. Furthermore, it precludes the specification 

of other particular meta-property values for the association (like isDerived, isReadOnly, 

isEssential and isInseparable) when it connects individuals that are also instances of 

subtypes of the related types. 

ImpAbs provides three refactoring alternatives:  

(a) set cardinality constraints through the specification of am OCL invariant;  

(b) set cardinality constraints through the specification of a new association that 

subsets the original one; and  

(c) the specification of particular association meta-property values, also through the 

creation of an association.  

Options (a) and (b) are equivalent in term of logical implications and, thus, are mutually 

exclusive for the same pair of classes. Conversely, alternative (c) is combinable with 

the first two, although if one is already going to create a new association, it is more 

reasonable to use it also to set the cardinality constraints.  

Notice that the constraints defined for relations to/between subtypes of the originally 

related classes (using our example, the definition of a relation from Heart to Pacemaker 

Cell) cannot contradict the ones for the original relation. Minimum cardinalities must be 

lower or equal to the general’s relation minimum and maximum. Maximum cardinalities 

must be greater than the general’s relation minimum and lower or equal to the generals 
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maximum. Modelers can only customize other Boolean meta-properties, like 

isEssential, isInseparable, isImmutableWhole, isImmutablePart, isShareable or 

isReadOnly if the value set for the generic relation is false.  

Table 39 resumes the characterization of the ImpAbs anti-pattern. 

Table 39. Characterization summary of the ImpAbs anti-pattern. 

Name (Acronym) Description 

Imprecise Abstraction 
(ImpAbs) 

A given association R characterizes an ImpAbs occurrence if at 
least one of the following holds: (i) R’s source end upper bound 
multiplicity is equal or greater than 2 and the Class connected to it 
has 2 or more subtypes; (ii) R’s target end upper bound multiplicity 
is equal or greater than 2 and the Class connected to it has 2 or 
more subtypes 

Type Feature Justification 

Logical; 
Scope 

Association Representing a general relation occasionally causes the model to 
be too permissive because one “loses control” on how many 
instances of a particular subtype an instance of the opposite type 
may be connected to. Furthermore, is precludes the specification 
of other particular meta-property values, like isDerived and 
isReadOnly for all associations, and isEssential and isInseparable 
for meronymics. 

Pattern Roles 

Mult. Name Possible Types 

1 Assoc All association stereotypes 

1 Source All class stereotypes 

1 Target All class stereotypes 

0..* Source Subtype-n All class stereotypes 

0..* Target Subtype-n All class stereotypes 

Additional Constraints 

1. Let allSubtypes(c) be the function that return all direct and indirect subtypes of a class c, 
sourceEnd(a) and targetEnd(a) the functions that return the source and target ends of an 
association a, and upper(p) be the function that return the upper bound cardinality of a 
property p, then: 

(𝑢𝑝𝑝𝑒𝑟(𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑑(𝐴𝑠𝑠𝑜𝑐)) ≥ 2 ∧ #𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠(𝑆𝑜𝑢𝑟𝑐𝑒) ≥ 2)

∨ (𝑢𝑝𝑝𝑒𝑟(𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑑(𝐴𝑠𝑠𝑜𝑐)) ≥ 2 ∧ #𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠(𝑇𝑎𝑟𝑔𝑒𝑡) ≥ 2) 

2. Let SoChildren be the set of all classes identified as Source Subtype-n, then: 

∀ 𝑥 ∈ 𝑆𝑜𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | 𝑥 ∈ 𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠(𝑆𝑜𝑢𝑟𝑐𝑒) 

3. Let TgChildren be the set of all classes identified as Target Subtype-n, then: 

∀ 𝑥 ∈ 𝑇𝑔𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | 𝑥 ∈ 𝑎𝑙𝑙𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠(𝑇𝑎𝑟𝑔𝑒𝑡) 
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Generic Example 

 

Refactoring Plans 

1. [OCL] Add multiplicity constraint: choose this option if there is a domain restriction that 
requires an instance of Source, or of one of its subtypes, to be connected to a minimum, 
maximum or precise number of instances of Target, or one of its subtypes.  The following 
OCL invariant enforces the desired constraint: 

context Source 

inv: let sub1Size = self.target->select( x | 

x.oclIsTypeOf(_'Target Subtype-1'))->size() in  

sub1Size >= min1 and sub1Size <= max1 

2. [New] Add multiplicity constraint (subsetting association): this option has the same 
logical result of the first one. However, the results are achieved through the specification of 
a new association (using the same stereotype of Assoc) that subsets Assoc and whose 
cardinalities enforce the cardinality constraints. 

 

3. [New] Add custom meta-property (subsetting association): choose this option if the 
relation between Source and Target have particular meta-properties (like isReadOnly and 
isEssential) when an instance of Source, or of one of its subtypes, to be connected to a 
minimum, maximum or precise number of instances of Target, or one of its subtypes 

Anti-Pattern Relations 

Group by Feature (Association): AssCyc, BinOver, RelComp, RelSpec 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, MultDep, PartOver, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Group by Type (Scope): DepPhase, FreeRole, MultDep, GSRig, HomoFunc, MixIden, MixRig, 
RelRig, UndefPhase 

Causes: none  

Caused by: HetColl 

 

To exemplify, consider the occurrence identified in the Electrocardiogram (ECG) 

ontology and depicted in Figure 32. The fragment states that a Heart contains atriums, 

ventricles and cells. The componentOf between Heart and Heart Cell characterizes the 
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ImpAbs occurrence. According to the model, a Heart may contain only Non Pacemaker 

Cells. The catch is that the pacemaker cells are the ones responsible for the heart’s 

contraction, i.e. a heart without them would not beat. To solve this problem, we would 

need to create additional relations, one for each type of required cell. 

 

Figure 32. ImpAbs occurrence identified in the ECG Ontology. 

As a last remark, we highlight that our empirical studies indicated that ImpAbs is more 

likely to be a problem when the association that characterizes the occurrence is a part-

whole relation (with exception of memberOf), like in the provided example.  

5.10 MIXIN WITH SAME IDENTITY (MIXIDEN) 

In UFO’s substantial hierarchy, the first classification regards the separation of sortals 

and non-sortals (or mixins, in the general sense). The former aggregates individuals 

that follow the same identity principle, whilst the latter encompasses individuals that 

follow different ones. If we take for example, an organization’s VAT number (or in 

Brazil, an organization’s CNPJ) as their identity principle, then the concepts of school, 

supermarket and organization would be sortals. Now, if we adopt a person’s SSN 

number (or in Brazil, one’s CPF) as their identity principle, the concept of Client, which 

encompasses both people and organizations, would be a mixin. 
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The Mixin With Same Identity (MixIden), as the name suggests, is motivated by the 

use of a mixin stereotype to qualify a type whose instances all obey the same identity 

principle. In structural terms, it corresponds to a class (that we now refer to as Non-

Sortal) stereotyped as either «mixin», «roleMixin» or «category» specialized only by 

sortals classes  that supply identity or share a common identity provider ancestor. 

In order for all subtypes to follow the same identity principle, there may be at most one 

class stereotyped as «kind», «quantity» or «collective» as the subtype of Non Sortal. 

Nonetheless, there is no restriction to the number of «subkind», «role» and «phase» 

subtypes, as long as they are all direct or indirect subtypes of the same identity 

provider. 

The analysis of this anti-pattern is quite simple. If the non-sortal type really does not 

allow individuals with other identity principles, then it is not a mixin. In this case, all that 

is required to fix the model is to change the stereotype of Non Sortal to a sortal one 

(«subkind», «role» or «phase») and create a generalization from the Non Sortal class 

to the common identity provider. 

Conversely, if the mixin class does allow different identity principles, the modeler 

should make them explicit. To do that, she can: (i) create generalizations from existing 

types to the mixin; or (ii) create new types and generalize them into mixin. 

Table 40 presents the complete summary of the MixIden anti-pattern. 

Table 40. Characterization summary of the MixIden anti-pattern. 

Name (Acronym) Description 

Mixin With Same Identity 
(MixIden) 

A non-sortal class specialized only by sortal types that follow 
the same identity principle (by inheriting it or supplying it). 

Type Feature Justification 

Classification; 
Scope 

Hierarchy; 
Mixin 

The common characteristic of all different types of mixin 
classes is the aggregation of individuals that follow different 
identity principles. The reason to analyze this anti-pattern is 
that a non-sortal should not be specified as a sortal or it may 
convey the wrong meaning. 

Pattern Roles 

Mult. Name Possible Types 

1 Non Sortal «mixin», «roleMixin» and «category» 
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1 Sortal-n «subkind», «role», «phase», «kind», «quantity» and «collective» 

1 Identity Provider «kind», «quantity» and «collective» 

Additional Constraints 

1. For every Subtype-n, either one of the following holds: (i) Sortal-n = Identity Provider; or  
(ii) Identity Provider is an ancestor of Sortal-n 

Generic Example 

 

Refactoring Plans 

1. [Mod/New] Change Mixin to Sortal: change the stereotype of Mixin to either subkind, 
role or phase and create a generalization from Mixin to Identity Provider. 

2. [New] Add Sortal Subtypes: add new or existing sortal sub-types to Mixin that do not 
follow the same identity principle of defined by Identity Provider. 

Anti-Pattern Relations 

Group by Feature (Hierarchy): GSRig, DecInt, MixRig, UndefPhase  

Group by Feature (Mixin): MixRig 

Group by Type (Classification): DepPhase, GSRig, HetColl, HomoFunc, MixRig, RelRig, 
UndefFormal, UndefPhase 

Group by Type (Scope): DepPhase, FreeRole, ImpAbs, MultDep, GSRig, HomoFunc, MixRig, 
RelRig, UndefPhase 

Causes: GSRig (1)  

Caused by: none 

 

Now, we discuss a MixIden example found in the MGIC ontology. Figure 33 depicts 

the formalization of a fragment of the infrastructure concession sub-domain. The class 

Concessionaire represents the companies to whom the government delegates the 

responsibility of maintaining and developing the road infrastructure in exchange for the 

right to charge drivers a toll. The class Public Organization encompasses all different 

public structures, like regulatory agencies, institutes, public-owned companies and so 

Non Sortal
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on. The diagram, as a whole, captures that public organizations and concessionaries 

perform maintenance works on roadway components.  

The RoleMixin class named “Responsible for Maintenance” and the subtypes “PO 

Responsible for Maintenance” and “Concessionaire Responsible for Maintenance”, 

characterize the MixIden example, since both subtypes inherit their identities from the 

kind “Organization”.  In this context, something other than an organization cannot be 

responsible for conducting maintenance works. Therefore, the authors should change 

the class “Responsible for Maintenance” to a simple role. 

The improper use of the RoleMixin anti-pattern causes errors like the aforementioned 

one. They do not imply in consistency problems, but impairs the proper ontological 

classification of the type. 

 

Figure 33. Simplified fragment of the MGIC that characterizes a MixIden occurrence.  
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5.11 MIXIN WITH SAME RIGIDITY (MIXRIG) 

The mixin stereotype is a particular type of non-sortal that not only aggregate 

individuals that follow different identity principles but also are semi-rigid. Semi-rigidity 

means that they type behaves as rigid for some of its individual and anti-rigid for others. 

Guizzardi (2005), provides the “Seatable” concept as an example of Mixin. This type 

accounts for all things on which people can sit. Now, if we consider the concepts of 

chair and crate, for example, we notice that the former must always be seatable, whilst 

the latter can eventually be. 

The goal of this anti-pattern is to verify if the mixin stereotype is being properly used, 

i.e., to verify if it qualifies a type which is necessarily applicable for a group of 

individuals and optionally for others. This question is raised because an occurrence of 

the Mixin With Same Rigidity (MixRig) consists in a Mixin specialized in type that are 

either all rigid (stereotyped as «subkind», «kind», «quantity» or «collective») or all anti-

rigid (stereotyped as «role», «phase» or «roleMixin»). 

MixRig proposes three refactoring alternatives:  

 enforce a particular rigidity value by changing the stereotype of the mixin type;  

 fix the rigidity value of one of the sub-type by also changing its stereotype; and  

 add new or existing classes as subtypes of mixin to properly characterize its 

semi-rigidity. 

Table 41 summarizes the characterization of the MixRig anti-pattern. 

Table 41. Characterization summary of the MixRig anti-pattern. 

Name (Acronym) Description 

Mixin With Same Rigidity 
(MixRig) 

A class stereotyped as «mixin» specialized only by other 
classes that have the same rigidity property, i.e., are all rigid or 
all anti-rigid. 

Type Feature Justification 

Classification; 
Scope 

Hierarchy; 
Mixin 

As all non-sortals, mixins aggregated individuals that follow 
different identity principles. Its distinguishing characteristic, 
though, is that is semi-rigid, i.e., it behaves as a rigid type for 
some individuals as an anti-rigid for others. This anti-pattern 
analyzes mixins that, despite their capabilities, only generalize 
types with the same rigidity. 
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Pattern Roles 

Mult. Name Possible Types 

1 Non Sortal «mixin» 

1 
Subtype-n 

«subkind», «role», «phase», «kind», «quantity», «collective»,  
«roleMixin» and «category» 

Additional Constraints 

1. All sortals are rigid («subkind», «kind», «quantity», «collective» and «category») or all 
sortals are anti-rigid («role», «phase» or «roleMixin») 

Generic Example 

 

Refactoring Plans 

1. [conditional] [Mod] Change mixin to category: if all subtypes are rigid, and no anti-rigid 
subtype is expected to specialize Mixin, change the stereotype to «category».  

2. [conditional] [Mod] Change mixin to roleMixin: if all subtypes are anti-rigid, and no rigid 
subtype is expected to specialize Mixin, change the stereotype to «roleMixin». 

3. [Mod] Change subtypes stereotypes: this solution is a recognition that the semi-rigidity 
of Mixin is correct and consists in changing the stereotype of one or more subtypes of 
Mixin to properly characterize the semi-rigidity. 

4. [New/Mod] Add subtypes: set new or existing types as direct children of Mixin in order to 
properly characterize the semi-rigidity. 

Anti-Pattern Relations 

Group by Feature (Hierarchy): GSRig, DecInt, MixIden, UndefPhase  

Group by Feature (Mixin): MixIden 

Group by Type (Classification): DepPhase, GSRig, HetColl, HomoFunc, MixIden, RelRig, 
UndefFormal, UndefPhase 

Group by Type (Scope): DepPhase, FreeRole, ImpAbs, MultDep, GSRig, HomoFunc, MixIden, 
RelRig, UndefPhase 

Causes: none  

Caused by: none 

 

«Mixin»

Mixin

Subtype-1 Subtype-3Subtype-2
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Figure 34 depicts an occurrence of the MixRig anti-pattern identified in the MGIC 

ontology. The fragment describes the different types of railway properties, every 

building or lot that composes the required infrastructure to provide rail transportation 

services.  Examples of railway buildings are terminals (also referred to as stations) and 

yards. The first is the place where people get in and out of trains and the second, a 

series of rail tracks to load and unload cargo, and for sorting and storing railroad cars. 

Railway lots are properties that composed the infrastructure but have no buildings in 

it, like a Railroad Right-of-Way, the areas alongside railroads reserved for 

transportation purposes. 

The problem addressed by the anti-pattern is that the modelers formalized the concept 

of “Railway Property” as a Mixin, however, all its subtypes are rigid (“Railway Building” 

and “Railway Lot”). Through the interaction with the modelers, we reached the 

conclusion that this was indeed an error because being a Railway Lot is not a 

necessary condition, i.e., it should be a role of lot instead of a subkind.  

 

Figure 34. Simplified MixRig occurrence identified in the MGIC ontology 

5.12 MULTIPLE RELATIONAL DEPENDENCY (MULTDEP) 

Roles are externally relationally dependent types. This ontological property implies that 

the instantiation of roles derives from the establishment of particular relations to other 

individuals. OntoUML, however, does not limit the formalization of relational 

dependencies to classes stereotyped as role or roleMixin. In fact, a modeler might 

«Mixin»
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connect a mediation (the characterization of relational dependency) to any class with 

one of the following stereotype: kind, collective, quantity, subkind, role, phase, 

category, mixin and roleMixin.  

The Multiple Relational Dependency (MultDep) anti-pattern aims to investigate a 

particular subset of externally dependent types: the ones that require more than one 

dependency simultaneously. Structurally, its identification consists of an object class 

(stereotyped as «kind», «quantity», «collective», «role», «phase», «subkind», 

«category», «mixin» or «roleMixin») directly connected to two or more mediations. 

The first step to analyze this anti-pattern is to verify if all dependencies are definitely 

mandatory. If the answer is no, they should be transformed to optional dependencies 

through the creation of one role per optional dependency.  

If a modeler concludes that two or more dependencies are optional for a given type, 

she should also check if they are established in particular order. To exemplify, consider 

the following optional relational dependencies of a person; a dependency that holds 

between a person and her employer; and another dependency, between a person and 

the school in which she studies. A priori, one cannot assert a particular order for the 

instantiation of these dependencies, since a person can become a student and later 

become an employee or the other way around. Conversely, if we also consider the 

relational dependency between an internship and a student, we clearly identify an 

order. For a person to become an intern, she needs to be a student already. 

If the class that characterizes the MultDep occurrence has more than two mediations 

connected directly to it, a modeler might refactor it by simultaneously defining ordered 

and unordered optional dependencies. Nonetheless, when creating unordered 

dependencies, all new roles should specialize the same super-type. If an order is 

required, the modeler should create the new roles as subtypes of one another, in a sort 

of “hierarchy line”.  

Regardless if a MultDep occurrence identifies optional dependencies or not, the next 

step is to analyze if there are “dependencies between dependencies”, i.e., a relator 

that formalizes a dependency is somehow related to a relator that formalizes another 

dependency. To simplify, consider the following short story:   



157 

A person becomes an undergraduate student when she enrolls in a major course at a 

university, e.g. “Computer Science” or “Philosophy”. A unique number identifies each 

enrollment. Victor, a very curious and dedicated young man, decides to pursue, 

simultaneously, a major in “Philosophy” and “Computer Science”. To do that, he would 

need to enroll two times at the university. After his enrollments, Victor wants to apply 

for “Logics 101” as a “Computer Science” student and apply for “Sociology 101” as a 

“Philosophy” major. To do that, each course application must not only identify “Victor” 

as the applying student, but also identify the particular enrollment he is using to apply.  

The identification of the enrollment in the course application characterizes the 

dependency between the relators “Major Enrollment” and “Course Enrollment”. We 

propose the formalization of this relation in an OntoUML model as a formal association. 

Representing the dependency between two relators using a formal association 

potentially generates two anti-pattern occurrences: one AssCyc (see Section 5.1) and 

one UndefFormal (see Section 5.19). The former requires attention and the modeler 

should properly analyze it. The latter, conversely, is just a “false alarm”.  

We summarize the description of the MultDep anti-pattern in Table 42. 

Table 42. Characterization summary of the MultDep anti-pattern. 

Name (Acronym) Description 

Multiple Relational Dependency 
(MultDep) 

An object class directly connected to two distinct «relator» 
types through «mediation» associations.  The relators may 
not be direct or indirect specializations of one another. 

Type Feature Justification 

Logical; 
Scope 

Relator Externally dependent types, like all roles, require on 
dependency to characterize them. Whenever more than one 
is provided, it can indicate redundancy, scope issues and/or 
modeling an extra relation between the relators that 
characterize the dependency 

Pattern Roles 

Mult. Name Possible Types 

1 Type 
«kind», «quantity», «collective», «role», «phase», «subkind», «category», 
«mixin» and «roleMixin» 

2..* Med-n «mediation» 

2..* Relator-n «relator» 
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Additional Constraints 

1. Let R be the set of all Relator in a MultDep occurrence and isAncestor(c1,c2)  the binary 
predicate that returns true if class c1 is a direct or indirect super-type of class (c2,c1): 

∀ 𝑟1, 𝑟2 ∈ 𝑅, ¬𝑖𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑟1, 𝑟2) ∧ ¬𝑖𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑟2, 𝑟1) 

Generic Example 

 

Refactoring Plans 

1. [New/Mod] Unordered optional dependencies: Create a direct subtype of Type for each 
dependency. (In the example below, all dependencies were set as optional for Type) 

 

2. [New/Mod] Ordered optional dependencies: Create a hierarchy line for dependencies, 
which an instance of Type can only acquire after others. (In the example below, all 
dependencies were set as optional for Type) 

 

3. [New] Create dependency between relators: Create formal relations connecting relators 
that depend on one another. This solution generates an occurrence of AssCyc (which the 
user should be analyzed) and an occurrence of UndefFormal (which the user can ignore). 
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Anti-Pattern Relations 

Group by Feature (Relator): DepPhase, FreeRole, RelOver, RelRig, RepRel 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, PartOver, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Group by Type (Scope): DepPhase, FreeRole, GSRig, ImpAbs, HomoFunc, MixIden, MixRig, 
RelRig, UndefPhase 

Causes: UndefFormal (3), AssCyc (3)  

Caused by: none 

 

We exemplify the MultDep anti-pattern with an occurrence encountered in the 

OntoEmerge ontology (FERREIRA, 2013). The model fragment depicted in Figure 35 

describes some of the relevant properties of installations in the context of emergency 

plan generation. The fragment presents four relational dependencies for the kind 

“Installation”:  

 a dependency to define the installation’s owner, either a person or company;  

 another to specify how businessmen explore installations, like as a school, or a 

supermarket, to sell cars, amongst others;  

 a third that formalizes the installation’s evacuation place – the place where 

people are taken in case of emergencies, like a fire or an earthquake;  

 lastly, the relation that characterize the place where people inside the 

installation were taken in previous emergencies. 

Now we analyze each dependency exclusively. The dependency captured by the 

material association “is evacuated to” is clearly optional, as proven by its multiplicities 

(zero or more on both ends). In OntoUML, optional cardinalities are discouraged in 

general, but in this particular case, they the syntax forbids them. Thus, to keep the 

optionality of have been evacuated, a role “Evacuated Installation” should be created. 

Secondly, we consider the “has default” dependency. Our common sense assumes 

that not every building has a formally defined evacuation place, even if law requires 

that. Nonetheless, these type of buildings might be out of the scope of the ontology, so 

we cannot assume that it is an optional dependency, even if it seems to be. The third 

dependency is the ownership, which is undoubtedly mandatory. Lastly, we assume as 

optional, the dependency regarding business exploration of an installation. We can 

think of many examples of installations used only for residential or governmental 
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purposes. Furthermore, we can even assume the possibility of abandoned 

installations.  

 

Figure 35. MultDep example extracted from the OntoEmerge ontology. 

5.13 PART COMPOSING OVERLAPPING WHOLES (PARTOVER) 

The Part Composing Overlapping Wholes (PartOver) anti-pattern follows the exact 

same logic as RelOver. The main difference is that, instead of the focus being on a 

relator mediating overlapping types, it is on a part composing overlapping wholes. We 

refrain from providing redundant definitions and just present a PartOver occurrence as 

an example. For more details, please refer to RelOver definition in Section 0. 

A PartOver occurrence is depicted in Figure 36, an excerpt of the MGIC ontology 

(BASTOS et al., 2011). The part type “Watercourse”, that composes two different types 

of “Geographical Layer”, characterizes the PartOver occurrence. The overlapping 

wholes are the classes labelled as “Hydrographic” and “Drainage”. In fact, this fragment 

is part of a larger subdomain modelled to characterize the information managed by a 

logistic system.  
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Figure 36. PartOver occurrence identified in the MGIC ontology. 

The analysis starts by confirming the overlapping condition of Drainage and 

Hydrographic Layers. The feedback provided by the authors indicated that it was a 

false condition. These layers types should be disjoint. The adopted solution was to 

create a generalization set with the isDisjoint meta-attribute set to true. For the sake of 

completeness, if the layers were actually overlapping, the analysis would continue and 

the next step would be to verify whole exclusiveness. To enforce it, means to forbid 

the same whole to contain the same part through different relations. To achieve it, one 

should enrich the model with the OCL invariant defined in Listing 11. 

Listing 6. OCL invariant generated to enforce exclusive wholes. 

context Watercourse 

inv: self.dreinage.oclAsType(_'Geographical Layer')->asSet()->excludesAll( 

self.hidrographic.oclAsType(_'Geographical Layer')->asSet()) 

Table 43 summarizes the structural pattern, the additional constraints and the 

refactoring plans for the PartOver anti-pattern.  

Table 43. Characterization summary of PartOver the anti-pattern. 

Name (Acronym) Description 

Part Composing Overlapping 
Wholes (PartOver) 

A part composing two or more whole types whose extension 
overlap. The sum of the meronymics’ upper bound cardinalities 
of the whole end must be greater or equal to 2 or at least one 
of them be unlimited. 

Type Feature Justification 

Logical Part-Whole This structure is usually too permissive. It is often the case that 
some of the whole types should be disjoint or set as exclusive 
in the context of a single part instance. 
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Pattern Roles 

Mult. Name Possible Types 

1 
Part 

«kind», «collective», «quantity», «subkind», «phase», «role», «roleMixin», 
«category» and «mixin» 

2..* partOf-n «subQuantityOf», «componentOf», «memberOf», «subCollectionOf» 

2..* 
Whole-n 

«kind», «collective», «quantity», «subkind», «phase», «role», «roleMixin», 
«category» and «mixin» 

Additional Constraints 

1. Let M be the set of identified meronymic relations, wholeEnd(m) the function that returns 
the association end connected to the whole of a meronymic relation m, and upper(p) the 
function that return the upper bound cardinality of a property p, then: 

( ∑ 𝑢𝑝𝑝𝑒𝑟(wholeEnd(𝑚𝑛))

𝑚∈𝑀

) ≥ 2 

2. Let O be the set of whole types that Part composes, then: 
∃𝑥, 𝑦 ∈ 𝑂 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) 

Generic Example* 

 

*Note: the presented structure is illustrative and do not cover all possibilities for PartOver occurrence 

Refactoring Plans 

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple 
roles w.r.t the same part instance. Create an OCL invariant according to the template: 
context Part 

inv:  self.whole1.oclAsType(Supertype)->asSet()->excludesAll( 

 self.whole2.oclAsType(Agent)->asSet() and  

2. [OCL] Partially exclusiveness: choose this option to set a subset of the whole types as 
exclusive.  

3. [Mod/New] Disjoint whole: Enforce whole types to be disjoint through the creation or 
alteration of a disjoint generalization set. 

Anti-Pattern Relations 

Group by Feature (Part-Whole): HetColl, HomoFunc, WholeOver 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, WholeOver, 
RelOver, RelComp, RelSpec, RepRel 

Causes: none  

Caused by: none 

Part

Whole-1 Whole-2
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5.14 RELATION COMPOSITION (RELCOMP) 

The Relation Composition Anti-pattern (RelComp) is strictly logical. Its structural 

definition consists of two distinct associations, A and B, which connect ASource to 

ATarget and BSource to BTarget, respectively. Furthermore, one of the following 

conditions must be true: 

 BSource equals or is a subtype of ATarget and BTarget equals or is a subtype 

of ATarget. 

 BSource equals or is a subtype of ASource and BTarget equals or is a subtype 

of ASource. 

Figure 37 depicts is an excerpt of the ontological analysis performed on the Conceptual 

Scheme of the Human Genome (FERRANDIS; LÓPEZ; GUIZZARDI, 2013). It shows 

that an allele, an alternative form of a gene, is an ordered composition of nucleotides, 

organic molecules that are DNA’s building blocks. The formal relation named 

“precedes” captures intended order. 

 

Figure 37. Fragment of the CSHG ontology characterizing a RelComp. 

Figure 38 illustrates a possible instantiation of the model excerpt. Notice the two 

distinct types of Allele: on the left, the precedence relation is only instantiated between 

nucleotides that compose the same allele; conversely, on the right, nucleotides 

precede others that composed different alleles. For this domain, the only allowed 

instantiations are the ones like the depicted on the left side of Figure 38.  

We define five different constraints to determine how the instantiation of the relation 

“B” depends the instantiation of relation “A”. In the genome example, how the 

“precedes” association depends on the “formedBy” association, 
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Figure 38. Generated examples of the CSHG excerpt. On the left, an expected instantiation. On 

the right, an undesired one. 

Definition (Existential Composition): for every distinct individuals x, y, if x is related 

to y through B, it implies that x and y are related to at least one common individual 

through relation A. The formal definition, along with the respective OCL template, 

follows: 

∀𝑥, 𝑦 | 𝐵(𝑥, 𝑦) → ∃𝑧 |𝐴(𝑧, 𝑥) ∧ 𝐴(𝑧, 𝑦) 

Listing 7. OCL invariant to enforce existential composition. 

context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()->exists( z | 

z.aTarget->asSet()->contains(self) and z.aTarget->asSet()->contains(y) )  

Definition (Right Universal Composition): for every distinct individuals x, y, if x is 

related to y through B, it implies that all z that is connected to x, through A, is also 

connected to y, through A. The formal definition, along with the respective OCL 

template, follows: 

∀𝑥, 𝑦 | 𝐵(𝑥, 𝑦) → ∀𝑧 |𝐴(𝑧, 𝑥) → 𝐴(𝑧, 𝑦) 

Listing 8. OCL invariant characterizing the Right Universal Composition. 

context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()->forAll( z | 

z.aTarget->asSet()->contains(self) implies z.aTarget->asSet()->contains(y))  
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Definition (Left Universal Composition): for every distinct individuals x, y, if x is 

related to y through B, it implies that all z that is connected to y, through A, is also 

connected to z, through A. The formal definition, along with the respective OCL 

template, follows: 

∀𝑥, 𝑦 | 𝐵(𝑥, 𝑦) → ∀𝑧 |𝐴(𝑧, 𝑦) → 𝐴(𝑧, 𝑥) 

Listing 9. OCL invariant characterizing the Left Universal Composition. 

context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()->forAll( z | 

z.aTarget->asSet()->contains(y) implies z.aTarget->asSet()->contains(self))  

Definition (Forbidden Composition): for every two distinct individuals x, y, if x is 

related to y through B, it implies that x and y are connected to no individual in common 

through A. The formal definition, along with the respective OCL template, follows: 

∀𝑥, 𝑦 | 𝐵(𝑥, 𝑦) → ∄𝑧 |𝐴(𝑧, 𝑥) ∧ 𝐴(𝑧, 𝑦) 

Listing 10. OCL invariant that characterizes Forbidden Composition. 

context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()->forAll( z | 

not(z.aTarget->asSet()->contains(y) and z.aTarget->asSet()-

>contains(self)))  

Definition (Custom Existential Composition): for every distinct individuals x, y, if x 

is related to y through B, it implies that x and y are connected to [less than / more than 

/ exactly] n common individuals through A. The formal definition, along with the 

respective OCL template, follows: 

∀𝑥, 𝑦 | 𝐵(𝑥, 𝑦) → #(𝑧 |𝐴(𝑧, 𝑥) ∧ 𝐴(𝑧, 𝑦)[> | < | =]𝑛) 

Listing 11. OCL invariant to enforce Custom Existential Composition. 

context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()->select( z | 

z.aTarget->asSet()->contains(y) and z.aTarget->asSet()->contains(self))-

>size()[>|<|=]n)  
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We summarize the description of the RelComp anti-pattern in Table 44. 

Table 44. Characterization summary of the RelComp anti-pattern. 

Name (Acronym) Description 

Relation Composition 
(RelComp) 

Consider two associations, no matter their stereotypes:  

 A, that connects ASource and ATarget; and  

 B, that connects BSource and BTarget 
For this anti-pattern to occur, one of the possible statements 
needs to be true: 

 BSource equals or is a subtype of ATarget and BTarget 
equals or is a subtype of ATarget. 

 BSource equals or is a subtype of ASource and BTarget 
equals or is a subtype of ASource. 

Type Feature Justification 

Logical Association The instantiation of the two relations identified in this anti-pattern 
may restrict one another.  

Pattern Roles 

Mult. Name Possible Types 

1 A All association stereotypes 

1 ASource All class stereotypes 

1 ATarget All class stereotypes 

1 B All association stereotypes 

1 BSource All class stereotypes 

1 BTarget All class stereotypes 

Additional Constraints 

1. A and B are different associations 

2. The association A must have a minimum cardinality greater than 0 and a maximum 
greater than 1 in the association end connected to ATarget. 

3. One of the following sentences must evaluate to true: 

(𝐵𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 ∨  𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑇𝑎𝑟𝑔𝑒𝑡, 𝐵𝑆𝑜𝑢𝑟𝑐𝑒))

∧ (𝐵𝑇𝑎𝑟𝑔𝑒𝑡 =  𝐴𝑇𝑎𝑟𝑔𝑒𝑡 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑇𝑎𝑟𝑔𝑒𝑡, 𝐵𝑇𝑎𝑟𝑔𝑒𝑡)) 

(𝐵𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐴𝑆𝑜𝑢𝑟𝑐𝑒 ∨  𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑆𝑜𝑢𝑟𝑐𝑒, 𝐵𝑆𝑜𝑢𝑟𝑐𝑒))

∧ (𝐵𝑇𝑎𝑟𝑔𝑒𝑡 =  𝐴𝑆𝑜𝑢𝑟𝑐𝑒 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑆𝑜𝑢𝑟𝑐𝑒, 𝐵𝑇𝑎𝑟𝑔𝑒𝑡)) 
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Generic Example* 

 

*Note: the presented variations are illustrative and do not intend to cover all possibilities 

Refactoring Plans 

1.  [OCL] Set Existential Composition: add an OCL invariant to enforce that type B has an 
existential composition to type A:  
context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()-

>exists( z | z.aTarget->asSet()->contains(self) and z.aTarget-

>asSet()->contains(y) )  

2. [OCL] Set Right universal Composition: add an OCL invariant to enforce that type B 
has a right universal composition to type A: 
context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()-

>forAll( z | z.aTarget->asSet()->contains(self) implies z.aTarget-

>asSet()->contains(y))  

3. [OCL] Set Left Universal Composition: add an OCL invariant to enforce that type B has 
a left universal composition to type A:  
context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()-

>forAll( z | z.aTarget->asSet()->contains(y) implies z.aTarget-

>asSet()->contains(self)) 

4. [OCL] Set Forbidden Composition: add an OCL invariant to enforce that type B has a 
forbidden composition to type A:  
context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()-

>forAll( z | not(z.aTarget->asSet()->contains(y) and z.aTarget-

>asSet()->contains(self)))  

5. [OCL] Set Custom Existential Composition: add an OCL invariant to enforce that type 
B has a custom existential composition to type A: 
context BSource 

inv: self.bTarget->asSet()->forAll( y | ASource.allInstances()-

>select( z | z.aTarget->asSet()->contains(y) and z.aTarget-

>asSet()->contains(self))->size()[>|<|=]n)  
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BSource BTarget
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ASource ATarget (BTarget)

BSource

Variation 2

ASource ATarget 

(BTarget/BSource)
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Anti-Pattern Relations 

Group by Feature (Association): AssCyc, BinOver, ImpAbs, RelSpec 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
WholeOver, RelOver, RelSpec, RepRel 

Causes: none  

Caused by: none 

5.15 RELATOR MEDIATING OVERLAPPING TYPES (RELOVER) 

The Relator Mediating Overlapping Types (RelOver) is another purely logical anti-

pattern. A relator connected to two or more overlapping types, through mediation 

associations, characterizes an occurrence. The concept overlapping types adopted 

here is the one defined for the BinOver anti-pattern. Informally, two or more types 

overlap if there is a possible instantiation of the model in which an individual instantiate 

all types simultaneously. For more details on how two types can overlap, please refer 

to BinOver’s definition. 

In addition, the sum of the mediations’ upper bound cardinalities on the mediated end 

(opposite to the end connected to the relator) must be greater or equal to 2. This is 

required to reduce the number of “false alarms”, since every relator instance must 

mediate at least two distinct individuals, as defined in OntoUML. 

This modeling structure is prone to be overly permissive, since there is no restriction 

for an instance to act as multiples roles for the same relator. The possible commonly 

identified intended interpretations are that:  

 the mediated types are actually disjoint, i.e., regardless of the relator, there is 

no individual that can even instantiate more than one of the mediated types;  

 all mediated types are exclusive, i.e. objects can simultaneously instantiate 

more than one mediated type, but what they cannot do is play more than one 

role in the context of the same relator instance; and  

 partially exclusive mediated types, a weaker version of the previous 

alternative, in which some roles can be simultaneously played, whilst other 

cannot.  
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Table 45 summarizes the characterization of the RelOver anti-pattern. 

Table 45. Characterization summary of the RelOver anti-pattern. 

Name (Acronym) Description 

Relator Mediating 
Overlapping Types 
(RelOver) 

A relator connected, through mediations, to two or more types 
whose extension possibly overlap. The sum of the mediations’ 
upper bound cardinalities of the mediated end must be greater than 
2. 

Type Feature Justification 

Logical Relator This structure is usually too permissive. It is often the case that 
some of the mediated types should be disjoint or set as exclusive in 
the context of a single relator instance. 

Pattern Roles 

Mult. Name Possible Types 

1 Relator «relator» 

2..* med-n «mediation» 

2..* 
Over-n 

All object types: «kind», «collective», «quantity», «subkind», «phase», 
«role», «roleMixin», «category» and «mixin» 

Additional Constraints 

1. Let M be the set of identified mediations, mediatedEnd(m) the function that returns the 
association end opposed to relator of a mediation m, and upper(p) the function that return 
the upper bound cardinality of a property p, then: 

( ∑ 𝑢𝑝𝑝𝑒𝑟(𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑𝐸𝑛𝑑(𝑚𝑛))

𝑚∈𝑀

) > 2 

2. Let O be the set of types mediated by Relator, then: 
∃𝑥, 𝑦 ∈ 𝑂 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) 

Generic Example* 

 

 
*Note: the presented variations are illustrative and do not intend to cover all possibilities 
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Refactoring Plans 

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple 
roles w.r.t the same relator instance. Create an OCL invariant according to the following 
template: 
context Relator 

inv: self.over1.oclAsType(Supertype)->asSet()->excludesAll( 

self.over2.oclAsType(Agent)->asSet() and 

self.over1.oclAsType(Supertype)->asSet()->excludesAll( 

self.over3.oclAsType(Agent)->asSet() and 

self.over2.oclAsType(Supertype)->asSet()->excludesAll( 

self.over3.oclAsType(Agent)->asSet()) 

2. [OCL] Partially exclusiveness: choose this option to forbid a subset of mediated types 
as exclusive.  

3. [Mod/New] Disjoint mediated: Enforce types to be disjoint through the creation or 
alteration of a disjoint generalization set. 

 

*Note: to make all types exclusive, every binary combination should be explicitly ruled out 

Anti-Pattern Relations 

Group by Feature (Relator): DepPhase, FreeRole, MultDep, RelRig, RepRel 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
WholeOver, RelComp, RelRig, RelSpec, RepRel 

Causes: UndefFormal (3), AssCyc (3)  

Caused by: none 

 

Figure 39 depicts a fragment of UFO-S, a commitment-based core reference ontology 

about services (NARDI et al., 2013). The fragment provides a partial description of the 

concepts of “Service Offering” and “Service Agreement”. A provider makes an offering, 

which describes the terms in which she will provide the service. The agreement 

formalizes that a customer and a provider already negotiated the terms of for hiring a 

service.  

The authors exemplify UFO-S using the car rental domain. A car rental company acts 

as a “Service Provider”, when offering to rent cars. Their “Target Customer Community” 

contains, as members, all adults. When “Luke”, for example, decides to rent a car from 

a particular company and signs the rental agreement, he acts as the “Service 

Customer” and the company as the “Hired Service Provider”. The rental agreement is 

the “Service Agreement”, which specifies the conditions in which the service was hired 

(price, duration, insurance and so on). 



171 

 

Figure 39. RelOver occurrence encountered in the UFO-S ontology. 

The relator “Service Agreement” characterizes the RelOver occurrence, because it is 

the truth-maker of a material relation involving the overlapping types “Hired Service 

Provider” and “Service Customer. Note that, although the upper multiplicity on the 

provider side is one, the upper bound multiplicity on the customer side is unlimited. 

The analysis of any RelOver occurrence starts by verifying the modeler desires 

disjointness for the mediated types. In our example, the inquiry is whether it is possible 

for a provider to be a customer also (e.g., a car rental company hiring the services of 

an accounting company). We assume here that the answer is yes, i.e. no disjointness 

constraint is required. 

 

Figure 40. Overlapping mediated types without exclusiveness constraint. 

Keeping the mediated types as overlapping allows situations like the one depicted in 

Figure 40 – a world in which one individual is both the provider and the customer in the 
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context of the same agreement. If the authors decide to forbid such instantiations, they 

should enrich their ontology with the OCL invariant in Listing 12. 

Listing 12. OCL invariant to enforce exclusive mediated types 

context _'Service Agreement' 

inv exclusiveTypes: self.provider.oclAsType(Agent)->asSet()->excludesAll( 

self.customer.oclAsType(Agent)->asSet()) 

To complete our example, Figure 41 shows a possible model instantiation still allowed 

after adding the exclusiveness constraint. “Object1” and “Object2” play both the 

provider and the customer roles, but now in the context of different agreements. 

“Object0”, conversely, is just a customer in both agreements. 

 

Figure 41. Simultaneous role instantiation with exclusive relators 

5.16 RELATOR MEDIATING RIGID TYPES (RELRIG) 

The Relator Mediating Rigid Types (RelRig) ant-pattern occurs whenever a model 

contains a relator connected to at least one rigid type (stereotyped as «kind», 

«quantity», «collective», «subkind» or «category») through associations stereotyped 

as «mediation». 

When a type is connected to a mediation association, it means that it is externally 

dependent, i.e. for an individual to instantiate it, it must be related to another type. 

Usually, mediations define roles and roleMixins – anti-rigid types. When modelers 

formalize mediations between a relator and a rigid object type (stereotyped as kind, 

collective, quantity, subkind and category) some situations should be further 

investigated. 
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The analysis begins with the verification of the mediated type rigidity, which can be 

decided by answer the following question: “Can an individual that was not created as 

<Type> to become one, or an individual that is already an instance of <Type> cease 

to be it and still exists?”. If the answer is yes the type is anti-rigid, otherwise it is rigid. 

Now, if the mediated type turns out to be anti-rigid, the solution is simply to change its 

stereotype to role, if it was originally a sortal, or as RoleMixin, if it was originally a non-

sortal. Note that, if the mediated type was an identity provider, it will require a new one. 

In the cases that the mediated types is indeed rigid, one must verify if the relational 

dependency captured by the mediation is indeed mandatory. If it is not, the creation of 

a role or roleMixin is in order. Please refer to the definition of the MultDep anti-pattern 

for more details regarding optional and mandatory relational dependencies. 

In the cases where the mediated types are rigid and the dependencies mandatory, 

what comes to analysis is the direction of the existential dependency. As discussed in 

(REF), existential dependency is a particular type of dependency for which an 

individual (the dependent) depends on another individual (the dependee) to exist. For 

example, a person is existentially dependent on their brain and a car is existentially 

dependent on its chassis. Furthermore, relators are always existentially dependent of 

the individuals they relate. A marriage, for example, always involve the same people, 

otherwise is a different marriage.  

With all that in mind, the modeler should verify if the direction of the dependency. If the 

relator depends on the mediated but not the opposite, the RelRig occurrence is a false 

alarm and the modeler can ignore it. If the dependency goes only from the mediated 

to the relator, the stereotype of the association and the stereotype of the rigid type are 

wrong. In this case, the modeler should transform the mediation into a characterization 

and the mediated type into a mode (for more details about mode and characterizations 

please refer back to Chapter 2). Lastly, if the dependency goes both ways, the modeler 

needs to set the meta-property isReadOnly in the mediated end of the association to 

true. 
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We make a summary of the RelRig anti-pattern on Table 46. 

Table 46. Characterization summary of the RelRig anti-pattern. 

Name (Acronym) Description 

Relator Mediating Rigid Types 
(RelRig) 

A relator connected to one or more rigid types through 
mediations. 

Type Feature Justification 

Logical; 
Scope 

Relator When a type is connected to a mediation association, it means 
that it is externally dependent, i.e. for an individual to 
instantiate it, it must be related to another type. Usually, 
mediations define roles and roleMixins – anti-rigid types. 

Pattern Roles 

Mult. Name Possible Types 

1 Relator «relator» 

1..* mediation-n «mediation» 

1..* RigidType-n «kind», «quantity», «collective», «subkind» and «category» 

Additional Constraints 

1. Let relator(m) and mediated(m) be the functions that return, respectively, the relator and 
the mediated types connected to a mediation. Also, let M be the set of mediation-n and R 
the set of RigidType-n, then: 

∀𝑚 ∈ 𝑀, 𝑟𝑒𝑙𝑎𝑡𝑜𝑟(𝑚) = 𝑅𝑒𝑙𝑎𝑡𝑜𝑟 ∧ 𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑(𝑚) ∈ 𝑅 

2. Let mediatedEnd(m) be the function that returns the association end connected to the 
mediated type of a given mediation m, isReadOnly(p) the function that return the value of 
the isReadOnly meta-property of an association end p and M the set of the identified 
mediations, then: 

∀𝑚 ∈ 𝑀, 𝑖𝑠𝑅𝑒𝑎𝑑𝑂𝑛𝑙𝑦(𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑𝐸𝑛𝑑(𝑚)) = 𝑡𝑟𝑢𝑒 

Generic Example 
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Refactoring Plans 

1. [Mod/New] Set as role: choose this plan when a RigidType-n should be anti-rigid. If 
previously stereotype with a sortal stereotype, change it to role, if non-sortal, change to 
roleMixin. (If RigidType-n was stereotyped as kind, collective or quantity, a new identity 
provider should be created for it using the same stereotype). 

 

2. [New/Mod] Add role subtype: choose this action if the mediation-n is optional for 
RigidType-n. Create a role (for sortals) or a roleMixin (for non-sortals) that specializes 
RigidType-n and move mediation-n to it.   

 

3. [Mod] Set as mode: choose this plan when RigidType-n is in fact an unstructured 
property of Relator-n. This is only true if the existential dependency specified in the 
mediation is reversed (RigidType-n should depend on Relator and not the other way 
around) 

4. [Mod] Set bidirectional existential dependency: choose this action if the event that 
creates the relator is the same one that creates RigidType-n and also this relation 
established in the individuals creation may never change 

Anti-Pattern Relations 

Group by Feature (Relator): DepPhase, FreeRole, MultDep, RelOver, RepRel 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
WholeOver, RelOver, RelComp, RelSpec, RepRel 

Group by Type (Scope): DepPhase, FreeRole, GSRig, ImpAbs, HomoFunc, MixIden, MixRig, 
MultDep, UndefPhase 

Causes: UndefFormal (3), AssCyc (3)  

Caused by: none 

 

Figure 42 presents a model fragment that characterizes a RelRig occurrence. The 

diagram was adapted from the ECG ontology (GONÇALVES et al., 2007) and 

describes that a heart’s contraction mechanism. A regular heart is composed by 

ventricles and atriums, cavities from which the blood is pumped through. The pumping 

action is caused by contractions, consequences of electrical impulses generated by 

the heart’s pacemakers cells.  
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Figure 42. Simplified fragment of the ECG ontology characterizing a RelRig occurrence. 

The RelRig occurrence is characterized by the relator Contraction connected to the 

kind Electrical Impulse. To verify wheter or not it characterizes a mistake, we go 

through the proposed analysis process. An impulse is always an impulse, so the rigidity 

is correct. Furthermore, the generation of the impulse implies in an immediate 

contraction of the ventricle, so the relation is indeed mandatory. Now, the direction of 

the existential dependency remains for analysis. A contraction is always a 

consequence of the same electrical impulse, but an impulse only causes the same 

contraction whilst it exists. Therefore, we encounter a bidirectional existential 

dependency. To refactor the model to obtain that, one would only need to set the 

mediated end of mediation “cause” readOnly property to true. 

5.17 RELATION SPECIALIZATION (RELSPEC) 

The Relation Specialization Anti-Pattern (RelSpec) consists of two relations A and B 

that connect types ASource and ATarget, and BSource and BTarget, respectively, 

such that one of the following conditions holds: 

 ASource is equal to or a subtype of BSource, and ATarget is equal to or a 

subtype of BTarget;  

 ASource is equal to or a subtype of BTarget, and ATarget is equal to or a 

subtype of BSource 

Our empirical studies showed the structures identified by this anti-pattern are likely to 

require additional constraints, which restricts the instantiation of associations A and B. 
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Four different types of restriction are recurrent: subsetting, redefinition, association 

disjointness and specialization. 

It is true that association B subsets association A if being related through B implies 

being related through A but not the other way around. To exemplify, consider the 

relations of being a father and of being an ancestor, which hold between people. It is 

true that “father of” subsets “ancestor of” because every father is an ancestor, but not 

every ancestor is a father.  

If the RelSpec occurrence requires a subsetting constraint, the modeler should add 

one of the A’s association ends, the subsetted association, to the subsetted properties 

list of the respective association end of B. The formal semantics of a subsetted property 

is described in (COSTAL; GÓMEZ; GUIZZARDI, 2011) as in Listing 13. 

Listing 13. Subsetting constraint written in OCL. 

context BSource 

inv subset : self.oclAsType(ASource).aTarget->includesAll( 

self.bTarget.oclAsType(ATarget)  

Association B redefines association A if, and only if, whenever an individual 

instantiates BSource, the individuals it is related through B are the same individuals it 

is related through A.  Note that, like subsetting, in redefinitions, being related through 

B also implies being related through A. The difference is that there cannot be 

individuals related through the “parent” association but not through the “child” one.  

Analogous to subsetting, OntoUML’s meta-model specifies a list of redefined 

properties for each association end. The formal semantics of a redefined property is 

also defined in (COSTAL; GÓMEZ; GUIZZARDI, 2011) as in Listing 14. 

Listing 14. Redefinition constraint written in OCL. 

context BSource 

inv redefinition : self.oclAsType(ASource).aTarget = 

self.bTarget.oclAsType(ATarget)  

We make a caveat for adopting the redefinition constraint when A and B relate the 

same types. In these cases, the extension of the associations will always be same and 

they will turn out to be redundant relations, increasing the model’s complexity without 

providing new knowledge. From there, the modeler can take two alternative paths: 
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delete one of the associations and forget about the redefinition constraint; or specialize 

at least one of B’s end and keep the redefinition constraint.  

The third type of constraint that identified between associations A and B is 

disjointness. In this case, B is disjoint from A if being related through B implies not 

being related through A. To exemplify, consider a queue and the relations of 

predecessor and successor, which hold between individuals in the queue. If an 

individual is the predecessor of another, it implies that it is not its successor. 

The OntoUML meta-model does not consider the possibility of disjoint relations. For 

that reason, to enforce a constraint of such nature, the OCL invariant presented in 

Listing 15 should enrich the model. 

Listing 15. Disjointness constraint written in OCL. 

context BSource 

inv disjoint : self.oclAsType(ASource).aTarget->excludesAll( 

self.bTarget.oclAsType(ATarget)  

The last refactoring plan for the RelSpec anti-pattern is to make B a specialization of 

A. As showed in (COSTAL; GÓMEZ; GUIZZARDI, 2011), specializing and subsetting 

have the same formal semantics, the inclusion constraint of B in A. However, 

specialization represents an intentional relation between types, i.e., every property a 

parent relation has, its child relation will inherit. Furthermore, the event that stablishes 

both relations is also the same. To specify this constraint, one just needs to create a 

generalization between the relations (from B to A). 

We present the overview of the RelSpec anti-pattern in Table 47. 

Table 47. Characterization summary of the RelSpec anti-pattern. 

Name (Acronym) Description 

Relation Specialization 
(RelSpec) 

Two associations A, connecting ASource to ATarget, and B, 
connecting BSource to BTarget, such that: 

 ASource is equal or a subtype of BSource and ATarget is 
equal or a subtype of BTarget; or 

 ASource is equal or a subtype of BTarget and ATarget is 
equal or a subtype of BSource 

Type Feature Justification 

Logical Association The identified structure suggests the existence of a specialization 
between the relations or the need for including a subsetting, 
redefinition or disjoint constraint. 
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Pattern Roles 

Mult. Name Possible Types 

1 A All association stereotypes 

1 ASource All class stereotypes 

1 ATarget All class stereotypes 

1 B All association stereotypes 

1 BSource All class stereotypes 

1 BTarget All class stereotypes 

Additional Constraints 

1. A and B are different associations 

2. One of the following sentences must evaluate to true: 

(𝐴𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐵𝑆𝑜𝑢𝑟𝑐𝑒 ∨  𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑆𝑜𝑢𝑟𝑐𝑒, 𝐵𝑆𝑜𝑢𝑟𝑐𝑒))

∧ (𝐴𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑇𝑎𝑟𝑔𝑒𝑡, 𝐵𝑇𝑎𝑟𝑔𝑒𝑡)) 

 (𝐴𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ∨  𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑆𝑜𝑢𝑟𝑐𝑒, 𝐵𝑇𝑎𝑟𝑔𝑒𝑡 ))

∧ (𝐴𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐵𝑆𝑜𝑢𝑟𝑐𝑒 ∨ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑂𝑓(𝐴𝑇𝑎𝑟𝑔𝑒𝑡, 𝐵𝑆𝑜𝑢𝑟𝑐𝑒)) 

Generic Example* 

 

*Note: the presented variations are illustrative and do not intend to cover all possibilities 
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Refactoring Plans 

1. [Mod] Subset: this action should be taken if being connected through relation B implies 
being connected through relation A but not the other way around. The fix consists in 
adding one of A’s association ends to the subsetted properties of B’s respective 
association end. Alternatively, the following OCL can be included in the model*: 
context BSource 

inv subset : self.oclAsType(ASource).aTarget->includesAll( 

self.bTarget.oclAsType(ATarget)  

2. [Mod] Redefine: this action should be taken if being related through B implies not only 
being related through A but requiring that all related elements through A are related 
through B. The fix consists in adding one of A’s association ends at the redefined 
properties set of B’s respective association end. Alternatively, the following OCL can be 
included in the model*: 
context BSource 

inv subset : self.oclAsType(ASource).aTarget= 

self.bTarget.oclAsType(ATarget) 

This solution is strongly discouraged if associations A and B related the same types.   

3. [Mod/New] Disjoint: this action should be taken if being related through B implies not 
being related through A. Differently from the first two, this constraint can only be enforce 
through OCL invariants: 
context BSource 

inv subset : self.oclAsType(ASource).aTarget->excludesAll( 

self.bTarget.oclAsType(ATarget)  

4. [New] Specialize: the logical implication of this solution is the same as enforcing 
subsetting. Nonetheless, it should only be selected if association B is a particular type of A 
and not only if the logical constraint is required. 

  *Assuming that the occurrence is the structural variation number 1 

Anti-Pattern Relations 

Group by Feature (Association): AssCyc, BinOver, ImpAbs, RelComp 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
WholeOver, RelOver, RelComp, RelRig, RepRel 

Causes: none  

Caused by: MultDep 

 

Figure 43 depicts a RelSpec occurrence identified in the OntoBio ontology 

(ALBUQUERQUE, 2011). The diagram presents the different relations between the 

concepts “Environment” and “Spatial Location”. An “Environment” provides the 

biological characteristics, like vegetation, soil composition and climate, for a region 

delimited by geographical coordinates (defined by latitude, longitude and altitude). If a 

single coordinate defines a location, the authors named it a “Geographic Point”. 

Furthermore, a “Micro Environment” characterizes it. Analogously, multiple coordinates 

(a region) define a “Geographic Space”, whom a “Macro Environment” characterizes. 
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Figure 43. RelSpec occurrence identified in the OntoBio ontology. 

In the diagram, we find two RelSpec occurrences: one composed of the 

characterizations A and B1 and another by characterizations A and B2. Now, we 

present possible instantiation allowed by models restricted using each of the 

constraints. For simplicity reasons, we only demonstrate scenarios using 

characterizations A and B2.  

Figure 44 presents a valid world if B2 redefines A. Note that, “Object1”, an instance of 

“Geographic Space”, relate to the same individuals through B2 and A. “Object0”, 

conversely, is not an instance of “Geographic Space”, only of “Spatial Location”, and 

thus the same restriction does not apply to it. 

 

Figure 44. Characterization of the redefinition constraint. 
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The possible instantiation depicted in Figure 45 exemplifies the implications of the 

subsetting constraint. As desired, the inclusion constraint of B2 in A is there: for all 

macro environments that the individual named “Object” is connected through B2, it is 

connected through A. However, “Object” is connected to “Property0” only though A, 

since the implication is not applied in both ways. 

 

Figure 45. Characterization of the subsetting constraint. 

Lastly, we present an exemplification of enforcing the disjoint constraint in Figure 46. 

Differently from the other scenarios, whenever a “Geographic Space” is connected to 

a “Macro Environment” through B2 it is not connected through A. “Object1”, for 

example, is characterized by the environments “Property0” and “Property1” through A 

and by “Property2” through B2. 

 

Figure 46. Characterization of the disjointness constraint. 
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The adopted solution for this RelSpec occurrence in the OntoBio ontology was to 

enforce the redefinition constraint on both relations B1 and B2. 

5.18 REPEATABLE RELATOR INSTANCES (REPREL) 

The Repeatable Relator Instances Anti-pattern (RepRel) is an application of an Object-

role Modeling (ORM) construct, named internal uniqueness constraint, in OntoUML.  

ORM is a fact-based modeling approach for expressing information at conceptual level 

(HALPIN; MORGAN, 2008). As its name suggest, objects and roles are the language’s 

core. Moreover, predicates define roles (ORM allows unary, binary, ternary predicates 

and so one). For example, to represent that a person can be a smoker, one would 

represent an entity, Person, with a unary predicate, smokes. To represent that a 

Person owns a Car, one would model two object types, Person and Car, and a binary 

predicate between them, which defines the roles of “being owner” and of “being 

owned”.  

In ORM, a modeler can apply the internal uniqueness constraint to predicates to limit 

the number of identical combinations in the predicate. For example, if applied to the 

binary predicate “owns” that we previously defined, it would forbid a person to own a 

car more than once. Extensions for the “owns” predicate like {(John, Car1), (Joseph, 

Car2), (Luke, Car3)} would be accepted, but {(John, Car1), (Joseph, Car2), (John, 

Car1)}, would not. 

OntoUML, like UML, is not fact-oriented. Nonetheless, that does not mean that the 

expressivity of the uniqueness constraint would not be beneficial for it. Instead of 

predicates that define roles for entities, OntoUML provides use relators for that 

purpose. Just like predicates, relators connect two or more types. A priori, the number 

of relator instance copies (instances that mediate the same individuals) is not limited. 

The goal of the RepRel anti-pattern is to drive modelers into specifying restrictions like 

the Uniqueness Constraint. 

Throughout our investigations, however, we identified a finer grained distinction 

required to specify the limit of coexistent relator copies. That distinction comes from 
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two very different intended semantics for the relator, what we name current and 

historical relators. 

On one hand, a current relator is one whose instantiation corresponds to the 

existence of the individual, i.e. if a relator is instantiated in a world it is because it exists 

in that world. On the other hand, historical relators are the ones that indented to 

capture a registry of the existence of a relator. Furthermore, since the existence does 

not correspond to the instantiation, modeler might desire to reify the relator’s existence. 

One can achieve that using “active” and “inactive” phases or through time stamps to 

identify the point in time in which the relator is created and destructed. Lastly, modelers 

might desire to enforce “eternal” semantics to historical relators, i.e., relators that, after 

created, never disappear.  

To exemplify the distinction between historical and current relators, consider the relator 

marriage (for simplicity, let us assume monogamous marriages in this example) that 

defines the husband and wife roles. By law, it is only possible for a man to be married 

to exactly one wife at a time and vice-versa. Nonetheless, throughout one’s life, one 

can marry again, if properly divorced. If this domain is modelled using current 

semantics for the relator, the cardinality would be exactly one on the relator end (and 

that would still allow many marriages throughout time). Conversely, if the modeler 

assumes an historical view, the multiplicity would be one or more and the relator 

existence.  

To analyze an occurrence of the RepRel anti-pattern, a modeler must decide which of 

the aforementioned semantics she intends for the relator. If it is current, adding the 

following OCL invariant in Listing 16 will restrict the number of repeated instances.  

Listing 16. OCL version of the Uniqueness Constraint for “current” relators. 

context Relator 

inv: Relator.allInstances()->select( r | r<>self and r.type1=self.type1 and 

r.type2=self.type2)->size()=<n-1> 

Enforcing uniqueness constraints on historical relators is more complex. We propose 

the existence reification through the creation of attributes to act like time stamps, 

named “start”, to identify the creation time, and “end”, to identify destruction.  Since 

OntoUML does not specify a data type library, one would to create their own Time data 

type. Additionally, the modeler should add the OCL code provided in Listing 17. 
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Listing 17. Enforcing Uniqueness Constraint for “historical” relators using OCL. 

context Relator 

inv: Relator.allInstances()->select( r | r<>self and r.type1=self.type1 and 

r.type2=self.type2 and self.concurrent(r))->size()=<n-1> 

context Relator::concurrent(r:Relator):Boolean 

body: self.start=r.start or  

      (self.start<r.start and r.start<self.end) or  

      (r.start<self.start and self.start<r.end) 

We provide a complete summary of the RepRel anti-pattern in Table 48. 

Table 48. Characterization summary of the RepRel anti-pattern. 

Name (Acronym) Description 

Repeatable Relator Instances 
(RepRel) 

A «relator» connected to two or more «mediation» associations, 
whose upper bound cardinalities at the relator end are greater 
than one. 

Type Feature Justification 

Logical Relator Inspired in ORM’s uniqueness constraint (HALPIN; MORGAN, 
2008), this anti-pattern aids the modeler in specifying the 
number of different relators instances that can mediated the 
exact same set of individuals. 

Pattern Roles 

Mult. Name Possible Types 

1 Relator «relator» 

2..* med-n «mediation» 

2..* Type-n 
All object stereotypes: «kind», «quantity», «collective», «subkind», «role», 
«phase», «roleMixin», «mixin» and «category» 

Additional Constraints 

1. Let M be the set of the mediations that characterize RepRel, relatorEnd(m) the function 
that return the association end whose type is the relator of a mediation m, and upper(p) 
the function that return the upper bound cardinality of a property p, then: 

∀𝑚 ∈ 𝑀, 𝑢𝑝𝑝𝑒𝑟(𝑟𝑒𝑙𝑎𝑡𝑜𝑟𝐸𝑛𝑑(𝑚)) > 1 

2. Let M be the set of the mediations that characterize RepRel, relator (m) the function that 
returns the relator connected to a mediation m, then: 

∀𝑚 ∈ 𝑀, 𝑟𝑒𝑙𝑎𝑡𝑜𝑟(𝑚) = 𝑅𝑒𝑙𝑎𝑡𝑜𝑟 ∨ 𝑖𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑟𝑒𝑙𝑎𝑡𝑜𝑟(𝑚), 𝑅𝑒𝑙𝑎𝑡𝑜𝑟) 

∃𝑚 ∈ 𝑀, 𝑟𝑒𝑙𝑎𝑡𝑜𝑟(𝑚) = 𝑅𝑒𝑙𝑎𝑡𝑜𝑟 

Refactoring Plans 

1. [Mod] Fix upper cardinality: this plan is individually to the mediations. It consists in 
changing the maximum cardinality on the relator to a usually lower value.   

2. [OCL] Define uniqueness constraint (Current Relator): this plan is applied to a 
combination of the mediations. Although it can be applied more than once, for different 



186 

combinations, it cannot be applied simultaneously with the historical relator plan. This 
should be taken if there is a limit of the number of coexistent relator instances that 
mediated the same combination of the mediated types. The following OCL invariant should 
be created (where <n> is the limit of “cloned” relators): 
context Relator 

inv: Relator.allInstances()->select( r | r<>self and 

r.type1=self.type1 and r.type2=self.type2)->size()=<n-1> 

3. [OCL] Define uniqueness constraint (Historical Relator): this plan applies to a 
combination of the mediations and, although it can be applied more than once for different 
combinations, it cannot be applied simultaneously with the current relator plan. 
context Relator 

inv: Relator.allInstances()->select( r | r<>self and 

r.type1=self.type1 and r.type2=self.type2 and concurrent(self,r))-

>size()=<n-1> 

context Relator::concurrent(r:Relator):Boolean 

body: self.start=r.start or  

      (self.start<r.start and r.start<self.end) or  

      (r.start<self.start and self.start<r.end) 

Anti-Pattern Relations 

Group by Feature (Relator): DepPhase, FreeRole, MultDep, RelOver, RelRig 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
WholeOver, RelOver, RelComp, RelSpec, RelRig 

Causes: none 

Caused by: none 

 

Figure 47 depicts a RepRel occurrence identified in the Configuration Management 

Ontology (CMTO) (CALHAU; FALBO, 2012). The fragment focuses on the relator 

“Change Request”, which captures a registry of the action made by a “Requester”, 

when soliciting changes in one or more versions of a configuration item.  

 

Figure 47. RepRel occurrence identified in the CMTO ontology. 

The authors explicit use the word “register” when describing the relator class “Change 

Request”. Furthermore, they make an observation that there should be a quality to 

identify the request’s time of creation, even though they did not explicitly represented 

it in the model. Considering these two facts along with the purpose of the ontology, 
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reasonably conclude that the authors intend an historical semantics for the relator 

“Change Request”.  

Continuing the analysis of this fragment, we use the simulation to generate examples 

and encounter the possibility depicted in Figure 48. As it is noticeable, the ontology 

allows the same requester to make more than one request regarding the same change 

and the same version. If that is not desirable, one only needs to enrich the model with 

the OCL invariant described in Listing 18. 

Listing 18. OCL constraint to limit repeated relators in the CMTO ontology. 

context _'Change Request' 

inv:_'Change Request'.allInstances()->select( r | r<>self and 

r.requester=self.requester and r.version=self.version and 

r.change=self.change and self.concurrent(r))->size()=0 

 

Figure 48. Possible world generated for the diagram in Listing 18 without adding the 

uniqueness constraint regarding the relator Change Request. 

5.19 UNDEFINED FORMAL ASSOCIATION (UNDEFFORMAL) 

UFO classifies relations in two main groups: material (or external) and formal (or 

internal). Briefly, the difference between them is that in order for a material relation to 

hold between two individuals, it requires an external entity: named its truth-maker. 

Formal relations, conversely, do not require such entity. 
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The meaning of the generic concept of formal relation is not the same of the one that 

motivated the creation of the «formal» stereotype. In fact, in this broader sense, all 

part-whole relations, mediations and characterizations are formal. OntoUML, however, 

defines the «formal» stereotype to formalize a particular subset of formal relations, 

named Domain Comparative Formal Relation (DCFR).  

The DCFR captures relations reducible to the comparison of values from qualities 

(datatypes) that characterize the related types. An example of such relation is “heavier 

than”, which holds between two people and that can be derived from the comparison 

of their weights. 

We argue that the DCFR’s definition requires the related types to own or inherit at least 

one quality, from which modelers can derive the relation. If that is not the case, one of 

the following affirmatives must be true: the ontology is missing the qualities required 

derive the relation; or the formal relation is not a DCFR. The Undefined Formal 

Association (UndefFormal) proposes to investigate which of these possibilities is true. 

Another motivation to investigate formal relations comes from our empirical experience 

in analyzing OntoUML models. Our hypothesis is that modelers use the formal 

stereotype as an “escape route” when they do not know which stereotype to use. In 

fact, since OntoUML does not restrict in any way the use of formal relations, a modeler 

randomly using a formal relation will always obtain syntactically valid models. 

As expected, the UndefFormal’s refactoring plans are properly specifying the formal 

relation as a DCFR or changing its stereotype. If one decides to specify properly the 

DCFR, one needs to:  

 specify the data types to which it will be derived from;  

 set the relation as derived; and  

 specify the OCL derivation rule;  

If the chosen alternative is the stereotype change, the plan’s actions will heavily 

depend on the related types’ stereotypes. For example, if a formal relation relates a 

mode and a kind, the only other possible association stereotype is the characterization. 

If the modeler reaches the conclusion that the relation is formal, but not a DCFR, a 
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mediation, a characterization or any of the part-wholes, we conclude that it is a type of 

formal relation (in the general sense) that is not contemplated in the OntoUML syntax. 

We consolidate the description of the UndefFormal anti-pattern in Table 49. 

Table 49. Characterization summary of the UndefFormal anti-pattern. 

Name (Acronym) Description 

Undefined Formal Association 
(UndefFormal) 

A «formal» association defined between types that do not own 
or inherit quality properties, i.e., attributes or associations 
whose types are data types. 

Type Feature Justification 

Classification Formal Although OntoUML imposes no syntactical constraints on 
formal relations, it does not mean that modelers can use them 
at will, what is a very common practice. 

Pattern Roles 

Mult. Name Possible Types 

1 formal «formal» 

1 Source All class stereotypes 

1 Target All class stereotypes 

Additional Constraints 

1. Let qualities(c) be the function that return all qualities defined for a class c (through 
attributes or relations) and ancestor(c) be the function that return all direct and indirect 
super types of a class c, then: 

#qualities(𝑆𝑜𝑢𝑟𝑐𝑒) = 0 ∧ ∀𝑥 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑆𝑜𝑢𝑟𝑐𝑒), #𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠(𝑥) = 0 ∧ #qualities(𝑇𝑎𝑟𝑔𝑒𝑡)
= 0 ∧ ∀𝑥 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑇𝑎𝑟𝑔𝑒𝑡), #𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠(𝑥) = 0 

Generic Example 

 

Refactoring Plans 

1. [New/Mod/OCL] Set as DCFR: choose this plan if the formal relation really is a DCFR. 
The fix consists in specifying the data types to which the relation will be derived from, set 
the relation as derived, and specify the OCL derivation rule. 

2. [Mod] Change stereotype: this alternative should be taken if one reaches the conclusion 
that the relation is better qualified by another stereotype. It consists only in changing the 
stereotype of the relation. 
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formal
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Anti-Pattern Relations 

Group by Feature (Formal): none 

Group by Type (Classification): DepPhase, GSRig, HetColl, HomoFunc, MixIden, MixRig, RelRig, 
UndefPhase 

Causes: none  

Caused by: none 

 

Extracted from the Open proVenance Ontology (OvO) (CRUZ; CAMPOS; MATTOSO, 

2012), the diagram depicted in Figure 49 exemplifies UndefFormal. The authors 

propose OvO as a reference model for the provenance domain, aiming to aid 

researchers understand and explore provenance meta-data.  

The particular fragment depicted in the pictures describes the two roles researchers 

can play in the context of an experiment: being responsible for its execution and 

controlling it. The model also formalizes that a researcher, if acting as a coordinator, 

can conceive projects, which in turn have experiments as parts.     

The diagram actually presents three occurrences of the UndefFormal anti-pattern. 

Each formal relation identifies a single occurrence: “executed by”, between 

“Experiment” and “Researcher”; “controlled by”, between “Experiment” and 

“Coordinator”; and “conceived by”, between “Project” and “Coordinator”.  

We begin the analysis with the association “executed by”. Clearly, it cannot be reduce 

to a comparison of qualities of Researcher and Experiment, but is it formal in the 

general sense? If we assume that the intended meaning of the relation is to register 

who performed experiments in the past (but not who is currently performing one), we 

conclude that “executed by” is in fact a material relation derived from the “Experiment 

Execution” relator. Furthermore, the representation of the execution relator will solve 

an ambiguity issue on the relation, because it will specify whether one can perform 

many executions, but each for experiment, or if one can execute many experiments 

simultaneously. For more details on how relators fix ambiguities of material relations, 

please refer to (GUIZZARDI, 2005, chap. 6). 
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Figure 49. UndefFormal occurrence identified in the OVO ontology. 

As a last remark about the UndefFormal anti-pattern, we recognize that the suggested 

identification structure is not the most efficient to point out improper uses of the formal 

relation. Even though a class has attributes, it does not mean that they participated in 

the definition of the formal relations connected to it. In the diagram presented in Figure 

49, for example, if both the “Researcher” and the “Experiment” classes had an attribute 

“name”, the UndefFormal’s structure would miss the relations identified in the example.  

5.20 UNDEFINED PHASE PARTITION (UNDEFPHASE) 

Phases are anti-rigid types that aggregate individuals with the same identity principle 

and are instantiated due to an alteration on intrinsic properties. An intrinsic property 

can be either a quality, if it refers to a structured characteristic, like one’s age or weight, 

or a mode, if unstructured, like one’s headache, commitment or intention. Furthermore, 

phases are defined in partitions, i.e., they must be a part of a disjoint and complete 

generalization set.  

Just like in the UndefFormal anti-pattern, the lack of intrinsic properties required to 

characterize a proper phase definition drives UndefPhase. It implies that a modeler did 

not specify the conditions necessary for an individual to instantiate a phase. Its 

structural definition is a partition of phases in whose common parent type does own or 

inherit attributes and associations connected to data types or modes. 

One can think of many different situations that characterize a change in an intrinsic 

property. In general, an intrinsic property can appear or disappear, like diseases for 

example. Furthermore, we often expect that qualities to change their values through 
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the life cycle of an individual. Considering these possibilities, we propose two patterns 

for phase partitions: the derived partition and the intentional partition.  

Derivation rules define all phases in a derived partition exclusively using values of 

intrinsic properties (modes and qualities). For example, suppose that a person’s body 

fat percentage (a quality) classifies them in the following phases: Slim, for values from 

lower than 25%; and Fat, if the value is equal or greater than 25%. To model this 

pattern, one needs to specify at least one attribute, used to define all phases in the 

partition. Furthermore, one must set all phases as derived types, alongside with each 

derivation rule. 

The intentional partition, conversely, does not require the common parent type of the 

partition to own or specify attributes. The appearance and disappearance of intrinsic 

properties characterize this pattern. An example is a partition containing the sick and 

healthy phases of a person. A sick person is a phase characterized by the mode 

disease, whilst the absence of a disease characterizes healthy. Furthermore, 

intentional phase partitions can optionally have one phase that is derived by exclusion 

(OLIVÉ, 2007) from the others, i.e., an individual instantiates it if, and only if, it is an 

instance of their direct super type and is not an instance of any other phase in the 

partition. 

We provide a compact and structured description of the UndefPhase anti-pattern in 

Table 50. 

Table 50. Characterization summary of UndefPhase the anti-pattern. 

Name (Acronym) Description 

Undefined Phase Partition 
(UndefPhase) 

A partition of phases in whose common parent type does own 
or inherit attributes and associations connected to data types 
or modes. 

Type Feature Justification 

Classification; 
Scope 

Phase Phases are anti-rigid types that are instantiated due to an 
alteration in an intrinsic property (a quality or a mode). For that 
reason, if the parent type of a partition does not have any 
intrinsic properties, how does one expect to define a partition? 

Pattern Roles 

Mult. Name Possible Types 

1 SuperType «kind», «quantity», «collective», «subkind», «phase» and «role» 
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1 Partition Generalization Set 

2..* Phase-n «phase» 

Additional Constraints 

1. Let qualities(c) be the function that return all qualities defined for a class c (through 
attributes or relations) and ancestor(c) be the function that return all direct and indirect 
super types of a class c, then: 

#qualities(𝑆𝑢𝑝𝑒𝑟𝑇𝑦𝑝𝑒) = 0 ∧ ∀𝑥 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑆𝑢𝑝𝑒𝑟𝑇𝑦𝑝𝑒), #𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠(𝑥) = 0 

Generic Example 

 

Refactoring Plans 

1. [New/OCL] Derived partition: choose this option if the instantiation of the phases is 
defined by a change in a quality’s value, owned by the common parent type, one of its 
ancestor, one of its parts or one of its modes. (e.g. Person-Adult-Child) 

 

2. [New] Intentional partition: choose this option if the instantiation of the phases is defined 
by the appearance of a mode or a quality in the phases (e.g. Person-Sick-Healthy) 

 

3. [Mod/New] Set phases as roles: choose this option if the instantiation of the phases is 
defined by a relational property and not an intrinsic one. To fix, change the stereotype of 
all phases to role and define their respective relational dependencies. 
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Anti-Pattern Relations 

Group by Feature (Phase): DepPhase 

Group by Type (Classification): DepPhase, GSRig, HetColl, HomoFunc, MixIden, MixRig, RelRig, 
UndefFormal 

Group by Type (Scope): DepPhase, FreeRole, ImpAbs, MultDep, GSRig, HomoFunc, MixIden, 
MixRig, RelRig 

Causes: none  

Caused by: none 

 

We exemplify UndefPhase with the two fragments depicted in Figure 50. In the left, we 

have a fragment of the MPOG Ontology Draft (MPOG, 2011), which describes different 

types of organizations that are legal in Brazil. In the right, an excerpt of the Health 

Organization Model, which describes concept related to public health activities.  

  

Figure 50. UndefPhase occurrences identified in a) the MPOG Ontology Draft and b) the Health 

Organization Model  

In the MPOG model excerpt, the partition that characterizes the UndefPhase contains 

“Exclusively State-Owned Company” and “Mixed-Capital Company”. They are both 

types of companies owned by the government but in the first, the state is the single 

owner, whilst in the second, the state shares the control with the private sector. 

Petrobras, a Brazilian oil and gas company, has a mixed-capital. The British 

Broadcasting Company, widely known as BBC, is also a state-owned company. Notice 
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that the model itself does not define any properties for both phase, leaving the whole 

their whole meaning embedded in their labels. Using the available definition of the 

phases, we assume that they are not phases, but roles. What defines if a company is 

state owned or not is its constitution (state-owned are defined by some sort of law or 

regulation published by the government). 

Now, analyzing the Health Organization excerpt, we immediately conclude that the 

partition fits the derived partition pattern. It requires the formalization of an “age” quality 

(possibly as an attribute of the integer type) and the definition of intervals for each 

phase, e.g. 0-12 is a Child, 13-17 is a Teenager, 18-64 is an Adult, and 65-* is an 

Elder. 

5.21 WHOLE COMPOSED OF OVERLAPPING PARTS (WHOLEOVER) 

The Whole Composed of Overlapping Parts (WholeOver) anti-pattern follows the exact 

same logic as RelOver. The main difference is that, instead of the focus being on a 

relator mediating overlapping types, it is on a whole type having overlapping parts. We 

refrain from providing redundant definitions and just present a WholeOver occurrence 

as an example. For more details, please refer back to RelOver’s definition in Section 

0. 

 

Figure 51. WholeOver occurrence identified in the IT Infrastructure model 
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Figure 51 presents an excerpt of the IT Infrastructure Model that contains a WholeOver 

occurrence, which follows from the whole class “IT Team” being composed by at least 

one “Technician” and exactly one “Manager”. The first inquiry to made is whether a 

Person can simultaneously be a Technician and a Manager, i.e., if the roles are indeed 

overlapping. If they ought to be disjoint, the creation of a generalization will fix the 

model. If they are really overlapping, the analysis continues by verifying if the parts are 

exclusive w.r.t the whole. If it is possible for the same person to be a manager and a 

technician in the same team no rule is necessary. If people can only play a single role 

in each instance of “IT Team”, the OCL rule in Listing 19 is in order. 

Listing 19. Exclusive parts constraint defined in OCL. 

context Person 

inv: self.technician.oclAsType(Person)->asSet()->excludesAll( 

self.manager.oclAsType(Person)->asSet()) 

Lastly, we provide a summary of the WholeOver anti-pattern in Table 51. 

Table 51. Characterization summary of the WholeOver anti-pattern. 

Name (Acronym) Description 

Whole Composed of 
Overlapping Parts 
(WholeOver) 

A whole composed of two or more types whose extension possibly 
overlap. The sum of the meronymics’ upper bound cardinalities of 
the part end must be greater or equal to 2 or at least one of them 
be unlimited. 

Type Feature Justification 

Logical Part-Whole This structure is usually too permissive. It is often the case that 
some of the part types should be disjoint or set as exclusive in the 
context of a single whole instance. 

Pattern Roles 

Mult. Name Possible Types 

1 
Whole 

All object types: «kind», «collective», «quantity», «subkind», «phase», 
«role», «roleMixin», «category» and «mixin» 

2..* 
partOf-n 

All meronymic stereotypes: «subQuantityOf», «componentOf», 
«memberOf», «subCollectionOf» 

2..* 
Part-n 

All object types: «kind», «collective», «quantity», «subkind», «phase», 
«role», «roleMixin», «category» and «mixin» 
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Additional Constraints 

1. Let M be the set of identified meronymic relations, partEnd(m) the function that returns the 
association end connected to the part of a meronymic relation m, and upper(p) the 
function that return the upper bound cardinality of a property p, then: 

( ∑ 𝑢𝑝𝑝𝑒𝑟(𝑝𝑎𝑟𝑡𝐸𝑛𝑑(𝑚𝑛))

𝑚∈𝑀

) ≥ 2 

2. Let O be the set of part types that compose Whole, then: 
∃𝑥, 𝑦 ∈ 𝑂 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥, 𝑦) 

Generic Example* 

 

 
*Note: the presented variations are illustrative and do not intend to cover all possibilities 

Refactoring Plans 

1. [OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple 
roles w.r.t the same whole instance. Create an OCL invariant according to the following 
template: 
context Whole 

inv:  

self.part1.oclAsType(Supertype)->asSet()->excludesAll( 

self.part2.oclAsType(Agent)->asSet() and  

self.part1.oclAsType(Supertype)->asSet()->excludesAll( 

self.part3.oclAsType(Agent)->asSet() and 

self.part2.oclAsType(Supertype)->asSet()->excludesAll( 

self.part3.oclAsType(Agent)->asSet()) 

2. [OCL] Partially exclusiveness: choose this option to set a subset of the part types as 
exclusive.  

3. [New/Mod] Disjoint parts: Enforce part types to be disjoint through the creation or 
alteration of a disjoint generalization set. 

*Note: to make all types exclusive, every binary combination should be explicitly ruled out 

Anti-Pattern Relations 

Group by Feature (Part-Whole): HetColl, HomoFunc, PartOver 

Group by Type (Logical): AssCyc, BinOver, DecInt, FreeRole, ImpAbs, MultDep, PartOver, 
RelOver, RelComp, RelSpec, RepRel 

Causes: none  

Caused by: HomoFunc 

b+d>2

Variation 1

Whole

Part-1 Part-2

SuperType

b+d>2

Whole

Part-1 Part-2

Subtype
Variation 2

partOf-2

c..d

partOf-1

a..b

partOf-2

c..d

partOf-1

a..b



198 

5.22 PSEUDO ANTI-RIGID 

In (SALES; BARCELOS; GUIZZARDI, 2012), we published the initial version of the 

anti-pattern catalogue, proposing 6 anti-patterns. Amongst them, there was one named 

Pseudo Anti-Rigid (PAR). Its proposal was to identify logical contradictions in the model 

by indicating anti-rigid classes (stereotyped as role, phase or roleMixin) forced into 

rigidity through external constraints. For example, if one defines a role class to 

represent the student type, one expects individuals to instantiate it in a moment and 

cease to do so in another, but keep existing. However, some models are so over-

constrained that this possibility is precluded. 

The structural causes for logical contradictions that hamper anti-rigidity, however, are 

so diverse that we did not identify a recurrent structure to characterize an anti-pattern. 

Nonetheless, we were still able to identify some structures that would cause such 

problems:  

 an anti-rigid type characterized by an existential dependency, i.e., a role 

connected to an association whose opposite end has isReadOnly set to true;  

 a generalization set of a rigid parent with at least one rigid subtype and exactly 

one anti-rigid subtype, as described in the GSRig anti-pattern; and  

 mandatory closed instance level cycles composed by anti-rigid types, like the 

one described in (SALES; BARCELOS; GUIZZARDI, 2012) and depicted in 

Figure 52. Notice that a heart is necessarily composed of cells that always 

generate electrical impulses, which must provoke contractions that make an 

atrium work as a pump, which in turn makes the heart work as a pump. 

Assuming that the cells can only generate electrical discharges on hearts they 

are part of (the closed instance-level cycle) a heart always work as a pump. 

 

In fact, we concluded that PAR presented a recurrent undesired consequence, but 

no recurrent structure. Considering that our definition for semantic anti-pattern 

requires an identifiable structure so we can prescribe pre-defined refactoring 

solutions, PAR did not fit. For that reason, we removed it from the catalogue.  
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Figure 52. An ECG ontology’s simplified excerpt illustrating PAR. 

However, we did not cast it aside. PAR presents a recurrent problem that affects the 

instantiation of the model and the Alloy support for OntoUML is able to check 

assertions on a model. We then, transformed PAR into a standard test. It will not 

directly indicate to the modeler the cause of the problem, but it will let him know that 

there is one.  

5.23 THE RELATOR DILEMMA  

We refer to the other recurrent problem not classified as anti-pattern as the Relator 

Dilemma. Even though the dilemma suggests a classification issue, i.e. an error 

assigning a meta-category for a concept, we did not create an anti-pattern for it 

because we could not identify a recurrent structure. The only thing we could define, 

from a structural point of view, is that a relator is the source of the problem. In order to 

say that a relator class does not formalize a relator concept, we would need to analyze 

its label, which is out of the scope of this work. 

We call it “The Relator Dilemma” because it an improper formalization of a concept as 

a relator is the source of the problem. Exploring the models in our repository, one find 

all sorts different concepts classified as relators: complex and simple events (types of 

perdurants in UFO), actions, normative descriptions and even material relations.  

Our hypothesis is that these errors arise from the modeler’s limit understanding of the 

relator and material association meta-categories, alongside with limited knowledge 
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about meta-categories not covered by the language, like events and normative 

descriptions. To exemplify the concepts of relator, event, normative description and 

material association we use the classical example of the marriage domain: 

“James and Camille are a young couple that decided to get married. Since the bride 

came from a traditional family, they had a big wedding, with all their friends and family. 

After the wedding, Camille decided to take James’ name, so they headed to the public 

records department, with their marriage certificate in hand. After proving their marital 

status, they manage to fix Camille’s name and lived happily ever after! 

In our little tale, the wedding is the event that creates the relator, also referred to as 

the foundation of the relator. After the wedding, James and Camille can say that they 

are married to one another, thus, “being married to” is the material relation. The reason 

they can say that is because, after the wedding, a marriage that involves both of them 

arises: the relator. Now, if they need to prove that they are married to a third person, 

they just need to show their marriage certificate, i.e. the document that formalizes their 

married status: the normative description.  
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 UNCOVERING SEMANTIC ANTI-PATTERNS 

In this chapter, we present and discuss the methods we adopted to come up with the 

catalogue of semantic anti-patterns presented in the last chapter. We start by 

describing the repository of OntoUML models we used as a benchmark to elicit and 

validate the anti-patterns. In the sequence, we discuss the three complementary 

elicitation methods we adopted. First, the method based on model simulation, followed 

by the one based on the analysis of the foundational ontology, and finally the method 

driven by the comparison of OntoUML with other modeling languages. At the end of 

this chapter, we discuss the effectiveness of applying these methods and report on our 

experiences in doing so. 

6.1 THE ONTOUML MODEL REPOSITORY 

Throughout this research, we gathered all sorts of OntoUML models we could find in 

order to build a diversified model repository. Our goal was to have models with: (i) 

different domains; (ii) different levels of modeling expertise in Ontology-Driven 

Conceptual Modeling; (iii) models of different sizes, maturity and complexity; (iv) 

models developed for different purposes; and (v) different development contexts.  

This repository serves two purposes in our research. First, as a source of inspiration 

for anti-pattern identification. We would not be able to propose anti-patterns if they 

were not identified in practice. The complementary utility of the model repository is for 

validation. By having access to the documentation of the ontologies and the modelers 

that designed them, we can evaluate if our proposals indeed capture problematic 

modeling decisions.  
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6.1.1 Ontology Template 

We describe each of the 54 models in the repository according to the following 

template: 

 Name: the name provided by the authors. If they did not provide any, we baptize 

the model with an intuitive one. 

 Domain: a brief summary of the domain captured by the ontology, accompanied 

by examples of classes and properties represented in the ontology. 

 Context: the scenario in the model was developed. One of the following 

classifications is given:  

o Academy, which include models produced in the context of academic 

research and described in bachelor thesis (BSc), master thesis (MSc), 

doctoral thesis (PhD) or research papers (Paper);  

o Industry, which classifies models produced in cooperation with / by the 

industry organizations; 

o Government (Gov), which classifies models developed by or in 

cooperation with governmental entities;  

o Graduate Course Assignment (GCA), encompassing models produced 

by graduate students as a final assignments of an “Ontology 

Engineering” 60-hour course offered by the Graduate School on 

Informatics of the Federal University of Espírito Santo; and  

o others, for models that don’t fit in any of the aforementioned categories 

 Type: binary parameter that classifies the model in either ontology or 

conceptual model: 

o Ontology (Ont) is assigned to models that are meant to capture the 

conceptualization of a community, and 

o Conceptual Model (CM) classifies models that are not truly ontologies, in 

the meaningful sense of the word, since one can hardly say they 

represent a consensus of a community. Mostly, they are formalizations 

of a single modeler or a very small group. 

 Purpose: describes the motivation to build the ontology, the problem the 

authors designed it to solve. The categories applied to this field are:  
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o interoperability, for the ones that were meant to be used as reference for 

semantic interoperability between agents and/or systems within the 

same of multiple organizations;  

o ontological analysis (onto analysis), for the models which were 

developed to evaluate conceptual modeling languages or ontologies 

produced in other languages;  

o reference model (reference) for those models that are proposed as 

references for a community;  

o knowledge-based application (kb application) to classify those that are 

created  during the development of knowledge-based applications; and 

o unspecified, for the ones which the author did not provide any 

application; 

 Expertise (Exp.): describes the author’s familiarity to the OntoUML language 

at the time of the development of the ontology. We assign to values for this field:  

o Beginner (beg), for modelers with less than a year of experience using 

the language; and  

o Advanced (adv), for modeler who use the language for more than 2 

years. 

 Modelers (#Md): provides the number of modelers that participated in the 

development of the ontology. For published models, we consider all authors of 

the publication as modelers. For models developed in thesis, we consider the 

student and the supervisors.  

 Structural Data: describes the model from a quantitative structural perspective, 

providing the number of classes, associations, attributes, generalizations, 

generalization sets, datatypes and packages. 

Repository Overview 

Table 52 provides a general description of all ontologies in the repository, following the 

aforementioned template. From the 54 models, 18 (33%) are ontologies in the proper 

sense, i.e., actual formalizations of shared conceptualizations. The remainder 36 

(67%) are just regular conceptual models that capture a modeler’s perspective about 

a portion of reality, which may be shared by others or not.  
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Analyzing the development context, we can see that most models are graduate course 

assignments, a total of 32  or 59% of the repository. Another 11 (20%) are models 

developed in academic researches without industry collaboration. An example is The 

Configuration Management Task Ontology (CMTO) (CALHAU; FALBO, 2012), a 

product of a Masters research. Moreover, seven models had the total or partial 

participation of private companies and/or governmental organizations. The most 

significant one is the MGIC Ontology (BASTOS et al., 2011), developed in the context 

of a research project with a Brazilian regulatory agency, named “Agência Nacional de 

Transportes Terrestres5” (ANTT), which is responsible for regulating ground 

transportation in Brazil. Only the development context of four models is unknown or 

was not available. 

Concerning the purpose to which the models were created, the repository contains 10 

models (16%) that are intended to serve as a reference knowledge of a domain, like 

UFO-S (NARDI et al., 2013). Another 10 models (16%) were developed in order to 

perform ontological analysis on existing models, databases or modeling languages. An 

example is the refactoring of the Conceptual Schema of Human Genome presented in 

(FERRANDIS; LÓPEZ; GUIZZARDI, 2013). The repository also contains eight models 

(13%) designed for the development of knowledge-based applications, 6 (10%) whose 

main intention was to support semantic interoperability between systems and/or 

organizations, and only two (3%) for enterprise modeling. For the remainder 26 models 

(42%), we do not know the motivation or the authors did not inform it. Notice that since 

most of these “purposeless” models are also graduate course assignments, it does not 

raise any further questions. 

Concerning the modeler’s overall expertise on OntoUML and Ontology-driven 

Conceptual Modeling, we identify 22 models (41%) developed by beginners (from 

which 18 are also graduate course assignments) and 32 (59%) developed by 

experienced modelers.  

Finally, we look into the number of modelers involved in the ontology design. A single 

person participated in the development most of the time (35 models, roughly 65%). 

Moreover, fifteen models are the product of collaboration efforts between 2-4 people, 

                                            
5 In English: National Ground Transportation Agency 



205 

whilst four involved 7-10 ontologists. By comparing the number of modelers and the 

development context features, we identify that, from the 35 developed by a single 

modeler, 31 are graduate course assignments. 

Table 52. Summary description of all models in the repository.  

Model Type Domain Context Purpose Exp. #Md 

The MGIC Ontology Ont 
Brazilian Ground 
Transportation Regulation 

Gov 
interoperability;  
enterprise md. 

adv 10 

The G.805 Ontology Ont ITU-T G.805 Recommendation Industry 
onto. analysis; 
reference 

adv 4 

The G.805 Ontology 
2.0 

Ont ITU-T G.805 Recommendation Industry 
reference;  
kb application 

adv 3 

The G.800 Ontology Ont ITU-T G.800 Recommendation Industry 
reference;  
kb application 

adv 3 

OntoEmergePlan Ont Emergency Plans MSc kb application adv 8 

OntoUML Org 
Ontology 

Ont Enterprise architecure MSc 
onto. analysis;  
enterprise md. 

adv 2 

The ECG Ontology Ont Eletrocardiogram MSc 
interoperability; 
kb application 

adv 3 

Gi2MO Ontology 
Refactored 

CM 
Generic idea and innovation 
management 

GCA onto. analysis adv 1 

Internal Affairs 
Ontology Refactored 

CM 
Brazilian police internal affairs 
dept. 

GCA onto. analysis adv 3 

OVO Ont 
Provenance of scientific 
experiments 

PhD reference adv 3 

The Library Model CM Library archive and services GCA unspecified beg 1 

OntoBio Ont Amazonian biodiversity Gov 
interoperability;  
kb application 

adv 3 

The Public Tenders 
Model 

CM Brazilian public tenders GCA unspecified adv 1 

UFO-S Ont Commitment-based Service PhD reference  adv 7 

The TM Forum 
Model 

CM Network management Other unspecified beg 1 

The Social Contract 
Model 

CM Brazilian social contract theory GCA unspecified beg 1 

The Clergy Model CM Catholic clergy GCA unspecified beg 1 

The FIFA Football 
Model 

CM 
Football (based on FIFA's 
offical rules) 

GCA unspecified adv 1 

The PAS 77:2006 
Ontology 

Ont Service continuity MSc 
onto analysis;  
reference 

adv 4 

IDAF Model CM 
Institute of Agriculture 
Protection of Espírito Santo 

GCA unspecified adv 1 

The Cloud 
Vunerability 
Ontology 

Ont 
IaaS perspective on public 
cloud vulnerability 

MSc reference adv 4 

The University 
Model 

CM Brazilian federal universities GCA unspecified beg 1 

CMTO Ont 
Configuration Management of 
Software Products 

MSc interoperability adv 2 

GRU MPS.BR 
Model 

CM 
Reuse management process 
of MPS.BR 

GCA unspecified beg 1 

The Experiment 
Model 

CM Scientific experiment GCA unspecified beg 1 

CSHG Refactored Ont Human genome Paper onto analysis adv 3 
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The Normative Acts 
Ontology 

Ont 
Brazilian normative acts 
composition 

Gov reference adv 3 

The Parking Lot 
System 

CM 
World view of a parking lot 
management system 

GCA unspecified adv 1 

The School 
Transportation 
Model 

CM 
World view of a system to 
support student transportation 

Other application beg 1 

The Quality 
Assurance Ontology 

CM 
Quality assurance based on 
CMMI, MPS.BR and ISO 9001 

GCA unspecified adv 1 

The OpenFlow 
Ontology 

Ont 
OpenFlow communication 
protocol 

BSc kb application beg 2 

The Music Ontology 
Refactored6 

CM Music-related data GCA onto analysis adv 1 

The Internship 
Model 

CM Legal brazilian intership GCA unspecified adv 1 

The G.809 Model CM ITU-T G.809 Recommendation GCA unspecified beg 1 

The ERP System 
Model 

CM 
World view of an enterprise 
resource planner system 

Other interoperability adv 1 

The Online 
Mentoring Model 

CM 
World view of a system to 
support online mentoring 

GCA unspecified adv 1 

The Help Desk 
System Model 

CM 
A model that describes a 
potential help desk system 

GCA unspecified beg 1 

The IT Infrastructure 
Model 

CM 
Information technology 
architecture 

GCA unspecified beg 1 

The Requirements 
Ontology 

Ont Software requirements MSc kb application adv 2 

The Photography 
Model 

CM Photography collection GCA unspecified beg 1 

FIRA Ontology 
Refactored 

CM Robot soccer matches GCA onto analysis adv 1 

The Banking Model CM Financial operations GCA unspecified adv 1 

The Chartered 
Service Model 

CM Railway chartered service  GCA unspecified adv 1 

The Health 
Organization Model 

CM Brazilian health organization  GCA unspecified beg 1 

The Bank Model 2 CM Financial operations GCA unspecified adv 1 

The PROV Ontology 
Refactored7 

CM Provenance information GCA onto analysis beg 1 

WSMO 

Refactored8,9 
CM eGovernment services GCA onto analysis beg 1 

The Rec. Model CM Recommendations and norms GCA kb application beg 1 

The Inventory 
System 

CM 
World view of an inventory 
management system 

Other interoperability adv 1 

MPOG Ontology 
Draft 

Ont 
Brazilian federal organizational 
structures 

Gov reference beg 7 

The Project 
Management Model 

CM Project management GCA unspecified beg 1 

The Construction 
Model 

CM Construction GCA unspecified beg 1 

The Stock Model CM Stoke brokers GCA unspecified beg 1 

The Real State 
Model 

CM Real state GCA unspecified beg 1 

 

Table 53 provides a structural overview of the repository. Notice that there are 

ontologies of all sizes, from enormous ones (e.g. The MGIC Ontology, with 3800 

                                            
6 OWL ontology used to create the OntoUML version available at: http://musicontology.com/  
7 OWL ontology used to create the OntoUML version available at: http://www.w3.org/TR/prov-o/  
8 WSMO: Web Service Modeling Ontology 
9 OWL ontology used to create the OntoUML version available at: http://www.wsmo.org/  

http://musicontology.com/
http://www.w3.org/TR/prov-o/
http://www.wsmo.org/
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classes and 1918 associations), to medium (e.g. OntoUML Org Ontology, containing 

78 classes and 78 associations), to very tiny ones (e.g. The Chartered Services Model, 

formalizing 11 classes and 14 associations). 

Furthermore, Table 53 provides information of the number of data types (includes 

complex datatypes, enumerations and primitive types), generalizations (Gen.), 

generalization sets (GS) and attributes (Attr.) in each model.  

Table 53. Structural description of all models in the repository 

Model Class Datatype Assoc. Gen. GS Attr. 

The MGIC Ontology 3800 61 1918 3616 698 865 

The G.805 Ontology 135 4 113 127 36 0 

The G.805 Ontology 2.0 358 1 255 475 62 7 

The G.800 Ontology 477 1 345 601 78 7 

OntoEmergePlan 189 4 138 111 16 5 

OntoUML Org Ontology 78 0 78 57 8 0 

The ECG Ontology 49 0 65 31 0 0 

Gi2MO Ontology Refactored 65 5 63 42 7 2 

Internal Affairs Ontology Refactored 62 0 54 36 9 0 

OVO 49 0 50 26 4 0 

The Library Model 43 0 45 14 0 0 

OntoBio 187 5 50 160 22 14 

The Public Tenders Model 84 0 43 48 6 18 

UFO-S 22 0 42 4 0 0 

The TM Forum Model 34 0 41 20 4 0 

The Social Contract Model 20 0 15 16 0 2 

The Clergy Model 29 0 34 16 0 0 

The FIFA Football Model 68 1 32 69 4 2 

The PAS 77:2006 Ontology 66 0 32 55 11 0 

IDAF Model 46 0 32 38 0 0 

The Cloud Vunerability Ontology 33 0 29 21 2 0 

The University Model 27 4 29 16 0 0 

CMTO 41 0 28 28 0 0 

GRU MPS.BR Model 19 7 28 15 3 18 

The Experiment Model 20 2 26 0 0 0 

CSHG Refactored 19 0 22 10 1 0 

The Normative Acts Ontology 63 1 21 55 17 24 

The Parking Lot System 49 0 21 37 9 17 

The School Transportation Model 33 0 36 9 0 0 

The Quality Assurance Ontology 41 0 20 24 7 2 

The OpenFlow Ontology 20 0 19 9 1 4 

The Music Ontology Refactored 43 0 18 36 6 5 

The Internship Model 26 6 18 19 4 2 

The G.809 Model 24 0 18 12 4 0 

The ERP System Model 38 0 16 25 1 43 

The Online Mentoring Model 29 0 16 18 6 0 
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The Help Desk System Model 20 0 16 8 4 0 

The IT Infrastructure Model 31 0 15 17 6 0 

The Requirements Ontology 35 1 21 30 10 19 

The Photography Model 19 0 15 8 0 0 

FIRA Ontology Refactored 41 0 14 36 7 0 

The Bank Model 18 0 12 14 4 2 

The Chartered Service Model 11 0 14 0 0 0 

The Health Organization Model 24 0 13 14 3 0 

The Bank Model 2 24 1 14 16 3 3 

The PROV Ontology Refactored 16 0 12 5 0 0 

WSMO Refactored 12 0 12 2 0 0 

The Rec. Model 16 0 10 11 3 6 

The Inventory System 20 0 7 14 0 24 

MPOG Ontology Draft 15 0 7 15 4 0 

The Project Management Model 14 0 7 8 3 0 

The Construction Model 13 0 7 7 0 0 

The Stock Model 14 0 6 11 7 0 

The Real State Model 15 0 5 13 0 0 

 

In Appendix B, we elaborate on the most noteworthy ontologies, namely the ITU-T 

ontologies, OntoEmergePlan, OntoBio and OntoUML Org Ontology. For each, we 

provide further information about the domains, applications and the stereotype usage 

in the model.  

6.2 SIMULATION-BASED INVESTIGATION 

Throughout this research, we employed different approaches for the identification of 

anti-patterns in OntoUML conceptual models. The first and most used was an empirical 

qualitative analysis. The idea was to simulate existing models (using the methods and 

tools described in Chapter 3) and identify recurrent modeling problems. To do that, we 

needed to gather as many models as possible with the most characteristics variation 

as possible. 

Figure 53 depicts a flowchart of the protocol adopted in our studies for the identification 

of new anti-patterns. For each model under analysis, we started by dividing it into 

smaller fractions, then simulating these model fragments using the approach described 

in Chapter 3. This process resulted in a number of possible model instances for that 

model (automatically generated by the Alloy Analyzer). We then contrasted the set of 
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possible instances with the set of intended instances of the model, i.e., the set of model 

instances that represented intended state of affairs according the creators of the 

models. When we detected a mismatch between these two sets, we analyzed the 

model in order to identify which structures (i.e., combination of language constructs) 

were the causes of such a mismatch. We then proceed to fix the model and register 

the combination of problem and solution.  

 

Figure 53. Detailing of the protocol adopted for anti-pattern identification through visual 

simulation 

Finally, after analyzing the models, we catalogued as anti-patterns those model 

structures that recurrently produced such domain misrepresentations, i.e., modeling 

patterns that would repeatedly produce model instances, which were not intended 

ones, or that would not produce the expected model instances. We carried out this 

simulation-based validation process with a constant interaction with the model creators 

(when available), or by inspecting the textual documentation accompanying the 

models. 

To conclude, we point out that we designed the aforementioned protocol to identify two 

types of problems: under and over constraining. This expectation lies on the fact that 

we use a simulation-based approach. When we identify an undesired possibility, we 

say that the model is under-constrained. When we expect a model instance, but we do 

not encounter it, the model is over-constrained. For this reason, we only encountered 

Logical and Scope Anti-Patterns (see Section 4.2) with this approach. 
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6.2.1 The First Empirical Study 

The preliminary study presented in this section is published in (SALES; BARCELOS; 

GUIZZARDI, 2012).  

The study was conducted with only 9 models, namely: The Health Organization Model, 

The University Model, The Online Mentoring Model, The G.805 Ontology, OntoBio, 

The ECG Ontology, The Normative Act Ontology (although during that time it wasn’t 

published yet), The Public Tenders Ontology (a subdomain of the MGIC ontology) and 

The MPOG Ontology Draft. For more details about these models, please refer back to 

Table 52. 

The study allowed us to identify six initial semantic anti-patterns, namely: Generic 

Cycle (now renamed to Association Cycle), Relation Specialization, Imprecise 

Abstraction, Pseudo Anti-rigid, Type-Self Relationship and Relation Between 

Overlapping Subtypes (in this thesis, we merged these last two into Binary Relation 

With Overlapping Ends).  

Table 54. A summary of the results in the first study 

Ontology #GC #RBOS #RS #IA #TRR #PAR 

The Health Organization 
Model 

1 1 0 1 0 0 

The University Model 1 1 1 3 0 0 

The Online Mentoring Model 3 2 0 1 0 0 

The G.805 Ontology 9 1 3 3 4 1 

OntoBio 2 2 11 3 3 0 

The ECG Ontology 2 0 2 2 0 2 

The Normative Acts Ontology 8 3 0 3 0 0 

The Public Tenders Ontology 2 4 1 0 0 0 

MPOG Ontology Draft 2 0 2 1 2 1 

Total 30 14 20 17 9 4 

Percentage 100% 77.7% 66.7% 88.9% 33.3% 33.3% 

       

A particular characteristic of this study is that we performed the protocol in every one 

of the nine models aforementioned. Furthermore, after came up with the set of potential 

anti-patterns, we manually inspect every model for occurrences and analyzed whether 

or not an occurrence characterized an error. Table 54 summarizes the number of 

occurrences (#) for the following anti-patterns in each of the investigated ontologies: 



211 

Generic Cycle (GC), Relation Between Overlapping subtypes (RBOS), Relation 

Specialization (RS), Imprecise Abstraction (IA), Type-Reflexive Relationship (TRR) 

and Pseudo Anti-Rigid (PAR). The number presented for each anti-pattern only 

encompasses those that were the cause of domain misrepresentations.   

6.2.2 The Second Empirical Study 

The initial study described in the previous section, gave us confidence that we could 

adopt the method as means for detecting these semantic anti-patterns. We then 

conducted a broader study, published in  (SALES; GUIZZARDI, 2014). In this new 

study, our model benchmark contained not nine, but 52 models. The whole model 

repository listed in Section 6.1, except “The G.805 Ontology 2.0” and “The G.800 

Ontology”. 

Due to human resource limitations, we would not be able to conduct the study in the 

same way as the first. Therefore, in order to analyze this new benchmark, we 

implemented a set of computational strategies to automatically detect occurrences of 

these anti-patterns in OntoUML models (see discussion in Section 8.3). By running 

these algorithms for our initial set of anti-patterns under this benchmark, we managed 

to refine and extend the initial set elicited in (SALES; BARCELOS; GUIZZARDI, 2012) 

to a refined set of anti-patterns.  

Table 55 reports on the results of this second study, which allowed us, at the time, to 

refine our anti-pattern catalogue. The anti-pattern named Binary Relation Between 

Overlapping Types is a refinement and combination of the previous Self-Type 

Relationship and Relation Between Overlapping Subtypes anti-patterns identified in 

the first study. Moreover, we elicited two additional anti-patterns in this second study, 

namely Repeatable Relator Instances10 and Relator Mediating Overlapping Types11. 

Furthermore, the Association Cycle is the previously called Generic Cycle. Finally, we 

exclude the Pseudo-AntiRigid (PAR) anti-pattern, identified in our original catalog, from 

                                            
10  In REF, the Repeatable Relator Instances (RepRel) anti-pattern was entitled Twin Relator Instances 
(TRI) 
11 In REF, the Relator Mediating Overlapping Types (RelOver) anti-pattern was entitled Relator With 
Overlapping Roles (RWOR) 
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the analysis conducted in this study. We did it because we could not specify an 

algorithm to identify its occurrences automatically. 

Unlike in our first study (SALES; BARCELOS; GUIZZARDI, 2012), we were not able 

to check whether every occurrence indeed characterized a modeling error (3612 

occurrences!). For this reason, the results reported in Table 55 stand for identified 

occurrences, regardless whether they are errors or not.  

Table 55. Results of the second anti-pattern empirical study. 

Semantic Anti-Pattern 
% of models in which 

the anti-pattern occurs 
Number of Occurrences 

in Benchmark 

Relation Specialization 46.15% 1435 

Imprecise Abstraction 71.15% 725 

Association Cycle 51.92% 155 

Relator Mediating Overlapping Types 30.70% 437 

Repeatable Relator Instances 55.77% 685 

Binary Relation Between Overlapping 
Types (incl. RBOS and STR) 

48.07% 175 

Total 3612 

  

Other anti-patterns identified using the same method applied in this second study, but 

not published in (SALES; GUIZZARDI, 2014) and are, thus, first being presented in 

this thesis are: Whole Composed of  Overlapping Parts, Part Composing Overlapping 

Wholes, Relator Mediating Rigid Types, Relation Composition, Multiple Relational 

Dependency and Free Role Specialization. 

6.3 FOUNDATIONAL-BASED INVESTIGATION 

The simulation-based approach has shown to be very promising. We, however, did not 

limit ourselves to uncover anti-patterns it exclusively. To improve and increase our anti-

pattern catalogue, we sought inspiration in UFO, the foundational ontology that is in 

the core of OntoUML.  

As we discussed in Chapter 2, UFO is the source of all stereotypes and constraints 

included in OntoUML’s syntax. With that in mind, we took a closer look into the theories 

and definitions that explained the meta-categories of the language. Then, we proceed 
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to verify in our repository if the modelers used the meta-categories in the way the 

foundational ontology describes them. We were not looking for syntactical errors, but 

for valid modeling decisions, which are somehow uncommon, unexpected or even 

unorthodox. 

To clarify what type of problem we were looking for, consider OntoUML’s Formal 

stereotype. Guizzardi defines it in (2005) as a relation reducible to the comparison of 

quality values of the related individuals. In fact, Guizzardi refers to this concept as 

Comparative Domain Formal Relation. For example, the relation “older than” is formal, 

because it is reducible to the comparison of the related individuals’ ages. In other 

words, it is true that Peter is older than John is if and only if Peter’s age is greater than 

John’s age. Now, analyzing OntoUML’s metamodel, one can see that there is no 

restriction involving the use of formal relations. This “freedom” allows modelers to 

relate whatever classes they want using the formal stereotype. The question we would 

investigate, thus, is: are modelers using formal relations with the meaning of 

comparative domain formal relation? If they are, are they accurately defining its 

semantics (providing the quality characteristics and the derivation rule)? If not, what 

are they meaning? 

After we identified this semantic variation “gap” between the foundational ontology and 

the modeling language, we proceed to investigate manually a few models. If we 

identified a recurrent problem, we proceeded to implement a computational strategy to 

identify automatically the potential anti-pattern. Following, we would check our 

repository for occurrence and analyze samples to verify if it matched our expectation.  

Investigations following the aforementioned process lead us mostly to the identification 

of what we called Classification Anti-Patterns, but we also found some Scope Anti-

Patterns as well (please refer back to Section 4.2 about details on anti-pattern types). 

This particular type of semantic anti-pattern highlights possible errors in the decision 

making process applied to choose the appropriate modeling construct for a given 

concept.  

A total of 9 anti-patterns were identified using this foundational ontology approach, 

namely: Relationally Dependent Phase, Undefined Phase Partition, Undefined Domain 

Formal Relation, Mixin With Same Rigidity, Mixin With Same Identity, Generalization 



214 

Set with Mixed Rigidity, Homogeneous Functional Complex, Heterogeneous Collection 

and Event x Truth-Maker x Normative Description. We discuss each anti-pattern in the 

next chapter. 

6.4 INVESTIGATION BY COMPARISON 

The second complementary approach we adopted consisted in the investigation of 

other modeling languages, like Object Role Modeling (ORM) (HALPIN; MORGAN, 

2008), and compare them to OntoUML. We conducted this investigation in a much 

more informal way than the first two methods. We opted not to make formal 

comparisons, but instead, to seek inspiration. We sought modeling constructs that 

existed in other modeling languages but did not in OntoUML. Considering that 

OntoUML is the only ontology-driven conceptual modeling language so far, we did not 

expect to find anti-patterns regarding ontological distinctions. In fact, we aimed to 

uncover syntactical features that could point to constraint patterns to impose on the 

model.  

UML is undoubtedly the most widespread modeling language, but in our case, it made 

no sense to investigate it because OntoUML is already an extension of UML’s Class 

Diagram, so it inherited all UML modeling constructs. We decided, then, to inspect 

ORM (HALPIN; MORGAN, 2008) and it turned out to be quite productive. ORM’s 

internal uniqueness constraint actually inspired the creation of the Repeatable Relator 

Instances anti-pattern, as well as its refactoring alternatives. The external uniqueness 

constraint influenced the Multiple Relational Dependency. Finally, the ring constraints 

indicated possible refactoring alternatives for the Binary Relation Between Overlapping 

Types. We will provide detail about ORM’s influence on the anti-pattern catalogue as 

we present them in the next chapter. 
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6.5 CONCLUSION 

In general, all three approaches we adopted for anti-pattern identification produced 

successful results, as evidenced by the 22 anti-patterns presented in the next chapter.  

Nonetheless, we acknowledge that the empirical protocol presented in Section 6.2 has 

a few limitations, namely:  

 how to divide the model into smaller fractions;  

 how to generate relevant model instances; and  

 the problem of identifying when a model instance characterizes a mistake.  

The Alloy Analyzer, the tool we use to generate model instances, imposes the first 

issue, the need to identify small model fragments to simulate. However, even if we 

were able to simulate a big model and generate many instances, we have limited 

cognitive capacity, so it would be hard to analyze all together. Regardless, we are 

aware that the way one divides a model influences the errors one will find (or not).  

The second issue regards the generation of model instances and it affects the 

performance of executing the protocol. The Alloy Analyzer generates all valid instances 

that fit a given specification. The problem is that the number of possible instances 

increases exponentially with the model. The task of generating instances with 

differently enough properties can be very laborious. 

The third issue is the problem of identifying if a model instance is wrong or not. The 

way we did it, by visual inspection, is obviously error prone. We do not envision any 

alternative, so we had to accept that. 

The last remark we make is that, even though we analyze the models in the benchmark 

looking for “bad” decisions, we encountered various domain dependent and 

independent positive modeling patterns. It was not it the scope of this work to 

investigate these decisions, but the model benchmark we assembled is surely useful 

for that purpose. 
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 EVALUATING THE ANTI-PATTERN CATALOGUE 

We defined semantic anti-patterns as being error-prone recurrent modeling decisions. 

Therefore, in order to evaluate how useful the proposed anti-pattern catalogue is, we 

analyzed two characteristics of each anti-pattern: frequency, that measures how 

recurrent these modeling decisions are; and accuracy, that indicates how error-prone 

they are. In this section, we present the results of the two studies we conducted to 

individually assess each of these aspects. 

In both studies, we evaluate the results individually (focusing on a single anti-pattern) 

and for the catalogue as a whole, aggregating results for all anti-patterns. 

To conduct the experiments we used two software tools:  

 Sparx Enterprise Architect (EA)12, a commercial UML-based modeling tool that 

we used to re-construct the models we gathered (to models were specified using 

the OntoUML MDG plugin (SOBRAL; GUERSON; SALES, 2012)); and  

 OntoUML Lightweight Editor (OLED)13, to automatically detect and analyze 

occurrences of the anti-patterns (for more details, see Chapter 8). 

7.1 FREQUENCY EVALUATION 

The goal of the first study is to evaluate anti-pattern frequency, i.e., how likely are 

modelers to design structures that fit an anti-pattern definition. Frequency is the first 

pillar on anti-pattern relevance: anti-patterns that are more common have a greater 

impact on ontology development, because it means that modelers often make those 

“dangerous” decision and this, more people can learn and take advantage from it. 

Remember that, even though an anti-pattern occurrence does not imply a mistake, in 

this first study, we were only interested if the structure defined by an anti-pattern is 

recurrent or not. 

                                            
12 http://www.sparxsystems.com.au/ 
13 https://code.google.com/p/ontouml-lightweight-editor/ 

http://www.sparxsystems.com.au/
https://code.google.com/p/ontouml-lightweight-editor/
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To perform this evaluation, we adopted a fully automatic approach: we used our anti-

pattern management tool developed for OLED (see Chapter 8) to identify automatically 

occurrences of each anti-pattern in each of the 54 models in our repository (see 

Section 6.1). We then aggregate the results and compared to some model 

characteristics to better characterize them.  

The first variable we investigated is the sum of all anti-pattern occurrences in all 

models, which is useful to provide a dimension of the size of the population under 

analysis. Table 56 details the results, indicating the number of occurrences, the 

percentage regarding all occurrences and the anti-pattern type. Overall, we identified 

6004 occurrences in the 54 models. Furthermore, we identified at least on instance of 

all anti-patterns. 

Table 56. Summary with all identified occurrences in all models. 

Anti-Pattern All Occurrences Occurrences/Total Type 

AssCyc 1809 30.13% Logical 

RelSpec 817 13.61% Logical 

ImpAbs 758 12.62% Logical; Scope 

RelComp 739 12.31% Logical 

RepRel 319 5.31% Logical 

UndefFormal 293 4.88% Classification 

RelRig 282 4.70% Logical; Scope 

BinOver 224 3.73% Logical 

RelOver 149 2.48% Logical 

HomoFunc 142 2.37% Classification; Scope 

FreeRole 119 1.98% Logical; Scope 

MultDep 105 1.75% Logical; Scope 

DecInt 92 1.53% Logical 

HetColl 60 1.00% Classification 

WholeOver 27 0.45% Logical 

GSRig 16 0.27% Classification; Scope 

MixIden 16 0.27% Classification; Scope 

PartOver 13 0.22% Logical 

UndefPhase 11 0.18% Classification; Scope 

DepPhase 7 0.12% Classification; Scope 

MixRig 6 0.10% Classification; Scope 

Total 6004 100%  

 

We organized the table by the number of occurrences, in a decreasing order. Thus, 

the most identified anti-pattern is AssCyc, which corresponds to a significant 30% of 
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all anti-patterns. RelSpec, ImpAbs and RelComp follow it, all with more than 700 

occurrences. We expected these results, since these are the only stereotype-

independent anti-patterns. 

Now, if we aggregate the results by anti-pattern type, we get that 5348 are logical in 

nature, whilst 1462 indicate scope issues and only 551 point to classification problems. 

These numbers are reasonable if we take into account the fact that we identified the 

logical anti-patterns through empirical analysis, whilst we proposed the classification 

ones from theoretical studies. 

The variability of anti-pattern occurrences per model is so great that the average does 

not provide an insight on how many occurrences per model we should expect. AssCyc, 

for example, has 33 occurrences as average and standard deviation of 126, a variation 

ration of almost 400%.  

The sum of occurrences is not the only dimension adopted to characterize anti-pattern 

frequency because it does not show the distribution in different models. A high number 

of occurrences in one model, for example, might hide the fact that many models 

register no occurrence. To cope with that, we describe in Table 57, the number of 

models with at least one occurrence of a given anti-pattern, alongside the 

corresponding percentage if compared to all models in the repository. This provides us 

indication on how many different modelers produced anti-pattern occurrences. 

In a decreasing order, the table shows that again, AssCyc is the most frequent anti-

pattern. Not only has it occurred many times, but in many different models. From the 

54 for investigated model, 50 registered at least one occurrence of AssCyc, what 

corresponds to 92.59% of the repository. This results show that some stereotype-

specific anti-patterns, like RelRig, RepRel, MultDep (all defined around relators and 

mediations), and UndefFormal (specified using formal associations) move up in the 

frequency list.  

We identified almost all anti-patterns in multiple models, an indication that they are 

indeed recurrent modeling decisions. Particularly, we identified AssCyc in 93% of the 

models. We identified five anti-patterns in 50-75% of the models, another 5 in 25-50% 

of the models and 10 in 25% or less models.  
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We only identified two anti-patterns in a single model, namely PartOver and MixRig. In 

both cases, we only identified occurrences in the MGIC ontology. PartOver is an anti-

pattern derived from RelOver (in the same way that WholeOver was), so if we consider 

all overlapping anti-patterns together, we found 189 occurrences in 16 different 

models. In addition, MixRig is an anti-pattern that indicates an improper use of the 

mixin concept. The identification of MixRig in only one model is explained by the 

seldom use of the mixin stereotype. In fact, in the whole repository, only seven models 

use it. Therefore, one out of seven is not that bad, since it corresponds to 14% of the 

models. 

Table 57. Anti-Pattern frequency on investigated models. 

Anti-Pattern Models with 
Occurrence 

Model With Occurrence 
/ All Models 

 AssCyc 50 92.59% 

 ImpAbs 39 72.22% 

 RelRig 37 68.52% 

 RepRel 31 57.41% 

 MultDep 28 51.85% 

 UndefFormal 27 50.00% 

 BinOver 26 48.15% 

 RelSpec 26 48.15% 

 RelComp 24 44.44% 

 HomoFunc 20 37.04% 

 FreeRole 18 33.33% 

 RelOver 12 22.22% 

 DecInt 10 18.52% 

 UndefPhase 8 14.81% 

 HetColl 7 12.96% 

 WholeOver 6 11.11% 

 GSRig 5 9.26% 

 DepPhase 5 9.26% 

 MixIden 5 9.26% 

 PartOver 1 1.85% 

 MixRig 1 1.85% 

   

The percentage of models with at least one occurrence can also mislead the results’ 

interpretation.  The frequency that modelers use a particular element type directly 

affects the frequency of anti-patterns defined in terms of that element. For example, 

the RelRig anti-pattern, defined as relator connected to rigid types, can only occur in a 

model that has relators and rigid types.  
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To remove from the frequency evaluation the impact of a particular element type 

usage, we compare the number of models with at least one occurrence of an anti-

pattern with the models with at least one element that can characterize the anti-pattern. 

In a way, this comparison shows the rate of “dangerous” usage of a particular element 

type. Table 58 presents the results by additionally identifying the relevant element type, 

the number of models that contain at least one instance of the respective model 

element, and new percentage. Note that, for some anti-pattern, like AssCyc, no change 

is identified, since the require element type occurs in all models. 

Table 58. Anti-Pattern frequency on models with required elements. 

Anti-Pattern 
Relevant 

Element Type 
Models with 
Occurrence 

Models With 
Element 

Models With Occurrence / 
Models With Element Type 

UndefFormal Formal 27 29 93.10% 

AssCyc Association 50 54 92.59% 

RelRig Relator 37 48 77.08% 

ImpAbs Association 39 54 72.22% 

RepRel Relator 31 48 64.58% 

MultDep Mediation 28 48 58.33% 

HomoFunc Meronymic 20 41 48.78% 

BinOver Association 26 54 48.15% 

RelSpec Association 26 54 48.15% 

RelComp Association 24 54 44.44% 

UndefPhase Phase 8 21 38.10% 

FreeRole Role 18 49 36.73% 

RelOver Relator 12 48 25.00% 

DepPhase Phase 5 21 23.81% 

DecInt Sortal 10 54 18.52% 

HetColl Meronymic 7 41 17.07% 

WholeOver Meronymic 6 41 14.63% 

MixRig Mixin 1 7 14.29% 

GSRig Gen. Set 5 37 13.51% 

MixIden Non Sortal 5 37 13.51% 

PartOver Meronymic 1 41 2.44% 

     

Surprisingly, from this perspective, AssCyc loses the position of most frequent anti-

pattern. We encounter at least one UndefFormal occurrence in 27 of the 29 models 

that have formal relations, resulting in an occurrence rate of 93.10%. HomoFunc’s 

frequency also significantly rises, from 37% to 48%.  If we aggregate the results once 

more, we see three anti-patterns in more than 75% of the relevant models, another 

three from 50-75%, seven from 25-50% and eight in 25% or less.  
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The last variable we use to evaluate anti-pattern frequency is the ratio between the 

number of elements and the number of anti-pattern occurrences. For example, if ten 

relators characterize two occurrences of RelRig, the ratio is of five relators per RelRig 

occurrence. This measure will help us understand the rate in which users produce anti-

patterns in their ontologies, taking into account the elements that cause the problem 

and ignoring the size of the model and the frequency of use of a particular element.  

For each anti-pattern, Table 59 presents:  

 the number of occurrences identified in all models (#Occ.),  

 the type of element most relevant to the anti-pattern, 

 the number of the element type encountered in all models (#Element),  

 the rate between the number of elements and the number of occurrence 

considering all models (#Element/#Occ.) and lastly,  

 the average rate of elements per occurrences considering only the models that 

have at least one occurrence of the anti-pattern.  

Table 59. Anti-pattern appearance rate regarding model elements. 

Anti-Pattern #Occ. Element Type #Element #Element/#Occ. 
#Element/#Occ. 
(Model Average) 

UndefFormal 293 Formal 373 1.27 1.07 

AssCyc 1809 Association 4017 2.22 7.23 

RepRel 319 Relator 1204 3.77 2.94 

RelRig 282 Relator 1204 4.27 4.11 

RelSpec 817 Association 4017 4.92 9.90 

HomoFunc 142 Meronymic 735 5.18 4.46 

ImpAbs 758 Association 4017 5.30 6.89 

RelComp 739 Association 4017 5.44 6.91 

RelOver 149 Relator 1204 8.08 7.27 

MixRig 6 Mixin 53 8.83 12.33 

HetColl 60 Meronymic 735 12.25 6.47 

FreeRole 119 Role 1930 16.22 9.91 

BinOver 224 Association 4017 17.93 14.32 

MultDep 105 Mediation 1908 18.17 31.76 

UndefPhase 11 Phase 209 19.00 9.56 

WholeOver 27 Meronymic 735 27.22 10.48 

DepPhase 7 Phase 209 29.86 13.90 

MixIden 16 Non Sortal 622 38.88 8.74 

PartOver 13 Meronymic 735 56.54 24.77 

GSRig 16 Gen. Set 1080 67.50 27.60 

DecInt 92 Class 6744 73.30 44.43 
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The element/anti-pattern rate is the most precise characterization of anti-pattern 

frequency we provide because it ignores the overall size of the model and the usage 

frequency of the required elements. This rate provides an estimation of the number of 

elements required for a modeler to produce an anti-pattern. Again, UndefFormal 

appears at the top: for every 12 associations, 10 characterize an occurrence. This 

result is surprising because it shows that domain comparative formal relations are 

rarely used or that modelers do not know, want or need to specify them properly 

(providing the required qualities and derivation rule). 

We can also see that 10 anti-patterns require less than 10 usages of their respective 

element type to occur, five require from 10-20 usages, and the remainder six requires 

more than 20.  

To conclude whether or not our catalogue is of recurrent modeling decisions, one must 

define what “recurrent” means. Does it account for how many overall occurrences we 

identified? How many different modelers made that decision? Alternatively, even how 

many elements modelers use in average to generate an anti-pattern occurrence? 

Despite what one might consider the most relevant characteristic, this study shows that 

the proposed catalogue is composed of recurrent modeling decisions, even though 

some might be more frequent than others might. 

7.2 ACCURACY EVALUATION: THE MGIC ONTOLOGY 

In this second study, we focus on anti-pattern accuracy, instead of frequency. The 

goal is to measure two things: the probability of an anti-pattern occurrence to 

characterize a domain misrepresentation and how often users select the provided 

refactoring plans to solve an occurrence that in fact characterizes a mistake. Through 

the analysis of these two variables, we assess the usability of an anti-pattern. 

It is not possible to conduct a study of this nature in a fully automatic way, as we did in 

the first study. In fact judging an anti-pattern occurrence a mistake is a matter of 

domain knowledge and design decisions made by the modeler. With that in mind, we 

chose to conduct the anti-pattern accuracy evaluation as a case study using the MGIC 

ontology. Multiple factors led to this decision:  
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 the ontology is the biggest in the repository; 

 it contains occurrences of all anti-pattern types;  

 ten modelers participated in its development, throughout three years;  

 it is the product of an industrial project with the Brazilian government; and  

 most importantly, the modelers accepted to participate in the analysis because 

it was their interest to validate their ontology. 

7.2.1 Methods and Tools 

Eight modelers participated in this empirical study. We assigned sub-ontologies to 

each of them, taking into account their knowledge about the domain and its complexity, 

represented by the number of classes and relations used to formalize it. To guarantee 

that the modelers would have enough knowledge to analyze the anti-pattern 

occurrences, we mostly assigned subdomains that he/she participated in the 

development. We also encouraged modelers to interact with each other during the 

case study.   

The modelers developed the MGIC ontology using Sparx Enterprise Architect14, a 

UML-based modeling tool. In order for modelers to use the anti-pattern detection tool, 

they had to export the whole model in the XMI format and then import into OLED the 

subdomains they were assigned. Modelers conducted the anti-pattern detection 

exclusively through the tool. Furthermore, modelers analyzed the anti-pattern using 

the wizards we implemented (for more details, see Chapter 8).  

We intentionally did not provide participants with any anti-pattern training. Not 

regarding their structure, justification or predicted solutions. We also did not specify 

any order in which the participants should analyze the anti-patterns. We made these 

decisions because our goal, since the beginning of this research, was to develop a tool 

that did not require formal training. In fact, that is one of the reasons that we 

implemented a wizard to guide modelers throughout the analysis of each anti-pattern. 

                                            
14 http://www.sparxsystems.com.au/ 

http://www.sparxsystems.com.au/
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By not providing any training, this study also manages to provide us feedback 

regarding how user friendly our proposal is.  

We highlight that, throughout the development of this case study, the anti-pattern 

management tool was improved. It was an interactive process: the participants used it 

and if whenever they identified bugs or improvements opportunities, they contacted us 

so we could discuss and improve the anti-pattern support. We were available to answer 

all sorts of question to the participants, either regarding anti-pattern definition, 

refactoring plans or even ontological notions required to understand the anti-patterns. 

Therefore, what we asked the participant to do was to manually analyze each anti-

pattern occurrence identified within his assigned subdomain and register his 

conclusion according to the following template: 

 Anti-Pattern Type: an acronym to identify the type of anti-pattern 

 Description: a textual description automatically generated by the anti-pattern 

tool. It identifies the classes and associations relevant for understanding the 

anti-pattern. Moreover, it is useful to reproduce each occurrence. 

 Decision: a binary field that captures the ultimate decision regarding an anti-

pattern occurrence. The field can be set as “Error” or “Correct”. Participants 

used the former if the occurrence analysis lead to some modifications in the 

model, predicted by our anti-patterns or not. We intentionally did not provide a 

“Don’t Know / Don’t Understand” option because, in those cases, we instructed 

the modelers to interact with us, if the doubt regarded anti-pattern definition, or 

to interact with each other, to solve a decision question.  

 Action: describes the action participants adopted to refactor the model – we 

instructed participants to input information in this field only if they identify an 

error. 

 Predicted: three values can be assigned to this field for this field: “Yes”, “No” 

and “Partially”. It describes whether anti-pattern was completely able, partially 

able or unable to predict the refactoring actions.  

 Comment: a field that participants could freely fill (e.g. doubts, intuitions, 

observations, and so on). 
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Due to the size of the MGIC ontology (3800 classes and 1800 associations), we 

expected the number of identified anti-patterns to be also very large. This case study 

did not intend to analyze every single anti-pattern occurrence, but as many as possible. 

We partially analyzed the anti-patterns named AssCyc, RelComp and ImpAbs, since 

we encountered more than 400 occurrences of each. 

7.2.2 The MGIC Ontology 

Before we present the study results, we briefly describe the MGIC ontology, providing 

an overview of its development context, the domain it formalizes and its structural 

information (number of classes, relations, stereotypes, etc.) 

The project entitled Modelo de Gestão da Informação e Conhecimento15 (MGIC)   is a 

product of a partnership between a Brazilian regulatory agency named Agência 

Nacional de Transportes Terrestres16 (ANTT) and Brazilian federal universities of 

Espírito Santo, Fluminense and Rio de Janeiro (UFES, UFF and UFRJ respectively). 

It was conceived to improve the way ANTT manages information and knowledge, by 

means of integration and consolidation (BASTOS et al., 2011). The adopted 

methodology proposed the creation of five types of models: information flow, business 

requirements and assets, knowledge and competence, and an ontology-based 

reference conceptual model. 

The ontology’s main role was to provide structure and semantics to the information 

handled by the agency, to serve as reference model to allow semantic interoperability 

between the systems controlled it maintains (BASTOS et al., 2011). The MGIC 

ontology also intended to serve as a guide to the agency’s databases triplication and 

posterior publication. Information transparency and publication is a law-imposed 

obligation for all Brazilian governmental organizations since the sanction of the law 

entitled Lei de Acesso à Informação17 (BRASIL, [s.d.]). 

                                            
15 In English: Knowledge and Information Management Model 
16 In English: National Ground Transportation Agency 
17 In English: Information Access Law 
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The design of the MGIC ontology took 3 years. Throughout that time, 10 modelers 

were involved, who collaborated with close to 40 domain experts in order to define the 

scope and capture the conceptualization shared within the agency. A team of 

ontologists visited the 11 main departments of the agency. In each department, they 

interviewed experts appointed by the departments’ management. 

The ontology describes the domains relevant for ground transportation regulation. The 

following list presents the most relevant ones: 

 Cargo transportation: includes definitions related to cargo transportation by 

truck, train, pipelines or multimodal (a combination of different transport types). 

It describes the differences between interstate and international cargo 

transportations, and transportation of hazardous products. 

 Passenger transportation: describes concepts related to interstate and 

international regular and eventual passenger transportation on both highways 

and railroads.  

 Infrastructure concession: describes the process of concession and controlling 

of highway and railroads infrastructure to private companies. 

 Legislation: includes concepts regarding the legal process for regulating the 

transport segment. 

From a structural perspective, the MGIC Ontology is massive, particularly if compared 

to other conceptual models. It defines 3800 classes, 1918 associations, 3616 

generalizations, 698 generalization sets, 71 data types, 865 attributes and 149 

constraints, all distributed in 291 packages. To the extent of our knowledge, this is the 

biggest OntoUML model ever created! 

The ontology also has occurrences of every single language construct defined in 

OntoUML: all eleven class’ stereotypes and all nine association’s stereotypes. Figure 

54 details the number of occurrences for each class stereotype. Notice that Role is the 

most frequent stereotype: 1066 occurrences or 28.1% of all classes.  
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Figure 54. Distribution of the class’ stereotypes within the MGIC Ontology. 

Figure 55 depicts the associations stereotype distribution is the MGIC ontology. The 

number of mediations is significantly higher than the others, 1103 or 57.5% of all 

associations in the model. We expected this high number of mediations, since they are 

required to characterize roles.  

 

Figure 55. Distribution of association’s stereotypes within the MGIC Ontology. 
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7.2.3 General Results 

The modelers analyzed together 1475 anti-pattern occurrences in the MGIC ontology. 

We summarize the results in Table 60. The column identified as “#Occ.”, stands for the 

number of analyzed occurrences of a given anti-pattern type, whilst the one labeled as 

“#Error”, refers to the number of occurrences considered as modeling errors by the 

participants. The columns “#Pred.”, “#Partial” and “#Custom” stand for the sum of 

occurrences the participants fixed using: exclusively refactoring plans, some 

refactoring plans and some custom solutions and exclusively custom solutions, 

respectively. 

We measure the accuracy of anti-pattern by dividing the number of times it 

characterizes a mistake by the number of times it occurs. This measure provides the 

probability of a given occurrence to characterize a mistake. If we sum all occurrences 

of all types, we have that in 53.8% of the cases an anti-pattern characterizes a mistake. 

Roughly, for every two occurrences, one is an error and one is a “false alarm”.  

Individually analyzing the results, we notice that some anti-patterns characterized 

mistakes in every single occurrence, like GSRig, MixIden and MixRig. Conversely, 

ImpAbs’s problem rate was the lowest, only 8.8% of the time. Furthermore, if we 

classify anti-pattern by accuracy range, we have: five anti-patterns with a problem rate 

greater than 75%, another nine in 50-75%, four resulted in errors in 25-50% of the time, 

and only two in less than 25%. These numbers are a strong indication that the 

structures identified by the anti-patterns are indeed error-prone. 

Anti-pattern accuracy also refers to the capacity of predicting appropriate refactoring 

solutions. We measure that by dividing the number of occurrences in which modelers 

exclusively adopted standard solutions by the number of occurrences that they 

considered as mistakes. In this study, the modelers exclusively adopted pre-defined 

solutions 692 times in the 794 occurrences considered as errors. This represents a 

percentage of 87.15% of the time, in comparison to 2.39% of partial solutions and 

10.45% of exclusively custom ones. 

Taking each anti-pattern at a time, we notice two that were able to provide 

appropriately solutions a hundred percent of the time: DepPhase and HetColl. RelSpec 
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and RelRig almost hit the same level, with 97.1% and 98.1% respectively. On the other 

end, conversely, we had not so promising results for RelComp, PartOver and ImpAbs, 

with a predictability of 35.3%, 33.3% and 27.3%, respectively.  

Table 60. Summary of anti-pattern accuracy results. 

Anti-Pattern #Occ. #Error 
#Error / 
#Occ. 

#Pred. 
#Pred. / 
#Error 

#Partial 
#Partial 
/ #Error 

#Custom 
#Custom 
/ #Error 

DepPhase 4 2 50.0% 2 100.0% 0 0.0% 0 0.0% 

HetColl 52 11 21.2% 11 100.0% 0 0.0% 0 0.0% 

RelRig 161 107 66.5% 105 98.1% 1 0.9% 1 0.9% 

RelSpec 315 279 88.6% 271 97.1% 1 0.4% 7 2.5% 

GSRig 16 16 100.0% 15 93.8% 0 0.0% 1 6.3% 

WholeOver 17 16 94.1% 15 93.8% 1 6.3% 0 0.0% 

UndefFormal 96 43 44.8% 40 93.0% 0 0.0% 3 7.0% 

RepRel 221 57 25.8% 48 84.2% 4 7.0% 5 8.8% 

FreeRole 39 23 59.0% 19 82.6% 2 8.7% 2 8.7% 

DecInt 55 17 30.9% 14 82.4% 0 0.0% 3 17.6% 

RelOver 124 70 56.5% 54 77.1% 1 1.4% 15 21.4% 

MixIden 13 13 100.0% 10 76.9% 2 15.4% 1 7.7% 

BinOver 74 31 41.9% 23 74.2% 0 0.0% 8 25.8% 

HomoFunc 61 33 54.1% 24 72.7% 0 0.0% 9 27.3% 

AssCyc 20 14 70.0% 10 71.4% 0 0.0% 4 28.6% 

MultDep 41 23 56.1% 16 69.6% 6 26.1% 1 4.3% 

MixRig 6 6 100.0% 4 66.7% 0 0.0% 2 33.3% 

UndefPhase 3 2 66.7% 1 50.0% 1 50.0% 0 0.0% 

RelComp 28 17 60.7% 6 35.3% 0 0.0% 11 64.7% 

PartOver 4 3 75.0% 1 33.3% 0 0.0% 2 66.7% 

ImpAbs 125 11 8.8% 3 27.3% 0 0.0% 8 72.7% 

Total 1475 794 53.8% 692 87.15% 19 2.39% 83 10.45% 

7.2.4 Individual Results 

This study also generated results that contribute in understanding anti-patterns 

individually. For one, we gathered the frequency that users chose each refactoring 

plan. Furthermore, we even managed to capture, for some anti-patterns, a recurrent 

argumentation to justify occurrences not being errors.  

In the following sections, we discuss relevant individual results for the BinOver, 

FreeRole, HomoFunc and UndefFormal anti-patterns. For the complete detailed 

results, please refer to Appendix B. 
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7.2.4.1 BinOver 

BinOver, the anti-pattern characterized by an association between overlapping types, 

occurred 74 times. From those, 31 were actual mistakes (41.9%). Counting only the 

mistakes, the modelers adopted one of our suggested solutions 23 times (74.2%). The 

option to enforce one or more binary properties was selected 16 times (70%), while 

the alternative to enforce disjointness between the related times was selected seven 

times (30%). The modelers did not opted to change the stereotype of the relation for 

any occurrence.  

If we inspect the types of enforced binary properties, we see that anti-reflexivity and 

anti-symmetry were the most common ones, being set 15 and 14 times respectively. 

The acyclic constraint follows, requested 9 times. The need to specify transitive, 

reflexive or symmetric relations was only encountered one, two and one time 

respectively. This is an indication that the need of binary properties is there and we 

might try to pro-actively incentive modelers to specify such constraints. 

We also managed to identify the reasons that lead the modelers not to consider a 

BinOver occurrence to be a mistake. From the 43 correct cases, in 19 times (44.2%) 

they considered the relation under analysis as derived and the binary properties were 

consequence of the embedded derivation. In another 11 times (25.6%), the desired 

binary properties came from the stereotype choice. Furthermore, in seven cases 

(16.3%), the participants fixed the problem unintentionally, through a solution of a 

previous anti-pattern. Lastly, for the remainder 6 cases, participants did not provide 

further justification. 

7.2.4.2 FreeRole 

The FreeRole anti-pattern is characterized by a role that is directly connected a 

mediation and has one or more direct role subtypes which are not defined by any extra 

relational dependency. Because it aggregates many free roles in the same occurrence, 

the overall number of identified occurrences is not as high as other anti-patterns: only 

39 occurred in the MGIC ontology. From those, 23 characterized modeling problems 

(59%).  
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Although we propose four different refactoring options for the FreeRole anti-pattern, 

the participants of the case study selected only three. From the 23 considered as 

mistakes, 9 times the solution was to define the role as derived by intersection. Another 

nine followed the sub-role pattern and in 8 times, the role of role pattern. The 

participants did not choose the material-defined role pattern for any occurrence. Note 

that more than one role specialization pattern could be selected per occurrence. 

Now, considering the 16 times in which modelers considered FreeRole identifications 

as false alarms, we manage two separate four different rationales. First, 12 

occurrences characterized role specializations defined by the RoleMixin anti-pattern. 

In fact, this presents a flaw in the specification of the anti-pattern structure, which 

should never consider such cases. The other frequent justification was that meronymic 

relations defined the role specializations. Currently, OntoUML does not support this 

modeling pattern, since mediations, not meronymics, are the relations able to define 

roles.  

7.2.4.3 HomoFunc 

HomoFunc is an anti-pattern characterized by a whole composed by a unique type of 

part. It occurred 61 times in the MGIC ontology, which the participants considered as 

mistakes 33 times (or 54.1% of the time). Its predictability is high: in 24 of the 33 

erroneous occurrences, participants adopted a predicted solution. In half of them, it 

implied the creation of additional functional parts, whilst in the other half the 

transformation to a membership relation. 

What we did not foresee was to provide modelers the option to create an additional 

part type in an ancestor of the type that plays the Whole HomoFunc. In fact, that was 

the solution in eight cases. Another solution that was only required once, but which 

theoretically makes a lot of sense, is to change the stereotype of the single 

componentOf relation into a non-meronymic one, like a material relation, or even formal 

one. 

Looking at the justifications for not considering an occurrence a mistake, we identified 

a quite diversified set. Most frequently, for 19 occurrences, modelers claimed that even 
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if they wanted to change the functional part-hood to a membership, they could not. The 

reason was that the type identified as the whole was actually a functional part of 

another whole, which in turn had different part types. Figure 56 depicts an example of 

this dilemma: a simplified fragment of the MGIC ontology about the legislation domain. 

The main concept in the diagram is Normative Act, the general classification used for 

all types of legal documents publishable by the entities of the Brazilian government, 

like a law, a presidential decree or a resolution. These acts are composed amongst 

other things by an Epigraph, the top part of the act that qualifies the type and situates 

it in time (e.g. Law nº 1234 of May 3rd, 2014), and Articles, the basic division unit of an 

act. What characterizes a HomoFunc occurrence, however, is a part of the article, 

named Item, which only has letters as parts. If one analyzes solely the composition 

between items and letters, one might conclude that it is a relation between a collection, 

the Item, and its members, the letters. That conclusion is invalidated by noticing that 

items are functional parts of an article, which is a functional part of a normative act. 

 

Figure 56. Simplified and translated excerpt of the MGIC ontology which about the regulation 

domain 

7.2.4.4 UndefFormal 

The UndefFormal anti-pattern occurs due to an improper use of the formal stereotype. 
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route when they are not able to fit any other stereotype or do not have the necessary 

knowledge to do so. 

In the 96 identified occurrences, participants considered it a modeling error in 43 cases. 

From those, 38 times the participants decided to change stereotype of the relation, 

corroborating assumption of improper use of the formal stereotype. In fact, in 26 times, 

they concluded that the relation should be a componentOf. Furthermore, in other 11 

cases, they changed the relation’s stereotype to material. 

As usual, through the analysis of the occurrences that the participants considered 

correct, we identified that in many times, modelers use the formal stereotype to capture 

a type of relation that OntoUML does not cover. In 19 times, the relation was defined 

connected at least one higher-order universal (a still unsupported class type whose 

instances are other classes, very similar to UML’s idea of powertype (OMG, 2011b)). 

This presents a demand for expand OntoUML to cope with both this type of relation 

and this type of class. 

Furthermore, the investigation led to the identification of a particular design problem 

that modelers recurrently solved with the formal stereotype: how to model the relation 

between a concrete material thing (e.g. person, ball) and the photograph someone 

took of it. It is not a meronymic relation because it does not account for weak 

supplementation – a photo can depict only one person. It is not domain comparative 

because it is not reducible to a comparison between qualities. Furthermore, it is not a 

material relation because there is no ongoing process that provides relational 

characteristics for the related elements. All we have is that an event occurred: one took 

the picture, and while it exists, it will always depict the very same things. There seems 

to be a sort of historical dependency, which no OntoUML stereotype currently covers. 

Concrete examples identified in the MGIC ontology are the relation between buildings 

and blueprints and the relation between bus passenger lines and exploration projects.  

Lastly, we identified another controversial domain specific problem, which regards 

specifying that someone owns something. No consensus was reached amongst the 

participants if whether it is a material relation or a formal one (in the generic sense). 

We see here an open question on how to proper model this domain specific pattern in 

OntoUML. 
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7.3 CONCLUSION 

To provide a conclusion on anti-pattern evaluation, we cross frequency and accuracy 

information on Table 61. For the frequency column, we consider the percentage of 

models an anti-pattern was encountered per models in which they could occur (had at 

least one instance of the anti-pattern’s main element type). For the problem rate and 

predictability columns, we considered the results of the MGIC case study. In the former 

the rate between occurrences that characterized errors per total number of 

occurrences, and in the latter, the percentage of erroneous occurrences that one could 

fix using exclusively pre-defined solutions. Furthermore, instead of the actual 

percentages, we adopted a discrete scale to classify the values, containing specified 

as follows: Very High (80-100%), High (60-80%), Medium (40-60%), Low (20-40%) 

and Very Low (0-20%). 

The higher all these three values are for an anti-pattern, the more useful it is for 

ontology validation. Anti-patterns that always occur, with a high possibility of 

characterizing a mistake and being able to predict most of the refactoring necessities 

are more likely to be useful during ontology validation. Examples of such anti-patterns 

are AssCyc, RelRig and RelSpec. 

“Bad” anti-patterns, on the other hand, are not the scarcely identified ones, but the 

ones that we frequently find but rarely are the source of domain misrepresentations. In 

fact, they require a lot of effort to analyze and little gain in ontology quality. ImpAbs is 

an example of anti-pattern that needs refinement. Our analysis of the phenomenon is 

that ImpAbs’ generic structure, which encompasses all association and class 

stereotypes, increases the number of occurrences. In this case, a refinement is in 

order. Furthermore, ImpAbs’ low predictability corroborates the need to improve not 

only its structural definition but also the associated refactoring plans. 

We argue that the combination of the frequency and accuracy anti-pattern studies 

where successful in the evaluation of anti-pattern usability. Not only that, but it 

improved our confidence that they can be an important tool in ontology validation. 

An unexpected consequence of manually inspecting a great number of anti-pattern 

occurrences is that it provided feedback for anti-pattern refinement opportunities. 
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Furthermore, it provided insights on how OntoUML is used and what else modelers 

demand from it, like meronymic-defined roles, and constitution relations.  

Table 61. Summary of the evaluation results from both studies. 

Anti-Pattern Frequency Problem Rate Predictability 

AssCyc Very High High High 

BinOver Medium Medium High 

DecInt Very Low Low Very High 

DepPhase Low Medium Very High 

FreeRole Low Medium Very High 

GSRig Very Low Very High Very High 

HetColl Very Low Low Very High 

HomoFunc Medium Medium High 

ImpAbs High Very Low Low 

MixIden Very Low Very High High 

MixRig Very Low Very High High 

MultDep Medium Medium High 

PartOver Very Low High Low 

RelComp Medium High Low 

RelOver Low Medium High 

RelRig High High Very High 

RelSpec Medium Very High Very High 

RepRel High Low Very High 

UndefFormal Very High Medium Very High 

UndefPhase Low High Medium 

WholeOver Very Low Very High Very High 
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 TOOL SUPPORT 

In this chapter, we describe the implementation strategies for the proposed validation 

techniques. Particularly, we discuss the implementation of the refactored 

transformation from OntoUML to Alloy in Section 8.4 and the support for managing 

anti-patterns in OntoUML models in Section 8.5. 

8.1 THE ECLIPSE MODELING FRAMEWORK 

The Eclipse Modeling Framework (EMF) is a modeling framework that exploits the 

facilities provided by Eclipse (STEINBERG et al., 2008). It bridges the worlds of 

modeling and programming, by integrating, through automatic transformations, three 

important technologies: UML, Java and the eXtension Markup Language (XML). EMF 

brings all these technologies together by defining a common core of concepts between 

them, formalized in the ECore modeling language, the center of the EMF approach.  

EMF is a framework that moves towards model-driven architecture (MDA), because, 

although it considers modeling and programming the same thing, the level of 

abstraction captured by the modeling language is significantly low. EMF’s most 

relevant feature for this work is the capability of generating Java code from an ECore 

model. With that, we are able to implementation a series of model manipulations, like 

dynamic instance construction, model-to-model transformations, syntactic and 

semantic validation, amongst others. 

EMF’s modeling language, ECore, is very useful for defining the abstract syntax of a 

language. In fact, the EMF environment provides many features for implementing 

textual and graphical editors based on ECore-defined languages. For more details 

about EMF, its applications and tool support, please refer to (STEINBERG et al., 2008). 
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8.2 THE ONTOUML META-MODEL 

All software components developed in this work use the version 1.1.0 of the Reference 

OntoUML (RefOntoUML) metamodel18. The current version of the metamodel 

corresponds to Carraretto’s initial proposal (2010), updated with Albuquerque’s 

proposal for quality representation (ALBUQUERQUE; GUIZZARDI, 2013) and some 

other minor improvements. 

Implemented in ECore and enriched with OCL constraints, RefOntoUML is quite 

complex. A complete description is provided in (CARRARETTO, 2010). The author 

details all attributes and operations defined within the meta-model, alongside with its 

syntactical constraints. 

8.3 OLED – ONTOUML LIGHTWEIGHT EDITOR 

The OntoUML Lightweight Editor (OLED)19 is an open-source front-end tool for building 

and manipulating OntoUML models. Distributed as a runnable .jar, OLED is compatible 

with the latest versions of the most common operational systems: Mac OS, Windows 

and Linux. 

OLED is more than just a CASE tool for OntoUML. OLED is a modeling environment 

that aggregates the technological results of OntoUML-related researches. It provides 

a number of additional functionalities that support users throughout model 

development. Firstly, it provides automatic syntactical verification, obtained from the 

implementation of the latest RefOntoUML version. It also provides support for the 

specification, verification and validation of OCL constraints, resultant from the research 

described in (GUERSON; ALMEIDA; GUIZZARDI, 2014). Moreover, the tool provides 

alternative transformations from OntoUML to OWL (BARCELOS et al., 2013; 

ZAMBORLINI; GUIZZARDI, 2010) in addition to model verbalizations in either SBVR 

and natural language. Now, due to the results obtained from this research, it also 

                                            
18 Download available at: https://code.google.com/p/ontouml-lightweight-editor/ 
19 OLED’s latest compiled version and source code are available at: https://code.google.com/p/ontouml-
lightweight-editor/ 

https://code.google.com/p/ontouml-lightweight-editor/
https://code.google.com/p/ontouml-lightweight-editor/
https://code.google.com/p/ontouml-lightweight-editor/
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supports model validation through visual simulation and anti-pattern management. In 

the remainder of this chapter, we discuss in more detail these last two components. 

During the writing of this thesis, OLED features version 0.9.34. Figure 57 depicts a 

screenshot taken of OLED running on Windows 8.1. The left compartment, entitled 

“Toolbox”, provides OntoUML’s basic modeling constructs. The right compartment is 

the “Project Explorer”, a tree-like representation of the model. On the center, the 

“Editor” compartment can open several tabs containing either diagrams or OCL 

documents. Finally, on the bottom, the “Footer” compartment provides feedback for 

operations performed within the tool, like syntactical checking. 

 

Figure 57. OLEDv0.9.34 screenshot running on Windows 8.1. 
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8.4 THE SIMULATION COMPONENT 

This section elaborates on the technological support required for simulating OntoUML 

models: the implementation of the refactored OntoUML2Alloy transformation and the 

user interface in OLED. 

We implemented our refactored transformation from OntoUML to Alloy in two 

complementary steps. First, we perform a model-to-model transformation: from 

RefOntoUML to the Alloy metamodel presented in the following subsection. In the 

following, we conduct a model to text transformation: a serialization of the Alloy 

metamodel instance in the textual concrete syntax.  

We distribute the transformation within OLED and implement a series of features to 

improve usability.  

8.4.1 The Alloy Metamodel 

The metamodel presented in this section is the ECore representation of the Alloy 4.0 

syntax, defined in (JACKSON, 2012) and represented in Extended Backus Normal 

Form (EBNF).  

The Alloy metamodel plays a role of “middle man” in our implementation of the 

transformation of OntoUML models into Alloy specifications. It separates the mapping 

between concepts of the abstract syntax (the actual transformation), from concerns 

related to the concrete syntax, like ordering, indentation, etc.  

We present the metamodel incrementally, dividing it in 4 diagrams. We present them 

individually, alongside their respective EBNF specification. Four diagrams compose 

the metamodel: Module Composition, Paragraph Composition, Command and 

Expression. We discuss the meaning of each Alloy construct in Annex A.  
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8.4.1.1 Module Composition 

The diagram presented in Figure 58 depicts the possible composition of an Alloy 

specification, based on the EBNF definition of Listing 20. The AlloyModule class 

corresponds to the container of all other classes (like a Package for UML or OntoUML 

models). It can optionally contain module importations, signature parameters and 

paragraphs.  

Listing 20. Alloy’s module composition in EBNF. 

alloyModule ::= [moduleDecl] import* paragraph*  

moduleDecl ::= module qualName [[name,+]] 

import ::= open qualName [[qualName,+]] [as name]  

paragraph ::= sigDecl | factDecl | predDecl | funDecl | assertDecl | cmdDecl 

 

Figure 58. Alloy meta-model fragment: module composition. 

8.4.1.2 Paragraph Properties 

The diagram on Figure 59 depicts the attributes and relational properties of the different 

types of paragraph in Alloy, as defined in Listing 21: signature, fact, predicate, function 

and assertion declarations. All these types of paragraphs (an artificial concept we 

created to improve the structure of the abstract syntax) are composed by blocks, which 

in turn are composed by expressions.  
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Listing 21. Alloy’s paragraph properties in EBNF. 

sigDecl ::= [abstract] [mult] sig name,+ [sigExt] { decl,* } [block]  

sigExt ::= extends qualName | in qualName [+ qualName]* 

qualName ::= [this/] (name /)* name 

mult ::= lone | some | one 

decl ::= [disj] name,+ : [disj] expr 

factDecl ::= fact [name] block 

predDecl ::= pred [qualName .] name [paraDecls] block 

funDecl ::= fun [qualName .] name [paraDecls] : expr { expr }  

paraDecls ::= ( decl,* ) | [ decl,* ] 

assertDecl ::= assert [name] block 

block ::= { expr* } 

 

Figure 59. Alloy meta-model fragment: paragraph composition. 

8.4.1.3 Command Paragraph 

Figure 60 presents a diagram defining the last type of paragraph in Alloy: the run and 

check commands. Like the other paragraphs, it may also contain blocks. Moreover, it 

has optional references to predicate and assertion declarations (the executable 

paragraphs). Listing 22 provides the official definition of command declarations in 

EBNF. 
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Listing 22. Alloy’s command declaration in EBNF. 

cmdDecl ::= [name :] [run | check] [qualName | block] [scope]  

scope ::= for number [but typescope,+] | for typescope,+  

typescope ::= [exactly] number qualName 

qualName ::= [this/] (name /)* name 

block ::= { expr* } 

 

Figure 60. Alloy meta-model fragment: command paragraph. 

8.4.1.4 Expression 

The last part of the Alloy metamodel defines the possible way to define expressions in 

Alloy. Figure 61 depicts how expressions are recursively defined and how operators to 

use operators. The abstract syntax is based on the EBNF concrete syntax defined in 

Listing 23.  

Notice we do not explicit represent the enumerations, in order to present a cleaner 

diagram. The enumeration “UnaryOperator”, type of the EAttribute labeled “operator”, 

owned by the EClass “UnaryOperation”, has the literals set on “unOp”.  Analogously, 

“BinaryOperator” corresponds to “binOp”, “CompareOperator” to “compareOp”, 

“Quantificator” to “quant” and “Multiplicity” to “mult”.  

Listing 23. Alloy’s expression definition in EBNF. 

expr ::= const | qualName | @name | this |  

 unOp expr | expr binOp expr | expr arrowOp expr |  

 expr [ expr,* ] |  
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 expr [! | not] compareOp expr |  

 expr (=> | implies) expr else expr |  

 let letDecl,+ blockOrBar |  

 quant decl,+ blockOrBar |  

 { decl,+ blockOrBar } |  

 ( expr ) | block  

const ::= [-] number | none | univ | iden 

unOp ::= ! | not | no | mult | set | # | ~ | * | ^ 

binOp ::= || | or | && | and | <=> | iff | => | implies | & | + | - | ++ | <: | :> | . 

arrowOp ::= [mult | set] -> [mult | set]  

compareOp ::= in | = | < | > | =< | >=  

letDecl ::= name = expr 

block ::= { expr* } 

blockOrBar ::= block | bar expr  

bar ::= | 

quant ::= all | no | sum | mult 

mult ::= lone | some | one 

qualName ::= [this/] (name /)* name 

 

Figure 61. Alloy meta-model fragment: expressions. 
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8.4.2 User Interface 

The transformation is available as an OLED component. Figure 62 show the user 

interface when calling the transformation function. We highlight the most noteworthy 

implementation features in red: the shortcuts for model and diagram simulation, the 

element selection tree, the simulation parameters and the transformation of OCL 

constraints. 

 

Figure 62. Simulation component within OLED. 

In order to provide flexibility when simulating models, we implement two 

complementary commands: a model simulation, which only transforms to Alloy the 

checked elements in the element selection tree; and a diagram simulation, which only 

takes to Alloy the elements represented in the diagram.  
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Aiming to maintain as much integrity as possible when simulating partial models, both 

commands call an algorithm to auto-select mandatory dependencies automatically. For 

instance, if one selects an association, the algorithm selects all association ends, as 

well as their respective types. Furthermore, if one selects a generalization, the 

algorithm checks both child and parent classes. Moreover, if one selects attributes to 

simulate, the algorithm will select both the owner class and the attribute’s type. This 

algorithm, however, does not guarantee (nor it intends to) that the resulting selection 

will be syntactically valid. 

As we discussed in Section 3.2.5, we redesigned the transformation so it is able to 

cope with partial models. To achieve that, we propose four parameters that instruct the 

transformation to generate (or not) particular code structures. The tool presents them 

as four axioms users can choose to enforce. By default, the identity principle (that 

states that every individual must have a defined identity), the weak supplementation 

(every whole must have at least two parts) and the relators rule (every relator must 

mediated at least two individuals) are set to true. Anti-rigidity, on the other hand, is set 

to false.  

Whenever a user calls a transformation command, the tool checks whether or not is 

interesting to disable one of the three enforced axioms. If there is a class stereotyped 

as subkind, role or phase that does not inherit an identity principle from a substance 

sortal, or a category, roleMixin or Mixin, which does not have any sortal class as 

descendant, the tool will instruct users to disable the identity principle axiom, otherwise 

the simulation will only show empty extensions for the identity-less classes. In the same 

way, if there is a whole composed at most by one part or a relator mediating at most 

one individual, the tool suggest disabling the weak supplementation and the relator 

axioms. 

Another interesting transformation component, but which is not part of this research, is 

the transformation of OCL constraints, which is compliant with our Alloy mapping. In 

the simulation dialog, the tool prompts the user with the specified constraints, which 

he can choose to include in the Alloy generation. For more details of the OCL 

transformation, see (GUERSON; ALMEIDA; GUIZZARDI, 2014). 
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Moreover, we implemented a feature that is not visible in the user interface: the way 

we handle naming in Alloy. OntoUML models impose no constraints regarding 

element’s names. Two or more classes, associations, attributes or associations ends 

can have the same name. They can even have empty or null names, or even names 

composed by special characters, like “#” or “!”.  Regardless, Alloy has much more 

restrictive naming directives. For instance, signatures must be uniquely named and 

start with letters or an underscore ( _ ). The same thing goes for functions, predicates, 

facts and assertions. Furthermore, as any textual language, Alloy defines reserved 

keywords, such as “sig”, “some”, “univ” and so on.  

To deal with the naming differences between OntoUML and Alloy, we implement an 

alias-based work around. Each named element in the OntoUML model receives a 

unique alias that is unique and valid in Alloy. The alias generator performs the following 

actions: assign numbers to elements with repeated names, remove special characters 

(e.g. empty space, punctuation), include an underscore in reserved words, and adds 

an underscore for names beginning with numbers. 

 

Figure 63. Custom theme: yellow boxes for objects, red ellipses for properties and grey 

hexagons for datatypes. 

Lastly, we configure a custom theme for the instances generated by the Alloy Analyzer. 

We assigned a shape and a color for each ultimate meta-type: we represent objects 

(individual that instantiate kinds, quantities, collectives, subkinds, roles, phases, 

categories, roleMixins or mixins) with yellow boxes; properties (individuals that 

instantiate relators, modes or qualities) are represented as red ellipses; and lastly, 
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datatypes and primitive types are represented as light grey hexagons. Figure 63 

illustrates an application of the theme. 

8.5 THE ANTI-PATTERN COMPONENT 

Once again, we reinstate that the ultimate goal in this research is to provide accessible 

alternatives for modelers to validate their ontologies without any additional training in 

special methods, tools or techniques. With that in mind, we adopted a strategy for 

managing anti-patterns that consists of three basic steps: automatic detection, guided 

analysis and automatic refactoring.  

In order to relieve modelers from learning all anti-pattern structures and manually 

inspecting occurrences in their models, we implemented a component on OLED that 

does that automatically. Users can request an anti-pattern inspection on a particular 

diagram or on an arbitrary selection of elements, in the same way they did for the 

simulation.  Moreover, as shown in Figure 64, the might instruct the tool to inspect the 

model selection for only a subset of the defined anti-patterns.  

 

Figure 64. Anti-pattern identification dialog on OLED. 
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In the sequence, an additional dialog lists all occurrences identified for the selected 

anti-patterns, as depicted in Figure 65. We list the results using three columns:  

 “Name”, which corresponds to a short description of the most relevant elements 

that characterize the anti-pattern;  

 “Type”, that provides the acronym for the anti-pattern type; and  

 “Status”, a binary property that can be set as “Opened”, if the respective 

occurrence still has not been analyzed, and as “Fixed”, if the occurrence is 

successfully analyzed. 

The “Find” text field on the upper left corner allows users to search for occurrences, 

using as a reference the “Name” column. This is particularly useful when users perform 

detection on larger models, which results in a substantial number of occurrences. At 

this point, users can perform two actions for an anti-pattern occurrence: they can 

choose to analyze or ignore the occurrence. 

 

Figure 65. Anti-pattern result dialog in OLED. 

The “Analyze” button gives rise to the second step of our strategy: the guided analysis. 

As we previously discussed, anti-patterns, in the sense that we use them, do not 

necessarily imply in domain misrepresentations. Furthermore, our anti-patterns are not 

constructions that should be discouraged, as seen in the context of software 

development (KOENIG, 1995). So, in order to decide whether a particular occurrence 

implies in undesired consequences or not, a modeler must reason about it. To support 

this process, we implemented a wizard for each anti-pattern, which details the 

elements that participate in the anti-pattern occurrence, provides theoretical notions 
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when necessary, and makes a series of questions, which lead to the appropriate 

solutions. 

Every wizard starts with a page like the one in Figure 66. The dialog’s title identifies 

the anti-pattern type. In this figure, an occurrence of the Relator Mediating Rigid Types 

(RelRig) occurrence is under analysis. It also provides the description of the elements 

that participate in the anti-pattern. In the example, a relator entitled “Marriage”, 

connected to a rigid type, labeled “Marriage Certificate”. Furthermore, it provides a 

general description of the anti-pattern type, in the example: This anti-pattern occurs 

when a «relator» is connected through a «mediation» association to at least one rigid 

object type, stereotyped as «kind», «quantity», «collective», «subkind» or «category».  

 

Figure 66. RelRig’s initial anti-pattern wizard page. 

The initial page of the wizards always asks the users if they want to go through a 

systematic analysis or choose directly a refactoring option. This question is included to 
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make the tool attractive for both novice and expert users. A user that is not familiar 

with the anti-pattern’s structure and/or the possible consequences will likely go through 

the wizard, whilst another that already used the tool might already know how to fix 

his/her model and is more concerned with efficiency. 

A novice user that opted to go through the RelRig’s step-by-step wizard would reach 

the page depicted in Figure 67. In this page, the tool asks the user the first question of 

the wizard, which aims to verify if the rigid type connected to the relator, is indeed rigid, 

as the stereotype’s choice suggests. In this case, by answering “Yes”, the user already 

identifies a modeling error and the wizard already proposes a refactoring plan. If the 

answer is “No”, the analysis continues with other questions. 

 

Figure 67. RelRig's wizard page example 

An anti-pattern analysis always ends with one of the following conclusions: the 

occurrence characterizes a modeling problem fixable by a pre-defined refactoring plan 

or the identified structure is correct, and the occurrence is a false alarm. The tool 
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presents the analysis results on the finishing page, as depicted in Figure 68. In this 

stage, the last step of our anti-pattern strategy comes into play: the automatic 

refactoring. In the figure, the tool is informing the user that the provided answers led to 

conclusion that a refactoring is required, identified in the central box. In the figure, the 

tool is informing the user that the stereotype of the class labeled as “Marriage 

Certificate”, will change from Kind to Role. At this point, the user is still able to go back 

and revisit her answer, in case the proposed action does not satisfy her. 

 

Figure 68. RelRig's finishing page. 
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 CONCLUSIONS 

9.1 CONTRIBUTIONS 

This thesis contributes to the theory and practice of ontology-driven conceptual 

modeling.  

The main theoretical contributions are:  

 We offer an improved transformation from OntoUML to Alloy (discussed in 

Chapter 3), redesigned after a careful analysis of the consequences of the 

mappings defined by the previous approaches. Furthermore, we assigned 

parameters for the transformation that enabled it to cope with partial models, a 

demand identified in practice. The overall result is a much more flexible and 

useful validation tool than the previous initiative. 

 A set of 20 simulation scenarios that make the simulation-based approach 

available accessible even to an untrained audience, detailed in Chapter 3. 

These scenarios are mainly of two types: branch structures, which allow the 

definition of the generated world structure; and the content scenarios, which 

allow defining characteristics regarding the individuals that exist in a world or 

amongst worlds. The content scenarios are particularly useful for checking 

conceptual model properties, like strong and weak finite satisfiability, class 

liveness and minimum and maximum association multiplicities. 

 A semantic anti-pattern catalogue composed of 21 semantic anti-patterns, 

whose use in model validation improves the ontology quality, particularly 

regarding the precision, accuracy, scope and ontological classification 

measures. We detail this catalogue in Chapter 5 and validate it in Chapter 7, 

through an empirical experiment conducted in the context of an industrial project 

in partnership with the Brazilian government. In addition to improving model 

quality, anti-patterns showed the benefit of improving validation efficiency, since 

they were able to predict recurrently the right solutions for anti-pattern 

occurrences.  
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The activities performed in this research also generated some indirect contributions to 

the theory of ontology-driven conceptual modeling in general, and for OntoUML model 

development, particularly:   

 We empirically defined an approach to identity recurrent problematic modeling 

decisions in ontology-driven conceptual models, mainly based on visual model 

simulation (see Section 6.2).  

 We provide strong evidence that model simulation is useful for model validation. 

This contribution is a side effect of using the simulation we redesigned in the 

beginning of this thesis to uncover anti-patterns. Since logical errors were 

systematically identified, especially regarding model under-constraining, we 

corroborate the approach usability. 

 By reasoning about the problems that anti-pattern occurrences might give rise 

to and conceiving pre-defined refactoring plans, we identified and formalized a 

number of domain-independent modeling patterns, like the role specialization 

patterns, e.g. sub-role, role of role and derived-role (see Section 5.5) and the 

phase partition patterns, particularly the Intentional Partition (see Section 5.20). 

Furthermore, we also identified Rule-patterns for specific modeling structures, 

like exclusive roles of a relator, or exclusive parts of a whole.  

 The empirical study we performed for validating the anti-pattern catalogue 

brought an unexpected result: the identification of language expressivity 

demands (see the discussion in Section 7.2). For instance, the analysis of the 

UndefFormal occurrences evidenced that the users require further 

classifications for formal relations. Furthermore, other anti-patterns identified 

the need to explicit represent qua-individuals, events and higher-order 

universals, as well as including in the language a constitution relation, which 

holds between qualities and objects. 

The technological contributions are two-fold:  

 A fully functional implementation of the redesigned transformation from 

OntoUML to Alloy, distributed as an OLED component (see Section 8.4). The 

tool features many useful functionalities, like automatic naming treatment, 

manual parameterization and the selection of model elements to simulate. 
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 A fully functional computational environment that automates anti-pattern 

management, by automatically detecting occurrences, guiding users through 

their analysis in order to select the appropriate refactoring solution (if 

necessary), and automatically executing the selected solution (see Section 8.5). 

Lastly, we contribute to other fellow researchers by assembling an OntoUML model 

repository (we describe it in Section 6.1). There is no other available and it can be very 

useful for in future researches, liker further understanding how the language is used, 

identifying additional modeling patterns, “elephant paths” in the language, and even 

additional recurrent modeling problems.  

9.2 DISCUSSION 

In Chapter 1, we stated that our goal is to develop an ontology validation framework 

that aid modelers in systematically producing higher quality ontologies, without 

requiring costly training in particular techniques. Now, we discuss to what extent our 

proposals meet the requirements specified by the goal.  

Regarding the capability of systematically improving model quality, we argue that all 

proposals manage to do that. First, the simple fact that we were able to uncover an 

anti-pattern catalogue using model simulation is a strong corroboration that the 

simulation successfully contributes for identifying modeling errors and thus improving 

model quality. In addition, the properties related to the validation scenarios show that 

the modelers are able to verify useful model properties, life strong and weak 

satisfiability, class liveness and minimum cardinalities. By identifying satisfiability 

issues, one certainly improves model quality, whilst “dead” class identification 

highlights over-constraining problems.  Lastly, we find strong evidence that the anti-

patterns contribute to model validation in the empirical study – from the 1475 identified 

occurrences, modelers considered 794 as errors, what corresponds to 53.8% of the 

cases. 

We also stated that our validation framework should be accessible to users without 

costly learning efforts. Although this is a subjective feature, we argue that it is safe to 

say that our proposals relieve users from heavy training in particular techniques. First, 
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even though knowing Alloy’s logic and syntax allows more flexibility on validation, we 

relieved users from this “obligation” with the simulation scenarios. With them, users are 

able to simulate models without even knowing what Alloy is. With further tool support, 

it will be even possible to simulate models without even seeing the generate Alloy code. 

In the previous approaches, in order to use any feature of the simulation, one had to 

learn two things: the Alloy language and the transformation’s mappings. 

Furthermore, the tool support we developed for anti-patterns also requires little 

previous knowledge from users. First, by automatically detecting occurrences, it 

relieves users to learn the anti-pattern structure definition. Not only that but users are 

taught the structure “on the fly”, through the tool explanation of possible problem’s 

source. In the sequence, the wizard implementation mitigates relieves the problem of 

reasoning about the possibilities implied by a given structure. Finally, by assigning a 

refactoring plan to a set of answers and running it automatically, users do not need to 

think about the solution and neither run it themselves. 

9.3 SHORTCOMINGS 

In this section, we elaborate on shortcomings and limitations of the techniques and 

tools proposed in this thesis.  

Regarding model validation through simulation, as proposed in Chapter 3, we identify 

two limitations inherent from Alloy: the limitation of the size of the model one can 

simulate and the respective number of instances the analyzer is capable to deal with. 

Regardless of performance adjustments, the simulation will always suffer from these 

problems because they come from the way the analyzer generates instances: solving 

satisfiability problems, a problem well known as NP-Complete. By not being able to 

simulate the model as a whole, it requires users to fragment their models. Validating 

sub-models is not a guarantee that the model as a whole will not have problems. 

The simulation scenarios pose a trade-off between usability and expressivity. On one 

hand, our solution makes Alloy accessible for untrained users, while on the other, it 

limits the number of expressions modelers can form and, thus, the properties they can 

checked. 
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Moreover, we recognize that, for each anti-pattern, we did not cover every single 

possible refactoring alternative. Instead, we focused on recurrent ones. By doing that, 

we are able to balance the time required to analyze an anti-pattern occurrence and the 

anti-pattern solution predictability rate. 

On the technological level, we identify two limitations regarding anti-pattern tooling. 

First, some anti-pattern occurrences, even though are properly analyzed and fixed, 

keep showing up in the tool as possible mistakes. The reason is that our identification 

algorithms only inspect the model structure, leaving the OCL rules aside. Thus, the tool 

“thinks” that nothing has changed when rules are created.  

The second anti-pattern tool limitation regards the efficiency of some algorithms 

designed to for anti-pattern detection. Most of the time we were able to develop very 

fast algorithms, that even in ontologies like the MGIC one, with 3800 classes and 1800 

associations, all occurrences were identified under 5 seconds. Nonetheless, for a few 

anti-patterns, like AssCyc, RelComp and WholeOver, the identification did not perform 

as well in large models. Their performance on small and medium models (with at most 

100 classes) however, is still acceptable. 

9.4 RELATED WORKS: ANTI-PATTERNS 

Since the Koenig’s original proposal (KOENIG, 1995), the concept of anti-pattern has 

been applied in a variety of fields other than software design. To the extent of our 

knowledge, however, there is no other application of anti-patterns in ontology-driven 

conceptual modeling in general, and particularly, to OntoUML. For that reason, we now 

compare our anti-pattern proposal and catalogue proposal to other works that also 

apply anti-patterns (or similar ideas) in the context of structural conceptual modeling 

and semantic web ontology validation.  

For each related work, we discuss their definition of anti-pattern (or similar concept), 

the language for which its catalogue was defined for, the proposed anti-pattern 

classifications, whether or not refactoring alternatives are provided, the formalism use 

to define them, the indented applications, the elicitation methods and the tool support 

available. 
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9.4.1 OWL anti-patterns 

The research reported in (CORCHO; ROUSSEY; BLAZQUEZ, 2009; ROUSSEY; 

ZAMAZAL, 2013; TAHWIL, 2010) define anti-pattern as patterns that are commonly 

used by domain experts in their OWL implementations and that normally result in 

inconsistencies or modeling errors. Furthermore, the authors state that anti-patterns 

come from a misuse and misunderstanding of description logics expressions by 

ontology developers. The research generated an anti-pattern catalogue for OWL 

ontologies, formalized in description logics, and that classifies anti-patterns in three 

exclusive categories:  

 logical anti-patterns, that represent errors that reasoners detect i.e., consistency 

problems;  

 cognitive anti-patterns, that represent possible modelling errors that are not 

detected by reasoners; and  

 guidelines, that stand for complex expressions used in an ontology component 

definition that are correct from a logical point of view, but in which the ontology 

developer could have used other simpler alternatives for encoding the same 

knowledge. 

The reported elicitation method (CORCHO; ROUSSEY; BLAZQUEZ, 2009) is a case 

study conducted as an interactive collaboration with a domain expert in the 

development of an ontology for a an Spanish governmental institution, named 

HydrOntology. The authors propose anti-patterns as means to improve efficiency on 

ontology debugging, a sort of validation activity.  The tool that supports the approach 

is named Apero (AntiPatternExtRactiOn) and is developed as a Protégé plugin 

(TAHWIL, 2010), a very popular tool for building OWL ontologies. 

Our view on anti-patterns is quite similar to theirs: modeling structures that might 

indicate problems. However, we are concerned with different types of problems. We 

are not concerned with inconsistency issues because OntoUML’s design prevents 

them. Moreover, we are also not concerned with guidelines because we want to 

improve ontology precision and accuracy, not readability or maintainability. Therefore, 

the cognitive anti-patterns are the closes to our proposal. The difference is that we take 
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into consideration all the ontological distinctions contained in OntoUML’s metamodel, 

whilst they are limited to description logics operators.   

9.4.2 OOPS! 

The research reported in (POVEDA; SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ, 2010a, 

2010b; POVEDA-VILLALÓN; SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ, 2012), uses 

two concepts: anti-pattern and common pitfall. Anti-patterns are designs that matches 

an Ontology Design Pattern (ODP) (GANGEMI, 2005) but this design is not a suitable 

solution to the modelling problem and also designs that, although do not match an 

ODP, could be solved by an existing design pattern. Common pitfalls, on the other 

hand, are an unsuitable solution to the modelling problems that unsolvable with ODPs. 

As the OWL Anti-patterns, they also see these recurrent problems as 

misunderstanding and misusing the description logics constructs.  

The authors classify the common pitfalls, identified in RDF and OWL ontologies, from 

two different perspectives. First, w.r.t the type of problems they can cause, which leads 

to the classifications: structural, functional and usability; second, regarding the quality 

criteria they affect: consistency, completeness and conciseness.  

The pitfall catalogue was identified by manually inspecting models that were developed 

by master students (POVEDA; SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ, 2010b) in the 

context of a masters ontology engineering course. Their study analyzed 26 models. 

A web-based tool named “OOPS! An Ontology Pitfall Scanner” supports their approach 

(POVEDA-VILLALÓN; SUÁREZ-FIGUEROA; GÓMEZ-PÉREZ, 2012). The authors 

also distribute the tool as a web service, pluggable to Protégé20. 

Our approach requires anti-patterns to have a finite and identifiable structure. In 

contrast, many pitfalls proposed in OOPS do not share this property. Some depend on 

class names, like merging to concepts in one, which analyzes if there is an “and” or an 

“or” on the class name. Moreover, some pitfalls are exclusively dependent on domain 

knowledge, like the improper creation of equivalent classes for synonyms. A priori, 

                                            
20 http://protege.stanford.edu/ 

http://protege.stanford.edu/
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there is no indication that two equivalent classes are synonyms. We removed from our 

catalogue the relator dilemma (Section 5.23) because there is no possible structural 

identification algorithm. 

9.4.3 Meta-modeling anti-patterns 

The series of publications (ELAASAR; BRIAND; LABICHE, 2010, 2011, 2013) propose 

not only a language for specifying patterns in MOF-based languages, named Visual 

Pattern Modeling Language (VPML) , but also a library of meta-modeling anti-patterns. 

We compare our proposal to this work because meta-modeling is still modeling.  

The authors classify the anti-patterns as:  

 well-formedness, that refer to integrity constraints which may or may not be 

included in the language as syntactical constraints, but that are always errors;  

 semantic, a category of anti-patterns that defines UML designs that are well-

formed syntactically but that could be problematic semantically when used for 

meta-modeling; and  

 conventional, a category that captures common violations in particular naming 

and documentation conventions. 

As in the other proposals, the authors include as anti-patterns decisions that are always 

wrong (well-formedness) and modeling guidelines (conventional). These two 

categories are out of the scope of our work, as previously discussed. The semantic 

ones resemble our proposal, but they focus much more on syntactical features, whilst 

we are concerned with the conceptualization one is trying to formalize. Furthermore, 

the authors do not propose any refactoring plan or analysis instruction, only the 

identification of the modeling structure. 

9.4.4 UML anti-patterns 

The research reported in (BALABAN; MARAEE; STURM, 2010; BALABAN et al., 

2014) discusses anti-patterns in the context of UML class diagrams. The research 
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focus is on designing a model correctly, and not designing the correct model. In other 

words, they are concerned with making a model work. The model aspects analyzed by 

the proposed anti-pattern catalogue are concerned with correctness issues, namely 

consistency and finite satisfiability, and particular types of quality criteria, 

completeness and conciseness.  

The authors specify their anti-pattern catalogue using their own language, named 

Pattern Diagram Class (PDC) (BALABAN et al., 2014), but they do not provide any tool 

support for the identification of the proposed anti-patterns in UML models. Differently 

from all other approaches, they envision anti-patterns as means for teaching modelers 

and improving their modeling skills. Moreover, the authors do not discuss how they 

came up with their anti-pattern catalogue. 

Our work differs from theirs regarding the type of feature we are interested. One can 

even say that they are more concerned with verification, whilst we focus on validation.  

9.4.5 General Remarks 

Notice that, in all approaches, some anti-patterns always imply in modeling mistakes. 

The UML consistency anti-patterns, the OWL logical ones and the meta-modeling well-

formedness issues all point out to definitely incorrect models. As our anti-pattern 

definition states, that sort of problem is not within the scope of this work. Moreover, it 

is not because of two reasons: firstly, because there are a lot less inconsistency 

possibilities in OntoUML. As discussed in Chapter 2, the foundational ontology from 

which OntoUML derives forbids many of such errors. Secondly, because we advocate 

that OntoUML should forbid, on a syntactical level, syntactical combinations that are 

always wrong.  

Overall, one of the improvements we make on these proposals, considering the 

general application of anti-patterns in domain modeling, is the development of a wizard 

to guide users on the analysis of an anti-pattern occurrence. Because of that, we do 

not require users to study the anti-pattern catalogue before using the tool. The wizard 

is especially useful for those situations that are not always errors. In fact, only our 

proposal systematically provides multiple solutions for the same issue.  
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A recurrent difference from our work to all aforementioned proposals is that we are 

concerned with a special type of model quality: domain appropriateness, i.e., 

adequately capturing the conceptualization of a domain. Our goal is not to help 

modelers build the models correctly, but build the correct model for the domain at 

focus.  

9.5 OPEN QUESTIONS 

Quantity and quality related anti-patterns. Even though we proposed 21 semantic 

anti-patterns in this thesis, none of them validates the usage of quantities and qualities 

(both datatypes and proper qualities) in ontology-driven conceptual models. The little 

usage of classes stereotyped as Quantity in the models we were able to gather 

diminished the possibility of identifying anti-patterns about them. Because of that, we 

envision the execution of more directed empirical experiments, assigning domains that 

necessarily require the usage of quantities. The same is valid for quality usage.  

Pro-active use of anti-patterns. During the development of the tools and the tests 

performed by associates, we detected that, after a while using the tool, modelers get 

so familiar with the anti-patterns that they already identify occurrences when modeling. 

Not only that but, at modeling time, they already know how to “fix” their decisions want 

to pro-actively enforce determined situations.  

Instance-level modeling constructs. Instead of reacting to problems identified by the 

anti-patterns, we envision the possibility of preventing them. One way to do that is to 

include new modeling constructs in OntoUML, especially for the recurrent rule pattern 

identified by the anti-patterns, which identify instance-level constraints. For example, 

the RelOver anti-pattern generates rules that make the mediated types exclusive. 

Other possible construct would allow the specification of the number of times the same 

elements can be connected by different instances of the same relator type, as 

discussed in the RepRel anti-pattern. Overall, one must analyze the trade-off between 

language expressivity and complexity.  

The relator dilemma. As we uncover the semantic anti-patterns, we identified a 

recurrent problem for which we could not assign a distinguished structure. We named 
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it the relator dilemma. Simply put, this error regards the representation of a concept as 

a relator when it is in fact an event, a normative description or even a material relation. 

We did not investigate this problem further, but understanding it better should facilitate 

envisioning ways for preventing it to happen. 

Tool support for simulation scenarios. During this research, we were not able to 

develop tool support for the simulation scenarios. In order for a wider adoption of the 

simulation, a proper tool support for the scenarios is in order. With that, it is even 

possible to evaluate their usability through empirical tests and interaction with novice 

users. 

Alternative validation proposals. In this thesis, we presented three complementary 

approaches for the validation of OntoUML models. Nonetheless, throughout this 

research we studied other approaches that would complement the existing ones. For 

instance, the model testing approach for conceptual schemas (TORT; OLIVÉ; 

SANCHO, 2011) can surely be adapted for OntoUML and be a very useful alternative 

to provide a validation mechanism for the ontology as a whole. Furthermore, the 

proposal for validation of UML models based on OCL constraints (QUERALT; 

TENIENTE, 2012) an also be an alternative to provide holistic validation  for OntoUML 

models.   
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ANNEX A ALLOY 

Alloy is a language for modeling structures based on first-order logic and relational 

calculus. Although undecidable, it allows fully automatic analysis through instance 

finding. The Alloy Analyzer, a free software tool, enables editing and analyzing Alloy 

models. 

In this annex, we briefly describe the Alloy language, explaining the operators that 

compose its logic, the syntactical constructs that are relevant for our work and how one 

can analyze Alloy models. The content of the following subsections is mostly extracted 

from (JACKSON, 2012), so quotation marks and repeated references will be omitted.  

A.1 LOGIC 

We start the description with the logic that support Alloy, a combination of first order 

logic quantifiers with relational calculus, baptized as relational logic.  

Alloy builds everything upon two abstractions: atoms and relations.  

Atoms are the most primitive structure. They are indivisible, for atoms have no parts. 

They are also immutable, since their properties never change. Lastly, they are 

uninterpreted, meaning that they do not have any built-in properties.  

Relations are structures that relate atoms. They can be understood as a set of tuples 

of any size, each tuple being an ordered sequence of atoms. The easy analogy is to a 

database table. Each tuple corresponds to a row, and each entry of the tuple is a 

column. The number of tuples in a relation (or rows in a table) is its size. Any size is 

possible, including zero. Moreover, the number of entries in the tuple (or the number 

of columns in a table) is its arity, and must always be greater than one. 

Alloy represents scalars as unary relations with one tuple (singletons). Sets are 

relations with one column, but any number of rows. Relations with arity greater or equal 

to two capture mappings between atoms (we commonly refer to them as relations). To 

clarify, we provide an example for scalars, sets and binary relations:  
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 scalar: myName = {(James)} 

 set: Person = {(Luke), (Joseph), (James), (John)} 

 binary relation: friendOf {(James, Luke), (Luke, James), (John, Joseph)} 

The domain of a relation is the set of atoms in its first column; the range is the set in 

the last column. In our previous example, the domain of friendOf is {(James), (Luke), 

(John)} and the range is {(Luke), (James), (Joseph)}. 

Moreover, alloy defines three constants: univ, correspond to the set of all existing 

atoms; none represents the empty set; and iden stands for the identity binary relation, 

i.e., a relation of every atom to itself. In our previous example univ would be the set 

{(Luke), (Joseph), (James), (John)}, whilst iden would be equal to {(James, James), 

(Luke, Luke), (John, John), (Joseph, Joseph)}. 

Furthermore, Alloy defines 4 categories of operators: set, relational, logical and 

quantification. Set operators are binary and apply to all relations, regardless of their 

internal structure (unary, binary, etc.). Alloy has all the basic set-theory operations: 

union (+), intersections (&), difference (-), subsetting (in) and equality (=) 

Alloy’s relational operators are more complex and differently from the set one, the 

internal structure of a relation matters. They are: arrow/product (->), dot join (.), box 

join ([]), transpose (~), transitive closure (^), domain restriction (<:) and range 

restriction (:>). 

The arrow operator, also referred to as product, corresponds to the Cartesian product 

of the two relations. It results in a new relation, whose arity is the sum of the previous 

arities. For example, {(A)} -> {(B), (C)} = {(A,B), (A,C)}. 

The join operators, both dot and box are very similar to the relational database join or 

even OCL’s dot operator. The dot join matches the last atom of the first tuple to the 

first atom of the second tuple, if they are the same, a resultant tuple is created, 

composed by the first atoms of the first tuple, followed by the second atoms of the 

second tuple. For example, {(A, B), (C, D)} . {(B,E), (B,F), (D,G)} = {(A, E), (A, F), (C, 

G)}. The box join has the same effect as the dot, but it just takes the arguments in 

different orders: e1[e2] is equivalent to e2.e1.  
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The transpose operation is a unary operation that is only applicable to binary relations. 

It results in another binary relation that is the mirror image of the original one, i.e., 

contains the same amount of tuples but all of them in the reversed order. For example, 

the transposition of friendOf is {(Luke, James), (James, Luke), (Joseph, John)}. This 

operator is useful to define symmetric relations, as in rel=~rel and also inverse 

relations, fatherOf=~hasFather 

The transitive closure is another unary relation that is only applicable for binary 

relations. It can be computed by taking the inputted relation, adding the join of the 

relation with itself, then adding the join of the relation with that, and so on: ^r = r + 

r.r + r.r.r + ... 

The restriction operators are used to filter relations to a given domain or range. They 

take as parameters a set and a relation of any arity. A domain restriction expressed as 

s <: r (s being a set s and r a relation r) results in a relation with the same arity of r but 

containing only tuples that start with atoms contained in s. For example, {(Luke), 

(James)} :> {(Luke, James), (Joseph, James), (James, John), (Luke, Joseph)} = 

{(Luke, James), (James, John), (Luke, Joseph)}. Range restrictions are analogous, but 

the analysis is on the relations range (the last atom in the tuple). 

Alloy uses logical operators contained in standard propositional logic, providing for 

each a shorthand and a verbose representation: negation (!, not), conjunction (&&, 

and), disjunction (||, or), implication (=>, implies) and bi-implication (<=>, iff). 

Moreover, Alloys uses quantification operators defined in predicate calculus, which aid 

users in constraint specification. The possibilities are:  

 universal quantification, represented as all x: e | F and meaning that F holds 

for every x in e; 

 existential quantification, represented as some x: e | F and meaning that F 

holds for at least one x in e; 

 existential negation, represented as no x: e | F and implying that F holds for 

no x in e; 

 lone x: e | F, which means that F holds for at most one x in e; 

 sig x: e | F , representing a constraint F that holds for exactly one x in e. 
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Finally, users can use the set size operator (#) in a relation with any arity to obtain the 

number of tuples it contains, as an integer value. For example, #{(A),(B),(C),(D)}=4 

and #{(A,B)}=1 

A.2 SYNTAX 

Alloy is a small language. A generic specification usually contains a module header, 

signatures declarations, constrain paragraphs, assertions and commands. We use the 

example shown in Listing 24 to illustrate how to combine Alloy’s constructs to produce 

a valid specification. The example formalizes a domain that contains the general 

concepts of Person, refined in Man and Woman, and Animal, refined in Car and Dog. 

Moreover, we formalize paternal and maternal relations amongst people and the pet 

ownership between people and animals.  

Listing 24. An Alloy specification.

module example/listing1 1 

open util/relation 2 

 3 

sig Person { 4 

 pet: set Pet, 5 

 father: lone Man, 6 

 mother: lone Woman 7 

} 8 

sig Man, Woman in Person { } 9 

 10 

abstract sig Animal {} 11 

{ 12 

 #(pet.this)<=1 13 

} 14 

sig Cat, Dog extends Pet { } 15 

 16 

fact gender { 17 

 Person = Man + Woman 18 

 disj[Man, Woman] 19 

} 20 

 21 

fact { 22 

 all x : Person | x not in x.^(father + mother) 23 

} 24 

 25 

fun parents (p: Person): set Person{ 26 

 p.father + p.mother 27 

} 28 

 29 
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pred atLeastOneParent{ 30 

 some x: Person | some parents[x] 31 

} 32 

run atLeastOneParent for 5 but 2 Woman 33 

 34 

assert noSelfParent { 35 

 irreflexive[father+mother] 36 

} 37 

check noSelfParent for 3 38 

 39 

 

An Alloy specification can optionally contain a module header. It does have one when 

users include module declarations and/or module imports.   

A module declaration starts with the module key word, followed by the module name 

(line 1). It states the name of the specification in the file. Alloy uses the same naming 

convention used in Java: the full name of the module corresponds to its path and 

filename in the file system. By default, Alloy modules have the file extension “.als”, 

which should not be specified in the module name. In our example, the module name 

is “listing1” and its address in the file system is “example/listing1.als”, starting from the 

working directory of the Alloy Analyzer current running.  

A module import works just like in other programming languages: imports contents 

specified in other files and allow reuse. In Alloy, users can reuse predicates, signatures 

and functions (we explain these concepts in the following paragraphs). The reserved 

word open identifies module importation. In our example, we import the module 

“util/relation” (line 2), which defines predicates regarding properties of binary relations, 

such as reflexivity, symmetry, etc. 

Furthermore, there are the signature declarations, specified using the keyword sig. 

Signatures are declared individually (lines 4 and 11) or in groups (lines 9 and 15). Each 

signature represents a set of atoms (a unary relation). Our example declares six 

signatures: Person, Man, Woman, Animal, Cat and Dog.  

Signatures can specialize other signatures. They can be subsignatures, if the keyword 

in is used, or extensions, if extends is used. Their main difference is that extensions 

are mutually disjoint, whilst subsignatures are not. In our example, Man and Woman 

are subsignatures of Person and Dog and Cat are extensions of Animal. 
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Furthermore, notice that the reserved word abstract precedes the Animal signature 

declaration (line 11). Abstract signatures are the ones that only contain elements that 

are in their extension signatures, i.e., they are unions of their extensions signatures.  

Alloy, unlike some modeling languages, do not restrict multiple inheritance. However, 

by default, all top-level signatures are mutually disjoint, thus, restricting the 

specification of multiple inheritance for parent signatures that subset the same top-

level signature. In our example, a signature subsetting Animal and Person would 

always have an empty extension. Conversely, a signature subsetting Man and Woman 

would be plausible (if it were not for the additional fact enforcing them as disjoint). 

Moreover, signatures can own field declarations, each introducing a new relation. 

The domain of the relation is the owner signature and the following expression defines 

its range. Fields can also contain cardinality constraints. In our example, we declare 

three fields (lines 5-7), all owned by the Person signature. Their ranges are Pet, Man 

and Woman, respectively and they all contain cardinality constraints: a person can 

have zero or many pets, but at most one mother and at most one father.  

A specification may optionally contain constraint paragraphs. The keywords fact, fun 

and pred define the different types of paragraphs, which record different forms of 

constraints and expressions. There is no restriction regarding the number of 

constraints paragraphs a model can have, although a model without any seams 

pointless.  

Fact paragraphs contain constraints that must always hold. In our example, we 

declare two facts. The first, named “gender” (lines 17-20), states that the atoms in the 

Person signature are the same ones in the union of the signatures Man and Woman. 

It also states that Man and Woman share now individual, through the disj operator. 

The second fact block (line 22-24) is unnamed and it specifies that people cannot be 

their own ancestors (using the transitive closure).  

If a constraint applies to each element of a signature (universal quantification), one can 

optionally defines it as a signature fact: a block that immediately follows the signature 

definition. In our example, Animal contains a signature fact (lines 12-14), which states 

that every animal is a pet of at most one person.  
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In Alloy, functions allow modularization and reuse. They are very similar to the 

concept of function in most programming languages: they accept pre-defined 

parameters and return values of a pre-determined type, according to an expression. 

They are also useful to improved model readability. We declare a function labeled 

“parents” in our example (lines 26-28), which take instances of Person as parameters 

and return a set resulting from the union of one’s father and mother. 

Moreover, predicates are very similar to functions: they also allow reuse and they can 

take arguments. The difference is that they store constraints, instead of expressions. 

The difference between them is that constraints return Boolean values, whilst 

expressions return relations of any arity and type. To simplify, one may consider a 

predicate as a function returning a Boolean value. Predicates are useful to declare 

constraints that will be applied in particular contexts and to provide directions to 

example generation. In our example, we define one predicate (lines 30-32), which 

specifies that there is at least one person with at least one parent (a mother or a father). 

Furthermore, an alloy model can contain assertions. Labeled by the keyword assert, 

they record properties that are expected to hold. When the analyzer checks them, it 

looks for instantiations to invalidate the contained expressions. 

The last type of paragraph in an Alloy model is the command paragraph. The 

keywords run and check identify command declarations, which instructs the analyzer 

to perform particular analyses. When running constraints, the analyzer will try to 

encounter an instance that satisfies them. Conversely, when checking constraints, the 

analyzer will try to find counter examples that invalidates them. 

Assigning a scope to commands bounds the investigation space the analyzer will 

consider. General scope specification provides an upper bound to the number of atoms 

each top-level signature (the ones that are not subsignature and neither extensions). 

For example, the run command in our example (line 33) instructs the analyzer to look 

for instances that satisfy the predicate in a space containing at most five atoms of the 

Person signature and at most five of the Animal signature. Particular scope definitions 

assigns bounds to particular top-level or extension signatures (not subsignatures, 

though). The keyword but, after the scope specification, serves that purpose. Line 33 

exemplifies its usage, 
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A.3 ANALYSIS 

Running a predicate or checking an assertion can be reduced to the same task: finding 

some assignment of relations to variables that makes a constraint true. 

Alloy’s relational logic is undecidable, so it is not possible to build a tool that can 

automatically check whether an assertion is truly valid or not. Therefore, in a way or 

another, some compromise is necessary. Formal methods tackle this problem through 

theorem proving. Though automatic theorem provers exist, they only attempt to 

construct a proof that an assertion holds. If it succeeds, the assertion is valid. If it fails, 

however, the assertion may be valid or invalid. Unfortunately, it can be hard to tell 

whether the failure to verify the assertion was due to a faulty assertion, to limitations of 

the tool itself, or to a lack of appropriate guidance from the user. 

Alloy proposes to compromise in a different way. As a lightweight formal method, it 

does not try to find proof, but instead look for a counter-proof that invalidates an 

assertion. It does that by checking the assertion with all possible tests cases within a 

limit. If the analyzer finds no counterexample, it is still possible that the assertion does 

not hold, and has a counterexample that is larger than all the considered test cases.  

In (JACKSON, 2012), the author argues that instance finding (Alloy’s analysis 

approach), is much more effective than testing, since instead of checking an assertion 

against a user-defined test base, it exhaustively confronts the assertion to all 

possibilities within a scope. Furthermore, the usability of an instance finding approach 

is substantiated by the small scope hypothesis, which reads: Most bugs have small 

counterexamples. It means that by analyzing all possibilities for a small scope, one is 

likely to find a counterexample for an assertion, if one exists. An empirical study has 

been conducted to evaluate this hypothesis and it show encouraging results (ANDONI 

et al., 2002). 

Alloy is especially useful to detect over and under-constraining in a model. The former 

refers to a prohibitive model, which does not allow desired instantiations. The latter 

means an overly permissive model, which allows undesired instantiations. By running 

predicates, one is able to detect over-constraining and by checking assertion, identify 

the need for additional constraints. 
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ANNEX B AUXILIARY ALLOY MODULES 

This appendix presents the auxiliary modules required for every transformed model.  

The formats used in the Alloy codes are the following: bolded blue words are Alloy’s 

reserved words; light green indicates comments, preceded by a double dash (--) for 

single line comments, and a bar followed by star for multi-line comments (/*); and red 

for literals.  

B.1 SEQUNIV 

 

module util/sequniv 

 

open util/integer as ui 

 

/* 

 * A sequence utility for modeling sequences as just a 

 * relation as opposed to reifying them into sequence 

 * atoms like the util/sequence module does. 

 * 

 * Precondition: each input sequence must range over a prefix 

 * of seq/Int. 

 * 

 * Postcondition: we guarantee the returned sequence 

 * also ranges over a prefix of seq/Int. 

 * 

 * @author Greg Dennis 

 */ 

 

/** sequence covers a prefix of seq/Int */ 

pred isSeq[s: Int -> univ] { 

  s in seq/Int -> lone univ 

  s.inds - ui/next[s.inds] in 0 

} 

 

/** returns all the elements in this sequence */ 

fun elems [s: Int -> univ]: set (Int.s) { seq/Int . s } 

 

/** 

 * returns the first element in the sequence 

 * (Returns the empty set if the sequence is empty) 

 */ 

fun first [s: Int -> univ]: lone (Int.s) { s[0] } 

 

/** 

 * returns the last element in the sequence 

 * (Returns the empty set if the sequence is empty) 

 */ 

fun last [s: Int -> univ]: lone (Int.s) { s[lastIdx[s]] } 
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/** 

 * returns the cdr of the sequence 

 * (Returns the empty sequence if the sequence has 1 or fewer element) 

 */ 

fun rest [s: Int -> univ] : s { seq/Int <: ((ui/next).s) } 

 

/** returns all but the last element of the sequence */ 

fun butlast [s: Int -> univ] : s { 

  (seq/Int - lastIdx[s]) <: s 

} 

 

/** true if the sequence is empty */ 

pred isEmpty [s: Int -> univ] { no s } 

 

/** true if this sequence has duplicates */ 

pred hasDups [s: Int -> univ] { # elems[s] < # inds[s] } 

 

/** returns all the indices occupied by this sequence */ 

fun inds [s: Int -> univ]: set Int { s.univ } 

 

/** 

 * returns last index occupied by this sequence 

 * (Returns the empty set if the sequence is empty) 

 */ 

fun lastIdx [s: Int -> univ]: lone Int { ui/max[inds[s]] } 

 

/** 

 * returns the index after the last index 

 * if this sequence is empty, returns 0 

 * if this sequence is full, returns empty set 

 */ 

fun afterLastIdx [s: Int -> univ] : lone Int { ui/min[seq/Int - inds[s]] } 

 

/** returns first index at which given element appears or the empty set if 

it doesn't */ 

fun idxOf [s: Int -> univ, e: univ] : lone Int { ui/min[indsOf[s, e]] } 

 

/** returns last index at which given element appears or the empty set if 

it doesn't */ 

fun lastIdxOf [s: Int -> univ, e: univ] : lone Int { ui/max[indsOf[s, e]] } 

 

/** returns set of indices at which given element appears or the empty set 

if it doesn't */ 

fun indsOf [s: Int -> univ, e: univ] : set Int { s.e } 

 

/** 

 * return the result of appending e to the end of s 

 * (returns s if s exhausted seq/Int) 

 */ 

fun add [s: Int -> univ, e: univ] : s + (seq/Int->e) { 

  setAt[s, afterLastIdx[s], e] 

} 

 

/** 

 * returns the result of setting the value at index i in sequence to e 

 * Precondition: 0 <= i < #s 

 */ 

fun setAt [s: Int -> univ, i: Int, e: univ] : s + (seq/Int->e) { 

  s ++ i -> e 

} 
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/** 

 * returns the result of inserting value e at index i 

 * (if sequence was full, the original last element will be removed first) 

 * Precondition: 0 <= i <= #s 

 */ 

fun insert [s: Int -> univ, i: Int, e: univ] : s + (seq/Int->e) { 

  seq/Int <: ((ui/prevs[i] <: s) + (i->e) + ui/prev.((ui/nexts[i] + i) <: 

s)) 

} 

 

/** 

 * returns the result of deleting the value at index i 

 * Precondition: 0 <= i < #s 

 */ 

fun delete[s: Int -> univ, i: Int] : s { 

  (ui/prevs[i] <: s) + (ui/next).(ui/nexts[i] <: s) 

} 

 

/** 

 * appended is the result of appending s2 to s1 

 * (If the resulting sequence is too long, it will be truncated) 

 */ 

fun append [s1, s2: Int -> univ] : s1+s2 { 

  let shift = {i', i: seq/Int | int[i'] = ui/add[int[i], 

ui/add[int[lastIdx[s1]], 1]] } | 

    no s1 => s2 else (s1 + shift.s2) 

} 

 

/** 

 * returns the subsequence of s between from and to, inclusive 

 * Precondition: 0 <= from <= to < #s 

 */ 

fun subseq [s: Int -> univ, from, to: Int] : s { 

  let shift = {i', i: seq/Int | int[i'] = ui/sub[int[i], int[from]] } | 

    shift.((seq/Int - ui/nexts[to]) <: s) 

} 

B.2 RELATION 

module util/relation 

 

/* 

 * Utilities for some common operations and constraints 

 * on binary relations. The keyword 'univ' represents the 

 * top-level type, which all other types implicitly extend. 

 * Therefore, all the functions and predicates in this model 

 * may be applied to binary relations of any type. 

 * 

 * author: Greg Dennis 

 */ 

 

/** returns the domain of a binary relation */ 

fun dom [r: univ->univ] : set (r.univ) { r.univ } 

 

/** returns the range of a binary relation */ 

fun ran [r: univ->univ] : set (univ.r) { univ.r } 
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/** r is total over the domain s */ 

pred total [r: univ->univ, s: set univ] { 

  all x: s | some x.r 

} 

 

/** r is a partial function over the domain s */ 

pred functional [r: univ->univ, s: set univ] { 

  all x: s | lone x.r 

} 

 

/** r is a total function over the domain s */ 

pred function [r: univ->univ, s: set univ] { 

  all x: s | one x.r 

} 

 

/** r is surjective over the codomain s */ 

pred surjective [r: univ->univ, s: set univ] { 

  all x: s | some r.x 

} 

 

/** r is injective */ 

pred injective [r: univ->univ, s: set univ] { 

  all x: s | lone r.x 

} 

 

/** r is bijective over the codomain s */ 

pred bijective[r: univ->univ, s: set univ] { 

  all x: s | one r.x 

} 

 

/** r is a bijection over the domain d and the codomain c */ 

pred bijection[r: univ->univ, d, c: set univ] { 

  function[r, d] && bijective[r, c] 

} 

 

/** r is reflexive over the set s */ 

pred reflexive [r: univ -> univ, s: set univ] {s<:iden in r} 

 

/** r is irreflexive */ 

pred irreflexive [r: univ -> univ] {no iden & r} 

 

/** r is symmetric */ 

pred symmetric [r: univ -> univ] {~r in r} 

 

/** r is anti-symmetric */ 

pred antisymmetric [r: univ -> univ] {~r & r in iden} 

 

/** r is transitive */ 

pred transitive [r: univ -> univ] {r.r in r} 

 

/** r is acyclic over the set s */ 

pred acyclic[r: univ->univ, s: set univ] { 

  all x: s | x !in x.^r 

} 

 

/** r is complete over the set s */ 

pred complete[r: univ->univ, s: univ] { 

  all x,y:s | (x!=y => x->y in (r + ~r)) 

} 
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/** r is a preorder (or a quasi-order) over the set s */ 

pred preorder [r: univ -> univ, s: set univ] { 

  reflexive[r, s] 

  transitive[r] 

} 

 

/** r is an equivalence relation over the set s */ 

pred equivalence [r: univ->univ, s: set univ] { 

  preorder[r, s] 

  symmetric[r] 

} 

 

/** r is a partial order over the set s */ 

pred partialOrder [r: univ -> univ, s: set univ] { 

  preorder[r, s] 

  antisymmetric[r] 

} 

 

/** r is a total order over the set s */ 

pred totalOrder [r: univ -> univ, s: set univ] { 

  partialOrder[r, s] 

  complete[r, s] 

} 

B.3 TERNARY 

module util/ternary 

 

/* 

 * Utilities for some common operations and constraints 

 * on ternary relations. The keyword 'univ' represents the 

 * top-level type, which all other types implicitly extend. 

 * Therefore, all the functions and predicates in this model 

 * may be applied to ternary relations of any type. 

 * 

 * author: Greg Dennis 

 */ 

 

/** returns the domain of a ternary relation */ 

fun dom [r: univ->univ->univ] : set ((r.univ).univ) { (r.univ).univ } 

 

/** returns the range of a ternary relation */ 

fun ran [r: univ->univ->univ] : set (univ.(univ.r)) { univ.(univ.r) } 

 

/** returns the "middle range" of a ternary relation */ 

fun mid [r: univ->univ->univ] : set (univ.(r.univ)) { univ.(r.univ) } 

 

/** returns the first two columns of a ternary relation */ 

fun select12 [r: univ->univ->univ] : r.univ { 

  r.univ 

} 

 

/** returns the first and last columns of a ternary relation */ 

fun select13 [r: univ->univ->univ] : ((r.univ).univ) -> (univ.(univ.r)) { 

  {x: (r.univ).univ, z: univ.(univ.r) | some (x.r).z} 

} 
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/** returns the last two columns of a ternary relation */ 

fun select23 [r: univ->univ->univ] : univ.r { 

  univ.r 

} 

 

/** flips the first two columns of a ternary relation */ 

fun flip12 [r: univ->univ->univ] : (univ.(r.univ))->((r.univ).univ)-

>(univ.(univ.r)) { 

  {x: univ.(r.univ), y: (r.univ).univ, z: univ.(univ.r) | y->x->z in r} 

} 

 

/** flips the first and last columns of a ternary relation */ 

fun flip13 [r: univ->univ->univ] : (univ.(univ.r))->(univ.(r.univ))-

>((r.univ).univ) { 

  {x: univ.(univ.r), y: univ.(r.univ), z: (r.univ).univ | z->y->x in r} 

} 

 

/** flips the last two columns of a ternary relation */ 

fun flip23 [r: univ->univ->univ] : ((r.univ).univ)->(univ.(univ.r))-

>(univ.(r.univ)) { 

  {x: (r.univ).univ, y: univ.(univ.r), z: univ.(r.univ) | x->z->y in r} 

} 

B.4 BOOLEAN 

module util/boolean 

 

/* 

 * Creates a Bool type with two singleton subtypes: True 

 * and False. Provides common boolean operations. 

 * 

 * author: Greg Dennis 

 */ 

 

abstract sig Bool {} 

one sig True, False extends Bool {} 

 

pred isTrue[b: Bool] { b in True } 

 

pred isFalse[b: Bool] { b in False } 

 

fun Not[b: Bool] : Bool { 

  Bool - b 

} 

 

fun And[b1, b2: Bool] : Bool { 

  subset_[b1 + b2, True] 

} 

 

fun Or[b1, b2: Bool] : Bool { 

  subset_[True, b1 + b2] 

} 

 

fun Xor[b1, b2: Bool] : Bool { 

  subset_[Bool, b1 + b2] 

} 
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fun Nand[b1, b2: Bool] : Bool { 

  subset_[False, b1 + b2] 

} 

 

fun Nor[b1, b2: Bool] : Bool { 

  subset_[b1 + b2, False] 

} 

 

fun subset_[s1, s2: set Bool] : Bool { 

  (s1 in s2) => True else False 

} 
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APPENDIX A NOTEWORTHY CONCEPTUAL MODELS 

In this appendix, we present and discuss some of the most relevant ontologies we 

added to our repository. 

A.1 THE ITU ONTOLOGIES 

The International Telecommunication Union (ITU) is a specialized agency of the United 

Nations for information and communication technologies. The study groups of ITU’s 

Telecommunication Standardization Sector (ITU-T) develop and maintain international 

standards known as ITU-T Recommendations. In our repository, we have four 

ontologies that are formalizations of ITU-T Recommendations, namely The G.805 

Ontology, The G.805 Ontology (Revised), The G.800 Ontology and the G.809 

Ontology. The ontologies are homonyms to the recommendations they formalize. 

We present these four ontologies together in this section because they are a lot similar 

to one another in terms development context, domain, purpose, etc. In a simple way, 

these four models describe different aspects and abstraction views of network 

architectures. Besides G.809, the other three ontologies have been developed and 

applied in industrial projects between the Electrical Engineering Department of the 

Universidade Federal do Espírito Santo and a Brazilian telecommunication company. 

Nonetheless, senior researchers and graduate students have developed them all. 

Published in (MONTEIRO et al., 2010), the first version of the ITU-T G.805 the only 

public available of the four. For that reason, we only provide further details for it. 

The G.805 ontology was designed to be a reference model on the domain of transport 

networks and it has successfully been applied to identify shortcomings on the 

recommendation it was built upon (BARCELOS et al., 2011). The ontology describes 

functional and structural technology-independent architectures for transport networks. 

G.805 is a reasonably sized ontology, containing 135 classes, 113 associations, 127 

generalizations and 36 generalization sets. Note, though, that the ontology does not 

define any attribute or data type. 
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Figure 69 details the occurrence of class stereotypes in the G. 805 Ontology. Note that, 

for this domain, only a subset of OntoUML is required. No class stereotype as Quantity, 

Collective, Mixin, RoleMixin or Phase was identified. Mostly, this ontology contains 

relators. 

 

Figure 69. Class’ stereotype distribution in the G.805 Ontology. 

Finally, Figure 70 presents the distribution of association’s stereotypes used in the 

G.805 ontology. Once more, only a subset of the stereotypes is required: no 

association is stereotype as SubQuantityOf, SubCollectionOf, MemberOf, Formal or 

Derivation. We surely expect that, since these relations require quantities, collections 

and data types, respectively, and there are none in the model.  

Another interesting remark regards the comparison between the number of relators 

and mediations. One of OntoUML’s constrains requires every relator to be connected 

to at least one mediation. However, the number of mediations in G. 805 (38) is close 

to half the number of relators (61). In fact, this is the lowest mediation/relator rate in 

the entire repository: 0.62. 

Relator: 61

Role: 28

Kind: 18

Mode: 12

Subkind: 8

Category: 8
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Figure 70. Association’s stereotype distribution in the G. 805 Ontology.  

A.2 ONTOEMERGEPLAN 

The OntoEmerge (FERREIRA, 2013) is an ontology about the domain of emergencies, 

developed as a main product of a MSc. Thesis  in the Universidade Federal do Rio de 

Janeiro (UFRJ). The ontology aims to support models, systems and strategies 

associated to the generation, control and support of emergency plans. The authors 

propose the ontology as a reference to analyze the different elements of a plan, as well 

as to facilitate the systematic generation of emergency plans. 

OntoEmerge builds upon the UFO-C ontology (REF), a model about social 

interactions. OntoEmerge builds around the concept of emergency plan, i.e. a set of 

instructions to people should follow in case of a particular type of disaster, like a fire or 

an earthquake.  An emergency plan defines responsibility delegation for carrying out 

specific actions; identification of personnel, equipment, facilities, supplies, and other 

resources available for use; and action coordination.  

The authors organized the ontology in nine subdomains, namely: 

 Plans, Process and Activities: describes the composition of emergency plans 

and their properties 

 Goals, Intentions and Delegations: focuses on intention of the emergency plans 

ComponentOf: 45

Mediation: 38

Material: 26

Characterization: 4
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 Installation: describes the facilities for which one creates evacuation plans. 

 Resources, Types of Resources and Roles: describes the relations between 

emergency activities and the objects required to perform them, as well as the 

people who performs them. 

 Human Resources and Materials: describes the properties and types of objects 

and agents that participate in emergency activities 

 Environment: details properties of the environment relevant in case of an 

emergency. 

 Emergency Event: characterizes the emergency concept. 

 Risk and Planned Activity: describe and relate the concepts of Risk, Impact, 

Hazard, Damage and Vulnerability. 

 Geographical Region: geo-spatial characterization 

In numbers, the ontology is the fourth biggest in our repository. It defines 189 classes, 

138 associations, 111 generalizations and 16 generalization sets, distributed in 10 

packages. 

Figure 71 presents OntoEmerges’ class stereotypes distribution. Notice that more than 

a third of the classes (64 of 189) are defined using unknown stereotypes.  That unusual 

number is justified because the domain formalized by OntoEmerge requires more 

ontological distinctions than OntoUML currently provides. In order to characterize the 

domain precisely, meta-concepts like event and higher-order universal are required. In 

this work, we treat every class qualified by a stereotype not defined in OntoUML as an 

un-stereotyped class.  

 

Figure 71. Distribution of OntoEmerge class’ stereotypes. 

Unknown: 64

Mode: 30

Category: 22

Role: 19

RoleMixin: 18

Kind: 15

Relator: 14
Subkind: 3

Mixin: 3

Collective: 1

Other: 36
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Figure 72 presents the number of occurrences of the association stereotypes in 

OntoEmerge. More than half of the associations in the ontology are formal (62.3%). 

This discrepancy with the other relations is due to the high number of unknown 

stereotypes. Since there is no restriction regarding the use of formal relations, the 

authors often use it as a last alternative, in this case to relate classes with unknown 

stereotypes. 

 

Figure 72. OntoEmerge’s association stereotype distribution. 

A.3 ONTOBIO 

Biodiversity research is natively an interdisciplinary field. The available data comes 

from all around the world, described and classified by different models and/or 

standards. The intrinsic heterogeneity of this scenario is aggravated by not only the 

different necessities and profile of biodiversity experts, but by the huge amount of 

stored data and the ever-growing number of species.  

The OntoBio ontology (ALBUQUERQUE, 2011) proposes to help solve the 

aforementioned complex interoperability issue of biodiversity research. It was 

developed in the Brazilian National Center for Amazon Research in collaboration with 

biodiversity experts.  

Formal: 86

Mediation: 
20

Unknown: 10

Material: 9

Characterization: 6

ComponentOf: 6

MemberOf: 1
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The authors separate the ontology in five subdomains:  

 Environment: classifies the types of environment and their properties (e.g. 

luminosity, climate, soil)  

 Ecosystem: formalizes the ecosystem’s relations and properties, which are 

relevant for a biodiversity collection protocol. 

 Spatial Location: describes geo-spatial properties and classifies regions with 

regard to political, climate and vegetation. 

 Collection: structures the collection protocol in a high-level of abstraction. 

 Material Entity: describes the biotic (e.g. plants, animals) and abiotic (e.g. soil 

and water samples) entities that can be collected. 

The ontology’s structural numbers are 187 classes, 50 associations, 160 

generalizations, 22 generalization sets, 5 data types and 14 attributes. In terms of total 

elements, it is the fifth largest ontology in the repository. Note that the ontology 

specifies only 0.27 associations per class, i.e., the ontology defines one association 

for almost every four classes: the lowest rate encountered the whole repository. This 

low association density indicates that the model resembles a lot a taxonomy21.  

Figure 73 depicts the composition of the OntoBio ontology from the perspective of class 

stereotype. Notice that the three most frequent stereotypes are Mode, Subkind and 

Category, in this particular order. Together they correspond to 69.5% of all classes 

defined in the ontology. The taxonomical nature of this ontology explains this number. 

For example, there are only five top-level modes within the 52 defined in the ontology. 

                                            
21 We do not use the term “taxonomy” in any sort of judgment, only to help characterize the ontology. 
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Figure 73. Distribution of the class’ stereotypes within the OntoBio ontology. 

Lastly, Figure 74 details the occurrence of association stereotypes in the OntoBio 

ontology. Notice that, just like the OntoEmerge ontology, the Formal associations are 

also the most frequent. Nine of the fifteen formal relations relate types to their 

respective high-order universals (their power-types if it were a UML model).  

OntoUML does not specify a particular stereotype to relate types and data types. In 

the OntoBio model, the authors use five associations with unknown stereotypes. 

 

Figure 74. Association’s stereotypes distribution in the OntoBio Ontology. 

Mode: 52

Subkind: 43

Category: 35

Role: 12

Unknown: 12

Relator: 10

Kind: 9

Mixin: 8

Quantity: 3

Collective: 3

Other: 33

Formal: 18

Mediation: 11

Characterization: 6ComponentOf: 5

Unknown: 5

MemberOf: 3

Material: 1

Derivation: 1
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A.4 ONTOUML ORG ONTOLOGY (O3) 

The OntoUML Org Ontology (O3) is one of the most recent ontologies we have in our 

repository. Partially published in (PEREIRA; ALMEIDA, 2014), it is an undergoing 

masters research being conducted in the Informatics Department of the Universidade 

Federal do Espírito Santo.  

O3 models a subdomain of Enterprise Architecture, named organizational structures 

or active structure. It concerns who undertakes organizational activities. Therefore, the 

ontology describes business agents, the tasks they perform, the goals they seek to 

achieve, alongside with authority relationships, communication lines, work groups, etc. 

The authors built O3 as a specialization of the UFO-C core ontology, just like 

OntoEmerge.  

The goal of the O3 ontology is to serve as a reference to perform an ontological 

analysis on the ArchiMate language. As discussed in (PEREIRA; ALMEIDA, 2014), the 

ontology already allowed the identification of shortcomings in ArchiMate’s expressivity 

and the proposal of more sophisticated modeling constructs for the language.  

 

Figure 75. Class distribution in the O3 Ontology. 

The model provided by the authors contains 78 classes, 78 associations, 57 

generalizations and 8 generalization sets. It contains no data type or attribute. Figure 

75 presents O3’s class distribution, whilst Figure 76 its association distribution. This 

Relator: 20

Role: 18

Subkind: 12

Unknown: 11

Kind: 7

Mode: 4

Category: 3

RoleMixin: 
2

Mixin: 1Other: 10
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ontology does not define any Quantity, Collective or Phase types and any Derivation, 

MemberOf, SubCollectionOf or SubQuantityOf of associations. 

 

Figure 76. Association’s stereotype distribution in the O3 Ontology. 

Mediation: 31

Formal: 30
Material: 6

ComponentOf: 5

Unknown: 5

Characterization: 1
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APPENDIX B ANTI-PATTERN ANALYSIS FLOWS 

This appendix presents the diagrams of the analysis flows for the anti-patterns 

presented in Chapter 5. Each diagram contains a fluxogram that details questions and 

pre-defined possible answers to guide the modeler in deciding whether an occurrence 

of the anti-pattern indeed is a mistake. If the flow leads to the conclusion that the 

occurrence is indeed an error, it will also provide the appropriate refactoring solution 

and describes the steps to perform it. 

We build the diagrams using basic UML Activity Diagram notation. We adopt a few 

representation formats to improve readability. Questions that the user must answer are 

represented as green diamonds ( ), whilst conditions that require no interaction are 

represented as yellow diamonds ( ). We represent the possible answers of a 

question or the possible results of evaluating a condition in brackets (e.g. [yes], [has-

identity-provider]). We represent actions to refactor the model by yellow rounded 

rectangles ( ). The starting point of the analysis is represented by a black circle 

( ) and the end points by a yellow circle with a concentric black circle ( ). 

Action
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B.1 ASSCYC 

Start

Q: Is one of the

associations in the

cycle derived from

the others?

Create OCL 

deriv ation 

rule

Q: If t1 is

connected to t2,

t2 is connected to

t3, and so on,

must tn be

connected to t1 ?

End

Create OCL 

inv ariant: 

mandatory 

cycle

Create OCL 

inv ariant: 

forbidden 

cycle

[possible]

[all-intentional]

[one-derived]

[always]

[never]
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B.2 BINOVER 

Start Q: Are the ends

overlapping?

Make ends 

disjoint

Q: Reflexivity?

Set Reflexiv ity 

= (Non) 

Reflexiv e

C: Is

Formal or

Material?

Q: Change

stereotype?End
Set Stereotype = 

[newStereotype]

Set Reflexiv ity 

= Irreflexiv e

Q: Symmetry?

Set Symmetry = 

Asymmetric

Q: Transitive?

Set Symmetry = 

(Non) Symmetric

C: Is

Formal or

Material?

Q: Change

stereotype to

formal or

material?

Set Stereotype = 

[newStereotype]

Set Symmetry = 

Asymmetric

C: Is

MemberOf?

Q: Change

stereotype?

Set Stereotype = 

[newStereotype]

Set Transitiv ity = 

Transitiv e

Set Transitiv ity = 

Instransitiv e

Q: Ciclic?

Q: Is ComponentOf,

SubQuantityOf or

SubCollectionOf?

Q: Change

Stereotype?

Set Transitiv ity = 

Instransitiv e

Set Stereotype = 

[newStereotype]

C: Is Formal

or Material?

Q: Change

Stereotype?

Set Transitiv ity = 

NonTransitiv e

Set Stereotype = 

[newStereotype]

Set Transitiv ity = 

Transitiv e

Set Transitiv ity = 

(In)Transitiv e

Q: Is Formal

or Material?

Set Cyclicity = 

(Non) Cyclic

Q: Change

Stereotype?
Set Stereotype = 

[newStereotype]

Set Cyclicity= 

Acyclic

Set Cyclicity 

= Acyclic

Set Reflexiv ity 

= Irreflexiv e

End

[Asymmetric]

[KeepStereo]

[ChangeStereo]

[False]

[True]

[NonTransitive]

[Intransitive]

[Transitive]

[False]

[Symmetric/NonSymmetric]

[ChangeStereo]

[KeepStereo]

[changeStereo]

[False]

[True]

[Irreflexive]

[Reflexive/NonReflexive]

[Yes]

[No]

[True]

[KeepStereo]

[ChangeStereo]

[False]

[True]

[ChangeStereo]

[True]

[KeepStereo]

[ChangeStereo]

[False]

[True]

[Acyclic]

[Cyclic /

NonCyclic]

[KeepStereo]

[KeepStereo]
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B.3 DECINT 

 

for each generalization«iterative»

For each disjoint group«iterative»

C: Type is

Subkind, Role

or Phase?

C: Do all supertypes

inherit the same

identity principle?

C: Are any of the

supertypes made disjoint

by a generalization set?

Q: Choose one

identity provider

Start

Q: Are all

generalizations

correctly defined?

Fix identity 

principle 

inheritance

C: Does it sti l l

characterize the

antipattern?

End

Q: Remove

generalizations or

modify the isDisjoint

meta-attribute of the

generalization set. C: Has

group to

fix?

Set isDisjoint 

to false

Remov e 

generalizations

Fix GS or

Remove

generalization?

C: Has

generalization

to invert?

Inv ert the 

generalization

C: Stil l

characterizes

the anti-pattern? End

Q: Is it possible for an

individual to be an instance

of [all the remaining

supertypes] but no be an

instance of <Type>?
Create OCL 

Deriv ation 

Rule

End

C: Stil l

characterizes the

anti-pattern?

End

[no]

[yes]

[no]
[no]

[yes]

[no]

[yes]

[yes]

[no]

[yes]

[yes]

[yes]

[no]

[yes]

[no]

[yes]

[yes]

[no]

[no]
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B.4 DEPPHASE  

 

B.5 FREEROLE  

 

Q: Is <Phase> really

defined by a change in

an intrinsic property?

Make 

<Phase> a 

role

Start

Q: Are the relational

dependencies of <Phase>

really mandatory?

Separate the 

relational 

dependency in 

a subtype

End

Separate the 

relational 

dependency in 

a supertype

[mandatory > 0]

[optional > 0]

[yes]

[no]

For each relator«iterative»

For each type to which <FreeRole> depends on«iterative»

Start
Q: Is

<FreeRole> a

derived type?

Q: What is the

derivation rule

for <FreeRole>?

Create OCL 

Deriv ation 

Rule
End

Q: Is the relational dependency

of <FreeRole> a particular type of

the existing one, from

<DefinedRole>, or a completely

independent one? Q: Supply

additional

information?

Create 

<NewRelator>

Create new 

Mediation from 

<NewRelator> 

to <FreeRole>

Create 

<NewType>

C: Type exists?

Create 

Mediation

C: Create

Material?

Create <Material> 

From <FreeRole> to 

<DependentType>

Create a Deriv ation 

from <Relator> to 

<Material>

End

Q: Would like to make

explicit in the model the

particular type of

<DefiningRelator> that

characterizes <FreeRole>?

C: 'Use'=True for

<Relator-n>?

C:

'Specialize'=True

for <Relator-n>?

Create a 

<NewMediation-n> 

from <Relator-n> to 

<FreeRole>

Create a 

<NewSubtypeRelator-n>

Specialize 

<NewSubRelator-n> 

from <Relator-n>

Create a 

<NewMediation-n> 

from 

<NewSubRelator-n> 

to <FreeRole>

End

[true]

[derived]

[intentional]

[independent]

[particular]

[no]

[true]

[false]

[false]

[true]

[yes]
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B.6 GSRIG 

 

Q: What is

the rigidity

of the

supertype?

Q: Are all

subtypes

anti-rigid?

Q: Is the rigidty of

the subtypes

correct?

C: Was

<RigidSuperType>

originally a Kind,

Collective or

Quantity or a

subtype of one of

them?

Start
C: Was

<RigidSuperType>

originally a Kind,

Collective or

Quantity?

Create 

<NewSuperType>

Change 

<RigidSuperType>'s 

to the prov ided 

anti-rigid stereotype

Change the 

subtypes' 

stereotypes

End

Rename 

<RigidSuperType> to 

"NewType"

Create a Mixin as 

a supertype of all 

subtypes in the 

generalization set

Fix the 

Generalization 

Set

Change 

<RigidSuperType>'s 

stereotype to Mixin

End

Q: All subtypes

follow the same

specialization

criteria?

Q: How should the

subtypes be

grouped?

Delete de 

Generalization 

Set

Create a new 

GS for the 

rigid 

subtypes

Create a new 

GS for the 

anti-rigid 

subtypes

Delete the 

existing GS

End

Change the 

subtypes' 

stereotypes
C:All subtypes are

rigid or All subtypes

are anti-rigid?

End

Q: How to

represent the

implicit rigid

subtypes?

Create a 

common 

subtype

Create a rigid 

subtype for 

each 

anti-rigid

Create a OCL 

deriv ation 

Rule

End

[semi-rigid]

[yes]

[true]

[no-none]

[false]

[true]

[correct]

[wrong]

[rigid]

[anti-rigid]

[false]

[one-each]

[common-derived]

[common-intentional]
[false]

[true]

[both]

[only-antirigid]
[only-rigid]

[no-multiple]
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B.7 HETCOLL 

 

B.8 HOMOFUNC 

 

Start

Q: Do all parts of a <Whole>

have the same function (or

play the same role) regarding

their whole?

Change all 

relations to 

ComponentOf

Change whole 

nature to 

Functional 

Complex

Change parts 

nature to 

Functional 

Complex

End

Q: Are the parts of the

<Whole>';s parts also a

part of it?

Change 

selected 

relations to 

MemberOfs

Change selected 

relations to 

SubCollectionOfs

Non-exclusive 

choice.
Change parts 

nature to 

Collection

End

Q: Are the cardinality

constraints imposed by the

multiple memberOf relations

really necessary?

Create single 

general memberOf 

relation to 

<NewParent>

Create common 

parent 

(<NewParent>)

[No]

[Yes]

[Yes-ListOfParts]

[No-ListOfParts]

[Yes]

[No]

Start

Q: <Whole> is

Functional

Complex?

Q: Other

part types?

C: <FunctionalPart>

is a Collection?

Change 

<FunctionalWhole> 

stereotype to 

Collectiv e
C: Check

<FunctionalWhole>'s

Identity Provider

Q: Change

Identity

Provider?

Q: Create Indentity

Provider?

Create new 

Identity Prov ider 

(Collectiv e)

Change Identity 

Prov ider Stereotype to 

Collectiv e

Change 

<partOf>'s 

stereotype to 

memberOf

Q: <FunctionalPart> is

SubCollection or Member?

Change 

<partOf>'s 

stereotype to 

subCollectionOf

End

Q: New

subtypes of

<FunctionalPart>?

Create new 

part types

Create new 

subtypes of 

<FunctionalPart>

Create new 

componentOfs 

for exisiting 

subtypes

C: Whole will have

2 or more part

subtypes?

Q: Are the new

subtypes of part

overlapping?

Q: Which

combinations

are not possible?

Q:

Multi-functional

Part?

C: Stil l have

overlapping

parts?

End

Make part 

types disjoint

Q: Which

combinations are

not possible?

Make part 

types 

exclusiv e

End

[InheritsIdenProv]

[OwnIdenProv]

[newIdenProv]

[changeIdenProv]

[OwnIdenProv]

[NoIdenProv]

[OwnIdenProv]

[Collection]

[Else]

[No]

[Yes]

[Collection]

[Functional]

[newIdenProv]

[True]

[False]

[No]

[Yes]

[No]

[memberOf]

[subCollectionOf]

[True]

[no subtype]

[useExistingSubtypes]

[newSubtypes]

[Yes]
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B.9 IMPABS 

 

Start

Q: When an association is defined

with at least one of the end types

being the supertype of  two or more

other types, it often allows

undesired instantiations of model.

C: If <Assoc> is meronymic

Create New 

Relations

Q: Is Essential

(is Immutable

Part)?

Set isEssential 

(isImmutable 

Part)

Q: all ReadOnly?

Set readOnly 

restrictions

End

Q: Is any end

derived?

Set deriv ed 

ends

Q: is Inseparable

(is Immutable

Whole)?

Set 

isInseparable 

(is Immutable 

Whole) Q: is Shareable?

Set is 

Shareable

[no restriction]

[no restriction]

[restrictions]

[true]

[false]

[no restriction]

[restrictions]

[restrictions]

[restrictions]

[no restriction]

[no restriction]

[restrictions]

[no restriction]

[restrictions]
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B.10 MIXIDEN 

 

B.11 MIXRIG 

 

Start

Q: Is it possible for another

type, which follows a

different identity principle,

to be generalized into

<Mixin>?

Change <Mixin>'s 

stereotype

Q: Is any of the types

that can specialize

<Mixin> and follow

different identity

principles than the

current subtypes of

<Mixin> in the scope

of the ontology?

Create 

generalizations

C: Selected any

existing types?

C: Created any

types?

Create 

subtypes

End

End

[yes]

[no]

[yes]

[no]

[no]

[yes]

[yes]

[no]

Start
Q: Is it possible for an

[rigid/anti-rigid] type to be

generalized into <Mixin>?

Change 

<Mixin>'s 

stereotype to 

Category

Q: Are all

[rigid/anti-rigid]

subtypes of <Mixin>

OUT of the scope of

the ontology??

Create 

generalizations

C: Selected any

existing types?

C: Created any

types?

Create 

subtypes

End

End

C: Check

subtype

rigidity?

Change 

<Mixin>'s 

stereotype to 

RoleMixinEnd

[all-antirigid][all-rigid]

[no]

[yes]

[no]

[yes]

[no]

[yes][yes]

[no]
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B.12 MULTDEP 

 

B.13 PARTOVER, RELOVER AND WHOLEOVER 

 

For each binary dependency«iterative»

Start
Q: When an instance of

<Type> is created, to

which relators must it be

connected to?

C: Check required

and optional l ists
Q: Is there a

dependency between

these relators?

Q: Are the remainder

relators created in a

particular order?

Create Formal 

Association 

Between 

Relators

Create Cycle 

OCL 

Constraint

Create GeneralizationSet 

{disjoint=false,cov ering=true} 

containing all created 

generalizations

For each relator in the optional list«iterative»

Create a subtype of 

<Type>: 

<NewSubtype>

Mov e mediation 

from <Type> to 

<NewSubtype>

Create subtype 

of <Type>: 

<NewSubtype>

Mov e mediation 

from <Type> to 

<NewSubtype>

Create Subtypes in a 

Hierarchy Line According 

to the Order Prov ided

MAX = # of mediations 

connected to the type

End

[custom-order]

[no-order]

[dependency list]
[required.size()==MAX]

[optional.size()==1]

[optional.size()>=2]

[required,optional]

Start
Q: Is it possible for an object to be

an instance of <Part-1>, <Part-2>,

… and <Part-n> at the same time?

Q: Which

combinations

are not

possible?

Q: Is it possible for an object to

act simultaneously as parts

<Part1>, <Part2>, .... , composing

the same instance of <Whole>?

C: At least 2 parts are stil l

overlapping?

End

Make part 

types disjoint

Q: Which

combinations are

not possible?

Make part 

types 

exclusiv e

[FALSE]

[TRUE]

[NO]

[YES]

[combination-list]

[YES]

[NO]
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B.14 RELCOMP 

 

B.15 RELRIG 

 

Start
Q: If an instance 'x' of

<BSource> is connected

to an instance 'y' of

<BTarget>, through <B>,

is it necessary that:

Create OCL - 

Right Univ ersal 

Composition

Create OCL - 

Left Univ ersal 

Composition

End Q: If an instance 'x' of

<BSource> is

connected to an

instance 'y' of

<BTarget>, through

<B>, is it necessary

that:

Q: If an instance 'x' of

<BSource> is connected to

an instance 'y' of

<BTarget>, through <B>, is

it FORBIDDEN that:

End

Create OCL - 

Right Existential 

Composition

Create OCL - 

Left Existential 

Composition

End

Create OCL - 

Right Forbidden 

Composition

Create OCL - 

Left Forbidden 

Composition

End

[1] 'x' be connected to all 'w' that 'y' is connected through <A>

[2] 'y' be connected to all 'w' that 'x' is connected through <A>

[3] 'x' be connected to at least <n> 'w' that 'y' is connected through <A>

[4] 'y' be connected to at least <n> 'w' that 'x' is connected through <A>

[5] 'x' be connected to any 'w' that 'y' is connected through <A>

[6] 'y' be connected to any 'w' that 'x' is connected through <A>

[none]
[1] [2]

[both]

[none] [none]

[3]

[both]

[5] [6]

[both]

[4]

Start

Q: Is it possible for

an object that isn’t

a <RigidType> to

become one or an

object that is an

instance of

<RigidType>

cease to be it and

stil l exist?

Q: Is it necessary for every instance

of <RigidType> to be connected to

an instance of <Relator>?

Transform 

<RigidType> 

to anti-rigid

End

Q: Is it possible for

an instance of

<RigidType> to

change the

instances of

<Relator> it is

connected to?

Create Role 

Subtype

Q: Is possible for an instance of

<Relator> to change the instance of

<RigidType> it is connected to?

Do nothing
Set existential 

dependency on 

relator's end

Transform 

<RigidType> 

to Mode

[YES]

[NO]
[YES]

[NO]

[NO]

[YES]

[YES]

[NO]
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B.16 RELSPEC 

 

Start

Q: Consider an instance ‘x’ of <BSource> that is related to an

instance ‘y’ of <BTarget>, through relation <B>. What can be

said about ‘x’ being connected to ‘y’ through <A>?
End

Q: Now, consider that an

instance ‘w’ of <ASource>

is connected to three

instances of <ATarget>,

‘z1’, ‘z2’ and ‘z3’, through

relation <A>. If ‘w’ is also

an instance of <BSource>,

is it required that ‘w’ is

connected, through <B>, to

exactly to ‘z1’, ‘z2

<B> redefines 

<A>

<B> subsets 

<A>

C: Is variation 3

(ASource = BSource

&& ATarget = BTarget)

or is variation 4

(ASource = BSource =

ATarget = BTarget)

Q: Association has it the

same class in source and

targe ends. If one

redefines the other, they

become replicas. Would

like to:

End

Create 

<BSource> 

subtype

Create 

<BTarget> 

subtype

Create 

<ASource> 

subtype

Create 

<ATarget> 

subtype

Delete <A> 

from model

Delete <B> 

from model

<B> disjoint 

from <A>

End

Q: Which

subtypes would

you like to

create?

Q: Which

association

would you like to

delete?

<B> redefines 

<A>

End

End

[Possible]

[Required]

[Forbbiden]

[NO]

[YES]

[TRUE]

[FALSE]

[KEEP] [SPECIALIZE]

[NEW-BSOURCE]

[NEW-BTARGET]

[NEW-ASOURCE]

[NEW-ATARGET]

[DELETE-A]

[DELETE-B]

[DELETE]
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B.17 REPREL 

 

Start

Q: For each <Type-*>: Do you mean that

an instance of <Type-*> is connected to

various instances of <Relator> at the same

time or during its l ife cycle?

Q: How many

simultaneously?

Q: Is it possible for two

distinct instances of

<Relator> to mediate the

exact same instances of

<Type-1>, <Type-2>, …

and <Type-n> at the

same time, as many

times as desired?

Change upper 

cardinality to n

End

Q: Does <Relator> is

intended with current or

historical semantics?

Q: Which types may be combined

a limited number of times? How

many times?

Q: Which types may be

combined a limited number of

times? How many times?

Create OCL 

inv ariant

Create OCL 

inv ariant 

inv olv ing quality

Include 

Qualities

[n,types]

[n, types]

[historical]

[current][no]

[yes]

[n-times]

[same time]

[throughout time]
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B.18 UNDEFFORMAL 

 

C: Check the

stereotype of the

end types

Q: Please provide the information to

characterize the material relation.

Transform 

From Formal  

to Material

Q: The relation that usually

holds between an object and a

relator is a particular type of

internal relation, entitled

mediation. It captures that

instances of the relator are

existentially dependent on the

instances of the object. Is that

the case?

Transform 

From Formal 

to Mediation

C: Is the relator

connected to other

mediations?

End

End

Q: Relators are existentially

dependent on two or more

individuals. Does an instance

of <Relator> depends on two

or more instances of

<Object>? Or is there another

object type that is sti l l not

captured in the model?

Fix mediation's 

cardinality on the 

Object's end

Create new 

Mediated Types 

For Relator

End

Q: The relation

that usually holds

between modes

and other types

(even other

modes) is a

particular type of

internal relation,

entitled

characterization. Is

that the case?

Transform From 

Formal to 

Characterization

Q: Is the relation <Formal>, which holds

between <Source> and <Target>, really a

Domain Comparative Formal Relation?

Q: The relation

that usually holds

between two

quantities is

particular type of

internal relation,

named

subQuantityOf. Is

that the case?

Transform From 

Formal to 

subQuantityOf 

(Quantity 1 as 

Whole)

Transform From 

Formal to 

subQuantityOf 

(Quantity 2 as 

Whole)

Q: A memberOf holds

between a member and

its collection, l ike a tree

is a member of a forest.

A subCollectionOf holds

between two collections,

like the collections of

forks in a cutlery set. Is

that the case?

Transform From 

Formal to 

memberOf 

(Collectiv e 2 as 

Member)

Transform From 

Formal to 

memberOf 

(Collectiv e 1 as 

Member)

Transform From 

Formal to 

subCollectionOf 

(Collectiv e 1 as 

Sub)

Transform From 

Formal to 

subCollectionOf 

(Collectiv e 2 as 

Sub)

End

End

End

Q: The relation

that is usually

applicable

between a

collection ( as

<collective>) and

a functional

complex ( as

<functional>) is

the memberOf. Is

that the case?

Transform 

From Formal 

to memberOf

Q: A possible

relation between

functional

complexes is the

componentOf.

This has the

semantics that for

the whole to

function as such,

he needs a part

functioning as

such. Is that the

case?

End

Transform 

From Formal 

to memberOf

End

Create 

attributes/datatypes

Set Formal as 

Deriv ed

Create OCL 

Constraint

Start

Q: Please create new qualities

and specify the OCL rule that

derives the relation

Q: We were unable to automatically identify

the nature of the related types. Please specify.

Set ends 

natures

Q: Only material and formal

relations can hold between

the classes with this nature.

Would like to?

Delete 

<Formal>

[no-material]

[yes]

[more mediated]

[two or more]

[quantity 2 as whole]

[quantity1 as whole]

[relator/object]

[true]

[yes]

[functional/functional][collective/functional][collective/collective]

[no-conclusion]

[quantity/quantity][mode/*]

[false]

[keep]

[remove]

[no-formal]

[yes]

[yes-comparative]

[yes]

[col2-subCol]

[col1-subCol]

[col1-member][col2-member]

[no]
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B.19 UNDEFPHASE 

 

Q: Which datatypes

must be created to

define the phases?

Create the 

attributes

Q: For each phase, please

specify the OCL derivation rule

to define its extension.

Create the OCL 

deriv ation rules

End

Start

Create the 

modes

Q: Phases can also be

defined by the appearance

of modes.Is that is the case?

Create the 

characterizations

Q: Would you like to

change the phases

stereotypes?

End

Change the 

phases' 

stereotypes

C: One

phase

without

mode? Create 

negation 

deriv ation 

rule

Q: Phase partitions can be defined

using qualities (datatypes), which are

used in derivation rules for each

phase. Is that the case?

[no]

[yes]

[no]

[yes]

[no]

[true]

[false]

[yes]
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APPENDIX C DETAILS OF THE MGIC STUDY 

The table describes the summary of participants’ analysis for anti-pattern occurrences 

in the MGIC study. The description of the columns follows:  

 “Refactoring Action” briefly describes the selected action;  

 “Anti-Pattern” identify the anti-pattern type in which the action was taken;  

 “Type” identifies with P the actions that were proposed by the anti-pattern and 

with C the ones the modeler customized the solution;;  

 “Count” given the number of times the refactoring action was taken;  

 “Predicted %” provides the percentage a predicted plan was selected w.r.t only 

the predicted solutions (for that reason it has no value for custom solutions); 

and  

 “Error %” is the division between count and the sum of all erroneous 

occurrences of an anti-pattern. 
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Table 62. Summary of the refactoring choices for all anti-patterns. 

Refactoring Action Anti-Pattern Type Count Predicted % Error % 

OCL Derivation AssCyc P 10 100.0% 71.4% 

Invariant - Open Cycle AssCyc P 0 0.0% 0.0% 

Invariant - Closed Cycle AssCyc P 0 0.0% 0.0% 

Derived by intersection DecInt P 14 100.0% 82.4% 

Temporal constraint DecInt C 2 - 11.8% 

RoleMixin pattern DecInt C 1 - 5.9% 

Change stereotype BinOver P 0 0.0% 0.0% 

Enforce binary property BinOver P 16 69.6% 51.6% 

Enforce disjointness BinOver P 7 30.4% 22.6% 

Derive role FreeRole P 9 42.9% 39.1% 

Specialize relator FreeRole P 9 42.9% 39.1% 

Create independent relator FreeRole P 8 38.1% 34.8% 

Fix subtype rigidity GSRig P 9 60.0% 56.3% 

Remove generalization from GS GSRig P 5 33.3% 31.3% 

Delete GS GSRig P 1 6.7% 6.3% 

Change all subtypes to mode GSRig C 1 - 6.3% 

Change to componentOf HetColl P 11 100.0% 100.0% 

Create functional part HomoFunc P 12 50.0% 36.4% 

Change to memberOf HomoFunc P 12 50.0% 36.4% 

Create inherited functional part HomoFunc C 8 - 24.2% 

Change to non-meronymic stereotype HomoFunc C 1 - 3.0% 

Specify subrelation to subtype ImpAbs P 2 66.7% 18.2% 

Rule-enforced subtype restriction ImpAbs P 1 33.3% 9.1% 

Set association as derived ImpAbs C 1 - 9.1% 

Fix inheritance ImpAbs C 1 - 9.1% 

Delete association ImpAbs C 5 - 45.5% 

Transform Mixin to Sortal MixIden P 10 100.0% 76.9% 

Create/select new subtype MixIden P 0 0.0% 0.0% 

Enforce same rigidity on Mixin MixRig P 3 75.0% 50.0% 

Change rigidity of one or more subtypes MixRig P 1 25.0% 16.7% 

Create relator dependency MultDep P 2 9.1% 8.7% 

Move dependency in order to new subtype MultDep P 2 9.1% 8.7% 

Move dependency to new subtype MultDep P 18 81.8% 78.3% 

Move dependency to ancestor's new subtype MultDep C 2 - 8.7% 

Fix dependency multiplicity MultDep C 1 - 4.3% 

Move dependency to new sibling MultDep C 1 - 4.3% 

Move dependency to ancestor MultDep C 3 - 13.0% 

Merge dependencies MultDep C 1 - 4.3% 

Fix relator dependecy stereotype MultDep C 2 - 8.7% 

Fix relator dependency multiplicity MultDep C 1 - 4.3% 

Enforce composition RelComp P 6 100.0% 35.3% 

Delete association RelComp C 11 - 64.7% 

Enforce disjointness RelOver P 10 18.5% 14.3% 

Enforce exclusiveness RelOver P 45 83.3% 64.3% 
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Change mediated stereotype RelOver C 2 - 2.9% 

Create generalization RelOver C 6 - 8.6% 

Delete mediated type RelOver C 1 - 1.4% 

Delete mediation RelOver C 2 - 2.9% 

Move generalization RelOver C 6 - 8.6% 

Change mediated stereotype RelOver C 2 - 2.9% 

Bidirectional existential dependency RelRig P 80 76.2% 74.8% 

Create role for rigid mediated RelRig P 22 21.0% 20.6% 

Change rigid to role RelRig P 8 7.6% 7.5% 

Change rigid to mode RelRig P 2 1.9% 1.9% 

Create relator subtype RelRig C 1 - 0.9% 

Propagate change to subtypes RelRig C 1 - 0.9% 

Subset association RelSpec P 196 72.3% 70.3% 

Redefine association RelSpec P 72 26.6% 25.8% 

Set association as disjoint RelSpec P 1 0.4% 0.4% 

Delete association RelSpec P 5 1.8% 1.8% 

Delete generalization RelSpec P 3 1.1% 1.1% 

Change association to attribute RelSpec P 1 0.4% 0.4% 

Reverse association RelSpec P 1 0.4% 0.4% 

Specialize end RelSpec P 1 0.4% 0.4% 

Enforce exclusive combination RepRel P 37 77.1% 64.9% 

Fix mediation multiplicity RepRel P 15 31.3% 26.3% 

Fix multiplicity on mediated end RepRel C 1 - 1.8% 

Subset association RepRel C 2 - 3.5% 

Modify generalization RepRel C 2 - 3.5% 

Change mediation end type RepRel C 1 - 1.8% 

Create relator subtype RepRel C 1 - 1.8% 

Other RepRel C 2 - 3.5% 

Delete formal association UndefFormal P 2 5.0% 4.7% 

Change formal stereotype to componentOf UndefFormal P 26 65.0% 60.5% 

Change formal stereotype to mediation UndefFormal P 1 2.5% 2.3% 

Change formal stereotype to material UndefFormal P 11 27.5% 25.6% 

Create relator UndefFormal P 11 27.5% 25.6% 

Create mediation UndefFormal P 10 25.0% 23.3% 

Set association end type as hou UndefFormal C 1 - 2.3% 

Change to generalization UndefFormal C 1 - 2.3% 

Set association end type as datatype UndefFormal C 1 - 2.3% 

Change formal association to attribute UndefFormal C 1 - 2.3% 

Enforce part disjointness WholeOver P 12 100.0% 75.0% 

Delete part type WholeOver C 1 - 6.3% 

Enforce part exclusiveness WholeOver C 4 - 25.0% 
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