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RESUMO 

A modelagem de situações para aplicações sensíveis ao contexto, também 

chamadas de aplicações sensíveis a situações, é, por um lado, uma tarefa chave 

para o funcionamento adequado dessas aplicações. Por outro lado, essa também é 

uma tafera árdua graças à complexidade e à vasta gama de tipos de situações 

possíveis. Com o intuito de facilitar a representação desses tipos de situações em 

tempo de projeto, foi criada a Linguagem de Modelagem de Situações (Situation 

Modeling Language - SML), a qual se baseia parcialmente em ricas teorias 

ontológicas de modelagem conceitual, além de fornecer uma plataforma de detecção 

de situação em tempo de execução. Apesar do benefício da existência dessa 

infraestrutura, a tarefa de definir tipos de situação é ainda não-trivial, podendo 

carregar problemas que dificilmente são detectados por modeladores via inspeções 

manuais. Esta dissertação tem o propósito de melhorar e facilitar ainda mais a 

definição de tipos de situação em SML propondo: (i) uma maior integração da 

linguagem com as teorias ontológicas de modelagem conceitual pelo uso da 

linguagem OntoUML, visando aumentar a expressividade dos modelos de situação; 

e (ii) uma abordagem para validação de tipos de situação usando um método formal, 

visando garantir que os modelos criados correspondam à intenção do modelador. 

Tanto a integração quanto a validação são implementadas em uma ferramenta para 

especificação, verificação e validação de tipos de situação ontologicamente 

enriquecidos. 

 



 
 

ABSTRACT 

The modeling of situation types for context-aware applications, also called situation-

aware applications, is, on the one hand, a key task to the proper functioning of those 

applications. On the other hand, it is also a hard task given the complexity and the 

wide range of possible situation types. Aiming at facilitating the representation of 

those types of situations at design-time, the Situation Modeling Language (SML) was 

created. This language is based partially on rich ontological theories of conceptual 

modeling and is accompanied by a platform for situation-detection at runtime. 

Despite the benefits of the availability of this suitable infrastructure, the definition of 

situation types, being a non-trivial task, can still pose problems that are hardly 

detected by modelers by manual model inspection. This thesis aims at improving and 

facilitating the definition of situation types in SML by proposing: (i) the integration 

between the language and the ontological theories of conceptual modeling by using 

the OntoUML language, with the purpose of increasing the expressivity of situation 

type models; and (ii) an approach for the validation of situation type models using a 

lightweight formal method, aiming at increasing the correspondence between the 

created models’ instances and the modeler’s intentions. Both the integration and the 

validation are implemented in a tool for specification, verification and validation of 

ontologically-enriched situation types. 
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1 INTRODUCTION 

Costa (2007) defines context-aware applications as applications that are “capable of 

autonomously adapting their behavior in response to context changes”. By context 

we mean any real world circumstance that can be used to characterize the situation 

of an entity. In (DEY, 2001) the author uses the term information (context 

information), which we here take as the representation of this circumstance in a 

computer system, such as in memory data. The goal of a context-aware application is 

to supply the user with services that are more adequate to his/her current (or a 

projected) situation, without any human interaction. This kind of technology gained 

importance in the field called ubiquitous or pervasive computing (HANSMANN, 

2003), which holds that computers must be transparently integrated to the everyday 

environment. 

In order to provide this effective interaction, the designer of such a system must be 

able to answer questions such as: what are the relevant types of entities that exist in 

the user’s environment (or context)? What are the particular combinations of entities 

that are relevant to us? These questions lead, respectively, to two distinct definitions 

in the design of a context-aware application: one that describes the entity types and 

relations of the application’s domain, which we call a context model; and one that 

establishes the situation of interest to the application and their rules, given by the 

combination of the context entities, which we call a situation model or situation type 

model (MIELKE, 2013). For this reason, context-awareness is also entitled situation-

awareness, where a situation is considered a higher abstraction concept that deals 

with conceptual patterns regardless of how context information is materially obtained.  

Throughout this thesis we use the expression situation-awareness as a synonym to 

context-awareness and situation-aware application as the same as context-aware 

application. 

As discussed by Kokar et al. in (KOKAR; MATHEUS; BACLAWSKI, 2009), “to make 

use of situation awareness […] one must be able to recognize situations, […] 

associate various properties with particular situations, and communicate descriptions 

of situations to others”. As stated in (COSTA et al., 2012), enterprise systems can 
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profit from the notion of situation and its adequate support both at design-time and at 

runtime. At design-time, behavior and policies can be defined in terms of the types of 

situations in which they apply, instead of various low-level conditions. This not only 

fosters separation of concerns through abstraction but also enables the definition of 

complex situation types by reusing previously defined situation types. At runtime, 

situation detection machinery can be employed, enabling timely reaction to current 

situations. Examples of approaches for simplifying design-time situation modeling 

can be seen in (COSTA, 2007), (COSTA et al., 2012), (MIELKE, 2013), (KOKAR; 

MATHEUS; BACLAWSKI, 2009) and (BAUMGARTNER et al., 2010) while 

approaches for runtime situation detection are present in (PEREIRA; COSTA; 

ALMEIDA, 2013), (RAYMUNDO et al., 2014) and (KOKAR; MATHEUS; 

BACLAWSKI, 2009). 

In order to leverage the benefits of the notion of situation at design time, Costa et. al. 

(2012) have proposed a model-driven approach to the specification of situation types 

(and ultimately model-driven realization of situation detection). That approach 

consists in part of a Situation Modeling Language (SML), which is a graphical 

language for situation modeling, allowing the expression of primitive situation types 

and complex situation types (with temporal constraints when required). This means 

that the designer is able to specify the types of situations in which he/she is 

interested at a high-level of abstraction. The definitions can then be used to generate 

situation detection code automatically in a platform called SCENE (PEREIRA; 

COSTA; ALMEIDA, 2013), a rule-based situation detection platform that leverages 

on JBoss Drools engine (and its integrated Complex Event Processing platform). The 

SML language serves as basis for the work developed throughout this thesis. 

1.1 MOTIVATION 

In this thesis we treat situation modeling as a conceptual modeling activity such as it 

is described in (MYLOPOULOS, 1992). In the referred work, the author states that 

model descriptions (or just models) must be created for the purpose of understanding 

and communication between humans, not machines. To provide this effective 

communication, those models must accurately reflect the modeler’s intentions and be 
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consistent with the entities that exist in the domain, qualities that have been 

discussed and recognized by the traditional conceptual modeling community 

(MOODY et al., 2003). In addition to their role in understanding and communication, 

when used directly as computational artifacts, e.g. in a model-driven process, models 

are used to automatically generate software, affecting directly the behavior, data and 

functionalities of a system. Thus, semantic errors in the conceptual model imply 

possible problems in the generated system. For example, if a situation model is 

inadequate and used to generate a situation-aware implementation, the implemented 

system may fail to inform the user of a relevant situation or may fail to respond to a 

relevant situation. Further, the system may incorrectly detect situations even in 

circumstances in which they do not actually exist. 

Computer tools, languages and frameworks are usually designed to offer flexibility 

and usability to the user. Modeling tools, in particular, facilitate the task of creating 

models and offer features to help creating higher-quality ones (i.e. one that is 

syntactically and semantically correct, adequate to its uses (functional), etc.), such as 

specific purposes menus and metamodels, validation mechanisms, simulation, 

among others. The SML language has been created with this purpose, aiming at 

simplifying the definition of situation types at the modeling level by means of a 

domain-specific visual language and providing integration with a situation detection 

platform at runtime. However, despite the benefits of the availability of a suitable 

modeling language and a code generation infrastructure, the definition of situation 

types, being a non-trivial task, can still bear problems that are hardly detected by 

modelers by manual model inspection. For example, since situations consist of 

particular combinations of context elements, their combinations into complex 

situations may lead to the creation of inconsistent, redundant or unintended situation 

type definitions. Those problematic definitions may result, respectively, in failing to 

detect an important situation, multiple responses for one single situation or in the 

detection of inexistent/unintended ones. Given the challenging nature of the situation 

modeling activity, designers could profit from additional support in order to assess the 

quality of the situation type models they produce. 

Most of the aforementioned problems are related to semantic, domain-specific 

aspects of the situation models, which can only be avoided if a proper model 

assessment mechanism is employed at design-time. Model assessment is crucial for 
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the production of high-quality conceptual models in general, and is especially 

relevant if the models are employed in a model-driven approach, with the generation 

of deployable code from models. In our case, we generate situation detection code 

directly from situation type models in SML, hence the key role of model assessment. 

It allows model rectification at an early phase to make the created models less prone 

to error and to reflect accurately the modeler’s intention. 

Furthermore, the same complexity of creating accurate models encouraged deeper 

studies in conceptual representations that would most faithfully express the real-

world entities and relationships. Thus, ontologies (GUARINO; OBERLE; STAAB, 

2009) emerged as artifacts that materialized those studies and aimed at increasing 

the semantic expressiveness of models in the field of software engineering. 

Ontologies capture the subtleties of the different entities in a domain and are 

especially important (and widely adopted) for system interoperability, since they are 

formalized, allow reuse and substantially help the common understanding between 

people or software agents (e.g. allowing a more precise mapping of concepts 

between heterogeneous systems and reducing errors of false agreement). In 

(GUIZZARDI, 2005) the author presented ontological foundations that gave rise to 

modeling primitives for ontology-driven conceptual models, encompassing 

established works on areas that ranged from philosophy to linguistics. SML relies on 

some of those primitives for the creation of its context model, e.g. by distinguishing 

between entities and their contexts and specializing the latter according to other 

ontological distinctions. 

Despite of this solid grounding, the SML language only uses a small portion of the 

ontological categorizations from the aforementioned works. Some important aspects 

were left aside making it less expressive when compared to other works in the area 

of ontology-driven conceptual modeling. As example, we can mention the lack of 

support for dynamic (or contingent) classification and for modal meta-properties of 

classes and associations such as rigidity and immutability. While this is not originally 

supported in SML, it is key to modeling certain situations in reality. For example, 

dynamic classification mechanisms can be used to represent situations concerning 

an entity’s phases (such as a person’s life phases: child, teenager and adult, a 

disease’s phases: contagious, non-contagious) or the dynamics of role playing (such 

as a person’s role through life: student, employee, husband/wife, patient). 



19 
 

1.2 OBJECTIVES 

This thesis addresses situation type modeling enhancement with two primary 

objectives, namely extending the SML language and increasing its expressivity, and 

providing an approach to assess these enhanced situation type models.  

With respect to the first objective, we aim at improving the expressivity of SML, 

integrating its context model with a consolidated ontology modeling language called 

OntoUML, whose meta-model has been designed to comply with the ontological 

distinctions and axioms of a theoretically well-grounded foundational ontology, 

named the Unified Foundational Ontology (UFO) (GUIZZARDI, 2005). This requires 

that we also extend/adapt SML’s concepts to conform to the more expressive context 

model. With this, we seek to increase the quality and expressivity of the created 

situation types by using a context model that has clear real-world semantics while 

also expanding the possibilities of creation of situation models by including novel 

elements that can be combined to provide new constraint for the situation types. 

With respect to the second objective, we propose an assessment method by using a 

lightweight formal method in an approach that is analogous to the one employed in 

(BENEVIDES et al., 2009) for ontology-based conceptual models in OntoUML. We 

use a simple but expressive logic-based language called Alloy (JACKSON, 2006), 

which is shipped with a sophisticated analyzer. In order to retain the ease-of-use of 

SML, the approach should minimize the need for the modeler to learn a new formal 

language. With this we seek to be able to identify problematic scenarios resulting 

from inconsistent, redundant situation types in a systematic and automated way, and 

scenarios resulting from unintended situation types for which we provide common 

examples that can be used in other domains, requiring a minor adaptation.  

1.3 APPROACH 

In order to achieve the integration between SML and OntoUML (our first objective) it 

is necessary to understand the commonalities between the two languages, i.e. 

identify the concepts with similar semantics. Since SML is divided in a context and a 
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situation model, this integration regards only the context model at first, allowing us to 

directly reference the respective OntoUML concepts from the situation model, thus 

using an OntoUML model as the context model. Besides identifying these 

commonalities, OntoUML brings novel semantic distinctions that have consequences 

to the situation models. Therefore, the SML language needs to be revised to 

accommodate the new definitions, which could result in expanding, modifying or 

excluding some of its constructs. Since we revise the SML metamodel, some 

opportunities for improvement beyond the integration with OntoUML are also 

identified and acted upon. 

In order to provide an assessment method of situation type models (our second 

objective), we develop an automatic transformation of SML models into Alloy, using 

the existing OntoUML validation infrastructure and adding a situation module to it. 

The result of the transformation is an Alloy specification model which is then used to 

perform a series of simulation tests. In addition to simulation, it is possible to perform 

exhaustive verification of logical propositions in the Alloy model to detect problematic 

scenarios. Regarding the simulation, it is possible to check the correspondence 

between the instances of the written/drawn model and the original intentions of the 

modeler, to gain confidence that the allowed instances are only the intended ones. 

Regarding the verification, it is possible to locate inconsistent and redundant situation 

types, guaranteeing the validity of the situation models for the scope we define. The 

simulations we provide may be used as guidelines and reproduced in other domains 

with minor adaptations, while the verification is automated to completely validate the 

models regarding inconsistence and redundancy. This is important because not 

everyone is familiar with formal languages, especially with Alloy, and our intention is 

simplifying situation type modeling while also providing an effective method to 

validate situation models. 

Figure 1 depicts the overview of the approach described. Transformation T1 between 

OntoUML and Alloy already exists and serves as bases for the transformation T2 

which is developed in this thesis. The dependencies represented by the numbers (1) 

and (2) are novel contributions that we provide. Besides, we also contribute with the 

approach for simulation and validation of situation types, represented by (3), 

considering that the visual simulation already exists as part of the Alloy Analyzer tool. 
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Figure 1. Approach overview of the SML modeling improvement. 

Regarding the integration of metamodels we adopt Ecore as a metamodeling 

language, which is part of the Eclipse Modeling Framework (EMF)1. Ecore was 

chosen since both metamodels were originally developed in this language, facilitating 

our integration. The choice for Alloy for the simulation and validation of situation 

types is a result of its successful application in the assessment of OntoUML models 

(BENEVIDES et al., 2009) (SALES, 2014), which means that, since we are also 

integrating the SML model with OntoUML, it also allow us to reuse the Alloy 

infrastructure created for the latter and extend it to support situations. 

1.4 STRUCTURE 

This thesis is further structured as follows: 

• Chapter 2 compiles the most important background knowledge for the 

understanding of this thesis, including an overview of context, context-

awareness and context-aware applications, the concepts of situation and 

situation types, the SML language, and UFO/OntoUML in the context of 

situation-aware applications; 

1 https://www.eclipse.org/modeling/emf/ 
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• Chapter 3 revisits the SML metamodel to provide the aimed integration with 

OntoUML. We describe the novel features to be included in the language, 

depicting examples of situation types with these features, and present the 

resulting revised metamodel; 

• Chapter 4 describes our transformation of SML models to Alloy, using the 

improved SML metamodel. We present input and output patterns that are the 

backbone of the transformation, so that the Alloy models preserve the 

semantics of the original SML models in the transformation; 

• Chapter 5 presents an assessment example for detecting and correcting 

problematic situation types still at the modeling phase. The examples shown 

can be used as guidelines and replicated for a number of other situation types 

and domains; 

• Chapter 6 presents our concluding remarks, discussing related work and 

proposing topics for further investigation; 

• In Appendix A we show the complete Alloy situation module used in the 

transformation; 

• Finally, Appendix B lists some simulation scenarios in Alloy taken from 

(SALES, 2014), which were inspired in modeling anti-patterns of ontology 

models in OntoUML. 
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2 THEORETICAL BACKGROUND 

In this chapter we present the theoretical basis that is required for the development 

and understanding of this work. Section 2.1 introduces basic concepts in context, 

context-awareness and context-aware applications; section 2.2 explains the situation 

concept, which is the main concept used throughout the entire thesis; section 2.3 

presents the Situation Modeling Language (SML), a domain-specific language for 

modeling situation types which is the core of this work and for which we present 

enhancements and an assessment approach; finally, section 2.4 introduces UFO, the 

foundational ontology that comprises the set of ontological theories for describing 

real-word phenomena, and OntoUML, the modeling language that reflects the 

conceptual distinctions underlying UFO and which we use as the new context model. 

2.1 CONTEXT, CONTEXT AWARENESS AND CONTEXT-AWARE APPLICATIONS 

Dey (2001) affirms that “Context is any information that can be used to characterize 

the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between a user and an application, including the user and 

applications themselves.” However, we distinguish context from information and 

consider context to be a real-world circumstance (which still characterizes the 

situation of an entity), such as the real-world temperature of a Person, and then 

classify context information as the data extracted from this circumstance, e.g. a 

computer data representing this temperature. Thus, if a circumstance is used to 

characterize a participant of the user-application interaction it is context, and it is only 

relevant when applied to something that exists, which is called an Entity. Examples of 

context are the location of a user, the lighting of an environment, the direction of a 

mobile device, among others. Figure 2 illustrates an intuitive context model, showing 

a person and many contexts that can be associated to this person (proximity, 

location, network access through a device, etc.). 
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Figure 2. Context related to a user. 

Context awareness deals with the ability of applications to use information about the 

user’s environment (context) to activate services according to his/her current 

need/situation. The use of context makes an application more user-centered and 

provides that it offers more adequate services, improving the user experience. Since 

the beginning of the 90s contributions to the context awareness area have been 

made, particularly in the Artificial Intelligence community. Currently, with the 

development of mobile technologies and proliferation of portable multifunctional 

devices (e.g. smartphones, tablets, etc.), context has become a highlighted topic in 

Computer Science. It receives special interest in the Ubiquitous/Pervasive 

Computing field (WEISER, 1999), which supports the vision in which computation is 

transparently integrated to the common life environment. 

“A context-aware application is a distributed application that adapts its behavior 

according to its users’ context” (COSTA; ALMEIDA, 2007). In (DEY, 2001) the author 

presents a similar definition, however Dey also describes what is offered by a 

context-aware application: “A system is context-aware if it uses context to provide 

relevant information and/or services to the user, where relevancy depends on the 

user’s task”. Thus, a context-aware application may be understood as an application 

that, in order to offer relevant information and services to the user captures and 

makes use of context. An application can, for example, use the location of the user to 

inform him about the availability of nearby services such as restaurants, stores, etc. 
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Figure 3 shows an intuitive vision of a user, its context and the context-aware 

application. 

 

Figure 3. Intuitive vision of a context-aware application interacting with the user and its context 
(COSTA; ALMEIDA, 2007). 

In Figure 3 the “a” arrow shows that the user and the context-aware application 

interact. Similarly, the “b” arrow indicates that the user’s context and the application 

also interact. An interaction represented by “a” may be inputs provided by the user, 

while “b” interactions may be the capturing of contextual information by the 

application autonomously. 

In general, this kind of application stores contextual information (e.g. information 

captured by sensors) to infer higher-level abstraction contexts, which we call 

situations. Those situations are then used in specific decision making, be it 

presentation, services call or storage.  The next sub-section describes in more details 

the situation concept. 

2.2 SITUATIONS 

A situation (COSTA et al., 2006) represents state-of-affairs that are of interest to a 

context-aware application. They are composite entities whose constituents are other 

context entities, their properties and the relations in which they are involved (COSTA; 

ALMEIDA, 2007). Situations support us in conceptualizing certain “parts of reality that 

can be comprehended as a whole” (ROSEMANN; RECKER, 2006). This notion 

enables designers, maintainers and users to abstract from the lower-level entities 
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and properties that stand in a particular situation and to focus on the higher-level 

patterns that emerge from lower-level entities in time. A situation-aware application, 

usually, is not only interested in the values associated to certain contextual 

information, but also in the meaning that this value represents. For example, an 

application may want to know if a person has a fever, i.e. if the temperature is above 

some value, not necessarily interested in the exact temperature value. 

In our work, situations are composed by entities originated from an ontology model 

that describes a conceptualization, i.e. a view of a certain domain. A situation is itself 

a genuine ontological element composed by other elements (COSTA et al., 2006). As 

examples of situations we have that “John has a fever”, “John is running and has 

access to his cellphone”, “John is driving and is in danger of suffering an imminent 

epileptic attack”, “John and Paul are within 10 meters from each other” and “a 

suspicious withdrawal is occurring in account number 87346-0”. 

Situations are frequently reified (BARWISE, 1989) (COSTA et al., 2006) or taken as a 

state of an object (KOKAR; MATHEUS; BACLAWSKI, 2009), which allows not only to 

identify the situation as a fact, but also to make references to properties of the 

situation itself. For example, it is possible to reference the duration of a specific 

situation, if it is currently occurring or if it is a past one. This allows inferring, for 

example, that a situation “John has fever” occurred yesterday and lasted two hours. 

The temporal aspect of a situation also allows making references to time changing, 

such as “John’s temperature is rising” or “bank account number 87346-0 has had 

suspicious withdrawals in the past 30 days”. 

A situation type (KOKAR; MATHEUS; BACLAWSKI, 2009) is about considering 

general characteristics of situations of a particular sort. An example of a situation 

type is “Patient has fever”, which can be instantiated multiple times by patients like 

“John” and “Paul”, which in turn are said to “be febrile”. Therefore “John has fever” 

and “Paul has fever” are examples of instances of the situation “Patient has fever”. 

This example alerts for the need of referencing types and entities, like “Patient”, as 

part of the specification of a situation type. The many types that exist in a domain and 

may be referred to by a situation type must be specified in advance, for which reason 

we employ conceptual context models in addition to situation models. The same can 

be said to “be febrile” which, in this case, is defined in terms of entity’s properties that 
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instantiate the type Patient (attribute corporal temperature, also defined in a context 

model). Situation detection, i.e. situation type instantiation, requires detection of 

entity types’ instances, whose properties satisfy restrictions set in the situation type. 

A situation is said to be active while the properties of the entities that compose the 

situation satisfy the restrictions captured in the situation type specification. A situation 

ceases to exist when those properties no longer satisfy the defined restrictions. In 

this case, the situation becomes a past situation. Figure 4 provides a graphical 

representation of three situation’s life cycle (S1, S2, S3), instantiating the same 

situation type. The vertical axis represents the possible states-of-affair of the domain 

entities. The horizontal axis represents the time passing. 

 

Figure 4. Example of situation instances in time (MIELKE, 2013). 

For simplicity purposes Figure 4 only considers a one-dimensional property (e.g. 

temperature) of a unique entity (e.g. John of kind Person). When the involved 

temperature value hits a specific limit in the domain, established at the situation type 

specification (e.g. temperature greater than 37ºC) an instance of this situation type is 

created (the situation becomes active). When the property no longer satisfies the 

restrictions of the situation type, the situation is deactivated, becoming a past 

situation (white area of S1). In case the property returns to meet the requirements of 

the situation type, a new instance is created. 
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2.3 SITUATION MODELING LANGUAGE (SML) 

The Situation Modeling Language (SML) (COSTA et al., 2012) is a graphical 

language for modeling situation abstractions in a situation-aware application 

scenario. The language was created with the purpose of facilitating the definition of 

situations types at design-time. SML allows the expression of primitive situations and 

complex situations involving the composition of situations (with temporal constraints 

when required). A modeling infrastructure for the language was created, and is 

composed by a metamodel in the Eclipse EMF’s Ecore language, a graphical editor, 

which is a model-driven Eclipse plug-in developed with the Obeo Designer tool, and 

an automatic transformation to a rule-based situation detection platform that 

leverages on JBoss Drools engine (and its integrated Complex Event Processing 

platform). 

A situation type in SML is always a derived type which exists iff a specific derivation 

rule is satisfied. SML is a special language that allows us to establish those rules in a 

graphical manner, instead of using a logic proposition or other text-based definition. 

We call this graphical definition a situation type definition or situation type model. A 

situation type definition in SML is a composition of two kinds of models: a context 

model and a situation type model. The context model is a structural model that 

defines the classes of entities and relationships that exist in the modeled domain, 

which in turn are referred by the situation type model entities. In order to define 

context models, Mielke (2013) has proposed a novel metamodel which incorporates 

ontological distinctions resulting from researches in the conceptual modeling area. In 

turn, the situation type model defines situation as patterns of the context model 

classes’ instances, and SML defines a concrete syntax for creating those models. 

Figure 5 represents a context model in the healthcare domain created with the 

mentioned distinctions and which is used in the next situation examples. 
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Figure 5. Example of context model in the healthcare domain. 

In the example depicted there are two main entity classes, namely Person and 

Hospital, which specialize the abstract class Spatial Entity. The entity property (given 

by the respective stereotype) is passed down from the most general to the most 

specific elements in the hierarchy. Every Spatial Entity has a location, which is an 

intrinsic context or, using a more familiar term, an attribute of the respective entity, 

which means it inheres in its entity. Temperature is also an intrinsic context. 

Conversely, a relational context has its own identity, meaning they are genuine 

classes but dependent on two or more other elements, i.e. they do not inhere in none 

of them. For example, a Treatment is existentially-dependent of one or more 

Hospitals and one Person. Finally, a Person may or may not be on a treatment, 

which is stated by the optional cardinality (0..* where * stands for an unbound limit). 

Figure 6 illustrates a situation type relevant in the healthcare domain, namely a Fever 

situation type, which is represented in SML as a rounded rectangle and happens 

when a person’s temperature is above 37 degrees Celsius. The elements depicted in 

Figure 6 are references to the homonymous ones created in the context model. Each 

element composing a particular situation is shown inside the bordered rectangle that 

represents that situation. In this case we represent Person as an Entity Participant, 

which is modeled as a blue rectangle, along with its temperature’s Attribute 

Reference, represented as a white ellipse. To constrain the temperature value to be 

greater than 37 degrees we represent a Literal with the respective value as an 

orange oval shape and connect a “greater than” Comparative Relation between 
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them. Finally, the small diamond at the border represents a Situation Type 

Parameter, indicating the entity Person may be referred by composite situations. 

 

Figure 6. Fever situation. 

Comparative Relations in the situation type model are the counterparts of the context 

model’s comparative formal relations, which establish a relation between two entities 

according to a specific intrinsic context (such as temperature). Comparative relations 

simply restrict if an information holds or not, e.g. if a person is older than other or a 

value is greater than other. Some formal relations, such as “greater than”, are built-in 

in the SML language and hold directly between any elements of the model (without 

any intervening element). Domain-specific formal relations may be introduced in the 

context model and referred in SML. 

Figure 7 depicts the Is Being Treated situation. Two Entity Participants are 

represented there, namely a Person and a Hospital. The purple diamond represents 

a reference to the relational context Treatment, which is an instance of the so-called 

Relator Participant metaclass. It is connected to its respective Entity Participants, 

according to the relations established in the context model. This particular situation 

indicates simply that a Person has an ongoing Treatment occurring in some Hospital. 
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Figure 7. Is Being Treated situation. 

Figure 8 shows the Hospital within Range situation. This situation is a relevant 

healthcare emergency situation, in which there is a possible risk state (here depicted 

by a person being ill) and the user is within some distance from a hospital. A 

situation-aware application could use it to promptly locate (e.g. using a GPS) nearby 

hospitals, enabling the taking of actions like contacting the hospital with an 

emergency message or calculating a route to it and sending to the user, allowing him 

to drive there immediately. This situation introduces the Function element, which is a 

reference to a formal association from the context model in which we can derive 

some value and use it for comparison. Distance is an example of this kind of 

association, as shown in Figure 8. 

 

Figure 8. Hospital within Range situation. 

Figure 9 illustrates an example of a situation type composed of another situation 

type. The occurrences of composing situation types are instances of the Situation 

Participant metaclass and are represented within the composite situation as nested 

rounded rectangles in gray. The Incompatible Treatments situation type is defined 

here with two occurrences of the situation Is Being Treated that overlap in time, for 
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the same person. Incompatible with is an example of domain-specific formal relation 

defined in the context model and used to constrain the situation type so that it only 

applies for risk situations where the treatments (actually it would be the treatment’s 

types, but it is abstracted from the model since it is an intrinsic property of treatments 

related by a formal relation) are incompatible with each other. 

 

Figure 9. Incompatible Treatments situation. 

The directed arrow equals connecting the bordering diamonds is another built-in 

formal relation that constrains the occurrences of Is Being Treated such that they 

must include the participation of the same person (regardless of the hospital used in 

the treatment). These bordering diamonds represent the Situation Parameter 

Reference metaclass and are references to the entities that participate in the 

situation which are of interest to the composite situation being defined, which in turn 

are defined by Situation Type Parameters. 

The other directed arrow labeled with overlaps defines a constraint referring to a 

temporal formal relation between the situation type instances, in such way that both 

occurrences must overlap in time. SML allows composition of situations using the 

temporal formal relations defined by Allen (ALLEN, 1983), such as their converse 

relations, all which are shown by Figure 10. 
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Figure 10. Allen relations and their converses (MIELKE, 2013). 

Figure 11 depicts an example timeline for an instance of Incompatible Treatments, in 

terms of two occurrences of situation Is Being Treated (for the same person). In this 

example the situation only exists when both occurrences exist simultaneously. 

 

Figure 11. Example timeline for situation Incompatible Treatments. 

Figure 12 depicts a more complex situation type called Intermittent Fever, in which 

we define additional constraints. The Intermittent Fever situation type is defined by 

two Fever occurrences (for the same person), in which the first occurrence must have 

ceased at most 2 hours earlier than the second. This temporal formal relation is 

specified by the directed arrow before, which is parameterized with lower and upper 

time limits (between 0 and 2h). Past Situation Participants, such as the first 

occurrence of Situation Fever, are graphically represented by nested rounded 

rectangles in white. 
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Figure 12. Intermittent Fever situation. 

The icon for the existential quantifier (∃) indicates that any instance of situation Fever 

for a given person can be matched here, as long as it respects the constraints in the 

situation type. In this case, both the past and the current composing situations have 

the existential quantifier, which is a requirement for the continuity of the situation. 

Figure 13 shows an example timeline for an instance of Intermittent Fever, in terms of 

three occurrences of Fever situations, for the same person. The situation begins to 

exist when the second occurrence of situation Fever begins within 2 hours from the 

end of the first Fever occurrence. When the second instance ends, the Intermittent 

Fever instance continues to exist thanks to the constraint that indicates that one 

Fever instance should have occurred within the past 2 hours. As a third Fever 

begins, the Intermittent Fever situation is maintained with a new couple of Fever 

instances, thanks to the existential quantifier in the situation type rule. The existential 

quantifier indicates that any instance of a Fever situation that matches the constraints 

at a time will validate and participate in the situation. In short, the instances of Fever 

can change during the existence of the situation. The Intermittent Fever will only 

cease to exist when 2 hours have passed from the last Fever instance. 

 

Figure 13. Example timeline for situation type Intermittent Fever. 

Finally, SML also has a formal semantics which is defined in (COSTA et al., 2012). 

For every situation type model, it considers that the situation is instantiated when the 
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constraints defined in the situation type specification are satisfied, while it is finalized 

when these same constraints cease to be valid. Also, for every situation type, two 

axioms are assumed: the situation is unique for a particular set of entities in a 

particular point in time, which we address in this thesis as situation uniqueness; and 

if the set of entities remains stable in subsequent points of time, the situation is also 

the same, which we name situation continuity. 

2.4 CONTEXT MODELING, THE UNIFIED FOUNDATIONAL ONTOLOGY (UFO) 
AND ONTOUML 

According to (OLIVÉ, 2007), for an information system to perform its duties it must 

have some general knowledge about its domain and functions. Traditionally, we call 

this knowledge a conceptual model. Guizzardi (2005) reinforces the importance of 

conceptual modeling by saying that conceptual specifications are used to support 

understanding, problems solving and communication between the stakeholders 

about some specific domain. Once the understanding and accordance about a 

domain is achieved, the conceptual specification is used as a blueprint for the 

subsequent stages of the system development. In situation-aware applications we 

can say that the knowledge about the domain is represented by the context model, 

for it is used as a start point to the creation of situation representations. 

Contextual modeling share similarities with conceptual modeling, in general, and 

ontology-based conceptual modeling, in particular. For instance, the concepts used 

in (COSTA et al., 2012) are derived from the modeling theories presented in 

(GUIZZARDI, 2005), which together forms the base of what we call the Unified 

Foundational Ontology (UFO). As we explained, we intend to extend the use of those 

theories in situation type modeling by using a more expressive context model, 

instead of the current one. We use OntoUML, a language which is also derived from 

UFO but allows the expression of important semantic distinctions that were not 

originally included in SML, such as dynamic classification of entities, e.g. the 

classification of a person regarding its life phases, such as Baby, Child, Teenager, 

Adult and Elder. Next we present the OntoUML language with a modeling example, 

describing the foundations from UFO underlying each concept. 
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2.4.1 The Ontologically Well-Founded UML Profile 

UFO was presented in (GUIZZARDI, 2005), as ontological foundations for the most 

fundamental concepts in conceptual modeling. These foundations comprise a 

number of ontological theories, which are built on established work on philosophical 

ontology, cognitive psychology, philosophy of language and linguistics. UFO, whose 

concepts are used as a reference for the creation of ontologically well-founded 

models, is focused on providing foundations for the most fundamental and 

widespread constructs for conceptual modeling languages, namely, types and type 

taxonomies, roles, attributes, attribute values and attribute value spaces, 

relationships and part-whole relations. OntoUML is a language for constructing 

ontology-based conceptual models that was conceived using the concepts from 

UFO, which provides real-world semantics for the language constructs representing 

these concepts. 

OntoUML can be seen as a lightweight extension of the Unified Modeling Language 

(UML), which is extended through its profile mechanism to support the new concepts, 

and uses a UML-like concrete syntax. It was first proposed in (GUIZZARDI, 2005) 

and updated in (ALBUQUERQUE; GUIZZARDI, 2013). The language has been 

successfully employed in a number of industrial projects in several different domains, 

such as Oil and Gas (GUIZZARDI et al., 2010), Complex Digital Media Management 

(CAROLO; BURLAMAQUI, 2011), Telecommunications (BARCELOS et al., 2011), 

and Government (BASTOS et al., 2011). Figure 14 represents an OntoUML model in 

the healthcare domain depicting some of its categorizations. The example model is 

used as reference in the examples throughout this thesis, although not preventing us 

from using other examples if judged necessary for better understanding. 
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Figure 14. Healthcare context model 

The model is a more expressive version of the one shown in Figure 5, since the 

categorizations included imbue the classes (or types) with extra characteristics. The 

kind stereotype in classes Person and Hospital states that they are rigid and provide 

identity for its instances. Rigidity regards the necessity (in the modal sense) of a 

class’ instance to instantiate its class. A rigid classification is a static one, i.e. a rigid 

type’s instance instantiates this type throughout its life. In the example given, a 

person (or hospital) can never cease to be a person (or hospital) without ceasing to 

exist. Other examples of stereotypes that carry the rigid property are subkind and 

relator, while a category (like the Spatial Entity class) aggregates rigid classes. The 

identity principle of an object is a sort of “function” that asserts whether two objects 

are the same or not. It is also what allows one to count objects. Sets (as in the 

mathematical notion) have one of the most simple identity principles: two sets are the 

same if, and only if, they contain the same elements. In OntoUML, objects must 

always follow a unique identity principle that cannot change throughout its existence. 

A subkind differs from a kind for it does not provide identity for its instances. 

Following the classifications from the model, the phase stereotype in classes ill 

Person and Healthy Person and the role stereotype in class Patient indicate that they 

are anti-rigid. Conversely from rigid classes, an anti-rigid instance may cease to 

instantiate its class at some point in time. In the modal sense, an anti-rigid instance 
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possibly instantiates its class or, more formally, a class C is anti-rigid iff for all its 

instances, there will be a possible world w in which they exist but do not instantiate 

C. Anti-rigidity represents dynamic (or contingent) classification, which was not 

possible previously in SML since it assumed a static (rigid) classification for all its 

entities. Thus, we could not specialize the type person as we did in Figure 14 since, 

for example, a person couldn’t change from healthy to ill. The difference between 

roles and phases is that the former defines contingent properties of an instance 

exhibited in a relational context (e.g. a person is a patient contingently and only if it is 

having an ongoing treatment) while the latter defines changes in intrinsic properties 

of its instances (e.g. an person is ill thanks to an intrinsic characteristic, i.e. a 

disease). Finally, regarding the rigidity property and in addition to the mentioned 

stereotypes, OntoUML also defines rolemixin, which aggregates anti-rigid classes, 

and mixin, which aggregates both rigid and anti-rigid classes at the same time, 

establishing what we call a semi-rigid type. 

Furthermore, the mode (Disease and Infectious Disease), relator (Treatment) and 

quality (Body Temperature and Geographic Location) stereotypes stand for what is 

called moments (or tropes) in OntoUML. Conversely to the classes presented so far, 

which are highly independent entities, moments are existentially dependent on the 

objects they exist in, i.e. their bearers, meaning that while they exist, their bearer’s 

instances cannot change. In a common nomenclature, moments can be seen as the 

objectification of properties or attributes of objects. Relators are moments that 

represent objectifications of relational properties (e.g. the treatment is an entity that 

“connects” a patient and a hospital through the relation “is treated in”), whilst modes 

and qualities stand for moments that objectify intrinsic properties of the bearer and 

are also called intrinsic moments. Qualities are objectification of properties that 

evaluate (are projected) into a certain value space (e.g. mass, volume, color, body 

temperature, name, geographic location, etc.). Modes, conversely, cannot be directly 

evaluated in terms of a single value space, like someone’s headache, intentions, and 

beliefs and so on. 

The classification described implies the existence of different types of relations. For 

instance, material relations capture types of relations whose existence depends on 

relator types. The relation “is married to” between a husband and a wife is classified 

as material because it requires a marriage for it to be true (its truth-maker). Opposed 
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to the material relations, formal relations can hold between objects despite the 

existence of other entities. Those that are reducible to the comparison of values of 

qualities of the related objects are called Domain Comparative Formal Relation 

(DCFR). For instance, the relation “being taller than” is a DCFR because it can be 

reduced to the comparison of the height property of two objects. Formal relations that 

cannot be reducible this way are further classified in: characterization, which stands 

for the inherence relation that holds between moments and the entities they 

characterize; mediation, which represents the relations between entities and the 

truth-makers of material relations; and derivations, which represent the relation 

between Material relations and their truth-makers, namely the relators.  

2.4.2 The OntoUML Infrastructure and Validation Framework 

In (CARRARETTO, 2010) the author presented an infrastructure to create OntoUML 

models, which was composed by a metamodel in the Ecore language and syntactical 

constraints to restrict the creation of models according to the rules of its foundational 

ontology. This infrastructure allowed the development of a model-based environment 

composed of many tools that improved the creation of the OntoUML model. Those 

tools functions range from model construction, verbalization and code generation to 

formal verification and validation (SALES; GUIZZARDI, 2014) (GUERSON; 

ALMEIDA, 2015) (ZAMBORLINI; GUIZZARDI, 2010). We are particularly interested 

in the validation framework for OntoUML (BENEVIDES et al., 2009), as we intend to 

extend it to include situation validation. 

The framework uses the Alloy language to validate OntoUML models by using the 

Alloy language (JACKSON, 2006). Alloy is a logic language based on set theory, 

which is supported by an Analyzer that, given a context, exhaustively generates 

possible instances for a given specification and also allows automatic checking of 

assertions’ consistency. In the OntoUML validation framework, the generated 

instances of a given conceptual model are organized in a branching-time temporal 

structure, thus, serving as a visual simulator for the possible dynamics of element 

creation, classification, association and destruction. It allows a modeler to visualize a 

representation of snapshots in this world structure, which are states admissible by 
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the models current axiomatization. This enables modelers to detect unintended, 

redundant or inconsistent model instances and take the proper measures to rectify 

them. 

2.5  CONCLUDING REMARKS 

In this chapter, we have presented basic background information that is necessary 

for properly understanding this work. In the following chapters, this knowledge will be 

important as we describe the work developed. 

In chapter 3, we revisit the SML metamodel and investigate the concepts of 

UFO/OntoUML and SML to be able to achieve the aimed integration. We start by 

describing the features that we judge necessary given the inclusion of the OntoUML 

metamodel, showing examples of novel situation types that are only possible with the 

inclusion of the new features, and finish by presenting the new metamodel created in 

a metamodeling tool.  

In chapter 4 and chapter 5, we present, respectively, the transformation of SML 

models to Alloy and the assessment approach for detecting and correcting 

problematic situation types in situation-aware applications. Both tasks rely on the 

OntoUML modeling infrastructure described in this chapter, which is extended to 

support situation type definitions, using the improved SML metamodel. In the 

transformation, specifically, we present input and output patterns that are the 

backbone of the transformation, so that the Alloy models are consistent with and 

reflect the same constraints as the original SML models.  
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3 REVISITING THE SML METAMODEL 

The task of improving the expressivity of situation type models relies on the 

integration of SML with OntoUML. Although SML concepts, specifically its context 

model concepts, have been conceived based on ontological foundations, its context 

modeling capabilities are still not as expressive as languages such as OntoUML, 

whose elements are closest to the categorizations provided by UFO. Because of the 

difference in expressivity, we need to revisit the SML metamodel in order to achieve 

the aimed integration, adapting or including new concepts with the purpose of 

complying with an OntoUML context model. 

Besides changing the SML metamodel to be in accordance with the OntoUML 

concepts, we also address other issues that we identified as being improvement 

opportunities for the language. Those other modifications are not directly related to 

the inclusion of the OntoUML model, but came up in modeling scenarios that were 

considered after the language was created. In any case, the list of improvements we 

describe next are a result of a series of exemplification and simulation of situation 

types, as well as the study of the intersections between the concepts of the old and 

new (OntoUML-based) context metamodels. 

The examples we provide in this section use as reference the OntoUML model of 

Figure 14 (the healthcare context model presented in section 2.4.1). In section 3.3 

we present the new SML metamodel that incorporates the solutions proposed. 

3.1 EXTENSIONS REGARDING A MORE EXPRESSIVE CONTEXT MODEL 

The integration with OntoUML brings new possibilities of situation type definitions. 

The novelties include the dynamic classification of entities, which results from the 

modality of the types in OntoUML, and the inclusion of the Mode stereotype, a 

category for intrinsic moments that was not addressed in the previous SML 

metamodel. Next, we describe the extensions that were made to SML that are the 

result of the inclusion of this more expressive context model. 
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3.1.1 Addressing Modal Properties 

A particular and perhaps the most important benefit of the inclusion of OntoUML as 

context model is the reference to the classes’ modal properties, and the possibilities 

that arise from dynamic classification of instances. While an instance of a rigid class 

instantiates that class for as long as it exists, an instance of a non-rigid (or anti-rigid) 

class may cease to instantiate the class without ceasing to exist. Such is true, for 

example, when a person who is a teenager becomes an adult, and later an elder, 

while still being the same person; or when a student from some educational 

institution graduates, thus ceasing to be a student while still existing as a person. 

Dynamic classification can be partially dealt with currently in SML, e.g., we may use 

past situations to indicate whether a situation participant was an instance of some 

type in the past. Nevertheless, this is a limited solution, as we cannot address the 

cases in which a participant is no longer an instance of this same type in the present. 

The example of Figure 15, for instance, depicts an attempt to model a student’s 

graduation situation using native SML. The Enrolled situation type in the example 

states that a person is enrolled in a university (he/she is a student), while the second 

situation type indicates there exists a person who was in an Enrolled situation in the 

past (he/she was a student). In this case, the past participation only states that the 

person involved was a student at some time in the past, not requiring that the person 

is no longer a student in the present. 
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Figure 15. Inadequate Graduated situation example. 

In the original version of SML, entities were not considered to be able to change their 

type during their existence. For that reason, it is not possible to model the 

exemplified situation using only the original language’s constructs. We address this 

issue by proposing an instance of relation which allows to explicitly express whether 

an element instantiates or not a specific type at a particular point in time. It allows 

one to talk specifically about instantiations that no longer hold. Figure 16 depicts the 

Graduated situation, now including the information that the Person is no longer a 

student, indicated by the “negated” instance of relation (represented by the 

exclamation mark before the relation’s name). The light yellow ellipse represents a 

new element, namely a Type Literal, used in instantiation relations to represent a 

type (not an instance, like a regular Entity Participant). 

 

Figure 16. Example of Graduated situation using new SML elements. 
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Using instance of relations also allows solving a problem of representation of “past 

specialization” (OLIVÉ, 2001). In (MIELKE, 2013), the author presented the Switch 

situation, which was a remake of the homonymous situation presented in (COSTA, 

2007). This situation is activated when a device switches its connection from a WLAN 

network to a Bluetooth network and is depicted in Figure 17. 

 

Figure 17. Switch situation from (MIELKE, 2013). 

The example depicted, however, suffers from a side-effect, i.e. by representing 

WLAN and Bluetooth as entities in the situation type the modeler is requiring that 

both networks exist by the time of the occurrence of the situation Switch. This is not 

necessarily true since the WLAN network may have ceased to exist without 

compromising the situation. To avoid this kind of behavior, we propose using the 

instance of relation with a type literal, indicating that the entity inside the situation 

participant is of that respective type without requiring that the object instance 

continue to exist. The reviewed Switch situation model is depicted in Figure 18. 

 

Figure 18. Reviewed Switch situation type. 
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3.1.2 Addressing Qualities and Modes 

The inclusion of OntoUML as context model introduces specializations for the so-

called intrinsic context in former SML, namely qualities and modes. Although the 

definition of intrinsic context in SML is the same as of intrinsic moment in UFO, it was 

mostly used to represent qualities, such as attributes like color or weight. Those 

former intrinsic contexts were then referred to in SML with the purpose of comparing 

it to a literal value, which represented a projection in the particular quality’s value 

space (quality structure). The fever situation of Figure 6 illustrates this condition, 

where body temperature is an intrinsic context (Quality) and 37º is a value in the 

body temperature’s quality structure. Another example of quality is the Geographic 

Location in our context model of Figure 14. We have chosen to support the 

representation of qualities both with the quality stereotype, introduced only recently in 

(ALBUQUERQUE; GUIZZARDI, 2013), and as attributes within their entities with a 

respective datatype as their types. Both representations are mapped to the same 

AttributeReference metaclass in SML, depicted as a white ellipse. 

Nevertheless, modes, which are also intrinsic moments, cannot be evaluated in a 

value space as qualities can, making it impossible to measure or compare them to 

some specific value or to other entities of the same nature. For instance, consider a 

conceptualization in which we consider a person’s “headache” as a mode. In this 

setting, someone’s headache cannot be directly compared to a value literal. 

However, we may still want to compare particular characteristics of modes, such as 

their types, which are regardless of value spaces. For instance, in the context model 

of Figure 14 we have represented Disease as a mode that characterizes an ill Person 

and can be further classified as Infectious Disease, turning an ill Person into an 

Infected Person. Disease has an attribute named “type” to model the classification of 

the particular mode and allow comparison2. In order to represent modes explicitly (in 

this case Infectious Disease), we introduce a novel construct in the notation (a red 

rectangle with rounded top borders) as shown in Figure 19. The situation depicted 

2 This is a common a workaround to avoid employing powertypes (OMG, 2011), which could have 
been an ideal representation in this situation (with different subclasses of Disease representing the 
various diseases). This was avoided here as support for powertypes in OntoUML is currently ongoing 
work. 
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address a risky state where a person is infected with a serious disease named 

“Ebola” and need immediate quarantine. 

 

Figure 19. Risky NeedQuarantine situation illustrating the use of modes. 

3.2 OTHER EXTENSIONS/MODIFICATIONS 

When revising the SML metamodel, we identified other opportunities for improvement 

beyond the integration with OntoUML. Some of those other modifications are related 

to semantic problems on the representation of elements in the original SML, while 

others are based on an approach that consists of a reification of situation types in 

OntoUML models. This approach was inspired in the one presented in (SANTOS 

JÚNIOR, 2008), which proposed a representation for Events alongside OntoUML 

entities. In the referred work, Event types were represented as classes in the very 

same way as regular OntoUML entities. Similarly, we represent situation types as 

classes using the situation stereotype and their relations with their composing objects 

using the participation stereotype. Figure 20 depicts how a Fever situation type is 

represented along with a kind for a Person participant (in the left), and how a 

situation (Fever) can be also a participant of another situation (Intermittent Fever), in 

the right. It’s important to mention that we do not aim to provide another 

representation for situation types besides SML, but we use this representation solely 

to analyze the integration between situation types in SML and other types in 

OntoUML. Whenever appropriate, insights obtained with this representation are used 

to suggest changes to SML’s metamodel. 
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Figure 20. Fever situation reified in an OntoUML model. 

The representation of reified situations in UML allows us to investigate the elements’ 

meta-properties and the relations between a situation and its participants. With this, 

we intend to identify some element’s and relation’s properties necessary for the 

representation of situation types but which SML does not support or which are harder 

to observe in this language since it prizes for simplicity and readability. For instance, 

one may notice at a glance at the left of Figure 20 the multiplicities of the participation 

relation, which indicates that a Fever situation is linked to one person only, and a 

person may have none or at most one fever at a time. This interpretation of the first 

example is called current semantics (GUERSON, 2015), i.e. the cardinalities refer to 

the possible combinations at a specific point in time. OntoUML models are usually 

interpreted in current semantics, which is what we use throughout this thesis. 

On the other hand, lifetime semantics interpretation is one in which the cardinalities 

refer to the possible combinations throughout time. For example, a person may have 

only one marriage at a time, but many throughout its life. At the right of Figure 20, an 

Intermittent Fever is connected to “two or more” instances of Fever. Since the same 

person cannot have two fevers at the same time, this representation indicates lifetime 

semantics, i.e. an intermittent fever is characterized by at least two fevers but may be 

“linked to”, cumulatively in time, an unbound number of (intermittent) fevers. This 

characterizes a composite situation and, again, is solely for the purpose of analyzing 

the relations between OntoUML and SML, since we always interpret OntoUML 

models in current semantics. This unbound top limit, which is not representable in 

SML, represents all the possible past fevers that together characterize the instance 

of intermittent fever. The interpretation is derived from the Growing Block Universe 

theory (SIDER, 2006), which states that the past and present exists in the present, 

and only the future does not (e.g. Beethoven exists as a deceased person). 
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Therefore the worlds (and possibly some entities such as intermittent fever) are 

cumulative, as a block that always “grows”. 

Next, we present the extensions that were identified when analyzing this 

representation, as well as the mentioned semantic related ones.  We use the terms 

“situation end” and “participant end”, to identify respectively, the situation side of the 

participation association, i.e. the side which the “reading arrow” ( ) points from, and 

the participant (sometimes also a situation, but in the role of a participant) side of the 

association, i.e. the side which the “reading arrow” ( ) points to. 

3.2.1 Cardinality of Participants 

In our reified representation of situation types one can see that the participant end 

defines what we call the participant cardinality. In the example of Figure 20 we notice 

that this end’s cardinality is one, but it may not be so for every participant in every 

situation. If we take for instance an Intermittent Fever situation, defined as one to 

many occurrences of past fever situations and one current occurrence (analogous to 

the one in Figure 12), we would have a situation in a UML-like representation similar 

to the one depicted in Figure 21. 

  

Figure 21. Intermittent Fever situation reified in an OntoUML model. 

In the example given, the cardinality of the past fever situation is one to many. 

Although SML provides the ExistsSituation metaclass, which is equivalent to the 

logical existential quantifier, it does allow explicitly specifying a minimum and 

maximum number of a particular participant. Besides, although the ExistsSituation 

indicates that at least one instance of the situation participant exists (one to many 

cardinality), it also adds to the participant the property of being mutable, meaning that 

any instance of the respective participant’s type will validate the situation without 
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compromising its continuity. However, we argue that multiplicity and mutability should 

be addressed separately. 

Furthermore, every extra participant of the situation needs to be represented with an 

exclusive instance of a situation participant construct. If we suppose a situation that 

requires a minimum number of participants of type A of ‘n’, we would have to create 

‘n’ instances of participant A inside the situation type. It is not difficult to see that the 

situation definition would unnecessarily grow in complexity and become very hard to 

represent as the number of a particular participant increases. Added to that, we 

understand that the semantics of having different participants is that of having 

different participations, which is not necessarily true every time. Although modeling 

multiple instances of a participant is still possible, we have included the possibility of 

providing a minimum and maximum number when necessary. Figure 22 illustrates 

both possibilities and the respective interpretation with reified situation types. In (A) 

two situation participants indicate two participations. In turn, (B) introduces the 

multiplicity of the participant ([2..2]), which states a minimum and maximum of two 

and one single participation. The absence of the cardinality is interpreted as [1..1]. 

 

Figure 22. Different possibilities of representing multiple participants and the respective reified 
representation. 

Essentially, multiplicity is used the same way as many instances of the respective 

participant in the situation type, meaning that a [2..2] participant represents basically 

the same as two [1..1] participants. The difference is that using multiplicity one can 

talk about an unbound number of instances. Figure 23 illustrates, in the left side, a 

situation where six or more people are inside an elevator, exceeding its capacity and 

characterizing an Overload situation. 
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Figure 23. Overload situation and respective interpretation. 

The situation of Figure 23 is interpreted, as it is reasonable, as if each person has a 

relation “is inside” with elevator, as demonstrated in the right side of image. However, 

it could be the case, although not in this particular example, where the multiple 

instances are required to be connected in a sequential manner. For instance, 

suppose a conceptualization where an intermittent fever situation is a sequence of 

fevers that occurs indefinitely with a time space of at most 2 hours from each other. 

This situation is depicted in Figure 24 at the top of the image while the respective 

sequential interpretation is depicted at its bottom. 

  

Figure 24. Intermittent Fever situation and respective interpretation. 

To address this particular interpretation, which we consider that it is not the default 

one, we have included the isImageOf property of a participant. This property 

indicates that the representation is only an image of another participant. It is not 

interpreted as a genuine participant but as a replication (all its properties also have 

the same values as the ones from the participant they replicate) so that relations 

between the many instances (such as before and equals in the example) can be 

applied. In Figure 24 the situation participant in the left side is an image of the 
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situation participant in the right side (illustrated by an italic name) such that its 

replication is as depicted. 

3.2.2 Mutability of Participants 

In contextual models such as OntoUML, mutability is addressed apart from 

cardinality. An immutable association end is represented by the keyword frozen (see 

Figure 20), while its absence indicates a mutable one. In the original SML 

metamodel, mutability was addressed by the metaclass ExistsSituation, which was 

applied only to situation participants and stated that any occurrence of that 

composing participant may validate the situation constraints. Unlike the cardinality, 

who needed to be addressed separately for the purpose of specifying minimum and 

maximum numbers of instances, mutability is properly addresses by the exists logical 

quantifier, even though it apply the “at least one” instance rule. This happens 

because, usually, the combination of elements in the situation itself will restrict the 

number of entities to one, one or more and so on. Therefore, we map the former 

concept of the ExistsSituation to the immutable meta-property in the new metamodel, 

extending it to other participants as well, namely entity and relator participants. 

As an example of the use of the immutable meta-property, one can consider a 

conceptualization where one wants to monitor whether a person is having a 

treatment or not. While an Is Being Treated situation occurs for every different 

treatment instance, the situation we want to create, which we will name Has Any 

Ongoing Treatment, would be satisfied by any occurrence of the treatment relator for 

the same person. Thus, the relator treatment would be mutable (the hospital could be 

mutable too or not, depending if the modelers wants to talk about treatments in 

different hospitals or in the same one only), as depicted at the left of Figure 25. An 

example timeline for this situation is illustrated at the right of the same figure. 
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Figure 25. Has Any Ongoing Treatment situation and example timeline. 

3.2.3 Attribute Links 

Essentially, attributes are class’ properties derived from the context model. In SML 

they are represented by the Attribute Reference metaclass and linked to its owning 

participant by means its attribute meta-property. The owning participant in turn is a 

reference to the respective attribute’s owner in the context model and may be either 

an Entity Participant or a Relator Participant. 

An example of usage of attributes is given in (COSTA et al., 2012), where the 

authors present the situation type model of Figure 26, representing a Suspicious 

Faraway Login. A situation of this type is instantiated when two accesses to the same 

account (depicted by the Logged In situation participants) occur in a period shorter 

than 2 hours, each access being done by one different device in a distance greater 

than 500km from each other. To establish the distance constraint, two new entity 

devices are represented and linked by the “equals” relation to the respective ones 

from the Logged In participants, so that the attribute location can be referred to. 
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Figure 26. Suspicious Faraway Login from (COSTA et al., 2012). 

This choice in order to refer to attributes has a side-effect, due to language’s 

semantics: the Device entities participate now in the Suspicious Faraway Login 

situation, i.e., they are bound by the temporal space in which the composite situation 

occurs. Therefore, the situation type depicted constrains that, by the time the 

Suspicious Faraway Login situation is instantiated, two devices exist. We consider 

that this may be an undesired side-effect since the device from the past Logged In 

situation may no longer exist. Added to that, the particular devices where the logins 

happened are irrelevant to the situation being defined, since only their location 

matter. Thus, representing again the device’s entities overpopulates the situation and 

may induce the reader to wrongly suppose that the presence of the device is 

important. Therefore, we propose a representation of the same situation type that 

would not include explicit entities, not requiring the presence of the entities in the 

composite situation timeframe. With this we may refer only to the properties that are 

relevant to the situation type, at the time they are relevant (in the former example the 

past loggedin location may be mistaken with the actual device’s location, since, for 

example, a mobile’s location changes frequently), allowing the designer to abstract 

from all other properties besides those. This proposed representation is illustrated in 

Figure 27, and requires changing the language’s metamodel. 
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Figure 27. Proposed Suspicious Faraway Login representation. 

3.2.4 Primitive, Formal and Allen Comparative Relations 

In the current SML metamodel the Comparative Relation metaclass encompasses 

primitive (equals, greater than, less than), Allen (before, overlaps, meets, etc.) and 

domain-specific formal relations. This requires that primitive and Allen relations are 

defined in the context model, since a comparative relation must have a respective 

reference to it. However, when using OntoUML as a context model we have to be 

aware of the ontological implications of such a restricted model. Relations such as 

equals or temporal relations such as before and overlaps cannot be directly defined 

in an OntoUML model since the former, in theory, can be established between any 

classes and the latter can only be defined between situation types. In both cases, a 

general solution to define them as “context elements” would be to consider a pre-

defined structure that comprises those definitions and which encompasses the user-

defined model. So, for example, each modeled class would specialize Thing, which 

would then have a formal relation equals to itself. Similarly, this structure would 

include situation types as higher-level entities (such as a Kind or Relator for 

example), since Allen relations represent restrictions exclusively over those types. 

Besides going out of scope (it would need an investigation over powertypes in 

OntoUML or an extension of the language to include the Situation Type stereotype), 

we consider that a simpler approach such as to include those elements as primitives 

in the SML metamodel satisfactorily attends our needs. 
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Thus, we defend that primitive and Allen comparative relations should be specified in 

SML itself, so that there is no need to define them in the context model. This enables 

including syntactical constraints in the SML metamodel to restrict the elements that 

can be connected by those relations, which is not possible if they are defined in the 

OntoUML model. For example Allen relation could be constrained to only connect 

situation types and greater than/less than relations could be constrained to only 

connect structured properties (qualities). With this, we avoid making changes in the 

OntoUML metamodel and also seclude the former formal comparative relations and 

guarantee that they are exclusively references to the domain-specific formal relations 

defined in the context model. By separating and specializing each type of relation we 

can create specific constraints for each type and restrict the creation of wrong 

combinations of elements. An equals or other comparative relation could still be 

defined in the context model and used in SML as a “context defined” reference. 

Furthermore, the distinction that existed between comparative and qualitative formal 

relations is dropped, as OntoUML does not distinguish one from the other. The 

former SML’s qualitative relations are challenging since they are not present in 

UFO’s and neither in OntoUML’s formalizations. However, we have decided to 

maintain references to this concept since it represents an important element in SML 

models. Thus, while comparative formal relations representation remains the same, 

we have defined two ways of addressing qualitative ones: the first one relies on the 

same representation for comparative formal relations, only that the reference in SML 

would require a manual parameterization of the relation, which would then be 

interpreted as a qualitative one; the second representation requires a modification of 

the OntoUML model to represent the qualitative formal relation as a ternary 

association with both the original elements and a third one being a datatype that 

stands for the result of the comparison, so that when referred in SML it would 

represent the parameter of the relation. Both approaches are depicted in Figure 28. 
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Figure 28. Approach for Qualitative Formal Relations. 

3.2.5 Functions 

Formerly references to the so-called Qualitative Formal Relations, Functions are re-

designed as user-defined operations on the situation type elements. Not every 

relation between elements in the SML model is necessarily established in the context 

model. Take for example the sum of two numbers. Although in the real world, given 

two numbers there exists a formal sum relation between them, usually the ontology 

designer (in our case the context-model designer) leaves out those subtleties that 

may not aggregate much in the description of a domain. This means establishing a 

modeling scope so that the model does not grow indefinitely in complexity, as 

technically the possibilities of talking about things are infinite. Thus, relations like sum 

may always be defined in the context model if wanted, but we also leave open the 

possibility of defining them as functions (without linking to any context model 

elements) in the SML model itself. It is important to mention, however, that functions 

must be manually implemented if some automatic process is to be used (such as 

simulation in Alloy) or some code is to be generated from the models. This happens 

because, since functions are user-defined, it is impossible to establish a pattern for 

each possible function. Figure 29 depicts an example of a High Body Mass Index 

(BMI) situation using functions. 
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Figure 29. Function example. 

3.2.6 Self-Reference Node 

Sometimes we may want to constrain the time in which a past situation participant 

occurred without having a present situation to establish a temporal relation. Formerly, 

as shown in (MIELKE, 2013), a past situation that occurred at some point in the past 

30 days, for example, needed a specific relation named within the past, such as 

demonstrated in Figure 30. This situation type model establishes that an instance of 

Account Under Observation will occur during a period of 30 days, starting right after 

an instance of Ongoing Suspicious Withdrawal ceases to occur. Looking for a more 

generic way to address this constraint (without the use of specific formal relations), 

we provide that situation participants may be temporally constrained with respect to 

the situation type being defined. 
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Figure 30. AccountUnderObservation from (MIELKE, 2013). 

The relation within the past cannot be specified at the context model since it is a 

specific relation for situation types and the context model does not support them. 

Thus it needs to be defined at the situation model as a formal relation, which we 

consider a workaround. Since Allen relations are the base in SML to constrain the 

timing between situations, we propose a solution that uses those relations when a 

specific constrain with the present time must be established. The situation type being 

defined is reified as a situation participant represented by the keyword self. The Allen 

relation would then be established between the past participant and this self-

participant and parameterized to indicate the desired time space, situation that is 

illustrated in Figure 31. Since self is always the current situation, this would mean a 

temporal relation between the past situation and the current time. 

 

Figure 31. AccountUnderObservation with the self-reference node. 
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3.3 THE NEW SML METAMODEL 

Here we will present the altered SML metamodel, considering the improvements 

discussed previously. We have used the Eclipse EMF Ecore language to create the 

metamodel following the choice of language of the previous metamodel. Besides, we 

have included some syntactical constraints to restrict the creation of situation type 

models. This allows the user to verify the models for construction mistakes, an 

approach that is similar to the one used for OntoUML models. Thus, we aimed at 

increasing SML models’ reliability. We have also defined operations to facilitate the 

navigation of the model; these operations are used in the transformation of SML 

models. 

A situation type is defined by the entities that participate in it, the associations 

involving those entities (in the form of extrinsic contexts, i.e. Relators), by the 

restrictions over the values associated to intrinsic contexts (in the form of 

comparative relations), restrictions over the type of entities (in the form of 

instantiation relations) and by some user defined functions. The SML metamodel 

takes this definition as foundation and is a base to the code generation for simulation 

in Alloy, which will be presented in chapter 4. The SML metamodel presented here 

makes direct references to the concepts in the OntoUML metamodel, binding the 

situation elements to the ones previously defined in the context model. 

Figure 32, Figure 33, Figure 34 and Figure 35 show partial views of the SML 

metamodel. The classes depicted will be explained subsequently to the illustration of 

the model fragments. 



60 
 

 

Figure 32. Fragment of the SML metamodel depicting the main classes. 

A SMLModel is SML’s top-level container class and represents the situation model. It 

is composed by zero-to-many SituationTypes. Those, in turn, represent the 

specification of a single situation type by means of its composing 

SituationTypeElements. A SituationTypeElement is every element that appears in a 

situation type and that are directly owned by a SituationType. They are further 

specialized in: ReferableElement, Literal and SituationTypeAssociation. 

ReferableElement is an abstract metaclass that encompasses the elements that can 

be referred to by composite situation types. This metaclass will be detailed in Figure 

33. A Literal either represents a Quality’s value (QualityLiteral, but can also represent 

a Datatype’s value) such as $1000.00 or 37º, or some Type (TypeLiteral) used in 

instantiation relations to indicate whether an entity is or is not an instance of that 

class. Furthermore, SituationTypeAssociation is an abstract class that represents the 

connections that can be made between the nodes of a situation type. It will also be 

detailed in Figure 34. The ReferableElement metaclass’ specializations will be 

explained next. 
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Figure 33. Fragment of the SML metamodel showing referable elements and participants. 

A Participant is the main element inside a situation type. Participants can be multiple 

(by setting their min and max values) and/or immutable. When a participant is 

multiple it can be duplicated in a situation type (by setting the isImageOf property) so 

as to allow the creation of constraints over all the multiple instances. A Participant 

can be specialized in the following types: 

• SituationParticipant, which represents other situation types used as a 

composing situation such as the fever in an intermittent fever situation. 

Situation participants have references to the situation types they represent. 

They can be past situations or current ones and are composed of 

ReferenceNodes. A SelfReference is a special kind of participant that 

represents the situation type being defined so as to allow the use of Allen 

relations between it and other situation participants. 

• EntityParticipant, which represents a class from the context model, such as a 

person, a car, a client, a building and every other class that is not represented 

by a moment stereotype (Relator, Quality and Mode). 

• RelatorParticipant, which represents the external contexts of the object 

classes, i.e. the relators. They are called participants since they provide 
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identity to the situation type, but they are not connected to them by 

participation relations, in the ontological sense. 

A ReferenceNode is a node that represents a referable element from a composite 

situation type. It is used as a proxy of the element it refers to, such that it can be 

used in any relation that the referred element can. Reference nodes are used to 

compose SituationParticipants. An AttributeReference is a reference to a quality (also 

can be a reference to an attribute) defined in the context model. Analogously, a 

ModeReference is a reference to a mode defined in the context model. Finally, 

Functions materialize relations between elements that may not be defined in the 

context model because of scope limitation. They can represent any operation 

between the situation type elements such as a calculus or a derivation function in 

which some information is returned and used for comparison. 

Next we detail the SituationTypeAssociation metaclass, which represents the 

connections used to relate the elements of a situation type model. Situation type 

associations are always binary, i.e. they have a source and a target, but the 

respective ends depend on the type of association. Nodes are elements that can be 

connected by situation type associations (detailed in Figure 35) and at first every 

association connects nodes, but constraints and operations may set specific sources 

and targets. 

 

Figure 34. Fragment of the SML metamodel showing situation type associations. 
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A CharacterizationLink represents the occurrence of a connection between a mode 

and its respective characterized entity (or a node representing that entity). An 

AttributeLink is a connection between an AttributeReference and any node that 

represents a participant that may have an attribute. Those nodes are restricted to 

EntityParticipants, RelatorParticipants and ReferenceNodes that references one of 

the former. Furthermore, FormalRelations represent a relation that can be 

established between two elements and that depends only on the intrinsic properties 

of those elements. Formal relations can be negated or nor and are divided into the 

following specific connections: 

• AllenLink, which represents a connection specifically between 

SituationParticipants that represents one of the Allen temporal relations, 

defined by the AllenKind enumeration. 

• ComparativeRelation, which represents a comparison connection between 

elements and are divided into: EqualsLink, which may be established between 

any elements and indicates whether two elements are equal; and 

OrderedComparativeLink, which may only be established between qualities 

that have a value order, such as high or temperature, and are defined by the 

ComparativeKind enumeration. 

• ContextFormalLink, which is a formal relation derived from the context model 

and is used to connect only the respective elements connected by it in this 

model. 

• InstantiationLink, which represents the connection that restricts the type of a 

particular entity or relator participant. This connection is derived from the 

generalization relations from the context metamodel. 

Finally, a MediationLink represents the occurrence of an association between a 

relational context and an entity, e.g. the relations between Treatment and Patient and 

Treatment and Hospital in the situation Is Being Treated from Figure 7. 

Figure 35 shows all the subclasses of the Node metaclass. It depicts all the classes 

that can be related by some situation type association, although they may not be 

instances of SituationTypeElement and may not be directly children of situation types 

(the case of ReferenceNode). Figure 35 also introduces the FunctionParameter 

element, which represents the input parameters of a particular Function. Those 
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parameters may refer to any node in the situation type and are represented in the 

concrete syntax as connections between the node and the function. 

 

Figure 35. Fragment of the SML metamodel detailing nodes. 

Besides the relations depicted, some classes of the SML metamodel are connected 

to classes of the context metamodel, i.e. the OntoUML metamodel. Those 

connections are Ecore references to the respective context classes.  The relations 

between these metamodels are listed in Table 1. 

Table 1. Relations between the SML and OntoUML metamodels. 

Element in the SML 
metamodel 

Reference name 
in the metaclass 

Elements in the OntoUML 
metamodel 

SMLModel contextModel Model 

AttributeReference type Quality/Property 

ModeReference type Mode 

TypeLiteral type Class 

ContextFormalLink type FormalAssociation 

QualityLiteral type ReferenceStructure/DataType 

EntityParticipant type ObjectClass 

CharacterizationLink type Characterization 

MediationLink type Mediation 

RelatorParticipant type Relator 
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3.4 CONSTRAINTS 

This section contains the set of constraints that restrict the ways the elements can be 

related and provide conformance to the structure established in the context 

metamodel. The goal is to facilitate the situation modeling activity so that the modeler 

can verify his model syntactically to detect structural errors and provide correction. 

Those constraints are written in the Object Constraint Language (OCL) (OMG, 2012). 

Listing 1 presents a constraint that binds the creation of Allen relations between 

situation participants so that only compatible relations can be established. For 

instance, a past participant cannot occur after a present participant and two present 

participants cannot coincide (since at the present they are not finished yet). 

Listing 1. AllenLink's type must be compatible with the participants’ temporality. 

1 context AllenLink inv 
2  
3 if (self.getSource().temporality = TemporalKind.present) 
4 then if (self.getTarget().temporality = TemporalKind.present) 
5  then self.type = AllenKind.overlaps or self.type = 

ALlenKind.overlappedby or self.type = ALlenKind.includes or self.type 
= AllenKind.during or self.type = AllenKind.starts or self.type = 
AllenKind.startedby 

6  else self.type = AllenKind.after or self.type = AllenKind.metby 
or self.type = AllenKind.overlappedby or self.type = 
AllenKind.includes or self.type = AllenKind.startedby 

7  endif 
8 else if (self.getTarget().temporality = TemporalKind.present) 
9  then self.type = AllenKind.before or self.type = 

AllenKind.meets or self.type = AllenKind.overlaps or self.type = 
AllenKind.during or self.type = AllenKind.starts 

10  else true 
11  endif 
12 endif 

 

Listing 2 binds that a CharacterizationLink connects only the elements (the 

ModeReference and EntityParticipant) that its respective characterization relation 

does (respective Mode and Class) in the context model. 

Listing 2. A CharacterizationLink must connect the same entities as its Characterization does. 

1 context CharacterizationLink inv 
2  
3 self.type.oclAsType(RefOntoUML::Characterization).characterizing() = 

self.source.oclAsType(ModeReference).type and 
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4 self.type.oclAsType(RefOntoUML::Characterization).characterized() = 
self.target.oclAsType(EntityParticipant).type 

 

Listing 3 binds that a ContextFormalLink connects only the elements that its 

respective Formal Association does in the context model. In this case the types of the 

elements are not established since formal associations connect classes of any type. 

Listing 3. A ContextFormalLink must connect the same entities as its FormalAssociation does. 

1 context ContextFormalLink inv 
2  
3 self.type.oclAsType(RefOntoUML::FormalAssociation).memberEnd-

>exists(x,y | x = self.source.type and y = self.target.type) 
 

Listing 4 binds that a MediationLink connects only the elements (the 

RelatorParticipant and EntityParticipant) that its respective Mediation relation does 

(respective Relator and Class) in the context model. 

Listing 4. A MediationLink must connect the same entities as its Mediation does. 

1 context MediationLink inv 
2  
3 self.type.oclAsType(RefOntoUML::Mediation).relator() = 

self.source.oclAsType(RelatorParticipant).type and 
4 self.type.oclAsType(RefOntoUML::Mediation).mediated() = 

self.target.oclAsType(EntityParticipant).type 
 

Listing 5 binds the creation of multiple participants such that the minimum and 

maximum numbers are compatible (e.g. minimum not greater than maximum). 

Listing 5. The maximum number of a Participant’s instances must be greater than or equal the 
minimum. 

1 context Participant inv 
2  
3 if(self.max <> -1) 
4 then self.max >= self.min and self.min <> -1 
5 else self.min <> -1 
6 endif 

 

Listing 6 establishes that an image participant, used when talking about many 

instances of a same participant, is only used for participants that are not unique 

(minimum and maximum only 1). 
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Listing 6. Only a multiple participant (max > 1) may have an image. 

1 context Participant inv 
2  
3 if(self.isImageOf <> null) 
4 then self.isImageOf.max > 1 
5 else false 
6 endif 

 

The next constraints are restrictions over the types of the new metamodel 

association’s source and target. This is necessary because of our modeling choice of 

creating a general SituationTypeAssociation element that connects two Node (most 

general class) elements, thus providing a source and target references for all the 

classes that specializes it. Therefore, to avoid creating relations between wrong 

types, those constraints are necessary. 

Listing 7. The source of an AllenLink must be a SituationParticipant. 

1 context AllenLink inv 
2  
3 self.source.oclIsKindOf(SituationParticipant) 

  

Listing 8. The target of an AllenLink must be a SituationParticipant. 

1 context AllenLink inv 
2  
3 self.target.oclIsKindOf(SituationParticipant) 

 

Listing 9. The source of an AttributeLink must be a Participant, a ModeReference or a 
ReferenceNode, which in this case must be a reference to a Participant or a ModeReference. 

1 context AttributeLink inv 
2  
3 self.source.oclIsKindOf(Participant) or 

self.source.oclIsKindOf(ModeReference) or 
(self.source.oclIsKindOf(ReferenceNode) and 
 (self.source.oclAsType(ReferenceNode).reference.oclIsKindOf(Par
ticipant) or 

4  self.source.oclAsType(ReferenceNode).reference.oclIsKindOf(Mode
Reference))) 
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Listing 10. The target of an AttributeLink must be an AttributeReference. 

1 context AttributeLink inv 
2  
3 self.target.oclIsKindOf(AttributeReference) 

 

Listing 11. The source of a CharacterizationLink must be a ModeReference. 

1 context CharacterizationLink inv 
2  
3 self.source.oclIsKindOf(ModeReference) 

 

Listing 12. The target of a CharacterizationLink must be an EntityParticipant or a 
ReferenceNode, which in this case must be a reference to a EntityParticipant. 

1 context CharacterizationLink inv 
2  
3 self.source.oclIsKindOf(EntityParticipant) or 

(self.source.oclIsKindOf(ReferenceNode) and 
4  self.source.oclAsType(ReferenceNode).reference.oclIsKindOf(Enti

tyParticipant)) 
 

Listing 13. The source of a FunctionParameter must be a Function. 

1 context FunctionParameter inv 
2  
3 self.target.oclIsKindOf(Function) 

 

Listing 14. The source of an InstantiationLink must be an EntityParticipant, a RelatorParticipant 
or a ReferenceNode, which in this case must be a reference to an EntityParticipant or 

RelatorParticipant. 

1 context InstantiationLink inv 
2  
3 self.source.oclIsKindOf(EntityParticipant) or 

self.source.oclIsKindOf(RelatorParticipant) or 
(self.source.oclIsKindOf(ReferenceNode) and 

4  (self.source.oclAsType(ReferenceNode).reference.oclIsKindOf(Ent
ityParticipant) or 

5  self.source.oclAsType(ReferenceNode).reference.oclIsKindOf(Rela
torParticipant))) 

 

Listing 15. The target of an InstantiationLink must be a TypeLiteral. 

1 context InstantiationLink inv 
2  
3 self.target.oclIsKindOf(TypeLiteral) 
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Listing 16. The source of a MediationLink must be a RelatorParticipant. 

1 context MediationLink inv 
2  
3 self.source.oclIsKindOf(RelatorParticipant) 

 

Listing 17. The target of a MediationLink must be an EntityParticipant. 

1 context MediationLink inv 
2  
3 self.target.oclIsKindOf(EntityParticipant) 
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4 AUTOMATIC TRANSFORMATION 

In order to simulate situation type models in Alloy the modeler must be able to 

represent the situation axioms in the language, requiring knowledge in logics and in 

the tool’s particularities. To avoid the necessity of this learning step and prevent 

human flaws in the translation we have developed an automatic model-driven 

transformation from SML model to specifications in Alloy. The transformation uses as 

basis the SML metamodel described in chapter 3 and is further detailed in this 

chapter. Later, in chapter 5, we will demonstrate how the generated Alloy 

specifications can be used to validate situation type models and simulate worlds with 

situation type instances in order to assess those models. We present an assessment 

approach that requires no further knowledge in logics, as the transformation does all 

the translation work. The transformation was developed in Java, since all the 

infrasctructure of Eclipse EMF is based on this language, and it is fully automated 

and implemented in the OntoUML Lightweight Editor (OLED)3, a tool originally 

created to facilitate the creation of OntoUML models but that is being extended to 

provide support for situation types in SML as well. 

The resulting Alloy specification is divided in two parts: a structural module and a 

situation module. The structural module mostly contains the world structure, entities 

declarations and their properties along with some accessibility functions. The 

structural module is derived from the OntoUML validation framework from (SALES, 

2014) and we will refrain from explaining it besides presenting the base world 

structure in section 4.1 and the parts that need to be included in order to support 

situation types in section 4.2. The situation module contains the rules that give 

identity, uniqueness and continuity to the situation types and will be explained in 

section 4.3. 

3 https://github.com/nemo-ufes/ontouml-lightweight-editor 
                                            



71 
 

4.1 WORLD STRUCTURE 

To be able to check the possibilities of instantiation and destruction of entities, the 

transformation we use considers a frame-based structure based on the Kripke 

semantics (KRIPKE, 1963). This world structure is inherited from the OntoUML’s 

Alloy validation framework proposed in (BENEVIDES et al., 2010) and is in 

accordance with the formal semantics of SML presented in (COSTA et al., 2012), 

which considers that a frame or world represents a possible instantiation of the model 

(possible state-of-affairs) in a given moment, i.e. a model snapshot, according to the 

formalization described. The world structure is entirely described in the OntoUML part 

(the structural module) of the Alloy model description and has the following 

properties: 

• Instances of classes exist in a world and can be related to other instances 

through the instantiation of associations. We refer to the set containing all 

individuals that exist in a world as its population. 

• The exists in relation in non-empty, i.e. every world must have at least one 

instance of a model’s type in order to avoid empty world instances. 

Conversely, every top-level type must exist in at least one world so that each 

type is validated against the model’s predicates in every simulation. 

• Worlds are accessible from each other through succession (next) relations, 

which are asymmetric, intransitive and irreflexive. It means that a successor 

world is one that, from a given state of affairs, identified by the first world, a 

sequence of events can occur leading to the second world. In the branching 

structure used in this work, every world can have at most one predecessor, 

but any number of successors, in order to capture the idea that the future may 

unfold in various ways, and allow for counterfactual analysis. 

• A world branch is a set of sequential worlds. Every world in a branch either is 

accessible or can access any other world in the same branch, directly or 

indirectly. However, it is not admissible for worlds to access past states (time 

cannot go back). 

• It is forbidden for an instance to exist again in a branch if it ceases to exist at 

some past point. This means that every instance’s existence is always 

continuous. 
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There are four world categories: Past, Future, Counterfactual and Current worlds. A 

current world stands for the current state of things, an analogy to the present time, 

and every generated branch in the simulation has exactly one current world, 

randomly chosen. Future worlds present possible state of affairs that can become 

true if we continue to move through time from the current world. Past worlds, 

conversely, are the ones were true and led to the current world. They present the 

outcomes of a series of events that lead to the current setting. Finally, the 

counterfactual worlds depict circumstances that could have happened if the past had 

unfolded differently. Figure 36 illustrates the structure discussed, where the 

sequence of circled worlds represents a possible branch. 

 

 

Figure 36. World Structure for simulation. 

4.2 STRUCTURAL CHARACTERISTICS OF SITUATIONS 

Before creating the situation type rules in Alloy we must first represent the structural 

aspects of those situations. This includes defining the situation types in Alloy, along 

with their meta-properties and the participation and derivation relations with its 

elements. This structure is important so that Alloy can identify what are the types and 

what are its relations and instantiate them properly, accordingly to the rules that we 

will define later. We use as basis the transformation from OntoUML to Alloy defined 

in (SALES, 2014). There the world structure and ontological properties such as 

rigidity are already included in the Alloy specification. Listing 18 shows the basic 

structure of a generated Alloy specification altered with situation type support. The 

lines that we have included are underlined. 
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Listing 18. Skeleton structure of a generated Alloy model including situations. 

1 module Model 
2  
3 open world_structure[World] 
4 open ontological_properties[World] 
5 open util/relation 
6 open util/sequniv 
7 open util/ternary 
8 open util/boolean 
9 open situation_properties[World] 
10  
11 sig Object {} 
12 sig Property {} 
13 sig Situation {} 
14 sig DataType {} 
15  
16 abstract sig World { 
17  exists: some Object+Property+Situation, 
18 }{} 
19  
20 fact additionalFacts { 
21  continuous_existence[exists] 
22  elements_existence[Object+Property+Situation,exists] 
23 } 
24  
25 fun visible : World->univ { exists } 
26  
27 run { } for 10 but 3 World, 7 int 

 

Mostly, the included lines basically introduces situation as a new main type, called 

signature in Alloy, in sig Situation {} and states that situations exist in a world 

along with objects and properties in +Situation. A situation definition in Alloy is a 

composition of patterns that together represents what we call the situation axiom. In 

addition to the specific facts that characterize each situation and will be discussed in 

section 4.3, a situation also admits general axioms that address situation uniqueness 

and continuity. The line open situation_properties[World] represents an import of 

an Alloy module which contains those general axioms as well as functions that 

represent the Allen relations used to facilitate the construction of the situation rules. 

For instance, the uniqueness axiom that states that a situation is unique for a 

particular conjunction of entities in a world is represented in Listing 19. 

Listing 19. Situation uniqueness predicate in Alloy. 

1 pred uniqueness[sit: univ->univ, parts: univ->univ->univ] { 
2  all w:World | all s1,s2:w.sit | s1.(w.parts) = s2.(w.parts)  
3  implies s1 = s2 
4 } 
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Similarly, the situation continuity axiom is represented in Listing 20. It admits for 

every situation type that if a conjunction of entities remains in a particular condition in 

two consecutive worlds, then the situations in both worlds are the same. The entire 

situation_properties module is shown in Appendix A. 

Listing 20. Situation continuity predicate in Alloy. 

1 pred continuity[sit: univ->univ, parts: univ->univ->univ] { 
2  all w1,w2:World | all s1: w1.sit, s2: w2.sit | w2 in (w1.next) 

and s1.(w1.parts) = s2.(w2.parts) 
3  implies s1 = s2 
4 } 

 

Still, Table 2 shows the remaining patterns created from the situation type elements 

and which are applied to the structural module of the Alloy specification. The first 

column represents the SML elements and the second column the respective pattern 

it generates in the Alloy specification. The first and second lines represent the 

situation type declaration and the common situation predicates of uniqueness, 

continuity and rigidity, respectively. The third line represents the declaration of the 

participation relation between a situation type and it’s participants, with the respective 

cardinality of the relation. The fourth line represents accessibility functions and the 

fifth line an immutability predicate (only applied for participants not set as mutable). 

Finally, the line represented by “-” indicates singleton statements which depend on all 

situation types and state, respectively, that the Situation population is a composition 

of instances of each defined situation type and that all situation types are disjoint 

from each other. Assume that the orange words will change depending on each 

element’s type/name. 

Table 2. Structural patterns in Alloy created from situation elements. 

SML element Alloy 

SituationType 
abstract sig World { 
 (…) 
 SitType: set exists:>Situation, 
}{} 

 

fact situationCommon { 
 uniqueness[SitType, participation1 + … + 
participationN] 
 continuity[SitType, participation1 + … + 
participationN] 
 rigidity[SitType, Situation, exists] 
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 (…) 
} 

Participant 

(participation) 

abstract sig World { 
 (…) 
 participation: set Source set -> one/some Target, 
}{ 
 -- if multiple 
 all x: SitType | # (x.participation) >= n 
 all x: SitType | # (x.participation) <= m 
} 

participation 

ends 

fun funName1 (x: World.Participant) World.SitType { 
 (participation).x 
} 
fun funName2 (x: World.SitType) World.Participant { 
 x.(participation) 
} 

Immutable 

Participant 

fact participationProperties { 
 immutable_target[SitType, participation] 
} 

- 

-- additional facts  
abstract sig World {…} 
{ 
 (…) 
 exists:> Situation in SitType1 + … + SitTypeN 
 disj[SitType1, … ,SitTypeN]  
} 

4.3 THE SITUATION MODULE 

The specific facts that characterize each situation are a composition of what we call 

the situation module. Those facts are constructed by mapping each concept of the 

SML situation type metamodel to a respective pattern in Alloy and the union of these 

patterns represents the situation axiom. We create the situation axioms in Alloy 

accordingly to the formalization of SML presented in (COSTA et al., 2012) (in first-

order logic).  

Each situation axiom postulates the conditions for the existence of a situation of a 

particular type, i.e., those conditions that must be true for as long as the situation of 

the type exists. In Alloy we address this with a fact with two expressions: one that 

captures the sufficient conditions for the existence of the situation (which 

necessitates the creation of a situation of the type using the =>/implies operator) and 

one that captures the necessary conditions. Since these facts are specific to a 

particular situation type, we present transformation rules that determine these facts 

from situation type definitions in SML. Listing 21 shows a skeleton of a situation 
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axiom as an Alloy fact. Lines 2 and 3 represent the sufficient condition while line 5 

indicates the necessary one. Again, expressions in orange will change depending on 

the situation type. 

Listing 21. Skeleton of a situation axiom represented as a fact in Alloy. 

1 fact SitTypeRule { 
2  all w1[,<worlds_quantification>]: World | 

<elements_quantification> | <elements_constraints> 
3  implies one s: w1.SitType | <elements_binding> 
4  
5  all w1: World | all s: w1.SitType | <elements_quantification> | 

<elements_constraints> 
6 } 

 

Firstly, every situation type will generate an isolate fact such as fact SitTypeRule 

{}, which will contain the situation axiom. In Alloy, the situation axiom is built by 

quantifying over the elements of the world, applying the constraints on them and then 

binding them to the respective situation. In the necessary part of the rule the binding 

is made while quantifying, since the condition is applied to an already existing 

situation, as we will show. The entities exist necessarily in some world and the 

conditions are applied taking them into consideration. For that reason, we must 

consider always at least one world (w1) in the rule, which represents the present 

time, i.e. the world where the situation type being specified starts to exist (in the 

sufficient condition) and every world where it exists (in the necessary condition). 

The tag [,<worlds_quantification>] indicates that other worlds can appear 

depending on the temporality of the situation type elements. For instance, a past 

situation participant represents a different world (w2) in the past, thus it must be 

quantified and a specific constraint before[w2,w1] must be established. Later, in 

<elements_quantification>, every participant, including the relator, is quantified in 

their respective world and to them a variable is assigned. Table 3 shows examples of 

quantification for every type of participant. 

Table 3. Examples of participant’s quantification. 

SML participant Quantification in Alloy 

 
all partN: w1.Entity 
all partN: s.entity{FUN}[w1] 
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all partN: w1.Relator 
all partN: s.relator{FUN}[w1] 

 

all partN: w1.SitParticipant 
all partN: s.sitparticipant{FUN}[w1] 

 

all partN: wM.SitParticipant 
all partN: s.sitparticipant{FUN}[w1] 
 

 

The first line in the second column indicates the quantification in the sufficient rule, 

while the second line indicates the quantification in the necessary rule already 

including the binding to the situation. Only the past situation participant in the 

sufficient rule is quantified in a world of its own, which depends on the number of 

past participants. The {FUN} tag indicates that we are referring to the respective 

participation end mapped as an Alloy function as shown in Table 2. When there are 

two participants of the same type and no “equals” relation exists between them, the 

keyword disj will appear after the keyword all and the variables will be separated by 

commas, indicating that those elements are different from each other. 

In <elements_constraints> the situation main constraints are established. Those 

constraints are guided by the existing FormalRelations and MediationLinks of the 

situation type. While FormalRelations define rules between the elements, the 

MediationLinks bind the situation type, the relator and the mediated entities so that 

they are always the same. Table 4 shows some examples of patterns for 

FormalRelations. AllenLinks are analogous to the before relation, changing the 

predicate name only. ContextFormalLinks are also defined as predicated with the 

respective name, but are not supported primitively in the transformation (since they 

are domain-specific user-defined relations) and thus must be defined manually. 

OrderedComparativeLinks have also a direct mapping to Alloy (> / >= / < / <=), and 

are analogous to less than relation. Finally, every FormalRelation can be negated, 

which is represented by the [not] before each example. 
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Table 4. Example of FormalRelation patterns. 

SML association Pattern in Alloy 

 
[not] before[SourceWorld, TargetWorld, Source, Target, 
exists] 

 [not] Source = Target 

 [not] Source < Target 

 
[not] Source in World.TargetType 

 

The Source and Target will have different interpretations depending on the type of 

node they represent and, in some case, the elements they are connected to. Table 5 

shows the patterns for the different kinds of nodes and connections. Here when we 

represent the participants in lowercase we mean it is going to be replaced by the 

respective variable assigned to it, and not its type/name. Again, if a {FUN} tag 

appears after the variable we are referring to the respective association end. Finally, 

World always means the world of the situation participant that is somehow connected 

to the node, when applicable (if a type literal is connected directly to an entity the 

world would be w1). 

Table 5. Patterns for nodes representation in Alloy. 

SML node Pattern in Alloy 

 

relator.(w1.mediation) = entity 
{OR} 
relator.entity{FUN}[w1] = entity 

  
entity 

 
relator 
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sitparticipant 

 
sitparticipant.participant{FUN}[World] 

 
sitparticipant.participant{FUN}[World].(Wor
ld.attribute) 

 
entity.(w1.attribute) 

 
sitparticipant.entity{FUN}[World].(World.at
tribute) 

 
entity.mode[w1] 

 
sitparticipant.entity{FUN}[World].mode[ 
World] 

  

literalvalue 
{OR} 
“literalvalue” -- if string  

  
World.literaltype 

 function[param1, … , paramN] 

 

Finally, <elements_binding> is the binding made between the quantified and 

constrained elements and the situation. Since we quantify over all elements in the 

world and then apply the rules to them, we must state that the situation derived will 

be composed by the same elements that satisfy those rules. Thus, the binding is a 

statement that says the participation end that represents the participant (also an Alloy 

function {FUN}) and the elements used in the quantification are the same. This rule is 

always of the form participant in s.participant{FUN}[w1]. As an example, Listing 

22 demonstrates how a complete fever situation rule looks like in Alloy. This situation 

occurs when a person’s temperature is above 37 degrees Celsius. 
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Listing 22. Fever situation complete rule in Alloy. 

1 fact Fever { 
2  all w1: World | all part1: w1.Person | part1.(w1.temperature) > 

37 
3  implies one s: w1.Fever | part1 in s.person[w1] 
4  
5  all w1: World | all s: w1.Fever | all part1: s.person[w1] | 

part1.(w1.temperature) > 37 
6 } 
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5 ASSESSMENT APPROACH 

This chapter presents the last step of our situation assessment approach, which is an 

extension of the work developed in (SOBRAL; ALMEIDA; COSTA, 2015). We use the 

new SML metamodel presented in section 3.3 and the automatic transformation to 

Alloy described in chapter 4 to provide systematic testing cases and examples on the 

simulation of situation type models and detect problematic scenarios. The context 

model used in this approach is the same healthcare model from Figure 14, and the 

situation types will be presented in the course of the simulation presentation. 

5.1 QUALITY CRITERIA AND PROBLEMATIC SITUATION TYPES 

We may say that situation type models should be adequate for its intended uses, 

since they are always created envisioning a subsequent purpose. To help 

systematically evaluate this quality of the models, i.e. its adequacy, one can use 

many different measurements or criteria which regard distinct aspects of it such as its 

syntax, semantics, usability, understandability and so on. We have addressed the 

syntax dimension by providing in chapter 3 an infrastructure to create SML models 

that encompasses syntactical constraints to verify the structure of situation type 

models.  In this chapter we focus on the semantic dimension. That means that we 

are mostly concerned on how faithful a formalization is to the conception in the mind 

of the modeler. 

To explain the relation between a model formalization and the modeler’s intention, 

(GANGEMI et al., 2005) introduced the notions of precision and coverage. Those 

definitions are built upon the notions of intended, i.e. what the modeler wants to say, 

and possible instantiations, i.e. what the modeler actually said, of an ontology. We 

here borrow those definitions and extend them to ontology-based situation type 

models. Low model precision is usually related to under-constraining problems, 

allowing instantiations that were not originally intended. Low model coverage is 

usually related to over-constraining problems, not admitting instantiations that are 
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actually valid. Figure 37 illustrates those definitions, where the blue circles indicate 

the actual model definition and the grey circles indicate the modeler’s intention. 

 

Figure 37. Intended and possible model instantiations adapted from (GANGEMI et al., 2005). 

An appropriate model (a) is one that has high precision, allowing only some 

unintended states, and maximum coverage, meaning that all intended states are 

possible. When precision decreases, more unintended states are allowed, thus 

making the definition less appropriate (b). An unappropriate model definition (c) does 

not encompass every intended state (low coverage), but has maximum precision 

since every possible state is an intended one. Finally, the least appropriate case (d) 

is when both precision and coverage are low, meaning the definition allows many 

unintended states while not encompassing every intended one. 

To assess situation type models regarding precision and coverage we use an 

lightweight formal approach that includes simulation and validation of those models in 

Alloy (JACKSON, 2006). The simulation consists of demanding automatic generation 

of model instances so that the modeler can check properties of the model. The 

assumption is that by visually inspecting possible instantiations, a modeler can sort 

out admissible and non-admissible model instantiations. In addition, in the validation, 

modelers can also “demand” the generation of particular model instances that are 

expected to hold or not. By recurrently performing simulation and validation analysis, 
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a modeler can capture under and over-constraining problems, thus improving both 

model precision and model coverage. 

Situations consist of particular combinations of context elements and their 

combinations into complex situations may lead to problematic scenarios. We define 

unintended situation type definitions as definitions arising from the difference 

between the modeler’s intention and the actual definitions he/she expresses in the 

language, i.e. low precision and/or low coverage definitions. This may be a result of 

lack of knowledge on the semantics of the language or simply the inherent difficulty in 

predicting all implications of a (complex) definition. 

An inconsistent situation type definition specifies an impossible combination of 

conditions on context elements, and would probably be the result of a design error. A 

trivial example of inconsistent situation type in a healthcare setting would be a 

complex situation that is composed of hypothermia and fever simultaneously. 

Although such inconsistencies may be straightforward to detect, the composition of 

situations and temporal operators, i.e. Allen relations, on situations may lead to more 

subtle relations between situations that may go undetected by the modeler. An 

inconsistent situation type definition would have no practical purpose for situation-

awareness. Since those definitions are never instantiated, they can be referred as 

zero coverage definitions. 

Finally, we establish a special case of problematic definitions namely redundant 

situation type definitions, which neither regards precision nor coverage but are 

undesired situations that must be corrected. A redundant situation type may arise 

from different forms of specification that actually entail the very same context 

conditions. Redundant situations would violate parsimony in specifications and have 

the perverse effect that users would attempt to attribute different semantics to the 

(apparently) different (yet equivalent) situation types. Consider for example a fever 

situation type, and a high body temperature situation type, if both established as sole 

condition a bodily temperature of 38 degrees Celsius or higher. 
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5.2 VALIDATION/SIMULATION SCENARIOS 

5.2.1 The Alloy Analyzer 

The Alloy Analyzer is a tool that allows running simulations of model instances and 

checking for assertions regarding a model’s constraints. The tool’s main window is 

shown in Figure 38. The bar represented by (1) points the tool’s menu. We are only 

interested in the Execute menu, which allows the modeler to choose the operation to 

be executed, e.g. a simulation, an assertion checking and so on. The buttons 

depicted by (2) represents shortcuts to common operations. Most of them are self-

explanatory, while the Execute and Show buttons provide execution of the last used 

operation and visual display of the model instance found, respectively. The panel 

indicated by (3) comprises the model specification in Alloy, and is where the 

transformed model will be. Finally, (4) shows the result of the executed operations 

and errors found within the model. 

 

Figure 38. Alloy Analyzer. 
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A simulated model in Alloy is a representation of the instances of the defined classes, 

situation types and relations. The model instances are automatically generated by 

the Alloy Analyzer when we “execute” the model definition. The visualization of the 

instances is by default equal for every element, making the simulated model 

confusing. Nevertheless Alloy offers a theme menu where we may choose the layout 

of the represented objects and also which objects are going to appear in the 

visualization or not. We have modified the default representation through this thene 

menu to improve visualization and thus, in the subsequent illustrations, we will 

represent the classes as Table 6 shows. 

Table 6. Types Representation in Alloy simulation model. 

Class Alloy representation 

Object Classes (Kind, SubKind, 

Phase, Role, Category, RoleMixin, 

Mixin, Quantity and Collective)  

Relators and Modes  
 

Qualities (its associated values) 
 

Situation Types 
 

 

Figure 39 illustrates a simple example of a simulation in which there is an instance of 

a fever situation, whose occurrences are given when a person’s temperature is 

above 37 degrees Celsius. It shows a situation of type Fever which involves an 

object of type Person (also of type Spatial Entity, since person specializes this class, 

and Healthy Person) that has a temperature of 63 Degrees Celsius (although an 

absurd value, it is used with the purpose of exemplification only, since we didn’t 

established a boundary for it). Being such a simple example, we aren’t faced with any 

problematic scenario. 
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Figure 39. Simulation of fever situation. 

In the example provided we have manipulated the execution so that at least one 

fever instance would appear. Nevertheless, one can run a simulation without any 

specific constraint and the analyzer will show a random instance. As the user hits 

next in the instance window, the analyzer will provide other instances that normally 

grow in complexity, allowing a random validation of the model. Besides, we must 

define a scope for the simulation (e.g. at most 10 instances of each concept), for 

which the analyzer checks every possible instance. This may seem as the validation 

done is not reliable (because of the limited scope), but Alloy’s premise is that even a 

small scope can identify most of the problems within a model. Next we will present 

methods to manipulate the execution and detect specific problematic scenarios. 

5.2.2 Inconsistency 

Inconsistent situation types may arise as situation definitions grow in size and 

complexity. Inconsistency is related to impossible states of the elements, so that a 

situation type can never be instantiated. The situation type of Figure 40 illustrates an 

example where the modeler mistakenly matched a patient (role) and a treatment 

(relator). Since the “equals” relation may be set between any type of elements, this 

configuration is possible. 
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Figure 40. Example of an inconsistent situation. 

As we know, object classes and moment classes are disjoint and, as we simulate, we 

notice that none of the worlds generated contain instances of our example situation. 

Alloy allows setting constraints over the worlds before running the simulation, thus 

we can assure that the example is inconsistent by running the command shown in 

Listing 23, which asks the analyzer to generate an example with at least one world 

with at least one Inconsistent Situation instance. 

Listing 23. Run command example in Alloy. 

1 run { 
2  some w:World | #(w.InconsistentSituation) >= 1 
3 } for 10 but 3 World, 7 int 

  

After checking exhaustively all the possibilities within the defined scope, the tool 

present us the message depicted in Figure 41. It says that the predicate may be 

inconsistent since we have limited the number of instances it should generate in line 

for 10 but 3 World, 7 int. As mentioned, Alloy premise is that most of the 

problems arise from small scopes. In this case, we can easily see that no bigger 

scope is necessary since the number we used would be sufficient if there were to 

exist the situation. 

 

Figure 41. Alloy result example showing the situation is unsatisfiable/inconsistent. 

Usually inconsistent models are related to overconstraining of its elements, such as 

setting that a person has fever and hypothermia concurrently. An efficient way to 
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check for this specific problem is simulating with rules in the run command. If no 

instance is found, the situation is probably inconsistent. To facilitate the systematic 

verification of inconsistent situations, we have included in the transformation a run 

command for each transformed situation type, analogous to the one in Listing 23. 

The user may then hit the “Execute” menu and select the desired inconsistency 

checking available, such as Figure 42 demonstrates. 

 

Figure 42. Run commands for detecting inconsistency. 

5.2.3 Redundancy 

The Alloy Analyzer can also be used to check whether different situation types are 

equivalent, which we call redundant situation types. In a large model, many types can 

be created to indicate a same situation, which is undesired since it overpopulates the 

model and does not aggregates semantics to it. For instance, we have a Normal 

Fever situation (Figure 43), which is defined as a person who has a temperature 

between 37 and 40 degrees Celsius, and a Common Fever situation (Figure 44), 

which is the composition of the Fever (temperature > 37ºC) and Under 40 

(temperature < 40ºC) situations definitions. 
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Figure 43. Normal Fever situation. 

 

Figure 44. Common Fever situation. 

Both of them should happen at the same temperature interval and, consequently, at 

the same time, as we see by running the simulation. Every world generated by the 

analyzer is similar to the one in Figure 45, where there is always a Common Fever 

situation (Situation3), connected (composed by) to a Fever and an Under 40 C 

situation, alongside a Normal Fever situation (Situation1), the two referring to the 

same person.  
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Figure 45. Alloy simulation for Common Fever and Normal Fever situations. 

As a definitive test for this case, we can create assertions and ask Alloy to verify 

whether it holds. An assertion is a proposition which the analyzer tries to contradict. 

A successful contradiction means a false assertion and is supported by a 

counterexample to the user, while an unsuccessful one means that the assertion is 

true (or more precisely, it means that there are no counterexamples for the scope 

defined). Consequently, we created an assertion that affirms that whenever a 

Common Fever exists (the number of its instances is > 0), a Normal Fever also exists 

and vice versa, as shown in Listing 24. One can check the result obtained, which 

indicates that the assertion is valid, in Figure 46. 

Listing 24. Assertion for checking redundancy of situations. 

1 assert redundancy { 
2  all w:World | #(w.NormalFever) > 0 implies #w.CommonFever > 0 
3  all w:World | #(w.CommonFever) > 0 implies #w.NormalFever > 0 
4 } 
5  
6 check redundancy for 5 but 1 World, 7 int 
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Figure 46. No counterexample found. Valid assertion. 

Similar to what we have done for inconsistent situation types, the transformation also 

includes assertions to check redundant types, as shown in Figure 47. Those 

assertions, which are generated for each situation type, validate them generically for 

redundancy against each other type in the model. Since redundancy must be 

checked in pairs, with each specific class, our generic approach requires that at least 

two assertions are valid (no counterexample found) to characterize redundancy. This 

happens because a single valid assertion may indicate a one-way dependency, e.g. 

since CommonFever depends on Fever the assertion for CommonFever would be 

valid, although they are not redundant. In this case, the assertion for Fever would be 

invalid and not characterize the redundancy. Two valid assertions, however, is a 

strong indicative that the respective situation types are redundant, e.g. both the 

CommonFever and NormalFever assertions would be valid, indicating that they are 

redundant. Listing 25 shows the generic assertion used to verify the one-way 

redundancy for each situation type (one can later prove the redundancy by using the 

rule from Listing 24 with the specific classes). 

 

Figure 47. Run commands for detecting redundancy. 

Listing 25. Generic assertion to verify redundancy. 

1 assert redundancySitType { 
2  all w:World | #(w.SitType) > 0 implies #((w.exists & Situation) 

- w.SitType) > 0 
3 } 
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4  
5 check redundancySitType for 5 but 1 World, 7 int 

5.2.4 Unintended states 

Finally, we can use the analyzer to detect unintended situation type definitions, 

resulting from states-of-affairs that were not originally intended by the modeler. 

Unintended states can be challenging to identify since we cannot evaluate them 

automatically as we did for inconsistency and redundancy. They represent domain-

specific scenarios that are related to the intended semantics, i.e. they are in the 

modeler’s mind only. The easiest way to assess a model in Alloy regarding 

unintended states is recurrently simulating this model and evaluating the generated 

model instances, looking for wrong relations, strange outcomes of entities/situations 

and so on. Running random underconstrained model instances, however, might not 

be very efficient, since users would have to analyze every possible instance that the 

tool generates. Thus, providing constraints in the run command such as restricting 

the number of entities or the possible outcomes may result in a faster detection of 

unintended states. 

Figure 48 introduces some situations that are used to build a more complex one 

named Possible Contagion, illustrated in Figure 49. In Figure 48 we have defined a 

situation in which a person is healthy (Healthy situation), one in which a person is 

infected (Infected situation), characterized by an infectious disease, a situation in 

which a patient is having a treatment in a hospital (Is Being Treated) and finally, a 

situation in which a person Becomes Infected, i.e. it was a healthy person and turns 

into an infected person in a subsequent stage. The Possible Contagion situation 

establishes that two people have had a treatment in the same hospital at the same 

time period, one being healthy and the other one being infected. Right after that, at 

the present time, the person which was healthy also becomes infected with the same 

disease of the previously infected person. 
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Figure 48. Healthy, Infected, Is Being Treated and Becomes Infected situations.  

 

Figure 49. Possible Contagion situation. 

As we ask Alloy to generate instances of the modeled situation, we notice in Figure 

50 (world 1) and Figure 51 (world 2) that we have underconstrained our definition 

since it is feasible that the same person alone (Object0) generates a Possible 

Contagion situation (Situation3) by turning from a Healthy Person in world 1 into an 

Infected Person in world 2 (Situation2 as the Becomes Infected situation), thus 

validating the situation constraints. Situation 0 and Situation1 represents both Is 

Being Treated situations and the objects that only have the instance’s name are 
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past/future objects, which mean they are connected to the entities but do not exist at 

the same time instant. We have also omitted the representation of the Healthy and 

Infected situation since they are simply defined as a direct relation (one to one) to 

their respective entities (healthy person and infected person). 

This situation happens for some reasons: the same Patient can have different 

treatments in the same hospital at the same time (defined by our context model, 

which is reasonable) and thus can be the Patient of both Is Being Treated situations; 

we didn’t explicitly said that the originally infected person should be infected while 

having the treatment, just that it had a treatment and is infected (this would require 

another composite situation); and finally we also didn’t explicitly said that the Patient 

from the first treatment must be different from the Patient from the second treatment 

(and consequently from the infected person). 

 

Figure 50. Possible Contagion situation simulation (World 1). 
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Figure 51. Possible Contagion situation simulation (World 2). 

As one can see, problematic scenarios tend to appear as soon as models grow in 

size and complexity. Thus, validating those models is important and Alloy provides a 

powerful way of doing so by visual model simulation and checking. Since unintended 

worlds can appear in various forms, systematically performing this validation is 

difficult. In (SALES, 2014) the author provides many simulation scenarios and the 

respective Alloy rules to evaluate different world and entity outcomes. By the usage 

of those pre-defined scenarios, users partially know what to expect from the 

simulation, diminishing the cognitive work and facilitating one’s analysis. For 

example, if one requires all generated worlds to contain the same individuals, he/she 

would not need to keep track of object creation and destruction when moving 

throughout worlds. We present those simulation scenarios in Appendix B. 

Finally, we present in Figure 52 a correct situation type model for our Possible 

Contagion case example, in which we added the negated (not) equals relation 

between the person originally infected and the one that becomes so and also 

changed the first Is Being Treated definition to one that indicates that the person is 

infected during the treatment. 
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Figure 52. Being Treated/Infected and correct Possible Contagion situation. 
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6 CONCLUDING REMARKS 

Throughout this thesis we have studied, evaluated and improved the situation 

modeling activity, in the context of situation-aware applications, using the SML 

language. Our contributions and conclusions are summarized in this chapter and at 

the end we provide our vision on possible future works. 

6.1 CONTRIBUTIONS AND CONCLUSIONS 

We have addressed the activity of situation modeling by proposing: an extension of 

the SML language, which was defined in previous works; an automatic 

transformation from this language to a logic-based language called Alloy; an 

assessment approach for situation models in a lightweight formal method using the 

transformation created. The first step was accomplished by integrating the SML 

language with an ontologically well-founded conceptual modeling language, called 

OntoUML. This integration allowed the improvement of the expressivity of the 

situation type models by using OntoUML as a language for creating context models 

to be used with SML. It also aggregated to the situation modeling language a 

conjunction of tools and models created for and with the OntoUML language, 

resulting from continuous works focused on the language and also its successful 

application in industrial and commercial projects. 

In order to accomplish the assessment of situation models in a manner that is 

transparent to the user, we have proposed an automated transformation from SML to 

Alloy and analysis of the result using the Alloy Analyzer. We used the OntoUML 

validation framework developed in (SALES, 2014), but also extended it including a 

Situation Module that enables one to validate situation type models developed with 

SML. As we have demonstrated, our approach allows us to identify from simple 

inconsistencies (solved by adding a single element or constraint), to more 

sophisticated semantic and equivalence problems, which are hard to notice without 

the help of an automated tool. 
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6.2 RELATED WORKS 

We address the related works by separating them into ontology-based situation 

specification approaches and situation validation approaches. The first one situates 

our work regarding the specification of situations using ontologies as a means to 

define situational and domain knowledge for situation-aware applications. The 

second discusses existing validation approaches for situation definitions in general. 

6.2.1 Ontology-based Situation Specification 

In the words of Ye (2012), “ontologies have been and will still be a preferred choice 

to translate, represent, and instantiate the (domain and situational) knowledge” in the 

so-called specification-based techniques for situation identification. Therefore, many 

are the examples of the use of ontologies for situation-aware applications, such as 

(KOKAR; MATHEUS; BACLAWSKI, 2009), (YAU; LIU, 2006) and (STEVENSON et 

al., 2009), which use the Web Ontology Language (OWL), (ROMÁN et al., 2002) for 

the combination of the DARPA Agent Markup Language (DAML) and Ontology 

Interchange Language (OIL), or simply DAML+OIL, and (COUTAZ et al., 2010) that 

relies on the Extensible Markup Language (XML) to create its ontologies. (KOKAR; 

MATHEUS; BACLAWSKI, 2009) formalizes the main concepts in the situation-

awareness field by means of an OWL ontology; (YAU; LIU, 2006) provides a situation 

ontology that allows to model situations in a hierarchical manner; (STEVENSON et 

al., 2009) presents Ontonym, a collection of OWL upper ontologies for developing 

pervasive systems; (ROMÁN et al., 2002) introduces Gaia, an infrastructure for smart 

spaces, which relies on ontologies as a way to manage the diversity and complexity 

of describing resources (e.g. devices and services); finally (COUTAZ et al., 2010) 

presents the GLObal Smart Space (GLOSS), whose ontologies describe a small set 

of concepts that provide an understanding of how services are used and how users 

interleave various contexts at run time, allowing reusing in different services 

implementation and abstraction over specific details of technologies. 
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In a nutshell, languages like OWL, DAML+OIL (which was superseded by OWL) and 

XML are computer oriented in the sense that they have diminished expressivity with 

the purpose of being machine processable. As described by (KOKAR; MATHEUS; 

BACLAWSKI, 2009), there exist many cases where OWL is not sufficiently 

expressive to capture every desired concept, idea that can be extended to 

DAML+OIL and XML. In the process of situation-aware applications engineering, we 

argue that expressivity must be addressed in the highest level at first, when modeling 

the system, so that the subtleties of the elements are captured. In a second stage 

(runtime) the high-expressive models can be used to generate less-expressive ones 

in a model-driven fashion, such that the generated models can be processed by 

computers. By using OntoUML as our ontology language we attend the expressivity 

issue since the language is grounded by a foundational ontology. Besides, OntoUML 

can be automatically transformed to OWL (BARCELOS et al., 2013) so that 

designers can profit from inference and processability inherent to the latter language. 

Furthermore, we divide the situation type modeling in two parts, i.e. context modeling 

and situation modeling, using languages that are more suitable to capture the 

elements properties in each case, such as elements hierarchy and relations with 

OntoUML and situations composition and temporal relations with SML, instead of 

general purpose languages like OWL and XML. Still, as visual and higher abstraction 

languages OntoUML and SML are easier to use and communicate by modelers and 

domain specialists and are not bound to a specific implementation platform. 

Finally, (COSTA et al., 2012) and (MIELKE, 2013) proposed a situation type 

specification that served as basis for this thesis. As demonstrated throughout this 

work, the context model language used, although based on ontological foundations, 

left aside important distinctions such as dynamic classification, which restrict the 

creation of some situation types. By using OntoUML, we were able to improve the 

quality of the context specification, also expanding and increasing the expressivity of 

the situation type models. 
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6.2.2 Situation Validation 

Although context and situation specification is a recurrent subject in the situation-

awareness community, validating those specifications is a task that hasn’t gained 

much attention, especially if done in a conceptual level. In a broader view, techniques 

to help assessing situations at runtime are proposed more often, but usually for very 

specific scenarios such as in (FISCHER; BEYERER, 2013) for the maritime domain 

and (SCHUBERT; SCHULZE; WANIELIK, 2010) for drive-assistant systems, unlike 

the more general domain-independent approach we take in this thesis. Meanwhile, 

the only approach found that specifically refers to “situation type validation” is the one 

in (SALFINGER et al., 2014), which is closest to our approach. The referred work 

proposes a tool suite that supports the knowledge management in situation-

awareness systems from the specification phase to runtime, also addressing evolving 

environments and user needs. Its validation includes syntactical and semantic 

checking, such as our proposal, although not specifying if it can guarantee the 

detection of inconsistent (or contradictory) and redundant situation, i.e. if the 

checking is made against every possible model instance, such as the Alloy Analyzer 

does. Moreover the ontology used in the referred work is very simple, not addressing 

many important aspects of elements representation, as extensively mentioned 

throughout this thesis, such as entity dynamics, intrinsic and relational properties, 

among others. 

Finally, we should mention the work of Sales (2014), which evolved from 

(BENEVIDES et al., 2010) and provided a validation framework for OntoUML which 

served as basis for the assessment proposal of this thesis. Although not including 

support for situations, the elements and world structured present in the referred work 

were essential to simulate the situation type’s dynamics and flexible enough to allow 

the inclusion of this novel concept.  

6.3 LIMITATIONS AND FUTURE WORK 

Although we have addressed the integration of SML with OntoUML in almost its 

entirety, whole-part relations were not studied and may be subject to future works. 
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Including those elements in SML may allow one to express in a well-founded manner 

constraints regarding composition (a car which is composed by 4 or 6 wheels), 

membership and other part of relations. Besides, UFO is an extremely rich set of 

theories that describe many elements besides the structural ones that we used in this 

work, such as events and social aspects of the world (e.g. actors, objectives and 

social commitments). Future research could investigate those other “slices” of UFO, 

even deepening in the study of the relation between the situation concept and UFO-

events and which brings situation into existence. This would increase even more 

SML expressivity as a conceptual modeling language and even making it an 

ontologically well-founded reference (what we may call a core ontology) for 

describing situation types. 

Regarding other necessities, SML could be improved to incorporate other features 

such as disjointness between elements, undefined temporality (e.g. a situation 

participant that may be either past or present) and value accumulators, e.g. to enable 

the definition of a situation where the average temperature in the last 24h is greater 

than 38 degrees Celsius. Still, since context information is obtained mostly from 

sensors, its accuracy may not be perfect, which may cause problems in the 

identification of situation. For this reason, studies may be realized in order to include 

ways to express the subtleties of the acquisition of context information (including 

quality of context) in the language. Addressing quality of context in the modeling 

phase poses a challenge that is dealing with uncertainty in a higher level. This could 

significantly change the way context-aware systems are modeled since many 

problems related to sensor data would be identified at an earlier phase. In any case, 

those improvements will require extending the approach presented in this work. 

Furthermore, the extension of the language created a gap in the concrete syntax of 

the language and in the runtime support of SML, namely in the SCENE platform. One 

of the main subjects of the original work, the concrete syntax was not the focus in this 

thesis and was addressed only superficially with the only purpose of providing 

examples to support the studies developed. With a concrete syntax for the extended 

metamodel provided, the editor created for the original metamodel should be 

extended to support the new elements and characteristics. Regarding the runtime 

support, it should be revisited and extended to also support the revised metamodel. 
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Although many elements remained the same, the metamodel structure was 

significantly changed which will require a deep modification in the runtime support. 

Finally, other possibilities of future work are the improvement of the simulation 

visualization for assessing situation models and usability studies for SML and the 

simulation. Although we have used so far the visualization tool provided with the 

Alloy Analyzer, we believe that a richer tool with explicit support for the situation 

concept may be more appropriate, allowing us to explore richer graphical patterns. 

Diagrams generated by the Analyzer would then be used to communicate with 

domain experts. It is important, though, to evaluate both the language and the 

simulation regarding their usability in real, larger projects and among many users. So 

far SML had been treated in the academia only and requires this feedback from 

industrial/commercial projects. 
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APPENDIX A - ALLOY MODULE WITH SITUATIONS 

COMMON PREDICATES 

1 module situations[World] 
2  
3 open world_structure[World] 
4  
5 //Situation Continuity 
6 // States that a situation continues through time, i.e. it is the 

same if its participants remain the same in consecutive worlds 
7 pred situationCont[sit: univ->univ, parts: univ->univ->univ, 

partsTemp: univ->univ] { 
8  all w1,w2:World | all s1: w1.sit, s2: w2.sit | w2 in (w1.next) 

and s1.(w1.parts) = s2.(w2.parts) and s1.partsTemp = s2.partsTemp 
implies s1 = s2 

9 } 
10 pred situationCont[sit: univ->univ, parts: univ->univ->univ] { 
11  all w1,w2:World | all s1: w1.sit, s2: w2.sit | w2 in (w1.next) 

and s1.(w1.parts) = s2.(w2.parts) implies s1 = s2 
12 } 
13  
14 //Situation Uniqueness 
15 // States that a situation is unique for a particular conjunction 

of entities in a world 
16 pred situationUniq[sit: univ->univ, parts: univ->univ->univ, 

partsTemp: univ->univ] { 
17  all w:World | all s1,s2:w.sit | s1.(w.parts) = s2.(w.parts) and 

s1.partsTemp = s2.partsTemp implies s1 = s2 
18 } 
19 pred situationUniq[sit: univ->univ, parts: univ->univ->univ] { 
20  all w:World | all s1,s2:w.sit | s1.(w.parts) = s2.(w.parts) 

implies s1 = s2 
21 } 
22   
23 //situation s1 happens before situation s2 (w3 and w4 assures they do 

not overlap) 
24 // s1 |-----------------| 
25 //                                   s2 |-----------------| 
26 pred before[w1: World, w2: World, s1: univ, s2: univ, exists: univ-

>univ] { 
27  some w3,w4:World | 
28   w3 in w1.next and w2 in w4.next and w1 != w2 and w2 in 

w1.^next and 
29   (s1 in w1.exists) and not(s1 in w3.exists) and (s2 in 

w2.exists) and not(s2 in w4.exists) 
30 } 
31 pred before[w1: World, w2: World, s1: univ, exists: univ->univ] { 
32  w1 != w2 and w2 in w1.^next and 
33   (s1 in w1.exists) and not(s1 in w2.exists) 
34 } 
35  
36 //situation s1 happens after situation s2 
37 // s2 |-----------------| 
38 //                                   s1 |-----------------| 
39 pred after[w1: World, w2: World, s1: univ, s2: univ, exists: univ-

>univ] { 
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40  w1 != w2 and w1 in w2.^next and 
41   (s1 in w1.exists) and not(s1 in w2.exists) and (s2 in 

w2.exists) and not(s2 in w1.exists) 
42 } 
43  
44 //situation s1 ends right before situation s2 starts 
45 // s1 |-----------------| 
46 //                    s2 |-----------------| 
47 pred meets[w1: World, w2: World, s1: univ, s2: univ, exists: univ-

>univ] { 
48  w1 != w2 and w2 in w1.next and 
49   (s1 in w1.exists) and not(s1 in w2.exists) and (s2 in 

w2.exists) and not(s2 in w1.exists) 
50 } 
51  
52 //situation s1 begins right after situation s2 ends 
53 // s2 |-----------------| 
54 //                   s1 |-----------------| 
55 pred metby[w1: World, w2: World, s1: univ, s2: univ, exists: univ-

>univ] { 
56  w1 != w2 and w1 in w2.next and 
57   (s1 in w1.exists) and not(s1 in w2.exists) and (s2 in 

w2.exists) and not(s2 in w1.exists) 
58 } 
59  
60 //situation s1 overlaps(occurs at the same time as) situation s2 
61 // s1 |-----------------| 
62 //                 s2 |-----------------| 
63 pred overlaps[w: World, s1: univ, s2: univ, exists: univ->univ] { 
64  (s1 in w.exists) and (s2 in w.exists) 
65 } 
66  
67 //situation s1 overlaps(occurs at the same time as) situation s2 

(identical to overlaps) 
68 // s2 |-----------------| 
69 //                 s1 |-----------------| 
70 pred overlappedby[w: World, s1: univ, s2: univ, exists: univ->univ] { 
71  (s1 in w.exists) and (s2 in w.exists) 
72 } 
73  
74 //situation s1 ends at the same time as situation s2 
75 //          s1 |-----------| 
76 // s2 |-----------------| 
77 pred finishes[w1: World, w2: World ,s1: univ, s2: univ, exists: univ-

>univ] { 
78  w1 != w2 and w2 in w1.next and 
79   (s1 in w1.exists) and not(s1 in w2.exists) and (s2 in 

w1.exists) and not(s2 in w2.exists) 
80 } 
81  
82 //situation s2 ends at the same time as situation s1 (identical to 

finishes) 
83 //          s2 |-----------| 
84 // s1 |-----------------| 
85 pred finishedby[w1: World, w2: World, s1: univ, s2: univ, exists: 

univ->univ] { 
86  w1 != w2 and w2 in w1.next and 
87   (s1 in w1.exists) and not(s1 in w2.exists) and (s2 in 

w1.exists) and not(s2 in w2.exists) 
88 } 
89  
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90 //situation s1 exists through the entirety of situation s2 
91 // s1 |--------------------------------------| 
92 //                 s2 |-----------------| 
93 //w1->w2/w3->w4, w2 and w3 are not necessarily different 
94 pred includes[w1: World, w2: World, w3: World, w4: World, s1: univ, 

s2: univ, exists: univ->univ] { 
95  w1 != w2 and w1 != w3 and w1 != w4 and w2 != w4 and w3 != w4 

and  
96  w2 in w1.next and w3 in w2.*next and w4 in w3.next and 
97   (s1 in w1.exists) and (s1 in w2.exists) and (s1 in 

w3.exists) and (s1 in w4.exists) and 
98   not(s2 in w1.exists) and (s2 in w2.exists) and (s2 in 

w3.exists) and not(s2 in w4.exists) 
99 } 
100  
101 //situation s2 exists through the entirety of situation s1 
102 // s2 |--------------------------------------| 
103 //                 s1 |-----------------| 
104 //w1->w2/w3->w4, w2 and w3 are not necessarily different 
105 pred during[w2: World, w1: World, w3: World, w4:World, s1: 

univ, s2: univ, exists: univ->univ] { 
106  w1 != w2 and w1 != w3 and w1 != w4 and w2 != w4 and w3 != 

w4 and  
107  w2 in w1.next and w3 in w2.*next and w4 in w3.next and 
108   (s2 in w1.exists) and (s2 in w2.exists) and (s2 in 

w3.exists) and (s2 in w4.exists) and 
109   not(s1 in w1.exists) and (s1 in w2.exists) and (s1 

in w3.exists) and not(s1 in w4.exists) 
110 } 
111  
112 //situation s1 starts at the same time as situation s2 
113 // s1 |-----------| 
114 // s2 |-----------------| 
115 pred starts[w1: World, w2: World, s1: univ, s2: univ, exists: 

univ->univ] { 
116  w1 != w2 and w2 in w1.next and 
117   not(s1 in w1.exists) and (s1 in w2.exists) and 

not(s2 in w1.exists) and (s2 in w2.exists) 
118 } 
119  
120 //situation s2 starts at the same time as situation s1 
121 // s2 |-----------| 
122 // s1 |-----------------| 
123 pred startedby[w1: World, w2: World, s1: univ, s2: univ, 

exists: univ->univ] { 
124  w1 != w2 and w2 in w1.next and 
125   not(s1 in w1.exists) and (s1 in w2.exists) and 

not(s2 in w1.exists) and (s2 in w2.exists) 
126 } 
127  
128 //situation s1 coincides with situation s2 
129 // s1 |-----------------| 
130 // s2 |-----------------| 
131 pred coincides[w1: World, w2: World, w3: World, w4:World, s1: 

univ, s2: univ, exists: univ->univ] { 
132  w1 != w2 and w1 != w3 and w1 != w4 and w2 != w4 and w3 != 

w4 and  
133  w2 in w1.next and w3 in w2.*next and w4 in w3.next and 
134   not(s1 in w1.exists) and (s1 in w2.exists) and (s1 

in w3.exists) and not(s1 in w4.exists) and 
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135   not(s2 in w1.exists) and (s2 in w2.exists) and (s2 
in w3.exists) and not(s2 in w4.exists) 

136 } 
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APPENDIX B - SIMULATION SCENARIOS FROM 

(SALES, 2014) 

In (SALES, 2014) the author proposes a number of simulation scenarios, which users 

can parameterize and combine in order to validate OntoUML models in Alloy. We 

replicate some of those scenarios here that are also interesting for situation type 

models validation (one should check the referred work if other scenarios are 

required, especially if dealing with dynamics of ontology classes, since we here focus 

only on situation types). With this we intend to provide a more efficient option to 

validate situation type models than running unconstrained simulations such as our 

example of section 5.2.4. The parameterization of a scenario in the provided 

sentences is identified by using brackets ([]). It has two uses: first, to indicate the 

need to specify a numeric value, like “at least [n] instances of class”. Second, it can 

detail alternative options, like “[every / no / at least / at most / exactly] worlds must 

have”. 

Next we present the scenarios. For each scenario we will provide a description of it 

and later a table containing a respective natural language sentence (as if demanded 

by the modeler) and alloy expression that a user should add to the Alloy specification 

(within either a fact, a predicate or in the run command before running the 

simulation). 

Linear Branch 

This scenario defines that every simulation will generate a linear world structure, i.e., 

a branch in which exactly one world does not have a successor and exactly one does 

not have a predecessor. All the others worlds must have a predecessor and a 

successor. This structure is how we commonly think of things, a linear sequence of 

events. Therefore, it relieves users from the cognitive work of understand the world 

order. 
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Table 7. Linear Branch - scenario description. 

Sentence 

I want to see a linear story. 

Alloy Expression  

one w:World | no w.next 

one w:World | no next.w 

 

Alternative Futures 

This scenario defines a world branch composed by a unique world that leads to 

alternative futures. It does not generate counterfactual or past worlds. Branches 

fitting this pattern are useful to analyze what can happen to an individual after a given 

setting. For instance, if a couple is married in a world, some possible futures are: they 

can either continue to be married, break up or even break up and marry other people. 

This can be used to check different behaviors of situation types from a single point in 

time. 

Table 8. Alternative Futures - scenario description. 

Sentence 

I want to see different outcomes for a same setting. 

Alloy Expression  

one w:World | no next.w && all w2:World | w!=w2 implies w2 in 

w.next 

 

Counterfactual Worlds 

Counterfactual worlds exemplify alternative possibilities in the past, i.e., alternative 

future worlds from a past world. This scenario is specified as a world branch that 

contains at least two distinct worlds, w1 and w2, which share a common past world 

and either w1 and w2 have a next world. This type of scenario is also useful to 

analyze alternative turn of events. 
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Table 9. Counterfactual Worlds - scenario description. 

Sentence 

I want to see that things may have taken a different outcome in the 

past. 

Alloy Expression  

some w1,w2:World | w1 != w2 && next.w1 = next.w2 && (some 

w1.next or some w2.next) 

 

Branch Depth 

The depth of a branch corresponds to the number of consecutive worlds it has, i.e., a 

set of worlds within a branch that characterize a linear branch by themselves. The 

Alternative Futures scenario implies an exact world depth of two, since all futures 

come directly from the same world. 

Table 10. Branch Depth - scenario description. 

Sentence 

I want to see a story composed [at least / at most / exactly] of [n] 

consecutive worlds. 

Alloy Expression  

-- minimum_world_depth 

some w1,w2:World | w1 != w2 && next.w1 = next.w2 && (some 

w1.next or some w2.next) 

-- maximum world depth 

no w1,w2,w3:World | w2 in w1.next and w3 in w2.next 

 

Content Constraints 

Content Constraint scenarios regard restricting the contents of worlds, instead of 

their branch structure. These scenarios are useful to help modelers customize the 

simulation and facilitate the generation of particular settings of entities. Moreover, it 

provides users with some upfront knowledge about the worlds that the Alloy Analyzer 
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will generate, facilitating the cognitive task of understanding the simulation results. 

Those scenarios are especially useful for validating situation types since one can 

manipulate the settings and check in whether circumstances a situation will be 

instantiated or not. 

Population Size 

The population of a world corresponds to the set of individuals that exist within that 

World, regardless if it is an entity (Person, Student), property (Marriage, Disease) or 

situation (Fever). The population size scenario allows imposing upper and/or lower 

bounds for the size of a population. For instance, one may instruct the analyzer to 

generate worlds with at least four and at most eight individuals. This scenario is 

mostly useful for validating situations if combined to check whether, for example, a 

situation of some type can be instantiated with a limited population size. 

Table 11. Population Size - scenario description. 

Sentence 

I want to see a story with [at least / at most / exactly] [n] individuals. 

Alloy Expression  

all w: World | #w.exists = n 

 

Population Variability 

This scenario regards defining the variability of world population throughout the 

branch. One can define it as constant, where every world contains the same 

individuals, although they can instantiate different types. Conversely, one can set it 

as variable, forcing the generation of branches composed by worlds with necessarily 

different populations. 

Although a constant population will always have the same size, it is not true that a 

variable population must have different sizes. Two populations are different if they do 

not have the same elements, and they can still do that having the same number of 
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individuals. Thus, one can combine this scenario with the population size without 

generating any inconsistencies. 

The main cognitive advantage of defining a constant population is that one does not 

need to be concerned with the dynamics of object creation and destruction. When 

inspecting a world, one can focus exclusively on the instantiation of situations that, 

for example, relies on instantiation of anti-rigid types. It is interesting to keep a 

variable situation population, since their instantiation means actually creation and 

destruction of situation objects. For this reason, one can optionally apply partial rules 

that restrict the population of entities (technically called objects, such as a Kind, a 

SubKind, Roles, etc.) and leave property classes (Relators, Qualities and Modes) 

and situation classes variable. Combining a complete variable population rule with 

partial constant population rule (only applied for entities, for example), necessarily 

changes the population as a whole but keeping the wanted population constant. 

Table 12 provides a straightforward natural language description of this scenario with 

the two customizable points: the first regarding if the population varies or not; the 

second regarding which part of the world population the modeler wants to apply the 

constraint – the whole population, only entities, properties, or situations. We provide 

the respective Alloy expression for each possible combination. 

Table 12. Population Variability - scenario description. 

Sentence 

I want to see a story where every moment [has the same / has 

different] [objects / properties / individuals]. 

Alloy Expression  

-- variable population 

all w1,w2:World | w2 != w1 implies w1.exists != w2.exists 

-- variable entity population 

all w1,w2:World | w2 != w1 implies w1.exists:>Object != 

w2.exists:>Object 

-- variable property population 

all w1,w2:World | w2 != w1 implies w1.exists:>Property != 

w2.exists:>Property 
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-- variable situation population 

all w1,w2:World | w2 != w1 implies w1.exists:>Situation != 

w2.exists:>Situation 

 

-- constant population 

all w1,w2:World | w1.exists = w2.exists 

-- constant entity population 

all w1,w2:World | w1.exists:>Object = w2.exists:>Object 

-- constant property population 

all w1,w2:World | w1.exists:>Property = w2.exists:>Property 

-- constant situation population 

all w1,w2:World | w1.exists:>Situation = w2.exists:>Situation 

 

Population Growth 

The Population Growth scenario defines constraints between worlds that are directly 

accessible. In the incremental scenario, no individual ceases to exist in the future. 

For instance, if x exists in world w0, then in all worlds that follow it, x must also exist. 

That does not exclude the possibility of new things being created in future worlds, but 

also does not require. 

Conversely, in decrement branches, we reverse this constraint: if an individual does 

not exists in the initial world of the branch (the one that has no predecessor) it will 

never come to life. From a world to its next individuals can keep existing, but none 

“comes to life”. Notice that there is intersection between incremental and 

decremental branches: the one where every world has the same individuals. Thus, 

specifying a scenario as both incremental and decremental is equivalent as defining 

it as constant. 

Table 13. Population Growth - scenario description. 

Sentence 

I want to see a story exclusively composed by individuals [coming to 

existence / ceasing to exist]. 
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Alloy Expression  

-- incremental_worlds 

all w1,w2:World | w2 in w1.next implies w1.exists in w2.exists 

-- decremental_worlds 

all w1,w2:World | w2 in w1.next implies w2.exists in w1.exists 

 

Extension Size 

The extension of a class in a given world corresponds to the set of individuals that 

are currently instantiating it. This scenario proposes the definition of lower and/or 

upper bounds to the size of a class’ extension. Users can choose to enforce this 

constraint in all worlds or just a subset of them. For instance, one can require that the 

class Person always have exactly three objects instantiating it in every world in the 

generated branch. 

One can check the possibility of instantiating situation types if some class remains 

with only a limited number of individuals, for example. In situation types that require 

more than one world to happen, for instance, this scenario is especially useful to 

check inconsistencies when the number of individuals remains the same (the 

constraint must be applied to every world). 

Table 14. Extension Size - scenario description. 

Sentence 

I want to see a story composed [only / at least / at most] by worlds with 

[at least / at most / exactly] [n] instances of [Class]. 

Alloy Expression  

all w: World | #w.Class = n 

 

Temporal Extension Size 

This scenario is very similar to Extension Size. The difference is that instead of 

defining the number of individuals that instantiate a class within a world, one can 

define the lower and/or upper bounds for the set containing all individuals that 
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instantiate it throughout time. For example, if one defines a temporal extension of 

three for the class Person, there can only be tree distinct individuals in all worlds that 

instantiate Person. Notice that this is not the sum of the class’ extension in each 

world, but the sum of distinct individuals. 

Table 15. Temporal Extension Size - scenario description. 

Sentence 

I want to see a story with [at least / at most / exactly] [n] instances of 

[Class]. 

Alloy Expression  

#World.Class = n 

 

Extension Variability 

In the Extension Variability scenario, instead of setting the variability nature of the 

entire world population, one sets it only on the extension of a class. On one hand, 

enforcing a variable extension for a class implies that the individuals that instantiate it 

will be different for any two worlds in every generated branch. On the other hand, a 

constant class extension means that the same set of individuals will instantiate it in 

every world of the branch. 

Requesting a variable extension for a rigid class or situations types implies a variable 

population, because extensions of rigid types and situations only change with 

instance creation or destruction. Thus, one cannot request variable extension for 

those classes and constant population. 

Table 16 provides the representation of this scenario in natural language, alongside 

with the Alloy expressions that characterize it. The first expression requires “Class” to 

have different extensions in all worlds, whilst the second requires all extensions to be 

equal. 
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Table 16. Extension Variability - scenario description. 

Sentence 

I want to see a story where the set of instances of [Class] [always / 

never] change from world to world. 

Alloy Expression  

-- variable extension 

all w1,w2:World | w2!=w1 implies w1.Class != w2.Class 

-- constant extension 

all w1,w2:World | w1.Class = w2.Class 
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