
 Universidade Federal do Espírito Santo

Bernardo Ferreira Bastos Braga

Modeling Stories for

Conceptual Model Validation

Vitória - ES, Brazil

 March, 2016

Universidade Federal do Espírito Santo

Bernardo Ferreira Bastos Braga

Modeling Stories for

Conceptual Model Validation

 Dissertação apresentada ao curso de Mes-

trado em Informática do Centro Tecnológico

da Universidade Federal do Espírito Santo,

como requisito parcial para obtenção do título

de Mestre em Informática. Orientador: Prof.

Dr. João Paulo Andrade Almeida

Vitória - ES, Brazil

 March, 2016

Acknowledgements

First of all, I’d like to thank my family for all the love and support they gave me.

My mother Ruth and her husband Joaõ, my father Antonio Carlos and his wife Rozeli

and my brother Pedro. They have been with me most of my life and their involvement

in my upbringing was essential to defining my character, specially my love for all types

of information and knowledge. Likewise, my friends have immensely helped me over-

coming my troubles and limitations and will probably never realize how important they

have been and how much they have affected me. I’ve had the pleasure of loving large

number of friends through my life and listing the names of a few seems unfair to me.

I’m also grateful to my peers in NEMO, friends and teachers from the Federal Uni-

versity of Espiŕito Santo for their participation in my academic experience. In particular,

I’d like to thank my advisor and friend Joaõ Paulo Andrade Almeida for everything

we’ve been through. He is a standard for excellence and competence and my role model

for being a competent researcher. I also must mention Giancarlo Guizzardi for enlight-

ening me with many fruitful discussions, his work and for being an endless source of

related work.

Finally, I thank and dedicate this work to my loving fiancée Nayara Tognere. She

was there for me through the worst in the journey of writing this thesis; through the

stress and despair, she supported me and kept me going.

This work was supported through a grant by the Brazilian Research Funding Agency

CNPq.

Table of Contents

1. Introduction .. 13

1.1. Motivation .. 13

1.2. Objectives ... 15

1.3. Approach .. 16

1.4. Technical arrangement .. 18

1.5. Structure ... 20

2. Conceptual Modeling background .. 22

2.1. Introduction .. 22

2.2. OntoUML .. 24

2.2.1. Individuals and Universals .. 26

2.2.2. Dependence .. 26

2.2.3. Moments and Moment Universals ... 27

2.2.4. Rigidity .. 27

2.3. Model Validation ... 28

2.4. OntoUML Conceptual Model validation: Previous approach and opportunities

for improvement ... 30

2.5. Challenges for Conceptual Model validation ... 33

2.6. Concluding remarks ... 35

3. Storytelling .. 36

3.1. Introduction .. 36

3.2. An illustration of the role of storytelling in knowledge transfer 37

3.3. The study of Storytelling: psychological aspects and story patterns 39

3.4. Stories as tools for thinking .. 44

3.5. Concluding remarks ... 47

4. Authoring Natural Language Narratives for Conceptual Model validation . 48

4.1. Introduction .. 48

4.2. Scenarios for Natural Language Narrative authoring 49

4.3. Running Example: Software Configuration Model ... 50

4.4. Natural Language Narrative for the Software Configuration Management model

 52

4.5. Concluding remarks ... 54

5. Formal Story Specification and transformation .. 56

5.1. Introduction .. 56

5.2. Scenarios for creating Formal Story Specifications .. 57

5.3. Formal Story Specification Language .. 58

5.4. Running Example ... 59

5.5. Story Modeler ... 63

5.6. Formal Story Specification transformation to Alloy ... 64

5.7. Generating Formal Narratives with Formal Story Specifications 74

5.8. Concluding remarks ... 75

6. Iterative Validation using Formal Narratives .. 76

6.1. Introduction .. 76

6.2. Iterative procedure .. 77

6.3. Scope concerns for generating Formal Narratives ... 78

6.4. Applying the method to the running example ... 80

6.5. Revisiting Formal Narrative generation for the running example 92

6.6. Concluding remarks ... 96

7. Related Work .. 98

7.1. OntoUML model assessment approaches ... 98

7.2. Storytelling in Computer Science .. 99

8. Final Considerations .. 103

8.1. Future Work .. 105

8.1.1. Empiric evaluation of the approach.. 105

8.1.2. Coverage of UFO-B and UFO-C ... 106

8.1.3. Thought Experiments in Conceptual Modeling .. 106

8.1.4. Story Patterns ... 107

8.1.5. Applying the approach to systematic model testing 107

8.1.6. Additional software support ... 107

9. References .. 110

Appendix A - Alloy ... 113

Appendix B – Scope-reducing OntoUML2Alloy model transformation variation

 118

Appendix C – Applying method to Bank Model .. 122

a) – The model... 122

b) – Overviewing Natural Language Narrative .. 123

c) – Model Assessment .. 124

d) – Conclusion .. 135

Appendix D – Applying method to The Inventory Management System model

 136

a) – The model... 136

b) – Overviewing Natural Language Narrative .. 137

c) – Model assessment .. 139

d) – Conclusion .. 146

Appendix E – Applying the method to OntoEmerge 148

a) – Introduction.. 148

b) – Risk and Planned Activities diagram .. 149

c) – Installation diagram .. 152

d) – Conclusion .. 155

Table of figures

Fig. 1. An overview of the approach .. 17

Fig. 2. Technical arrangement of the previous approach ... 19

Fig. 3. Technical arrangement of the current approach .. 20

Fig. 4 A Conceptual Model represents a Domain Conceptualization 23

Fig. 5. A fragment of UFO showing ontological distinctions among Substantial

Universals ... 25

Fig. 6. Example OntoUML model .. 25

Fig. 7. An example instance diagram: Bernardo studies at Móbile 26

Fig. 8 Model assessment involves comparing the worlds states implied by a model to

the domain abstractions in the mind of the person assessing them. 29

Fig. 9 Reading (decoding) a model allows one to understand what is implied by the

model .. 30

Fig. 10 A modeler assesses if the World States implied by the model are valid according

to his domain abstractions .. 30

Fig. 11 OntoUML2Alloy: a model transformation (T) allows the simulation of the

conceptual model .. 31

Fig. 12. Simulation that has irrelevant elements (Fred and Mary) in the second world 32

Fig. 13 Cooperation between Modeler and Domain Expert to validate a conceptual

model .. 34

Fig. 14. Freytag’s pyramid .. 40

Fig. 15. The hero’s journey [81] ... 42

Fig. 16. A model for Software Configuration Management extracted from [14] 52

Fig. 17. Meta-model of the Formal Story Specification language 59

Fig. 18. The Formal Story Specification interface ... 64

Fig. 19.Formal Narrative generated with no scope control .. 75

Fig. 20. Diagram legend ... 81

Fig. 21. First Formal Story Specification ... 81

Fig. 22. Modified model with relaxed cardinalities. Changed cardinalities are circled . 84

Fig. 23. Modified model including new classes (“FirstCheckIn”, “FirstVersion” and

“ModificationCheckIn”) ... 84

Fig. 24. First successful attempt at iterative simulation “Thomas is a developer at

Ontosoft and commits a process diagram for the first time” 85

Fig. 25. Formal Story adding John and a checkout .. 86

Fig. 26. World0 of the first simulation of John’s checkout formal story “John checks in

the first version of the diagram selected by Thomas” .. 87

Fig. 27. World1 of the first simulation of John’s checkout formal story “John makes a

Change Request for the Diagram version 1, evaluates the request and checks out

the diagram” ... 88

Fig. 28. Modified model with Copy as a mode of Checked Out Version 89

Fig. 29. Modified model including ConsumedCopy .. 90

Fig. 30. Modified model removing Copy, including ModifiedVersion 90

Fig. 31. World0 – Thomas selects for configuration and checks in the Buying Process

Diagram .. 93

Fig. 32. World1 –Fred files a change request for DiagramVersion1 94

Fig. 33. World2 –Mary evaluates the request ... 94

Fig. 34. World3 –John Checks out the diagram to implement the change 95

Fig. 35. World4 –John modifies the copy .. 95

Fig. 36. World5 –John checks in the modified copy .. 96

Fig. 37. World6 –Mary verifies change .. 96

Fig. 38. Student enrollment / Bank client model .. 120

Fig. 39. Bank Model ... 122

Fig. 40.First Formal Story Specification for the Bank Model 124

Fig. 41.First Formal Narrative for the Bank Model ... 125

Fig. 42.Second Formal Story Specification for the Bank Model: John checks his balance

on his mobile phone .. 126

Fig. 43.Second story highlighted with unsatisfiability core markup (in red). 127

Fig. 44.First World of the second story. Unspecified ATM and Withdrawn are required

to satisfy the story ... 128

Fig. 45.Second World of the second story.. 128

Fig. 46. Changing the stereotype of the classes fixes the problems found. 129

Fig. 47. Changing the cardinality of the relations fixes the problems found. 130

Fig. 48. Formal Narrative showing an account that cannot be accessed or withdrawn

from .. 130

Fig. 49. Removing Accessed Account and Withdrawn account. 131

Fig. 50. Third formal story specification: adapting the second formal story for the model

modifications .. 131

Fig. 51. First world of the third story. The elements specified in the Formal Story

Specification are enough to satisfy the Formal Narrative 132

Fig. 52. Second World of the third story. ... 132

Fig. 53. Changing the stereotype for Inactive Account and Active Account from Relator

to Phase. .. 133

Fig. 54. Fourth story specification. Added a world in the beginning to represent the

starting point and a world in the end, to represent the moment John makes the

account inactive. ... 133

Fig. 55. First world of the fourth story: John has not yet accessed his account on his

mobile phone. ... 133

Fig. 56. Second world of the fourth story: John accesses his account on his mobile

phone .. 134

Fig. 57. Third world of the fourth story: John withdraws money from his account using

an ATM... 134

Fig. 58. Fourth world of the fourth story: John checks on his mobile phone that his

account is indeed inactive. .. 135

Fig. 59. A model for Inventory Management System. ... 136

Fig. 60. Adapted Inventory Management System model ... 139

Fig. 61. First Formal Story Specification for the Inventory Management System model

 .. 140

Fig. 62. First World of the first Formal Narrative for the Inventory Management System

model. Mark has a contract with a store. .. 140

Fig. 63. Second Formal Story Specification for the Inventory Management System

model .. 141

Fig. 64. First World of the second Formal Narrative for the Inventory Management

System model. Mark has a contract with a store and the Bald Man is there. 141

Fig. 65. Second World of the second Formal Narrative for the Inventory Management

System model. Mark is selling an Item to the Bald Man but the Bald Man is also an

employee of the same Store. ... 141

Fig. 66. Third Formal Story Specification for the Inventory System Management model.

 .. 142

Fig. 67. First World of the third Formal Narrative for the Inventory Management

System model. .. 142

Fig. 68. Second World of the third Formal Narrative for the Inventory Management

System model. Mark is selling an Item to the Bald Man. 142

Fig. 69. Fourth Formal Narrative for the Inventory Management System model. Mark is

selling an Item to the Bald Man. ... 143

Fig. 70. First World of the fourth Formal Narrative for the Inventory Management

System model. Mark is a seller in the office supply store. 143

Fig. 71. Second World of the fourth Formal Narrative for the Inventory Management

System model. Mark is selling an Item to the Bald Man. 143

Fig. 72. Third World of the fourth Formal Narrative for the Inventory Management

System model. Mark adds an eraser to the receipt. .. 143

Fig. 73. Fourth World of the fourth Formal Narrative for the Inventory Management

System model. Mark cancels the eraser. ... 144

Fig. 74. Formal Story Specification to show a situation where a Receipt Item could be

part of two different Receipts in different points in time 145

Fig. 75. First World of the Formal Narrative showing that the same Receipt Item could

be used in two different Receipts. Object3 is memberOf Property2 145

Fig. 76. Second World of the Formal Narrative showing that the same Receipt Item

could be used in two different Receipts. Object3 is memberOf Property1 145

Fig. 77. Adapting the model by adding {essential, inseparable} to the parthood

relationship. .. 146

Fig. 78. Adapting the model changing receipt item to Mode 146

Fig. 79. Risk and Planned Activities diagram before the modifications 149

Fig. 80. Risk and Planned Activities diagram after the modifications 152

Fig. 81. Installation diagram before the modifications ... 153

Fig. 82. Installation diagram after the modifications.. 154

Abstract

Conceptual modeling is a challenging activity and assessing the quality of conceptual mod-

els is key to ensure that they may be used effectively as a basis for understanding, agreement

and construction of information systems.

A model can be assessed for different types of model quality and in this work we focus on

the accuracy of an ontology-based conceptual model in characterizing the conceptualization it is

supposed to represent. Validating the accuracy of a model involves understanding the admissi-

ble worlds states implied by the model and comparing that to the world states deemed admissi-

ble in the domain conceptualization.

 Previous efforts towards ontology-based conceptual model validation have created a model

simulator that allows modelers to be confronted with the consequences of their modeling deci-

sions. The model simulator generates sequences of snapshots of model instances, revealing the

dynamics of object creation, change and destruction. Even though these efforts contribute to

model assessment, they can be hard to understand and use and this work improves the approach

using a mix of informal and formal storytelling.

Stories have always been used as means of communicating complex affairs and we argue

that they may be used effectively to assess models and reveal modeling decisions. This disserta-

tion proposes an approach to assess conceptual models by creating narratives about a subject

domain. These narratives exemplify how concepts of the conceptual model are employed in

context. To use them in the existing model simulator, the natural language narratives are formal-

ized as abstract stories using a specification language we define. These abstract stories are then

used to guide the model simulation, generating instance diagrams.

The natural language narrative is used to provide an intuitive understanding of the meaning

of concepts. Comparing Natural Language Narratives to object diagrams that show the instantia-

tion of the formal model allows one to understand how concepts are formalized. Contrasting

these guided simulations with the intended conceptualization is the basis for model assessment

in this approach.

Resumo

Modelagem Conceitual é uma atividade desafiadora e avaliar a qualidade de modelos con-

ceituais é chave para garantir que possam ser usados efetivamente como base para compreensão,

acordo e desenvolvimento de sistemas de informação. Modelos podem ser avaliados com rela-

ção a diferentes critérios de qualidade e neste trabalho focamos na acurácia de modelos concei-

tuais baseados em ontologias em caracterizar as conceituações que visam representar. Validar a

acurácia de um modelo envolve entender os mundos admissíveis que são implícitos a ele e sua

correspondência com os mundos admissíveis de acordo com uma conceituação de domínio.

Esforços anteriores para validação de modelos conceituais baseados em ontologia deram

origem a um simulador de modelos que permite a modeladores ser confrontado com as conse-

quências de suas decisões de modelagem. Esse simulador de modelos gera sequências de snap-

shots da instanciação de modelos, revelando a dinâmica da criação, mudança e destruição de

objetos. Ainda que esses esforços contribuam para avaliação de modelos, eles podem ser difí-

ceis de compreender e usar e este trabalho melhora a abordagem existente usando um misto de

histórias formais e informais.

Histórias sempre foram usadas como meio de comunicar ideias complexas e nós argumen-

tamos que podem ser usadas efetivamente para avaliar modelos e revelar escolhas de modela-

gem. Esta dissertação propõe uma abordagem para avaliar modelos conceituais criando narrati-

vas a respeito de um domínio de discurso. Essas narrativas exemplificam como conceitos de um

modelo conceitual são empregados em seu contexto real. Para usá-las no simulador de modelos

existente, as narrativas em linguagem natural são formalizadas como histórias abstratas usando

a linguagem de especificação que definimos e, então, usadas para restringir a simulação de mo-

delos, guiando o simulador para que gere diagramas de instância que correspondem à narrativa.

A narrativa em linguagem natural permite um entendimento intuitivo do significado dos

conceitos. Comparar essas narrativas a diagramas de objeto que mostram a instanciação do mo-

delo formal permite compreender como os conceitos são formalizados. Contrastar essas simula-

ções com as conceituações pretendidas é a base da avaliação de modelos nessa abordagem.

1. Introduction

“You can’t do much carpentry with your bare hands
and you can’t do much thinking with your bare brain.”

-Bo Dahlbom

1.1. Motivation

In his 1972 ACM Turing Award Lecture entitled “The Humble Programmer”, E. W.

Dijkstra [27] discussed the sheer complexity one has to deal with when programming

large computer systems. His article argues that the increase in computer processing

power leads to an increase in the expectation of the use of such power; which leads to

an increase in the complexity of the programming task to meet such expectations.

According to Dijkstra, we as computer scientists should take a humble position to-

wards such complexity, accounting for human’s limited cognitive capacities and using

whatever possible resources to deal with such complexity. He opened the eyes of theo-

rists and practitioners to the fact that programming computers is an extremely complex

task which should not be taken lightly. Although his lecture was explicitly addressed to

the act of computer programming, we may read into his words more broadly and see

that the act of codification, or the representation of ideas is generally a very difficult

task. So, his plea to humility can be applied in many different levels when we regard

transferring information and transforming it into physical or symbolic out-of-mind rep-

resentation. In particular, we believe his plea to humility should also be applied to the

task of conceptual modeling.

In a broad perspective, conceptual modeling has been characterized as “the activity

of formally describing some aspects of the physical and social world around us for pur-

poses of understanding and communication” [49]. The resulting formal descriptions are

called conceptual models and are built using artificial modeling languages. The quality

of these formal descriptions is the main object of this work.

We are particularly interested in assessing the correspondence between the concep-

tual model and the subject domain it intends to represent, which we call here accuracy

(following Guarino [42]). Accuracy is particularly important if conceptual models are to

be used as a basis for the construction of an information system or for the definition of

controlled vocabularies for semantic interoperability.

As argued in [49], the quality of a conceptual model depends partly on the support

provided by the modeling language in which it is defined. This concern has justified the

revision of a portion of the UML into the OntoUML conceptual modeling language

[49]. This revision enables modelers to make finer-grained distinctions between, among

other things, different types of classes according to the UFO foundational ontology [49],

leading to what we call here ontology-based conceptual modeling. The objective of on-

tology-based conceptual modeling is to better represent a conceptualization of a subject

matter.

While the quality of the conceptual modeling language employed is important, con-

ceptual modeling itself remains subject to human error and the modeler’s intention may

not be properly reflected in the models. As Dijkstra proclaimed, this act of externalizing

knowledge is hard and should not be taken lightly. This means that models should be

subject to assessment, to ensure they may be effectively put to use. Assessing model

quality is a challenging activity in itself, in particular assessing whether the model cor-

responds to the modeler’s original intention, and whether it reflects accurately the con-

ceptualization of a subject matter expert. Since subject matter experts often do not know

the modeling language and modelers often know little or nothing beforehand about the

subject matter, model assessment typically involves communication between modelers

and subject matter experts. Their different backgrounds create an important communica-

tion gap that needs to be addressed during model assessment.

Conceptual model assessment can be approached from various perspectives, which

motivated efforts into building tools [5, 8, 10, 45] and techniques [9, 70] for this pur-

pose. These include automatic syntax verification, anti-pattern detection, designing cog-

nitively efficient diagrams and model simulation for OntoUML models.

Each of these approaches contributes to model quality in a different way. Syntax

verification [6,18] can show if the language’s syntactic rules are obeyed and point to

where they have been violated, but is not suitable to show whether the intentions of the

modeler are correctly represented. Anti-pattern detection [68, 69] scans the model for

configurations that are error-prone and offers a wizard-type interface to help decide if

the model is correct or if it should be changed. In the latter case, it offers automatic cor-

rection of the model, including OCL [46] rules. While that helps detect errors and vali-

date the model, the errors found are structural in nature i.e. with a focus on the use of

the language constructs. Also, they do not help in improving coverage. Cognitively ef-

fective diagram design [9] helps people use the diagrams, improving their perception of

the elements involved but is neutral with regard to content. Model simulation [8, 10, 45,

46, 68] allows the observation of sequences of snapshots of model instances, revealing

the dynamics of object creation, classification, association and destruction. This con-

fronts the modeler with the implications of modeling choices and allows them to uncov-

er mistakes or gain confidence in the quality of conceptual models. Model simulation is

the approach we address and improve in this work.

In our previous approach for model simulation [8, 10, 45, 46, 68], an ontology-based

conceptual model is translated to the Alloy logic-based language [54]. The resulting

Alloy specification is fed into the Alloy Analyzer which then presents valid instances of

the model (amounting to what could be considered a model “simulator”). While this

approach has shown to be valuable in model assessment, the generation of model in-

stances in this approach has so far been based purely on a random strategy, which is

internal to the Alloy Analyzer. This means that the modeler cannot control the valida-

tion process. Even though this is useful to detect problems in the conceptual model (e.g.,

“edge cases” [88]), the simulation still has an overwhelmingly large number of possible

instantiations. In order to control the model assessment process, we explore in this work

a technique that allows the modeler to guide the simulation through storytelling. With

this approach, we expect to help validation activities by providing structure to justify

modeling decisions and act as a medium for communication between modelers and do-

main experts in validation sessions. This addresses both the communication gap be-

tween subject matter experts that do not understand the modeling language and the limi-

tations of the current approach.

1.2. Objectives

This work has the objective of facilitating ontology-based conceptual model valida-

tion with the use of storytelling. We define a method of creating and using stories and

narratives, both in natural language and using formal specifications. The stories provide

structure to justify modeling decisions and act as a medium for communication between

modelers and domain experts.

The following specific objectives are pursued:

- the definition of a specification language to capture stories formally;

- the extension of the current model simulation approach, in order to allow the use

of story specifications to guide the simulation;

- the development of a tool for story specification and transformation; and,

- the demonstration of the technique in the assessment of OntoUML models.

1.3. Approach

In our approach we consider stories and conceptual models as complementary

communication artifacts. Our approach supports model validation by using informal

Natural Language Narratives that exemplify possible instantiations of the model and

Formal Story Specifications that constrain the model simulation. Natural Language Nar-

ratives can be understood regardless of modeling language expertise and can be used to

illustrate a model simulation in terms that are easy to understand. Formal Story Specifi-

cations bridge the informal Natural Language Narrative to the formal elements of a

model, constraining the simulation to be the formal counterpart of the Natural Language

Narrative. An instance diagram resulting from a simulation that fits such criteria is

called here a Formal Narrative.

According to [26], “there is little doubt that narrative thought developed earlier in

human history than scientific and logical thought”. The ability to narrate gives us the

possibility to reenact real-world events eliciting the imagination of the listeners, giving

them experiences that they never had themselves. Early in the history of mankind, oral

storytelling culture produced collective, standardized narrative versions of reality, par-

ticularly of past events; having become what we call the dominant “myths” of a society.

Myths reflect the earliest form of integrative thought. In contrast with myths, theories

are “very large, externally nested cultural products” which only emerged much later, as

our culture allowed the externalization of memory [26] (e.g. writing).

Like storytelling, conceptual modeling is also used for transferring knowledge. Nev-

ertheless, the concrete representation of this knowledge takes a very different form. Alt-

hough a conceptual model also represents a view of some subject matter, it does so in a

very structured manner, using a formal language to describe the categories of entities

that are assumed to exist in a subject matter and how these entities relate to each other.

Our approach helps to validate conceptual models combining these two complemen-

tary means of communication (storytelling and conceptual modeling). We aim to lever-

age the value of storytelling as means for recording and transferring knowledge, not

substituting but enriching ontology-based conceptual modeling. This approach builds on

existing infrastructure (i.e. extends the OntoUML2Alloy model assessment approach)

by constraining the simulations using Formal Story Specifications (roughly, a simula-

tion specification). This allows the user to have a finer control over the simulation, turn-

ing it into a tool to conduct intentional investigations in validation activities, instead of

relying on random simulations.

Notice there are two facets of our approach. One is centered on the artifacts: manip-

ulating the elements of the conceptual model, creating specifications and narratives. The

other is mental: the stories act as tools for thinking, reducing the cognitive effort of

mentally manipulating the symbolic elements of the conceptualization.

In Fig. 1 we summarize our approach, showing three of its elements: (i) the Natural

Language Narrative, (ii) the Formal Story Specification, which uses elements of the

conceptual model and (iii) the Formal Narratives (roughly a simulated story).

Fig. 1. An overview of the approach

In the first step, natural language narratives about the subject matter are recorded.

Natural Language Narratives are the things that we typically refer to when using the

words “narrative” or “story” in an informal context: a piece of text, a narration or a

movie, for example. To create natural language narratives, we can draw from the litera-

ture about patterns for plots and narrative structure (reviewed in detail in chapter 3) and

thought experiments in Science and Philosophy in general. In this approach, subject

matter experts and modelers create Natural Language Narratives using the concepts that

appear in the conceptual model.

In the second step of the approach, the modeler translates these Natural Language

Narratives into Formal Story Specifications using a specification language we defined

specifically for this purpose. In a Formal Story Specification, elements from the Natural

Language Narratives (such as characters and relationships) are partially formalized re-

garding their semantic content, including the specification of which classes of the con-

ceptual model they instantiate.

In the third step of the approach, these Formal Story Specifications (which partially

define valid instantiations of the model) are translated to Alloy predicates, which are

used to constrain the Alloy model generated by the OntoUML2Alloy model transfor-

mation (an Alloy specification that corresponds to the OntoUML conceptual model).

Running such model results in what we call a Formal Narrative (a.k.a. model simula-

tion).

By complementing a Natural Language Narrative with a Formal Narrative, one can

exemplify how the domain was modeled. That means modelers may assess whether

their intentions were correctly expressed in the model by exemplifying model features

to validate them. Also, the presentation of a Formal Narrative along with a Natural Lan-

guage Narrative allows the audience to assess the content of a model regardless of their

knowledge of the modeling language: relating which elements of a Natural Language

Narrative correspond to formalized knowledge. In particular, we argue that this helps

reveal to subject matter experts the consequences of a theory specified in a conceptual

model, lifting the burden of learning the conceptual modeling language. In other words,

this helps to bridge the communication between modelers and subject matter experts.

We focus on a posteriori assessment of conceptual models, i.e., we assume the as-

sessment approach is applied into existing OntoUML models. In order to demonstrate

the applicability of the approach, we assess some previously published OntoUML mod-

els. In Chapters 4, 5 and 6 we use a single model to explain the approach. We show the

additional application of the method to other models in Appendix C, Appendix D and

Appendix E.

1.4. Technical arrangement

We assume models are defined using the ontologically well-founded OntoUML pro-

file [47], which provides a clear semantics for a fragment of UML class diagrams, and

is supported by modeling tools such as OLED [47] and Menthor Editor1 . Using the ex-

isting functionality in these tools, OntoUML models can be transformed into Alloy

specifications, which are in turn fed to the Alloy Analyzer to generate simulations. This

arrangement of tools is shown in Fig. 2.

Fig. 2. Technical arrangement of the previous approach

The approach defined in this work extends this arrangement (Fig. 3), introducing the

Story Modeler application that manipulates Formal Story Specifications. A meta-model

for the Formal Story Specification Language is provided using the Eclipse Modeling

Framework (EMF), capturing the language’s abstract syntax. The meta-model refer-

ences elements of the OntoUML meta-model; therefore a Formal Story Specification is

defined referring to an OntoUML model, which means the application depends on a

predefined OntoUML model (see Fig. 3). The Story Modeler provides an interface to

create and manipulate formal stories in the Formal Story Specification Language, serial-

izing them into a Formal Story file (Fig. 3). Once a Formal Story Specification is de-

fined, the application may generate Alloy predicates that complement the Alloy models

generated by the Menthor Editor. These predicates constrain the Alloy Analyzer to gen-

erate Formal Narratives that respect the specified Formal Story Specification.

1 www.menthor.net

Fig. 3. Technical arrangement of the current approach

1.5. Structure

The rest of this work is organized as follows: in chapter 2, we review Conceptual

Modeling, OntoUML (the conceptual model language we have adopted for this work),

and the state of the art of OntoUML conceptual model assessment. In chapter 3, we re-

view storytelling and how it can be used to transfer knowledge about reality. In chapter

4, we discuss the development of Natural Language Narratives for our approach, pre-

senting our running example and providing a narrative for it. In chapter 5, we present

our approach to creating Formal Story Specifications, building up on our running exam-

ple using the Natural Language Narrative we developed in the previous section as a ba-

sis to create a Formal Story Specification. We also discuss in chapter 5 our Story Speci-

fication Language and how we may transform models in this language to Alloy. In

chapter 6, we introduce an iterative assessment technique and exemplify it by simulat-

ing our running example model and modifying it. In chapter 7 we discuss some related

work, and, finally, in chapter 8, we present conclusions and topics for further investiga-

tion.

Some additional content is included in annexes for further reference. Appendix A

offers a minimal review of Alloy for those unfamiliar with the language, covering only

the aspects of the language relevant to this work. Appendix B details how the existing

model transformation from OntoUML to Alloy can be modified for better performance.

Appendix C presents some existing thought experiments used to discuss conceptualiza-

tions and their codifications in OntoUML models. Appendixes C-F discuss further ap-

plications of the method on different models. Appendix C is an application of the meth-

od to a Bank model developed by a student in an undergraduate course assignment. Ap-

pendix D is an application of the method to a fragment of an Inventory Management

model developed by a professional for a company. Appendix E is an application of the

method to a published model for the generation of Emergency Plans, exemplifying the

benefits of using Natural Language Narratives alone.

2. Conceptual Modeling background

“We are in sum, incomplete or unfinished animals who
complete or finish ourselves through culture.”

-Clifford Geertz (1973)

Since this work builds up on previous developments on ontology-based conceptual

modeling, we review in this chapter the aspects of these developments that are im-

portant to understand the rest of this work, including key notions, the adopted modeling

language and existing validation approaches. We also identify the opportunities for im-

provements which are the object of this work.

2.1. Introduction

A Conceptual Model is a communication artifact. It holds information about the way

someone or a community understands a subject matter. In other words, Conceptual

Models are symbolic representations of domain conceptualizations of real-world phe-

nomena2 (Fig. 4). A domain conceptualization is the set of concepts used to articulate

about a phenomenon. For example, in the domain of genealogy, the domain conceptual-

ization could include the concepts of Person, Father, Mother, Offspring, being the father

of someone and being the mother of someone. An articulation about a phenomenon is

called a domain abstraction, which is in accordance to (i.e. uses the concepts from) a

domain conceptualization (Fig. 4) e.g. “John and Mary had a daughter called Joanna” is

a domain abstraction that uses the domain conceptualization mentioned above. Domain

conceptualizations and domain abstractions are entities that exist only in the mind of

someone who perceives and understands reality in some way. In order to externalize

this, modelers represent the invariants of domain abstraction using a formal language

resulting in a conceptual model. The objective is to describe the categories of entities

that are assumed to exist in the subject domain and how these entities relate to each oth-

er.

2 . Naturally, a conceptual model can never be perfect. First of all, the person is unable to perceive the phenomena in

its entirety, and therefore his/her abstractions are incomplete. Second, the expressivity of the conceptual model is

constrained by the conceptual modeling language used to create it and by the ability of the modeler using it.

Therefore, the conceptual model is an incomplete (but nevertheless useful) representation of a domain abstraction,

which in turn is an incomplete understanding of a phenomena.

Fig. 4 A Conceptual Model represents a Domain Conceptualization

In this work we are particularly interested in the accuracy [42] of conceptual mod-

els. As argued by Guarino in [42], there are “two possible ways an ontology can get

closer to a conceptualization: by developing a richer axiomatization, and by adopting a

richer domain and/or a richer set of relevant conceptual relations”. In other words, a

model can have improved accuracy by improving its precision or its coverage of the

domain.

One way of developing an accurate model is by choosing an appropriate modeling

language. As argued in [49], the quality of a conceptual model depends partly on the

support provided by the modeling language in which it is defined. Therefore, in section

2.2 we review a language that is ontologically well-founded, and therefore suited to

faithfully representing domain abstractions. That means the building blocks used to code

the domain conceptualization (Fig. 4) are closely related to the notions humans use to

conceptualize about reality.

While the quality of the conceptual modeling language employed is important, con-

ceptual modeling itself remains subject to human error and the modeler’s intention may

not be properly reflected in the models. Validation is “the process of determining the

degree to which a model is an accurate representation of the real-world from the per-

spective of the intended uses of the model” [25]. We discuss model validation in section

2.3. In section 2.4 we discuss validation for OntoUML models in particular. Finally in

section 2.5 we discuss challenges in conceptual model validation that can be addressed

by incorporating storytelling in the existing OntoUML model validation approach.

2.2. OntoUML

In this section we review OntoUML, an ontologically well founded language to cre-

ate conceptual models that are suited to represent domain conceptualizations accurately.

The section is elaborated to overview a fragment of OntoUML language to those unfa-

miliar with the language. Detailed definitions of OntoUML can be found elsewhere,

such as in [5], [6], [49] and [86] (in Portuguese).

We are motivated to use this language because of the arguments put forward in [49]

that the language is ontologically well-founded and therefore adequate to truthfully rep-

resenting real-world phenomena. The OntoUML conceptual modeling language is an

extension of UML with specific concerns for the semantics behind the modeling con-

structs. UML is the de facto standard for conceptual modeling activities and such wide-

spread use has revealed that the language lacks a precise definition of its formal seman-

tics [48]. In [49] Guizzardi argues that in order to model conceptualizations of reality, a

language should be based on foundational ontologies [48]. Foundational ontologies de-

scribe very general concepts like “space, time, matter, object, event, action, etc., which

are independent of a particular problem or domain” [42]. In particular, OntoUML it is

founded on the Unified Foundational Ontology (UFO) [49]. The stereotypes offered in

OntoUML allow the construction of ontologically well-founded conceptual models,

meaning they express precise semantics corresponding to the categories in the founda-

tional ontology (UFO). Fig. 5. shows (in gray) some ontological distinctions of UFO

that are realized as stereotypes for classes in OntoUML. Stereotyped classes are the

building blocks of an OntoUML model.

Fig. 5. A fragment of UFO showing ontological distinctions among Substantial Universals

Fig. 6 exemplifies a model specification using OntoUML. This model will be used

later on this chapter to discuss the distinctions underlying the language. The model de-

fines Enrollments between Students and Schools, as well as some details about the Or-

ganizations that can play the role of School and the Persons who can play the role of

Students. Both Persons and Organizations are Agents, but while any Organization is

Insurable, only Living Persons are Insurable. Naturally, any Person which is not Living

is Deceased. Finally, any Person is either a Child, Teenager or Adult.

Fig. 6. Example OntoUML model

2.2.1. Individuals and Universals

In UFO, there is a distinction between Universals and Individuals (roughly, types

and instances). Universals are coded in a conceptual model, while the Individuals that

are classified by them are not. While the conceptual model represents a domain concep-

tualization, the possible configurations of individuals (instances of such conceptual

model) are called World States. World States are, therefore, the symbolic counterpart of

domain abstractions.

Individuals are entities that exist in reality possessing a unique identity, and Univer-

sals, conversely, are space-time independent pattern of features, which can be realized

in a number of different Individuals [50]. For example, a particular person (such Barack

Obama or Dilma Rousseff), would be an Individual, while the concept of Person would

be a Universal.

World States consist of individuals (instances of monadic universals) and the rela-

tions between them; each individual classified by some (one or more) Universals.

For example, consider the World State depicted in Fig. 7 (an informal representation

of a possible instantiation of the model presented in Fig. 6) where a person, Bernardo,

studies at Móbile, a school. Bernardo and Móbile are individuals and instantiate Monad-

ic Universals such as Person, Man, Student, Organization and School. Also, a relator

holds between them and such relator is also classified by (instantiates) Universals, such

as Enrollment.

Fig. 7. An example instance diagram: Bernardo studies at Móbile

2.2.2. Dependence

Dependence is an extraordinarily common and varied phenomenon and OntoUML

language offers constructs that reflect distinctions in types of dependence. For example,

an enrollment depends on the student and on the school in a way which is not symmet-

rical: an enrollment can only exist as long as the participants exist, but the same cannot

be said conversely. Moreover, for a person to be a student, he must be enrolled in (and

therefore depends on) some school and not on a specific school, while an enrollment

depends on specific individuals to exist: if you change the person or the school, it can-

not be said to be the same enrollment (the identity of the enrollment is connected to the

participants). This exposes a fundamental distinction between two types of dependency

relation: generic dependence and specific dependence. The student depends generically

on some school to be a student, a generic dependence; Enrollment#03 depends specifi-

cally on Bernardo and Móbile, constituting a specific dependence.

A particular yet very important type of specific dependence is existential dependen-

cy. Existential dependency means an individual depends necessarily (in a modal sense)

on some specific individual to exist, e.g., Bernardo depends existentially on his brain;

there is no situation where he can maintain his identity without having his specific brain

as a part of him. Existentially-dependent relations include characterization, mediation

and essential or inseparable parthood. [49] We refrain from detailing these types of re-

lations for the sake of conciseness.

2.2.3. Moments and Moment Universals

A special kind of existentially-dependent individual is called a moment, derived

from the German word Momente from the writings of Husserl and denotes what is

called also called a “trope”, “abstract individual” or “property instance”. Moments can

be understood as objectified properties of an individual and are inherent to them [86].

For example, the color of an apple is a moment inhering on the apple; John’s headache

is inherent to John, as the intensity of the headache is inherent to the headache.

Differently from moments, individuals that do not inhere in other individuals are

called substantial individuals. Universals that describe substantial individuals are called

Substantial Universals; likewise, universals that describe moments are called Moment

Universals; both are specializations of Monadic Universal.

2.2.4. Rigidity

The rigidity of a Universal determines how the universal may be applied to instanc-

es. A rigid universal applies necessarily to its instances, while an anti-rigid universal

applies contingently. For example, consider the model in Fig. 6 where Person is a rigid

class and Student is an anti-rigid class; according to this model, any individual Person

cannot cease to be a Person but may become and cease to be a Student.

The set of rigid universals in any conceptual model defines its backbone taxonomy,

the most important features of an ontology [43]. The term refers to the structural role

these concepts perform in conceptual modeling: considering only the elements of the

backbone gives someone a survey of the entire universe of possible instances [43].

These are divided in three types: Categories which do not carry identity, Kinds which

supply identity and SubKinds which carry but do not supply identity. Universals that

carry identity are called Sortals, while those that do not are called Mixins. Mixins classi-

fy individuals that obey different principles of identity (e.g., Agent in Fig. 6 which clas-

sifies different kinds of entities such as Persons and Organizations). Hence, Mixins are

types which provide properties to (characterize) individuals which have already been

individuated by sortal-supplied principles.

Anti-rigid universals describe the characteristics that apply contingently to individu-

als. In OntoUML there are two types of anti-rigid universals: Roles and Phases which

are differentiated with regard to their specialization conditions. For the case of Phases,

the specialization condition is always an intrinsic one. For instance, in Fig. 6, a Child is

a Person within a certain age. For Roles, in contrast, their specialization condition is a

relational one: a Student is a Person who is enrolled in (has a study relation to) a School.

If the relation no longer exists, the person ceases to be a student; i.e. the class instantia-

tion depends on the relation to another individual. Formally speaking, this distinction is

based on a meta-property named Relational Dependence.

Additionally, as discussed in [49], Phases (in contrast to Roles) are always defined

in a partition set. For instance, in Fig. 6, the universals Child, Teenager and Adult define

a phase partition for the Kind Person. As consequence, we have that in on each world w,

every Person is either a Child, a Teenager or an Adult in w and never more than one of

these.

2.3. Model Validation

Model assessment is an important part of conceptual modeling in which one inspects

the model for correctness and adequacy to its purposes. Model development is a human

centered activity; more specifically, it can be seen as a communication activity. Human

activities are naturally error-prone but communication activities are even worse; the

difficulty of proper communication appears even in ancient texts, such as in the etiolog-

ical myth “The tower of Babel” in Genesis 11.

To illustrate the need for model assessment, imagine the activity of writing text in

natural language. Be the text long or short, the writer usually feels the need to read what

was written, to see if he made any spelling mistakes. Additionally, revision allows him

to assess the meaning of the words he wrote so he may evaluate if the message conveys

his intentions, i.e., if it says what he meant. Models convey messages which must be

assessed for correctness as well. Two key aspects are analyzed: syntax and semantics.

We call the process of assessing the syntax “model verification”, and of assessing the

semantics “model validation”3. While verification is important, this work is mainly

concerned with validation4. Model validation involves understanding the possible con-

figurations of elements implied by a model to attest their fidelity in representing the

domain abstractions (Fig. 8).

Fig. 8 Model assessment involves comparing the worlds states implied by a model to the domain abstractions in the

mind of the person assessing them.

Naturally, to decipher a model and understand the World States implied by it, one

must understand the modeling language (Fig. 9). This activity depends on the skill of

the modeler in the modeling language. Skilled modelers are able to fully decode what is

logically implied by the model, while unskilled modelers are not.

3 Verification and validation are words with similar meaning; their usage to convey these specific meanings, as we

do, is not completely agreed upon.
4 In section 7.1 we include some discussion on OntoUML model verification.

Fig. 9 Reading (decoding) a model allows one to understand what is implied by the model

Additionally, to attest that what is implied by the model is valid requires knowledge

of the domain, i.e. requires having previous domain abstractions to have something to

compare to (Fig. 10).

Fig. 10 A modeler assesses if the World States implied by the model are valid according to his domain abstractions

In the next section we describe an approach to validate conceptual models defined in

the OntoUML language, which we will extend in this work. The approach facilitates

model validation by simulating the model. The simulation is manifested in diagrams for

some World States that exemplify class instantiation and can therefore help the modeler

in understanding what is logically implied by the model.

2.4. OntoUML Conceptual Model validation: Previous

approach and opportunities for improvement

This work builds on OntoUML2Alloy which was specified initially in [8,10], and

later merged and improved, following considerations raised in [68]. OntoUML2Alloy is

a software that uses Model-Driven Development (MDD) techniques to automatically

transform models in the OntoUML language to the logic-based language Alloy5 [54].

The product of this transformation is an Alloy specification that can be fed into the Al-

loy Analyzer to generate a sequence of instance-level state-of-affairs which are valid

according to the language axioms (Fig. 11). The analyzer may be further used to pro-

duce assertion counter-examples, i.e. to query possibilities within the model’s con-

straints. OntoUML2Alloy supports validation by allowing the observation of sequences

of snapshots of model instances. The visualization of instances confronts the modeler

with the implications of modeling choices [10]. Should the instances reveal inadmissible

states-of-affairs (or sequences thereof), the model may be analyzed to identify opportu-

nities for correction in an iterative validation approach. Moreover, this can also be used

as means to identify missing or over restrictive domain rules [10].

Fig. 11 OntoUML2Alloy: a model transformation (T) allows the simulation of the conceptual model

While OntoUML2Alloy is useful for conceptual model validation, understanding the

diagrams generated automatically by the Alloy Analyzer can be difficult, which justified

previous work in providing methodological guidance to designing cognitively effective

diagrams [9]. Cognitive efficiency in [9] refers to taking advantage of the properties of

human graphical information processing i.e. how human visual systems acquires graph-

ical information and how that information is processed in our minds. To improve per-

ception, visual variables of the diagram such as color, position, shape and texture

should be used to increase visual discriminability of the information coded in the dia-

gram.

The work developed in [9] sheds light on how to deal with the visual complexity of

the diagrams. However, there is another problem regarding complexity which was not

addressed; namely, the complexity of the content generated by random simulations. On

one hand, having a complete random generation of instances for the simulation is posi-

tive, as it can find unexpected scenarios and therefore help discover modeling mistakes.

5 For a revision of the Alloy language and its analyzer, please refer to Appendix A.

On the other hand, the random generation of instances often makes the simulation

overwhelming. It can often include trivial and repetitive scenarios, making relevant sce-

narios hard to find. Additionally, the relevant scenarios can be polluted with irrelevant

information. For example, consider Fig. 12 which depicts a simulation of the model in

Fig. 6. In the first World Bernardo is a Man and a Child and Móbile is an Organization.

In the second World, there is Bernardo, Mary, John and Fred, and Bernardo enrolls in

Móbile, becoming a student. In the third World, there is only Bernardo, no longer a stu-

dent. In that model simulation, Bernardo was used to exemplify the anti-rigidity of the

student class and how an enrollment relationship can be established and later destroyed.

To this effect, John, Mary and Fred acted as noise, drawing attention where attention

was not needed.

Fig. 12. Simulation that has irrelevant elements (Fred and Mary) in the second world

This work addresses such complexity and reduces the noise of the simulations by

providing tool support for controlling the simulation generation. Using our approach

one can specify the World States intended to be tested instead of manually generating

and inspecting several random simulations to find the desired state of affairs. In our

previous example, we could specify a story to find a sequence of snapshots that include

a Person and an Organization in all of the snapshots, an enrollment relationship between

them in the second snapshot (but not on the first and last snapshot). The benefits of ran-

dom simulation can still be leveraged, if desired. In chapter 5, the approach to constrain

the simulation is explained in detail.

Controlling the simulation helps the modeler check if some World States he decoded

as possible by reading the model are in fact possible (i.e. logically implied by the mod-

el) (Fig. 10). However, that activity only helps to confirm that the symbolic representa-

tion behaves as expected. The link between the symbolic representation and the Domain

Abstractions still requires understanding of the modeling language. This is particularly

relevant when discussing the quality of models with subject matter experts which typi-

cally have no knowledge of the modeling language.

Storytelling (discussed in depth in chapter 3) can help connect the formal specifica-

tions to situations in reality. Storytelling can also help structure the content of the simu-

lation, creating nexus between the elements. This helps to avoid including elements that

act as noise, as discussed previously.

2.5. Challenges for Conceptual Model validation

While the previous work provides means to assess conceptual models and reveal

what is implied by the model, there are some challenges in model validation that have

not been addressed in previous work. Model validation can be particularly challenging

because, in realistic scenarios, the Subject Matter Expert (whose domain abstractions

can be considered authoritative) and the Modeler (an expert in the modeling language

who is able to understand what is implied by the model) are often different people. This

is depicted in Fig. 13, which introduces some communication between subject-matter

expert and modeler.

Fig. 13 Cooperation between Modeler and Domain Expert to validate a conceptual model

We assume the modeler cannot learn enough about the Phenomena to become a

Subject Matter Expert himself and that the Subject Matter Expert cannot learn enough

about the modeling language to become a Modeler himself. Therefore, the modeler has

a limited access to Domain Abstractions and Domain Conceptualizations, while the

Subject Matter Experts has a limited knowledge of what is implied by the model. In

such situation, subject-matter expert and modeler must communicate to cooperate and

assess the model together. Such cooperation can take the following formats:

(i) Subject-matter Expert communicates Domain Abstractions and Domain

Conceptualizations to the Modeler: providing the modeler with docu-

mentation about the subject matter, showing the phenomena to the mod-

eler, participating in interviews and answering questions.

(ii) Modeler decodes the model for the Domain Expert: guiding the Domain

Expert through the models explaining what they mean or showing possi-

ble World States by instantiating the model via model simulation.

In this work, we will focus on (ii), using storytelling to help modelers communicate

some admissible worlds implied by the model to subject matter experts. The previous

approach is extended allowing modelers to create simulations derived from Natural

Language Narratives. These narratives can be understood by the Subject Matter Expert

regardless of their understanding of the modeling language. By comparing them with

the Formal Narratives (i.e. diagrams generated by the guided simulation), they may bet-

ter assess what is implied by the model. This effectively helps with decoding the model

to the Subject Matter Expert and revealing what is possible to articulate using the Con-

ceptualization captured by the model. With the feedback of this activity, we expect (i) to

be facilitated.

2.6. Concluding remarks

In this chapter we have discussed conceptual modeling, the modeling language we

adopt in this work, i.e. OntoUML, and the validation of models in this language. We

have shown that the current state of the art in OntoUML model validation has limita-

tions in respect to the control modelers have over the simulation and motivated the con-

tributions we offer in this work create mechanisms of controlling them. This helps re-

duce the noise in simulation, i.e. irrelevant content that hinders its understanding.

We argue that storytelling can help create nexus in the content of simulations and

help communicate the World States that are logically implied by a conceptual model to

Subject Matter Experts which do not understand the modeling language.

In the next chapters we will review some theory about storytelling that justifies this

argument and introduce elements to the current simulation approach that allows a mod-

eler to control it and present the results to Subject Matter Experts.

3. Storytelling

“We speak not only to tell other people what we think,
 but to tell ourselves what we think.

Speech is a part of thought.”
- Oliver Sacks – Seeing Voices

Our approach uses storytelling to improve model validation activities. This chapter

examines the ways storytelling impacts human communication and culture, serving as a

foundation for the chapters that follow. The chapter constitutes a interdisciplinary exam-

ination of the importance of stories in human communication, which motivates the

adoption of stories as complementary to conceptual modeling and to conceptual model-

ing validation in particular.

3.1. Introduction

Stories, myths and religious text have always been used as means of transferring

knowledge within society and its subsequent generations [15]. The word narrative itself

stems from the Latin word gnarus which means ‘knowing' [63]. According to [26],

“there is little doubt that narrative thought developed earlier in human history than sci-

entific and logical thought”. The ability to narrate gives us the possibility to reenact re-

al-world events eliciting the imagination of the listeners, giving them experiences that

they never had themselves. Early in the history of mankind, oral storytelling culture

produced collective, standardized narrative versions of reality, particularly of past

events; having become what we call the dominant “myths” of a society. Myths reflect

the earliest form of integrative thought. In contrast with myths, theories are “very large,

externally nested cultural products” which only emerged much later, after our culture

allowed the externalization of memory [26] (e.g. writing). We take ontology-based con-

ceptual models to be a particular means to represent a theory about a subject domain,

formally capturing admissible states of affairs [47] using invariants i.e. logical asser-

tions or rules that are held to always be true.

This work defends the use of narratives to facilitate validation activities in concep-

tual modeling. In this context, the narrative reveals domain abstractions about a subject

matter by exemplifying it in a real context (revealing therefore the real world semantics

of elements of the domain conceptualization). Such exemplification reveals the theory

in a strong and intuitive way, providing insight into causality and dependence of the

domain and serving as an anchor to the concepts. By using the narratives as context for

the model validation, we may assess the model more accurately.

The rest of this Chapter is structured as follows: in section 3.2, we use a story to mo-

tivate the importance of storytelling in human culture, exemplifying how it can be used

to transfer information about reality and plan ahead. In section 3.3, we discuss different

theories that are used to analyze Stories, Narratives, Myths, their structure and im-

portance and how they relate to human psyche and human culture. In section 3.4, we

discuss how storytelling has been used in Science and Philosophy as an artifact to dis-

cuss conceptualizations and reduce cognitive effort. We argue that these may be used in

a similar fashion to explain domain theories defined by conceptual models. Finally, in

section 3.5, we offer concluding remarks.

3.2. An illustration of the role of storytelling in

knowledge transfer

In this work we defend that storytelling can help explain theories; so in this section

we use a story to intuitively show how storytelling works: we tell a story about someone

telling a story, to show the importance of telling stories. In a way, this makes the section

somehow recursive in nature. This section should illustrate use of storytelling as a tool

to transfer knowledge, communicate complex states of affairs and motivate rules.

“A long, long time ago, in pre historic times…

Kaj arrives in his cave and finds his family. In a crude language,

the family asks “where is Mak, your brother, that left with you to

hunt? Hasn’t he returned?” - The arriving man then says, with a sad

voice - “No. Mak is no more”. –the family gathered around in distress

to hear Kaj - “We were crossing the mountain pass when the strong-

est of cats pounced on my brother. The cat dragged him and then it

ate him on the mountain’s edge”.

Disaster! The family was desperate. Not only was the grief of los-

ing a family member terrible, being one hunter short in the family was

bad. Having the mountain pass blocked by such a dangerous animal

would make things worse, as the path lead to a small forest with many

fruit trees, which the children would often go picking

Wala, mother of three said “The strongest of cats! A demon cat!

Children! You will not go through the mountain pass anymore! It is

dangerous! The cat may pounce on you, and you will be no more, as

Mak is no more.”

“We should attack him with stones” yelled a brave young boy

“No”- commanded Wala - “It got Mak, it will get you too. You

will not get close to the mountain pass. You will stay in the cave”.

What could they do? Not having access to the fruit trees and being

a hunter short, they could face hunger. They needed a plan. (…)”

 –The story of the strongest of cats

The story above shows some aspects of the use of storytelling in communicating. In

the story, Kaj tells the story about his brother dying in the mountain pass. His family

understands from this message a very complex scenario: the mountain pass is a danger-

ous place to go, others could die as Mak died. As the family listens to the story, they put

themselves in the position of the characters and feel as they imagine the characters felt.

This ability to empathize with the characters in a story is crucial to the mechanism of

transferring knowledge with storytelling.

The family also used short narratives to plan ahead: throwing stones at the big cat is

one plan (and in a way, a plan can be seen as a story too); that can be twisted and turned

and re-structured. This illustrates another storytelling feature: stories can be adapted and

changed. The child’s reaction could have the following rationale: “Well, I would behave

differently, given the same situation. Since I know it is there, I can attack it first, and

kill it, like it did to Mak”. In this adaptation, the child switched roles, where he was the

killer, and the cat was killed instead of Mak. When he said “We should attack him with

stones”, in the mind of the rest of the family they could see a possible future, a possible

story unfolding. In such story, the family attacks the cat.

In her mind, the mother again modified this new story imagined by the boy. In her

mind, the story unfolded as “A cocky boy thinks he is very strong and attacks a demon

cat with stones. The cat gets angry because he was stoned and attacks the boy, killing

him.”. To avoid this dreadful ending, she stops the chain of action that would lead to it.

By forbidding the young man to leave the cave, she arranges a different story (plan) in

the mind of the family. “The boy stays in the cave and avoids the mountain pass, fearing

he could be eaten by the demon cat.”

Another way to plan ahead using a modified version of the story could be to offer

food to the cat, as a means to satisfy his hunger, leading to a safe passage. If this strate-

gy proves successful and becomes a tradition, as generations pass, they may end up for-

getting why they always offer meat to the demon cat (or Cat God) the day before the

fruit harvest to ensure a safe journey through the mountain pass and simply regard it as

a rule that must be obeyed.

Stories were always used this way as means to communicate knowledge about the

world to other people. In a simple way – easily – a broad and general concept is ex-

plained, without necessarily spelling it out explicitly. And frequently, the knowledge is

justified, the reason why things are the way they are is better understood. If Kaj had

simply commanded that “no one shall go through the mountain pass anymore”, it prob-

ably would not be as effective as telling the story of his brother, who passed away cross-

ing it. The story motivates the rule and clarifies it, i.e., explains why it is necessary.

In this section, we did a very informal motivation of how stories may be useful to

humans. In the remainder of the chapter, we will discuss what the literature says about

storytelling and narratives, how they were employed in human history and why.

3.3. The study of Storytelling: psychological aspects and

story patterns

In traditions of oral storytelling prior to writing, narratives had no concrete represen-

tation and were modified in each enactment, with details told differently based on the

reaction of the audience or the teller’s memory/creativity. [59 apud 61, pg. 188] Regard-

less of the differences between narrations, the sum of related events and situations in

some narratives can be recognized as being the same story [72]. In this work we use this

terminology to differentiate between a single story and its many possible narratives. A

story is a very abstract representation that has the property of identifying different (but

similar) narratives as being, somehow, the same story. A single story e.g. Romeo and

Juliet, may bring forth different narratives, such as a classical enactment of Shake-

speare’s text in a theater or a movie adaptation of the text. In the case of the movie fea-

turing Leonardo Di Caprio, the narrative takes place in modern times, with cars and

guns, and while it is wildly different from the original text, it is still Romeo and Juliet.

A narrative, roughly speaking, realizes a story.

The first type of theory we discuss is about the general structure that stories may

have. Lots of work has been done in analyzing story patterns and identifying reoccur-

ring structure. Story patterns that organize a plot can, in some cases, be called dramatic

structure. The study of dramatic structure has begun with Aristotle in his Poetics (c. 335

BCE), where he proposes “to inquire into the structure of the plot as requisite to a good

poem; into the number and nature of the parts of which a poem is composed; and simi-

larly into whatever else falls within the same inquiry.”. Aristotle described the dramatic

structure (of a tragedy, in particular) to have 3 parts: “a beginning, a middle, and an

end” [3] a beginning is where the plot is set up; the end is where the plot is resolved and

the middle connects these two parts6.

Since Aristotle, many variations emerged regarding how many parts there should be

and their roles. Here, we will use Freytag’s pyramid [32] as an example (Fig. 14). It

starts on the left with the exposition, which introduces the characters and the setting,

providing a description and background. Then, something happens and triggers the

“Rising action”, where the story builds and gets more exciting. The climax is the point

of greatest tension in the story, often the most exciting event. It is the event that the ris-

ing action builds up to. The falling action is composed of the events that happen after

the climax and that indicate that the story is coming to an end, up to a point where the

main problem or conflict is solved. Thereafter, we have the Denouement, where any

secrets or questions that remain are solved.

Fig. 14. Freytag’s pyramid

6 . Aristotle also discusses some narrative patterns such as the “recognition” or “reversal of the situation” and details

parts of a plot, but we have chosen not to go further in detail on his analysis.

Narrative analysis is ancient. While its theoretical lineage can be traced back to Ar-

istotle, a well established discipline only emerged much later, as part of a movement

called “the Russian formalism”, where scholars found patterns that emerged from folk-

lore. Propp's “Morphology of the Folktale” [67] assembled a set of story patterns, which

he called narrative functions, that allegedly accounted for all Russian folklore i.e., each

story could be composed of the set of patterns Propp introduced. Naturally, these pat-

terns were of a very abstract nature, such as "Departure: Hero leaves home" or "Receipt

of a magical agent: Hero acquires use of a magical agent (directly transferred, located,

purchased, prepared, spontaneously appears, eaten/drunk, help offered by other charac-

ters)" [67] Stories could thus be broken down into their constituting elements, each with

a narrative function i.e. their role in conveying a message.

Propp's work was criticized for leaving aside the details of the stories such as tone,

mood or anything that makes a tale different from another. He was concerned about the

similarities but not about the differences. Nevertheless, his work was seminal both to

followers of his practice and to opposers that offered different approaches.

This field of study started by Propp is often called Narratology (but that is not a con-

sensus). "Narratology examines the ways that narrative structures our perception of both

cultural artifacts and the world around us. The study of narrative is particularly im-

portant since our ordering of time and space in narrative forms constitutes one of the

primary ways we construct meaning in general" [29].

After the study of story patterns emerged, some scholars have investigated the psy-

chological reasons why they seem to appear in any society and their role as a tool to

transfer knowledge [15,75]. Like Propp, Joseph Campbell also extracted patterns from

myths and religions from many different parts of the world [15]. Based on these pat-

terns, Campbell coined “The monomyth” (also known as The Hero's Journey), which is

a story that could be applied (fully or in parts) to uncountable stories. It is similar to

Propp's morphology in the sense that it offers a structure that fits most stories in folk-

lore, myths and religions.

Fig. 15. The hero’s journey [81]

 Nevertheless, his approach was much more concerned with the psychological and

anthropological reasons why these patterns seem to be cultural independent, that is, they

appear in every society, regardless of cultural interchange. In Campbell’s psychological

analysis, human beings have a natural way of conducting themselves in societies and

relating to each other. The myths serve to pass on knowledge about this social reality

through generations.

Campbell built on ideas from Adolf Bastian “who recognized, in the course of his

extensive travels, the uniformity of what he termed the "elementary ideas" (Elemen-

targedanke) of mankind. Remarking also, however, that in the various provinces of hu-

man culture these ideas are differently articulated and elaborated, he coined the term

"ethnic ideas" (Völkergedanke) for the actual, local manifestations of the universal

forms. Nowhere, he noted, are the "elementary ideas" to be found in a pure state, ab-

stracted from the locally conditioned "ethnic ideas" through which they are substantial-

ized”[16] Campbell argues that the narrative patterns that occur in human culture (even

in isolated societies) emerge from such “elementary ideas”. He compares these ideas to

trigger responses animals have, such as “Chicks with their eggshells still adhering to

their tails dart for cover when a hawk flies overhead, but not when the bird is a gull or

duck, heron or pigeon.” [16] It is as if human beings are hardwired to share their experi-

ences in narrative form and as if something of the content of stories is hardwired too.

While Campbell and others have used psychoanalysis to analyze myths (socially

constructed stories, and in this sense, with no individual author), psychoanalysis is tradi-

tionally used to analyze individual narratives. In psychoanalysis (starting with Freud)

the patient usually narrates events that marked their life or dreams he/she had and is

guided into abstracting patterns from these narratives; to extract the reoccurring logical

structures of the way they relate to others.

The similarities between a particular narrative and an abstract story can go either

way: one may find patterns on their own particular narratives to find they fit into a more

abstract, general reoccurring story, as it is done in psychoanalysis; or take the other way

around and recognize in an existing story something that matches to their own particular

narratives.

When an author intentionally uses these story patterns to structure a new story, they

introduce elements that the audience is prone to recognize as theirs, as part of their psy-

che, elements that resonate in them. The stories are transferred exactly because they

touch the listeners in their intimacy, when they recognize themselves in the story told.

Because this works so well and creates such a powerful emotional experience, these

narrative theories which were initially designed to analyze existing text (and better un-

derstand human culture), have also been used to design new stories. For example,

George Lucas used Campbell’s “Hero’s journey” to structure Luke Skywalker’s journey

in “Star Wars” [17] as many other writers do. Also, recently, there is a trend in using

storytelling in marketing and advertising.[58]

Following this trend, we can also use these theories and structures to guide our de-

signs of stories for conceptual model validation purposes. By applying these elements in

the stories, we may expect to cause empathy on the audience, that they will connect to

the stories and recognize themselves in them. That is one of the reasons why we argue

that using Natural Language Narratives and storytelling help conceptual model valida-

tion.

The knowledge transferred by myths, fables and novels usually explores human ex-

istence in a general way, not focusing on specific subject domains. Since we aim to use

these stories as artifacts to help discuss narrow subjects in a specific activity (valida-

tion), these stories should not only be compelling, but also explore the conceptual issues

in the subject domain. In the next section we explore how Computer Science and Phi-

losophy have intentionally created and used narratives to this effect.

3.4. Stories as tools for thinking

In this section we discuss briefly how stories and other similar devices (such as

thought experiments) may be used as tools for thinking. “These handy prosthetic imagi-

nation-extenders and focus-holders permit us to think reliably and even gracefully about

really hard questions.” [23]

Used in Philosophy and Science, thought experiments are “devices of the imagina-

tion used to investigate the nature of things” [13] . Examples include Maxwell’s demon,

Einstein’s elevator or Schrödinger’s cat. [13] They are usually small stories embedded

in larger arguments and serve as means to analyze phenomena in detail [23].

A taxonomy for thought experiments may divide them between “constructive vs.

destructive” [12] As the names suggest, constructive thought experiments help the

elaboration and defense of a theory or argument. They reveal the key features that

should be taken in account while thinking about the subject matter and they make a case

for theories [23], leading to “a very satisfying sense of understanding” [13]. They are

persuaders [24], instruments to challenge each other with our ideas and engage in inter-

personal thinking. Examples of constructive thought experiments include Newton’s

cannon to discuss orbits and Einstein’s elevator to formulate the equivalence principle

[12]. Destructive thought experiments, on the other hand, are made for arguing against

theories, usually by drawing out a contradiction in a theory and thereby refuting it or by

“showing the theory in question is in conflict with other beliefs that we hold”. [13] Ex-

amples of destructive thought experiments include the famous Schrodinger’s cat para-

dox to show a bizarre consequence of the theory of quantum mechanics and Galileo’s

free fall thought experiment.

As a matter of fact, Galileo’s thought experiment is both constructive and destruc-

tive. “Galileo asks us to imagine a heavy ball attached by a string to a light ball (…).

What would happen if they were released together? Reasoning in the Aristotelian fash-

ion leads to an absurdity. The lighter ball would slow up the heavy one, so the speed of

the combined balls would be slower than the heavy ball alone (i.e., H + L < H). Howev-

er, since the combined balls are heavier than the heavy ball alone, the combined object

should fall faster than the heavy one (i.e., H < H + L). We have a straightforward con-

tradiction; the old theory is destroyed. Moreover, the new theory is established; the

question of which falls faster is obviously resolved by having all objects fall at the same

speed.” [12]

There can be other tools for thinking that are not necessarily thought experiments,

such as analogies, metaphors and labels. A label is “a vivid name for something helps

you keep track of it while you turn it around in your mind trying to understand it” [23].

For example, constructive thought experiments can be labeled as intuition pumps [23],

referring to their disposition to pump an intuition about a given subject matter to our

brains. While we may employ any of these tools for thinking in our validation activities,

we will concentrate mainly on those that use narratives.

In computer science, in particular, stories and thought experiments have been used

to describe algorithmic problems. “The use of pithy and classic anecdotes set in familiar

design situations is an excellent means for abstracting general principles while at the

same time providing unifying themes and useful lessons that will be remembered.” [66].

A classical example is “The Dining Philosophers”, a thought experiment initially elabo-

rated by Dijkstra and published by Tony Hoare to discuss concurrency and deadlocks in

computer programs sharing resources. The story was originally published as follows:

“In ancient times, a wealthy philanthropist endowed a College to accommodate five

eminent philosophers. Each philosopher had a room in which he could engage in his

professional activity of thinking; there was also a common dining room, furnished with

a circular table, surrounded by five chairs, each labelled by the name of the philosopher

who was to sit in it. The names of the philosophers were PHIL0, PHIL1, PHIL2, PHIL3,

PHIL4, and they were disposed in this order anticlockwise around the table. To the left

of each philosopher there was laid a golden fork, and in the centre stood a large bowl of

spaghetti, which was constantly replenished. A philosopher was expected to spend most

of his time thinking; but when he felt hungry, he went to the dining room, sat down in

his own chair, picked up his own fork on his left, and plunged it into the spaghetti. But

such is the tangled nature of spaghetti that a second fork is required to carry it to the

mouth. The philosopher therefore had also to pick up the fork on his right. When he was

finished he would put down both his forks, get up from his chair, and continue thinking.

Of course, a fork can be used by only one philosopher at a time. If the other philosopher

wants it, he just has to wait until the fork is available again. (…) Suppose all the philos-

ophers get hungry at about the same time; they all sit down; they all pick up their own

forks; and they all reach out for the other fork—which isn’t there. In this undignified

situation, they will all inevitably starve. Although each actor is capable of further action,

there is no action which any pair of them can agree to do next. However, our story does

not end so sadly. Once the danger was detected, there were suggested many ways to

avert it. For example, one of the philosophers could always pick up the wrong fork

first—if only they could agree which one it should be! The purchase of a single addi-

tional fork was ruled out for similar reasons, whereas the purchase of five more forks

was much too expensive. The solution finally adopted was the appointment of a foot-

man, whose duty it was to assist each philosopher into and out of his chair.” [53] In this

thought experiments the philosophers are a methaphor to computer programs, which

should “think” (compute) most of the time but need to use some shared resource every

now and then (in this case the shared resources are the forks). He uses the metaphor to

discuss means how we should approach concurrency problems. Other famous thought

experiments in Computer Science include Searle’s Chinese room [73], the Two Gen-

erals' Problem, the Travelling salesman problem, Yale shooting problem, among many

others.

Conceptual Modeling is a branch of Computer Science which has its own thought

experiments, although not as well documented. In [49] some thought experiments (such

as the Counting Problem and The Color of the Rose) are used to defend some decisions

for the Unified Foundational Ontology. In this context, thought experiments have been

used to discuss a class of problems which are covered by the modeling language. To

give an example, we introduce the following thought experiment, which has been

adapted from [49]. This philosophical problem is known as The Counting Problem and

has been an old discussion in conceptual modeling, according to [49]. Consider the fol-

lowing narrative:

 “John boarded flight KL124 on April 22nd, 2004 from London to Amsterdam and

boarded flight KL121 on November 19th, 2004 from Amsterdam back to London”.

In the statement “KLM served four thousand passengers in 2004” would John count

as one or as two passengers in the total amount? In other words, are we counting how

many plane tickets were sold by KLM (and actually used to board a plane) or how many

distinct people travelled with the company?

The argument put forth is that when counting how many Passengers flew with KLM

in 2004, we could count the qua-individuals, not the people. In our example, John there

are two different John-qua-Passenger entities, one for each flight.

In this case, the word “passenger” was used to refer to qua-individuals, but the word

could also be used to refer to the person. For example, consider the following story: “In

June 1943 a KLM operated airplane was shot down by the Luftwaffe resulting in the

death of the 17 passengers on board”. In this case, it is not the person-qua-passenger

that died, rather the person died.

3.5. Concluding remarks

In this chapter we have reviewed some ways humans may use stories to transfer

knowledge and discuss conceptualizations and abstractions. Some stories, such as

myths, may or may not have been authored with a clear intention of functioning as a

tool, while thought experiments, on the other hand, were. We argue that we may draw

from storytelling culture and existing thought experiments to author our own stories in

our model validation efforts. Using such stories in validation activities may constitute

thought experiments.

In our previous approach one could examine the simulations and compare them to

the intended models; but to really validate a model, one must compare these simulations

to the situations in reality, which can be problematic as discussed in Chapter 2. We ar-

gue that modelers may author stories to reveal and discuss the possible world structures

implied by the conceptual model specification. In particular, this can be an effective

means to bridge the gap in communication between modelers and subject matter ex-

perts. This is analogous to how philosophers and scientists create thought experiments

to discuss theories with their peers.

In the following chapter, we discuss how we may design Natural Language Narra-

tives with such specific purpose, when possible using the overarching structures dis-

cussed in section 3.3 as guidelines.

4. Authoring Natural Language Narratives

for Conceptual Model validation

“A well-thought-out story doesn’t need to resemble real life.
Life itself tries with all its might to resemble a well-crafted story.”

― Isaac Babel

In this chapter, the argument of using Storytelling for validation defended in previ-

ous chapters is applied. Here, we introduce the concept of Natural Language Narrative,

discussing how to author them. Natural Language Narratives here have both applica-

tions on their own and will be used as basis for the elaboration of Formal Story Specifi-

cations and Formal Narratives in the next chapters.

4.1. Introduction

A Natural Language Narrative is the thing that would probably come to mind when

hearing the word “story” or “narrative”, e.g., the contents of a fiction book is a Natural

Language Narrative.

While narratives in natural language could serve many different purposes in general,

such as entertainment, for example, here we use the term to designate the narratives

elaborated with the sole purpose of helping to validate OntoUML Conceptual Models.

The model validation approach defended in this work uses Natural Language Narratives

as the first step. Natural Language Narratives serve as basis for the elaboration of For-

mal Story Specifications which are, in turn, used to generate Formal Narratives (i.e.

simulations) that exemplify how the Natural Language Narrative can be realized in for-

mal terms according to the conceptual model. Formal Narratives are diagrams that illus-

trate the Natural Language Narrative in a formal fashion.

In this context, Natural Language Narratives act as a tool for thinking in validation

activities. They have two main purposes: reduce cognitive effort of the people involved

in validating models and help in communication activities between modelers and Sub-

ject Matter Experts.

As we have discussed in Chapter 2, the validation of a conceptual model involves

assessing whether the model captures accurately the conceptualization of a subject do-

main. This typically involves the communication between subject matter experts (au-

thorities in the conceptualization of the subject domain) and modelers (who have the

duty to capture the conceptualization faithfully). The role of the Natural Language Nar-

ratives in this setting facilitates this communication by creating some cohesion between

the informal knowledge in the minds of the communicating stakeholders to the formal-

ized knowledge in the conceptual model.

In section 4.2 we discuss some scenarios where authoring Natural Language Narra-

tives can help validate conceptual models. In section 4.3 we introduce a running exam-

ple that will be used to create a Natural Language Narrative in section 4.4 and which

will also be used in the next chapters, to create a Formal Story Specification and gener-

ate Formal Narratives. Finally, in section 4.5 we offer concluding remarks on the sub-

ject.

4.2. Scenarios for Natural Language Narrative

authoring

We envision three main scenarios for Natural Language Narrative authoring. (i) A

modeler by himself creating Natural Language Narratives as a tool for thinking about

the problem at hand (ii) a modeler creating Natural Language Narratives to help com-

municating with stakeholders in validation activities either illustrating (constructive

thought experiment) or refuting (destructive thought experiment) a model and (iii) the

Subject Domain Expert telling a story about his experiences in the domain, which helps

modelers understand domain abstractions.

Either way, the plot of the narrative is closely related to its role in the validation ac-

tivity. The narrative should cover a significant portion of concepts in the model to be

assessed. By exercising the dynamics of object creation, role playing, phase changing

etc. the interaction between the concepts in the model is revealed.

The first case of modeler-authored narratives involves only the modeler, where the

Natural Language Narrative serves as a sort of informal simulation: the narrative acts as

an articulation of elements of the conceptual model and therefore exercises domain ab-

stractions in the mind of the modeler. This either increases the confidence of the model-

er in the conceptual model or reveals some fraction of the model which he believes

should be clarified or improved. This can motivate some simulations to find errors or

reveal a case which must be discussed with the Subject Matter Experts.

The second case of modeler-authored narratives involves both the modeler and the

Subject Matter Expert where the Natural Language Narrative serves to improve the

communication between the parties. In this case, the modeler may exercise fragments of

the model he/she suspects may be incorrect or are hard to understand and could be clari-

fied. He then creates simulations that stress these fragments or reveal the problems

found. Next, the modeler authors a Natural Language Narrative to illustrate these simu-

lations. The Natural Language Narrative connects the formal elements of the simulation

to the domain abstractions in the mind of the Subject Matter Expert, improving the

communication between them. To make the narratives interesting and engaging, the

modeler may apply story structures such as those discussed in the previous chapter (e.g.

Campbell’s Hero’s Journey) or resort to online material on plot such as the TV Tropes

[77], which offers a large catalogue of story patterns to draw from.

Last, but not least, in the case of narratives authored by subject matter experts, a

subject matter expert narrates real life events about a fragment of the model requested

by a modeler or narrates situations in reality about concepts modelers find hard to un-

derstand. The narratives help to understand how these concepts are exercised in their

real context.

4.3. Running Example: Software Configuration Model

In order to demonstrate the application of the technique, we introduce a running ex-

ample in the domain of Software Configuration Management. “Software Configuration

Management (SCM) is a fundamental process in the development of complex products.

It provides technical and administrative guidelines to manage a product’s lifecycle.

SCM guides and controls the evolution of a product’s configuration, promoting means

to prevent disorder in its development. This control occurs through a process that iden-

tifies and defines a products configuration items, controls the modifications on the con-

figuration items during its lifecycle, registers and reports their states and verifies the

consistency of those items.” [14] The model is presented briefly below and will be used

throughout the work as an example.

A key notion of Software Confirmation Management is the notion of Item. An item

is a generic term used to represent parts of a product or information generated in their

development. The diagram in Fig. 16 specifies different kinds of Items that can be ver-

sioned: Software Tools and Artifacts such as Source Code, Document and Diagram.

Item and Artifact are defined in this model as Categories, and as such are rigid classes

(i.e., they apply necessarily to their instances). Software Tools, Source Code, Docu-

ment and Diagram are stereotyped as Kind and therefore are also rigid but they define

a principle of identity for their instances, while Categories are classes that subsume in-

stances with different principles of identity. An Item that has been selected by a Con-

figuration Manager assumes the role of a Configuration Item. Configuration Manag-

er is the role a Person assumes in the context of that selection. (The Person class is

omitted from the diagram and appears in italics on the top classes that specialize it.)

Roles are Anti-Rigid (a.k.a. dynamic) classes i.e. they apply contingently to their in-

stances; thus, it is not necessary for persons to play the role of configuration manager.

The relationship between the Configuration Manager and the Configuration Item is rei-

fied as a Configuration Selection.

Each Configuration Item is characterized by some Version. Version is stereotyped

as Mode, meaning they are existentially dependent and inhere in the thing they charac-

terize. In this case, Versions can only exist in Configuration Items. Versions are part of

some Branch. Branches, on the other hand are part of some Repository. Stereotyped as

Collectives, their instances are collections formed by uniform parts. Versions can be

submitted for change, when requested. These Change Requests can be Evaluated by

a Configuration Manager, which is an Evaluator7 in this context. A Developer is a

Person that may Check Out versions, modify them and Check In Modifications (a

checked-in modification is called a Registered Modification). Versions that are

checked out are Checked-Out Versions and generate Copies. A Copy that has been

modified assumes the role of Modified Copy, and when checked-in, is consumed and

makes the requested change implemented. A Verifier may assess an implemented

change, making it verified.

7 Both Evaluator and Verifier are subclasses of Configuration Manager, even though the generalization is not explicit

in this diagram.

Fig. 16. A model for Software Configuration Management extracted from [14]

4.4. Natural Language Narrative for the Software

Configuration Management model

Drawing from our running example, we produced the following Natural Language

Narrative. It exercises most of the classes of the model presented in Fig. 16 (the model

in our running example). Whenever a class is used in the narrative, it is highlighted in

bold. Some concepts are used in an informal manner (e.g. version-controlled, branch the

project). This is intentional: forcing the Natural Language Narrative to use the vocabu-

lary exactly as defined by the Conceptual Model can make the narrative artificial. Addi-

tionally, this exercise may show domain abstractions which are not captured and there-

fore reveal opportunities for extending the scope of the model. This narrative is the ba-

sis for the Formal Story Specification presented in Chapter 5, which will in its turn be

used to generate Formal Narratives (simulations) in Chapter 6.

 “John, Mary, Fred and Thomas work at OntoSoft company as

developers. They are working on an information system for a bakery

to manage its finances and supply-chain processes. The system they

are producing already manages the financial aspects, and currently

they are developing new artifacts (such as diagrams, documents and

source code) to manage the supply-chain processes. Thomas is the

Configuration Manager and he selects some of the artifacts they cre-

ated to be part the project’s repository, where they are version-

controlled.

As the team focuses efforts on the bakery’s supply-chain process-

es, Fred finds a deadlock in a process diagram for buying raw mate-

rials and files a change request for it, describing the problem he

found and the change that should be implemented. Mary evaluates the

request and asks John to check out the diagram in the version control

system to modify it. After doing the necessary adjustments, he checks

in the modified version and Mary is assigned to verify whether John

has met the change request.

Mary verifies the diagram and notices that John’s modifications

introduced bugs in the already-approved finance processes. These

changes have a deep impact in the approved parts of the software so

Mary rejects the version and asks John to branch the project and try

again from a different angle.”

The narrative above features a sequence of events that show how the different clas-

ses interact in the instance level and how the instances of a class may change. From a

technical point of view, the classes of the conceptual model are exemplified in a context

and this activity facilitates model comprehension.

For example, consider how in the first paragraph the narrative navigates the model

showing, for example, how a Diagram is an Artifact (Diagram specializes Artifact);

which is an Item (Artifact specializes Item); which can be a Configuration Item (Con-

figuration Item specializes Item) in the context of a Configuration Selection. While nav-

igating the model to understand that the elements interact this way can require a certain

expertise in the OntoUML language, reading the Natural Language Narrative reveals

this possibility in an intuitive way.

In the second paragraph, we can see the difference between the Change Request,

which is a communication artifact (a request from Fred) and the Change itself, which is

a specification of the problem to be solved (remove deadlock).

We can also use the narrative to discuss the coverage of the model. For example, we

mentioned that Mary assigned John to deal with Fred’s request but there is no concept

capturing the assignment. Also, in the end, Mary rejects the version. There is no concept

of rejecting a version or rolling back. Is that what it means for a version to be de-

stroyed? If we consider what could happen after the end of the story, when John eventu-

ally branches the model, what would be the relation between the new branch and the old

one? Could John commit his modifications to this new branch? Can John branch the

bugged project to fix it and Mary carry on working in the master branch after rolling

back on Johns modifications?

Finally, from a narrative point of view, we exercised some dramatic elements as

well: the first paragraph sets the scenario and acts as the exposition in Freytag’s pyra-

mid. On the second paragraph, we have the rising action, when Fred finds a deadlock in

the process and John is called to action. He proceeds to checkout the diagram, modify it

and on the climax, he checks in the modified version and Mary inspects it and rejects it.

The falling action then throws John back to the start.

4.5. Concluding remarks

Natural Language Narratives should be motivated by needs of validating and clari-

fying the model and therefore the plot of the Narrative should stem from those needs.

When using these narratives to communicate with Subject Matter Experts, some plot

devices and narrative design patterns which have been discussed in previous chapters

can be employed to create engaging narratives. While these patterns and devices can

help a narrator, it is outside of the scope of this work to give methodological means for

creating the Natural Language Narratives. They are simply too dependent on the domain

of discourse and creating such narratives is a creative effort which requires practice to

master.

In the following chapters we will use the narrative elaborated in this chapter as basis

for creating a Formal Story Specification (Chapter 5) that will be used to generate For-

mal Narratives (Chapter 6). While in this chapter we have only exemplified how Natural

Language Narratives may work as constructive thought experiments, in the context of

Iterative Validation in Chapter 6 we will exemplify how they may be used as destructive

thought experiments as well, refuting some modeling choices and motivating change.

5. Formal Story Specification and

transformation

“Out of clutter, find simplicity.”

― Albert Einstein

In this chapter, we introduce a Formal Story Specification language and exemplify

its application using our running example. The transformation from Formal Story Speci-

fications to Alloy is also specified.

5.1. Introduction

A Formal Story Specification is a formal representation of the semantic aspects of a

story. Formal Story Specifications have a practical purpose: they are used as basis for

the generation of Formal Narratives (i.e. simulations in conformance with the Formal

Story Specification), which in turn will be used to assess the model. In this sense, they

create a correspondence between an informal Natural Language Narrative and a Formal

Narrative (a simulation of the conceptual model in the instance level).

The name we choose for the artifact, “Formal Story Specification”, reveals some-

thing about its nature. We use the term “story” because it is an artifact that has the prop-

erty of defining many different narratives, as regular stories do. However, stories are

abstract entities that can only exist in the mind of people, therefore we call the artifact

we produce “specifications”. Finally, it is “formal” because the artifact is only con-

cerned with specifying the formal semantic aspects of the story.

The rest of this chapter is structured as follows: in section 5.2, we discuss different

scenarios that justify the creation of Formal Story Specifications; in section 5.3, we de-

fine the Formal Story Specification Language; in section 5.4, we revisit our running

example, and exemplify the use of the language defined in this chapter; in section 5.5,

we present a prototype application we developed named Story Modeler designed to

elaborate Formal Story Specifications; in section 5.6, we discuss the transformation

from Formal Story Specifications to Alloy; in section 5.7 we discuss how to use the Al-

loy Analyzer to generate Formal Narratives based on Formal Story Specifications, dis-

cussing the problems that arise in this activity; finally, in section 5.8, we offer conclud-

ing remarks about the chapter.

5.2. Scenarios for creating Formal Story Specifications

We have identified two main scenarios to creating Formal Story Specifications. In

the first case, they are based on an existing Natural Language Narrative. In this alterna-

tive, the modeler captures what happens in the narrative by specifying individuals and

their relationships using the concepts present in the conceptual model. When formaliz-

ing an existing Natural Language Narrative much detail is lost since Formal Story Spec-

ifications only contain semantic aspects of the narrative that are relevant to the concep-

tual model. However, this process may create information that is more precise than their

natural language counterparts. Inconsistencies, ambiguities and suppositions are re-

moved in this stage, making the modeler commit to a certain interpretation, fixing part

of the story’s semantic content. The Formal Story Specification acts like a sort of expla-

nation, revealing the elements involved in the story and its unfolding.

In the second case, a modeler may take the reverse approach: first create a Formal

Story Specification and later elaborate a Natural Language Narrative based on it. One

reason to use this approach is to validate the modeler’s understanding of the domain:

he/she can narrate this story to a subject matter expert and assess if he/she understood

correctly what was implied by the model. Another reason to use this approach is to mo-

tivate and justify changes in the model. If the model validation finds an inconsistency,

the modeler may create a narrative that explores the inconsistency to expose it to others.

Either way, the elaboration of Formal Story Specifications should be focused on its

practical validation purposes. It is an instrument to generate Formal Narratives and con-

cerns with computation aspects apply. For example, in the Natural Language Narrative

for our running example many items are mentioned (diagrams, documents and source

code). However, only the process diagram takes a central role in the story and the other

elements could therefore be omitted from the Formal Story Specification to save com-

putational resources in the Formal Narrative generation.

5.3. Formal Story Specification Language

Formal Story Specifications are model instances of our special-purpose language,

whose meta-model is presented in Fig. 17. In this language, the user may specify nodes

and links between nodes. The elements make explicit connections to the conceptual

model, specifying which classes they instantiate. Each node may be assigned to instanti-

ate some Rigid classes from the conceptual model, while links connect nodes and can be

assigned to instantiate Associations. Individuals (nodes and links) can be present in

worlds and a world sequence represents the unfolding of the story (the world sequence

is represented using “next” and “previous” relations). A world is a snapshot of the story,

capturing the state of things in a particular point in the story. As the story progresses,

elements may be created, changed or destroyed. Change is represented as classification

statements that may be made about the nodes, which specify contingent characteristics

of it, i.e., the Non-Rigid (Anti Rigid or Semi Rigid) classes a node instantiates.

The language takes an open world assumption, meaning the specification is partial

and what is not specified cannot be assumed to be false. In other words, the relations in

this model capture the “facts” that the modeler asserts about the story. The modeler can

assert a fact (e.g., “John” is an instance of “Developer”) or assert its negation (e.g.,

“Mary” is not an instance of “Developer”) by using the appropriate relations. Whenever

the model is silent with respect to a particular choice, e.g., when nothing is said about

whether “John” is a developer, the simulator will allow both options, meaning either

case can appear in a Formal Narrative of such story. This is useful to partially formalize

a story and simulate to see the possible rearrangements of states of affairs generated by

the simulator. As a consequence, a single Formal Story Specification can define many

different Formal Narratives.

Fig. 17. Meta-model of the Formal Story Specification language

5.4. Running Example

To exemplify the creation of a Formal Story Specification, we will build on our run-

ning example by formalizing the Natural Language Narrative presented in section 4.

The table below shows fragments of the Natural Language Narrative on the left column

and the corresponding Formal Story Specification on the right column. We use an in-

formal textual syntax to exemplify the use of the Formal Story Specification Language.

Natural Language Narrative Fragments Elements of the Formal Story Specifi-

cation

John, Mary, Fred and Thomas work at OntoSoft

company as developers.

John is Node

Mary is Node

Fred is Node

Thomas is Node

John different_from Mary

John different_from Thomas

John different_from Fred

Thomas different_from Mary

Thomas different_from John

John different_from Mary

John instance_of Person

Mary instance_of Person

Fred instance_of Person

Thomas instance_of Person

W1 is World

W2 is World

W3 is World

W4 is World

W5 is World

W6 is World

W1 next W2

W2 next W3

W3 next W4

W4 next W5

W5 next W6

John present_in W1, W2, W3, W4, W5, W6

Mary present_in W1, W2, W3, W4, W5, W6

Fred present_in W1, W2, W3, W4, W5, W6

Thomas present_in W1, W2, W3, W4, W5, W6

John is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4, W5, W6

Mary is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4, W5, W6

Fred is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4, W5, W6

Thomas is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4, W5, W6

They are working on an information system for a

bakery to manage its finances and supply-chain

processes. The system they are producing already

manages the finance aspects, and currently they are

developing new artifacts (such as diagrams, docu-

ments and source code) to manage the supply-chain

processes.

ProcessDiagram is Node

ProcessDiagram instance_of Diagram

ProcessDiagram present_in W1, W2, W3, W4,

W5, W6

Thomas is the Configuration Manager and he se-

lects some of the artifacts they created to be part the

project’s repository, where they are version-

Thomas is_referred_to_in {

 nonRigidClasses = ConfigurationManager

} holds_in W1, W2, W3, W4, W5, W6

controlled. John is_referred_to_in {

 nonRigidClasses = ConfigurationManager

} not_holds_in W1, W2, W3, W4, W5, W6

Fred is_referred_to_in {

 nonRigidClasses = ConfigurationManager

} not_holds_in W1, W2, W3, W4, W5, W6

Mary is_referred_to_in {

 nonRigidClasses = ConfigurationManager

} holds_in W1, W2, W3, W4, W5, W6

As the team focuses efforts on the bakery’s supply-

chain processes, Fred finds a deadlock in a process

diagram for buying raw materials and files a change

request for it, describing the problem he found and

the change that should be implemented.

ChangeRequest001 is Node

ChangeRequest001 instance_of ChangeRequest

ChangeRequest001 present_in W2, W3, W4, W5,

W6

ChangeRequest001 not_present_in W1

Link001 is Link

Link001 source Fred

Link001 target ChangeRequest001

Link001 present_in W2, W3, W4, W5, W6

Link001 not_present_in W1

Change001 is Node

Change001 instance_of Change

Change001 present_in W2, W3, W4, W5, W6

Change001 not_present_in W1

Link002 is Link

Link002 source Change001

Link002 target ChangeRequest001

Link002 present_in W2, W3, W4, W5, W6

Link002 not_present_in W1

Mary evaluates the request and asks John to check

out the diagram in the version control system to

modify it.

Evaluation001 is Node

Evaluation001 instance_of RequestEvaluation

Evaluation001 present_in W3, W4, W5, W6

Evaluation001 not_present_in W1, W2

Link003 is Link

Link003 source Evaluation001

Link003 target ChangeRequest001

Link003 present_in W3, W4, W5, W6

Link003 not_present_in W1, W2

CheckOut001 is Node

CheckOut001 instance_of CheckOut

CheckOut001 present_in W3, W4, W5, W6

CheckOut001 not_present_in W1, W2

Link004 is Link

Link004 source John

Link004 target CheckOut001

Link004 present_in W3, W4, W5, W6

Link004 not_present_in W1, W2

Link005 is Link

Link005 source CheckOut001

Link005 target Change001

Link005 present_in W3, W4, W5, W6

Link005 not_present_in W1, W2

After doing the necessary adjustments, he checks in

the modified version

Modification001 is Node

Modification001 instance_of Modification

Modification001 present_in W4, W5, W6

Modification001 not_present_in W1, W2, W3

Link006 is Link

Link006 source Modification001

Link006 target John

Link006 present_in W4, W5, W6

Link006 not_present_in W1, W2, W3

CheckIn001 is Node

CheckIn001 instance_of CheckIn

CheckIn001 present_in W5, W6

CheckIn001 not_present_in W1, W2, W3, W4

Link007 is Link

Link007 source CheckIn001

Link007 target Modification001

Link007 present_in W5, W6

Link007 not_present_in W1, W2, W3, W4

and Mary is assigned to verify whether John has Verification001 is Node

met the change request. Mary verifies the diagram

and notices that John’s modifications introduced

bugs in the already-approved finance processes.

These changes have a deep impact in the approved

parts of the software so Mary rejects the version and

asks John to branch the project and try again from a

different angle.

Verification001 instance_of Verification

Verification001 present_in W6

Verification001 not_present_in W1, W2, W3, W4,

W5

Link008 is Link

Link008 source Verification001

Link008 target Mary

Link008 present_in W6

Link008 not_present_in W1, W2, W3, W4, W5

Link009 is Link

Link009 source Verification001

Link009 target Change001

Link009 present_in W6

Link009 not_present_in W1, W2, W3, W4, W5

5.5. Story Modeler

We have implemented a prototype software application named Story Modeler to

create Formal Story Specifications. A screenshot of it is available in Fig. 18. The tool

represents the Formal Story Specification internally as an instance of the abstract syntax

meta-model presented in Fig. 17 (using code generated with the Eclipse Modeling

Framework). The tree table specifies the Individuals (Nodes and Links) in each row and

the Worlds in the columns. Each field determines if the element exists (a checkmark),

does not exist (a red ‘x’), or if it is left unspecified (an empty box); for each world col-

umn. The classes each story element instantiates, as well as the non-rigid classes for the

classification statements, can be defined in the list below the story elements panel.

Fig. 18. The Formal Story Specification interface

5.6. Formal Story Specification transformation to Alloy

Formal Story Specifications may be transformed to Alloy using the Story Modeler

application. For an overview of the Alloy language refer to Appendix A. The Story

Modeler generates a predicate that can be combined with the Alloy model generated by

OntoUML2Alloy transformation, available in the Menthor Editor. Running the Alloy

Analyzer using such generated predicate constraints the simulation to behave as speci-

fied by the Formal Story Specification. (Fig. 3)

The model transformation OntoUML2Alloy has been specified elsewhere and it

generates a signature structure that corresponds to the classes, its relationships and con-

straints that are implied by the OntoUML syntax. A sequence of Worlds represents

state-of-affairs. The transformation can be roughly summarized as follows.

The three8 most relevant signatures are Object, Property and World. In the World

signature, a field exists represents which Object or Property exists in each world. Clas-

ses of the conceptual model are represented as a fields in the World signature. There-

8 Datatypes are also translated to signatures but have been left out of scope for this work.

fore, if an Atom ‘x’ is part of a field ‘C’, for a given world ‘w’, that means ‘x’ is an in-

stance of ‘C’ in ‘w’. The set w.C represents the extension of a class C in the World w.

By running a model (i.e. simulating a model), the Alloy Analyzer will find structures

that satisfy the model’s constraints and represent a model instantiation.

The model transformation for Formal Story Specifications defined in this work takes

as input a model specified using the Formal Story Specification language presented in

the previous section. Each Node, Link or World becomes a variable of the story predi-

cate and the constraints are made in terms of these variables. By defining when they

exist, how they are related to each other and which classes they instantiate, we define

the story. Below, we present an example story predicate that defines a sequence of three

worlds and John, a Person. In the case of worlds, we specify the type to be the World

signature but nodes are specified to be in the set univ - World9, which is basically an

atom of any signature, except World.

pred story [World0:one World,

 World1:one World,

 World2:one World,

 John:one univ-World]

{

 John in World.Person

 John in World0.exists

 World0.next = World1

 World1.next = World2

}

First of all, we discuss how to represent class instantiation. That includes static clas-

sification for nodes and links and dynamic classification for nodes, in the form of Clas-

sification_statements. As mentioned before, in the OntoUML2Alloy transformation

each class is defined as a field in the World signature and to be instance of a class

“ClassName” in a World w means to be included in the set defined by w.ClassName.

Since an instance of a rigid class is necessarily an instance of it in every possible world

we can use the signature World (which is the set of all worlds) instead. By defining an

Individual to be a member of the set World.ClassName, we specify it to be a in the ex-

9 To cover datatypes, one would have to exclude them here, in the same way we exclude World.

tension of the class ClassName in some World10. For example, a node “n” with an in-

stance_of relation to a class “ClassName” would be translated to the following state-

ment:

n in World.ClassName

In the case of not_instance_of, we may simply insert the “not” keyword in the

statement to prevent the node from being an instance of the class.

n not in World.ClassName

Dynamic classification is defined using Classification_statements. That way, we

may specify in which Worlds a node instantiates a Non Rigid class. The classification

statement itself is not represented in the Alloy transformation, it is a syntactical element

used only to define in which worlds a given node instantiates a class. The node’s dy-

namic classification is represented, instead. The generated constraint is very similar to

the rigid classification statement, but it is instead targeted to a specific world “w”.

n in w.ClassName

n not in w.ClassName

To specify the existence of a node in a given world w, we may use the “exists” field

of the World signature. Being included in such property in a given world means to exist

in that World. Thus, if the node n is present_in w1 and absent_from w2, the following

statements would hold

n in w1.exists

n not in w2.exists

Regarding the identity of a node (defined by their same_as and different_from rela-

tions), we may simply use the “=” symbol. Therefore, “x = y” is generated for every

same_as relation and “x not = y” for every different_from relation.11

Links are represented as a tuple between two atoms. A link between “x” and “y” in-

stance of the Association “Assoc” in a World “w” is defined as

x->y in w.Assoc

In the case of undirected binary relationships, we may specify a tuple and its inverse

and constrain their union to have an intersection with the set that defines the association,

that way the direction of the link is not relevant.

some (x->y + y->x) & w.Assoc

10 This alone would only guarantee that the Individual would be an instance of the class in some world, not in every

world. However, constraints generated by the OntoUML2Alloy transformation guarantee that if the Individual is

an instance of the set in some world, it will be in every possible world.
11 . While the meta model defines these relations, the current version of the software does not use them yet and every

node is defined as different_from each other by default.

If a Link is defined without specifying the Association it instantiates, an auxiliary

predicate is used. The auxiliary predicate is defined as part of the translation and essen-

tially creates a set of the union of every Association. If the tuple (or its inverse) is part

of such set, it exists as an association of some (undefined) type in the world w.

pred direct_rel_in_w[x1,x2: univ , w:World]{

 some (x1->x2 + x2->x1)

 & (w.Association1+

 w.Association2+

(…)

 w.AssociationN)

}

If the link is defined, but there is no specification of which Worlds the link is pre-

sent_in, it may (or may not) exist in any possible world. In this case we may use the

following predicate as shorthand to using the previously defined predicate with World

signature set as the w variable.

pred direct_rel[x1,x2: univ-World]{

 direct_rel_in_w[x1,x2,World]

}

If the association that doesn’t have an Individual defined as either the target or the

source, the transformation uses the (univ – World) set, i.e. “any” node.

Last but not least, our application assumes Worlds are ordered (using the .next field

of the World signature) and their order is defined by their position in the Story Modeler

interface (from left to right). For example:

World1.next = World2

The table below shows how each of the elements in the Formal Story Specification

is translated to Alloy.

Elements of the Formal

Story Specification

Alloy Predicate

W1 is World

W2 is World

W3 is World

W4 is World

W5 is World

pred story [

 World1:one World,

 World2:one World,

 World3:one World,

 World4:one World,

 World5:one World,

W6 is World

Thomas is Node

Fred is Node

Mary is Node

John is Node

ProcessDiagram is Node

ChangeRequest001 is Node

Change001 is Node

Evaluation001 is Node

CheckOut001 is Node

Modification001 is Node

CheckIn001 is Node

Verification001 is Node

 World6:one World,

 Thomas:one univ-World,

 Fred:one univ-World,

 Mary:one univ-World,

 John:one univ-World,

 ProcessDiagram:one univ-World,

 ChangeRequest001:one univ-World,

 Change001:one univ-World,

 Evaluation001:one univ-World,

 CheckOut001:one univ-World,

 Modification001:one univ-World,

 CheckIn001:one univ-World,

 Verification001:one univ-World,]{

John different_from Mary

John different_from Thomas

John different_from Fred

Thomas different_from Mary

Thomas different_from Fred

Fred different_from Mary

John instance_of Person

Mary instance_of Person

Fred instance_of Person

Thomas instance_of Person

W1 next W2

W2 next W3

W3 next W4

W4 next W5

W5 next W6

John present_in W1, W2, W3,

W4, W5, W6

Mary present_in W1, W2, W3,

disj[John,Mary]

disj[John,Thomas]

disj[John,Fred]

dijs[Thomas,Mary]

disj[Thomas,John]

disj[Fred,Mary]

John in World.Person

Thomas in World.Person

Fred in World.Person

Mary in World.Person

World1 in CurrentWorld

World1.next = World2

World2.next = World3

World3.next = World4

World4.next = World5

World5.next = World6

John in World1.exists

John in World2.exists

John in World3.exists

John in World4.exists

John in World5.exists

John in World6.exists

Mary in World1.exists

W4, W5, W6

Fred present_in W1, W2, W3,

W4, W5, W6

Thomas present_in W1, W2, W3,

W4, W5, W6

John is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4,

W5, W6

Mary is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4,

W5, W6

Fred is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4,

W5, W6

Mary in World2.exists

Mary in World3.exists

Mary in World4.exists

Mary in World5.exists

Mary in World6.exists

Fred in World1.exists

Fred in World2.exists

Fred in World3.exists

Fred in World4.exists

Fred in World5.exists

Fred in World6.exists

Thomas in World1.exists

Thomas in World2.exists

Thomas in World3.exists

Thomas in World4.exists

Thomas in World5.exists

Thomas in World6.exists

John in World1.Developer

John in World2.Developer

John in World3.Developer

John in World4.Developer

John in World5.Developer

John in World6.Developer

Mary in World1.Developer

Mary in World2.Developer

Mary in World3.Developer

Mary in World4.Developer

Mary in World5.Developer

Mary in World6.Developer

Fred in World1.Developer

Fred in World2.Developer

Fred in World3.Developer

Fred in World4.Developer

Fred in World5.Developer

Fred in World6.Developer

Thomas is_referred_to_in {

 nonRigidClasses = Developer

} holds_in W1, W2, W3, W4,

W5, W6

Thomas in World1.Developer

Thomas in World2.Developer

Thomas in World3.Developer

Thomas in World4.Developer

Thomas in World5.Developer

Thomas in World6.Developer

ProcessDiagram instance_of Dia-

gram

ProcessDiagram present_in W1,

W2, W3, W4, W5, W6

ProcessDiagram in World.Diagram

ProcessDiagram in World1.exists

ProcessDiagram in World2.exists

ProcessDiagram in World3.exists

ProcessDiagram in World4.exists

ProcessDiagram in World5.exists

ProcessDiagram in World6.exists

Thomas is_referred_to_in {

 nonRigidClasses = Configura-

tionManager

} holds_in W1, W2, W3, W4,

W5, W6

John is_referred_to_in {

 nonRigidClasses = Configura-

tionManager

} not_holds_in W1, W2, W3, W4,

W5, W6

Fred is_referred_to_in {

 nonRigidClasses = Configura-

tionManager

} not_holds_in W1, W2, W3, W4,

W5, W6

Mary is_referred_to_in {

Thomas in World1.ConfigurationManager

Thomas in World2.ConfigurationManager

Thomas in World3.ConfigurationManager

Thomas in World4.ConfigurationManager

Thomas in World5.ConfigurationManager

Thomas in World6.ConfigurationManager

not John in World1.ConfigurationManager

not John in World2.ConfigurationManager

not John in World3.ConfigurationManager

not John in World4.ConfigurationManager

not John in World5.ConfigurationManager

not John in World6.ConfigurationManager

not Fred in World1.ConfigurationManager

not Fred in World2.ConfigurationManager

not Fred in World3.ConfigurationManager

not Fred in World4.ConfigurationManager

not Fred in World5.ConfigurationManager

not Fred in World6.ConfigurationManager

Mary in World1.ConfigurationManager

 nonRigidClasses = Configura-

tionManager

} holds_in W1, W2, W3, W4,

W5, W6

Mary in World2.ConfigurationManager

Mary in World3.ConfigurationManager

Mary in World4.ConfigurationManager

Mary in World5.ConfigurationManager

Mary in World6.ConfigurationManager

ChangeRequest001 instance_of

ChangeRequest

ChangeRequest001 present_in

W2, W3, W4, W5, W6

ChangeRequest001

not_present_in W1

Link001 is Link

Link001 source Fred

Link001 target

ChangeRequest001

Link001 present_in W2, W3, W4,

W5, W6

Link001 not_present_in W1

Change001 instance_of Change

Change001 present_in W2, W3,

W4, W5, W6

Change001 not_present_in W1

Link002 is Link

Link002 source Change001

Link002 target

ChangeRequest001

Link002 present_in W2, W3, W4,

W5, W6

Link002 not_present_in W1

ChangeRequest001 in World.ChangeRequest

ChangeRequest001 in World2.exists

ChangeRequest001 in World3.exists

ChangeRequest001 in World4.exists

ChangeRequest001 in World5.exists

ChangeRequest001 in World6.exists

ChangeRequest001 not in World1.exists

direct_rel_in_w[(Fred),(ChangeRequest001),World2]

direct_rel_in_w[(Fred),(ChangeRequest001),World3]

direct_rel_in_w[(Fred),(ChangeRequest001),World4]

direct_rel_in_w[(Fred),(ChangeRequest001),World5]

direct_rel_in_w[(Fred),(ChangeRequest001),World6]

not direct_rel_in_w[(Fred),(ChangeRequest001),World1]

Change001 in World.Change

Change001 in World2.exists

Change001 in World3.exists

Change001 in World4.exists

Change001 in World5.exists

Change001 in World6.exists

Change001 not in World1.exists

direct_rel_in_w[(ChangeRequest001),(Change001),World2]

direct_rel_in_w[(ChangeRequest001),(Change001),World3]

direct_rel_in_w[(ChangeRequest001),(Change001),World4]

direct_rel_in_w[(ChangeRequest001),(Change001),World5]

direct_rel_in_w[(ChangeRequest001),(Change001),World6]

not direct_rel_in_w[(ChangeRequest001),(Change001),World1]

Evaluation001 instance_of Evaluation001 in World.RequestEvaluation

RequestEvaluation

Evaluation001 present_in W3,

W4, W5, W6

Evaluation001 not_present_in

W1, W2

Link003 is Link

Link003 source Evaluation001

Link003 target

ChangeRequest001

Link003 present_in W3, W4, W5,

W6

Link003 not_present_in W1, W2

CheckOut001 instance_of

CheckOut

CheckOut001 present_in W3, W4,

W5, W6

CheckOut001 not_present_in W1,

W2

Link004 is Link

Link004 source John

Link004 target CheckOut001

Link004 present_in W3, W4, W5,

W6

Link004 not_present_in W1, W2

Link005 is Link

Link005 source CheckOut001

Link005 target Change001

Link005 present_in W3, W4, W5,

W6

Link005 not_present_in W1, W2

Evaluation001 in World3.exists

Evaluation001 in World4.exists

Evaluation001 in World5.exists

Evaluation001 in World6.exists

Evaluation001 not in World1.exists

Evaluation001 not in World2.exists

direct_rel_in_w[(ChangeRequest001),(Evaluation001),World3]

direct_rel_in_w[(ChangeRequest001),(Evaluation001),World4]

direct_rel_in_w[(ChangeRequest001),(Evaluation001),World5]

direct_rel_in_w[(ChangeRequest001),(Evaluation001),World6]

not direct_rel_in_w[(ChangeRequest001),(Evaluation001),World1]

not direct_rel_in_w[(ChangeRequest001),(Evaluation001),World2]

CheckOut001 in World.CheckOut

CheckOut001 in World3.exists

CheckOut001 in World4.exists

CheckOut001 in World5.exists

CheckOut001 in World6.exists

CheckOut001 not in World1.exists

CheckOut001 not in World2.exists

direct_rel_in_w[(John),(CheckOut001),World3]

direct_rel_in_w[(John),(CheckOut001),World4]

direct_rel_in_w[(John),(CheckOut001),World5]

direct_rel_in_w[(John),(CheckOut001),World6]

not direct_rel_in_w[(John),(CheckOut001),World1]

not direct_rel_in_w[(John),(CheckOut001),World2]

direct_rel_in_w[(John),(CheckOut001),World3]

direct_rel_in_w[(John),(CheckOut001),World4]

direct_rel_in_w[(John),(CheckOut001),World5]

direct_rel_in_w[(John),(CheckOut001),World6]

not direct_rel_in_w[(John),(CheckOut001),World1]

not direct_rel_in_w[(John),(CheckOut001),World2]

Modification001 instance_of

Modification

Modification001 present_in W4,

W5, W6

Modification001 not_present_in

W1, W2, W3

Link006 is Link

Link006 source Modification001

Link006 target John

Link006 present_in W4, W5, W6

Link006 not_present_in W1, W2,

W3

CheckIn001 instance_of CheckIn

CheckIn001 present_in W5, W6

CheckIn001 not_present_in W1,

W2, W3, W4

Link007 is Link

Link007 source CheckIn001

Link007 target Modification001

Link007 present_in W5, W6

Link007 not_present_in W1, W2,

W3, W4

Modification001 in World.Modification

Modification001 in World4.exists

Modification001 in World5.exists

Modification001 in World6.exists

Modification001 not in World1.exists

Modification001 not in World2.exists

Modification001 not in World3.exists

direct_rel_in_w[(John),(Modification001),World4]

direct_rel_in_w[(John),(Modification001),World5]

direct_rel_in_w[(John),(Modification001),World6]

not direct_rel_in_w[(John),(Modification001),World1]

not direct_rel_in_w[(John),(Modification001),World2]

not direct_rel_in_w[(John),(Modification001),World3]

CheckIn001 in World.CheckIn

CheckIn001 in World5.exists

CheckIn001 in World6.exists

CheckIn001 not in World1.exists

CheckIn001 not in World2.exists

CheckIn001 not in World3.exists

CheckIn001 not in World4.exists

direct_rel_in_w[(Modification001),(CheckIn001),World5]

direct_rel_in_w[(Modification001),(CheckIn001),World6]

not direct_rel_in_w[(Modification001),(CheckIn001),World1]

not direct_rel_in_w[(Modification001),(CheckIn001),World2]

not direct_rel_in_w[(Modification001),(CheckIn001),World3]

not direct_rel_in_w[(Modification001),(CheckIn001),World4]

Verification001 instance_of

Verification

Verification001 present_in W6

Verification001 not_present_in

W1, W2, W3, W4, W5

Verification001 in World.Verification

Verification001 in World6.exists

Verification001 not in World1.exists

Verification001 not in World2.exists

Verification001 not in World3.exists

Verification001 not in World4.exists

Verification001 not in World5.exists

Link008 is Link

Link008 source Verification001

Link008 target Mary

Link008 present_in W6

Link008 not_present_in W1, W2,

W3, W4, W5

Link009 is Link

Link009 source Verification001

Link009 target Change001

Link009 present_in W6

Link009 not_present_in W1, W2,

W3, W4, W5

direct_rel_in_w[(Mary),(Verification001),World6]

not direct_rel_in_w[(Mary),(Verification001),World1]

not direct_rel_in_w[(Mary),(Verification001),World2]

not direct_rel_in_w[(Mary),(Verification001),World3]

not direct_rel_in_w[(Mary),(Verification001),World4]

not direct_rel_in_w[(Mary),(Verification001),World5]

direct_rel_in_w[(Change001),(Verification001),World6]

not direct_rel_in_w[(Change001),(Verification001),World1]

not direct_rel_in_w[(Change001),(Verification001),World2]

not direct_rel_in_w[(Change001),(Verification001),World3]

not direct_rel_in_w[(Change001),(Verification001),World4]

not direct_rel_in_w[(Change001),(Verification001),World5]

5.7. Generating Formal Narratives with Formal Story

Specifications

To generate a Formal Narrative with the Alloy Analyzer one must specify a run

command in the Alloy specification. This means the model finding capacities of the Al-

loy Analyzer are employed to finding World States that satisfy both the the conceptual

model (defining the types of things that exist in the simulation and how they may relate)

and the constraints implied by the Formal Story Specification (which elements exist,

how they are related to each other, which classes they instantiate and in which World

they exist). In such situation, the Alloy Analyzer may find many different arrangements

of elements and World States and we call each one of these arrangements a Formal Nar-

rative for the Formal Story Specification. The run command defines the so-called

“scope” of each signature in the specification and takes the story predicate as input. The

possibilities are constrained by the scope: given a larger scope, more Worlds may exist

and more elements of each signature may exist. The scope must be large enough to in-

clude every necessary element for the Formal Story Specification to be satisfied, other-

wise the Alloy Analyzer will not find any Formal Narrative for the given scope.

This means the scope of each Identity Provider Class must be adjusted carefully to

generate a Formal Narrative exactly as expected. If the scopes are loosely constrained,

the Alloy Analyzer will very often create many elements which are not specified in the

Formal Story, making the Formal Narrative hard to comprehend. To illustrate how these

simulations may be complex under this unconstrained circumstances, see Fig. 19 show-

ing the first world of a Formal Narrative generated using the Formal Story Specification

we created in this Chapter.

Fig. 19.Formal Narrative generated with no scope control

These may be useful only for those who are experts in using the simulation ap-

proach. In our approach, the generation of Formal Narratives must be controlled to

make the Formal Narratives resemble the Natural Language Narrative as much as possi-

ble. Therefore, in the next chapter we elaborate on an explicit account to how we should

elaborate these run commands, controlling the scope of the run command and creating

Formal Story Specifications iteratively, to deal with the potential complexity of the

simulations.

5.8. Concluding remarks

In this chapter we have introduced Formal Story Specifications as part of our valida-

tion approach. Formal Story Specifications are developed using the Formal Story Speci-

fication Language, which we have also introduced in this Chapter. They can be devel-

oped using our prototype application Story Modeler. Finally, Formal Story Specifica-

tions are transformed to Alloy predicates, which are used constrain the Alloy simula-

tions and generate Formal Narratives.

The Formal Story Specification created in this chapter has little value to the valida-

tion approach, as the Formal Narratives it generates are too complex; except perhaps to

experts in the simulation approach. It was used only as a didactic artifact for the reader,

with the purpose of exemplifying the use of the Formal Story Specification Language.

The elaboration of the Formal Story Specifications is instrumental and an approach to

generating them iteratively taking account scope is detailed in the next chapter.

6. Iterative Validation using Formal

Narratives

“All media as extensions of ourselves serve to provide
new transforming vision and awareness.”

-Marshall McLuhan

6.1. Introduction

In this chapter we build on the previous chapters to define an iterative validation

procedure using Formal Story Specifications to generate Formal Narratives.

There are many reasons that justify an iterative procedure. First, from a technical

point of view, our underlying technology assumes a small scope hypothesis i.e. that de-

sign problems can be detected using a small number of instances. More specifically, the

Alloy Analyzer (the underlying technology of our model simulator) cannot handle a

large number of instances and the time to analyze a model grows very fast with the size

of the narrative.

Second, if a Formal Story Specification turns out to be inconsistent or generates

Formal Narratives in an unintended way it can be hard to track the source of the prob-

lem in large Formal Story Specifications such as the one developed in the previous

chapter. Our prototype currently has no explicit means of pinpointing what makes a sto-

ry inconsistent. Therefore, it is desirable to start testing the model with stories as small

as possible, to facilitate identifying possible sources of inconsistency.

Third, from a cognitive point of view, using several small examples that build up in

complexity reduces the possibility of overwhelming the audience (including the model-

er!) with too much detail. If opportunities for changing the model can be found in small

examples, it will be easier to show and justify them.

The rest of the chapter is structured as follows: in section 6.2 we present the proce-

dure to be followed to conduct the iterative validation; in section 6.3 we discuss how the

scope of an Alloy analysis affects our approach; in section 6.4 we apply this procedure

to validate and correct the model; in section 6.5 we generate a complete Formal Narra-

tive for the corrected model, illustrating the Natural Language Narrative created in pre-

vious chapters; finally, in section 6.6 we offer concluding remarks.

6.2. Iterative procedure

The iterative process, in general, can be described by the following steps

(i) Elaborate a Natural Language Narrative that exercises the model elements;

(ii) Generate an Alloy Model for the model;

(iii) Gradually elaborate a Formal Story Specification for the Natural Language

Narrative. Start with a Formal Story Specification that is as small as possible

and add more elements with each iteration of the method;

a. transform the Formal Story Specification to Alloy;

b. merge the story predicate with the Alloy Model generated in step (ii);

c. write a run command for the story predicate;

d. generate Formal Narratives to assess the model. Optionally, create a Nat-

ural Language Narrative that illustrates this formal narrative;

e. elaborate and document alternative hypothesis for model improvement;

f. choose between one of those alternatives (which may involve SME12)

and implement the change in the model;

g. with the modified model go back to step (ii), adjust the Formal Story

Specification (if necessary) and repeat the process until a satisfying qual-

ity is achieved and no more model modifications are necessary;

(iv) Go back to step (iii) and add more elements to the Formal Story Specifica-

tion to increase the scope of analysis until the whole Natural Language Nar-

rative is formalized;

If the diagrams generated by the Alloy Analyzer are hard to understand, and the

formal narratives must be presented to Subject Matter Experts or documented, create a

visual notation for the instance diagrams following [9] and re-draw them for better legi-

bility.

When specifying a scope to the run command in step ‘c’, one should adjust the

scope to be large enough to allow all the nodes specified in the Formal Story Specifica-

tion, but as small as possible, to avoid noisy simulations. A noisy simulation is one that

includes elements that do not help model assessment. These elements are considered,

therefore, noise i.e. a disruption that interferes with the interpretation of information. By

specifying the individual scope of each Identity Provider Class (Kind, Collective, Quan-

12 Presenting the consequence of choosing between alternative modeling can be challenging and storytelling using

diagrams for the formal narratives may help in such task.

tity, Relator or Mode), we can control the complexity of the simulation. For example, if

we specify the scope to be exactly the number of elements we described in the Formal

Story Specification, then the run command will have a much more predictable result

than if we have a larger scope. With a larger scope, the analyzer may insert unspecified

elements. While these can be helpful to identify unexpected scenarios, they often act

only as noise, disrupting the assessment activity. We discuss the subject of scope for the

run command in the next section.

When Formal Story Specifications are unsatisfiable, it can be for three different rea-

sons. The first is that, since Formal Story Specifications are also models, they are also

subject to model quality. In other words, they could be unsatisfiable due to a mistake the

modeler made while elaborating them. In the second case, the modeler made no mis-

takes while elaborating the Formal Story Specification and their unsatisfiability can be

useful since that may be an indication that the model cannot satisfy an intended state of

affairs. The third and last case is that the model is satisfiable, but only to a larger scope.

6.3. Scope concerns for generating Formal Narratives

To generate the simulations (Formal Narratives), one must issue a run command in

the Alloy model for the predicate generated using the Formal Story Specification. The

run command is part of the Alloy model and it specifies the scope of the analysis that is

executed by the Alloy Analyzer i.e. the scope specifies how many atoms will be gener-

ated at most for each signature. A run command is usually structured as the example

below.

run story for 4 but exactly 1 World, 3 Object

The run command above specifies the maximum scope of every signature to 4, ex-

cept the World signature, which will have exactly 1 atom in every simulation and the

Object signature, which will have at most 3 atoms in any given simulation. Leaving

some signature unspecified defaults their scope to the maximum scope. For example, in

the command above, Property has scope size of 4. The extension set of any class that is

stereotyped as a Moment is a subset of the Property set, therefore the scope of the Prop-

erty signature defines how many Moment Individuals exist. Mutatis mutandis the same

can be said about classes stereotyped as a Substance and the Object signature.

Defining the scope over the Object and Property signature can be too abstract and

there may be need to define the scope more precisely, distributing the atoms between

classes of the model. To that effect, we could manually constraint the cardinality of the

World signature’s fields that represent each class extension. Such constraint may be

included in the story predicate such as

#World.Person = 2

#World.Diagram = 1

Considering that Diagram and Person in the example above are Objects and are dis-

joint, in this case, the scope of the Object signature is divided between them. Combined,

they take the whole scope of the Object signature. No other Object class disjoint from

Person and Diagram could be instantiated in this example, unless the scope of the Ob-

ject signature is increased. “Greater than” (>) and “smaller than” (<) operators can

also be used instead of the “equals” (=) operator used above.

Large models that have many different classes will therefore require a large scope to

be satisfied. For example, to instantiate every class in a model with X Moment Classes

(such as Relator, Mode or Quality), one would need a scope of at least X. As the scope

increases, simulations exponentially take longer to run. To deal with these performance

limitations we have proposed a modification to the OntoUML2Alloy model transfor-

mation. The variation is specified in Appendix B and is called “Scope-Reducing” trans-

formation since it is the main concern behind the variation. The Alloy model must be

manually adapted to use the “Scope-Reducing” approach since no software support was

developed.

The same run command above in the “Scope-Reducing” model transformation var-

iation looks like this:

run story for 4 but exactly 1 World, 2 Person, 1 Diagram

In this variation, the scope of each Indentity Provider Class can be controlled in the

run statement and the overall scope can be greatly reduced. In this case, to instantiate

every class in a model with X Moment Classes (such as Relator, Mode or Quality), one

would need a scope of 1, unless cardinality constraints impose otherwise (for example,

an association with minimum cardinality of 2).

While scope details are not part of the Formal Story Specification they are a part of

the model validation strategy. However, one should be cautious when restricting scope;

for the scope definition can make the model unsatisfiable. For example, if we specify

our running example to have exactly 1 Repository and exactly 0 Branches, the model

will be unsatisfiable, as each repository has a mandatory relationship to at least one

branch.

6.4. Applying the method to the running example

In this section we apply the method described in the previous section to the model

we have been using as our running example (Fig. 16). Step (i) of our approach was per-

formed when we elaborated the Natural Language Narrative in Chapter 4 . We generat-

ed the Alloy model in step (ii) but have omitted it.

To facilitate reading of the Formal Narrative diagrams, we have elaborated a visual

notation for the diagrams depicting Formal Narratives. The instance diagram notation

we have designed for this purpose helps reading the diagram [9]. The legend is present-

ed in Fig. 20. The diagrams that represent Formal Narratives and the legend were gener-

ated manually, although their content was generated by Alloy in simulation.

We have selected different shapes and colors for some relevant classes and roles are

represented as annotations between less than and greater than signs (“<” and “>”) and in

italics, near the association that implies the role, except for Developer, which is always

represented as a blue person icon (because here we do not include people who are not

developers in the analysis).

Some visual similarities can be highlighted to facilitate reading. The red elements

are all very tightly connected: Projects contain repositories, which in turn contain

branches, which in turn contain versions. The most relevant red element is the version

and the other elements are merely containers. Copy has the same shape as Version, but

doesn’t have a fill color. That signals that they are similar, yet different. A Check Out

also doesn’t have a fill color, to make a visual association with a copy, since every copy

is always associated to a check out. A Check In is a plus sign, since it adds Versions to a

branch. The Check Out is a minus sign to create a visual duality with the Check In sym-

bol i.e. Check In is a plus, Check Out is a minus. A configuration selection is green,

similar to the Check In to create a visual association a check-in. A configuration selec-

tion effectively adds Items to a branch, through the check-in. The purple symbols are

also tightly related. A Change may be verified so a Verification is always associated to a

Change. Modifications are associated to Check Ins, much like the Changes that motivat-

ed them. The orange symbols, Change Request and Request Evaluation are both activi-

ties that are done by someone who is not necessarily a developer. One person may re-

quest a change and someone else may evaluate such request, while a third (developer)

implements it.

Fig. 20. Diagram legend

Starting with step (iii) of our approach, in our first iteration we specify only the ex-

istence of Thomas (a Node instance of Person, Developer and Configuration Manager)

and the Diagram (a Node instance of Diagram) in an initial world (Fig. 21). Although

we have not specified the existence of a Configuration in the Formal Story Specifica-

tion, we expect it to appear in the Formal Narrative, as it is a logical necessity for

Thomas to be a configuration manager.

Fig. 21. First Formal Story Specification

For step (a), transforming the Formal Story Specification to Alloy, we will use the

“Scope-reducing” variation of the transformation to Alloy described in Appendix B. We

merge the predicate to the Alloy model (step b) and write a run command with a scope

of 1. Running this very simple story (surprisingly) yields no results for a scope of 1.

Increasing the scope, we find Formal Narratives that satisfy the model and they all seem

to imply necessarily at least 2 branches per repository and 2 versions per branch. In-

specting these relations closely in the model we may find that even though the cardinali-

ties are 1..* in the parthood relationships, the weak supplementation13 axiom still ap-

plies to them, requiring a minimum cardinality of two branches and two versions per

branch. This is considered inadequate from the perspective of the subject domain, which

may have repositories with only one branch, as well as a single version per branch. Here

we have detected an important issue with the model that could have negative conse-

quences if used as a basis for an implementation of a configuration management system:

Issue 1: it is impossible to bootstrap a simple repository with a single branch

or a branch with a single version.

To deal with this problem, we enumerate alternatives: (i) configure the parameters

of generating the Alloy model (in step ii of the approach) to opt-out from enforcing

weak supplementation. (ii) model these relationships using a different kind of relation-

ship such as a formal relationship or (iii) model some other part of a repository and

some other part of branch, to satisfy the weak supplementation axiom.

Given the two options, we will simply opt not to enforce the weak supplementation

axiom (option i). We agree with the philosophical importance of the axiom (defended in

length in [49]) and this axiom helped notice what could be a problematic conceptualiza-

tion. However, we will assume the model is incomplete and we believe it is safe to opt-

out of it, since the ontological reasons for enforcing them do not apply to this case. We

found no other parts to model that would satisfy the axiom (option iii) and the stereo-

type used to model the relationship seems to be the most adequate (option ii).

Having re-generated the Alloy model without the weak supplementation axiom, we

restart the process (going back to step (ii)), simulating it again. However, setting the

maximum scope to 1 is still not enough to generate a Formal Narrative: we still need a

larger scope to satisfy the Formal Story Specification. In this scenario we may specify

13 Briefly, weak supplementation states that a whole should have at least two parts. This does not necessarily imply

that any parthood relationships should have a minimum cardinality of two: a whole could have two different par-

thood relationships with a minimum cardinality of 1 and still satisfy this axiom.

the scope of individual classes to narrow down where the problem is. Therefore, we

may constrain the scope to show no Modification, Change, Verification, Change re-

quests or Check Outs. However, counter intuitively, that blocks the generation of For-

mal Narratives. It seems that the model does not allow a simple scenario such as the one

we designed, i.e. some instance of these classes (or a subset of them) are necessary for

the model to be satisfiable. To find out which classes are necessary (i.e. which classes

can’t be set to have zero scope), we constrain the scope of each one of them individual-

ly, testing if we can still generate Formal Narratives without one of them. This reveals

that the classes Modification, Change, Change Request and Check Out are all necessary

for generating Formal Narratives based on our first Formal Story Specification. A close

inspection of the model reveals there is a cycle of necessary relationships that requires

at least one instance of each of these classes for a single Version to exist. Again, here

we have detected an important issue with the model that could have negative conse-

quences if used as a basis for an implementation of a configuration management system:

Issue 2: it is impossible to create a single (unmodified) first version of an ar-

tifact.

We may solve the issue breaking this cycle by (i) changing the cardinalities of the

mediation between Check In and Implemented Change from 1 to 0..1 (to allow check-

ins without a Change Request) and changing the cardinality of the mediation between

Check In and Registered Modification from 1..* to 0..* (to allow the first-check in sce-

nario, where a version hasn’t been modified) or (ii) creating classes to represent the first

check-in and the first version; where these classes wouldn’t have the relationships that

imply the cycle of necessity. We model the first option in Fig. 22 and the second one is

in Fig. 23.

An undesired consequence of the first option is that the model would allow check-

ins (that are not the first check-in) not to be a modification of a previous version. There-

fore, we would have to add constraints to the model (e.g. using OCL) to ensure that eve-

ry check-in which is not the first check-in has a minimum cardinality of 1 for the media-

tion relations between CheckIn and ImplementedChange, and between CheckIn and

RegisteredModification. The second option, on the other hand makes the model more

complex, introducing vocabulary that is a priori not natural to of the domain, such as

“ModificationCheckIn”. In order to continue the process, we select the first option, as it

is less intrusive to the model under consideration.

Fig. 22. Modified model with relaxed cardinalities. Changed cardinalities are circled

Fig. 23. Modified model including new classes (“FirstCheckIn”, “FirstVersion” and “ModificationCheckIn”)

Returning to the Formal Narrative generation, we run the simulator with a scope of

1, specifying the scope of Change and Modification to zero. This time the simulator

successfully generates Formal Narratives. One of them is depicted in Fig. 24 showing a

Project with a single Branch and a single Version of the Diagram, checked in and se-

lected by Thomas, as expected. To narrate this Formal Story Specification, we could use

some (micro) Natural Language Narratives such as “Thomas is a developer at Ontosoft

and commits a process diagram for the first time”, “Thomas is a developer and configu-

ration manager” or “Thomas selects a Diagram for Configuration”.

Fig. 24. First successful attempt at iterative simulation

“Thomas is a developer at Ontosoft and commits a process diagram for the first time”

Moving on with our iterative process, we will add John to the Formal Story and let

him check-out the diagram in the second World (Fig. 25). A Natural Language narrative

to illustrate this Formal Story Specification could be “Thomas and John are developers

at Ontosoft. Thomas commits a process diagram for the first time and John checks it out

to improve it.”

Fig. 25. Formal Story adding John and a checkout

To generate the Formal Narratives, we constrain the scope of the analysis to 2

(overall) but exactly 1 Diagram, exactly 1 Check Out, exactly 1 Check In, exactly 1

Branch and exactly 1 Repository. The first Formal Narrative we generate with this For-

mal Story Specification can be seen in Fig. 26 (World0) and Fig. 27 (World1). It does

generate a Formal Narrative where John checks out the diagram that was previously

checked in. We scrutinized this Formal Narrative for validation purposes. Here we con-

sider some potential problems that we have identified.

The first potential problem is that in Fig. 26 (World0), we see that John checks in

the diagram that someone else - Thomas - selects for configuration. As this could repre-

sent a case of under constraining, we must consult subject matter experts to determine

whether this scenario is in fact admissible.

Question 1: is it possible that one Developer selects an Item for Configura-

tion and someone else checks in the selected item for the first time? In other

words, should the first check in of a configuration item be done by the same

person who made a configuration selection for the item?

Question 2: is “First Check In” a concept relevant enough to include in the

conceptual model?

Fig. 26. World0 of the first simulation of John’s checkout formal story

“John checks in the first version of the diagram selected by Thomas”

The second potential problem is that in Fig. 27 (World1), we see that John requests

a change and evaluates the request himself, which seems pointless (why would you

evaluate your own request?). The evaluator of a change request should probably be

someone different than the person who requested the change. Additionally, we can see

John both evaluated the request and checked out the diagram, while in the Narrative it

was Mary who evaluated the request. Again, the Subject Matter Expert should be con-

sulted in order to determine whether the scenario is admissible.

Question 3: Can the Requester of a Change evaluate his own Request or

should it be done by someone else?

Question 4: Can the evaluator of the request be the same person who checks

the version out to change it?

Fig. 27. World1 of the first simulation of John’s checkout formal story

“John makes a Change Request for the Diagram version 1, evaluates the request and checks out the diagram”

The third potential problem is that in Fig. 27 (World1), the Diagram’s version is a

copy of itself (refers to itself).

Issue 3: A Version may be a copy of itself

According to the authors, a copy is created in a check-out and destroyed in a check

in. Also, a version is created at checked-in, which is not the case for the copy. There-

fore, it entails that a checked-out version and its copy must be different entities (as the

checked out version existed prior to the copy). Therefore, we suggest correcting the

model by making the Copy a separate entity, a mode of a checked out version (Fig. 28)

and not a role of Version.

Fig. 28. Modified model with Copy as a mode of Checked Out Version

There still is a problem with this model. We will illustrate this problem using a

thought experiment. First, keep in mind that a Check-In destroys a Copy. Second, notice

in the diagram that there is an existentially-dependent relationship between a Check-In

(which is not the “first check-in”) and a Modification (Registered Modification), and

also between a Modification and a Copy (Modified Copy). In our thought experiment

we will imagine the moment John checks in the diagram, after implementing Fred’s re-

quested changes. Just before the check-in, there is a copy John is working on. It is a

modified copy, since John made a Modification. In the moment John checks in the dia-

gram, this modification plays the role of Registered Modification. However, if the copy

John was working on is destroyed in the process of checking in the diagram, the modifi-

cation associated to it must be destroyed as well by necessity (since it has a mediation

relation with Modified Copy) and so would the Check In since it depends existentially

on any mediated entities (in this case, it depends on the modification). Therefore, the

check-in cannot exist in this setting, if the copy must be destroyed after checking in the

modification.

Issue 4: A Check-In cannot destroy a Copy without destroying itself as a

consequence of formal necessity.

The solution lies in what is called a historical dependence relationship. The Check-

In is historically dependent on the modification (and therefore on the Copy), as it was

based on it. Since historical dependency relations are not covered by the simulator, we

can instead consider that Copies related to Registered Modifications are Consumed

Copies (Fig. 29), and mark the class Copy as permanent [45] i.e. “its individuals, once

they exist, always exist” [45]. The association ends of the mediation relation between

Consumed Copy and Registered Modification are subsets of the mediation relation be-

tween Modified Copy and Modification.

Fig. 29. Modified model including ConsumedCopy

Alternatively, the concept of copy could be removed altogether (Fig. 30). In this

model, a Checked Out Version that has been modified is a Modified Version.

Fig. 30. Modified model removing Copy, including ModifiedVersion

These modifications suffice to generate Formal Narratives representing the whole

Natural Language Narrative. These Formal Narratives are presented in the next section.

Below, we summarize issues we have resolved and questions that were raised for the

modelers/stakeholders of this model:

 Issue 1: In the original model the parthood relationship between Project and

Branch and between Branch and Version makes it is impossible to bootstrap

a simple repository with a single branch and a single version.

o Adopted solution: opt out from enforcing weak supplementation, as-

suming the model is incomplete with respect to the parts of project

and branch;

o Alternative 1: explore alternative stereotypes for the whole-part rela-

tion;

o Alternative 2: add different parts to Project and Branch to satisfy the

weak supplementation principle.

 Issue 2: It is impossible to create a single (unmodified) first version of an ar-

tifact.

o Adopted solution: Change the cardinalities of the mediation between

Check In and Implemented Change from 1 to 0..1 (to allow check-ins

without a Change Request) and change the cardinality of the media-

tion between Check In and Registered Modification from 1..* to 0..*

(to allow the first-check in scenario, where a version hasn’t modified

a previous version);

o Alternative: create classes to represent the first check-in and the first

version; where these classes wouldn’t have the relationships that

form the cycle of necessity.

 Issue 3: A Version may be a copy of itself

o Adopted solution: a Copy becomes a mode of Version and not a role

of a version in some context (Fig. 28).

 Issue 4: A Check-In cannot destroy a Copy without destroying itself as a

consequence of formal necessity

o Adopted solution: refactor the model including a class to represented

the Consumed Copy, making the Copy class permanent (Fig. 29)

o Alternative: refactor the model and remove the Copy class (Fig. 30)

 Question 1: is it possible that one Developer selects an Item for Configura-

tion and someone else checks in the selected item for the first time? In other

words, should the first check in of a configuration item be done by the same

person who made a configuration selection for the item?

 Question 2: is “First Check In” a concept relevant enough to include in the

conceptual model?

 Question 3: Can the Requester of a Change evaluate his own Request or

should it be done by someone else?

 Question 4: Can the evaluator of the request be the same person who checks

the version out to change it?

In this section we have applied the iterative procedure to create Formal Story Speci-

fications and Formal Narratives. We have shown how applying these steps can reveal

characteristics of the model and help detect mistakes or opportunities for improvement.

These can be presented to subject matter experts in the form of diagrams (Formal Narra-

tives) which can be narrated using Natural Language Narratives, to explain the possible

consequences of each modeling choice.

6.5. Revisiting Formal Narrative generation for the

running example

In this section, we generate a Formal Narrative that corresponds to the complete

Natural Language Narrative presented previously in Chapter 4. For this section we use

the modified model presented previously in Fig. 29, product of the iterative model vali-

dation activities.

Fig. 31 is the first world of our story. In it we can see John, Thomas, Fred and Mary

(in blue). Thomas is a Configuration Manager (since he is associated to Configuration-

Selection001) and he selects the Buying Process Diagram (a Configuration Item, since it

has a version), and checks it in to branch1 of the Bakery Repository in the Bakery Pro-

ject. Notice we have not included in the Formal Story Specification the other configura-

tion items such as the source code and the documentation. That is because they have no

interaction with the rest of the story, so we can save computational resources by omit-

ting them from the simulation. We make sure no other Items are generated by restricting

the scope of this class to 1. Other classes also have their scopes restricted, so we will

only get elements that are specified in the Formal Story Specification.

Fig. 31. World0 – Thomas selects for configuration and checks in the Buying Process Diagram

In the second world (Fig. 32), Fred finds a bug in the Buying Process Diagram

(Version1) and files a Change Request (ChangeRequest001). Every element that was

present in the previous World is concealed with some transparency to highlight the new

elements. Notice there is nothing in the model (and therefore nothing in the Formal Sto-

ry Specification or the Formal Narrative) about “finding bugs”, which is merely a narra-

tive device of the Natural Language Narrative. (Naturally, this is an opportunity to ques-

tion whether the notion of “bugs” should be addressed formally in the domain.) The

element Change001 reifies “what needs to be changed”. Such Change is the subject of

ChangeRequest001.

Fig. 32. World1 –Fred files a change request for DiagramVersion1

In the third world (Fig. 33), Mary evaluates Fred’s request.

Fig. 33. World2 –Mary evaluates the request

The fourth world (Fig. 34) features John checking out the diagram. Since this check-

out refers to Change001, the change is now an “On Going Change”. Notice also that the

check-out generates a Copy of DiagramVersion1, which is now a checked-out version.

Fig. 34. World3 –John Checks out the diagram to implement the change

In Fig. 35, John modifies the copy to fulfill Fred’s change request. That amounts to

the copy now instantiating the “Modified Copy” class. Then, in Fig. 36, John checks in

the modified copy. Mary then verifies these changes in Fig. 37.

Fig. 35. World4 –John modifies the copy

Going through the diagrams from Fig. 31 to Fig. 37 one may see how the Natural

Language Narrative from Section 4.4 is realized in the model’s terms i.e. how the model

may be instantiated and realize the narrative. Taking the Natural Language Narrative,

formalizing it (as a Formal Story Specification) and generating Formal Narratives al-

lows us to test how these situations we conceptualize in reality may take place formally.

Fig. 36. World5 –John checks in the modified copy

Fig. 37. World6 –Mary verifies change

6.6. Concluding remarks

In this Chapter we have shown how the elements of the approach interact using our

running example. The Natural Language Narrative motivated the iterative elaboration of

Formal Story Specifications, which in turn were used to generate Formal Narratives.

The Formal Narrative generation revealed problems with the model and motivated

changes and questions to ask Subject Matter Experts.

Although the method can help expose errors and mistakes, it is a type of testing and

as such there are no guarantees that every possible error in the model was identified.

7. Related Work

The approach presented in this work touches many different subjects and in this

chapter we will focus on two different types of related work: those that also address On-

toUML model assessment and those works in computer science that also involve story-

telling in some way or another.

There are many different ways OntoUML models can be assessed and approaches to

improve the quality of OntoUML Conceptual Models are reviewed in section 7.1. While

we have explored the potential application of storytelling to model validation, there are

many other types of application of storytelling in computer science and we explore

some of these approaches in section 7.2.

7.1. OntoUML model assessment approaches

Previous efforts on OntoUML model assessment led to the development of tool sup-

port and some methodological guidelines. The first tool to be developed for OntoUML

was called “OntoUML editor” [5]. The editor aided the construction of OntoUML con-

ceptual models by providing a visual interactive environment to construct OntoUML

conceptual models and by allowing automatic syntax verification. The OntoUML model

editor was built on the Eclipse Modeling Framework (EMF), is open-source and availa-

ble online via Google Code [7]. However, its development has been abandoned.

One of the main contributions of the tool was the elaboration of a meta-model for

OntoUML which enabled many other tools to be built. The first few tools, On-

toUML2OWL [84] and OntoUML2Alloy [10,8] used the model files built with Bene-

vides’ tool as input to generate OWL models and Alloy models, respectively.

The meta-model for OntoUML (and the syntax verification for it) was later revisited

and improved by Roberto Carraretto [18], which was in turn used in OLED (Ontology

Lightweight Editor) [47]. OLED offered a better modeling framework and superseded

the “OntoUML Editor” by Benevides. Additionally, OLED incorporated many existing

software tools for OntoUML in a single framework, including OntoUML2Alloy, On-

toUML2OWL and OntoUML2SVBR [15]. OLED became the hub for OntoUML re-

search and has since then incorporated many other tools.

To overcome some of OLED’s limitations, the Menthor Editor was created as a pro-

fessional alternative for OLED. It is the most advanced tool for building OntoUML

models to this date and was built based on OLED’s open source code.

 All of the aforementioned tools provide syntax verification and while that guaran-

tees some quality to the model, namely the adherence to the language’s syntactic rules,

it does not serve to increase the modeler’s confidence in the correct representation of the

domain [10]. In other words, it helps determining if the model was built correctly, but it

does not help determining if the right model was built. This justified several efforts in

model validation such as OntoUML2Alloy [10], methodologies for diagram design [9]

and Identification of Semantic Anti-Patterns [69]. OntoUML2Alloy and the methodolo-

gies for diagram design have been reviewed in section 2.4.

Semantic Anti-Patterns are patterns of configuration of model elements that are er-

ror-prone. These patterns have been empirically elicited using OntoUML2Alloy. These

patterns can be detected automatically using software, however, they are not necessarily

errors. One must investigate if the intentions are correctly expressed in the model or not.

If they are not, the software can suggest corrections.

The approach is very useful to detect errors in the model and the automatic detection

is superior to our approach. However, they can only detect the patterns that have been

catalogued, which is limiting. Also, the results of the analysis can be very hard to under-

stand. In fact, some anti patterns use stories (thought experiments) to make clear the

type of correction they deem necessary, which makes the two approaches complemen-

tary.

While both OntoUML2Alloy and Anti-Pattern detection can help find errors in the

models, in order to constrain it to conform to the intended conceptualization it is often

necessary to use a rule language. In [46] TOCL is defined, which is an extension of

OCL including temporal constraints, which are important to constraining the dynamic

aspects of OntoUML conceptual models. Anti-Pattern detection has the additional bene-

fit of automatically generating some TOCL rules.

7.2. Storytelling in Computer Science

There are many applications of storytelling and narratives in computer science [80].

While we use storytelling with a focus on a posteriori assessment of conceptual models,

the approaches we discuss in this section approach storytelling with many different pur-

poses, such as acquiring knowledge to drive modeling, [71, 65, 20], driving software

development [83], assessing database systems [19], symbolic annotating textual narra-

tives [28] and investigating the nature of narrativity[72].

One approach closely related to ours is described in [71], which is a “a group story-

telling approach as an alternative to the traditional individual interviews to elicitate pro-

cesses. Information gathering is proposed to be done through capturing the stories told

by process performers, who describe their work, difficulties and suggestions. A process

to abstract and transform stories into business process representations is also part of the

method. A tool to support storytelling and this transformation is described as well.”

While the approach is closely related to ours in the sense that it uses storytelling to

transfer information from subject matter experts to the modelers, it is concerned with

the knowledge elicitation to perform quality modeling a priori while we are concerned

mainly with a posteriori model validation. Concerns with the subject matter expert’s

lack of understanding of formal conceptual modeling languages can also be seen in this

work. We could benefit from incorporating insights from this approach to ours, despite

the differences between structural conceptual models and business process models. In

particular, the TellStory tool [65], used to capture stories from multiple parties creating

this collaborative storytelling seems promising, providing structure for dialogue be-

tween the parties involved, which could benefit in the authoring of Natural Language

Narratives in our approach. A similar, but in this case automatic, approach of extracting

the knowledge needed to build a model is presented in [20]. This approach is similar to

ours as it is also concerned with Ontologies, instead of business process models. Never-

theless, the ontologies approached by [20] are OWL and RDF(s) ontologies, not well-

founded domain ontologies as in our work. Additionally, as a consequence of automa-

tion the models generated in this approach have a limited expressiveness, which is a

common consequence of automatically generated models.

Cucumber [83], shares some of our goals by aiming to bridge communication be-

tween subject matter experts and developers. Differently from our approach, their tech-

nique consists of elaborating short stories that exemplify systems features with the pur-

pose of driving development. The technique shows a promising direction for future

work in expanding our approach to use stories to guide model development (and not

only a posteriori assessment).

Ciarlini and Furtado [19] use storytelling and a simulation environment for the defi-

nition of information systems. They “assume the specification of information systems in

three levels: the static level, the dynamic level and the behavioral level. The static level

specifies the kinds of facts represented and the dynamic level the operations that bring

about state transitions in the information systems. The behavioral level is intended to

describe why events occur (i.e. the goals leading to the execution of operations) and

how operations are usually combined in typical plans.” They use the concept of Plot as a

structure for database changes, using Situation Calculus. In a way similar to our ap-

proach, the formal specifications of database operations are interpreted as natural lan-

guage narratives that describe it. These narratives follow structured formats such as:

“Since <situation> and as <pre-conditions>, then <event>, so that <goal> and, in addi-

tion, <effects>” or “As <pre-conditions>, <operation>, so <effects>”. Additionally, par-

tial specifications can be completed using the “Interative Plot Generator” to simulate

scenarios. However, their approach is heavily based on the definition of goals, libraries

of typical plans and relies on an already existing database, while ours is focused based

on conceptual models. This approach could be complementary to ours in the sense that

we could also define some story patterns that can be reused in the elaboration of Formal

Story Specifications. These patterns could imply some sequences of events, that struc-

ture the stories in a similar way that design patterns are used to build conceptual models.

Scheherazade is a symbolic annotation tool [28] tool for encoding, managing, ana-

lyzing and exporting Story Intention Graph encodings. Story Intention Graphs are a set

of (multilayered) discourse relations which “brings out coherence at both the local and

global levels: what events happen, when, why, and to whom.” The layers are Textual,

Timeline and Interpretative. The textual layer contains “the utterances of the original

discourse that is being modeled.”. The Timeline layer “formally encode story-world

happenings that have been expressed in the textual layer, such as events and statives.”

Finally, the Interpretative layer “represent goals, plans, beliefs, affectual impacts, and

the underlying intentions of characters (agents) as interpreted by the story’s receiver.”

Much like our approach, Scheherazade allows formal modeling of narrative discourse.

However, their purpose is story analysis, providing a framework that allows the user to

annotate fragments of the natural language narrative to their interpretations as narrative

functions, identifying discourse relations. In a way, the work is closely related to text

processing. We have no intention of being so precise in our Natural Language Narrative

interpretations. However, this approach could be useful if the model includes elements

of UFO-C [51], which deal with the intentionality of agents using concepts such as

goals, plans, beliefs and so on. This way we could include in our approach, for example,

Natural Language Narratives that express the intentions of agents and use these narra-

tives to validate models based on UFO-C.

A similar approach to text analysis is conducted by Schärfe in his Doctor Disserta-

tion “Computer Aided Narrative Analysis” [72] . In this work, Schärfe conducts a

throughout analysis of narrativity, including the elaboration of an ontology of the terms

involved using the OIL+DAML language (an OWL predecessor). The “dissertation is

motivated by a wish to understand the nature of narrativity and to investigate how com-

puter technology may assist in enhancing this understanding.” [72] The work is in phi-

losophy and is much more concerned with Narrative theory, how different theories can

be combined and how ontologies can be used to refine them and aid discussion regard-

ing their differences and similarities. While there the study of narrativity is an objective

in itself, here we aim to use it to other purposes, namely, validation of conceptual mod-

els.

8. Final Considerations

In this work we have presented an approach to incorporate storytelling in an existing

model validation approach. The benefits are threefold: there is more control over the

model assessment process, the communication between modelers and experts is im-

proved and the cognitive effort of the validation activities is reduced for both parties.

An earlier version of the work was published [11] and presented in a workshop.

In our approach, Natural Language Narratives are authored to work as thought ex-

periments. Roughly speaking, these thought experiments can be constructive i.e. creat-

ing a context to discuss the model or destructive i.e. offering a context and rhetoric

structure to refute the model. By showing a story that fails to be valid, we can motivate

change. Otherwise, a story that satisfies the modified model and proves to be valid in-

creases the confidence on the model.

Analyzing how the elements of the model interact in a narrative allows an intuitive

understanding of the model and of the consequences of abstract definitions. For exam-

ple, in Appendix E we show a model that was improved simply by creating Natural

Language Narratives about it and using them in validation sessions with experts to im-

prove the understanding of the concepts in the model and negotiate modifications.

Additionally, in our approach these Natural Language Narratives are formalized us-

ing a specification language we defined. The artifacts produced in this activity are called

Formal Story Specifications and they are used as basis to control the simulation defined

in previous work, improving the existing model validation approach. In detail, the For-

mal Story Specifications are transformed to Alloy predicates that are used to constrain

the Alloy simulation. Constrained by the predicate, the Alloy simulation conforms to

what was specified in the Formal Story Specification. Therefore, these simulations gen-

erate diagrams (called Formal Narratives) that formally represent the Natural Language

Narratives.

The process of formalizing Natural Language Narratives or interpreting Formal Nar-

ratives in terms of a Natural Language Narrative adds detail to the interpretation of the

theoretical logical constructs. As “(…) thought experiments are communicated (…) fre-

quently with diagrams.” [13], our approach to generate Formal Narratives is justifiable.

The communication between modelers and subject matter experts is improved be-

cause using this approach creates a medium for them to communicate. Experts can un-

derstand the Natural Language Narrative regardless of their ineptness in the modeling

language. Using the Formal Narratives, modelers may show how the domain abstrac-

tions communicated in the Natural Language Narratives are formalized using the ele-

ments of the conceptual model. This reveals how the conceptualization was captured in

the conceptual model.

Another way that this approach may improve conceptual model validation activities

is by providing means for the people involved to handle large amounts of information in

their minds. To analyze the model by itself one must unfold in their own mind the pos-

sibilities and interactions between classes. The mental workload of performing this

analysis is offloaded to the Alloy Analyzer, shifting the focus of the people involved to

the validation task. According to Cognitive Load Theory, reducing the demands on

working memory improves speed and accuracy of understanding and facilitates cogni-

tive processing of information [74]. Narratives act as a structure for the elements of the

simulation, creating context which can help extend the reach of memory.

We have used a single model as an example to demonstrate the assessment tech-

nique in the previous chapters. However, in Appendix C, Appendix D and Appendix E

we exemplify the application of the method to other models.

There are, naturally, some limitations to the approach. Creating Natural Language

Narratives can be a creative effort which depends on the experience of the author. While

we have discussed that existing thought experiments and story patterns may be used as

inspiration, we have offered no prescriptive way to use them to generate these narra-

tives.

Formal Story Specifications and their transformation to Alloy do not cover proper-

ties, which can be limiting in some domains. In Appendix C we have assessed a model

which includes some important aspects of the conceptualization as properties of classes,

which we could not validate due to this limitation.

Additionally, the diagrams generated by the Alloy Analyzer are hard to understand

[9] and creating cognitively efficient diagrams adds significant manual work to the ac-

tivity.

Finally, the power of the approach may be dependent on certain characteristics of

the subject domain. “[T]here exists such a thing as unnarratable knowledge. In other

words: certain constructs of the thought defy narrativization.” [72]. For example, a

model about the theory of evolution by natural selection could be difficult to narrate

“because there is no agent involved” [72]. “One faces, then, the difficulty of construct-

ing an explanatory narrative that shows agency but that has to make do with an apparent

lack of entities and even an apparent lack of events, without which, of course, there can

be no narrative” [1 apud 72]. There are no clear requisites that we have identified to

determine if the subject is fit for our approach or not, but there is some evidence that

having people or elements that can be anthropomorphized could be essential, as the in-

tentionality of agents is important for narrativity [72]. Examples include the The Con-

ceptual Schema of Human Genome [30] and the very successful Electrocardiogram

(ECG) model [33, 34, 35, 36, 37, 38, 39, 40, 41, 84, 87].

Both models have dense conceptualizations which are hard to understand for those

who are not experts in the subject domain. While it is possible to create instance dia-

grams to show the dynamics of the model, it is hard to see how an interesting story

around these concepts could be created.

These models are a good example of what is discussed in Chapter 2 in Fig. 13; the

knowledge of the domain in this case is inaccessible to the expert in the modeling lan-

guage who is conducting validation. It seems it would be a good case for developing

stories with the aid of domain experts.

8.1. Future Work

There are a number of additions that could improve this work and we list a few of

them below to pave the direction for those who wish to pursue this line of work. These

include conducting empirical evaluation of the approach (section 8.1.1), some opportu-

nities for expanding the scope of the work (sections 8.1.2 to 8.1.5) and some software

that could be implemented (section 8.1.6).

8.1.1. Empiric evaluation of the approach

While we have applied the approach on a number of models and performed qualita-

tive evaluations, a first step in evaluating the approach would be to obtain feedback with

the original modelers about the validation that were performed on the models.

A second step would be to systematically evaluate the approach and specify quality

criteria that could be quantitatively measured. There are some challenges in defining an

experiment to evaluate the approach quantitatively, such as which method to use to

evaluate it individually or comparatively. A particular challenge is the lack of compara-

ble approaches and controlled environments for experimentation.

We have considered using NASA’s Task Load Index, which “is a subjective work-

load assessment tool. NASA-TLX allows users to perform subjective workload assess-

ments on operator(s) working with various human-machine systems. NASA-TLX is a

multi-dimensional rating procedure that derives an overall workload score based on a

weighted average of ratings on six subscales. These subscales include Mental Demands,

Physical Demands, Temporal Demands, Own Performance, Effort and Frustration. It

can be used to assess workload in various human-machine environments such as aircraft

cockpits, command, control, and communication (C3) workstations; supervisory and

process control environments; simulations and laboratory tests.” [64]

Since this test allows a subjective assessment of the cognitive load to conduct the

validation activities we can effectively measure it and make predictions based on al-

ready known effects of working with high cognitive load. Further investigation is re-

quired to establish what kinds of evidence can be collected from such evaluation effort.

8.1.2. Coverage of UFO-B and UFO-C

With regard to the foundational ontology, we have covered UFO-A in this work and

none of UFO-B (events) and UFO-C (intentionality). Although stories can not be de-

fined merely as “sequences of events”, it is agreed that stories necessarily involve

events and transformation, which is the subject covered by UFO-B. While it could be

said that events are implicitly represented in our current approach, there is no way of

making explicit reference to them. Something similar can be said about UFO-C, as

agency is a significantly important aspect of narrativity.

Expanding the approach to cover UFO-B and UFO-C could expand the applicability

of the approach to a wider range of models. One experiment has been conducted using a

model that includes elements of UFO-B and UFO-C and is reported in Appendix E.

However, the Formal Story Specification Language needs to be improved to include the

elements of these foundational ontologies and the Alloy model transformation approach

would have to be expanded as well.

8.1.3. Thought Experiments in Conceptual Modeling

Here we have used thought experiments as means to validate a single model but

elsewhere they have been used to justify design decisions in the Unified Foundational

Ontology [49] and exemplify the need for some method [10,46,52]. The use of these

thought experiments is often focused on the meta level, which strikes as a significant

difference from other fields of science, while showing some similarity to thought exper-

iments in Philosophy. Additional work exploring the existing thought experiments and

their potential applications in Conceptual Modeling is required.

8.1.4. Story Patterns

It seems promising that we could create design patterns for Formal Story Specifica-

tion patterns based on story patterns that are discussed in Chapter 3. We have shown

how works in Narratology have found that many stories can be seen as composed of

elementary patterns and, if some of these patterns can act as templates for Formal Story

Specifications, we could potentially draw the same benefits that software engineering

finds in design patterns. Further investigation is required to identify which patterns are

useful to model validation.

8.1.5. Applying the approach to systematic model testing

Drawing inspiration from software testing, we believe there is potential for explor-

ing the use Formal Story Specifications and Alloy simulation in systematic model test-

ing. During model development, modifications can have unexpected consequences and

creating a framework for automatic testing could improve reliability in model develop-

ment, especially for long modeling projects. To this end, Formal Story Specifications

could be elaborated as unit tests for classes (to ensure their satisfiability), as integration

tests between model fragments and between classes (showing the satisfiability of rela-

tionships) and as acceptance tests to show the implementation of use cases.

8.1.6. Additional software support

In this section we discuss some opportunities for software development which could

improve the approach by automating processes which are otherwise manual.

First, while we have defined in Appendix B improvements to the model transfor-

mation to Alloy, they are currently manually performed and developing software sup-

port to automate the transformation would be a great addition to this work. The trans-

formation is justified since there are limitations to the current OntoUML2Alloy model

transformation with respect to the scalability of the analysis, given that the approach

based on the Alloy Analyzer becomes intractable when the size of the model grows. We

have significantly mitigated this limitation by offering a new “Scope Reducing” model

transformation to Alloy (see Appendix B) that greatly reduces the complexity of the

analysis.

Second, controlling the scope is an important part of our model validation approach

but currently, the scope is specified manually by modifying the Alloy model. While that

does not impose a severe restriction to the approach, it may better to include it as part of

the Story Specification definition in the Story Modeler.

Third, there is no software support for specifying the same_as and different_from re-

lations in the Story Modeler. Specifying these relations increases the expressivity of the

approach, allowing the definition of Formal Story Specifications that are more flexible.

For example, the same Individual could be shown to satisfy the constraints of two dif-

ferent nodes at the same time. Currently, every element is transformed as being differ-

ent_from each other by default.

Fourth, there are some difficulties using the approach when the model changes. This

stems from references to OntoUML classes (using the instance_of, not_instance_of or

nonRigidClass relations of our Formal Story Specification Language). These are refer-

ences to a specific model in a specific file. If a model is modified for some reason (i.e.

resulting from the validation activity), the Formal Story Specifications that had been

previously used in such model could be referencing classes that no longer exist. Addi-

tionally, if the model is saved as a different file (e.g. to try two different modeling

choices) the same problem would occur for every class (since the classes are identified

relative to the file they are in). This could be corrected by including some sort of identi-

fier for the classes so they could be tracked independently of the file they are in or by

implementing some mechanism of searching for elements with the same name (e.g. if

the class “Person” can’t be found and there is another class named “Person” in the mod-

el, they are probably the same class).

Fifth, currently there is no way to “save” a specific Formal Narrative. To illustrate

how this could be useful, imagine a scenario where a modeler is validating a genealogy

model and he defines a Formal Story Specification where John is the father of Mary.

When he generates the Formal Narrative, he is confronted with a case where not only

John is the father of Mary, but Mary is also the mother of John. The modeler then de-

cides that this should not be allowed in the model (Mary cannot be the mother of her

father!) and whishes to constrain the model and revisit the Formal Story to make sure it

is not possible any more. However, his Formal Story Specification defines many possi-

ble Formal Narratives, and finding this specific example again is not guaranteed. In or-

der to find this specific example, the modeler could generate another Formal Story

Specification which is similar to the first one, but specifies additionally that Mary is the

mother of John. To facilitate this kind of activity and offer means to “save” one specific

Formal Narrative that was generated, a reverse transformation from Formal Narratives

to Formal Story Specifications could be developed. One way to achieve this is to use the

programming API offered by The Alloy Analyzer. The API can be invoked to produce

XML files that represent a specific Formal Narrative. To interpret the generated XML

files, one would need to rely on some sort of mapping between the signatures and the

OntoUML Classes. This mapping could be generated alongside the Alloy transfor-

mations. Documenting specific Formal Narratives could prove to be useful in model

testing, which has been discussed in the previous section.

Sixth, in chapter 6, we have discussed how our approach has no way of pinpointing

what makes a Formal Story Specification unsatisfiable, i.e. what logical inconsistency

prevents the simulator from generating Formal Narratives. However, the Alloy Analyzer

can be configured to find the “unsatisfiable core” [57], which is a feature that can high-

light a set for Alloy formulas for which no satisfying instance exists. This could help the

user find the inconsistency but it is heavily reliable on knowledge of the transformation

strategy and of the Alloy Language. Often, the feature is unusable due to the complexity

of the result. We could explore further means of levering this technology in ways that

can help find the inconsistencies in a Formal Story Specification.

Finally, the diagrams generated by the Alloy Analyzer are hard to read [9] and while

the Alloy instance visualizer does provide customization of elements using different

shapes and colors, further work is required to incorporate visualization techniques de-

scribed in [9] to generate better diagrams. Here, we suggest the manual design of in-

stance diagrams to improve diagram legibility. However, this process can be laborious

and efforts into building software that can support this activity would greatly improve

the approach, making it more accessible.

9. References

1.Abbot, H. Porter. Unnarratable Knowledge: The Difficulty of Understanding Evolution by Natural Selection. In

Narrative Theory and the Cognitive Sciences, ed. David Herman, 143-162: CSLI Publications (2003).

2.Andoni, A., Daniliuc, D., Khurshid, S., & Marinov, D.. Evaluating the “small scope hypothesis”. Technical Re-

port MIT-LCS-TR-921, MIT CSAIL. (2003).

3.Aristotle. Poetics. translated by SH Butcher. In: Aristotle's Theory of Poetry and Fine Art. Macmillan. (1895).

4.Basili, V. R.; Boehm, B. Software Defect Reduction Top 10 List. Computer, v. 34, n. 1, p. 135-137. (2001).

5.Benevides, A. B., Guizzardi, G. A model-based tool for conceptual modeling and domain ontology engineering

in OntoUML. In Enterprise Information Systems (pp. 528-538). Springer Berlin Heidelberg. (2009).

6.Benevides, A. B. A model-based graphical editor for supporting the creation, verification and validation of On-

toUML conceptual models Doctoral dissertation, Ph. D. thesis, Federal University of Espirito Santo (UFES), Vi-

tória, ES, Brazil (2010).

7.Benevides, A. ontouml - An editor for ontologically well-founded conceptual modeling - Google Project Host-

ing. Retrieved June 16, 2011, from http://code.google.com/p/ontouml/. (2011).

8.Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Validating modal aspects of OntoUML concep-

tual models using automatically generated visual world structures. Journal of Universal Computer Science, 16,

2904–2933. (2011).

9.Braga, B.F.B.: Cognitive effective instance diagram design. Graduation Thesis, Federal University of Espírito

Santo. (2011).

10.Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming OntoUML into Alloy: towards

conceptual model validation using a lightweight formal method. Innovations in Systems and Software Engineer-

ing, v. 6. (2010).

11.Braga, B. F., & Almeida, J. P. A.: Modeling Stories for Conceptual Model Assessment. In Advances in Con-

ceptual Modeling (pp. 293-303). Springer International Publishing. (2015).

12.Brown, J. R. Thought experiments since the scientific revolution. International Studies in the Philosophy of

Science, 1(1), 1-15. (1986).

13.Brown, James Robert; Fehige, Yiftach: Thought Experiments. The Stanford Encyclopedia of Philosophy (Fall

2014 Edition), Edward N. Zalta (ed.), Accessed on 26/02/2016

<http://plato.stanford.edu/archives/fall2014/entries/thought-experiment/>. (2014)

14.Calhau, R.F.: Uma Abordagem Baseada em Ontologias para a Integração Semântica de Sistemas, Master The-

sis, Federal University of Espírito Santo. (2011).

15.Campbell, J. The hero with a thousand faces. (1949).

16.Campbell, J. The Masks of God: Primitive Mythology. London, Secker & Warbug. (1960).

17.Campbell, J., & Moyers, B.: The power of myth. Anchor. (2011).

18.Carraretto, R.: A modeling infrastructure for OntoUML. Graduation Thesis, Federal University of Espírito San-

to. (2010).

19.Ciarlini, A.E.M., Furtado, A.L.: Understanding and Simulating Narratives in the Context of Information Sys-

tems. 21st International Conference on Conceptual Modeling (ER), Proceedings. v. 2503, 291–306. Springer.

(2002).

20.Confort, V. T., Revoredo, K., Baião, F. A., & Santoro, F. M: Learning Ontology from Text: A Storytelling Ex-

ploratory Case Study. In Knowledge Management in Organizations (pp. 477-491). Springer International Pub-

lishing. (2015).

21.Dawkins, R.: The magic of reality: How we know what’s really true. (2011).

22.de Cassia C Castro, R., Gracia, A. S., & Gomes, M. J. N.: Mapping of vulnerabilities in the public cloud with

the use of foundational ontology: A perspective for service IaaS. In Digital Information Management (ICDIM),

2012 Seventh International Conference on (pp. 245-252). IEEE. (2012).

23.Dennett, D. C.: Intuition pumps and other tools for thinking. WW Norton & Company. (2013).

24.Dennet, D C.: On tools to transform our thinking. Intelligence Squared. Speech presented at the Royal Geo-

graphical Society, London, UK <https://youtu.be/EJsD-3jtXz0> (2013).

25.Department of Defense. Directive 5000.59. ,2007, August 8.

26.Donald, M.: Origins of the modern mind: Three stages in the evolution of culture and cognition Cambridge,

MA: Harvard University Press. (1991).

27.Dijkstra, E. W. The humble programmer. Communications of the ACM 15, 10, 859-866.

DOI=http://dx.doi.org/10.1145/355604.361591. (1972).

28.Elson, D.: Scheherazade, Accessed on 20/05/2015 <http://www.cs.columbia.edu/~delson/software.shtml>

29.Felluga, D. General Introduction to Narratology. In: Introductory Guide to Critical Theory. Last updated on

Jan. 31, 2011. Purdue U. Accessed on 20/05/2015.

<http://www.purdue.edu/guidetotheory/narratology/modules/introduction.html>.

30.Ferrandis, A. M. M., López, O. P., & Guizzardi, G. Applying the principles of an ontology-based approach to a

conceptual schema of human genome. In Conceptual Modeling (pp. 471-478). Springer Berlin Heidelberg.

(2013).

http://code.google.com/p/ontouml/
http://www.cs.columbia.edu/~delson/software.shtml
http://www.purdue.edu/guidetotheory/narratology/modules/introduction.html

31.Ferreira, M. I., Moreira, J. L., Campos, M. L. M., Braga, B. F. B., Sales, T. P., Cordeiro, D. K. F., & Borges,

M.: OntoEmergePlan: variability of emergency plans supported by a domain ontology. In The 12th International

Conference on Information Systems for Crisis Response and Management (ISCRAM). (2015).

32.Freytag, G. Die technik des dramas. Hirzel. (1872).

33.Gonçalves, B., Guizzardi, G., & Pereira Filho, J. G. An electrocardiogram (ECG) domain ontology. In Work-

shop on Ontologies and Metamodels for Software and Data Engineering, 2nd, João Pessoa, Brazil (pp. 68-81).

(2007).

34.Gonçalves, B., Pereira Filho, J. G., & Andreão, R. V. ECGWARE: an ECG Markup Language for Ambulatory

Telemonitoring and Decision Making Support. In HEALTHINF (2) (pp. 37-43). (2008).

35.Gonçalves, B., Andreão, R. V., & Guizzardi, G. ECG data provisioning for telehomecare monitoring. In Pro-

ceedings of the 2008 ACM symposium on Applied computing (pp. 1374-1379). ACM. (2008).

36.Gonçalves, B., Zamborlini, V., & Guizzardi, G. Using a lightweight ontology of heart electrophysiology in an

interactive web application. In Companion Proceedings of the XIV Brazilian Symposium on Multimedia and the

Web (pp. 77-80). ACM. (2008).

37.Gonçalves, B. An ontological theory of the electrocardiogram with applications. MSc, Informatics, Univer-

sidade Federal Do Espírito Santo, Vitória. (2009).

38.Gonçalves, B., Zamborlini, V., & Guizzardi, G. Uma análise ontológica do eletrocardiograma. Revista

Eletrônica de Comunicação, Informação & Inovação em Saúde, 3(1). (2009).

39.Gonçalves, B., Zamborlini, V., & Guizzardi, G. An ontology-based application in heart electrophysiology:

Representation, reasoning and visualization on the web. In Proceedings of the 2009 ACM symposium on Ap-

plied Computing (pp. 816-820). ACM. (2009).

40.Gonçalves, B., Zamborlini, V., & Guizzardi, G. An ontological analysis of the electrocardiogram. Electronic

Journal of Communication, Information & Innovation in Health, 3(1). (2009).

41.Gonçalves, B., Guizzardi, G., & Pereira Filho, J. G. Using an ECG reference ontology for semantic interopera-

bility of ECG data. Journal of Biomedical Informatics, 44(1), 126-136. (2011).

42.Guarino, N. Formal ontology in information systems: Proceedings of the first international conference

(FOIS'98), June 6-8, Trento, Italy. Vol. 46. IOS press. (1998).

43.Guarino, N., & Welty, C. Ontological analysis of taxonomic relationships. In Conceptual Modeling—ER 2000

(pp. 210-224). Springer Berlin Heidelberg. (2000).

44.Guarino, N., & Guizzardi, G: “We Need to Discuss the Relationship”: Revisiting Relationships as Modeling

Constructs. In Advanced Information Systems Engineering (pp. 279-294). Springer International Publishing.

(2015).

45.Guerson, J., Almeida, J. P. A, Guizzardi, G. Support for Domain Constraints in the Validation of Ontologically

Well-Founded Conceptual Models. Lecture Notes in Business Information Processing. 15ed.: Springer Berlin

Heidelberg, v. 175, p. 302-316. (2014).

46.Guerson J., Almeida, J.P.A.: Representing Dynamic Invariants in Ontologically Well-Founded Conceptual

Models, 20th EMMSAD, Sweden (2015).

47.Guerson, J., Sales, T. P., Guizzardi, G., & Almeida, J. P. A. OntoUML Lightweight Editor: A Model-Based

Environment to Build, Evaluate and Implement Reference Ontologies. In Enterprise Distributed Object Compu-

ting Workshop (EDOCW), 2015 IEEE 19th International (pp. 144-147). IEEE. (2015).

48.Guizzardi, G., Wagner, G., Guarino, N., & van Sinderen, M. An ontologically well-founded profile for UML

conceptual models. In Advanced Information Systems Engineering (pp. 112-126). Springer Berlin Heidelberg.

(2004).

49.Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Telematica Instituut, The Nether-

lands. (2005).

50.Guizzardi, G. Agent roles, qua individuals and the counting problem. In Software Engineering for Multi-Agent

Systems IV (pp. 143-160). Springer Berlin Heidelberg. (2006).

51.Guizzardi, G., de Almeida Falbo, R., & Guizzardi, R. S. Grounding Software Domain Ontologies in the Uni-

fied Foundational Ontology (UFO): The case of the ODE Software Process Ontology. In CIbSE (pp. 127-140).

(2008).

52.Guizzardi, G. Ontological patterns, anti-patterns and pattern languages for next-generation conceptual model-

ing. In Conceptual Modeling (pp. 13-27). Springer International Publishing. (2014)

53.Hoare, C. A. R: Communicating sequential processes. Prentice Hall International (1985)

54.Jackson, D. Software Abstractions-Logic, Language, and Analysis. The MIT Press. (2012).

55.Jackson, D. Alloy Frequently Asked Questions. Accessed on 06/01//2016. <http://alloy.mit.edu/alloy/faq.html>

(2012).

56.Jackson, D.: About Alloy. Accessed on 06/01/2016. <http://alloy.mit.edu/alloy/> (2012).

57.Jackson, D.: unsatisfiable core. Accessed on 06/01/2016.

<http://alloy.mit.edu/alloy/documentation/quickguide/unsat.html> (2012).

58.Kastelic, P. H. F.: Era uma vez uma marca – Storytelling e ficção na construção identitária da Diletto. Gradua-

tion Thesis, Escola Superior de Propaganda e Marketing (2013).

59.Lord, A. B. The Singer of Tales. Cambridge, Mass. (1960).

http://alloy.mit.edu/alloy/faq.html
http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/documentation/quickguide/unsat.html

60.Moody, D. L. The “physics” of notations: a scientific approach to designing visual notations in software engi-

neering. Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2.

ICSE ’10. p.485–486. New York, NY, USA: ACM. doi: http://doi.acm.org/10.1145/1810295.1810442 (2010).

61.Murray, J. H. Hamlet on the holodeck: The future of narrative in cyberspace. Simon and Schuster. (1997).

62.Mylopoulos, J.: Conceptual Modeling, Databases, and CASE: An Integrated View of In-formation Systems

Development; Conceptual Modeling and Telos; Wiley. (1992).

63.narrate. Oxford Dictionaries. Oxford University Press.

http://www.oxforddictionaries.com/us/definition/american_english/narrate (accessed January 21, 2016).

64.NASA: NASA TLX: Task Load Index <http://humansystems.arc.nasa.gov/groups/tlx/> (accessed January 21,

2016).

65.Perret, R., Borges, M. R., & Santoro, F. M: Applying group storytelling in knowledge management. In Group-

ware: Design, Implementation, and Use (pp. 34-41). Springer Berlin Heidelberg. (2004).

66.Petroski, H. Design paradigms: Case histories of error and judgment in engineering. Cambridge University

Press. (1994).

67.Propp, V. I. Morphology of the Folktale (Vol. 9). American Folklore Society. (1958).

68.Sales, T. P. Identificação de Padrões de Erro em Modelagem Conceitual por Meio de Validação de Ontologias

OntoUML Utilizando Alloy. Graduation Thesis, Federal University of Espírito Santo. (2012).

69.Sales, T. P., Barcelos, P. P. F., & Guizzardi, G. Identification of semantic anti-patterns in ontology-driven con-

ceptual modeling via visual simulation. In 4th International Workshop on Ontology-Driven Information Systems

(ODISE 2012), Graz, Austria. (2012).

70.Sales, T.P.: Ontology Validation for Managers, MSc Thesis, Federal University of Espírito Santo, UFES

(2014).

71.Santoro, F. M., Borges, M. R., & Pino, J. A.: Acquiring knowledge on business processes from stakeholders’

stories. Advanced engineering informatics, 24(2), 138-148. (2010).

72.Schärfe, H. CANA: A study in Computer Aided Narrative Analysis (Doctoral dissertation, Videnbasen for

Aalborg Universitet VBN, Aalborg Universitet Aalborg University, Det Humanistiske Fakultet The Faculty of

Humanities, Naturlige og formelle sprog Naturlige og formelle sprog). (2004).

73.Searle, J.: Minds, Brains and Programs, Behavioral and Brain Sciences, 3: 417–57 (1980)

74.Sweller, J. Van Merrienboer, J.; Paas, F. Cognitive Architecture and Instructional Design. Educational Psy-

chology Review, v. 10, p. 251-296. (1998).

75.Tuffield, M. M., Shadbolt, N. R., & Millard, D. E. Narrative as a form of knowledge transfer: Narrative theory

and semantics. In In Proceedings of the First AKT DTA Colloquium. (2005).

76.Tufte, E. The magical number seven, plus or minus two: Not relevant for design. edwardtufte.com. Retrieved

February 11, 2011, from http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000U6&topic_id=1,

2000, September 23.

77. T.V. Tropes <http://tvtropes.org/> Accessed on 11/02/2016. (2016)

78.Ware, C. Information Visualization, Second Edition: Perception for Design. 2nd ed. Morgan Kaufmann.

(2004).

79.Wilton, P., Tarling, J., Mc Ginnins, J.: Storyline Ontology; Accessed on 04/01/2016

<http://www.bbc.co.uk/ontologies/storyline>

80.Winer, D.: Review of Ontology Based Storytelling Devices. In Language, Culture, Computation. Computing of

the Humanities, Law, and Narratives, 394–405. Springer. (2014).

81.Wikimedia Commons, Hero’s Journey. Last updated on April 05, 2012. Accessed on 04/01/2016.

<https://commons.wikimedia.org/wiki/File:Heroesjourney.svg>

82.Wikipedia contributors. Alloy (specification language). Wikipedia, The Free Encyclopedia. Wikipedia, The

Free Encyclopedia, 20 Aug. 2014. Web. 1 Feb. 2016.

83.Wynne, M., and Hellesoy, A.: The cucumber book: behaviour-driven development for testers and developers.

Pragmatic Bookshelf. (2012).

84.Zamborlini, V., Gonçalves, B., & Guizzardi, G. Codification and application of a well-founded heart-ECG on-

tology. In Workshop on Ontologies and Metamodels for Software and Data Engineering, 3rd, Campinas, Brazil.

(2008).

85.Zamborlini, V. C., and Guizzardi, G.: On the representation of temporally changing information in OWL. In:

14th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), 283–292.

IEEE. (2010).

86.Zamborlini, V. C. Estudo de Alternativas de Mapeamento de Ontologias da Linguagem OntoUML Para OWL:

Abordagens Para Representação de Informação Temporal. Federal University of Espírito Santo. Available only

in Portuguese. (2011).

87.Zamborlini, V., Gonçalves, B., & Guizzardi, G. Codification and application of a well-founded heart-ECG on-

tology. In Workshop on Ontologies and Metamodels for Software and Data Engineering, 3rd, Campinas, Brazil.

(2008).

88.Zimmerman, J.: Unit Testing. Principles of Imperative Computation. (2012).

http://www.bbc.co.uk/ontologies/storyline
https://commons.wikimedia.org/wiki/File:Heroesjourney.svg

Appendix A - Alloy

In this section we will provide a brief introduction to Alloy. Only elements neces-

sary to discuss the transformation strategy from Formal Story Specifications to Alloy in

Chapter 5 are introduced.

“Alloy is a language for describing structures and [the Alloy Analyzer is] a tool for

exploring them.” [56]. Technically speaking, Alloy is a declarative specification lan-

guage (based on Z) “for expressing complex structural constraints and behavior in a

software system” [82]. The Alloy Analyzer “is a solver that takes the constraints of a

model and finds structures that satisfy them” [56]. It is also an IDE for creating the Al-

loy specifications. In the context of the OntoUML2Alloy approach, we refer to the act

of running of the Alloy Analyzer (i.e. finding structures that satisfy an Alloy specifica-

tion) as a model simulation.

A model in Alloy consists of logical constraints which are captured in signature,

fact, predicate, assertion and function declarations. Signatures define the vocabulary of

a model by introducing top-level sets. A top-level set is a special type of set which in-

troduces in the simulation elements called Atoms. Any atom is necessarily member of

one and only one top-level set. When a model is instantiated by the Alloy Analyzer,

atoms are generated from signatures respecting the logical constraints in the model. In

other words, a signature at the model level introduces a set of atoms at the instance lev-

el. Additionally, relationships are defined as Fields of a signature; which defines sets of

atom tuples.

In this section we will use as a running example14 a model that describes an Address

Book consisting of names and addresses. Below we define three signatures: Name, Ad-

dress and AddressBook. In the AddressBook signature, a field entry defines a mapping

between names and addresses. In fact, entry is a three-way mapping associating Ad-

dressBooks, Names and Addresses.

sig Name{}

sig Address{}

sig AddressBook{

 entry: Name -> lone Address

}

14 This example has been adapted from [54]

The keyword lone in the declaration of entry indicates multiplicity. In this case, this

indicates that each name is mapped to at most one address. The available multiplicity

keywords are none, one, lone, set and some, which specify 0, 1, 0..1, 0..* and 1..* mul-

tiplicities, respectively.

To generate instances of this model, we must issue a run command using some pred-

icate. Predicates are (possibly parameterized) constraints and can be used to represent

operations15. For example, the predicate show below constrains that there should be at

least one atom for the Name, Address and AddressBook signature. The number after the

for keyword specifies the scope of the simulation. In practical terms, the scope16 defines

the maximum number of atoms a simulation will generate for each signature declara-

tion. Using the but keyword we can specify smaller scopes for each signature individu-

ally. In the example below, the predicate specifies there should be at least one atom of

each signature and on the scope constraints of the run command we specify that there

can be at most three atoms of any signature, but at most one AddressBook atom.

pred show [] {

 some Name

 some Address

 some AddressBook

}

run show for 3 but 1 AddressBook

Running the predicate show could generate a large number of different structures

that satisfy it. One such structure could be, for example, an address book b with an entry

for john associated to address addr, which would be represented as bjohnaddr. In

this case, b is part of the set AddressBook, john is part of the set Name, addr is part of

the set Address and the tuple bjohnaddr is part of the set entry.

Alloy allows a navigation expression style, where sets are formed by “navigating”

from quantified variables along relations. In our previous example, b.entry forms

johnaddr. Signatures may also be used to navigate on relations. Since there is only

one address book in our example, AddressBook.entry also returns johnaddr.

15 Predicates can also be used in other predicates, functions, assertions and facts (which will be introduced later)
16 Alloy relies on what is called the small scope hypothesis. “The “small scope hypothesis” argues that a high propor-

tion of bugs can be found by testing the program for all test inputs within some small scope.” [2] This hypothesis

is reflected in the Alloy Analyzer’s internal structure. “All problems are solved within a user-specified scope that

bounds the size of the domains, and thus makes the problem finite (and reducable [sic] to a boolean formula).”

[55] The analysis is complete within the specified scope, but as the scope increases, the performance quickly

drops, therefore one should try to work with a scope as small as possible.

A larger example may make the subtleties of the navigation style clearer. Let there

be two additional Name atoms frank and mary, their addresses addr2 and addr3 and a

second address book b2. Let the previously defined address book b also contain Frank’s

address and b2 only contain Mary’s address. In this case, the set entry would contain

bjohnaddr, bfrankaddr2 and b2maryaddr3. The navigation Address-

Book.entry would form the set johnaddr, frankaddr2, maryaddr3, while b.entry

would form the set johnaddr, frankaddr2 and b2.entry would form the set contain-

ing only maryaddr3.

Facts introduce constraints which are assumed to always hold. For example, the fact

below specifies that the set entry is not empty. It entails that Name, Address and Ad-

dressBook are also not empty, since there must be at least one atom of each signature to

compose a tuple of the entry set. Names of the facts are formally irrelevant and serve

only to improve model legibility.

fact no_empty_books{

 some entry

}

Functions are (possibly parameterized) expressions that return results: the body of a

function is an expression, rather than a constraint and it is used for reoccurring expres-

sions. For example, the function below returns a tuple with the given parameters. Be-

tween the brackets we define variables separated by commas. Each variable definition is

composed of the variable name and type, separated by a colon. Following the brackets,

after the colons, the function’s return type is specified. Inside the curly brackets the

body of the function is specified. In this very simple example, the function returns a

tuple using the parameters.

fun combine[

 b:AddressBook,

 n:Name,

 a:Address] : AddressBook->Name->Address

{

 b->n->a

}

Functions and predicates can be reused in other functions and predicates. For exam-

ple, below we define the create_entry predicate that uses the combine function. The in

keyword specifies that the left hand side is a subset of the right hand side.

pred create_entry[

 b:AddressBook,

 n:Name,

 a:Address]

{

 combine[b,n,a] in entry

}

The set operators are

 + union

 & intersection

 - difference in subset

 = equality

and here is what they mean:

 a tuple is in p + q when it is in p or in q (or both);

 a tuple is in p & q when it is in p and in q;

 · a tuple is in p - q when it is in p but not in q;

 · p in q is true when every tuple of p is also a tuple of q;

 · p = q is true when p and q have the same tuples.

We can use set operators to constrain the Analyzer to generate specific structures of

atoms (among other things).

To generate model instances similar to previously presented john, frank and mary

example, we can create predicates and assign each element to a variable. Note that be-

low we use the disj predicate, which is a built-in predicate that constrains variables to be

disjoint. In this case every variable is a single atom and the disj predicate guarantees that

they are not the same atom.

pred show2 [

 john: one Name,

 mary: one Name,

 frank: one Name,

 addr: one Address,

 addr2: one Address,

 addr3: one Address,

 b: one AddressBook,

 b2: one AddressBook

] {

 disj[john,mary,frank]

 disj[addr,addr2,addr3]

 disj[b,b2]

 create_entry[b,john,addr]

 create_entry[b,frank,addr2]

 create_entry[b2,mary,addr3]

}

run show2 for 3 but 2 AddressBook

The run command above could generate the example we are interested in, but it

could also generate a large number of other possible configurations. For example, a sce-

nario where both address books have the addresses of all the names in them is also pos-

sible according to this predicate.

We could constrain the predicate further, restricting the entry of each address book

using set operators.

 (john->addr + frank->addr2) = b.entry

 mary->addr3 = b2.entry

This concludes the overview of the Alloy language and the Alloy Analyzer. We

have introduced sufficient elements to discuss the model transformation strategy in

Chapter 5.

Appendix B– Scope-reducing

OntoUML2Alloy model transformation

variation

In this appendix we detail a variation of the “Branching World” model transfor-

mation to allow model simulations using smaller scopes, improving performance. We

call this variation the “Scope-reducing” transformation. We have not implemented the

transformation in software, so we propose ways to manually adjust to the “Branching

World” transformation.

As explained in Appendix A- Alloy, the scope of a run command defines the maxi-

mum number of atoms of each top-level signature. As the scope increases, the time to

run the simulation increases drastically. In the “Branching World” transformation any

atom representing an individual is in the Object signature or in the Property signature.

By breaking down these signatures into multiple signatures, we can reduce the neces-

sary scope size for a simulation. For example, to instantiate every class in a model with

a ‘X’ number of Moment Classes (such as Relator, Mode or Quality) in the “Branching

World” approach, one would need a scope of at least ‘X’. In the “Scope-reducing” ap-

proach, to instantiate every class in a model with ‘X’ Moment Classes, one would need

a scope of 1 (unless cardinality constraints impose otherwise).

The difference between the two transformations is mostly about creating these extra

signatures and dealing with the consequences of removing the Object and Property sig-

natures. Instead of using a single signature for every Substantial and another for every

Moment, we use a different signature for each Identity Provider Class. An Identity Pro-

vider Class is a class that provides identity to its instances; each individual must be in-

stance of one and only one Identity Provider Class. An Identity Provider Class is, in the

case of Substantials, a Kind, Collective or Quantity class. In the case of Moments, it is a

Relator, Mode or Quality class. In this interpretation, a Moment Individual is classified

by one and only one Relator, Mode or Quality class. Therefore, to specify superclasses

or subclasses of Moments, we assume that Categories, Phases, Roles, RoleMixins, Mix-

ins and SubKind may be used in Moment hierarchies in the same way they are used in

Substantial hierarchies.

Each identity provider signature is defined with a double underscore prefix to its

name. That way, the field in the World signature with the class name remains as the ex-

tension set of the Class, maintaining compatibility with the previous approach (see ex-

ample below).

Some constraints of the previous approach (e.g. rigidity and generalization con-

straints) refer to Object and Property. To maintain compatibility, we create “Object” and

“Property” functions. Each returns the union set of every signature, respectively i.e. the

Object function returns the union set of every signature that represents a Substantial and

the Property function returns the union set of every signature that represents a Moment.

Therefore, any constraint that would reference the Object or Property signature still

works.

Since the Alloy syntax does not allow the use of functions in field definitions, they

should be defined in terms of the Identity Provider signatures, instead of using Object or

Property, as it is done in the previous approach. For the Identity Provider Classes, it is

trivial: the field is defined using the homonymous signature (prefixed by double under-

score). In the case of subclasses, they are defined in terms of their identity provider

class. Even if there is a hierarchy of subclasses, defining the subclasses in terms of the

identity provider signature is enough (it is not necessary to define it in terms of the im-

mediate superclass), generalization constraints are generated such that the hierarchy is

preserved. In the case of Mixins, RoleMixins and Categories, the fields should be de-

fined as a union of the possible Identity Provider Classes.

To further improve performance, we also recommend the use of the util/ordering li-

brary (linear ordering) to order worlds, as opposed to the world_structure library pro-

vided by the “Branching World” transformation. The world_structure library includes

the continuous_existence predicate which should be copied to the model, as exempli-

fied above. Additionally, there is a generated statement that should be removed from the

Alloy story predicate generated by the Story Modeler: World0 in CurrentWorld. In the

util/ordering approach, there is no distinction between past, current or future worlds;

this distinction is specified in the world_structure library.

The following model in Fig. 38 is transformed to Alloy using both approaches in the

table below. To the left, using the “Branching World” approach and to the right using

the “Scope-Reducing” approach. Notice the difference between the two approaches re-

garding the signature definitions and the World signature field declarations. Rules have

been omitted from the model. The model on the left has some blank spaces between the

lines to align each of the elements in the two models.

Fig. 38. Student enrollment / Bank client model

module Model

open world_structure[World]

open ontological_properties[World]

open util/relation

open util/ternary

open util/boolean

sig Object {}

sig Property {}

sig DataType {}

module Model

open útil/ordering[World]

open ontological_properties[World]

open util/relation

open util/ternary

open util/boolean

sig __Person {}

sig __Organization {}

fun Object : univ{

__Person+__Organization

}

sig __Enrollment {}

sig __Account {}

fun Property : univ {

__Enrollment+__Account

}

sig DataType {}

abstract sig World {

 exists: some Object+Property,

 Account: set exists:>Property,

 Agent: set exists:>Object,

 Bank: set exists:>Object,

 Client: set exists:>Object,

 Enrollment: set exists:>Property,

 Organization: set exists:>Object,

 OrganizationClient: set exists:>Object,

 Person: set exists:>Object,

 PersonClient: set exists:>Object,

 School: set exists:>Object,

 Student: set exists:>Object,

 Material1: set Student -> Enrollment -> School,

 Mediation11: set Account one -> one Client,

 Mediation1: set Enrollment some -> one Student,

 Mediation21: set Account one -> one Bank,

 Mediation2: set Enrollment some -> one School

}

abstract sig World {

 exists: some __Enrollment+ __Account+ __Person+

__Organization,

 Account: set exists:>__Account,

 Agent: set exists:>__Person+__Organization,

 Bank: set exists:>__Organization,

 Client: set exists:> __Person+ __Organization,

 Enrollment: set exists:>__Enrollment,

 Organization: set exists:>__Organization,

 OrganizationClient: set exists:>__Organization,

 Person: set exists:>__Person,

 PersonClient: set exists:>__Person,

 School: set exists:>__Organization,

 Student: set exists:>__Person,

 Material1: set Student -> Enrollment -> School,

 Mediation11: set Account one -> one Client,

 Mediation1: set Enrollment some -> one Student,

 Mediation21: set Account one -> one Bank,

 Mediation2: set Enrollment some -> one School

}

/*Objects can't die and come to life later*/

pred continuous_existence [exists: World->univ] {

all w : World, x: (@next.w).exists | (x not in w.exists) => (x

not in ((w. ^next).exists))

}

Appendix C– Applying method to Bank

Model

a) – The model

In this section we apply the method in a Bank Model extracted from

http://www.menthor.net/bank.html. The model was developed as a graduate course as-

signment and there is no documentation available for it, so some of the meanings of

concepts (such as Inactive Account) will be deduced.

Fig. 39. Bank Model

The model specifies Banks, ATMs and two types of transactions ATMs can perform

on accounts: Accessing and Withdrawing money. Accesses may also be performed on

other type of devices such as PCs and Mobile Phones. Accounts can belong to a Person

or to an Organization. The model also specifies Groups of Organizations and their

Members, but we consider the fragment related to the structural aspect of organizations

outside the scope for the exercise in this annex.

In a brief inspection of the model, a section that stands out is the “Account” hierar-

chy, which uses the Relator stereotype to model seemingly anti-rigid concepts, namely

Active/Inactive Account, Accessed Account and Withdrawn Account. Modal properties

of relators were not explored in the first versions of OntoUML and the current On-

toUML2Alloy transformation considers any class stereotyped as a relator to be a rigid

class. To apply our “scope-reducing” model transformation to Alloy (Appendix B) we

will need to elect one of the classes in the hierarchy to be the Identity Provider Class.

http://www.menthor.net/bank.html

Account seems to be the fair choice as they are frequently identified by a number and is

the top-most type of the hierarchy, providing identity to its subclasses.

b)– Overviewing Natural Language Narrative

The following Natural Language Narrative exercises most of the concepts present in

the model. Here, we instantiate the model by drawing the meaning of the concepts from

our own experience with dealing with the domain of discourse and later check (using

our method) if the model is fit to formalizing the Natural Language Narrative we pro-

duced or not.

John felt hungry after his Calculus classes and wanted to buy food

from the cafeteria, but realized he had no money on him. Luckily,

there was a Santander Bank branch located inside the university, and

he was a client with an active account there.

He pulled his mobile phone from his pocket and accessed his ac-

count to make sure his balance was positive. He noticed he had less

money than he expected. Checking his account statement, he was

shocked to find the bank had charged much more for the account

maintenance than what they had been charging for the previous

months. He headed to the bank, furious. Getting there, he inserted his

card in the ATM and withdrew all of his remaining money: R$120,00.

He then entered the Agency and, after some discussion, closed his ac-

count.

After leaving the agency, he checked on his mobile phone to make

sure his account was inactive, and it was. That’s when it came to him

that he had spent so much time in the agency arguing that he was al-

ready late for his next class; and he didn’t even get to eat anything.

The Natural Language Narrative above exercises the following aspects of the model

 Person being a Client (Client Person, to be more specific) of a Bank,

 Having an account there (an Active Account),

 The account is accessed from a Device (a Mobile Phone),

 A Withdraw is performed in an ATM

 The ATM is Located in the University

 The account was closed

Two elements of the model were not exercised in the Natural Language Narrative:

PC (Personal Computer) and Client Organization. To exercise them, we could modify

the narrative to make John check his account balance in a PC instead of his Mobile

Phone, and John could instead be accessing his Company’s account instead of his own

account.

c) – Model Assessment

In this section, we elaborate Formal Story Specifications for fragments17 of the Nat-

ural Language Narrative presented above and generate Formal Narratives to assess the

model. For the first iteration of the method, we create a Formal Story Specification that

formalizes only a small fraction of the Natural Language Narrative, namely, the frag-

ment in which John withdraws money from the ATM.

Fig. 40.First Formal Story Specification for the Bank Model

In Fig. 40, five Nodes are specified: John, SantanderBank, SantanderUniver-

sityATM, JohnsAccount and JohnsWithdraw. Every node exists in World1. Additional-

ly, there are two classification statements, one about John and one about the Santander-

UniversityATM. John’s classification statement specifies John is a Client in World1,

and SantanderUniversityATM’s classification statement specifies it is an Withdraw-

ingATM in World1. With regard to the Node’s classification, John is a Person, Santan-

derBank is a Bank, JohnsAccount is an Account and JohnsWithdrawn is a Withdraw.

The first Formal Narrative produced (Fig. 41) shows the model is satisfiable with a

scope of 1. The diagram notation is as follows: each figure represents an individual. In-

side each figure, in the first line, there is the name of the individual, generated automati-

17 As described in Chapter 6, Formal Story Specifications and Formal Narratives should be created iteratively. One

should start with a small Formal Story Specification and assess the model with the generated Formal Narratives

and increment the Formal Story Specification in each iteration until the Natural Language Narrative is fully cov-

ered.

cally by the Alloy Analyzer. The name of the individual is the name of the signature,

followed by a number, if and only if there is more than one individual of the same sig-

nature in that simulation. On the second line, between parentheses, there is a list of eve-

ry set the individual belongs to. Sets that start with a dollar $ sign are the variables de-

fined by our story predicates. These are prefixed with the name of the story predicate,

followed by an underscore and finally followed by the variable name. Here we have

defined that Person is represented by a blue square, Organization by a green square, Ac-

count by a red hexagon with a dashed border, Withdraw by a red inverted trapezoid,

Location by a red circle, and Device by a yellow square.

One detail revealed in this generated Formal Narrative is that John’s account is an

InnactiveAccount. Should that be allowed? It certainly does not conform with the sce-

nario depicted in the Natural Language Narrative which is an ATM withdraw, but if the

Client wishes to withdraw the money of an Inactive Account in an Agency, it could be

permitted. Nevertheless, this point could be discussed with subject matter experts to

give insight on what conditions this is allowed or forbidden.

Fig. 41.First Formal Narrative for the Bank Model

Proceeding with the expansion of the Formal Story Specification, we include the

part of the narrative where John checks the account on his mobile phone prior to going

to the ATM to withdraw the money. To represent this, we add to the Formal Story Spec-

ification (Fig. 42): a World; two new Nodes, namely JohnsMobilePhone, a Mobile, and

JohnsMobileAccess, an Access; a classification statement about JohnsMobilePhone (it

is an Accessing Device in the first world) and specify that the existing classification

statement about the university ATM holds in the second world, but doesn’t hold in the

first world. Additionally, we specify that JohnsAccount is both a Withdrawn Account

and an Accessed Account.

Fig. 42.Second Formal Story Specification for the Bank Model: John checks his balance on his mobile phone

Since there are two worlds and two devices specified, we assume a scope of 2 would

be sufficient. However, the simulator cannot find an instance with a scope of 2. The

smallest scope that satisfies the story is 3, which means the model is at least satisfiable.

Checking the unsatisfiability core for the scope of 2 allows us to find hints about what

made the model unsatisfiable for this scope. Fig. 43 shows the second story marked up

in red. Other sections of the model have also been marked, such as the rigidity predicate

and the disjointness of Mobile and ATM (although these are not shown in Fig. 43).

Fig. 43.Second story highlighted with unsatisfiability core markup (in red).

Analyzing the unsatisfiability core indicates that the unsatisfiability is related to

ATM, Phone (therefore, Device) and Account. The problem lies somewhere in the rela-

tion between JohnsMobilePhone, JohnsAccount and SantanderUniversityATM. More

specifically, it is related to the fact that SantanderUniversityATM is not a withdrawing

ATM in World 1 and JohnsAccount is a Withdrawn Account (in all worlds, since With-

drawn Account is a rigid classifier). This could lead to the following conclusion: since

Withdrawn Account is rigid, and the minimum cardinality to Withdrawn is 1, there must

be a Withdrawn linked to the account in the first world; SantanderUniversityATM is not

a Withdrawing ATM in the first world, therefore there must be another ATM which is a

Withdrawing ATM in the first world. Since JohnsMobile is a Device, and Mobile and

ATM are disjoint, Device would need a scope of 3 to satisfy the simulation (1 for San-

tanderUniversityATM, 1 for JohnsMobile and 1 for the unspecified ATM in the first

world). Raising the scope to 3 and inspecting the Formal Narratives (Fig. 44 and Fig.

45) could help reaching the same conclusion.

Fig. 44.First World of the second story. Unspecified ATM and Withdrawn are required to satisfy the story

Fig. 45.Second World of the second story.

The narrative above exemplifies the problem with modeling Withdrawn Account as

a rigid classifier: we cannot model a situation where an Account has no withdraws in

one World and has a Withdraw in the next. For example, the following Natural Lan-

guage Narrative could not be satisfied by the current model:

John opened a new Account in Santander. For the first month, he

only checked his balance on his Mobile phone. On the second month

he withdrew some money at an ATM.

The rigidity of the Withdrawn Account classifier, with the minimum cardinality of 1

with the Withdraw class enforces that any Withdraw Account must have Withdraws in

all Worlds it exists. Therefore, the “first withdraw” scenario is not possible.

The Accessed Account classifier has the same structure and shares the same prob-

lem (Fig. 39). For the sake of brevity, we will omit the discussion and Formal Narra-

tives to demonstrate the same problem for the Accessed Account classifier, as it is simi-

lar to the Withdrawn Account classifier.

There are two ways to solve the presented Withdrawn Account and Accessed Ac-

count problem. The first approach (Fig. 46) is to change the stereotype of the classes

from Relator to Role. The second (Fig. 47) is to change the cardinality of the relation-

ships from 1..* to 0..*. Both approaches are not standard OntoUML, as optional media-

tion relationships are not allowed and Roles can only specialize Substance classes.

However, both options are widely used to deal with problems such as this.

We believe the best alternative for the model would be the one in Fig. 46, for the

same reasons Guizzardi [49] defends the use of Roles for Substance classifiers. Addi-

tionally, the use of Roles for Moment classes has recently been defended in [44]. Since

the two options we presented are commonly adapted to deal with this type of problem

we will show why the approach in Fig. 46 is superior by showing the problems that may

arise from adopting the model in Fig. 47.

Fig. 46. Changing the stereotype of the classes fixes the problems found.

Fig. 47. Changing the cardinality of the relations fixes the problems found.

The model in Fig. 47 allows the unfortunate scenario depicted in Fig. 48, where

there could be an Account that can never be accessed or withdrawn from. This version

of the model could be improved to rule out this scenario by removing the Accessed Ac-

count and Withdrawn Account entirely, as shown in Fig. 49.

Fig. 48. Formal Narrative showing an account that cannot be accessed or withdrawn from

Fig. 49. Removing Accessed Account and Withdrawn account.

However, this amounts to a model that is less expressive because it omits relevant

domain concepts. We will proceed with the validation using the model in Fig. 46 and

adapt the Formal Story Specification to include classification statements for JohnsAc-

count (Fig. 50), specifying it to be an Accessed Account in the first World and a With-

drawn Account in the second. Running the story for the adapted model wields the fol-

lowing Formal Narrative (Fig. 51 and Fig. 52).

Fig. 50. Third formal story specification: adapting the second formal story for the model modifications

Fig. 51. First world of the third story. The elements specified in the Formal Story Specification are enough to satisfy

the Formal Narrative

Fig. 52. Second World of the third story.

Going back to the original Natural Language Narrative, to formalize the fragment

where John closes his account (makes it Inactive) we must change the stereotypes for

the Active Account and Inactive Account classifiers in the model similarly to how we

have changed the Withdrawn Account and Accessed Account. Since in this case the

change is not motivated by an association, we use the Phase stereotype instead of Role

(Fig. 53). Otherwise we could not have the Account change classes from Active to Inac-

tive such as we see in Fig. 57 (where JohnsAccount is active) and Fig. 58 (where it is

inactive). Fig. 54 shows the fourth story specification. In relation to the third story spec-

ification (Fig. 50) this one has an additional world in the beginning to represent the

starting point and an extra world in the end, to represent the moment John makes the

account inactive. The Formal Narratives generated based on these Formal Story Specifi-

cations are in Fig. 55, Fig. 56, Fig. 57 and Fig. 58.

Fig. 53. Changing the stereotype for Inactive Account and Active Account from Relator to Phase.

Fig. 54. Fourth story specification. Added a world in the beginning to represent the starting point and a world in the

end, to represent the moment John makes the account inactive.

Fig. 55. First world of the fourth story: John has not yet accessed his account on his mobile phone.

Fig. 56. Second world of the fourth story: John accesses his account on his mobile phone

Fig. 57. Third world of the fourth story: John withdraws money from his account using an ATM

Fig. 58. Fourth world of the fourth story: John checks on his mobile phone that his account is indeed inactive.

d) – Conclusion

We have applied our method to the Bank model and detected fragments that are in-

accurate in the sense that they were unfit to formally representing the Natural Language

Narrative we elaborated for it. They were unfit because they did not allow dynamic

classification of Accounts as Withdrawn, Accessed, Inactive or Active. Using Formal

Story Specifications and showing the Formal Narratives generated based on them, we

have justified the need to change the model and offered possibilities for changing it.

Applying the method to the model also revealed opportunities for improving cover-

age, such as including branches in the model and allowing withdraws there. Another

improvement could involve restricting withdraws to inactive accounts to only be possi-

ble in branches and constrain ATMs to only allow withdrawing money from active ac-

counts. We suggest the coverage of the model could be broadened by including the

causes that can make an account inactive; in our example the account holder closed his

account but maybe there are other reasons such as court order, fraud, too many incorrect

password attempts etc.

Appendix D– Applying method to The

Inventory Management System model

a) – The model

The Inventory Management System model is a generic model for stores. It models

the Store, its employees responsible for selling items to customers, the labor contracts of

such employees, the receipts for the items sold and the stock. Items in the receipt can be

cancelled and the receipt can be cancelled as well. Stock can be active or inactive, and

customers as well. A Customer can be either a Person or a Company.

Fig. 59. A model for Inventory Management System.

The model is a fragment of a larger model that was developed for a business that

made it available for this dissertation on the grounds of keeping both the company and

the modeler anonymous.

b) – Overviewing Natural Language Narrative

Mark was just hired to work at an office supply store as a cashier.

He is happy to have signed a labor contract for the next five years,

meaning he will be able to afford his children’s health insurance.

Unfortunately, his first customer is a mean looking bald man. As

the man approaches Mark's stall, Mark can see the desperate look on

the other employees faces and starts sweating. The man brings a

shopping basket full of things, puts it on the counter and grunts.

Good morning, sir - said Mark as he started scanning the bald

man’s items

Ghrmnp - grunted the man, ignoring Mark

“What an awful man”, thought Mark. “I hope I can make every-

thing alright”. This was a big sale for his first try! There were multi-

ple items of the same kind and fortunately he remembered how to

multiply them, surely this guy would complain if he scanned them in-

dividually.

“BIP BIP” the scanner sounded as Mark added each item on the

purchase

-Stop - said the bald man - these pencils are announced with a dif-

ferent value on the shelves.

Mark felt cold in his spine. “It’s not my fault” he thought. Surely

someone messed up in the stock references.

-They are on sale, sir - said the manager standing behind Mark - I

will ask someone to fix the price on the shelves, thank you for pointing

that out to us.

Mark was baffled, he didn’t notice the manager standing behind

him and thought the price on the shelves were lower, not higher!

Maybe the customer wasn’t such a bad guy after all.

-Well I guess that’s good for me, then - said the bald man.

Mark scanned the erasers and the man halted again

-Those erasers were cheaper last week.

-Well, those were on sale and now they are not anymore, sir - said

the manager

-Then I won’t take them. Cancel them, cashier.

Mark knew what to do and cancelled the receipt item. When he

finished scanning all the items he was feeling good, he made no mis-

takes.

-Will that be all, sir? -said Mark with a smile on his face

-Yes, make the receipt to my company’s CNPJ.

Mark looked to the computer screen and saw no option to enter a

CNPJ, only to enter CPF. He turned to the manager and asked

-I didn’t know; does that mean I have to cancel the receipt?

-No, Mark, it’s ok, see: all you have to do is check this box here to

change from Customer(Person) to Customer(Company). Now you

can enter the cnpj.

The sale was over, Mark was relieved.

-Thank you for shopping with us, sir! - Mark said as the man left

-Grhmp -grunted the man in response.

- Well done, Mark. Keep up the good work - the manager said as

he patted Mark on the back and left. Mark could see on the other em-

ployees faces that they were happy on how well Mark performed un-

der the stress and he was pleased with himself.

c) – Model assessment

The model must be adapted for us to conduct our assessment approach since it in-

cludes (i) a class without any stereotypes (Receipt Item), (ii) a class stereotyped as

Powertype (Stock) and (iii) a relationship that is not stereotyped (between seller and

receipt). We set the stereotype of Receipt Item to Kind, of Stock to Kind as well and the

relationship between seller and receipt to mediation. While we are aware that Powertype

is a better stereotype for Stock, neither the Menthor Editor nor the Story Modeler sup-

ports with Powertypes yet. Additionally, since our approach is not prepared to deal with

attributes, we have omitted all of them.

This model includes other syntactical errors, which are negligible i.e. they do not in-

terfere much with the model simulation. These errors include: (i) phases of Mixins are

not allowed (active customer and inactive customer), (ii) a MemberOf relation for a re-

lator (between Receipt and Receipt Item) is not allowed, the whole of a memberOf rela-

tion must be a collective (iii) two mediation relations have 0 as minimum cardinality

and mediation relations must have a minimum 1 cardinality.

Fig. 60. Adapted Inventory Management System model

In the first formal story we will start by specifying Mark, the store and Mark’s Con-

tract. Fig. 61 shows the first Formal Story Specification and Fig. 62 shows the corre-

sponding Formal Narrative generated by such Formal Story Specification.

The diagram notation is as follows: each figure represents an individual. Inside each

figure, in the first line, there is the name of the individual, generated automatically by

the Alloy Analyzer. The name of the individual is the name of the signature, followed

by a number, if and only if there is more than one individual of the same signature in

that simulation. On the second line, between parentheses, there is a list of every set the

individual belongs to. Sets that start with a dollar $ sign are the variables defined by our

story predicates. These are prefixed with the name of the story predicate, followed by an

underscore and finally followed by the variable name.

Fig. 61. First Formal Story Specification for the Inventory Management System model

Fig. 62. First World of the first Formal Narrative for the Inventory Management System model. Mark has a contract

with a store.

For the second formal story specification (Fig. 63) we will add the Bald Man as a

customer and a receipt item; as well as a second world to represent the state of affairs

before the Bald Man becomes a customer. The resulting Formal Narrative (Fig. 64 and

Fig. 65) shows an unexpected scenario: the Bald Man is also an employee of the store in

the second world. Since the Formal Narrative does not correspond to our intentions, we

will constrain the Formal Story Specification further. However, before we do, we may

inspect the results of this Formal Narrative and look for any insights it may give us.

First, it seems plausible that an employee may also be a customer of the store he works.

Second, we can see that the receipt is cancelled; while that seems to be something that

should be allowed by the model, it is not the state of affairs we intended to represent i.e.

it does not conform to our Natural Language Narrative.

Fig. 63. Second Formal Story Specification for the Inventory Management System model

Fig. 64. First World of the second Formal Narrative for the Inventory Management System model. Mark has a con-

tract with a store and the Bald Man is there.

Fig. 65. Second World of the second Formal Narrative for the Inventory Management System model. Mark is selling

an Item to the Bald Man but the Bald Man is also an employee of the same Store.

For the third Formal Story Specification we will specify that the Bald Man is not a

Seller and specify the receipt and the link between the receipt and the receipt item. We

will also specify a classification statement about the receipt that it is a Normal Receipt

(and therefore not a Cancelled receipt as it happened in the last Formal Narrative). We

will go ahead and define the Item as Normal as well, to avoid the similar problem of

having the item instantiating the unintended phase.

Fig. 66. Third Formal Story Specification for the Inventory System Management model.

Fig. 67. First World of the third Formal Narrative for the Inventory Management System model.

Fig. 68. Second World of the third Formal Narrative for the Inventory Management System model. Mark is selling an

Item to the Bald Man.

The third Formal Narrative now behaves as we intended so we will proceed to creat-

ing the fourth Formal Story Specification to add the erasers to the receipt and later can-

cel them. We will also add to the specification the Stocks corresponding to the Item1

and to the erasers, since they are different. Both should be active stocks for the duration

of the narrative so we add classification statements to ensure that they will. Links be-

tween the items and the corresponding stocks are also specified.

Fig. 69. Fourth Formal Narrative for the Inventory Management System model. Mark is selling an Item to the Bald

Man.

Fig. 70. First World of the fourth Formal Narrative for the Inventory Management System model. Mark is a seller in

the office supply store.

Fig. 71. Second World of the fourth Formal Narrative for the Inventory Management System model. Mark is selling

an Item to the Bald Man.

Fig. 72. Third World of the fourth Formal Narrative for the Inventory Management System model. Mark adds an

eraser to the receipt.

Fig. 73. Fourth World of the fourth Formal Narrative for the Inventory Management System model. Mark cancels the

eraser.

In the fourth Formal Narrative (Fig. 70-Fig. 73) everything conforms to our inten-

tions and no further changes are necessary.

The last part of Natural Language Narrative to formalize would be to switch the cus-

tomer of the receipt from the Bald Man to his company. However, this is not possible

according to the model. Since the receipt is modeled as a Relator and the relationship

between the receipt and the customer is a mediation relation, the receipt is existentially

dependent on the customer, meaning it cannot change customers. That means we proba-

bly specified in the Natural Language Narrative some state-of-affairs that were not an-

ticipated by the original modelers.

Alternatively, maybe the modelers thought of the receipt as something that only ex-

ists after it is emitted and therefore would not change between customers (bald man and

his company), but would be printed with the right customer to begin with. This would

mean there are no concepts that represent the intermediate state of the purchase e.g. in

the moment that Mark has scanned the first few items but has not scanned the eraser yet.

If the modelers are not interested in the dynamic aspects of the receipt, we could

model the relationship between the receipt and receipt item as an existentially dependent

relationship by adding the essential and inseparable meta-attributes to the relation or

modeling them as mediation or characterization. Without these attributes, the model

allows the situation where a receipt item from one receipt can be a part of another re-

ceipt. To show this strange situation we have created the Formal Story Specification

(Fig. 74) and Formal Narrative (Fig. 75 and Fig. 76) below. The same Receipt Item

(Object3) is show to be part of two different receipts (Property2 and Property1).

Fig. 74. Formal Story Specification to show a situation where a Receipt Item could be part of two different Receipts

in different points in time

Fig. 75. First World of the Formal Narrative showing that the same Receipt Item could be used in two different Re-

ceipts. Object3 is memberOf Property2

Fig. 76. Second World of the Formal Narrative showing that the same Receipt Item could be used in two different

Receipts. Object3 is memberOf Property1

To avoid the situation described above, we propose two options for modeling the

domain. The first would be to model the part-of relation as Inseparable and Essential

(Fig. 77). The second is to change the relationship to characterization and change the

stereotype of the Receipt Item to Mode (Fig. 78).

Fig. 77. Adapting the model by adding {essential, inseparable} to the parthood relationship.

Fig. 78. Adapting the model changing receipt item to Mode

d) – Conclusion

In this annex we have exemplified intentionally creating Formal Story Specifica-

tions and Formal Narratives that show invalid state-of-affairs to motivate a change in

the model.

The application of the method on this model revealed some limitations of the meth-

od. Attributes are an important part of this model and not having support for attributes

limited the expressivity of our Formal Story Specifications; we could not model much

of what was expressed in the Natural Language Narrative. For example, we could not

exemplify “quatity” in a receipt item to show that multiple items were sold using a sin-

gle Receipt Item, or to show how the “sale_price” specified in the Stock of an item type

reflects the price of the unitary value of an item, which in turn reflects the total price of

the item. Another example is showing how the value of the product value may be

changed using the “promotion_price”.

Appendix E– Applying the method to

OntoEmerge

a) – Introduction

OntoEmerge is a well-founded core ontology for Emergency Plans. The model is in-

tended to support the generation of Emergency Plans for organizations. The project was

developed in cooperation between Brazilian universities in a cooperative project be-

tween NEMO (from UFES) and GRECO (from UFRJ) in the scope of the CNPq

PRONEX program and resulted in some publications [31]. The model is very large and

composed of multiple diagrams. In this appendix, the first person in the singular (“I”) is

used to clarify the author’s participations in the process and contrast it with the partici-

pations of the modeling team. The first person in the plural (“we”) refers to both the

author and the modeling team.

The model uses many stereotypes that are not covered by OntoUML2Alloy such as

Event, Higher Order Universal and Disposition. Nevertheless, I have engaged with the

modelers to validate the models using Natural Language Narratives and discussing the

possible instantiation of the Natural Language Narratives with them. This resulted in

improvements of the model, which we discuss in this annex.

This annex exemplifies a way to use our method and approach which is different

from the way we have performed in the rest of the work. Here we do not create Formal

Story Specifications and we do not generate Formal Narratives, we use Natural Lan-

guage Narratives alone to negotiate meaning between people: the narratives served as

confirmation to me that I had understood the model correctly and this discussion alone

led to model improvements.

We have worked with two fragments of the model: “Risk and Planned Activities”

which models the notion of Risk, Hazard, Damage and events around those concepts

and “Installation” which deals with the facilities that may be covered by the emergency

plans. Each fragment of the model will be presented along with the corresponding Natu-

ral Language Narrative in the following sections and the whole model will not be pre-

sented. The whole model is available at http://www.menthor.net/ontoemerge.html

http://www.menthor.net/ontoemerge.html

b) – Risk and Planned Activities diagram

In our validation sessions with the experts we started with a Natural Language Nar-

rative about the Risks and Planned Activities diagram (Fig. 79). The narrative below,

along with the discussion based on the narrative, helped consolidate the distinction be-

tween Hazard, Hazardous Event, Vulnerability, Risk and Damage. By exemplifying the

concepts, we could differentiate between them and their roles in describing the phenom-

ena. Before creating the narrative, we established a context for the story, exemplifying

the class instantiation (between brackets) and then created a narrative based on such

context, as follows.

Fig. 79. Risk and Planned Activities diagram before the modifications

The university of Valencia has the Risk of Run Over [Risk <<Disposition>>] cata-

logued in their emergency plans. Whenever there is an inappropriate circulation of vehi-

cles inside campus [Hazard<<Situation>>], the Risk of Run Over [Risk <<Disposi-

tion>>] of the university may manifest itself when a run over [Hazardous Event

<<Event>>] actually happens. The Risk of Run Over is a characteristic of the university

that may be manifested in a dangerous situation. When such situation entails the Run-

ning Over event [Hazardous Event <<event>>], such event is understood as the mani-

festation of the Risk of Run Over of the Valencia University. With this context in mind,

consider the following Natural Language Narrative:

Last Friday Fred was driving in the University of Valencia and

lost control of the vehicle, climbing on the sidewalk and running over

Joanna and then crashing into the wall of the Informatics Department

of the University of Valencia.

 Joanna was severely injured; she had broken some bones. The

crash was so violent it left a crack in the walls of the department.

Since Fred’s vehicle was over the sidewalk, an Inappropriate Circulation [Hazard

<<Situation>>] was configured, which resulted in a Run Over [Hazardous Event

<<Event>>], i.e., activated the Risk of Run over of the University of Valencia [Risk

<<Disposition>>]. Moreover, such situation allowed another Hazardous Event, namely

the collision of the vehicle to the campus building. Each event caused a different dam-

age.

In the first case, the damage was caused to Joanna. However, the model connects

Impact and Damage to Environment i.e., it does not allow the participation of people in

Damage or Impact events. Therefore, it seems to me that, in the model, the participation

should be connected to Component and not to Environment, since the components are

the elements that can be Under Protection (classes from the Environment diagram).

In the second case, about the damage to the building, it was unclear to me what class

in the model building would instantiate. It is specified in the model that there can be

Components that are built, which seems to be the category the building would instanti-

ate. Therefore, it doesn’t seem to be that the building is classified as Environment. It

was not clear to me what Environment would be in this case. I imagine it would be the

University of Valencia, the totality of everything which is in risk, every component.

Later, interviewing the modelers showed that was indeed the case.

In discussion with the modelers, we found that it made sense to include the compo-

nents as participants of the Damage Event. We modified the model accordingly, to in-

clude this possibility (Fig. 80).

Additionally, we found a case of concept overload for Damage. In our narrative, Jo-

anna’s participation in the accident does not describe fully the damage inflicted in her.

Consider that Joanna broke some bones in the crash. The damage, as it is modeled, is an

Event, the manifestation of the Risk and the participation of Joanna in the accident. That

is, there is nothing in the model that describes her broken bones, that “damage” that she

suffered; which would probably be a Mode that inheres in her. The same could be said

about the building the car crashed into. Suppose the wall was cracked in the crash. The

model is not prepared to describe such “damage”, only the “damaging event”, which is

called here “damage”. The model should include some Mode that inheres in the dam-

aged components that characterize such physical damage.

While discussing about this, we found there is an additional example of damage

which is not covered by either definition. For example, consider a person which is dis-

lodged due to a flooding. There is a physical damage to the structure (house) but there is

also a damage to the human, which is being dislodged. What is such damage? Surely

not an event neither a mode of the person. Is it a situation? We did not reach a conclu-

sion on this discussion, but the Narrative and everything that was debated around it at

least served to expose this limitation and opened an opportunity for improving the mod-

el.

Fig. 80. Risk and Planned Activities diagram after the modifications

c) – Installation diagram

The Installation diagram models Installations i.e. places where people conduct busi-

ness activities. This diagram models the people and organizations that may own or con-

duct business in them, as well as types of installations, the evacuation of said installa-

tions and the place where people evacuate to, among other details.

Fig. 81. Installation diagram before the modifications

To exemplify the concepts of the diagram, I created the following Natural Language

Narrative:

In the university of Valencia there is a Datacenter (named data-

center0013) inside a container (container 0025). The container is in

an open field. Two technicians are conducting repairs to the electrical

cables when one of them makes a mistake while plugging an equip-

ment, is electrocuted and passes out. The accident starts a fire and the

conscious technician drags his colleague outside through the only

door of the container. He calls the firefighters and they send a team to

the site. A firefighter arrives and extinguishes the fire using a chemi-

cal powder fire extinguisher.

The experience of discussing the Natural Language Narrative based on the Installa-

tion diagram with the modelers was rather unusual. It was both a failure and a success.

It failed because my Natural Language Narrative turned out to be wrong, I assumed a

container could be an Installation when in fact it couldn’t be. This happened even

though I used a document provided by them which mentioned that a Container could be

an Installation. This revealed that the notion of Installation was not agreed on even on

the original modeling team; they had documents that incorrectly stated a Container

could be an installation. Revealing such false agreement can be considered a success.

 We ignored this detail and kept using the example considering that the story could

work the same if the Installation was some other type of building. Discussing the con-

cept of Evacuation, I asked if the Evacuation Local (i.e. Evacuation Zone) would be

anywhere the people evacuated to and they answered that no, the Evacuation Local was

a place defined in the Emergency Plan. However, the model constrains that an Evacua-

tion Local must related to an Evacuation. To reveal the problem that may arise in this

case, imagine a scenario where the institution defines an Evacuation Local to an Instal-

lation where no Evacuations ever occurred. In this case the mandatory relationship be-

tween Evacuation Local and Evacuation cannot be satisfied. Therefore, I pointed out,

there was probably a case of concept overload in Evacuation class. It overloads both the

concept of planned evacuation and evacuation execution. Therefore we have corrected

the model to introduce both concepts (Fig. 82).

Accidently, the narrative also revealed a concept that was not included in the model:

when the technician removes his unconscious partner from the place of danger, that

would constitute a “removal” and not an “evacuation”. Removal was not modeled.

Fig. 82. Installation diagram after the modifications

d) – Conclusion

This experience with validating an existing model with the modelers and experts

was very insightful. It showed that using Natural Language Narratives and discussing

their formal counterparts alone can help validation. I suppose this was especially useful

due to the very abstract nature of the terms in the model. The model was presented in

[31] and my contributions validating the model (which were not limited to the valida-

tion session described in this annex) was significant enough to justify the status of co-

author in the paper.

