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Abstract

With the increasing amount of vehicles on the road, traffic jams pose a growing global problem. Traffic

surveillance is a crucial task into improving traffic flow. The core of this dissertation proposes a design and

methodology for the real-time estimation of occupancy and velocity of one or two vehicles on a single lane road

segment, traveling at speeds from 10 km/h up to 50 km/h, using a Radio Tomographic Imaging (RTI) network.

RTI is an emerging technology and consists of a wireless sensor network that produces images of the change

in the electromagnetic field of a monitored area using Received Signal Strength (RSS) measurements. This

allows the tracking of device-free objects such as humans and cars. The proposal is the first to present an RTI

network that is split into multiple sub-networks to achieve a network scan frequency fast enough to prevent

blurring in the captured images of vehicles traveling at velocities higher than 50 km/h. This proposal suggests

three newly implemented techniques, namely a new weight matrix calculation method, a new node spacing

setup and a new vehicle detection method. The main contribution of this dissertation is to stimulate research

of the possibility of using RTI networks as being part of an Intelligent Transport System (ITS) in a smart

city environment. This dissertation also presents a new, relatively complete simulation model that simulates

the proposed RTI system. It generates RSS measurements based on the IEEE 802.15.4 protocol for ZigBee

communication, which are processed using RTI techniques commonly used in literature. The simulation

model allows the specification of an RTI network from the ground up, including node positions, network

size and geometry and RSS measurement processing using any available or newly developed techniques. The

simulation results, obtained after implementing the proposed RTI system to the validated simulation model,

indicate that it is possible to detect both one or two family sized cars simultaneously. Using techniques that

reduce RSS variance due to multipath effects and the newly proposed methods, simulated vehicle detection

performance is demonstrated to be between 95% and 100%.



Resumo

O aumento da quantidade de véıculos nas estradas faz com que engarrafamentos representam um problema

global crescente. Monitoramento do tráfego é tarefa crucial para o melhoramento do fluxo de tráfego. O foco

desta dissertação de Mestrado está na proposta e no desenvolvimento de uma metodologia para a estimativa

em tempo real de ocupação e velocidade de um ou dois véıculos em um único segmento de pista, trafegando à

velocidades que variam entre 10 km/h e 50 km/h, usando uma rede de tomografia de rádio por imagem RTI

(Radio Tomographic Imaging). RTI é uma tecnologia emergente e consiste de uma rede de sensores sem fio

que produz imagens da mudança no campo eletromagnético de uma área monitorada usando potência do sinal

recebido RSS (Received Signal Strength). Isso permite o rastreamento de objetos tais como pessoas e carros

que não contêm dispositivos de transcepção. A proposta é a primeira a apresentar uma rede RTI que é dividida

em várias sub-redes para alcançar uma frequência de varredura de rede suficientemente rápida para evitar

a desfocagem nas imagens capturadas por véıculos que andam a velocidades acima dos 50 km/h. Sugere-

se nesta proposta um novo método de cálculo da matriz de peso, uma nova configuração de espaçamento

de nó e um novo método de detecção de véıculos. A principal contribuição deste trabalho é estimular a

pesquisa sobre a possibilidade de usar redes RTI como sendo parte de um sistema de transporte inteligente

em um ambiente de cidades inteligentes. Esta dissertação apresenta também um novo modelo de simulação

relativamente completo para o sistema RTI proposto. Este modelo gera medições RSS baseado no protocolo

IEEE 802.15.4 para a comunicação ZigBee, que são processadas utilizando técnicas RTI comumente utilizadas

na literatura. O modelo permite a especificação de uma rede RTI a partir do zero, incluindo posições de

nó, tamanho e geometria da rede, sendo que o processamento de medição de RSS pode utilizar qualquer

técnica desenvolvida. Os resultados das simulações, obtidos pós a aplicação do sistema RTI proposto para o

modelo de simulação validado, indicam que é posśıvel detectar um ou dois carros populares simultaneamente.

Usando técnicas que reduzem a variância do RSS devido aos efeitos múltiplos percursos, o desempenho da

detecção de véıculos apresentou acurácia entre 95% e 100%.
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ITS Intelligent Transport System - a system that gathers and communicates road traffic infor-
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radio.
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1 Introduction

In recent years, ubiquity of wireless technology has grown rapidly. One of the latest wireless technologies is

Radio Tomographic Imaging (RTI). Radio Tomographic Imaging is a technology initially developed in 2008

by Patwari et al. [5], which generates an image that represents the electromagnetic field of a monitored area.

The technology aims to localize and track stationary or moving device-free targets. RTI relies on a mesh

network of simple and inexpensive stationary radio transceivers that are deployed on the border of the area

of interest, where each radio is wirelessly connected in the 2.4 GHz Industrial, Scientific and Medical (ISM)

band to all other radios. Radio signals pass through or diffract around objects present inside the Wireless

Sensor Network (WSN), also known as shadowing [6]. By knowing the position of the radios and by obtaining

the Received Signal Strength (RSS) of every link inside the network, the RTI system is able to image the

location of a target in real-time due to signal shadowing.

The technology is analogous to Computed Tomography (CT) scans, in the sense that multiple narrow

radio beams from different positions are directed through an area of interest, each producing a slice of the

area [7]. In CT, however, each slice produces an image, whereas in RTI, all the combined slices generates

one single image.

Figure 1 provides a top-view impression of an RTI network initially presented by Wilson et al. [1]. Recent

papers have applied new techniques that led to improved RTI performance [8, 9, 10, 11].

Figure 1 – RTI network in a square geometry with 28 nodes [1]

With such a novel and promising technology, a wide range of opportunities and applications yet to be

discovered emerge. Wilson et al. [12] name a few of such applications:

� Track people and vehicles in next-generation security systems

� Locate victims in fire and rescue operations

� Locate and count people in the rooms of “smart homes”

� Measure accurate usage statistics in buildings and stores

� Automate control of other devices
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Applying the RTI technology to a traffic environment is another possible application, which would open

gates to yet another wide field of possibilities. Subsection 1.2.2 describes more possible applications.

1.1 Problem Contextualization

This section presents the current problem of global vehicle traffic and a possible solution to reduce this

problem, which is the basis of this dissertation.

1.1.1 Vehicle traffic problem

Currently, inefficient vehicle traffic like traffic jams pose a global problem. They limit a city’s efficiency

and growth, as people waste time by waiting and may arrive late at work or meetings. Furthermore, it is

difficult for emergency services to pass and costly for industries as transportation time and fuel consumption

increases. Moreover, traffic jams pose a negative impact on air pollution. It is therefore essential for a city’s

efficiency to keep optimal traffic flow.

1.1.2 Solution

One way to solve the described problem is to measure vehicle occupancy and traffic flow along roads. These

statistics may be made available online or directly relayed to navigation systems to inform people about

traffic conditions and suggest a faster or alternative route. People may also decide to take public transport

instead or wait to travel later if they are not in a hurry. Furthermore, traffic data can be used to more

efficiently control traffic lights.

The proposed RTI system is intended to measure vehicle occupancy and traffic flow by deploying the

sensors on the roadsides. The system would act as a smart city roadside surveillance application that could

be integrated into an Intelligent Transport System (ITS).

1.2 Research Motivation

Even though there already exists vehicle surveillance technology implemented in traffic situations for traffic

parameter sampling, the motivation of researching an RTI application is its cost-effectiveness, scalability

and easily-configurable network. This section describes the state-of-the-art vehicle surveillance technology

and possible radio tomographic imaging applications that stimulate the motivation of researching about RTI

technology.

1.2.1 State-of-the-art vehicle traffic surveillance technology

Vehicle traffic surveillance technology currently implemented consists of ground-based systems including

cameras, radars, lasers, induction loops and Vehicular Ad Hoc Networks (VANETs), and airborne platforms.

The information gathered by some of these road sensors is currently used by software from companies such as

Microsoft, who developed Bing Maps, which fairly accurately visualizes traffic conditions [13]. Google Maps,

instead of using road sensors, takes cellular data from Android phones to determine vehicle traffic [14].

Induction loops embedded in the road surface are used to control traffic lights depending on traffic density

to increase traffic flow. Several induction loops may be integrated on the same road to count vehicles and

calculate vehicle velocity. This technology, however, carries relatively high costs due to adjusting the road’s

surface and implementation of a (wired) communications infrastructure. Also, coverage area is small [15].
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Cameras are commonly positioned on top of a road. Additional to counting vehicles and calculating

velocity, their advantage is that they can recognize each car by their license plate and have a relatively

large coverage area. In situations where only vehicle count and velocity is required, however, complex camera

applications would be redundant and costly due to implementation of a (wired) communications infrastructure

and the cost of the camera itself. Also, foggy weather conditions could diminish performance (fusion with IR

camera solves this problem, but increases costs further).

Radars and lasers [16] are usually positioned beside or on top of a road. They are also able to count

vehicles and calculate velocity and in combination with a camera recognize license plates, but they cover

a smaller area than cameras mounted on top of a road, only detect vehicles on one lane and they are also

relatively expensive to implement.

An airborne traffic surveillance platform was proposed by Luo et al. [17] in 2011, with the advantage of

flexibility, convenience and low cost relative to ground-based systems. The Unmanned Aerial Vehicle (UAV)

carries a camera on-board for vehicle detection. The limitations of such system are that it requires periodic

recharging or refueling and therefore has periodic down-time, is affected by extreme weather conditions, has

a risk of crashing into the vehicles and can be distracting for drivers.

Vehicular Ad Hoc Networks (VANETs) are networks that connect transceiver-equipped vehicles, which

share data including location and speed information with each other when they are in range. When vehicles

are in range of a ground-based base-station, the gathered information is passed to a central server that

processes the data to obtain metadata, such as traffic condition estimates [18]. The advantage of using

VANETs is its relatively low cost as the system is expanded, since only a limited number of base-stations

need to be installed while the cost of adding an extra vehicle node to the network is relatively low. The

limitation is that the sensors are mobile and uncontrollable if VANETs are to be used by the public, meaning

it is not possible to obtain accurate traffic condition information at one particular location at a specific point

in time when necessary.

One of the possible solutions to improving traffic flow, so not just measuring traffic flow, is autonomous

vehicles. These vehicles do not require a driver and are completely controlled by computer systems. The

computer systems consist of communication between sensors and artificial intelligence software that measure

and understand the vehicle’s environment. Traffic flow may be improved by the sharing of location and speed

data between autonomous vehicles, making it possible for the computer systems to calculate an optimal

velocity that favors efficient traffic flow. Such technology, however, is a more long-term solution.

1.2.2 Possible Radio Tomographic Imaging applications

The possible applications arising from Radio Tomographic Imaging technology consist of locating and tracking

people and vehicles. They are broken down into sub-applications, which describe the integration with a

security system, safety system, commercial environment and home automation.

Locating and tracking of people

RTI technology may be applied to locate and track people in security and safety systems, or it may be used

in commercial environments and home automation.

As a security system:

� An already existing commercially available Tomographic Motion Detection system provided by Xandem

that is based on RTI technology serves as a security system that senses motion through walls, furniture
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and obstructions. The radios are hidden behind the walls and in combination with an RF jamming

detection system, it makes it a powerful unbeatable security system [19].

� Using RTI technology, people can be tracked and identified by their gait. By monitoring gait, suspicious

behavior in public environments such as shops, banks or airports may be flagged and consequently

activate the security system. In hospitals, they may be used to detect patients leaving a particular

room while they are restricted to do so.

As a safety system:

� In a factory environment, workers that carry dangerous loads may be alerted by monitoring their gait.

� Though not yet researched, a 3D RTI system that may be envisioned as having multiple layers of nodes

stacked on top of each other may be able to detect body movements in 3D. A RTI network operating

in the 2.4 GHz frequency band, however, would be unsatisfactory, as this generates a resolution equal

to the wavelength of 12.5 cm. A network operating in the 5 GHz band would be more appropriate.

Caretakers could be alerted if children or elderly people fell down or leave particular environments.

� Localization of firemen or military by deploying an RTI network around a building, as proposed by

Maas et al. [11].

In commercial environments:

� Intelligent retail system that monitors people traffic in or outside a store to determine the interest in

particular products. This allows the store to gain costumer intelligence, which could be used to for

example give promotions to returning customers.

In home automation:

� Locate people to control electrical appliances accordingly, including lights and air-conditioners.

� A RTI system deployed at the entrance of a building could identify a person by his or her gait and

consequently lock or unlock doors. This has recently been demonstrated in a product video made by

Xandem [19].

� Though not yet researched, a 3D RTI system might be used to identify pre-programmed body move-

ments (gesture control) in home automation to control appliances. A list of appliances may include

TV, computer, air-conditioner, temperature, light brightness, audio system volume, and so on.

Locating and tracking of vehicles

Vehicles may be located and tracked in a public (smart city) or private environment.

Public (smart city) environment:

� Measure vehicle occupancy and traffic flow on public roads with radios deployed on the roadside that

form an RTI network.

� In a 3D RTI system, simple features describing a vehicle’s class may be identified, including vehicle

height, length and shape as was similarly being investigated by [20]. The quality of the feature identi-

fication would depend on the spatial resolution, where a higher number of radios in a larger amount of
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layers would increase resolution. Such application may be used as a low-cost solution to remotely mon-

itor a roadway at locations such as border crossings, and be combined with other sensors like cameras

to obtain higher quality measurements.

Private environment:

� In a parking facility, vehicles may be located to give location-based directions to a nearby available

parking space or to guide them to the exit.

Traffic flow monitoring possibilities

This subsection covers the possible uses of the vehicle traffic density and flow information generated from the

RTI system proposed in this dissertation. These uses stimulate the motivation for researching the application

of the proposed roadside surveillance RTI system.

Vehicle traffic data may be used to:

� Control traffic lights more efficiently.

� Detect traffic jams.

� Aid navigation systems that may use the information to suggest a faster or alternative route for emer-

gency responders or regular people.

� Provide real-time data online to inform people about current traffic conditions. People may decide to

take public transport instead or simply wait to travel later if they are not in a hurry.

� Identify and replay accidents or detect unlawful behavior of vehicles given that sensing area is sufficiently

large.

� Be integrated into a Parking Management System (PMS) for parking guidance.

� Predict traffic behavior using Artificial Intelligence algorithms.

1.3 Justification of Chosen Theme

The advantage of the proposed roadside surveillance implementation using RTI technology over the already

implemented technologies is an expected reduction in cost, its scalability, easily-configurable network and its

possible secondary uses.

The radios communicate wirelessly to a base station, meaning infrastructural costs are relatively low

compared to the wired communication infrastructure of induction loops, cameras, radars and lasers. Also,

the radios themselves are relatively simple and low cost devices, so it is more attractive to consider system

expansion as compared to a camera system. The infrastructural costs of conventional systems usually prevents

the implementation of dense coverage areas [15].

Moreover, to increase sensing area or spatial resolution, the RTI network could relatively easy (compared

to cameras, radars and induction loops) be expanded by adding wireless nodes that can easily be configured to

the already existing mesh-network. Expanding the RTI network would generate additional traffic information

and improve estimate accuracy [15], which would be interesting to, for example, identify or replay accidents

or detect “odd” behaviour of cars. As Papageorgiou et al. [21] discuss, the sampling density (or spatial

resolution) of conventional systems, which in best cases is every 0.5 - 1 km, is not sufficient for congestion
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control and safety improvement in urban areas. The RTI network could be easily configured to have a

sufficiently high sampling density.

The RTI system may be envisioned to work individually to generate traffic statistics or complementary

to the aforementioned systems to provide additional or more reliable traffic statistics, to be used in traffic

estimation algorithms like Clearflow of Bing Maps [13]. As a possible secondary use, the sensors may be

configured to act as base stations for communication with VANETs. Furthermore, vehicles may be identified

according to their size by using the reflected signals from the vehicles, similar to how radar works. The

transmitters would need to be configured to be able to receive too. This may make it possible to distinguish

between trucks, family cars or motorcycles, similar to what was researched by Anderson et al. [20]. Knowing

the location of the vehicles, the RTI system will also be able to determine the distance between them to

generate additional traffic statistics.

To summarize, using an RTI network deployed on road segments for traffic parameter sampling in an

Intelligent Transport System (ITS) system seems to offer a wide scale of applications and solutions to existing

problems, making it interesting to carry out research into its possibilities.

1.4 Proposal/Goal

A practical methodology will be proposed that estimates occupancy and velocity of two vehicles on a single

lane road segment with radios deployed on the roadside that form an RTI network. Figure 2 provides a top

view impression of the proposal, where the blue rectangles represent vehicles.

Figure 2 – Top view impression of project proposal. The black dots represent the radios, the dashed lines
are the communication links between the radios and the blue rectangles represent vehicles.

The proposed RTI system should be able to measure occupancy of and velocity of multiple vehicles real-

time, fast enough to track vehicles moving at 50 km/h. Moreover, the RTI system should be robust against

RSS link variance and RSS time-variance. RSS link variance is caused by multipath effects, while RSS time-

variance is dependent on changes in the environment that are non-related to the target, such as random

objects being placed in the area or weather effects, such as wind that sways leaves, branches or the nodes

themselves.

1.5 General Objectives

This section outlines the general (intangible) objectives.

� Propose the research, with focus on a conceptual and methodological approach, of the possible appli-

cations of Radio Tomographic Imaging, with a particular emphasis concerning a traffic environment as

a smart city application.

� Make students and professors aware and bring knowledge about Radio Tomographic Imaging to LabTel.

� Provide incentives to continue the research on RTI for future master or PhD projects within LabTel.
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1.6 Specific Objectives

Objectives that can be measured/verified are mentioned in this section.

� Demonstrate data acquisition, processing procedures and expected performance results using a newly

proposed simulation model in MATLAB.

� Validate simulation model performance by comparing simulated to real RTI data that is published

online in the same network configuration.

� A practical implementation is outside the scope of this thesis.

1.7 Research Methodology

In order to be able to achieve the research goal, the specific objectives must be met.

The most important method employed to meet the objectives was to fully understand the main principles

behind Radio Tomographic Imaging, by studying the first papers about the technology that describe its

theoretical fundamentals. A summary was made of one of the main articles, which was regularly consulted

when studying more recent papers with new developments. All procedures from data acquisition to obtain

the RTI image using different recent methods were studied.

Three articles were chosen to be evaluated, which were based on their diversity from each other and

the potential of their proposed methods to be used to develop a new algorithm for this project. Once an

algorithm and network setup configurations were proposed, a methodology to realize tests for vehicle traffic

measurements was presented.

Raw RTI (experimental) data published online by Wilson et al. [1] was used together with RSS behavior

described in literature to develop a new simulation model in MATLAB. Parameters for the path-loss model

were calculated from the experimental data, which were used to generate path gains required for the simula-

tion. To validate the simulation model, the RSS probability distribution from the tests carried out by Wilson

et al. and the simulated measurements were compared. After validation, the simulation model was used to

present expected performance of the data gathered from the proposed RTI set-up.

1.8 Main Results and Contributions

The main results and contributions covered in this dissertation are listed below:

� A new RTI system that meets the requirements described in the goal. This proposal includes a new

voxel-specific threshold approach for the detection and localization of vehicles.

� Present a new validated simulation model that simulates the proposed RTI network and generates

performance statistics

� A new weight matrix calculation method

� A new network node spacing setup

Another contribution of this dissertation is to stimulate research of the possibility of using RTI networks

as being part of an Intelligent Transport System in a smart city environment.
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1.9 Structure of Document

The rest of this document is organized as follows. Chapter 2 details the related work of RTI, RF-based

roadside surveillance and RTI simulations. In chapter 3, the theory behind the Radio Tomographic Imaging

model is explained together with various recently proposed techniques and network configurations. It also

covers the analysis of three recent articles, of which some features are combined into one newly proposed RTI

system as described in chapter 4. The newly presented simulation model complete with validation is outlined

in chapter 5, which is used to simulate the proposed RTI system, as shown in the results in chapter 6. The

conclusion of chapters 4 - 6 is presented in chapter 7, which also contains future work to be done.
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2 Related Work

Radio Tomographic Imaging is a relatively new technology (2008) and relatively little research has been

carried out in the area. The most recent and most relevant related work published concerning RTI and RF-

based roadside surveillance is outlined in section 2.1 and 2.2 respectively. Section 2.3 presents RTI research

that was carried out using simulations and the limitations of the described related work that will be treated

and limitations that will not be treated are explained in section 2.4.

2.1 Related work about RTI

Zhao et al. [22] developed a Kernel (histogram-based) RTI network that tracks stationary and moving people

real-time in both Line-of-Sight (LOS) and non-LOS environments. Location estimates are based on short and

long term histograms of the single-channel RSS data on every link, where the long-term histogram can be

seen as online calibration. This implementation shows a significant improvement over earlier variance-based

systems that are only able to track moving people, not stationary people, as it is based on the variance of

RSS data. The researchers achieve a distance precision in four different environments with twenty measured

locations each a Root-Mean-Square-Error (RMSE) between 0.73 m and 0.81 m. However, they mention

they did not optimize their parameters in each experiment on purpose to show the system’s performance in

different environments.

Bocca et al. [3] developed an attenuation-based RTI system intended for Ambient Assisted Living, which

is able to localize stationary and moving people real-time in an indoor domestic environment. It is based

on attenuation, meaning the location estimates depend on the difference between the current and average

(reference) RSS measured during the system calibration. The system solves the online calibration problem

by applying a novel spatial filter, which only calibrates RF links that are not attenuated by stationary

people. Online calibration makes the system robust to environmental changes, such as extra or displaced

furniture. In addition, they reduce multipath interference and improve location estimates significantly by

combining RSS fade level data on multiple channels instead of using a single channel, but consequently

increases computational cost. The results show that the researchers achieve an average location error of 0.23

m measured from 14 locations in a typical 58 m2 single floor apartment with furniture. Their work was based

on their previous research on RTI and channel diversity from 2012 [23], where in one of the experiments

Bocca et al. set up an open environment to gather location estimates at ten positions and achieved an error

of 0.10 m. They selected channels based on fade level to yield the highest accuracy.

Kaltiokallio et al. [10] developed an attenuation-based RTI system that localizes stationary and tracks

moving people real-time. The authors reduce multipath interference and improve location estimates signif-

icantly by combining RSS fade level data on multiple channels. They also developed a model to determine

link-channel specific parameters, thereby increasing localization accuracy further. An average tracking error

of 0.17 m in an open environment was achieved, compared to 0.25 m in the same conditions for a similar

state of the art system using channel diversity [23].

Alippi et al. [8] developed an outdoor RTI network method that detects and localizes multiple people real-

time. Together with their proposed method, they combine several recent technologies with some adjustments,

including measurements on multiple channels [10], spatial filtering for online calibration similar to [3], multi-

target tracking [9] and background subtraction. They also develop an individual distance-RSS model for each
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node, further increasing robustness. They compare their results to the previously described system [10] with

an RTI network deployed in a forested area, where they achieve an average localization error of a stationary

person of 3.2 m, as opposed to 4.1 m using the method of [10].

Wei et al. [24] examined the use of Electronically Switched Directional (ESD) antennas to improve RTI

performance. ESD antennas focus radiated power in a selected direction to reduce multipath propagation and

thereby reduce noise in links. Three methods were proposed to select the direction of each node, of which the

fade level-based method yields highest performance. Compared to the multi-channel omni-directional RTI

network in [23], their proposed system improves tracking performance by 42% in an open LOS-environment.

Adler et al. [25] proposed an RTI network, based on the method of Wilson et al. [1], which operates in

the 800/900 MHz frequency band for improved energy efficiency purposes. In addition, they applied simple

post-processed image filters to increase localization accuracy and used centroid methods to automatically

detect the location of people in the produced images. In an open space measurement environment, they

achieved a maximum error of under 0.78 m.

2.2 Related work about RF-based roadside surveillance

Kassem et al. [26] published an article titled “RF-based Vehicle Detection and Speed Estimation” that

investigated the application of Device free Passive (DfP) localization, a technology similar to RTI, to detect

and estimate vehicle presence and velocity. In DfP, only target location is extracted, while in RTI an image

is produced that represents the electromagnetic field of the complete monitored area. The researchers set

up a network of four radios at the sides of a single lane road (two equally spaced radios on each side) that

produced four links. They show the feasibility of correctly differentiating between three states within the

area covered by the four links: empty street, a stationary vehicle and moving vehicle. Statistical features

including mean and variance of RSS data were integrated into a multi-class Support Vector Machine (SVM)

for vehicle detection that showed a 100% accuracy, and a curve fitting approach was used to generate velocity

estimates with a 90% accuracy. Kassem et al. [26] demonstrate that it is possible to detect vehicles within

a WSN based on RSS measurements.

Anderson et al. published a paper titled “Radio Tomography for Roadside Surveillance”[20] that aimed

to improve RTI modeling and algorithms in a roadside surveillance environment. Three improvements were

proposed, which include an extra bias term to the existing image estimation solution [1], a way to remove

negative observations and combining multiple frames to produce a more accurate final image. The latter

improvement was used to generate velocity estimates. They compared their results to the first RTI network

version by Wilson and Patwari [1], and show that their proposed approaches lead to greatly improved perfor-

mance. The authors also set up a 3D RTI network operating on a single channel, where the z-component was

established by placing radios on three heights spaced 0.5m, 1.0m and 1.5m from the ground. Anderson et al.

have shown it is possible to track and recognize (using the 3rd dimension) a single vehicle passing through a

single lane road and estimate its velocity using RTI.

2.3 Related work on simulating RTI networks

Simulating an RTI network has previously been proposed in the Master’s dissertation of Cooke [27], who

obtains reverse engineered RSS measurements using mathematical RTI models that consists of a simulated

shadowing, path loss and noise vector. The shadowing vector depends on a semi-randomly generated image,

which is based on a covariance matrix with a zero-mean Gaussian random vector. This method of simulating
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RSS measurements is computationally efficient and is useful to test the effect of various parameters of dif-

ferent image regularization techniques (such as Tikhonov, truncated singular value decomposition and total

variation). However, the simulated RSS data are dependent on two parameters required for the covariance

matrix, which may cause a loss in how realistic the data is as these are not parameters that need to be set

in a real-life measurement scenario.

A similar method has been applied by Milburn [28], who presented her approach in her Bachelor’s dis-

sertation. Milburn generated a high-resolution grayscale image that already contains obstacles, where the

background and foreground (obstacles) are black and white respectively. Next, the author applied a blur

filter and added some random Gaussian noise. RSS measurements for each link were obtained from apply-

ing the Bresenham’s line algorithm to the previously generated grayscale image. Similarly, this approach is

useful to evaluate image regularization techniques, but does not generate realistic RSS data due to the lack

of implementation of wireless signal behavior.

2.4 Limitations to be treated

This section covers the limitations of the described related work to be overcome in this Master’s project. It

also describes which of the limitations will not be treated and instead left for future work to be done.

Kassem et al. [26] have shown that it is possible to detect vehicles within a WSN based on RSS data,

but have only demonstrated this capability in a small network of four sensors. The WSN in this project uses

more radio sensors over a longer road segment to not only detect, but also locate one or multiple vehicles

over time simultaneously.

A limitation of the KRTI system of Zhao et al. [22] is that if a person is stationary for longer than the

long term histogram period, the person would gradually disappear from the image. This is not desirable for

a roadside surveillance application, as vehicles in a traffic jam may disappear from the image. The proposed

RTI system uses online calibration to overcome this limitation.

The methods presented by Bocca et al. [3] and Kaltiokallio et al. [10] improve robustness against multipath

interference significantly, but have not specifically designed their system to deal with time variance of RSS

due to weather in outdoor environments. The proposed RTI system implements techniques to reduce time

variance of RSS in outdoor conditions.

Anderson et al. [20] were able to detect, localize and identify vehicles in their RTI network, but did not

publish quantitative results concerning localization accuracy and how it is affected by vehicle velocity, nor

system performance for the tracking of multiple vehicles. This limitation is not treated in this dissertation,

because a practical implementation is outside the scope of this project. However, expected quantitative

results are presented using simulations only. Furthermore, the researchers made use of only one frequency

channel, meaning negative effects of multipath interference were more prevalent than necessary. The RTI

system in this project makes use of multiple channels, so this limitation is overcome.

A limitation of the work of Wei et al. [24] is that using ESD antennas significantly reduces network scan

frequency, since only one direction can be activated per packet transmission as explained in section 3.6.2.

This limitation is not treated in this project, because it was chosen to use multiple channels instead, which

already reduced network scan frequency to the limit.

The limitation of an RTI network operating in the 800/900 MHz band proposed by Adler et al. [25] is

that target resolution is diminished as a result of the use of larger wavelengths. This may not be beneficial

in situations where relatively small targets need to be tracked smaller than one wavelength of 33 cm. This

wavelength should be small enough to detect vehicles, including motorcycles. However, due to lack of sufficient
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research performed of RTI operating in the 800/900 MHz band (this is the only research published), it was

chosen to operate the proposed RTI system in the 2.4 GHz ISM band and leave 800/900 MHz RTI systems

for future work.

Concerning related work on simulating RTI networks, one main limitation is overcome. The limitation

of Milburn [28] and Cooke [27] is that they do not simulate RSS measurements in a completely realistic

way. Their simulated RSS data is based on an initial semi-randomly generated image instead of a simulated

communication channel. The main limitation of their simulation model is that they lose accuracy of the

simulated RSS data during the process due to their approach of reverse engineering the RSS data. The

proposed simulation model overcomes this limitation by simulating RSS data directly from a communication

channel based on the ZigBee protocol. This makes it possible to include multipath components and a Rician

channel, which both contribute to make the simulated RSS data more realistic and accurate. Furthermore, it

implements the link-channel pair selection method [8] that reduces multipath effects, as well as it implements

RSS behavioral characteristics described in literature. The latter helps to obtain a more realistic and accurate

simulation model.

12



3 Radio Tomographic Imaging Techniques

This chapter describes the most common techniques and mathematical models used in recently proposed

Radio Tomographic Imaging networks. First, a common communication protocol of RTI is explained. In

subsequent sections, the theory and mathematics behind RTI and some recent techniques to improve per-

formance are presented, including the use of multiple frequency channels and online calibration. Section

3.6 outlines the analysis of three chosen articles that is used to develop an algorithm for the proposed RTI

system.

The first models were presented by Patwari et al. [5] and Wilson et al. [1]. The more recent models

described in this section were proposed by Bocca et al. [3], Kaltiokallio et al. [10], Alippi et al. [8] and

Anderson et al. [20].

3.1 Communication Protocol

One of the most common communication protocols employed for Radio Tomographic Imaging is the multi-

Spin protocol (Sensor Protocol for Information via Negotiation), which is based on the Spin protocol that is

provided by TinyOS [5, 29, 3]. The multi-Spin protocol is an autonomous communication protocol, which

synchronizes and heals radios in the network.

The multi-Spin protocol controls the order of transmission using a multiple channel Time Division Multiple

Access (TDMA) protocol. TDMA synchronizes the switching to a different frequency channel, as well as it

controls the switching of slots, cycles and rounds. A slot is where one of the nodes transmits a packet to all

other nodes that are in receiving mode, a cycle contains N slots, and a round contains F cycles. N and F
are the number of nodes and used frequency channels respectively, which are both user-defined and stored

in the memory of the radios. The Texas Instruments (TI) CC2531 radios used by Bocca et al. [3] have a

3 ms slot time (2.85 ms for a frame payload length of 62 bytes [24]). With their network of 33 radios that

communicate on five frequency channels, a cycle lasts 100 ms and a round 500 ms. Each radio has a built-in

identification (ID) number, which is used by TDMA to control the order of transmission.

During initialization, when two nodes or more are turned on, multi-Spin causes the radios to randomly

send a packet on the backbone channel, which is the first frequency channel (cycle), until they receive a

packet from the other node. Upon receiving this first packet, the radios synchronize themselves and start the

communication procedure.

The payload of a transmitted packet consists of its ID number and the latest RSS measurements that

the transmitter received from the other radios during the preceding slot. Another synchronized radio (sink

node) that is connected to a laptop sends all received RSS data to the laptop, which may either store the

raw data or process it directly.

A node may lose synchronization with the network if it does not receive packets for N consecutive slots,

due to for example power loss. Such a node is healed by the network in that it will rejoin the network by

switching to the backbone channel, where it will wait for the rest of the nodes when a new round is started.
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3.2 Received Signal Strength Model

RTI can be attenuation- [8], kernel- [22] or variance-based [29]. Attenuation-based RTI means the change

in RSS measurements y depends on the difference between the current and average (or reference) RSS

measured during system calibration. During calibration, no targets are present inside the measurement area.

Attenuation is the reduction in signal strength as it is transmitted through a communication channel. Kernel-

based RTI calculates a y vector that depends on the kernel distance between a short-term and long-term

histogram of recent RSS measurements [22]. A summary of this work is briefly covered in section 2.1. A RTI

network that is variance-based generates a y vector that reflects the variance of RSS measurements over a

particular time window. In the case of Zhao et al.[22], the last four measurements were used as the window

size.

This dissertation covers attenuation-based RTI, as it is the most common in literature. Also, a big

limitation of kernel- and variance-based systems is that they are not able to track targets that remain static

for a longer period of time, as they will gradually fade away (see section 3.5 about online calibration).

The linear model that describes the change in RSS of each link, originating from the correlated shadowing

models [5], is given by:

y = Wx + n (3.1)

where yL×1 and nL×1 are the change in RSS measurements and noise vectors respectively of the L links in the

network, xV×1 is the RTI image to be estimated with V being the number of voxels in the image, and WL×V

is the weight matrix. Vector x reflects the change of the discretized electromagnetic field of the measured

area. The noise vector is assumed Additive White Gaussian Noise (AWGN) in [20] and is implemented in the

simulation model. The number of image voxels is dependent on the voxel size, which is a user configurable

parameter, and the size of measurement area. How image resolution affects accuracy is demonstrated by

Martin et al. [30]. The weight matrix represents a spatial impact model, which relates the effect each link

has on each voxel (explained further in subsection 3.2.2). After vector x is calculated, it is mapped into a

two-dimensional matrix that is referred to as the RTI image. Subsection 3.2.1 presents a didactic numeric

example of the linear model.

3.2.1 Didactic numeric example of the linear model

An example of an RTI network that contains 8 nodes with an image dimension of 4x4 voxels and a simulated

object on voxel 6 is given, as can be seen in Figure 3.

The links that experience signal attenuation due to the simulated object are 4, 12 and 18, as illustrated

in the figure by the red dashed lines. As can be observed, the voxels that experience signal attenuation due

to the links that pass through the simulated object are brighter than the other voxels.

The numeric representation of the simulated RTI image is given by vector x that has 16 elements, as shown

in Figure 4. Elements 1-16 correspond to the voxel numbers in Figure 3 respectively. It can be observed

that element 6 corresponding to the simulated object has a voxel intensity of 21.08, significantly higher than

the rest of the voxels. To obtain the change in RSS vector y, the weight matrix W is multiplied by RTI

vector x and summed with the noise vector n. The columns and rows in the weight matrix correspond to

the voxels and links respectively. All the links with nonzero elements in this matrix provide information for

the respective voxel. It can be seen from this matrix that the information provided for voxel 6 is given by

links 4, 12 and 18. This can also be observed in vector y, where elements 4, 12 and 18 have a higher change

in RSS value than the other elements.

14
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Figure 3 – An example of a 4x4 RTI image with a simulated object on coordinate (2,2). The voxel numbers
are given in the top-right corner of each voxel and the links chosen by the weight matrix for voxel
(2,2) are shown by the red dashed lines. Their respective link numbers are also given in the figure.

Figure 4 – Numeric example of the linear model y = Wx + n
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where the weight matrix W is given in Figure 5.

Figure 5 – Weight matrix corresponding to given example

This numeric example was generated by using the simulation model that computes a vector y, the weight

matrix and correspondingly the RTI image vector x using the procedure described in chapter 5. Therefore,

vector n was found by n = y −Wx.

3.2.2 RSS model based on physical parameters

Originally, an RTI system was designed to work on a single frequency channel [5]. Later, the use of multiple

channels was introduced by Bocca et al. [3], with the intention to reduce multipath interference from

reflections off objects in the environment and thereby improve location estimates significantly. How the

use of multiple channels improves system performance is explained in subsection 3.4.3. The RSS measured

on channel c of link l at time instant k, rl,c(k) in dBm, was modeled by Bocca et al. [3] as:

rl,c(k) = Pc − Ll,c − Sl(k) + Fl,c (k)− nl,c (k), c ∈ F (3.2)

where Pc (dBm) is the node transmit power, Ll,c (dB) is the large scale path loss (due to distance, antenna

patterns, etc.), Sl (dB) the shadowing loss of attenuating objects, Fl,c the fade level (dBm) (from multipath

effects), nl,c the measurement noise and F = {1, ..., C} is the set of measured radio frequencies. Measurement

noise, as stated by Anderson et al. [20] is assumed AWGN. The set of measured frequencies is user-selectable,

where the amount of channels used is a trade-off between reducing the effects of multipath fading and network
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scan frequency, as explained in subsection 3.4.3 and 4.1 respectively. Each of the remaining parameters in

Equation (3.2) are further discussed throughout this subsection.

The transmit power Pc of all channels is mentioned to be set to the maximum transmit power of the

Texas Instruments (TI) CC2531 nodes used by Bocca et al. [3], which is 4.5 dBm.

Large-scale propagation models are those that predict the mean RSS (slow signal variations) over relatively

large distances between transmitter and receiver. Small-scale propagation models, on the other hand, simulate

the fast variations of the signal strength measured by the receiver at relatively short link lengths. The large-

scale path loss is given by the ratio (in dB) between the effective radiated power (ERP) PT (W) and received

power PR (W). The large-scale path loss with the effect of the antenna gains [31] is given by:

Ll,c(dB) = 10 log10

(PT
PR

)
= 10 log10

(GTGTλ2c
(4π)2d2l

)−1
(3.3)

λc =
v

fc
(3.4)

where, in Equation (3.3), GT and GT are the antenna gains of the transmitter and receiver respectively,

λc is the wavelength (m) of channel c and dl is the distance (m) between transmitter and receiver (T-R) of

link l. In Equation (3.4), v is the speed of light (m/s) and fc is the frequency of channel c (Hz). When

antenna gains are GT = GR = 1, the large-scale path loss is given by:

Ll,c(dBm) = 10 log10

( λc
4dlπ

)−2
+ 30 = −20 log10

( λc
4dlπ

)
+ 30 (3.5)

The path loss model shows that when keeping channel frequency (thus wavelength) constant, increasing

T-R distance will increase the path loss (decrease PR and thus increase ratio between PT and PR) as a result

of signal attenuation. In the path loss model, an increase in distance by a factor 2 will lead to a linear increase

of path loss of 6 dBm. One of the channels used by Bocca et al. [3] is ZigBee channel 15, which corresponds

to 2425 MHz, or a wavelength of 0.124 m. At a T-R distance of 1.5 m, the theoretical path loss is 73.7 dBm.

The shadowing loss Sl(k) of link l is modeled as [1]:

Sl(k) =

V∑
j=1

wl,jxj(k) (3.6)

The shadowing loss at time instant k is therefore a sum of products between the weights of weight matrix

W and voxel j, which ranges from 1 to total number of voxels V .

The weight matrix W is governed by a spatial impact model, which determines the weight elements by

the size of the ellipse that represents the area measured by each link, where the foci of the ellipse are the

transmitter and receiver radios. All the voxels contained within the ellipse are dependent on the link that

belongs to that ellipse, as demonstrated in Figure 6. The blue voxels together form the weighted region

selected by the ellipse and therefore represent the measured area of the dashed radio link. Consequently,

the larger the width λ of the ellipse, the larger the area that the link will cover, thus the more voxels that

will be selected. This also means the detail of where attenuation occurs may be reduced. Information may

be lost if the ellipse width is too small, effectively eliminating voxels that do represent the attenuation of

the respective link. Wilson et al. [1] demonstrate the effect of ellipse width on localization error. Bocca et

al. [3] have set λ to 0.02 m. The spatial impact model causes the weight to be zero where link l does not

affect voxel j, and non-zero if the area of the ellipse of link l covers the center of voxel j. The presence of a

an object on voxel j causes signal attenuation (shadowing) on the links that cover voxel j. The weights are

calculated as follows [3]:
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Figure 6 – Ellipse (in red) of an arbitrary radio link (dashed line) whose area selects the voxels (in blue) that
it affects. A black dot represents a radio.

wl,j =

 1
dl

if dtxl,j + drxl,j < dl + λ

0 otherwise
(3.7)

where dtxl,j and drxl,j are the Euclidian distances between the center of voxel j and the transmitter and

receiver of link l respectively, and dl is the length of link l. Therefore, the shorter and more reliable links are

weighted more than the longer, less reliable links. To calculate the weight matrix, therefore, the number and

position of the nodes and voxels needs to be known a priori.

The fading gain is calculated differently in various works [8] [3] [23] that each are used for a different link

selection method, but Alippi et al. [8] demonstrate that their method outperforms the rest. Therefore, the

fading gain of [8] will be presented. The fading gain Fl,c of link l on channel c is estimated as:

Fl,c = r̄l,c − P (dl) (3.8)

where

P (dl) = P0 − 10η log10

( dl
d0

)
(3.9)

where r̄l,c is the average RSS of link l on channel c measured during the initial calibration period (no

person present inside monitored area), P (dl) is the log-distance path loss model, P0 is the transmit power

reference loss at reference distance d0, η is the path loss exponent and dl is the length of link l. P (dl) is

therefore dependent on the logarithm of the distance between communicating nodes, which can be observed

in Figure 7a. Parameter η indicates the rate at which the path loss increases with distance, which is affected

by the propagation environment (see subsection 3.4.1 for propagation mechanisms). A typical path loss

exponent value in a line-of-sight (LOS) set-up is between 1.6 and 1.8, whereas in shadowed urban areas it

can be between 3 and 5 [31].

Experimental raw RSS data published online by Wilson et al. [2] for academic purposes was used to

generate Figures 7a and 7b in MATLAB. Figure 7a displays averaged experimental data from an empty area
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(a) (b)

Figure 7 – Experimental Received Signal Strength data published by Wilson et al. [2] processed into display-
ing (a) average RSS (dBm) during calibration period versus log-distance (m) and its corresponding
log-distance path-loss model with corresponding parameters P0 and η displayed in the graph. Fig-
ure (b) shows the fade level as calculated using Equation (3.8), where the blue and red data points
are the positive and negative fade levels respectively, shown to more easily distinguish between
the two levels. Both graphs were produced in MATLAB.

(with no people) being plotted against log-distance with its corresponding log-distance path loss model. The

parameters for the path loss model are also shown, which are P0 = −50.8 dBm and η = 1.6 respectively.

The calculated path-loss exponent of 1.6 confirms what is stated as being an expected path loss exponent by

Rappaport [31], as most of the links were in LOS, whereas some links were obstructed by two trees inside the

measured area. Figure 7b shows the fade level calculated using Equation (3.8). To facilitate distinguishing

between the polarity of the fade levels, the positive and negative fade levels are marked as blue and red

respectively. As can be seen, positive fade levels seem to be more constant and stay under 15 dBm, whereas

negative fade levels indicate larger variance with an RSS range of up to -25 dBm. This behavior is further

explained in section 3.4.2.

The relationship between measured RSS rl,c(k) of Equation (3.2) and change in RSS yl,c(k) of Equation

(3.1) at time k is given by [8]:

yl,c(k) = r̄l,c(k)− rl,c(k) (3.10)

Reference RSS r̄l,c(k) is dependent on time k, as it is updated after each iteration in a process called online

calibration that reduces the effect of time variance. The links and channels in Equation (3.10) are pre-

selected in a method that selects only the most reliable channel of links in a positive fade level, which is

further detailed in subsection 3.4.3. All the elements in yl,c(k) that do not belong to the selected link-channel

pairs are set to zero.
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3.3 Generating a Radio Tomographic Image

To obtain an RTI image x̂MAP , a Maximum A Posteriori (MAP) estimator was used by Anderson et al. [20].

An estimate for the RTI image x, given the RSS observations y, is found that maximizes:

x̂MAP = arg max
x

f(x|y)

= arg max
x

f(y|x)f(x)

f(y)

= arg max
x

f(y|x)f(x)

(3.11)

The second equality in Equation (3.11) comes from Bayes’ theorem. In the third equality, the a priori

probability f(y) in the denominator is removed, as it does not influence in finding the optimum x̂MAP .

Anderson et al. [20] assume that a posteriori probability fawgn(y|x) in Equation (3.12) follows an AWGN

fading model with mean Wx and noise variance σ2
nIL, where IL is the L × L identity matrix. The mean

and variance of the AWGN fading model are directly related to the linear model described by Equation

(3.1). Furthermore, the authors consider a Gaussian Bayesian prior on x in Equation (3.13) with covariance

matrix Cx, since the elements in the image vector x are correlated to each other and the authors mention

this assumption is equivalent to using regularization. The regularization term σ2
nC
−1
x in Equation (3.19) is

required to solve the ill-posed inverse problem, since the matrix WTW is typically not full rank, which occurs

in situations where the number of links is significantly smaller than the number of voxels. Regularization

is also used to reduce noise and effectively smoothen the estimated image, meaning the higher the noise

variance σ2
n, the more the image is smoothened. The Gaussian prior has mean m1V×1 (which is typically

zero), where 1 is a vector of ones of size V × 1 and covariance matrix Cx of size V × V . The covariance

matrix is given by Equation (3.14). The Gaussian models for the MAP estimator are shown below:

fawgn(y|x) ∼ N (Wx, σ2
nIL) =

1√
2πσ

e
−||y - Wx||2

2σ2nI (3.12)

fgauss(x) ∼ N (m1V×1,Cx) =
1√
2πσ

e
−||x−m1||2

2Cx (3.13)

[Cx]j,i = σ2
xe
−dj,i/δc (3.14)

where σ2
x is the variance of voxel intensities, di,j is the distance between the centers of voxels i and j, and δc

is the voxels’ correlation parameter (see section 4.3 for an example regarding this parameter). The covariance

matrix is an exponential function, which has been shown to be useful in approximating the spatial covariance

of an attenuating field [6, 32]. Moreover, Wilson et al. [1] mention the covariance matrix Cx can be closely

approximated to the covariance that results from modeling the spatial attenuation as a Poisson process,

which is frequently assumed for random positioning of objects in an arbitrary space.

Since the objective of the MAP estimator is to optimize x, only the argument of the exponent of Equations

(3.12) and (3.13) is required. The MAP estimator then becomes:

x̂MAP = arg max
x

(
− 1

2
||y - Wx||2(σ2

nI)
−1 − 1

2
||x−m1||2(Cx)−1

)
= arg min

x

(
||y - Wx||2 + σ2

nC
−1
x ||x−m1||2

) (3.15)

x̂MAP = (WTW + σ2
nC
−1
x )−1(WTy +mσ2

nC
−1
x 1) (3.16)
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In Equation (3.15), the argument has been multiplied by −2σ2
n, thereby turning the objective of the

MAP estimator to minimize the objective function. Equation (3.16) is a regularized least-squares solution.

To see the see full working of this result, see Appendix A. Anderson et al. simplify Equation (3.16) by

substituting mσ2
nC
−1
x with a bias term β, meaning their final generic form of the MAP estimator of the

Radio Tomographic Image becomes:

x̂MAP = (WTW + σ2
nC
−1
x )−1(WTy + β1) (3.17)

This may be simplified to:

x̂MAP = Π(WTy + β1) (3.18)

where

Π = (WTW + σ2
nC
−1
x )−1 (3.19)

Regularization matrix (3.19) only needs to be computed during initialization (once before real-time op-

eration) and remains constant until the nodes are displaced or image dimensions are modified, because of

the required adjustment of the weight matrix. This reduces computational cost while the system is running.

Anderson et al. show that the regularization term in Equation (3.19) can be replaced by the Tikhonov matrix

Q, as given by:

Π = (WTW + αQ)−1 (3.20)

Π = (WTW + α(DT
XDX + DT

YDY ))−1 (3.21)

where Q is replaced by a difference matrix that approximates the derivative of the image, also known as

H1 regularization [1]. The difference matrices DX and DY are the difference operators for the horizontal

and vertical directions of a 2D image respectively (see [27] for a detailed example). Anderson et al. show

that smoothing parameter α can be set to α ≈ 0.3 for weak smoothing and α ≈ 30 for strong smoothing.

The higher the smoothing parameter, the more emphasis is placed on the regularization term and the less

the effect of noise. By using Tikhonov regularization, Anderson et al. show that voxels close to the center

of the measured area are given more bias than those closer to the border of the network. The advantage of

using Tikhonov regularization is reduced computational cost and it does not require parameters σ2
n and δc

to be determined, making it a more generalized solution. The advantage of the more specific solution offered

by the covariance matrix is that the RTI image can be ”taylored” to obtain a result that is more optimized

than the Tikhonov solution. Tikhonov regularization is also used by [1, 24, 25, 30, 33], who arrive at the

same result, without the bias term β, by obtaining the least-squares solution to the objective function:

f(x) =
1

2
||Wx - y||2 + α||Qx||2 (3.22)

f(x) =
1

2
||Wx - y||2 + α(||DT

Xx||2 + ||DT
Y x||2)2 (3.23)

By taking the derivative of Equation (3.23) with respect to x and setting the result to zero (similar to

what is shown in Appendix A), the following Tikhonov solution is obtained:

x̂ = (WTW + α(DT
XDX + DT

YDY ))−1WTy (3.24)
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3.4 Multipath Fading: Problems and Solutions

In a radio propagation environment with surfaces, radio waves are reflected, diffracted, shadowed and scat-

tered, which all have an effect on multipath fading. These propagation mechanisms and multipath fading

are explained in subsection 3.4.1. The RSS dynamics of different frequency channels is illustrated in subsec-

tion 3.4.2, and how the link-channel selection method with multiple channels reduces the negative effects of

multipath fading is outlined in 3.4.3.

3.4.1 Multipath Fading

Reflection is where a radio wave collides and bounces off an object with dimensions relatively large with

respect to the wavelength of the propagating radio wave. Examples of such objects include buildings, walls

and the surface of the earth. A radio wave is diffracted if it is obstructed by a surface with sharp edges or

irregularities, causing multiple waves to be bounced off into different directions, including waves that bend

(propagate) around the obstacle. Shadowing, or medium-scale fading, is closely related to diffraction, and

occurs when a signal is attenuated as it passes through or diffracts around objects in the signal path [6].

This is what RTI is primarily based on. Scattering is where the radio waves are spread out (diffused) in all

directions after colliding with an irregular surface that is relatively small compared to the wavelength of the

incident radio wave. It is similar to diffraction in that it spreads out multiple radio waves, but differs in that

the waves do not propagate around the obstacle. Examples of objects that cause scattering are street signs,

lamp posts and trees [31].

Reflection, diffraction, shadowing and scattering cause multiple versions of the same transmitted signal

to arrive with a different phase and gain at the receiver. The RSS at the receiver reflects the phasor sum

of the radio waves that arrive at the receiver’s antenna. The intensity of the phasor sum is dependent on

the receiver’s position and the center frequency of the radio signal. A constructive phasor sum (constructive

interference) is the result of waves that arrive with the same phase, which is referred to as anti-fade. Waves

with opposite phase cause a destructive phasor sum (destructive interference) and are referred to as deep

fade. These interference phenomena are described as multipath fading [3, 8, 10, 11].

3.4.2 RSS Dynamics

Bocca et al. [3] demonstrate that every frequency channel of each link has different RSS dynamics when a

person crosses the link line, which was modeled in [34] and referred to as fade level. This causes a specific

RSS variance for each link. RSS dynamics is also dependent on link length: the larger the distance between

the radios, the less the signal strength is affected when the link is blocked. A link in anti-fade has a positive

Fl,c as shown in Figure 7b, which causes the average RSS to decrease when the link is blocked. A link in

deep fade has the opposite effect of a link in anti-fade and shows much larger variations independent of it

being blocked. This is an undesirable and unreliable behavior, as it may cause false positives when a target

is not blocking the link.

All these behaviors are illustrated in Figures 8 and 9, which were initially presented by Bocca et al. [3].

The figures show the behavior of three ZigBee channels A, B and C operating on the same link, which refer

to channels 15 (2425 MHz), 22 (2460 MHz) and 26 (2480 MHz) respectively. The communication link is

crossed by a person two times. The figures differ from each other in the link length: Figure 8 has radios

positioned 1.5 m from each other, whereas Figure 9 has a distance of 5 m between the T-R radios. These

figures illustrate how link length affects RSS dynamics.
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In the unblocked steady-state, channel A behaves relatively constant and is clearly in anti-fade, only

experiencing RSS variations of 2 to 3 dB. When it is blocked, the signal clearly drops with around 8 dB and

5 dB in the first and second figures respectively. This difference in signal drop is due to link length, where

a smaller drop is experienced at larger link lengths, thereby making it more difficult to detect a target as

node-node distance increases. The signal quickly recovers to its steady-state after the person crossed the

link. The steady-state RSS level in this test is about 6 dB lower in channel A at a link length of 5 m than

1.5 m, which is another effect of link length. In Figure 8, channel B behaves similar to channel A, though

in Figure 9 channel B is more comparable to channel C. Channel C in both figures is clearly in deep fade,

as it behaves unpredictably due to its large RSS variance throughout the measurement period. These are

unreliable channels that reduce RTI performance, and which should preferably be filtered out. This is why

several researchers [8, 3, 23] have proposed a selection method that only allows the most reliable channels of

anti-fade links to be used.

Figure 8 – RSS measurements of three different channels operating on the same link, where the nodes are
separated by 1.5 m and installed 1 m from the floor. The link is blocked by a person two times
during the measuring period. Channels A, B and C refer to ZigBee channels 15 (2425 MHz), 22
(2460 MHz) and 26 (2480 MHz) respectively [3].

Figure 9 – RSS measurements of three different channels operating on the same link, where the nodes are
separated by 5 m and installed 1 m from the floor. The link is blocked by a person two times
during the measuring period [3]. The channels are equal to the channels shown in Figure 8.
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3.4.3 Link-Channel Selection Method

Several works employ a different method to make use of information from multiple channels to improve

RTI performance [8, 3, 23]. Alippi et al. [8] proved, by comparing their method to the others, that their

link-channel selection method is most effective in using multiple frequency channels, and will therefore be

discussed in this subsection.

Alippi et al. mention their method has two advantages. The first being increased robustness against RSS

link variance and environmental noise as the chosen link-channel pairs filter out noisy links, and the second

is increased energy efficiency. Since some links may not be selected, it means the receiving radios belonging

to those links may be switched off during a TDMA slot (see 3.1 about TDMA slot).

In the first stage of link-channel pair selection, a set of link-channel pairs in anti-fade Lp is chosen:

Lp = {(l, c) : Fl,c > 0} (3.25)

where l and c are the link and frequency channel respectively, and Fl,c is the fade level as calculated by

Equation (3.8) and demonstrated in Figure 7b. Anderson et al. update the fade level and thus the selected

link-channel pairs every two hours, over a reference RSS collection time window of five minutes. A more

dynamic environment will require a faster update frequency, at the expense of energy consumption.

The second stage is selecting only link-channel pairs with an average RSS (measured during initial cal-

ibration) higher than the grey region, which is a region where the RSS is close to the receiver’s sensitivity

threshold. Links in the grey region may be long in length or experience a lot of obstructions, causing them to

be unpredictable. The researchers, who used the TI CC2531 radios, set a grey region threshold of Υr = −90

dBm, resulting in the following set of link-channel pairs with average RSS higher than Υr:

Lr = {(l, c) : r̄l,c > Υr} (3.26)

Thirdly, the intersection between the previously found sets is obtained and defined as:

Ls = (Lp
⋂
Lr) (3.27)

Although it may be close to guaranteed that the grey region links have already been filtered out in Lp, Alippi

et al. still include this step in the selection procedure to make sure of this.

In the fourth and final stage, the set of selected link-channel pairs L is defined as the set in which, for

each link in Ls, only the frequency channel in C (set of measured channels) with largest weight ρl,c is chosen,

as given by:

L =
(

(l, c) : (l, c) ∈ Ls ∧ c = max
j∈C

ρl,j

)
(3.28)

where

ρl,c =

Fl,c/σ2
l,c if (l, c) ∈ Ls

0 otherwise
(3.29)

where σ2
l,c is the RSS variance measured during initial calibration. The weight of a link-channel pair is

therefore higher with lower, and hence more reliable, variance link-channel pairs. All the elements in yl,c(k)

in Equation (3.10) that do not belong to the selected link-channel pairs are set to zero.
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3.5 Online calibration

Calibration is required to obtain a reference RSS to compare the current RSS with an empty (default) area.

In static time invariant environments, such as inside buildings or other indoor environments where relatively

little movement occurs other than targets, one offline calibration during initialization is usually sufficient for

long-term operation. However, in dynamic time variant environments where objects inside the measurement

area are added or moved, or where wind-drive foliage and weather changes like rain occur (although Anderson

et al. [20] mention rain has negligible impact on signal attenuation), the reference RSS changes over time.

This effect is illustrated in Figure 10 taken from [3], where a chair is placed between samples 200 and 350.

As can be observed, the RSS measured on all three channels drop significantly, from 5 dB on channel B to

10 dB on channel C.

Figure 10 – The effect on RSS attenuation when a chair is placed on a radio link between samples 200 and
350. The radios are spaced 4 m apart and 1 m elevated from the floor [3]. Channels A, B and C
operate in the same frequencies as in Figures 8 and 9.

Several works [22, 35] have proposed an online calibration method, which rely on the difference between

a short- and long-term RSS histogram and a moving average respectively. These methods, however, are not

effective when the target remains stationary for a longer period of time, as they will gradually fade out from

the images. A method that calibrates online that is effective in both short- and long-term measuring periods

is presented by [3] and later also employed by [8].

The online calibration method acts like a spatial filter, which only calibrates selected link-channel pairs

that are not attenuated by targets. The system thus requires that initially the monitored area does not

have any targets. Once the initial reference RSS is obtained, the online calibration method uses the estimate

of the target’s position calculated from the previous iteration and averages elements of links in a first in,

first out (FIFO) buffer, which contains RSS measurements of all selected link-channel pairs collected over

a pre-determined time window length, that do not intersect the target. The reference RSS vector is then

updated with the new averages.

Figure 11 is an RTI image with a person located at the red blob. The links intersecting the area enclosed

by the white dashed circle, referred to as the grating area, are to be filtered out and be excluded from online

calibration. The grating area is centered at the position estimate and has a user settable radius.
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Figure 11 – An RTI image with a red blob that indicates the location estimate of a person and a white dashed
circle, which is the grating area that is filtered for online calibration [3].

3.6 Article Analysis

In this section, the RTI implementation presented in three selected articles are analyzed with respect to their

computational cost, localization accuracy and robustness. The proposed vehicle tracking algorithm, which is

described in chapter 4, is based on some of the methods proposed by the selected articles, as well as newly

proposed methods. The methods to be implemented should allow the proposed RTI system to be able to

meet the requirements described in section 1.4. The requirements state that the RTI system should be able

to measure occupancy and velocity of multiple vehicles real-time, fast enough to track vehicles moving at

50 km/h, and be robust against RSS link variance and RSS time-variance. RSS link variance is caused by

multipath effects, while RSS time-variance is dependent on changes in the environment that are non-related

to the target, such as random objects being placed in the area or weather effects, such as wind that sways

leaves, branches or the nodes themselves. Performance is greatly influenced if the receiver node is moved

only by a fraction of its wavelength [22], [24]. The techniques described in this section are covered in various

sections of chapter 3.

The three analyzed articles are “RTI Goes Wild: Radio Tomographic Imaging for Outdoor People Detec-

tion and Localization” by Alippi et al. [8], “dRTI: Directional Radio Tomographic Imaging” by Wei et al.

[24] and “Radio Tomography for Roadside Surveillance” by Anderson et al. [20].

3.6.1 “RTI Goes Wild: Radio Tomographic Imaging for Outdoor People Detection and Localization”

As briefly described in section 2.1, Alippi et al. [8] from the Polytechnic University of Milan and University

of Utah developed a state of the art outdoor attenuation-based RTI network enhanced by using multiple

channels, background subtraction and online calibration, which is able to track multiple stationary and

moving people real-time.

Computational Cost

Each estimated radio tomographic image x̂V×1 in Equation (3.30) depends on the regularized least-squares

solution ΠV×L [5, 9, 23, 29, 35] and the change in RSS attenuation vector yL×1. The number of links, nodes

and voxels are given by L, N and V respectively. Vector y consists of the RSS attenuation change measured

from all fade-level based selected link-channels and is assumed to be a spatial integral of the propagation

field of the monitored area. For all non-selected link-channels, the RSS change is set to zero. Matrix Π is

only required to be computed once before operation, which ensured real-time estimation of the image x̂. Π
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consists of a simple weight matrix WL×V , regularization parameter σ2
n and a priori covariance matrix Cx:

x̂ = Πy (3.30)

Π = (WTW + σ2
nC
−1
x )−1WT (3.31)

The difference between Equations (3.30) and (3.18) is that the latter employs a bias term and requires more

computations, as demonstrated in subsection 5.2.5.

For the localization and tracking of multiple targets, the method of [9] was used. Image x̂ requires VL

multiplications while the system is operating in real-time, meaning computational cost increases with amount

of voxels and links. The number of links L is given by:

L =
K(K − 1)

2
(3.32)

where K is the number of radio nodes.

RSS data from the complete network consisting of 20 Texas Instruments CC2531 nodes was collected

every 340 ms, which they mention is sufficiently fast to track moving people. Computation time for an RTI

estimate was not mentioned, but is assumed to be less than one network scan of 340 ms as was simulated

and shown in Figure 18.

Localization Accuracy

The results show that the researchers achieve an average location Root Mean Square Error (RMSE) of 3.2

m (Euclidian distance) in an RTI network deployed in a densely forested environment with radios attached

to trees. They compared their results in the same measurement environment to the state of the art fade

level-based model introduced by Kaltiokallio et al. [10] obtaining a higher location error of 4.3 m. The

authors mention that the main reason for the improved accuracy of their method, is due to the use of their

node-specific path loss model (see Robustness in the next subsection). Although not mentioned in their

paper, it is assumed that Alippi et al. optimized all parameters when using the method of [10] to allow a fair

comparison.

Robustness

Alippi et al. have four methods to increase robustness against intrinsic motion. They achieve a 0.04% false

alarm rate, where a person was falsely detected for a total of 12 s in the monitored area during an eight hour

measurement period with wind of varying intensity. This is a significant improvement compared to the state

of the art [10], where they obtained a 0.74% false alarm rate, during which there were 12 false alarms that

lasted a total of three minutes.

One of the methods is to select which links and which one of their channels are most reliable to use for

image estimation. After pre-determined fixed time intervals, only link-channel pairs are selected that are

in anti-fade and have an average RSS higher than the receiver sensitivity threshold. From these selected

link-channels, only the channel that has the lowest variance of each link is selected. Intrinsic noise has high

variance, which is filtered out this way.

The second method is an online calibration technique, which applies a spatial filter that only updates

the reference RSS of selected link-channel pairs not attenuated by stationary targets. The online calibration

method uses a FIFO buffer that gathers RSS data in a time window of five seconds.
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The third method is a node-specific path loss model that is used to calculate fade level for each node. In

other words, each node n is modeled to have its own path loss exponent ηn and transmit reference power Pn0

(see 3.2.2 about the log-distance path loss model). The authors mention that using a node-specific path loss

model, the system is more robust against hardware variability factors (including relative antenna orientation

between communicating radios) and local environmental differences (like proximity of nodes to dense foliage).

Fade levels are updated after each pre-determined fixed long-term time interval.

The fourth method is background subtraction, which is a technique to better distinguish the blobs in the

generated image corresponding to real targets from the blobs caused by environmental noise. The method is

widely used in machine vision for the detection and tracking of moving targets, which can be applied to RTI

in the sense that frames are generated after every network scan, creating the effect of being a video. In a

Cumulative Distribution Function (CDF) comparing the system performance with and without background

subtraction, the authors demonstrate that the system is overall more accurate with background subtraction,

but makes a minimal difference.

3.6.2 “dRTI: Directional Radio Tomographic Imaging”

As briefly discussed in section 2.1, Wei et al. [24] propose the use of ESD antennas to improve RTI network

performance. ESD antennas focus the radiated power in selected directions to reduce multipath effects and

thereby reduce noise in communication links. The authors used ESD antennas that have six directions,

meaning 36 possible transmit-receive antenna direction pairs are possible, which they refer to as Pattern

Pairs. Communication in both directions leads to a maximum number of Pattern Pairs of 72 for each link.

Computational Cost

Using the proposed directional antennas comes at a cost of network scan time as each direction is sequentially

switched, making the dRTI system difficult to scale to larger network sizes.

The authors proposed three methods to select the Pattern Pairs of each link, of which the fade level-based

method yields highest performance. This method selects the top k Pattern Pairs with highest fade level. The

change in RSS vector y is calculated as the sum of the absolute difference between the current Ri,j(t) and

reference RSS R̄i,j for each selected Pattern Pair j ∈ Fi of link i, as given by:

yi(t) =
∑
j∈Fi

|Ri,j(t)− R̄i,j | (3.33)

where Fi contains the fade level of the k selected Pattern Pairs of link i. Computational complexity hence

increases with parameter k.

The RTI model used by Wei et al. is the same as in [1], which is a least-squares solution with Tikhonov

regularization as shown by Equations (3.30) and (3.31). In the work of Wei et al., however, only 21 links

(7 nodes) and 700 voxels were used instead of 378 links (28 nodes) and 1764 voxels in [1]. This reduces the

number of multiplications by approximately a factor 45, since image estimation requires VL multiplications

(see section 3.6.1). This provides strong evidence that images were generated real-time, but image generation

time remains unknown.

Localization Accuracy

Wei et al. compared their system to the multi-channel omni-directional RTI network in [23], showing that

their proposed system has a tracking performance improvement of 42% in an open LOS-environment at the
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90th percentile of the CDF representing tracking error. The authors, however, have not compared their

results to the latest high performance multi-channel RTI network [8], which might have produced similar or

even better results.

Robustness

The authors have not tested their proposed RTI system outdoors nor have they mentioned any effects of

intrinsic motion. However, the authors do present system performance results with False Positive (FP) and

False Negative (FN) figures, which is a way to measure system robustness. They show that their proposed

dRTI method yields significantly lower FP and FN results compared to mean- and variance-based RTI, as

well as multi-channel RTI.

3.6.3 “Radio Tomography for Roadside Surveillance”

As briefly discussed in section 2.1, Anderson et al. [20], four members of the Institute of Electrical and

Electronics Engineers (IEEE), published a paper that aimed to improve RTI modeling and algorithms in a

roadside surveillance environment.

Computational Cost

Three improvements were proposed that all add to computational cost compared to the initial RTI approach

proposed by Wilson et al. [1]. The solutions include an extra bias term to the commonly used regularized

least squares solution of Equation (3.24), a way to deal with negative data in the observations as a result of

bad calibration or noise, and combining multiple frames to produce a more accurate final image.

To generate an image estimate, Anderson et al. obtained a least-squares solution ΠV×V with H1 regular-

ization given by Equation (3.20), which is a form of Tikhonov regularization. Additional to this expression

and using the Maximum A Posteriori (MAP) estimator, they obtained Equation (3.18), where the bias term

β is empirically determined.

Computation of Equation (3.18) requires V 2L + V L = (V + 1)(V L) multiplications after each real-time

iteration, thereby increasing the number of multiplications by a factor V + 1 relative to Equation (3.30).

The addition of the bias term β does not increase computational cost notably, as the operations consist of

summations only.

Anderson et al. mention that negative elements in y may occur as a result of inadequate initial calibration

or significant amount of noise. To deal with negative data in the observations, the researchers iterate their

proposed simple three-step method three times. The method is based on removing negative elements of

x̂MAP and exclude the respective columns of W and D, after which x̂MAP is recomputed until it does not

contain any more negative entries. This method produces results similar to background subtraction, thereby

denoising the image. Computation time increases proportional to the number of iterations, where the authors

mention that three iterations were sufficient.

The authors combine three frames into a final, more accurate, image. Instead of W and y in Equations

(3.20) and (3.18) respectively, they propose:

Wstack =

WJ−v

W

WJv

 , ystack =

y
1

y2

y3

 (3.34)
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where J is a shifting matrix that shifts a frame left or right, v is the vehicle velocity that should be constant,

expressed as units of voxels per image, and the sign of v indicates the shifting direction. When positive, the

scene is shifted left along the road and vice versa when negative. To generate the optimal final image that

contains least noise, the authors propose a model to estimate vehicle velocity, which minimizes noise for a

range of tentative values of v, as given by:

v̂ML = arg min
v
||Wstackx̂(v)− ystack||2 (3.35)

Computational cost increases with the number of iterations required to find v and the number of frames

used to estimate the final image. Although the authors demonstrate that this method improves image

accuracy, it is not known how this model performs when multiple vehicles are in the monitored area.

The authors mention they record RSS data real-time, but they do not mention if the image was computed

real-time, nor do they mention the computation time with their proposed approaches. It is also unknown

what their network scan time is.

Localization accuracy

Using the method of removing the negative observations together with the optimized bias parameter β,

the authors almost halved the RMSE from 0.385 using the approach in [1] to 0.204. By also integrating

their multiple frame combination method, they show, in a series of image estimates, performance is greatly

enhanced compared to [1].

The paper does not mention any effect on localization accuracy with regard to vehicle velocity. Further-

more, the researchers have not tested system performance for multiple vehicles to be tracked simultaneously.

Since this paper presents the only research so far with regard to roadside surveillance using RTI, the previously

mentioned problems are not yet discussed in literature.

Robustness

Anderson et al. mention that weather and atmospheric effects had only a small impact on their RSS measure-

ments at 2.4 GHz. This might be a biased observation, because their tests were conducted under favorable

weather and environmental conditions. They do, however, mention that radio signal attenuation at 2.4 GHz

is only 0.03 dB/km with a rain rate of 100 mm/hr and less than 0.05 dB/km in fog [20, 36]. With these

properties, the authors mention that in their network configuration, the excess attenuation is well within the

error bounds in RSS measurement allowed by the ZigBee specification.

Although they do not present any impacts of intrinsic motion on their system, they do show that robustness

is increased compared to [1] as demonstrated using Receiver Operating Characteristic (ROC) curves.
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4 Proposed RTI System

This dissertation proposes a pragmatic methodology and set-up of an RTI network deployed on a roadside

segment that determines occupancy and velocity of multiple family cars in real-time. The research presented

in this dissertation is intended to potentially start a bigger research project into reducing the traffic problem

described in section 1.1 using Radio Tomographic Imaging technology. The RTI system proposed in this

chapter is implemented in the simulation model detailed in chapter 5, of which the results are presented in

chapter 6.

The proposed RTI system introduces three new methods, which include a new node spacing approach,

a new weight matrix calculation method and a voxel-specific threshold calculation technique. The former

two methods have shown to achieve higher system performance than original methods, as demonstrated in

chapter 6.

Section 4.1 describes the experimental design of the proposal supported with illustrations and section 4.2

provides a description of the proposed algorithm and methods. The algorithm presents a vehicle detection

method using newly proposed voxel-specific threshold calculation. The rest of the algorithm is mainly based

on the combination of methods presented in section 3.6. Section 4.3 contains expected system performance

and system limitations are described in section 4.4.

4.1 Experimental Design

To measure two cars in the same network traveling at 14 m/s (≈ 50 km/h), maintaining a safe distance of

two seconds means the distance between the cars should be 28 m. Taking the length of a car to be 4 m and

assuming the cars are at least 14 m (1 second) from the entrance/exit of the network, the network length

should span 64 m. As explained later, the total length is rounded off to 66 m. This will require 72 radios,

which are 36 nodes on each side, spaced non-linearly along and 3 meters across the road at a height of 0.5 m

from the ground. Non-linear node spacing instead of evenly spaced nodes like in previous works was chosen

to increase link density at the sub-network edges. Figures 12 and 13 illustrate the proposed design as a

top view and front view respectively, where the blue circles represent the nodes. Figure 12 displays three

sub-networks which are justified later in this section.

Figure 12 – Top view of roadside surveillance proposal
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Figure 13 – Front view of roadside surveillance proposal

Network scan frequency should be significantly higher than conventional RTI applications, since vehicles

can move considerably faster than people. The best case is where vehicle blurring does not occur, which

is when the vehicle does not cross a voxel boundary during one network scan. The relationship between

maximum allowable velocity vmax, voxel width rdist and network scan frequency fscan is given by [20]:

vmax = rdist × fscan (4.1)

Network scan frequency is dependent on node transmission time and number of channels used. A trade-off

exists between system performance and maximum detectable velocity, where improving localization accuracy

would require using a higher amount of frequency channels due to more reliable link-channel pairs being

selected, which comes at the cost of network scan frequency and thus maximum detectable velocity.

The average time of a transmission slot (period) per TI CC2531 node is around 3 ms [23], meaning for a

WSN with 72 nodes operating on, for instance, four frequency channels, the maximum scan frequency will

be ∼1.15 Hz. For a scan frequency of 1.15 Hz and a vehicle that moves 14 m/s (≈ 50 km/h), a voxel width

of ∼12 m would be required. Such voxel width would be problematic to estimate velocities each second of

vehicles moving slower than 12 m/s. To estimate velocities each second of vehicles moving at, for instance,

a minimum of 2.5 m/s (9 km/h), a minimum voxel width of 2.5 m is required. Estimating velocities of up

to 14 m/s with a voxel size of 2.5 m, a network scan frequency of at least 6 Hz is necessary. To achieve a

6 Hz scan frequency using 72 nodes operating on four frequency channels, the RTI network may be split up

into six sub-networks of 12 nodes each. The use of sub-networks, which was first described in [20], allows

each sub-network to be scanned simultaneously. Splitting up into sub-networks, however, comes at a cost of

accuracy at the boundary areas, where link density is lower, as can be seen in Figure 12.

To maintain a fairly high accuracy and still making use of multiple channels, the proposed RTI network

design contains three simultaneously scanning sub-networks operating on two frequency channels. In this

case, each sub-network will contain 24 nodes, meaning a scan frequency of 7 Hz may be achieved, reducing

the voxel width to 2 m and thereby making it possible to estimate a minimum velocity of 7.2 km/h. A voxel

width of 2 m means only a one-dimensional image can be generated, since the network width is 3 m, which

is acceptable for the proposed application, because the vehicle location only needs to be measured on one

axis. Using a one-dimensional image also simplifies the tracking problem. With a voxel width of 2 m, the

one-dimensional image has a total of 11 voxels per sub-network. Figure 32(b) visualizes the location of the

voxels as blue squares in an arbitrary sub-network.

Alippi et al. [8] did not mention the computation time to produce an image estimate. However,

Kaltiokallio et al. [10], a slightly less accurate but simpler method than Alippi et al., require an average

computation time of 3.4 ms per image estimation based on the method of [23] using a laptop equipped with a

2.67 GHz Intel Core i7-M620 processor and 8.0 GB of RAM memory. The real-time computation consists of

32



Chapter 4. Proposed RTI System

several processes, of which the most intensive is the image estimation of VL multiplications. In the network

of Kaltiokallio et al. [23], a total of L = 435 links and V = 3, 025 voxels were used, resulting in 1,315,875

multiplications for the generation of an RTI image during real-time operation.

The number of links for 24 nodes amounts to L = (N(N − 1)/2)2 = 276 links with V = 11 voxels (voxel

width of 2 m for a sub-network length of 22 m) per sub-network, the required number of multiplications per

image per sub-network is only 3,036 assuming the method of Alippi et al. [8] is used. The total number of

multiplications for the image of the complete road segment is therefore 9,108. Using a laptop with similar

performance as the one used by Kaltiokallio et al. [23], knowing that the method described in section 4.2 is

more complex and assuming the aforementioned network configurations with a network scan time of 144 ms

(7 Hz), it is expected that the laptop used for the proposed experiment should be able to estimate images

real-time. Figure 18 shows the mean computation time (s) of the simulated RTI image of 11 voxels with and

without bias term.

The network design proposes to use the same network hardware with similar configurations as Alippi et al.

[8], the only difference being the use of two unique channels per sub-network: C1 = {11, 20}, C2 = {23, 14},
C3 = {17, 26}. Using different frequency channels prevents co-channel interference within the RTI network.

The hardware consists of TI CC2531 transceivers equipped with a SWRU120b antenna that operate in the

2.4 GHz ISM band, which are set to transmit at maximum power of 4.5 dBm. The protocol to be used for

the RF sensors is the multi-Spin communication protocol, as outlined in section 3.1. Each sub-network has

one sink node that receives and transmits real-time RSS data to a receiver radio connected to the laptop,

which stores the data of the transmitting nodes in a buffer with all the link measurements.

For this proposal, it is chosen not to use directional antennas, because they increase network scan time

considerably. Data transmission and switching direction take 3 ms and 1 ms respectively. Switching and

transmitting from six directions will take 23 ms and repeating this for two channels will take 46 ms per

node. This is more than seven times longer than using omni-directional antennas, making it unfeasible to use

directional antennas for this proposal if image blurring is to be prevented for vehicles traveling at 50 km/h.

The proposed methodology of data acquisition is as follows. Drive one family car at a constant speed of

10 km/h on the RTI covered road segment and use the proposed method outlined in algorithm 1 to estimate

occupancy and speed real-time. Repeat this for speeds of 20 km/h, 30 km/h, 40 km/h and 50 km/h. Reiterate

the aforementioned procedure with two family cars, always driving at a safe distance of two seconds from

each other. All recorded data should be saved to compare system performance for varying vehicle speeds

and different amount of measured vehicles. Repeat all tests ten times and calculate an average of the system

performance to obtain a more generalized and less noise-corrupted result.

4.2 Radio Tomographic Imaging Algorithm

The roadside surveillance method proposed to be used is outlined in algorithm 1. It is mainly a combination

of the outdoor method of Alippi et al. [8] and the improvements from Anderson et al. [20]. A more detailed

description of each operation can be found in their respective subsections of section 3.6. A new weight matrix

calculation method is introduced, as well as a new voxel-specific threshold calculation technique used for car

detection and localization.

The system inputs are obtained during initialization. In this phase, the node and voxel locations need

to be obtained in order to calculate the weight matrix W. Node locations are as shown in Figure 12. The

new weight matrix calculation method is based on placing a circle with radius 0.7 m at the center of each

voxel, which is illustrated in Figure 29. All links that pass through the circle are selected. For the specific
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Algorithm 1: Pseudocode for proposed roadside surveillance method

Input: Node and voxel locations
Weight matrix
Reference RSS vector
Fade level
Selected link-channel pairs

Output: Number of cars
Car location
Speed

Determine threshold Tv for each voxel
Calculate Tikhonov regularization matrix Π
while (1) do

At the completion of each network scan:
Apply online calibration to update reference RSS vector
Update vector y
Compute RTI image x̂
while x̂ has negative observations do

Set negative voxels of x̂ to zero
Exclude respective columns of W and D and update Π
Recompute image x̂

end
Apply car detection and speed estimation methods

end

network setup proposed in this dissertation, this method selects more useful links for each voxel and thereby

leads to improved system performance, as demonstrated in subsection 6.2.1. The reference RSS vector is

obtained during offline calibration, which is where the system records data without people or vehicles inside

the network. The fade level is dependent on the path loss model and reference RSS vector. To increase

accuracy of the fade level, the path loss model parameters are node specific, as presented by Anderson et

al. [20]. In other words, each node n is modeled to have its own path loss exponent ηn and transmit

reference power Pn0 . Anderson et al. mention that using a node-specific path loss model, the system is more

robust against hardware variability factors (including relative antenna orientation between communicating

radios) and local environmental differences (like proximity of nodes to dense foliage). The link-channel pair

selection method explained in subsection 3.4.3 will select the highest quality anti-fade link-channel pairs that

experience least RSS link variance. This filters out unreliable link-channel pairs that experience deep fading,

as well as it filters out the longer distance links that have an average RSS close to the sensitivity threshold.

Multipath fading is expected to occur due to signal scattering from the road surface and shadowing from

vehicles.

The system outputs are the number of detected cars, car location and speed. The former two are related

to the number and location of voxels with an intensity larger than a voxel-specific threshold Tv, where Tv is

a newly proposed threshold given by:

Tv = ρ
( ∑
k∈Av

Fk

) 1
n

(4.2)

where ρ and n are empirically determined parameters, Av is the set of selected link-channel pairs k covering

voxel v and Fk is the fade level. The basis of this threshold depends on the fact that voxel intensities in

general are lower on network edges than in the network center, due to differences in link densities respectively,

where more (less) RSS information is available in regions with higher (lower) link densities. Differences in

link density along the RTI network can be observed in Figure 12. Therefore, the threshold is dependent on
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amount of selected link-channel pairs given by Av. A lower threshold is thus assigned to the border voxels,

whereas the center voxels will be given a higher threshold. Furthermore, the threshold is dependent on fade

level, because links with a higher (lower) fade level lead to a higher (lower) voxel intensity, because they

experience more (less) signal attenuation. Parameters ρ and n shape the threshold curve and are optimized

to obtain optimized system performance. If there are multiple neighboring voxels detected as a car, only the

voxel representing the front part of the car is chosen. Vehicle speed is estimated as the number of voxels

displaced per second, multiplied by the voxel width.

Parameters α (regularization parameter), ρ and n are found empirically. Since the amount of links

is significantly higher than the number of voxels, regularization is theoretically not necessary, but is still

included to smoothen the image. Tikhonov regularization is chosen, as it is a more general solution with

only one parameter to be optimized, as well as it is shown in Appendix C that it does not differ in system

performance compared to regularization with covariance matrix.

The proposed algorithm includes online calibration at the start of each network scan, which helps reduce

RSS time-variance due to for example random objects being placed inside the network that should not be

detected, or weather effects. This increases the system’s robustness, thereby fulfilling one of the requirements

mentioned in the goal of this dissertation. Vector y is updated as described in subsection 3.2.2 and RTI

image x̂ is computed using Equation 3.24.

Negative observations are removed from the RTI image using the method detailed in subsection 3.6.3.

This method obtains a cleaner image with less visible noise in voxels located around the vehicle, as explained

in subsection 6.2.4.

For this proposal, it is chosen not to use the frame combination method from [20], because the method is

computationally expensive. Additionally, it is not known whether image accuracy will improve when multiple

vehicles are present within the network, as the frame combination method was tested for a single vehicle at

a time only.

Furthermore, if the system is used for longer than two hours, the link-channel selection method should

be re-applied when no vehicles are detected inside the network as was done by Alippi et al. [8]. This re-

calibration procedure allows the system to adjust to any changes in link RSS variance that may have occurred

due to time-variant environmental factors, such as weather changes.

4.3 Expected Results

Results from the proposed method are likely to be completely different from the results of papers previously

discussed in this dissertation. Not only does the design provide half as many links as in other networks, but

the targets to be tracked are vehicles instead of humans, traveling at significantly higher velocities. The only

work similar to this proposal is from Anderson et al. [20], who did not publish quantitative results concerning

localization accuracy and how it is affected by vehicle velocity, nor system performance for the tracking of

multiple vehicles.

Using the proposed simulation model, it is possible to generate some expected results. Figure 14 shows

a simulated RTI image of an arbitrary sub-network with a simulated car on voxels 6 and 7, which show

to be brighter than the rest of the voxels. The links that pass through the neighboring voxels are also

blocked by the vehicle, thereby lowering their RSS, leading to an increased voxel intensity. Neighboring

voxels therefore experience correlation between them, which is exactly the voxels’ correlation parameter used

for the covariance matrix.
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Figure 14 – RTI image with a simulated car on voxels 6 and 7.

The proposed system is expected to be robust against RSS link variance and RSS time-variance, as it makes

use of the link-channel selection and online calibration methods [8]. The image is also significantly denoised

by the removal of negative observations. Localization accuracy is expected to decrease with increasing targets

to be tracked, as investigated by [9] and [37]. This is due to the fact that some links may be attenuated by

more than one object. Also, the number of multipath components and attenuation is expected to be larger

than in previous studies, due to the increased reflectiveness of metallic objects and size of targets, thereby

making multipath interference a bigger problem.

As Martin et al. [30] investigated, there is a trade-off between image resolution and accuracy. They show

that the larger the voxel width, the higher the accuracy, due to a larger amount of links covering the pixel.

In this proposal, a voxel width of 2 m is used, which is half the size of a vehicle. Alippi et al. [8] uses a voxel

width of 0.65 m in a network of 190 links. A voxel width of 2 m for the proposed design should therefore

lead to relatively high accuracy, given the 276 links to be used per sub-network.

4.4 Limitations

As opposed to conventional square geometry RTI networks where monitored targets are completely sur-

rounded by radios, the proposed front-back geometry only has radios deployed on two sides. To keep the

number of links equal in both geometries, the node density at the border of the front-back geometry will be

twice as high as in the square geometry. This leads to a more uneven link density between the network center

and edges, which reduces system accuracy at the edges and increases accuracy at the network center. The

proposed non-linear node spacing approach is meant to reduce the uneven link densities.

A limitation of using an RTI system with omni-directional antennas operating in cities is co-channel

interference with other 2.4 GHz ISM band networks. These networks include public Wi-Fi hotspots, 4G

LTE, wireless cameras and Bluetooth devices in vehicles. One method to reduce co-channel interference

is using BPSK modulation, but the IEEE 802.15.4 standard only permits frequency bands 800/900 MHz

utilizing this scheme, which comes at a cost of localization resolution due to increased wavelength. The

performance of an RTI network as a roadside application operating in the 800/900 MHz band will still need

to be investigated and is left as a future work. An alternative band could be the relatively interference-free

5 GHz ISM band, which, however, would increase multipath effects as the RSS will experience an increased

number of fades. A fade occurs during destructive interference of received multipath components, which

happens more often with increased signal frequency. Increased frequency causes more sine wave repetitions

within a given path difference, where path difference refers to the difference in path distance between two

received multipath signals [38].
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5 Simulation Model

Simulating RSS measurements for each link in an RTI system has an important benefit, as it allows an

arbitrary network geometry and size to be evaluated before buying and installing components. It also allows

network configurations such as multiple frequency channels to be tested, as well as the implementation of

techniques that reduce multipath interference and that adapt to dynamic time variant environments.

This Master’s dissertation is the first to propose an arbitrary RTI network to be simulated based on

a simulated communication channel. The results can also be used for a simple two-node network. The

simulation model is implemented in MATLAB and is based on experimental (raw) data that Wilson and

Patwari published online to be used by anyone for academic purposes [2]. The researchers used the Texas

Instruments (TI) CC2531 transceiver that communicates through the ZigBee protocol [39] in the 2.4 GHz

ISM band, so the simulation model is based on the ZigBee protocol and the transceiver’s properties. The

simulation model is also based on the RSS dynamics outlined in subsection 3.4.2. Furthermore, this chapter

shows how the simulated RTI network can be utilized to evaluate the performance of the proposed RTI

system, of which the results are shown in chapter 6.

The initialization of the simulation model consists of setting node and voxel locations, calculating link

distances, the weight matrix and regularization matrix. Since the initialization procedure does not form the

integral part of the simulation model, it is explained in Appendix B. The simulation model is divided in two

sections: section 5.1 covers the procedure to obtain RSS data, whereas section 5.2 outlines how RSS data

is processed and used to generate new information until a Radio Tomographic Image estimate is generated.

The procedures detailed in section 5.1 and subsections 5.2.1 - 5.2.3 only need to be computed once, while

subsections 5.2.4 - 5.2.6 are repeated for every network scan. The latter subsections change the originally

obtained RSS data in every iteration according to the RSS dynamics, obtain a new RTI image after each RSS

vector update and apply the vehicle detection method. The rest of this chapter demonstrates the simulation

model validation in section 5.3 and simulation model limitations in section 5.4.

5.1 Obtaining RSS data

The procedure of obtaining RSS data is mainly based on the convolution between a communication channel,

which is modeled as a Rician channel, and a transmitted data signal generated by a simulated ZigBee protocol

for the 2.4 GHZ ISM band defined by the IEEE 802.15.4 standard [40]. The output of the convolution between

the transmitted signal and the Rician channel with AWGN is used to obtain the RSS measurements for each

link.

The procedures detailed in this section are repeated for each used frequency channel. In the simulation

model, only the number of frequency channels to be used is specified, rather than the defining the specific

frequency channel. Although Bocca et al. [3] mention that lower frequency channels measure lower RSS than

the higher channels due to varying antenna impedance matching, the difference is negligible and is hence not

taken into account in the simulation model.
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5.1.1 Transmitted signal

Generating a transmitted data signal consists of several stages. The first is to obtain a data frame that

contains the preamble (4 bytes), start frame delimiter (SFD) (1 byte), frame length field and a reserved

bit (1 byte) and the variable length data unit [40]. The data unit contains 2 bytes for the node ID and

1 byte per RSS measured from each node (so N − 1 bytes, where N is number of nodes). Therefore, to

represent a frame in the simulation model, a random (uniformly distributed) binary data sequence of length

4 + 1 + 1 + 2 +N − 1 = 7 +N bytes is generated, which is in total (7 +N)× 8 bits.

As defined by the IEEE 802.15.4 standard, the ZigBee protocol designed for 2.4 GHz transmissions

employs the Direct Sequence Spread Spectrum (DSSS) modulation technique [41] [40]. This method improves

receiver sensitivity level and reduces multipath effects. The DSSS technique maps each symbol to a coded

pseudorandom (PN) sequence, also referred to as a chip sequence. The concerning ZigBee protocol employs

a 16-ary quasi-orthogonal modulation technique (meaning there are 16 PN sequences) with a PN sequence

size of 32 chips.

Therefore, the second stage of generating a transmitted data signal consists of converting the bits of stage

1 to 4-bit symbols, after which the symbols are mapped into a 32-chip pseudorandom (PN) sequence using

a look-up table defined by the IEEE 802.15.4 standard [40]. Hence a 4-bit input sequence is converted to a

32-bit chip sequence, thus increasing the bit rate by a factor of eight. As the data rate of the original signal

is defined to be 250 kb/s [40], the over-the-air bandwidth after spreading becomes 2 MHz.

The third stage modulates the chip sequence with the Offset Quadrature Phase Shift Keying (OQPSK)

modulation scheme. In MATLAB, the chip sequence was modulated with a ”comm.OQPSKModulator”

object using the ”step” function. The resulting complex sequence was separated into the In-Phase (real) and

Quadrature-Phase (imaginary) chip sequences, after which they were upsampled with a factor 8 (blue line

in Figures 15 (a) and (b)) to apply the Half Sine Pulse Shaping Filter described in the fourth stage. Half a

chip period was added to the begin and end of the Q- and I-Phase signals respectively to limit the maximum

instantaneous phase shift to 90 degrees as required by OQPSK [40] [41].

The fourth and final stage consists of filtering the Q- and I-Phase signals to shape the power spectral

density (PSD) from having infinite signal bandwidth (due to high frequency components generated from

the sharp transitions) to a finite signal bandwidth. Limiting and minimizing the signal bandwidth allows a

given frequency spectrum to be shared among multiple users, it reduces inter symbol interference (ISI) from

multipath fading and reduces transmission power [31] [41] [42]. The IEEE 802.15.4 standard employs the

Half-Sine pulse shaping filter to shape the signal PSD, as defined by the following equation:

p(t) =

{
sin(π t

2Tc
) 0 ≤ t ≤ 2Tc

0 otherwise
(5.1)

Where 2Tc is the chip period. Since the signal was upsampled with factor 8, each chip period now lasts 8

samples. Therefore, in MATLAB, the Half-Sine filter was defined as:

p = sin(pi*t/t(end)); (5.2)

t = 0:nsamp; (5.3)

where nsamp is the upsampling factor of 8. The Q- and I-phase chip sequences of the third stage are then

individually shaped to a half-sine using the ”conv” MATLAB function, which convolves the two vectors. The

outputs of the convolution are then combined into a complex signal that is transmitted onto the communica-

tion channel. The half-sine shaped signals are combined by multiplying the Q-Phase half-sine signal with ”i”
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and adding it to the I-Phase half-sine signal. Figures 15 (a) and (b) show the In-Phase and Quadrature-Phase

half-sine filtered chip sequences respectively. Figures 15 (c) and (d) show the PSD of the upsampled and

half-sine filtered chip sequences respectively. As can be observed in (d), the bandwidth is shaped in the

sense that more power is present in the frequency band -1 to 1 MHz (hence a 2 MHz signal bandwidth) as

compared to the PSD in (c).

Figure 15 – Graphs generated in MATLAB comparing 100 samples of upsampled chip sequence to half-sine
filtered signal of the (a) In-Phase and (b) Quadrature-Phase signals. Figures (c) and (d) show
the Power Spectral Density (PSD) of the upsampled chip sequence and half-sine filtered signal
respectively.

5.1.2 Communication Channel

To model the communication channel, a Rician channel was used, because most of the communication links

are assumed to be LOS, whereas a Rayleigh channel would be used for non-LOS cases [31]. The Rician channel

was set-up using the ”ricianchan” function of MATLAB. This function requires five parameters, which are

the input signal sample time (s), maximum Doppler shift (Hz), Rician K-factor, path delays (s) and average

path gains (dB). Since the radios are not moving with respect to each other, there is no Doppler shift. The

Rician K-factor determines the shape of the Rician distribution. The smaller the value K, which means the

dominant path decreases in amplitude, the more the distribution is positively (right) skewed, resulting in a

distribution more similar to Rayleigh [31]. It was observed, however, that factor K did not influence in the

results for the implemented simulation model, so it was left as an arbitrary value (K = 1). The other three

parameters are discussed below.

The signal sample time is dependent on the chip rate and upsampling factor. Since the chip rate is 2MHz,

the chip period becomes 500 ns. With an upsampling factor of 8, the signal sample time is 62.5 ns.

The number of multipaths is related to the signal bandwidth and coherence bandwidth. Since the coher-

ence bandwidth is not known a priori, the number of received paths per signal for this simulation model was
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chosen to be 3. Therefore, the vectors representing path delays and path gains have three elements. The first

path delay refers to the first arriving path and is set to zero [43]. The subsequent path delays were set to

be random (uniformly distributed) multiples of the sample time of 62.5e-9 s, where the second path always

arrives earlier than the third path.

The path gains are related to the log-distance path loss model parameters found for the ”empty area”

data published by Wilson et al. The parameters found were P0 = −50.82 dBm at d0 = 1 m and η = 1.57 as

can be observed in Figure 7a. However, for reasons as explained in section 5.3, η was set to 1.37 instead of

1.57. Before path gains were calculated, a random (uniformly distributed) set of links from the total set of

links were chosen to be reliable, whereas the rest was regarded unreliable. The percentage of reliable links

(with positive fade level) was found to be around 55% from the data of Wilson et al., so this same percentage

was used in the simulation model. For every link, an initial path gain for the first path was calculated using

the log-distance path-loss model. If that link was detected to be reliable, a gain offset of 5 dB was added to

the initial path gain to give it positive fade level (anti-fade), whereas for unreliable links 5 dB was subtracted

from the initial path gain to make sure it experiences negative fade level (deep fade). See section 5.3 about

why a 5 dB gain offset was chosen. For the subsequent path gains, 2 dB was subtracted from the preceding

path gain and a random (uniformly distributed) decimal value in the interval [-1,1] was added to it. In the

end, a path gain matrix was obtained with three path gains per link in the network.

After the ”ricianchan” object had been assigned its required parameters, it was filtered with the trans-

mitted signal using the ”filter” function. Additive White Gaussian Noise was then added to the resulting

signal with a Signal to Noise Ratio (SNR) of 20 dB. It was not known what the most appropriate value of

SNR is, but it was observed that the value of the SNR did not make a significant impact on the calculated

RSS.

Figure 25a shows the simulated RSS vs. log-distance and its log-distance path loss model with the same

network setup as Wilson et al. [1].

5.1.3 Received Signal Strength Measurements

The technique employed to calculate the Received Signal Strength Intensity (RSSI) in the TI CC2531 is

detailed in a User’s Guide published by Texas Instruments that describes the modules and peripherals of

the TI CC253x transceiver [44]. As outlined in the referred document and described by the IEEE 802.15.4

standard [40], the RSSI value is obtained by averaging the received power over the first eight symbols following

the SFD directly after the demodulator. The demodulator retrieves the over-the-air data from the received

signal. The block diagram of a demodulator of a IEEE 802.15.4 2.4 GHz transceiver [4] is shown in Figure

16.

Figure 16 – Block diagram of a IEEE 802.15.4 2.4 GHz transceiver [4].
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As can be observed, first the analog received signal is converted to a digital signal, after which it is shifted

to an intermediate frequency for further processing. After this stage, the RSSI is calculated according to

Equation (5.4). Since in the simulation model the received signal is discrete and shifting from an intermediate

to a baseband frequency is not applicable, the RSSI was calculated directly from the received signal without

pre-processing.

Therefore, to calculate the simulated RSS (dBm) data in MATLAB, the dBm value of the mean of the

absolute value of the received signal was computed, where the latter two were calculated using the functions

”mean” and ”abs” respectively. The RSS value rl,c for link l and channel c in Equation (5.4) will return the

value in dBm, because the input path gains to the rician channel were also in dBm scale.

rl,c(dBm) = 10 log10

( 1
S

∑S
s=1 |rx(s)|2

1 mW

)
= 20 log10

( 1
S

∑S
s=1 |rx(s)|
1 mV

)
(5.4)

where S is the length of the received signal, which is (7 + N) × 8 bits, and rx is the received signal. The

first equality of Equation (5.4) assumes received power inside the brackets by squaring the received signal,

whereas the second equality assumes voltage inside the brackets. The second equality is implemented in the

simulation model.

This procedure is repeated for every link in the network. Note that in the simulation model the RSS

is calculated for the complete received frame, hence not the first eight symbols following the SFD, as it is

expected not to make a difference in the obtained RSS.

5.2 Processing RSS data

After obtaining the vectors and matrices during initialization (see Appendix B) and the simulated RSS data, it

was processed and used to obtain new information until a Radio Tomographic Image estimate was generated.

The subsequent steps include computing fade level, selecting link-channel pairs, calculating thresholds and

simulating a vehicle.

5.2.1 Fade level

After RSS data had been simulated and obtained, it was used to calculate the fade level of all links of each

channel. Path loss parameters η and P0 were calculated using all simulated RSS data and were used to obtain

the log-distance path loss model, which also required the link length vector obtained during initialization.

Subsequently, fade level of all links on all channels were computed using Equation (3.8).

Figure 25b shows the fade level of the simulated RSS with the same network setup as Wilson et al. [1].

5.2.2 Link-channel pair selection

The link-channel pair selection method was implemented as described in section 3.4.3. First, the set of link-

channel pairs with positive fade level was obtained. A second set of link-channel pairs was retrieved that

contained RSS measurements higher than the grey region. Thirdly, the intersection between the previously

found sets was obtained.

The fourth stage was more challenging to compute in the simulation model. As the fourth stage is

dependent on RSS variance σ2
l,c of link l on channel c, many realizations would have to be computed to

calculate such variance. As each realization takes about 23 seconds to compute, a different solution was

found to obtain RSS variance to reduce simulation time. The experimental data of Wilson et al. [2] was used

to find a relationship between fade level and variance. This relationship is displayed in Figure 17.
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Figure 17 – RSS variance as a function of fade level. The displayed data was processed from experimental
data of Wilson et al. in the empty area. Curves (1) and (2) in the negative and positive fade
level sections correspond to the formulae displayed in the top left side of the graph.

As can be observed, two curves were found as a best fit that describe the relationship between variance of

links and channels experiencing negative and positive fade levels. These curves were found by ignoring some

of the data in the higher variance levels on the positive fade level side. This data was regarded as outliers,

because they do not explain the behavior as described in section 3.4.2. Curve (1) in the negative fade level

section corresponds to σ2
l,c(dBm2) = 1.5− 0.25Fl,c and curve (2) describes variance of links and channels in

positive fade level by σ2
l,c(dBm2) = 1.5− 0.05Fl,c.

These functions were used to calculate the final stage of the link-channel selection method, as given by

Equations (3.28) and (3.29). Equation (3.29) obtains the weights that are used to select the most reliable

channel of previously selected link-channel pairs to obtain set L using Equation (3.28).

5.2.3 Threshold

The threshold Tv was calculated as given by Equation (4.2) and is voxel-specific, where the threshold for each

voxel v is dependent on fade level of selected link-channels that represent the concerning voxel. Parameters

ρ and n were found empirically to yield the best performance and are given in subsection 6.2.4.

5.2.4 Vehicle simulation

The procedure described in this subsection was repeated for every network scan, as it changes the RSS

data according to the behavior described in subsection 3.4.2. Therefore, the simulation model only needs to

compute RSS data as outlined in section 5.1 once.

In the simulation model, a vehicle is assumed to be four meters in length, which corresponds to the length

of two voxels that are a size 2x2 m2 each. Therefore, a vehicle is simulated to occupy two neighboring voxels.

In the first stage, all the links chosen during the weight matrix calculation that represent the voxels occupied

by a vehicle are found.
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In the second stage, all the links in the network are assigned a RSS variance according to the Equations

presented in 5.2.2. The link-channel pairs that experience positive fade level are assigned a variance according

to formula (2) given in Figure 17, whereas the rest of the link-channel pairs (in negative fade level) experience

a RSS variance according to formula (1). A new RSS measurement rl,c is calculated for each link on each

channel by inserting the square root of the previously determined RSS variance (giving standard deviation)

into the following line of MATLAB code:

rl,c = r̄l,c + σl,c × randn (5.5)

where r̄l,c is the RSS data calculated in 5.1.3 and randn is a MATLAB function that generates a zero

mean, unit variance random Gaussian variable. This represents the RSS noise, which is assumed AWGN by

Anderson et al. [20] and is represented by n in Equation (3.1). Although Alippi et al. [8] do not mention

specifically that the RSS variance refers to the noise variance, it is assumed in this dissertation to be the

noise variance.

The third stage is where the vehicle is simulated. As shown in subsection 3.4.2, when a target is present

on the RSS link in anti-fade, the RSS drops with around 5 dB, while RSS links in deep fade do not tend

to be affected by it due to their high RSS variance. Unfortunately, this is the only link blocking behavior

knowledge available, meaning it was not possible to develop or use an already existing model to determine the

signal attenuation of an arbitrary object size that blocks links of arbitrary length and fade level. Therefore, a

fixed signal attenuation value was used to subtract from rl,c for every anti-fade link-channel pair that is part

of the set found in the first stage of the described vehicle simulation procedure. The fixed signal attenuation

value is set to 8 dB, as it is assumed that vehicles attenuate signals more than humans do (around 5 dB),

but not significantly more.

5.2.5 Obtaining a Radio Tomographic Image estimate

After the RSS vector is updated rl,c, the change in RSS vector yl,c is calculated using Equation (3.10). As

also noted with the concerning Equation, all the elements that do not belong to the set of selected link-

channel pairs are set to zero. The radio tomographic imaging procedure described in this subsection was

tested using the available experimental data of Wilson et al. [2], and the same RTI image was obtained as

they demonstrated in their paper [1]. Therefore, the imaging generation part of the simulation model was

validated, but was not included in this dissertation as it would not create additional value of showing the

same image.

The radio tomographic image vector x may be generated in two ways as is explained in Appendix B.

If the user desires a more generalized solution, Tikhonov regularization as in Equation (3.20) is employed,

whereas a more specific image result is estimated using regularization with a covariance matrix Cx as given

by Equation (3.31). Tikhonov regularization requires less computational cost and less parameters than using

a covariance matrix, but may generate a less optimal solution than using a covariance matrix. For the

simulation of the proposed RTI system, it was chosen to employ general regularization for reasons explained

in subsection 6.2.4.

Depending on the computational resources and necessities of the user, a bias term may or may not be

added to generate the RTI image estimate. The former is computed by Equation (3.17) and the latter by

Equation (3.30). As can be observed in Figure 18, the average time to compute an RTI image with and

without bias term is 2.9 µs and 1.8 µs respectively, meaning the latter method is approximately a factor

1.6 faster. The computations were performed on a laptop with an Intel Core i7-4500U CPU @ 1.80 GHz (4

CPUs) and 12 GB RAM.
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Figure 18 – Graph that compares the computation time (s) between the generation of an RTI image with
and without bias term of 10,000 iterations.

The effect of the bias term is to shift the voxel intensities to a higher or lower level. For the simulation

of the proposed RTI system, it was found that using a bias term was not necessary to optimize performance,

so it was decided to omit the bias term and thereby keep image computation simpler.

Removing negative observations in RTI image x as proposed by Anderson et al. [20] was implemented in

the following way. Any negative voxel intensities in x were set to zero and the columns of W corresponding to

the negative voxel intensities were omitted. When general regularization is used, the corresponding columns

of DX and DY (in a 2D image) were omitted, whereas in specific regularization, both corresponding rows

and columns of Cx were removed. The matrices used for regularization are now reduced in dimensions that

update only the positive voxel intensities. The image x was therefore recomputed, updating only the positive

voxel intensities. This procedure was iterated until the RTI image did not contain negative voxel intensities

anymore, which was never more than one or two iterations during the simulation of the proposed RTI system.

If the RTI image is two-dimensional, the image vector x is converted to a two-dimensional matrix, where

it is important to specify the image dimensions to identify which vector elements belong to which position

in the image.

5.2.6 Vehicle detection and speed estimation

The vehicle detection method mainly consists of comparing the voxel intensities to the pre-calculated voxel-

specific threshold Tv. Every voxel that has an intensity higher than the threshold is considered to be occupied

by a vehicle. If two neighboring voxels are detected as a vehicle, only the voxel representing the front part

of the vehicle is considered, so the direction of traffic will need to be known a priori.

Speed estimation cannot be fairly implemented in the simulation model, as it depends on the delay being

chosen between consecutive iterations. In real life scenarios, vehicle speed would be calculated as the number

of voxels displaced by the vehicle per second, multiplied by voxel size.
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5.3 Simulation Validation

To validate the simulation model, the simulated RSS data is compared to the experimental data published

by Wilson et al. [1], using the same network setup and configurations. The experimental data was recorded

with no targets in the measurement area (empty area).

The network of Wilson et al. [1] consists of 28 nodes, hence the frame length to simulate the network of

Wilson et al. [1] is (7 + 28)× 8 = 280 bits (see section 5.1 about frame length calculation).

In the ideal case, the probability distribution of the received signal amplitude voltage of every link length

is compared to each other, which, in a LOS environment, follows a Rician distribution [31]. To obtain the

amplitude voltages, the RSS data in dBm is converted to voltage using the following conversion:

rl,c(V) = 10
rl,c(dBm)−30

20 (5.6)

The experimental data consists of 378 links (28 nodes), where each communication link contains about

270 measurements. The most common link length is 6.5 m (21.2 feet), of which there are 20 LOS links as

displayed in Figure 19a. The 20 LOS links (red lines) are shown on top of the RTI network setup deployed by

Wilson et al., which contains 28 nodes and two trees inside the measurement environment. Four links that

originally crossed through the trees have been left out to leave only LOS links. The RSS data gathered on the

20 LOS links was combined in one vector to obtain a probability distribution. This gave 8,431 measurements

to be exact and its histogram with 100 bins is shown in Figure 19b.

(a)
(b)

Figure 19 – Probability distribution of RSS at link length 6.5 m.

As can be observed, it is difficult to associate this histogram with a Rician distribution. The most probable

cause is the lack of sufficient measurements for this particular link length. This means that comparing RSS

data for each link length will not offer a reliable validation metric.

Therefore, to validate the simulation model, all of the data of all 378 links of the experimental RSS data

was combined giving 100,992 measurements. These 378 links also include the links that pass through the

trees, as it is a relatively cumbersome and manual task to find and remove them. In addition, as explained

later, the histogram is approximated by a distribution, and because it is an approximation, it is expected

that excluding the several blocked links will have a negligible effect on the approximated distribution.
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All the RSS data was converted from dBm to voltage and shown in one probability distribution. The

distribution will not be Rician anymore, because data from different link lengths is combined. The application

”dfittool” in MATLAB was used to find a distribution that most closely fits the histogram generated from

the RSS data, where the number of bins used was 32. The application supports 20 distributions, ranging

from Beta to Rician to Weibull. Choosing a distribution was done manually and the distribution with highest

log likelihood value (calculated by the application) representing the histogram of the experimental RSS data

was chosen to represent the histogram of both experimental and simulated RSS data. It was found that the

Burr Type XII probability distribution most closely fits the histogram of the experimental RSS data, which

are both shown in Figure 20.

Figure 20 – Histogram of experimental RSS data with its Burr distribution approximation.

The formula of the Burr Type XII probability density function is given by

f(x|α, c, k) =

kc
α

(
x
α

)c−1
(

1 +
(
x
α

)c)k+1
, x > 0, α > 0, c > 0, k > 0. (5.7)

where c and k are the shaping parameters and α is the scale parameter that is related to the voltage level

at the maximum probability [45].

The next stage in validation was to generate 20 realizations of simulated RSS data, where each realization

contained 100,926 RSS elements, similar to the amount of experimental data available (100,992 measure-

ments). One realization consisted of obtaining one RSS measurement for each of the 378 links using the

method described in section 5.1. The rest of the measurements were simulated by repeating the procedure of

the second stage of subsection 5.2.4. All RSS data was converted from dBm to voltage and for each realiza-

tion, a respective Burr probability distribution was calculated, which were then averaged to obtain a more

generalized result that is less prone to variations caused by the Rician channel object. The resulting distribu-

tion was validated to the probability distribution of the experimental RSS data according to the Mean Square

Error (MSE) metric of the probability values, which is a commonly used performance evaluation metric to

obtain distance between measurements.
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This validation procedure was repeated for four different values of three simulation parameters to optimize

the fit of the simulation distribution to the experimental distribution. The parameters that were optimized

were the path-loss model parameters P0, η and the gain offset, which all affect the simulated path gains

described and hence the shape of the respective RSS probability distribution. Figure 21 presents the optimized

simulation distribution with a MSE of 0.17× 10−4 using parameter values P0 = −50.82 dBm, η = 1.37 and

gain offset = 5 dB. Observe that parameter P0 is the same as the experimental data shown in Figure 7a,

but parameter η was reduced from 1.57 to 1.37. Figures 22 - 24 demonstrate the effect of parameters η, P0

and gain offset respectively on the Burr distributions representing the histogram of the averaged (over 20

realizations) simulated RSS data and Table 1 contains the MSE of the demonstrated distributions with respect

to the reference (experimental) distribution. Note that the optimized result presented in this dissertation

is likely not the best possible result, since only the described parameter values were evaluated. As it takes

around 23 seconds to compute one realization, and therefore around 30 minutes to generate one graph, it

was left outside the scope of this research to find the best possible result.

Figure 21 – Burr probability distribution approximation of histogram of experimental RSS data (red line)
from Wilson et al. [2] and simulated data, with path-loss parameters P0 = −50.82, η = 1.37 and
gain offset = 5 dB. MSE = 0.17× 10−4.

Table 1 – Table comparing MSE between Burr probability distribution approximation of histogram of ex-
perimental RSS data and averaged simulated RSS data with different values for P0, η and gain
offset

η MSE (×10−4) P0 (dBm) MSE (×10−4) Gain offset (dB) MSE (×10−4)

1.17 5.65 -48.82 5.18 1 7.07
1.37 1.85 -49.82 2.46 3 1.82
1.57 4.01 -50.82 1.27 5 0.32
1.77 11.00 -51.82 4.36 7 5.48
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As can be observed in Figure 22, the amplitude, width and α (scale parameter of the Burr distribution

that is related to the voltage level at the maximum probability [45]) of the distribution are proportional to

path loss exponent η. The values of η were chosen according to the path loss exponent obtained from the

experimental data, which was η = 1.57. Parameters P0 and gain offset were fixed at -50.82 dBm (same as

experimental data) and 3 dB respectively. Changing the parameter η affects the inclination of RSS versus

log-distance, or the rate at which path loss increases with distance, as explained in subsection 3.2.2. The

higher the value of η, the more the links are attenuated, thus the lower the α, the higher the amplitude and

the smaller the width of the distribution. Table 1 shows that the lowest MSE value of MSE = 1.85 × 10−4

belongs to the distribution of η = 1.37, and consequently this value was chosen to keep fixed when comparing

the effect of parameter P0 in Figure 23.

Figure 22 – Burr probability distribution approximation of histogram of experimental RSS data (red line)
and averaged simulated data with η = 1.17, η = 1.37, η = 1.57, η = 1.77, P0 = −50.82 dBm
and gain offset = 3 dB. The averaged simulated data was the result of the average of the burr
distributions generated by 20 realizations.

Figure 23 demonstrates the effect of parameter P0 on the shape of the distribution curve. The values of

the fixed parameters are η = 1.37 and gain offset = 3 dB. Changing parameter P0 dislocates the RSS versus

log-distance graph in the vertical direction. Thus the lower the P0, the more the attenuation of each link,

therefore the lower the value of α and the smaller the curve width. The curve that generated the lowest

MSE of 1.27× 10−4 is at P0 = −50.82 dBm. Theoretically, this MSE value should be the same as the lowest

MSE value of Figure 22, because the same parameters were used, but is instead slightly different due to the

partially random Rician channel called in every realization. The comparison made with respect to variable

P0 thus concludes that P0 = −50.82 dBm yields the best fit, which is the same as the experimental P0.

The third and last parameter that was optimized was the gain offset, as can be observed in Figure 24,

where fixed parameters were η = 1.37 and P0 = −50.82 dBm. Changing the gain offset affects the spread of

RSS with respect to the path loss model: the higher the gain offset the larger the spread of RSS. The main

effect the gain offset has on the distribution is the curve width, where increasing the gain offset results in a

larger curve width, due to RSS data points being more spread out. Table 1 indicates that a gain offset of 5
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Figure 23 – Burr probability distribution approximation of histogram of experimental RSS data (red line)
and averaged simulated data with P0 = −48.82 dBm, P0 = −49.82 dBm, P0 = −50.82 dBm,
P0 = −51.82 dBm, η = 1.37 and gain offset = 3 dB. The averaged simulated data was the result
of the average of the burr distributions generated by 20 realizations.

dB yields the lowest MSE value of 0.32× 10−4. This gain offset makes sense, because when observing Figure

7b that illustrates the fade level of experimental data, the average of the positive and negative fade levels is

approximately 5 dB from the path loss model.

Therefore, the optimized parameters are η = 1.37, P0 = −50.82 dBm and gain offset = 5 dB. Note that

only a rough optimization was made. It was decided not to make a more fine-tuned optimization due to the

long computation time per 20 realizations of roughly 8 minutes. The optimized parameter values were chosen

to simulate the proposed RTI system.

Figures 25a and 25b show the simulated RSS vs. log-distance and fade level respectively with the optimized

parameters representing the same network setup as Wilson et al. [1]. As can be observed, parameters P0 and

η are not exactly the same as the optimized parameters, due to the partial randomness of the Rician channel.

Furthermore, the maximum and minimum fade levels approximately correspond to the experimental fade

levels illustrated in Figure 7b.

5.4 Limitations

One of the main limitations of the proposed simulation model is the procedure for simulating a vehicle.

Currently, for every link that passes through the vehicle, a signal attenuation of 8 dB was defined. This value

was based on the signal attenuation induced by a person described by Bocca et al. [3], but does not take

into account factors such as object type or size that obstructs the link, effect dependent on fade level, nor

the amount of link length effectively passing through the object.

Although it would have been interesting to implement the node specific path-loss model introduced by

Alippi et al. [8], as it was shown to greatly improve performance, it was not possible to include it in the
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Figure 24 – Burr probability distribution approximation of histogram of experimental RSS data (red line)
and averaged simulated data with gain offset = 1 dB, 3 dB, 5 dB and 7 dB, P0 = −50.82 dBm
and η = 1.37. The averaged simulated data was the result of the average of the burr distributions
generated by 20 realizations.

(a) (b)

Figure 25 – Figure (a) shows simulated RSS (dBm) data versus log-distance (m) and its log-distance path-
loss model with corresponding parameters P0 and η displayed in the graph. Figure (b) shows the
fade level as calculated using Equation (3.8), where the blue and red data points are the positive
and negative fade levels respectively, shown to more easily distinguish between the two levels.

simulations. The node specific path-loss model is a result of specific relative antenna orientation between

T-R nodes and proximity of nodes to neighboring objects, which are factors that would over-complicate the
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simulations if they were to be included, as they are specific to each deployment environment. Moreover,

including this model would lose generalization of the simulations, which is against the goal of simulating an

arbitrary RTI network.

Currently, the simulation model does not support the online calibration method, because RSS time vari-

ance has not been included since it was decided not to be an important part to demonstrate the performance

of the proposed RTI system using the newly developed simulation model.
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6 Results

The results presented in this chapter demonstrate the implementation of the proposed RTI network described

in chapter 4 using the simulation model outlined in chapter 5. In section 6.1, the optimized result is shown

for the implementation of one and two vehicles. How this result was optimized is covered in section 6.2.

6.1 Optimized result

This section shows the simulation results of one and two vehicles present inside an arbitrary sub-network in

subsections 6.1.1 and 6.1.2 respectively.

6.1.1 Single vehicle

Simulation results of a single family sized car of 4 meters located on each voxel from 1 to 11 in an arbitrary

sub-network is shown in Figures 26 and 27, displayed as a line plot and image respectively.

Figure 26 – Simulated car (black curve) on voxels 1 to 11 (x-axis) shown in figures (a) to (k) respectively,
where the y-axis represents voxel intensity. The red dashed curve is the voxel-specific threshold
and the arrow indicates the two respective voxels occupied by the car and the flow direction.
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Figure 27 – Simulated car shown as the two brightest neighboring voxels in each image on voxels 1 to 11
shown in figures (a) to (k) respectively. This is the RTI image respresentation of Figure 26

As can be observed in Figure 26, using the validated simulation model, a car passing through an RTI

network as a roadside surveillance application can clearly be located. A vehicle is detected on any voxel

with voxel intensity higher than the threshold, which, purely by observation, is accurate in each of 11 cases.

The voxel intensities of the car located on the edge of the network is roughly speaking lower than when it

is located in the network’s center. This is due to link density, which is lower on the edge than in the center

and the threshold value is adjusted to this characteristic accordingly, showing a higher value in the middle

than on the sides.

Another observation is that the image is still minimally affected by noise, due to RSS link variance and

multipath effects, as seen on the voxels further away from the current vehicle location. Most of the noise

has been filtered out by using the link-channel pair selection method, which is demonstrated in subsection

6.2.3. The simulation model therefore does not show an ideal case with zero noise, but rather a more realistic

representation of a practical implementation where noise is minimized.

Figure 27 shows the RTI image version of Figure 26, where the two brightest neighboring voxels in

each image (a) to (k) represent the location of a vehicle. This is the final output of the RTI technology.

Though the vehicle detection method used in this dissertation is based on a simple threshold, digital image

processing techniques can be applied to Figure 27 as an alternative, and potentially more effective technique

of vehicle detection and localization. Such techniques may be blob detection or other Artificial Intelligence

or Reinforcement Learning methods.
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6.1.2 Two vehicles

This dissertation proposes the detection and localization of multiple vehicles using the RTI network setup

described in chapter 4. The implementation of this proposal with two vehicles is simulated and presented in

Figure 28.

Figure 28 – Figure showing the RTI image with two vehicles located on voxels [2,3] and [7,8] respectively and
its corresponding representation as a line plot (black curve). The effect of two vehicles in the
network can be compared to the effect that one vehicle has by the blue curve. The red dashed
curve is the threshold.

The RTI image with two vehicles clearly shows two vehicles located on voxels 2 and 3, and 7 and 8

respectively. The line plot also indicates that the highest intensities are measured on the mentioned voxels

and are all higher than the threshold. This means that in theory, according to the simulation model and

the assumptions made in it, the system would successfully detect the location of both vehicles in the given

scenario. However, system performance is expected to be lower compared to one vehicle, because some links

are blocked by two vehicles at the same time, thereby reducing the reliability of the respective links.

This phenomenon of links being blocked by two vehicles can be observed in Figure 28. The intensity

on voxel 5 is higher with two vehicles than one vehicle (blue curve). This is due to the fact that the links

representing this voxel pass through both vehicles, thereby experiencing more signal attenuation and hence

resulting in a higher voxel intensity than if those links would pass through only one vehicle. This phenomenon

in a practical situation is thus also reflected in the simulation model.
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6.2 Optimizing the result

The results presented in section 6.1 are optimized with respect to a few parameters and the implementation

of two newly proposed techniques and one existing technique. The parameters and techniques used for the

optimized result are summarized in subsection 6.2.4.

6.2.1 New Weight Matrix Calculation and its effect

One of the newly proposed techniques is the link selection procedure for the weight matrix. The original

method consists of using an ellipse that represents the area measured by one link, where the larger the ellipse

width, the higher the chance that it covers more voxels (dependent on voxel size). This is a logical and

effective method for 2-dimensional images with a relatively high pixel density.

For this proposal, however, a 1-dimensional image is used with relatively few voxels of a large size (2x2

m). The newly proposed link selection procedure for the weight matrix uses a circle located in the center of

each voxel and selects each link that passes through the circle. Therefore, the larger the radius of the circle,

the higher the chance that more links will be selected. The radius set for the simulation is 0.7 m. The reason

why this method is more effective for the given situation, is that it prevents the selection of links that provide

relatively little information about a given voxel. This effect is shown in Figure 29, where both methods are

compared to each other. The selected links on voxels 1 and 10 are displayed by the red links, the unselected

links are shown as gray lines, the voxels are shown as blue squares and the selection circle is dark green. The

number of selected links is shown on top of the corresponding voxel.

As can be observed, using the original method, 4 links are selected for the first voxel and 16 for the tenth

voxel. The new method selects 4 and 12 links for the first and tenth voxel respectively. The 4 extra links

selected by the original method for voxel 10 are those that provide relatively little information about that

voxel, as they are longer links and pass through more voxels. Reducing the ellipse width would remove those

links. However, this would also remove two of the longer links of the first voxel, which is undesired, because

those to-be-removed links pass almost half of their length through that voxel, meaning they are valuable links

that represent that voxel. The new method thus allows the more valuable links to be chosen for the given

scenario.

Vehicle detection performance between the two selection methods is presented in Figure 30. Performance

was measured by calculating the average detection accuracy (%) of 50 repetitions on voxels 1 to 11. The

output of the performance computation is a 1 or 0 for each repetition, where a 1 is that the location of the

front half of the car (so only the rightmost voxel of two detected voxels) is correctly identified and 0 otherwise.

In each repetition, the RSS vector is updated by the procedure described in subsection 5.2.4. This process is

one simulation realization, which was repeated 20 times and averaged to obtain a more general result.

The performance results indicate that on most voxels, a higher accuracy of between 90% and 100% is

achieved between voxels 1 and 9 using the newly proposed weight matrix calculation method (WMCM).

This already demonstrates that the proposed RTI system will work near perfect according to the simulation

model. Especially a higher accuracy of approximately 100% is yielded on voxels 7 and 8, which are close

to the center of the network, due to invaluable links being left out. The edge of the network shows similar

performance between the methods of around 65% to 70%, because in both cases only 4 links were selected.

Therefore, the newly proposed WMCM was chosen to be used to obtain the optimal result and was

employed for the evaluation of the rest of the techniques described in this section.

Figure 31 shows an RTI image and corresponding line plot of a vehicle on voxels 9 and 10, which is the

location that gives worst performance as observed from Figure 29. The reason for this low performance is
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Figure 29 – Comparing which links and the amount of links are selected for voxels 1 and 10 using the (a)
original and (b) newly proposed weight matrix calculation method (WMCM). The red and gray
lines are the selected and unselected links respectively, the blue squares are the voxels and the
selection circles with radius of 0.7 m are in green.

Figure 30 – Accuracy (%) of vehicle detection on voxels 1 to 11 with original and new matrix calculation. The
data presented are 20 realizations of the original and newly proposed Weight Matrix Calculation
Method (WMCM) and their average.
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that the voxel intensity on voxel 11 is close to the threshold value. When it is higher than the threshold,

the system detected the vehicle location on voxel 11 instead of voxel 10, thereby introducing a False Positive

(FP).

Figure 31 – RTI image with vehicle located on voxels 9 and 10 and corresponding line plot using newly
proposed weight matrix calculation method.
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6.2.2 Effect of node placement

The second newly proposed technique that improves system performance is the non-linear spacing between

nodes to increase link density at the network edges. A higher link density in a given area means more

information is available about that area, theoretically leading to improved accuracy. Since link density is

significantly higher in the network center than in the edges, the proposal is to increase the spacing between

middle nodes and consequently reduce spacing between edge nodes. Figure 32 illustrates the number of

selected links for voxels 1 and 10 using evenly and unevenly spaced nodes.

Figure 32 – Comparing which links and the amount of links are selected for voxels 1 and 10 using (a) evenly
and (b) unevenly spaced nodes. The red and gray lines are the selected and unselected links
respectively, the blue squares are the voxels and the selection circles with radius of 0.7 m are in
green.

As shown, the number of selected links is more than doubled at the outer voxels (voxels 1 and 11, where

11 is symmetrical to 1), from 4 to 9 links. This comes at the cost of less reliable links in the center, due to

increased node spacing, but should theoretically not lead to significantly reduced system performance.

The effect of node spacing on system performance is illustrated in Figure 33, which was calculated using

the same performance measuring procedure as in subsection 6.2.1. As can be observed, using unevenly spaced

nodes leads to higher vehicle detection accuracy, especially on the network edges. This follows exactly the

theory of how link density affects performance. System accuracy now is roughly speaking the same in the

edges as in the center of the network, yielding a near perfect accuracy of between 95 - 100% in the performed

experiments.

Consequently, the network setup of the optimized result in section 6.1 has nodes spaced unevenly in the

manner presented in this subsection. Uneven node spacing was also employed to evaluate the technique

described in the next subsection.
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Figure 33 – Accuracy (%) of vehicle detection on voxels 1 to 11 with evenly and unevenly spaced nodes. The
data presented are 20 realizations of the evenly and unevenly spaced nodes (thinner blue and red
curves respectively) and their average.
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6.2.3 Effect of link-channel selection method

According to literature, the more frequency channels that are employed, the higher the quality (with least

RSS variance) of link-channel pairs that are selected. This effect is tested in the simulation model and the

results are presented in Figure 34, which shows system performance calculated using the same procedure as

outlined in subsection 6.2.1.

Figure 34 – Accuracy (%) of vehicle detection on voxels 1 to 11 without link-channel pair selection (LCPS)
and with LCPS (2 and 4 channels). The data presented are 20 realizations of the concerning
variables and their average.

In the performed simulation experiments, the RTI system demonstrates to be accurate using only one

frequency channel without link-channel pair selection (LCPS), with an accuracy of between 80% and 90%

for all voxels. However, adding a second channel and using the LCPS method, accuracy for all voxels is

significantly improved to between 95% and 100%. A perfect performance of 100% for all voxels is achieved

using four channels and the LCPS method. It is likely that using three channels would also yield perfect

performance, but was not tested for this simulation comparison. The performance result seen in Figure

34 can be regarded as another type of simulation model validation, because the demonstrated performance

difference between number of channels used confirms what is being described in literature.

The proposed RTI system contains the use of two frequency channels due to reasons described in section

4.1, meaning that in theory, it performs close to perfect and almost as well as using more than two channels.

Figure 35 illustrates two RTI images that compare the result of using two and four channels respectively,

with their line plots displayed accordingly. The line plot also shows the result of using only one channel

without LCPS. As expected, the curves with LCPS are very similar to each other due to their similar system

performance, while the curve without LCPS is visibly different. Not only is the RTI curve different, but also

its threshold, which is irregular and seemingly more random as opposed to the other curved and smooth

thresholds. This irregular threshold is likely to have been the cause of the reduced vehicle detection accuracy.

The reason for the irregular threshold is that all fade levels are included in the calculation, both positive and

negative.
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Figure 35 – RTI image with vehicle located on voxels 7 and 8 and corresponding line plot without link-channel
pair selection (LCPS) and with LCPS (2 and 4 channels). The dashed curves are the thresholds
with their color corresponding to the RTI image they represent.
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6.2.4 Techniques and parameters used for optimized result

The parameters for the threshold ρ and n were optimized empirically, by trying out different values and

observing which values yield the best vehicle detection performance. Note that the optimized values may not

be the true best, but merely an approximation, as it is a cumbersome task to optimize parameters manually.

A continuation of this research may employ optimization techniques that search for the optimized parameter

values automatically. The values found for the concerning parameters are ρ = 2 and n = 4.

The results described in this section conclude that the following techniques are used to achieve the

optimized result, as also described in chapter 4: new weight matrix calculation method that selects links

based on the radius r of the circle in each voxel, unevenly spaced nodes and two channels with LCPS (which

was already chosen in the proposed RTI system).

Furthermore, the algorithm for the proposed RTI system includes two other techniques: regularization

type and removing negative observations in the RTI image, which were evaluated in Appendix C. As demon-

strated in the respective appendix, regularization type and removing negative observations did not have a

notable impact on performance. It was therefore decided to employ generalized regularization, as it only

requires the optimization of one parameter instead of three. The technique to remove negative image obser-

vations was also employed, as the RTI image shows to be less affected by noise in voxels around the vehicle,

thereby achieving a cleaner image. Table 2 summarizes the parameter values used to obtain the optimized

result.

Table 2 – Parameters and their corresponding values and description used for the optimized result.

Parameter Value Description

ρ 2 Threshold weighting parameter
n 4 Threshold power parameter
r 0.7 Link selection circle radius
α 0.1 Generalized regularization parameter
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7 Conclusion

This dissertation proposes the implementation of a relatively new wireless communication technology, referred

to as Radio Tomographic Imaging, to a roadside surveillance environment. The desired outcome of this

dissertation is the continuation of the presented research, with as end goal hoping to deploy the RTI network

as a (complementary) urban vehicle traffic monitoring structure integrated into an Intelligent Transport

System.

The core of this dissertation proposes a design and methodology for the estimation of occupancy and

velocity of one and two vehicles on a single lane road segment traveling at speeds from 10 km/h up to 50

km/h using a Radio Tomographic Imaging network. The proposal is the first to present an RTI network that

is split into multiple sub-networks to achieve a network scan frequency fast enough to prevent blurring of

vehicles traveling at higher velocities.

The proposed roadside surveillance method is mainly based on two recent works by Alippi et al. [8]

and Anderson et al. [20], together with three newly implemented techniques, namely a new weight matrix

calculation method, a new node spacing setup and a new voxel-specific threshold calculation approach used for

car detection, localization and speed estimation. Simulation results presented in chapter 6 have demonstrated

that the two former newly introduced methods improved system performance considerably compared to

current approaches. This is mainly due to the unique network setup used, which only has nodes positioned

on two opposing sides of the network, causing low link density at the network edges and therefore reduced

performance in the respective areas. The new WMCM is effective in the given scenario, as voxel size is

relatively large with regard to network dimensions, and improves performance by selecting more valuable

links in each voxel.

The proposed RTI system fulfills the requirements listed in the goal in section 1.4. The first requirement

is that the system should be fast enough to measure real-time occupancy and velocity of multiple vehicles

moving at 50 km/h, which is enabled by the combination of three sub-networks deployed in series, each 22

meters long, employing two frequency channels in the 2.4 GHz ISM band and scanning at 7 Hz. The resulting

RTI image has a voxel size of 2 m. Real-time operation is possible, since Figure 18 indicates that RTI image

generation takes 1.8 µs on a relatively high-performance laptop, which is a procedure that is iterated two

to three times by the negative image observation removal procedure. The total computation time is hence

significantly less than one scanning period of 142 ms (1/7 Hz).

The second and third requirements are that the RTI system should be robust to RSS variance of the links

and to RSS time-variance. Two techniques are employed to reduce this issue, namely the link-channel pair

selection method and online calibration respectively. The LCPS method obtains the highest quality link-

channel pairs, which selects only the link-channels in anti-fade with least RSS variance. The node-specific

path loss model allows more accurate calculation of fade level per node, making the LCPS method more

reliable. Online calibration reduces the RSS time-variance issue, as it updates the reference RSS at the start

of each network scan.

The simulation model presented in chapter 5 is a relatively complete model of an RTI network. It

generates RSS measurements based on the ZigBee IEEE 802.15.4 protocol, which are processed using the

RTI techniques covered in chapter 3. The advantage of the developed simulation model over previous models

is that it implements physical layer properties by simulating a communication channel, thereby making the

simulated RSS data more realistic. Moreover, it allows the specification of an RTI network from the ground
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up, including node positions, network size and geometry and RSS measurement processing using any available

or newly developed techniques. The model is relatively flexible in that it can be used for different types of

network geometries, which consists of a square geometry as is used in previous works, as well as a front-back

geometry like the one discussed in this dissertation. One of the main limitations of the simulation model

is that it does not include (because it does not exist in literature) an accurate model that describes signal

attenuation due to an object obstructing the communication link, according to fade level, size or type of

object.

The simulation model was validated by comparing the Burr distribution approximation of the RSS his-

tograms of the experimental data offered by Wilson et al. [2] and optimized simulated data. The simulation

model was optimized by setting values of three path-loss model parameters that minimize the MSE between

the simulated and reference histograms.

Chapter 6 shows the implementation of the proposed RTI system using the validated simulation model.

The results of the performed simulated experiments indicate that it is possible to detect both one and two

family sized cars simultaneously in the proposed RTI network setup. In subsection 6.2.3, vehicle detection

performance is demonstrated to be between 95% and 100%, which is near perfect, using the new weight

matrix calculation method, new node spacing setup and using two frequency channels for the link-channel

selection method.

7.1 Future Work

RTI is a relatively new technology with a vast range of possibilities and opportunities that may be explored

in future work. This section suggests some of the future work that may be carried out concerning the RTI

system proposed in this dissertation.

One of the most significant future research that needs to be carried out is the practical implementation

of the proposed roadside surveillance RTI system. This is an important research to be done to mainly

investigate the technical feasibility of the proposed methodology, but also to serve as an extra reference to

validate the newly developed simulation model. Following the design and methodology presented in chapter

4, it is expected that more insight will be gained into how localization accuracy is affected by vehicle velocity,

as well as system performance for the tracking of multiple vehicles. Once technical feasibility has been

proved for the described testing methodology, the following steps would be to create more realistic traffic

scenarios, such as introducing different vehicles types, including motorcycles, as well as vehicles accelerating

and decelerating inside the measurement area. The ideal future work would lead to investigating the technical

feasibility of applying a roadside surveillance RTI system to public roads to determine vehicle traffic flow,

which could be integrated into existing traffic monitoring systems to provide more accurate traffic estimates.

To improve the realisticness of the simulation model, a future research may be to include a more sophis-

ticated model of signal attenuation dependent on link length, fade level and type and size of object that is

located on the communication link. Such a model will need to be developed by obtaining experimental data

from a practical setup.

To further enhance the simulation model, a model for RSS time variance due to random objects being

placed inside the measurement area or due to weather changes may be implemented. Including RSS time

variance will allow the online calibration method of Bocca et al. [3] to be included and tested.

A more advanced technique for vehicle detection may be implemented using digital image processing

techniques. Such methods may employ Machine Learning, Artificial Intelligence or Reinforcement Learning,
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because the proposed method of thresholding is relatively simple and may not perform as well in a practical

situation as it did in the simulation model.

The proposed network setup only supports vehicle detection on one lane, so a future work would be to

research the possibility of detecting vehicles on two lanes, possibly requiring to adjust the network setup.

Another future work is to research the performance of the proposed RTI system that operates in the

800/900 MHz and 5 GHz frequency bands. Such research is interesting in case the proposed RTI system may

be deployed in city environments where it would otherwise interfere with other 2.4 GHz wireless networks,

including public Wi-Fi hotspots.

Furthermore, to minimize the cost of a deployed RTI system, it would be interesting to investigate the

minimum amount of sensors required to obtain a given system performance level. A potential customer

would then be able to evaluate the trade-off between system cost and system performance and send an order

accordingly.

Parameters for the simulation model were optimized manually, which most likely did not generate the

best result. Therefore, it would be interesting to apply optimization techniques that search for the optimized

parameter values automatically.

Other possible future works could transform the RTI network into base stations for communication with

VANETs, or make the RTI network able to identify vehicles according to their size, by using the reflected

signals from the vehicles to the transmitter, similar to how radar works. In the latter application, the

transmitters would need to be configured to be able to receive too. This implementation may make it possible

to distinguish between vehicle types, such as trucks, family cars or motorcycles. Knowing the location of the

vehicles, the RTI system will also be able to determine the distance between them to generate additional

traffic statistics.

7.2 Publications Related to this Dissertation

National congress

� Wilkens, J.T.; Garcia A.S, Design for Multi-Vehicle Roadside Tracking Based on Radio Tomographic

Imaging; XXXIII Simpósio Brasileiro de Telecomunicações (SBrT) 2015, Juiz de Fora - MG. Anais

Completo da Programação Técnica, 2015.
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APPENDIX A – Radio Tomographic Imaging Solution

Full Working

This appendix details the step-by-step procedure between equations (3.15) and (3.16) of section 3.3. Starting

from equation (3.15), we have:

x̂MAP = arg min
x

(
||y - Wx||2 + σ2

nC
−1
x ||x−m1||2

)
(A.1)

x̂MAP = arg min
x

(
(y - Wx)T (y - Wx) + σ2

nC
−1
x (x−m1)T (x−m1)

)
(A.2)

x̂MAP = arg min
x

(
yTy− yTWx− xTWTy + xTWTWx

+σ2
nC
−1
x (xTx− xTm1−m1Tx +m21T1)

) (A.3)

To find an estimate for the RTI image x, the argument in (A.3) needs to be minimized with respect to x.

A least-squares solution is found by taking the derivative of the argument in (A.3), let us call this function

f(x), and setting the result to zero:

δf(x)

δx
= −yTW−WTy + xTWTW + WTWx + σ2

nC
−1
x (x + x−m1−m1T ) = 0 (A.4)

δf(x)

δx
= −(yTW)T −WTy + (xTWTW)T + WTWx + σ2

nC
−1
x (x + x−m1− (m1T )T ) = 0 (A.5)

δf(x)

δx
= 2WTWx− 2WTy + σ2

nC
−1
x (2x− 2m1) = 0 (A.6)

δf(x)

δx
= 2(WTW + σ2

nC
−1
x )x− 2WTy− 2mσ2

nC
−1
x 1 = 0 (A.7)

Solving for x gives the solution in (3.16):

2(WTW + σ2
nC
−1
x )x = 2(WTy +mσ2

nC
−1
x 1) (A.8)

x = (WTW + σ2
nC
−1
x )−1(WTy +mσ2

nC
−1
x 1) (A.9)



APPENDIX B – Initialization of Simulation Model

The initialization of the simulation model consists of setting the node and voxel locations and calculating

the weight and regularization matrices.

Node locations are dependent on the chosen network geometry. Currently, the simulation model supports

a square and front-back geometry, where a square network geometry contains nodes on all four sides of a

square-shaped network and a front-back network contains nodes only on two sides of a rectangular-shaped

network. The input of the function that returns node locations consists of the network geometry type

(square or front-back), the number of nodes in the network and the spacing between nodes along and across

the network. The network of Wilson et al. [1] is a square network that contains 28 nodes with a node spacing

of 3 ft. as shown in Figure (1). The node location matrix that is returned contains x- and y-coordinates in

the first and second columns respectively, where the row number refers to the node number (or ID).

The initialization procedure also obtains a vector that assigns a link number to each two communicating

radios. This vector and the node location matrix are used to calculate a link length vector containing the

distances between the nodes.

The function that returns voxel locations needs to know voxel size, number of network nodes and the

spacing between nodes along and across the network. The network of Wilson et al. [1] contains 42 x 42

voxels, which corresponds to a voxel width of 0.5 ft. The matrix that it returns contains four columns: the

first and second columns refer to voxel number in the x- and y-coordinates respectively, whereas the third

and fourth columns contain the geographical location of the voxels in the x- and y-directions respectively.

The row number refers to the specific voxel number.

The weight matrix as described in subsection 3.2.2, which relates the importance of a link to a particular

voxel, needs to know all the previously computed vectors and matrices, as well as the ellipse width parameter

λ. This parameter is typically set to relatively low. Wilson et al. [1] set λ = 0.01 ft.

The regularization matrix used for the simulation model depends on whether the user wants a more

generalized or more specific result. For a more generalized solution, Tikhonov regularization as in (3.20) is

used, whereas for a more specific result that requires empirically determined parameters, regularization with

a covariance matrix is employed as in (3.19). In Tikhonov regularization, the regularization matrix requires

the previously calculated weight matrix, the Tikhonov matrix and a regularization parameter α, which is set

to α = 5 by Wilson et al. [1]. Wilson et al. demonstrate the effect of smooothing parameter on localization

error [1]. To obtain the Tikhonov matrix, only the number of voxels is needed for the simulation algorithm

to return the DX and DY matrices, which are shown as an example by Cooke [27]. Regularization with

the covariance matrix as in (3.19) requires the knowledge of voxel locations to calculate Euclidian distance

between voxels, regularization parameter (or noise variance) σ2
n, voxel intensity variance σ2

x and voxels’

correlation parameter δc. Researchers that used the covariance matrix did not explicitly detail how they

determined the parameters, so it is assumed they were found empirically. Alippi et al. [8] sets the following

parameters: σ2
n = 0.1, σ2

x = 0.001 and δc = 1.



APPENDIX C – Results Continued

This appendix describes the effect of regularization and removal of negative observations on system perfor-

mance, serving as a continuation of the results described in chapter 6.

C.1 Effect of regularization

Regularization has been described as being general or specific, where the former uses a Tikhonov matrix and

the latter a Covariance matrix. General regularization only requires one parameter and is therefore a simpler

method, whereas specific regularization needs three parameter to be optimized, but can be adjusted to be

more specific.

Figure 36 illustrates vehicle detection performance of both methods, which was calculated using the same

procedure as outlined in subsection 6.2.1. Table 3 lists the parameters used for the performance evaluation,

which were optimized manually, meaning they may not be the true best values since manual optimization is

a cumbersome task.

Figure 36 – Accuracy (%) of vehicle detection on voxels 1 to 11 with generalized and specific regularization.
The data presented are 20 realizations of the generalized and specific regularization and their
average.

As can be observed, there is no notable difference in performance between generalized or specific regu-

larization. They both achieve a vehicle detection accuracy of between 90% and 100% and perform similarly

in each voxel. Because the generalized regularization is simpler as it requires only one parameter to be

optimized, it is chosen as the generalization method for the optimized result.



APPENDIX C. Results Continued

Table 3 – Parameters and their corresponding values and description used for the comparing regularization
type.

Parameter Value Description

α 0.1 Generalized regularization parameter
σ2
x 0.1 Voxels’ intensity variance [dBm]
δc 3 Voxels’ correlation parameter
σ2
n 0.1 Noise variance [dBm]

Figure 37 shows the difference between generalized and specific regularization as an RTI image and line

plot for a vehicle located on voxels 8 and 9. The RTI image with generalized regularization shows to be

cleaner than specific regularization, because neighboring voxels have lower intensity values.

Figure 37 – RTI image with vehicle located on voxels 8 and 9 and corresponding line plot with generalized
and specific regularization. The dashed curves are the thresholds with their color corresponding
to the RTI image they represent.
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APPENDIX C. Results Continued

C.2 Effect of removing negative observations

Removing negative observations from the RTI image has been shown by Anderson et al. [20] to improve

system performance in their specific RTI system. Figure 38 compares vehicle detection accuracy without

and with negative element removal (NER). As can be observed, for the proposed RTI system, there is zero

difference in system performance.

Figure 39 shows the RTI image and corresponding line plot of the result with and without negative

element removal. The NER RTI image solution obtains a cleaner image with less noise around the vehicle.

Therefore, it was chosen to employ the NER method for the optimized result.

Figure 38 – Accuracy (%) of vehicle detection on voxels 1 to 11 without and with negative element removal
(NER). The data presented are 20 realizations of without and with negative element removal
(NER) and their average.

Figure 39 – RTI image with vehicle located on voxels 5 and 6 and corresponding line plot without and
with negative element removal (NER). The dashed curves are the thresholds with their color
corresponding to the RTI image they represent.
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