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Resumo

Durante os últimos dez anos, as Interfaces Cérebro Computador (ICC)
baseadas em Potenciais Evocados Visuais de Regime Permanente (SSVEP) têm
chamado a atenção de muitos pesquisadores devido aos resultados promissores e
as altas taxas de precisão atingidas. Este tipo de ICC permite que pessoas com
dificuldades motoras severas possam se comunicar com o mundo exterior através
da modulação da atenção visual a luzes piscantes com frequência determinada.
Esta Tese de Doutorado tem o intuito de desenvolver um novo enfoque dentro das
chamadas ICC Independentes, nas quais os usuários não necessitam executar tare-
fas neuromusculares para seleção visual de objetivos específicos, característica que
a distingue das tradicionais ICCs-SSVEP. Assim, pessoas com dificuldades motoras
severas, como pessoas com Esclerose Lateral Amiotrófica (ELA), contam com uma
nova alternativa de se comunicar através de sinais cerebrais. Diversas contribuições
foram realizadas neste trabalho, como, por exemplo, melhoria do algoritmo extra-
tor de características, denominado Índice de Sincronização Multivariável (ou MSI,
do Inglês 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥), para a detecção de potenciais
evocados; desenvolvimento de um novo método de detecção de potenciais evocados
através da correlação entre modelos multidimensionais (tensores); o desenvolvimento
do primeiro estudo sobre a influência de estímulos coloridos na detecção de SSVEPs
usando LEDs; a aplicação do conceito de Compressão (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑆𝑒𝑛𝑠𝑖𝑛𝑔) na
detecção de SSVEPs; e, finalmente, o desenvolvimento de uma nova ICC indepen-
dente que utiliza o enfoque de Percepção Fundo-Figura (ou FGP, do Inglês 𝐹𝑖𝑔𝑢𝑟𝑒
𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛).

Palavras-chaves: Interface Cérebro Computador, ICC Independente, SSVEP,
MSI, FGP.





Abstract

Over the past ten years, Brain Computer Interfaces (BCIs) based on Steady-
State Visual Evoked Potentials (SSVEP) have attracted the attention of many re-
searchers due to the promissory results and the high accuracy rates achieved. This
type of BCI provides to people with severe neuromotor difficulties the possibility
to communicate with the world around them using visual attention modulation to
blinking lights at a given frequency. This thesis aiming at developing a new approach
of Independent BCI, in which users are not required to perform neuromuscular tasks
to select visual targets, a feature that distinguishes it from traditional SSVEP-BCIs.
Thus, people with severe motor disabilities as Amyotrophic Lateral Sclerosis (ALS)
have a new alternative channel to communicate with the world around them using
brain signals. Several contributions were done in this thesis, such as: improvement
of the feature extractor called Multivariate Synchronization Index (MSI) for detect-
ing evoked potentials; development of a new method for detecting evoked potentials
through correlating multidimensional models (tensors); a first study on the influence
of colored stimuli in SSVEPs detection using LEDs; the development of the concept
of Compressive sensing applied to SSVEPs; and, finally, the development of a novel
independent BCI under an approach named Figure-Ground Perception (FGP).

Key-words: Brain Computer Interface, Independent SSVEP-BCI, SSVEP, MSI,
FGP.
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1

1 Introduction

The current human communication channels are the result of a long evolution
process, which distinguishes humans from other beings. Currently, mimes, gestures, writ-
ing and speech are the bases of an entire communication process that has been evolving
over the years. In this communication evolution process intrinsically influenced by human
ability, a new natural and spontaneous kind of communication appears as an option: the
biosignals. This new manner of communication can improve the quality of life of people
with any disability (for example, people unable to communicate through conventional
ways) and even healthy people. Biosignals are physical quantities varying with time and
used to control machines and systems (RECHY-RAMIREZ; HU, 2015). Figure 1 shows a
block diagram of this kind of system.
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Amplification Filtering Sampling 
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Figure 1: Biosignal acquisition and processing.

In the same way, Brain-computer interface (BCI) is a technology which provides
human with a direct communication between the user’s brain signals and a computer,
generating an alternative communication channel that does not involve the traditional
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way as muscles and nerves (WOLPAW et al., 2000). Among current BCIs, a noninva-
sive brain imaging method commonly employed is electroencephalography (EEG), which
has the advantages of lower risk, be inexpensive and easily measurable, and can be ap-
plied and tested on large human population (CHEN et al., 2014; KELLY et al., 2005b).
Furthermore, EEG provides electrical signals of high temporal resolution generated by
neuronal dynamics from the scalp. Therefore, a BCI records brain signals and extracts
EEG signal features, and these features are then translated into outputs or commands
that act in a real world. BCI can be then used to control solution for people with severe
motor disabilities (WOLPAW et al., 2000; KELLY et al., 2005b; GAO et al., 2003).

1.1 Problem Statement

Among the different kinds of BCIs, an approach called Steady-State Visually
Evoked Potentials (SSVEPs) has attracted much attention of researchers. The main ad-
vantages of SSVEP compared to other BCI paradigms are its high signal-to-noise ratio
(SNR), little user-training (or nothing), and high information transfer rate (ITR) (GAO
et al., 2003; WANG; WANG; JUNG, 2010; BIN et al., 2009; CHEN et al., 2013). However,
SSVEP is only capable of showing a good response if some setup parameters are previ-
ously adjusted (VIALATTE et al., 2010b). This factor makes that the research becomes
complex due to the large quantity of conditions, such as: forms of stimulation, type of
stimulation, color of the stimuli, problems of fatigue, feature extractors, classifiers, stim-
ulus frequencies, electrode location, window length of processing, etc. Advances in the
detection of visual evoked potentials have evolved from traditional ways as Fourier power
spectrum or Power Spectral Density Analysis (PSD) (WANG et al., 2006), multidimen-
sional signals (HUANG et al., 1998; TELLO et al., 2015a) and the use of simulated signals
that act as “frequencies templates” (LIN et al., 2007; ZHANG et al., 2014a). A modified
version of PSD called Spectral F-test (SA et al., 2006) was also developed, which has the
goal of determining whether the spectrum at a certain frequency is statistically distinct
from its neighbors, considering that the spectrum in this neighborhood is white. Huang et
al. (1998) introduced the concept of Empirical Mode Decomposition (EMD) together with
Hilbert transform, which was collectively called Hilbert-Huang Transform (HHT), used to
extract time-frequency information from a nonlinear and non-stationary signal. It was re-
garded as an important progress since the Fast Fourier Transform (FFT). Since 2007, the
use of simulated stimuli (templates) have drawn attention in the recognition of SSVEPs
due to efficiency, lower computational cost, good performance and training-free compared
to traditional ways of feature extraction and use of thresholds or decision trees for classifi-
cation (TELLO et al., 2014b). Friman, Volosyak and Graser (2007) developed a technique
called Minimum Energy Combination (MEC), which is based on finding combinations of
strong electrode signals that remove noise and nuisance signals for EEG data. Lin et al.
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(2007) introduced the use of canonical correlation analysis (CCA) for multi-channel detec-
tion SSVEP, which consists of formation of pairs of linear combinations, called canonical
variables. The target is found by maximization of the correlation between the two sets
(a multichannel EEG signal and a “Fourier series” of simulated stimuli). In 2014, Zhang
et al. (2014a) developed a new method called Multivariate Synchronization Index (MSI).
MSI is a technique that estimates the current synchronization between mixed signals and
reference signals as a potential index for recognizing the stimulus frequency.

Figure 2 presents a concept-map of categorization of a Brain–computer interface.
In a typical SSVEP-BCI several stimuli flickering at different frequencies are presented to
the user. The subject overtly directs attention to one of the stimuli by changing his/her
gaze attention (ZHANG et al., 2010). This kind of SSVEP-BCI is commonly called as “de-
pendent”, since muscle activities, such as gaze shifting, are necessary. However, patients
with stroke trauma, poliomyelitis, amyotrophiclateral sclerosis (ALS), multiplesclerosis,
and Guillain-Barré syndrome suffer from motor disabilities, which can disrupt their com-
munication with the external environment, resulting in the so-called locked-in syndrome
(LIS).

1.2 Motivation

One motivation for the realization of this thesis is the life history of the physi-
cist Prof. Stephen Hawking, who used different interfaces to communicate. Prof. Hawking
has a rare early-onset, slow-progressing form of amyotrophic lateral sclerosis (ALS), com-
monly known as motor neurone disease that has gradually paralysed him over the years.
Currently, Prof. Hawking uses a channel of communication that consists of a single cheek
muscle attached to a speech-generating device .

Examples such as the case of Prof. Hawking motivate the development of assistive
technologies helping people who preserve the mental conditions and the reasoning of intact
way.

1.3 Hypothesis

Based on the problem statement, “dependent” SSVEP-BCIs might not be applica-
ble for patients with traumatic brain injuries. Nonetheless, an “independent” SSVEP-BCI
can be an alternative solution, as it is controlled by subject’s attentions without requiring
head neuromuscular control or eye movements. But, can this independent SSVEP-BCI be
comfortable, accurate, fast and on-line?
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Figure 2: Brain–computer interface concept-map. Modified from (GRAIMANN; ALLI-
SON; PFURTSCHELLER, 2010).
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1.4 Thesis Objectives
The work presented in this thesis aimed at addressing directly the aforementioned

existing problems. New approaches were investigated in order to develop a reliable, accu-
rate and novel BCI that can offer to people with severe motor disabilities an alternative of
communication using attentional modulation without requiring neuromuscular activities
or eye movements. As a result, the following research goals were pursued in this work:

1. Study and evaluation, from the literature, of the performance of classifiers and
feature extractors for SSVEPs detection.

2. Proposal of a new method for SSVEP detection.

3. Evaluation of the influence of colored stimuli on SSVEP detection.

4. Development of a novel approach applied to an Independent BCI-SSVEP.

1.5 Contributions of the thesis
The main contributions of this thesis are listed as follows:

1. Improvements of the Multivariate Synchronization Index (MSI).

2. A new method of SSVEPs detection based on tensor models (PARAFAC).

3. A first study about evaluation of the influence of colored stimuli using LEDs in
SSVEPs.

4. Use of Compressive Sensive technique for an SSVEP-BCI.

5. Development of a new independent SSVEP-BCI using approach of Figure-Ground
Perception (FGP).

1.6 Thesis Structure
In Chapter 2, a brief review of theoretical background was performed to describe

concepts and differences between VEPs and SSVEPs. Topics related to trends in EEG
acquisition and usability were addressed. Also, basic concepts about performance in BCIs
were explained.

In Chapter 3, it was approached a section related to methodologies. Initially, it
was defined our protocols of EEG acquisition that were used in the experiments. A state-
of-the-art based on the last ten years about SSVEP-BCI research was also described,
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allowing categorizing the studies according to its applications. A study about a comparison
of techniques and technologies in SSVEP classification was also performed. The chapter
ends with the proposal of a new method for SSVEPs detection through correlation analysis
between tensor models.

In Chapter 4, it was introduced a novel study related to the influence of color in
visual evoked potentials. It is worth to mention that none of the studies in the literature
compared the performance of stimuli colors using LEDs.

In Chapter 5, a novel study of SSVEP detection was carried out for its application
in compressive sensing (CS)-based brain-computer interface (BCI). Compressive Sensing
(CS) is an emerging and promising technique for the development of low-power, small-
chip, and robust BCI (PANT; KRISHNAN, 2014; ZHANG et al., 2013).

In Chapter 6, a new way of presenting SSVEP stimuli was evaluated, in which
a portable stimulator based on two flickering stimuli representing the model face-vase
was proposed. This novel concept of SSVEP-BCI is based on perception, where the well-
known example of Rubin’s face-vase illusion is here used in order to create a bridge of
communication for subjects with severe motor disabilities.

In Chapter 7, a summary of contributions and future works that derived from
this thesis is shown. Finally, the appendix details the publications derived of this thesis.
The development of this thesis was performed in chronological order as shown in Figure
3. It were addressed all aforementioned objectives and during the studies were obtained
contributions. In some cases, different studies were performed in parallel.

Figure 3: Chronological development of the thesis indicating objectives and achieved con-
tributions.
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2 Background

2.1 VEPs and SSVEPs

About 50 years ago, Regan (1966b) started experimenting with long stimulus
trains, consisting of sinusoidally modulated monochromatic light. These stimuli produced
a stable Visual Evoked Potencial (VEP) of small amplitude, which could be extracted by
averaging over multiple trials (VIALATTE et al., 2010b). These electroencephalography
(EEG) waves were termed as “steady-state” visually evoked potentials (SSVEPs) of the
human visual system.

According to the original definition, steady-state potentials are to be distinguished
from transient potentials, because their constituent discrete frequency components re-
main closely constant in amplitude and phase over a long time period (REGAN, 1989;
VIALATTE et al., 2010b). Consequently, the amplitude distribution of the spectral con-
tent of SSVEP, with characteristic SSVEP peaks, remains stable over time. Because these
characteristics are constant, many applications can be derived from SSVEP propagation
properties.

Consequently, VEPs can be categorized into transient VEPs or SSVEPs according
to waveform patterns (FAZEL-REZAI, 2011). Figure 4 illustrates the difference between
transient VEPs and SSVEPs. While transient VEPs occur in reaction to visual stimuli
which blink at a frequency of less than 3.5 Hz, SSVEPs occur in reaction to stimuli of
higher blinking frequency (FAZEL-REZAI, 2011). A first difference between these two
evoked responses is thus their range of application (FAZEL-REZAI, 2011). VEPs, for
example, are used in the field of clinical medicine to examine the function of optic nerves
and visual cortex (FAZEL-REZAI, 2011) and SSVEPs used for control of Brain Computer
Interfaces.

While transient VEPs are typically only used for studying the visual system, the
range of applications of SSVEPs is wider —from cognitive neuroscience and clinical neu-
roscience to neuro-engineering applications with Brain Computer Interfaces (BCIs). In
addition, SSVEPs are less susceptible to artifacts produced by blink and eye movements
(PERLSTEIN et al., 2003) and to electromyographic noise contamination (GRAY et al.,
2003). The shape of the response in time domain is not usually sufficient to distinguish
SSVEPs from transient VEPs. However, spectral response in the frequency domain is
critical.
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Figure 4: Transient VEP vs SSVEP — synthetic model. (a) The upper diagram represents
the input function, with a square stimulation (transient), where the bottom trace is a
transient VEP. (b) The upper diagram represents the input function, a periodic square
wave (period T), where the bottom trace is a SSVEP. F1 and F2 indicate the frequencies
for each type of evoked potential. Image from (VIALATTE et al., 2010b).

On the other hand, the amplitude and phase of the SSVEP are highly sensitive to
stimulus parameters, such as color, contrast or modulation depth, and spatial frequency
(REGAN, 1989; DING; SPERLING; SRINIVASAN, 2006). Many authors agree that the
SSVEP is a response to the stimulus that has a complex amplitude and phase topog-
raphy across the posterior scalp, with considerable inter-subject variability (WU et al.,
2008; PASTOR et al., 2003; SRINIVASAN; BIBI; NUNEZ, 2006; AMIRI; FAZEL-REZAI;
ASADPOUR, 2013).

Since the beginning of its conception, a Brain Computer Interface (BCI) was de-
fined as a means of helping people with neuromotor complications. Nowadays, this con-
cept is extended to applications that improve the life quality of any person. The study
of SSVEPs and BCIs has led to success and great expansion of the called “SSVEP-BCI”
and consequently to develop techniques of recognition of visual evoked potentials.

Over the last 20 years, several progress has been made on BCIs. The basic idea of
using SSVEPs to drive a BCI dates back to 37 years ago, when the first ancestor of SSVEP-
BCI was depicted in the publication of Regan (1979) (VIALATTE et al., 2010b). The BCI
that was proposed in that study used closed-loop feedback to control the contrast of a
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pattern stimulus directly from the SSVEP amplitude. SSVEP-BCIs have the advantage
of having higher accuracy and higher Information Transfer Rate (ITR) than others BCIs
(WU et al., 2011; ZHANG et al., 2012). In addition, short/no training time and few EEG
channels are required (AMIRI; FAZEL-REZAI; ASADPOUR, 2013; VIALATTE et al.,
2010b).

The more general idea of this technique is to encode user commands in flickering
light stimuli that induce SSVEPs at different frequencies. In this technique, the user
selects one of the commands by focusing on one of the flickering stimuli, and by analyzing
the generated SSVEP, the BCI tries to infer which stimulus the user selected (see Figure
5).

2.2 Trends in EEG signal acquisition and usability

When the eye retina is excited by a stimulus at a certain frequency, the brain
generates an electrical activity of the same frequency of the stimulus with its harmonics
(HE, 2013). This stimulus produces a stable VEP of small amplitude termed as “Steady-
State” Visually Evoked Potentials (SSVEPs) of the human visual system. SSVEPs and
other VEPs depend on the user’s gaze direction and thus require muscular control. In
a typical SSVEP-BCI, several stimuli flickering at different frequencies are presented to
the user. The subject overtly directs attention to one of the stimuli by changing his/her
gaze attention (ZHANG et al., 2010). This kind of SSVEP-BCI is commonly called as
“dependent” since muscle activities, such as gaze shifting, are necessary. According to
Regan (WU et al., 2008; ZHU et al., 2010), a flickering stimulus of different frequency
can evoke SSVEPs in low (5-12 Hz), medium (12–25 Hz) and high (>50 Hz) frequency
bands. Each band presents a maximum amplitude in its range.

2.3 Evaluating the performance of a Brain-Computer Interface

A relevant issue in Brain-Computer Interfaces is the capability of efficiently con-
verting user intentions into correct actions, and how to properly measure this efficiency,
which can be through classification accuracy, Information Transfer Rate (ITR), letters
or words per minute, kappa statistic, and others. The most traditional measured one is
the ITR (VIALATTE et al., 2010b), the amount of information communicated per unit
time. The ITR, first introduced by Shannon and Weaver (SHANNON; WEAVER, 1964)
is expressed in bits per trial (bits per selection). If a single trial has 𝑁𝑐 possible outcomes,
if the probability 𝑝 that this outcome is correct (accuracy of the BCI), and if finally each
of the other outcomes has the same probability of selection (i.e., (1 − 𝑝)/(𝑁𝑐 − 1)), then
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Figure 5: General scheme of a Brain-Computer Interface (BCI). Basic components of the
BCI to control an application (wheelchair). The closed loop system indicated by black
lines corresponds to an operant conditioning neurofeedback paradigm.
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the information transfer rate in bits per trial (𝐵𝑝𝑇 ) is (DORNHEGE et al., 2007):

BpT = log2 (𝑁𝑐) + 𝑝 log2 (𝑝) + (1 − 𝑝) log2

(︂ 1 − 𝑝

𝑁𝑐 − 1

)︂
. (2.1)

This formula makes the assumption that BCI errors and Error-Related Potentials
(ErrP) detection errors are independent, which might not always be the case in particular
situations like lack of concentration, longer lasting artifacts, or fatigue. ITR is the type
of performance measurement for BCIs adopted in this thesis.
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3 Methodology

3.1 Acquisition experiments

The acquisition of EEG signal can be conducted with different equipments. In this
thesis, the experiments were performed using two different kinds of devices: BrainNet-36
and Emotiv Epoc Headset. BrainNet-36 is a wired medical device used for EEG sig-
nal recording manufactured by Lynx Tecnologia Ltd. With this experiment, twelve EEG
channels were processed and recorded at 600 Hz, 1 to 100 pass-band filtered and with ref-
erence signal at the left ear lobe. The GND was placed on the forehead and the Ag/AgCl
electrodes were placed according to the International 10–20 system (Figure 6). On the
other hand, the Emotiv Epoc Headset includes 14 channels pre-assigned according to the
International 10-20 system: AF3, AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P8, O1, and
O2 (Figure 7). The electrodes used for reference and common-mode sensing were fixed in
parallel to locations that approximate the P3/P4 locations and the two mastoids. This
device has 128 Hz of sampling rate and its electrodes need a saline solution to decrease
the impedance between the scalp and electrodes. The signals acquired from the scalp are
wireless transmitted to an USB receiver port of a PC.

3.2 The Visual Stimulator: Different types of stimulation devices
for SSVEP-BCIs

In Table 1, a study of the most outstanding investigations related to SSVEP be-
tween 2007-2015 was conducted, which was categorized by stimulation technology (Light
Emisor Diode - LED, Liquid Crystal Display - LCD monitor and Cathode Ray Tube -
CRT monitor), color of the stimuli, frequencies used and applications. The table includes
works from conferences, scientific journals and research groups consolidated in the area
of Brain -Computer Interfaces. This table was prepared according to the most relevant
researches found in Scopus, IEEE Xplore and ScienceDirect platforms.

According to Table 1, three groups can be distinguished where the technology of
stimulation by LEDs showed a large number of studies in the last years, compared to
LCD or CRT, remarking that the last work using CRT was in 2010. This can be due to
the undoubtedly evolution of screens to LCD in terms of reduction of dimensions and
great portability of these flat screens. On the other hand, the use of LEDs remains of high
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(a) Wired acquisition system

(b) Conductive gel
and electrodes

(c) Lateral view of
a volunteer using the
EEG cap

Figure 6: BrainNet-36 acquisition system and its accessories.

(a) Wireless acquisition system

(b) Saline solution

(c) Lateral view of
a volunteer using
Emotiv headset

Figure 7: Emotiv acquisition system and its accessories.
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Table 1: Studies related to SSVEP-BCIs between the 2007-2015.

Technology Reference Color Frequency [Hz] Application
(FRIMAN; VOLOSYAK; GRASER, 2007) Red (13,14,15,16,17) Speller
(LUTH et al., 2007) Red (13,14,15,16,17) Semi-autonomous robot(rehabilitation)
(MATERKA; BYCZUK; PORYZALA, 2007) Green (32,33,...,39,40) Virtual Keypad
(VALBUENA et al., 2007) - (13,14,15,16) Semi-autonomous robot(rehabilitation)
(MÜLLER-PUTZ et al., 2008) Red (6,7,8,13) Research
(GARCIA MOLINA, 2008) - (40,41,...,49, 50) Research
(PARINI et al., 2009) Green (6,7,...,16, 17) Research
(POURYAZDIAN; ERFANIAN, 2009) - (6-18) with step 0.25. Removed (9-11) Research
(WU; CHANG; LEE, 2009) White (30,31,32,33,34,35) Communication System
(BIAN et al., 2010) White (10,15,20,30) Control a small ball on the computer screen
(GOLLEE et al., 2010) - (13,14,15,16) Respiratory assistance
(LEE et al., 2010) White (31.25) x8 ea out of phase 45∘ Research
(MOLINA; ZHU; ABTAHI, 2010) Green (30,31,...,39,40) Research
(PFURTSCHELLER et al., 2010) - (8,13) Hand orthosis control
(VOLOSYAK et al., 2010) Red (12.5-20(step 0.5)) Research
(WANG et al., 2010) White (7,8,9,10,11,12) Research
(WANG; LI; HUANG, 2010) Blue (9,11,13,15,17) Electrical Car
(ZHU et al., 2010) Green (30, 31,. . . ,39, 40) ea with phases 0∘ e 120∘ Research

LED (BIAN et al., 2010) White (7,10,15,20) Research
(DIEZ et al., 2011) Green (37,38,39,40) Control a small ball on the computer screen
(MÜLLER et al., 2011) Green (37,38,39,40) Research
(ORTNER et al., 2011) - (8,13) Hand Orthosis control
(WU et al., 2011) - (30,31,32,33,34,35) Control cursor movements
(ZHU et al., 2011) Green (39 or 40) x4 ea with phases 0∘,90∘,180∘,270∘ Control cursor movements
(ALLISON et al., 2012) Red (8,13) Control a small ball on the computer screen
(FALZON; CAMILLERI; MUSCAT, 2012) Green (7) x6 out of phase each 60∘ Research
(HWANG et al., 2012) White (5-9.9) with step 0.1 Speller
(PUNSAWAD; WONGSAWAT, 2012) White (6,7,8,13) Control of electrical device
(XU et al., 2012) - (9,10,11,12) Wheelchair
(DIEZ et al., 2013) Green (37,38,39,40) Wheelchair
(SHYU et al., 2013b) White (21, 25) x8 ea with phases 0∘,90∘,180∘,270∘ Control Hospital Bed Nursing System
(SHYU et al., 2013a) White (21–36) with different duty cycle Research
(YEH et al., 2013) White (20) x4 ea with phases 0∘,90∘,180∘,270∘ Research
(CAO et al., 2014) White (7,8,9,11) Wheelchair
(KWAK; MULLER; LEE, 2014) - (9,11,13,15,17) Exoskeleton Control
(LIM et al., 2015) White (5.0-7.9 with a span of 0.1 Hz) Speller
(BIN et al., 2009) Black/white (6.7,7.5,8.6,10,12,15) Research
(CECOTTI, 2010) Black/white (6.66,7.5,8.571,7.059,8) Speller
(CHANG et al., 2010) Black/white (13,14,15) Remote-Controlled Car
(MÜLLER et al., 2010) Black/white (5.6,6.4,6.9,8) Wheelchair
(MÜLLER; BASTOS-FILHO; SARCINELLI-FILHO, 2010) Black/white (5.6,6.4,6.9,8) Research
(ZHANG; LI; DENG, 2010) - (8.57,10,12,15) Research
(WONG et al., 2010) Black/white (15) x4 ea with phases 0∘,90∘,180∘,270∘ Research
(WONG et al., 2011) Black/white (6.67,8.57,12,13.33,17.14) Research
(VOLOSYAK, 2011) Black/white (6.67,7.50,8.57,10,12) Speller
(JIA et al., 2011) - (10,12,15) Research
(ANGEL; BOJORGES-VALDEZ; YANEZ-SUAREZ, 2011) Black/white (6-15) DASHER writing system
(CHUMERIN et al., 2011) - (10,8.57,7.5,6.67) Control an avatar in a maze
(ZHANG et al., 2011) Black/white (8.5,10,12,15) Research

LCD (BASTOS et al., 2011) Black/white (5.6, 6.4, 6.9,8) Wheelchair
(MÜLLER; BASTOS-FILHO; SARCINELLI-FILHO, 2011) Black/white (5.6,6.4,6.9,8) Wheelchair
(MÜLLER et al., 2011) Black/white (5.6,6.4,6.9,8) Wheelchair
(LI et al., 2011) - (10) x6 ea out of phase 60∘ Research
(LEE et al., 2012) White/red (13,14,15) Remote-Controlled Car
(ZHANG et al., 2012) Black/red (6.1,7.1,8.5,10.6) Research
(ZHANG et al., 2012) Black/white (7,11,13,17,19) Remote-Controlled robot
(HAN; HWANG; IM, 2013) Black/white (3, 3.33, 3.75, 4.285) for ten stimuli Research
(SINGLA; A., 2013) - (7, 9, 11,13) Wheelchair
(PUNSAWAD; WONGSAWAT, 2013) Black/white (6, 7,8) Wheelchair
(KIMURA et al., 2013) Black/white (8,9,11,12,13,15,17,20,24,30) Research
(PAN et al., 2013) White/green (5.45,6.0,6.67,7.5) Research
(ZHANG et al., 2014a) Black/white (7.5,8.6,10,12) Control an avatar in a virtual stage
(ZHANG et al., 2014b) Black/Red (6,8,9,10) Research
(YIN et al., 2015) Black/white (8.18,8.97,9.98,11.23,12.85,14.99) Speller

CRT (LIN et al., 2007) - (27-43) with step 2.0 Research
(LOPEZ-GORDO; PELAYO; PRIETO, 2010) Black/white (15,15.48,15.71,17,17.86) Control a small ball on the computer screen
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usability due to obvious reasons of low cost, power, portability and flexibility. In contrast,
the use of computer monitors (LCD or CRT) offers flexibility to easily modify parameters
for stimuli in a BCI. BCIs using LEDs as stimulator usually require the development of
dedicated hardware in addition to software. With this hardware, one can have a guarantee
about the accuracy related to the signals and frequencies that are generated. LEDs are
usually controlled by dedicated microcontrollers, unlike of programmed routines in com-
puters and displayed in screens. In contrast of LEDs, problems with screens are evident
with the accuracy of the frequencies generated due to the refresh rate of the screen or
overload of threads in the computer.

Some studies related to comparison of technologies for stimulation were also re-
ported in the literature. According to (WU et al., 2008), it was found that the SSVEP
response elicited by an LED was largely compared to stimuli generated on computer
screen. The selection of the kind of stimulator (LCDs, LEDs or CRTs) depends mainly
on the complexity of the BCI; other parameters, such as frequency can also influence in
this selection.

In Table 2, the studies from Table 1 were redistributed and grouped in different
categories according to their applications: A (System communications), B (Home au-
tomation), C (Transport), D (Screen), E (Assistance and rehabilitation robotics) and F
(Research).

Table 2: Categorization of studies based on SSVEP-BCI according to their applications

Label Category Description
A System communications Spellers, virtual keypads, etc
B Home automation (Domotics) control of fan, lights, television, radio, etc
C Transport Electrical car
D Screen Cursor, avatar, small ball, etc.
E Assistance and rehabilitation robotics Wheelchairs, exoskeleton, robotic walker, robotic hand, etc.
F Research Studies with general purpose.

In Figure 8 some applications from references cited below are shown: category
A [in (FRIMAN; VOLOSYAK; GRASER, 2007; MATERKA; BYCZUK; PORYZALA,
2007; HWANG et al., 2012; YIN et al., 2015; LIM et al., 2015)], B [in (PUNSAWAD;
WONGSAWAT, 2012)], C [in (CHANG et al., 2010; WANG; LI; HUANG, 2010)], D [in
(BIAN et al., 2011; LEE et al., 2010; DIEZ et al., 2011; WU; CHANG; LEE, 2009; WU
et al., 2011; ALLISON et al., 2012)], E [in (LUTH et al., 2007; DIEZ et al., 2013; SHYU
et al., 2013b; CAO et al., 2014)] and F [in (MÜLLER-PUTZ et al., 2008; PARINI et
al., 2009; MOLINA; ZHU; ABTAHI, 2010; VOLOSYAK et al., 2010; WANG et al., 2010;
ZHU et al., 2010; MÜLLER et al., 2011; FALZON; CAMILLERI; MUSCAT, 2012; SHYU
et al., 2013a; YEH et al., 2013)].

One of the contributions of this thesis was the development of a visual stimu-
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(a) Category A (b) Category B

(c) Category C (d) Category D

(e) Category E (f) Category F

Figure 8: SSVEP-BCI applications developed in the following references: (a) Hwang et
al. (2012), (b) Punsawad and Wongsawat (2012), (c) Chang et al. (2010), (d) Wu et al.
(2011), (e) Cao et al. (2014), (f) Yeh et al. (2013).
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lator for SSVEPs using LEDs. The timing of LED flickers was controlled by a micro-
controller (PIC18F4550, Microchip Technology Inc., USA), with 50/50% on-off duties.
Previous simulations were performed to ensure its proper operation through Proteus Soft-
ware (see Figure 9). The circuit was tested in a development board for microcontrollers,
as shown in Figure 10a. On the other hand, a visual stimulator using LCD screen and
Field-Programmable Gate Arrays (FPGA) Spartan R○-3 was developed in order to perform
comparisons between both kind of stimuli (See Figure 10b).

Figure 9: Simulations performed on Proteus software for operating the visual stimulator
based on LEDs and PIC18F4550 microcontroller.

3.3 A Comparison of Techniques and Technologies for SSVEP Clas-
sification

In recent years, many researchers have made great efforts on the detection of
steady-state visual evoked potentials for BCIs. However, more researches related to this
area still lack due to SSVEP is dependent and affected by several parameters, such as:
type of stimulation, color, shape, data window length, etc. Thus, we developed a set
of experiments to evaluate three different aspects of SSVEP: (i) feature extraction; (ii)
window lengths; and (iii) visual stimuli (LCD and LEDs).
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(a) (b)

Figure 10: Stimuli generated by: (a) LEDs through a PIC microcontroller; (b) LCD
through a FPGA.

3.3.1 Protocol

Seven subjects (five males and two females), aged from 26 to 32 years old (mean:
27.29 and standard deviation: ± 3.59), were recruited to participate in this study. The
research was carried out in compliance with Helsinki declaration, and the experiments
were performed according to the rules of the ethics committee of UFES/Brazil, under
registration number CEP-048/08.

All measurements were noninvasive and the subjects were free to withdraw at any
time without any penalty. Previously, a selection of volunteers was performed and topics
related to precautions as visual problems, headaches, family history with epilepsy and
problems related to brain damage were consulted.

For the development of this study, twelve channels of EEG signal with the reference
electrode at the left ear lobe were recorded at 600 samples/s, with 1 to 100 Hz pass-band
filter. The ground electrode was placed on the forehead. Using the extended international
10-20 system, the electrode positions chosen were P7, PO7, PO5, PO3, POz, PO4, PO6,
PO8, P8, O1, O2 and Oz (Figure 11).

The equipment used for EEG signal recording in this study was the BrainNet-36.
In order to conduct the experiments, the volunteers sat on a comfortable chair, in front
of a 17 inches LCD display, 70 cm far from this. For the evaluation of the visual stimuli
via LEDs, a coupling structure of small boxes (4cm x 4cm x 4cm) containing LEDs was
mounted in the four sides of the LCD video display (Figure 12).

The participants were asked to watch the stimuli display, which were accurately
generated by an FPGA-based subsystem (Xilinx Spartan3E). Such stimuli consisted of
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Figure 11: Electrode placement on the scalp during the experiments.
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Figure 12: Block diagram of the system and setup for the visual stimuli with LCD and
LEDs.

four stripes (checkerboard) presented simultaneously to the user (Figure 13). On the
other hand, the timing of the four LEDs was precisely controlled by a microcontroller
(PIC18F4550, Microchip Technology Inc., USA), with pulses 50/50% on-off duties.The
LEDs have a luminous intensity from 8 to 10 millicandelas (mcd)), white color, covered
with thin white papers diffusers.

For both types of stimuli (LCD and LEDs), the flickering frequencies were 8.0 Hz
(top), 11.0 Hz (right), 13.0 Hz (bottom) and 15.0 Hz (left), see Figure 13.

3.3.2 Experimental Tasks

The experiments were performed offline, following the protocol shown in Figure
14. During the first five seconds, a cross on the display is shown to the volunteers. Then,
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Figure 13: Volunteer sat in front of a LCD display rounded by four flickering stimuli
provided by LEDs.

a beep is issued and the volunteer is instructed to fix his/her attention on the stimulus
located on the top. After ten seconds for a break, in the next thirty seconds, the volunteer
has to fix his/her attention to the right side. This protocol is repeated clockwise for the
others stimuli, ending in a total time of 155 seconds.

12 
 

 
 

 

 

0 5 75 85 115 125 35 45 155 t(s) 

Cross 
Fixation 

Cue  
beep 

Rest Rest Rest 

Figure 14: Sequence of events during EEG signal recording.

3.3.3 Data Analysis

The data from the twelve channels were segmented and windowed. Window lengths
(WLs) used were 1, 2, 4, 5 and 10 s each one with an overlapping of 50%. Subsequently,
a spatial filtering was applied using a Common Average Reference (CAR) filter, and a
band-pass filter between 3-60 Hz was also applied for the twelve electrodes.
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Although the twelve EEG channels were used during the spatial filtering process,
just the three occipital channels located on the visual area (O1, O2 and Oz) were used
in the evoked potential of the data analysis (feature extraction and classification). Figure
12 shows the block diagram of the system.

Researchers have developed various techniques of feature extraction and classifica-
tion of SSVEPs, such as Power Spectral Density Analysis (PSDA) (WANG et al., 2006),
Spectral F-Test (SFT) (SA et al., 2006; MÜLLER; BASTOS-FILHO; SARCINELLI-
FILHO, 2010), Empirical Mode Decomposition (EMD) (HUANG et al., 1998), Mini-
mum Energy Combination (MEC) (FRIMAN; VOLOSYAK; GRASER, 2007), Canonical
Correlation Analysis (CCA) (LIN et al., 2007), Least Absolute Shrinkage and Selection
Operator (LASSO) (ZHANG et al., 2012) and Multivariate Synchronization Index (MSI)
(ZHANG et al., 2014a). All these methods are here compared, which are described in next
sections.

3.3.3.1 Power Spectral Density Analysis - PSDA (SNR)

PSDA or Fourier Power Analysis (WANG et al., 2006) selects an optimal bipolar
electrode with a high Signal to Noise Ratio SNR(𝑓𝑘), and assumes there are 𝐾 targets
with stimulus frequencies 𝑓1, 𝑓2, ..., 𝑓𝑘, respectively.

The Fourier power (Φ) is computed from the Fast Fourier Transform (FFT) over
the whole signals, and the SNR(𝑓𝑘) of the SSVEP is afterwards computed using the ratio
of Fourier power at a given frequency 𝑓𝑘 to its 𝑛-adjacent frequencies power (VIALATTE
et al., 2010a), such as:

SNR(𝑓𝑘) = 10. log10

⎛⎜⎜⎜⎜⎝ 𝑛.Φ (𝑓𝑘)
𝑠.𝑛/2∑︀
𝑝=𝑠

Φ (𝑓𝑘 + 𝑝) + Φ (𝑓𝑘 − 𝑝)

⎞⎟⎟⎟⎟⎠ , (3.1)

where 𝑠 represents the frequency resolution, that in our study was 𝑓𝑟𝑒𝑠 = (sample rate)/(number
of sampling points) = 𝐹𝑠/NFFT = 600/4096 = 0.1465 Hz, and 𝑛 should be even (in this
case 30 points were used). This SNR acts as a high-pass filter on the Fourier domain
(letting only sharp Fourier peaks). The frequency with the largest SNR(𝑓𝑘) related to the
SSVEP, can be recognized as follows:

𝑂 = max
𝑘

SNR(𝑓𝑘), 𝑘 = 1, 2, . . . , 𝐾. (3.2)

It is necessary to emphasize that after the classification for each one of the three
channels independently, there is a reclassification of the same by vote to select the best
channel and finally determinate the winner class.
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3.3.3.2 Spectral F-Test (SFT)

Spectral F-Test (SFT) is a technique based on PSDA (SA et al., 2006; MÜLLER;
BASTOS-FILHO; SARCINELLI-FILHO, 2010), to evaluate synchronized spectral changes
in the EEG signal recorded during visual stimuli, 𝑥[𝑘], at a given stimulus frequency, 𝑓0.
STF is applied as the ratio between the power in such frequency and the average power
in 𝐿 even neighboring frequencies, which is defined as

𝜑(𝑓0) = 𝑃𝑥𝑥(𝑓0)
1
𝐿

𝑖=𝐿/2∑︀
𝑖=−𝐿/2,𝑖 ̸=0

𝑃𝑥𝑥 (𝑓𝑖)
, (3.3)

where 𝑃𝑥𝑥 is the Power Spectral Density (PSD) of the signal 𝑥[𝑘] evaluated at the fre-
quency 𝑓0, and 𝑃𝑥𝑥(𝑓𝑖) are the PSD values at the 𝐿 neighboring frequencies closest to
𝑓0.

This technique has the goal of determining whether the spectrum at the frequency
𝑓0 is statistically distinct from its neighbors, considering that the spectrum in this neigh-
borhood is white. Equation 3.3 is also used in (WANG; GAO; GAO, 2005) to evaluate
the SNR of the SSVEP. Here, this expression is used to detect the evoked peaks that
are rejected by the null hypothesis, 𝐻0, which correspond to the absence of evoked re-
sponse. The alternative hypothesis is that the null hypothesis is false, i. e., there is evoked
response. Under the null hypothesis, 𝜑(𝑓) is distributed as (SA et al., 2009)

𝜑(𝑓0) |𝐻0∼ 𝐹2,2𝐿, (3.4)

where 𝐹2,2𝐿 is the 𝐹 distribution with 2 and 2𝐿 degrees of freedom. Consequently, 𝐻0 is
rejected (for 𝛼 = 0.05) using the critical value, given by

𝑆𝑇𝐹𝑐𝑟𝑖𝑡 = 𝐹(2,2𝐿,𝛼). (3.5)

In our study, 𝐿 = 32 neighboring frequencies, which leads to a 𝑆𝑇𝐹𝑐𝑟𝑖𝑡 of 𝐹(2,64,0.05)

= 3.1404.

For the classification, a technique based on a tree decision classifier was used,
which is shown in Figure 15.

3.3.3.3 Empirical Mode Decomposition (EMD)

Huang et al. (1998) introduced the concept of Empirical Mode Decomposition
(EMD) together with Hilbert transform, which was collectively called Hilbert-Huang
Transform (HHT), used to extract time-frequency information from a nonlinear and non-
stationary signal. This method was regarded as an important progress since the FFT
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Figure 15: Structure of the rule-based classifier implemented.

(FELDMAN, 2011). The first step of the HHT method is the signal pre-processing. In
this step, original data are transformed into 𝑛 order Intrinsic Mode Function (IMF), sat-
isfying the requirements of the Hilbert Transform through EMD (HUANG et al., 2008),
in which the EMD approach attempts to sequentially decompose a signal into a finite
number of intrinsic mode functions (IMFs) by iteratively conducting a shifting process
(WU et al., 2011). An IMF is an analytical, self-constructed, well-defined, data-driven
function, whose amplitudes and frequencies vary with time (HUANG et al., 1998). IMFs
are denoted by

𝐽∑︀
𝑗=1

𝑐⃗𝑗(𝑡) and into residue 𝑟(𝑡), such that (SOOMRO et al., 2013)

𝑥⃗(𝑡) =
𝐽∑︁

𝑗=1
𝑐⃗𝑗(𝑡) + 𝑟⃗(𝑡), (3.6)

where 𝐽 represents the number of IMFs extracted, and 𝑟⃗(𝑡) is a residual function that
represents a trend within the signal 𝑥⃗(𝑡).

In our study, the calculation of IMFs is made for the three occipital electrodes
(O1, O2 and Oz). This algorithm is used as an input of a hybrid system. The IMFs can
be then arranged in a 𝐽 × 𝐷 matrix, C, where each row 𝑐⃗𝑘 represents the 𝑘th IMF:

C =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐⃗1

𝑐⃗2
...

𝑐⃗𝐽

⎤⎥⎥⎥⎥⎥⎥⎦
𝐽×𝐷

, (3.7)

where 𝐷 is the number of selected data for each epoch.
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Subsequently, the number of IMFs to be used is defined (all with the same number
for the three channels). In our study, the best results were obtained for IMF of order 2
(IMF 2). Then, the PSD of these signals in decomposition was calculated. For this case,
our classifier based on rules (Figure 15) finds the maximum values and performs a decision
by majority vote for the selection of the class.

3.3.3.4 Minimum Energy Combination (MEC)

MEC is a technique of finding combinations of electrode signals that remove strong
noise and nuisance signals for EEG data (FRIMAN; VOLOSYAK; GRASER, 2007). MEC
is based on PCA (ZHANG et al., 2014a). For SSVEP data stimulated by a frequency 𝑓 ,
the response can be modelated adding the noise (𝐸), as follows:

X𝑇 = Y𝑇 A + E (3.8)

where X is the EEG signal, and Y is the reference signal, as given in Equation 3.8. A is the
amplitude matrix of size 2𝑁ℎ ×𝑁 for all electrode signals, 𝑁ℎ is the number of harmonics
and E is the noise matrix of size 𝑀 ×𝑁 . The signals (from O1, O2 and Oz) are combined
to extract the discriminative features, which can be achieved by linear transformation of
X.

The target at which the user gazes in the SSVEP-BCI is then determined through
a criterion of maxima. More details can be viewed at (FRIMAN; VOLOSYAK; GRASER,
2007; ZHANG et al., 2014a).

3.3.3.5 Canonical Correlation Analysis (CCA)

Lin et al. (2007) first proposed the use of CCA for multichannel SSVEP detection,
which is an array signal processing technique for EEG signals, that extracts CCA coeffi-
cients for all stimulus frequencies, and assumes the frequency with the largest coefficient
as the SSVEP frequency (TANAKA; ZHANG; HIGASHI, 2012).

Describing it mathematically, this method assumes that X is a multichannel EEG
signal, and Y consists of a “Fourier series” of stimulus signals (WEI; XIAO; LU, 2011),
assuming that there are 𝐾 targets with stimulus frequencies 𝑓1, 𝑓2,...,𝑓𝑘, respectively. A
pair of linear combinations 𝑥 = X𝑇 𝑊𝑥 and 𝑦 = Y𝑇 𝑊𝑦, called canonical variables, is found
by using CCA between the two sets, such that the correlation is maximized. The reference
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signals 𝑌 is set as

𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin (2𝜋𝑓𝑘𝑡)
cos (2𝜋𝑓𝑘𝑡)

...
sin (2𝜋𝑁ℎ𝑓𝑘𝑡)
cos (2𝜋𝑁ℎ𝑓𝑘𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑡 = 1

𝐹𝑠

,
2
𝐹𝑠

, ...,
𝑇

𝐹𝑠

, (3.9)

where 𝑓𝑘 is the stimulus frequency, 𝑁ℎ is the number of harmonics, 𝑇 is the number of
sampling points (NFFT), and 𝐹𝑠 is the sampling rate. In our study, we used 𝑁ℎ = 3
harmonics in the analysis.

It is worth to comment that the CCA method needs to find the weight vectors,
𝑊𝑥 and 𝑊𝑦, that maximize the correlation between 𝑥 and 𝑦, i. e., that constrains and
limits conditions established by Equations 3.10 and 3.11.

𝐸
[︁
𝑥𝑥𝑇

]︁
= 𝐸

[︁
𝑥𝑇 𝑥

]︁
= 𝐸

[︁
𝑊 𝑇

𝑥 𝑋𝑋𝑇 𝑊𝑥

]︁
= 1 (3.10)

𝐸
[︁
𝑦𝑦𝑇

]︁
= 𝐸

[︁
𝑦𝑇 𝑦

]︁
= 𝐸

[︁
𝑊 𝑇

𝑦 𝑌 𝑌 𝑇 𝑊𝑦

]︁
= 1 (3.11)

Figure 16 shows the classification steps using CCA.
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Figure 16: Block diagram for classification using CCA.
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CCA measures the linear association between two sets of variables using its au-
tocorrelation and crosscorrelation (BORGA; KNUTSSON, 2001), i.e., in mathematical
terms, the total correlation is calculated as the ratio between the autocorrelation and
crosscorrelation of the input and output vectors, as shown in Equation 3.12.

𝜌𝑘 = 𝜌 (𝑥, 𝑦)
𝑊𝑥,𝑊𝑦

= 𝐸[𝑥𝑇 𝑦]√
𝐸[𝑥𝑇 𝑥]𝐸[𝑦𝑇 𝑦]

= 𝐸[𝑊 𝑇
𝑥 𝑋𝑌 𝑇 𝑊𝑦]√︁

𝐸[𝑊 𝑇
𝑥 𝑋𝑋𝑇 𝑊𝑥]𝐸[𝑊 𝑇

𝑦 𝑌 𝑌 𝑇 𝑊𝑦]

, (3.12)

Finally, the process of correlation of these signals is executed, which determines
the channel (from O1, O2 and Oz) and the class through a criterion of maxima, given by

𝑂 = max
𝑘

𝜌𝑘, 𝑘 = 1, 2, ..., 𝐾. (3.13)

3.3.3.6 Least Absolute Shrinkage and Selection Operator (LASSO)

In this method, input signals are defined as (x𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑁 ; where x𝑖 =
(𝑥𝑖1, . . . , 𝑥𝑖𝑝)𝑇 are predictor variables, and 𝑦𝑖 are the responses (TIBSHIRANI, 1996). As
in the usual regression set-up, we assume either that the observations are independent,
or 𝑦𝑖 is conditionally independent given 𝑥𝑖𝑗. We assume that 𝑥𝑖𝑗 are standardized, so that∑︀

𝑖 𝑥𝑖𝑗/𝑁 = 0,
∑︀

𝑖 𝑥2
𝑖𝑗/𝑁 = 1. Letting ̂︀𝛽 = ( ̂︀𝛽1, . . . , ̂︀𝛽𝑝)𝑇 , LASSO estimate (̂︀𝛼, ̂︀𝛽) is defined

as

(︁̂︀𝛼, ̂︀𝛽)︁ = 𝑎𝑟𝑔𝑚𝑖𝑛

⎧⎪⎨⎪⎩
𝑁∑︁

𝑖−1

⎛⎝𝑦𝑖 − 𝛼 −
∑︁

𝑗

𝛽𝑗𝑥𝑖𝑗

⎞⎠2
⎫⎪⎬⎪⎭ . (3.14)

The solution of this equation is a quadratic programming problem with linear
inequality constraints (TIBSHIRANI, 1996). LASSO estimate usually offers an analytical
solution and a low variance estimate with high interpretability for a linear regression
(ZHANG et al., 2012). The class is obtained through the criterion of maxima.

3.3.3.7 Multivariate Synchronization Index (MSI)

MSI is a method to estimate the synchronization between actual mixed signals
and reference signals as a potential index for recognizing the stimulus frequency. Besides,
in (ZHANG et al., 2014a) the use of a 𝑆-estimator as index is proposed. The 𝑆-estimator
is based on the entropy of the normalized eigenvalues of the correlation matrix of four
multivariate signals. Thus, MSI creates a reference signal from the stimulus frequencies
used in an SSVEP-BCI, similarly to CCA.
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EEG signals are denoted as matrix X of size 𝑁 × 𝑀 , and reference signals are
denoted as matrix Y of size 2𝑁ℎ × 𝑀 , where 𝑁 is the number of channels, 𝑀 is the
number of samples, and 𝑁ℎ is the number of harmonics for sine and cosine components.

Reference signals Y are created in the same way as CCA (Equation 3.9). In our
study, the input signals X are the signals from O1, O2 and Oz. Then, a correlation matrix
is computed according to Equation 3.15. It is worth to comment that the autocorrelation
matrices C11 and C22 for X and Y, respectively, and the cross-correlation matrices C12
and C21, were changed in our study from the original version (ZHANG et al., 2014a)
due to its inconsistency in the dimensions of each component for the formation of the
correlation matrix c. The efficiency of our algorithms has been demonstrated in several
of our previous works (TELLO et al., 2014b; TELLO et al., 2015a; TELLO et al., 2014a;
TELLO et al., 2014c; TELLO et al., 2015b; TELLO et al., 2015c; TELLO et al., 2015b).
Thus, the following equations are proposed:

c =
⎡⎣ C11 C12

C21 C22

⎤⎦ (3.15)

where,
C11 = 1

𝑀
XX𝑇 (3.16)

C12 = 1
𝑀

XY𝑇 (3.17)

C21 = 1
𝑀

YX𝑇 (3.18)

C22 = 1
𝑀

YY𝑇 . (3.19)

To reduce the influence in the synchronization measure of the autocorrelation and
crosscorrelation of X and Y, the following linear transformation is adopted:

U =
⎡⎣ C11−(1/2) 0

0 C22−(1/2)

⎤⎦ . (3.20)

Then, the transformed correlation matrix is

R = UCU𝑇 . (3.21)

Let 𝜆1, 𝜆2, . . . , 𝜆𝑝 be the eigenvalues of matrix R. Then, the normalized eigenvalues are
calculated as follows:

𝜆′𝑖 = 𝜆𝑖∑︀𝑃
𝑖=1 𝜆𝑖

= 𝜆𝑖

𝑡𝑟 (R) , (3.22)
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where 𝑃 = 𝑁 + 2𝑁ℎ. Then, the synchronization index between the two sets of signals can
be calculated as

𝑆 = 1 +
∑︀𝑃

𝑖=1 𝜆′𝑖𝑙𝑜𝑔 (𝜆′𝑖)
𝑙𝑜𝑔 (𝑃 ) (3.23)

Next, the synchronization index between the signals (from O1, O2 and Oz) and
each reference signal Y is calculated, and the 𝑘 indices (𝑆1, 𝑆2,...,𝑆𝑘) are obtained. Finally,
the class is computed through the criterion of maxima.

3.3.4 Experimental Results

All the aforementioned methods were evaluated in terms of accuracy to obtain the
SSVEP frequencies. In addition, the Command Transfer Interval (CTI) is used to obtain
the Information Transfer Rate (ITR), which is the most common measure to assess a
BCI performance. CTI is defined as the total experimental time (Ttotal) divided by the
number of total output digits or letters (Ntotal), i.e., Ttotal/Ntotal. On the other hand,
ITR is defined by Equation 3.24 (WU et al., 2011).

ITR = Bits
Command . 60

CTI

where, Bits
Command = log2 𝐾 + 𝑃 log2 𝑃 + (1 − 𝑃 ) log2

(︁
1−𝑃
𝐾−1

)︁
,

(3.24)

𝐾 is the total number of stimuli, and 𝑃 is the accuracy.

Figure 17 shows the accuracy for each feature extractor evaluated using visual
stimuli by LCD, showing also the ITR for each feature extractor and for each correspond-
ing window length (WL) used. Similarly, Figure 18a and 18b show the results for visual
stimuli via LEDs.

3.3.5 Discussion

According to the results obtained for the methods studied (Figures 17 and 18),
MSI presented the highest accuracy in both cases (88% for LCD and 94% for LED),
and this is even more noticeable when the window length (WL) is increased (Figures 17
and 18). Thus, it can be inferred that MSI has great potential applicability in SSVEP
BCIs. It is also possible to notice that the maximum value of accuracy obtained for all
participants was approximately 94%, using LEDs, and maximum ITR of 37 bits/min for
LCD. It should be noted that Figures 17 and 18 show the different feature extractors
chronologically ordered according to evolution of the state of art.



30 Chapter 3. Methodology

 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00
Tr

ad
 E

M
D

F-
Te

st

PS
DA

(S
N

R)

M
EC

CC
A

LA
SS

O

M
SI

A
cc

u
ra

cy
 [%

]

10s

5s

4s

2s

1s

Windows 
length

(a)

 

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

Tr
ad

 E
M

D

F-
Te

st

PS
DA

(S
N

R)

M
EC CC
A

LA
SS

O

M
SI

IT
R

 [b
it

s/
m

in
]

10s

5s

4s

2s

1s

Windows 
length

(b)

Figure 17: (a) Accuracy of each feature extractor evaluated using stimuli by LCD; (b)
Corresponding ITR for stimuli by LCD.
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Figure 18: (a) Accuracy of each feature extractor evaluated using stimuli by LEDs; (b)
Corresponding ITR for stimuli by LEDs.
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Figure 19 summarizes the comparison for the different methods evaluated using
Analysis of Variance (ANOVA), in which the accuracy is higher for MSI using visual
stimuli by LEDs and WL of 4 s.

Figure 19: Analysis of Variance (ANOVA) in terms of accuracy for different methods and
different visual stimuli (by LEDs and LCD), using WL of 4s.

3.4 A New Approach for SSVEP Detection Using PARAFAC and
Canonical Correlation Analysis
The decomposition of Electroencephalogram (EEG) signals into interpretable build-

ing components has been of great interest along the years. However, traditionally two-way
decomposition techniques, considering just two contextual dimensions or “signatures”,
e.g. time and frequency or time and spatial, have been used in the literature, which needs
exploiting some additional constraints in the decomposition for the sake of uniqueness.
Some examples of these techniques are: Principle Component Analysis (PCA), Indepen-
dent Component Analysis (ICA) and Singular Value Decomposition (SVD). In order to
obtain a more natural representations of an original multi-dimensional data structure,
the use of tensor decomposition approaches is necessary, since additional dimensions or
modes can be retained only in multi-linear models to produce structures that are unique
and which admit interpretations that are neurophysiologically meaningful (CICHOCKI et
al., 2009). Advances in developing high-spatial density array EEG have called to multidi-
mensional signal processing techniques as multi-way analysis (MWA), Multi-Way Array
(tensor) factorization/decomposition or Dynamic Tensor Analysis (DTA) (CICHOCKI et
al., 2009).
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Tensor-based methods are a more natural approach to handle signals that vary
in more than two dimensions and seek to summarize the data into extracted factors,
which are linear combination of the constituting variables. The well-known Parallel Factor
Analysis (PARAFAC) decomposition is a powerful approach to decompose a tensor into
building components (JANNEK et al., 2009). The PARAFAC model was independently
proposed by Harshman (1970) and, subsequently, it was named Canonical Decomposition
(CANDECOMP) by Carrol and Chang (1970) (MORUP et al., 2006; MIWAKEICHI et
al., 2004). This model is a parsimonious extension of the factor analysis to higher orders
(MORUP et al., 2006).

In the last years, several works have been performed in applying PARAFAC for
EEG signal analysis, e.g., for estimating the sources of cognitive processing using a Wavelet
decomposition (MIWAKEICHI et al., 2004), Event-Related Potential (ERP) analysis
(MORUP et al., 2006), Wigner distribution for ERP (JANNEK et al., 2009), artifact
removal (ACAR et al., 2007) and epileptic seizure localization (VOS et al., 2007). It was
also used in BCIs based on Motor Imagery (CICHOCKI et al., 2009).

On the other hand, several approaches to recognize SSVEPs have been developed.
However, these techniques are based on only two dimensions. Some studies ((LI; ZHANG;
ZHAO, 2008) and (MANYAKOV et al., 2012)) related to classification of VEPs using
PARAFAC were performed. In (LI; ZHANG; ZHAO, 2008), three classes of geometric fig-
ures were evaluated, flickering in 15 Hz, and a Support Vector Machine (SVM) classifier
was used to discriminate classes from feature vectors, achieving a high classification accu-
racy (80%). Finally, in (MANYAKOV et al., 2012), two techniques (“maximum method”
and “sharpness method”) of recognition of SSVEPs were compared for all possible 2, 4
and 12 stimuli combinations applied to a BCI.

In this study, we propose a new way for detection of SSVEPs through correlation
analysis between tensor models (using 3-way: channel×time×frequency) and simulated
tensor model (“template”). The classification is obtained from comparison of each of the
extracted signatures of the PARAFAC model with the corresponding simulated signatures
of a target SSVEP signal. Here, we just consider the spectral and spatial signatures,
considering that the SSVEP is present in the temporal signature. A maximum criterion
decides which target is intended every 1 s, which makes it suitable for real time BCI
applications.

3.4.1 The Parallel Factor (PARAFAC) model

PARAFAC can be employed for a space/frequency/time atomic decomposition of
the EEG. This technique makes use of the fact that multichannel evolutionary spectra
are multi-way arrays, indexed by electrode, frequency, and time.
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This leads to the formulation of the parameter S, which is a three-way data array
indicating channel, frequency, and time. The multichannel EEG evolutionary spectrum
S is obtained from a channel by wavelet transform. In other words, the data matrix
S(𝑁𝑑×𝑁𝑓 ×𝑁𝑡) is the 3-way time-varying EEG spectrum array obtained by using wavelet
transformation, where 𝑁𝑑, 𝑁𝑓 , and 𝑁𝑡 are the number of channels, steps of frequency,
and time samples, respectively. For wavelet transformation, a complex Morlet mother
function was used. Thus, the energy 𝑆(𝑑, 𝑓, 𝑡) of the channel 𝑑 at frequency 𝑓 and time 𝑡

is given by the squared norm of the convolution of a Morlet wavelet with the EEG signal
𝑣(𝑑, 𝑡).

The basic structural model for a PARAFAC decomposition of the data matrix
S(𝑁𝑑×𝑁𝑓 ×𝑁𝑡) of elements 𝑆𝑑𝑓𝑡 is defined as:

𝑆𝑑𝑓𝑡 =
𝑁𝑘∑︁
𝑘=1

𝑎𝑑𝑘𝑏𝑓𝑘𝑐𝑡𝑘. (3.25)

PARAFAC decomposes this array into the sum of “atoms”. The 𝑘th atom is the
tri-linear product of loading vectors representing spatial (a𝑘), spectral (b𝑘), and temporal
(c𝑘) “signatures”. Under these conditions, PARAFAC can be summarized as finding the
matrices A = {a𝑘}, B = {b𝑘}, and C = {c𝑘}, which explains S with minimal residual
error (see details in Figure 20). 𝑁𝑘 is the PARAFAC model order.
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Figure 20: Graphical explanation of the PARAFAC model. Adapted from (MIWAKEICHI
et al., 2004).

The uniqueness of the solution is guaranteed when rank(A)+rank(B)+rank(C)
≥ 2𝑁𝑘 + 2. This is a less-stringent condition than either orthogonality or statistical
independence (MIWAKEICHI et al., 2004). 𝑁𝑘 needs to be determined priorly. There
are several techniques for PARAFAC model order selection, e.g., CORCONDIA (BRO;
KIERS, 2003), DIFFIT, CONVEX-HULL. Here, we use CORCONDIA for PARAFAC
model order selection. The decomposition (shown in Equation 3.25) is achieved finding
min𝑎𝑑𝑘𝑏𝑓𝑘𝑐𝑡𝑘 ‖𝑆𝑑𝑓𝑡 −∑︀𝑁𝑘

𝑘=1 𝑎𝑑𝑘𝑏𝑓𝑘𝑐𝑡𝑘‖. Since the 𝑆𝑑𝑓𝑡 are spectra, this minimization must be
carried out under the non-negativity constraint for the loading vectors. This particular
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variant of PARAFAC has been developed by Bro (1998). PARAFAC produces the vectors
a𝑘(𝑁𝑑×1), which is the 𝑘th component loading vector that can be seen as topographical
maps, b𝑘(𝑁𝑓 ×1) is the spectrum for 𝑘th component, and c𝑘(𝑁𝑡×1) is the temporal signature
for component 𝑘.

The main advantage of this method is that it provides us with a unique decom-
position of the time-varying EEG spectrum provided that the condition is satisfied cor-
responding to the best model in the least-squares sense (MIWAKEICHI et al., 2004).

In addition, the CCA technique measures the linear association between two sets
of variables using its autocorrelation and cross-correlation, i.e., in mathematical terms,
the total correlation is calculated as the ratio between the autocorrelation and cross-
correlation of the input and output vectors. Finally, the process of correlation of these
signals is executed and the classes are obtained through a criterion of maxima.

3.4.2 Subjects and EEG preparation

Five healthy male subjects (mean age: 26.2 years old; standard deviation: 2.3) were
recruited to participate in this study. The research was carried out in compliance with
Helsinki declaration, and the experiments were performed according to the rules of the
ethics committee of UFES/Brazil, under registration number CEP-048/08. Previously, a
selection of volunteers was performed and topics related to precautions as visual prob-
lems, headaches, family history with epilepsy and problems related to brain damage were
consulted. The volunteers reported not presenting any of these problems.

The same setup of section 3.3.1 was used in this study, but with only two LEDs
flickering at 8.0 Hz (top) and 13.0 Hz (bottom), see Figure 21. During the first five seconds
a cross on the screen is shown to the volunteers. Then, a beep is issued and the volunteer
is instructed to fix the attention on the stimulus located on the top. After fifteen seconds,
the volunteer has a rest of five seconds. Finally, in the last fifteen seconds, the volunteer
has to fix the attention to the bottom flicker.

Initially, two 3-way 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑡𝑖𝑚𝑒 template tensors for two target
SSVEP signals of 8 Hz and 13 Hz were generated (see Figure 22). The template SSVEP
signal constituted of the summation of sine and cosine signals at the target SSVEP’s
frequency. Based on the hypothesis that the visual evoked potentials contain more energy
in the occipital region, the spatial signature was considered just for O1, O2 and Oz
channels, and zero elsewhere. Finally, assuming a 1s SSVEP signal, a WL of 1 second was
considered for the temporal signature.

Let 𝑓𝑖 denote the visual stimulus frequency in Hz. Thus, total 𝐻 harmonic sine
vectors 𝑠𝑖

1,𝑠𝑖
2, ... ,𝑠𝑖

𝐻 and cosine vectors 𝑐𝑖
1,𝑐𝑖

2, ... ,𝑐𝑖
𝐻 for frequency 𝑓𝑖, all of the length 𝐿,
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(a) (b)

Figure 21: (a) Electrodes location using 10-20 system; (b) LCD screen showing the cue of
beginning with the two LEDs coupled.

can be constructed as

𝑠𝑖
𝑗 = [𝑠𝑗,1𝑠𝑗,2...𝑠𝑗,𝐿]𝑇 and 𝑐𝑖

𝑗 = [𝑐𝑗,1𝑐𝑗,2...𝑐𝑗,𝐿]𝑇 , (3.26)

for 𝑗 = 1, 2, ..., 𝐻, where

𝑠𝑗,𝑟 = sin(2𝜋𝑟𝑓𝑖/𝑓𝑠) and 𝑐𝑗,𝑟 = cos(2𝜋𝑟𝑓𝑖/𝑓𝑠), (3.27)

for 𝑟 = 1, 2, ..., 𝐿, where 𝑓𝑠 is the sampling frequency used for the acquisition of EEG
signals. The reference matrix M𝑖 of size 2𝐻 × 𝐿 corresponding to the stimulus frequency
𝑓𝑖 can be constructed as

M𝑖 = [𝑠𝑖
1, 𝑐𝑖

1, 𝑠𝑖
2, 𝑐𝑖

2, ..., 𝑠𝑖
𝐻 , 𝑐𝑖

𝐻 ]𝑇 , (3.28)

where 𝑖 refers to the number of targets, commands or visual stimuli and we have consid-
ered only the fundamental frequency as the simulated frequency generator, i.e. 𝐻 = 1, in
channels O1, O2 and Oz and all other channels were filled with matrices of zero values.
On the other hand, every 1-s of the 12-channel input EEG signals without overlapping
was used to generate the EEG tensor. Then a 3-component PARAFAC model was fit-
ted, where the model order was selected via CORCONDIA method. The output of each
PARAFAC model (templates and EEG signal) has three atoms for each dimension or
signature (spatial (a𝑘), spectral (b𝑘), and temporal (c𝑘), where 𝑘 = 1, 2, 3), such as afore-
mentioned.

According to our approach, the estimation of correlations between the extracted
signatures and the corresponding template signatures should be calculated. After decom-
position, only the spectral and spatial signature are here used for calculating the correla-
tions, and the temporal signature is ignored, as we assume that there is a SSVEP signal
in the EEG segment under analysis. Therefore, just these components were analyzed with
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Figure 22: At the left side: template dimensions (𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑡𝑖𝑚𝑒) for 8 Hz;
right side: 13 Hz, respectively.

the aim of ensuring the existence of evoked potentials in that region of the brain, and
also locating its respective frequency component. Finally, the computation allows finding
the highest correlation through a maximum criterion and thus, the class frequency and
class channel are recognized. If the classes are the same, the frequency chosen is obtained,
otherwise the result is not taken into account, being discarded. A graphical explanation
of the process is illustrated in Figure 23.

3.4.3 Discussions

According to our results in the frequency dimension, Figure 24 shows the frequency
spectrum of each frequency component (sub-components or atoms) for each data packet
(every second) and for all subjects. It is possible to see the components highlighted in
amplitude when the subjects were stimulated in 8 and 13 Hz. Our focus lies on the location
of these frequency components and therefore it is possible to see that not always the same
order indicates the stimulated frequency components. Results related to accuracy and
ITR are shown in Table 3.
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Figure 23: General schematic of our approach using PARAFAC.
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Figure 24: Spectrum from each frequency component (b1, b2 and b3 atoms) when subject
1 was stimulated with: (a) 8 Hz and (b) 13 Hz, respectively.
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Table 3: Accuracy [%] and ITR using WL of 1 s.

Frequency (class) Results

Subjects 8 Hz 13 Hz Average ITR [bits/min]
Subject 1 80.00% 60.00% 70.00% 7.13
Subject 2 73.33% 60.00% 66.67% 4.91
Subject 3 86.67% 80.00% 83.34% 21.01
Subject 4 73.33% 80.00% 76.67% 12.98
Subject 5 80.00% 86.67% 83.34% 21.01

This study has shown a new alternative for SSVEPs detection by using PARAFAC
tensor models and canonical correlation analysis. The results are quite promising: the
subjects 3 and 5 achieved the highest mean accuracy (83.34%) and ITR of 21.01 bits/min,
considering a WL of 1 s. Indeed, increasing the WL would improve the results further as
there is a trade-off between accuracy and speed.

Our experiments based on tensor models contribute to the studies related to anal-
ysis of natural representations of signals from multidimensional data structure. One of the
main disadvantages of PARAFAC method is the significant computational cost estimated
in the decomposition of tensors. Approximately, average time spent on decomposition
was between 45 to 60 seconds. All computations were performed on a PC with Intel Core
i7-4510U CPU @ 2.00GHz 2.60 GHz, 8.00 GB RAM and OS Windows 8.1 of 64-Bit.
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4 Influence of stimuli color on SSVEPs

In the previous chapter, the basis for understanding the operation of a BCI-SSVEP,
such as, performance, applications, stimulators and feature extractors were introduced.
As mentioned, several parameters are intrinsically related to the performance of a BCI-
SSVEP. Furthermore, there is still a deep study to be performed by academic community.
In this section, a novel study related to the influence of color in visual evoked potentials
was developed.

4.1 Visual Stimuli

The human eye has three color-sensitive cone-cell types (red, green and blue).
According to studies performed by W. D. Wright (GREGORY, 1997), these three cone
types have different responses for different stimulus wavelengths. Among the three cone
types, the red-cone presents the best response followed closely by the green-cone, and
with the blue one having the lowest response.

Experiments with visual stimuli have been performed about five decades ago (RE-
GAN, 1966a; BIEGER; GARCIA-MOLINA, 2010), in order to verify their influence on
amplitude and phase of SSVEPs, which are highly sensitive to stimulus parameters, such
as color, luminance, repetition rate, contrast (modulation depth), and frequency. On the
other hand, it is known that flickering stimuli can elicit epileptic responses to certain lumi-
nance or chromaticity, as higher luminance can induce higher risk of epilepsy (VIALATTE
et al., 2010b), and chromaticity has strong impact on the human eye response in case of
combination of colors (DREW et al., 2001). For example, red/blue and green/blue combi-
nations have the strongest effect on pupil constriction, which can produce seizure attacks
(DREW et al., 2001). Regarding frequency dependency, repetitive visual stimuli mod-
ulated at certain frequencies can also provoke epileptic seizures. According to Drew et
al. (2001), lower frequency flickers generally produce more powerful constrictions, with
color-dependence of flickers most visible between 3 and 6 Hz. In an other study, Fisher
et al. (2005) show that flash and reversal pattern stimuli can provoke epileptic seizures
especially in the 15-25 Hz range, but for some people, this upper limit of sensitivity can
be as high as 65 Hz (FISHER et al., 2005).

There are some studies about the effects of colors on both SSVEP and ITR, plus
a qualitative feedback of comfort provided by the volunteers (REGAN, 1966a; BIEGER;
GARCIA-MOLINA; ZHU, 2010; CAO et al., 2012). In 1966, a study with red, yellow,
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and blue stimuli was performed (REGAN, 1966a), however, these flashing lights were not
from LEDs (Light Emitting Diodes) technology. According to that study, red elicited the
strongest SSVEP response when modulated at approximately 11 Hz, and the response
dropped dramatically at neighboring frequencies. Blue stimuli elicited a slightly weaker
response, around 13 Hz, and yellow got the lowest SSVEP response.

Other study (BIEGER; GARCIA-MOLINA; ZHU, 2010) was performed in order
to evaluate the refresh rate, environmental illumination, contrast, color, spatial frequency
and size of visual stimuli. Single graphics stimuli (red, white, blue, green), color combi-
nation and reversal patterns (checkerboards) in LCD were also analyzed. In that study,
white color got the highest value of ITR (≈ 55 bits/min), although the lower level of
comfort by users was considered. On the other hand, blue presented the highest level of
comfort, with ITR of ≈ 32 bits/min. Red and green had similar level of comfort although
lower ITR.

The work performed in (CAO et al., 2012) is similar to a part of the work developed
in (BIEGER; GARCIA-MOLINA; ZHU, 2010), in which the stimuli were generated in a
LCD display with a black background and single stimulus. The stimulus colors were red,
white, blue, green and gray. That work also concluded that white achieved the highest
ITR, followed by gray, red, green and blue colors. The average ITR was 32.3 bits/min.

Although the ITR can evaluate the effectiveness of each color, it is dependent on
the signal processing technique used. However, to the knowledge of the author there is no
study about the effect of stimulus color on the SSVEP amplitude using LEDs as visual
stimulator. Thus, evaluating the SSVEP amplitude using LEDs is a must for now, since
this technology of stimulation remains of high usability due to its low cost, low power,
portability and flexibility. On the other hand, a comparative study of technologies for
visual stimuli (LCD vs LED) was reported in (WU et al., 2008), which concludes that the
SSVEP response elicited by LEDs is higher than that of a LCD display. However, that
study did not present any kind of comparison about stimulus colors.

In our study, four flickering stimuli with different LED colors were used. The
analyzed colors are red, green, blue and yellow. There are no color combination (for safety
reasons), and four frequency values are used for the stimuli. Our study also evaluated the
performance of such specific colors at different frequencies. A qualitative score of the
degree of comfort is also here achieved. So far, for our knowledge, none of the studies in
the literature did comparison of performance of stimuli colors using LEDs.

4.2 Protocol

Twenty subjects (seventeen males and three females), with ages from 21 to 36 years
old, were recruited to participate in this study (average age: 27.9; Standard Deviation: 3.7).
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The research was carried out in compliance with Helsinki declaration, and the experiments
were performed according to the rules of the ethics committee of UFES/Brazil, under
registration number CEP-048/08. The subjects were distributed into two experiments.
The first group (Group 1) has ten volunteers: s1, s2, s3, s4, s5, s6, s7, s8, s9 and s10; and
the second one (Group 2) has ten volunteers remaining: s11, s12, s13, s14, s15, s16, s17, s18,
s19 and s20; both using different protocols, which will be discussed in subsequent lines. The
subjects were free to withdraw at any time without any penalty. Previously, a selection of
volunteers was performed and topics related to precautions as visual problems, headaches,
family history with epilepsy and problems related to brain damage were consulted. The
participants did not report any problems and no one had previous experience in using a
BCI.

4.3 EEG Recording

The acquisition equipment (BrainNet-36) and electrodes were the same used in
our previous studies. The data were processed on a personal computer with a 2.2 GHz
Core 2 Duo processor. The EEG recordings in all subjects were executed by the same
technician to minimize operation errors.

It is worth to comment that for both SSVEP response and classification studies,
only O1, O2 and OZ electrodes were selected after the application of a Common Average
Reference (CAR) spatial filter, which is based on studies that suggest that the highest val-
ues of energy for SSVEP detection are located on the occipital area of the cortex (RUSSO
et al., 2007; KROLAK-SALMON et al., 2003; PASTOR et al., 2003; SAMMER et al.,
2005; ZHANG et al., 2006). Thus, the twelve aforementioned electrodes were used at the
initial stage only for application of the CAR spatial filter. According to our observations,
the application of this spatial filter to the twelve electrodes actually improves the clas-
sification performance when selecting O1, O2 and Oz electrodes (TELLO et al., 2014b;
TELLO et al., 2014a; TELLO et al., 2015c).

4.4 Stimulation Unit (SU)

A coupling structure of four small boxes (4 × 4 × 4cm) containing a LED in
each one and covered with thin white paper diffusers was mounted. The diffused paper
is also known as wax paper or paraffin paper and has the following properties: it is semi-
transparent, completely smooth and moisture-proof. Figure 25(a) shows the block diagram
of the acquisition and stimulation system.

The stimuli were generated by a microcontroller (PIC18F4550, Microchip Tech-
nology Inc., USA) with 50/50 % on-off duty cycles. LEDs of 5 mm of four different colors
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(yellow, red, green, blue) and same luminous intensity (10,000 mcd) were used. Luminous
intensity values of each LED were controlled by the microcontroller outputs (same port),
guaranteeing, in this way, the same levels of luminous intensity. In addition, these values
were measured through a light meter (ICEL MANAUS, model LD-590).

The flickering frequencies were 8.0 Hz, 11.0 Hz, 13.0 Hz and 15.0 Hz, which were
used by the four colors of LEDs. These frequencies were chosen due to: 1) our previous
studies (TELLO et al., 2014b; TELLO et al., 2014a; TELLO et al., 2014c) having shown
that these generate strongest SSVEP responses; 2) safety recommendations specified in
(FISHER et al., 2005); 3) studies conducted by Pastor et al. (2003) about the relation-
ship between visual frequency stimuli and SSVEP amplitudes; 4) studies conducted by
Herrmann (2001) showing peaks of SSVEPs at ∼ 15 Hz.

4.5 Experimental Procedure

The experiments were performed in offline mode. The participants were asked to
observe the stimuli during 320 s. The stimuli consisted of sixteen sequences: four sequences
for each color with four different frequencies. Each stimulus sequence lasted 15 s, followed
by 5 s of break (rest), during whose time the EEG signals were recorded.

The two groups of volunteers (Group 1 and 2) followed different protocols in order
to validate the results. Figure 25(a) shows the block diagram of the system, where a
block called “synchronization signal” (which means a logical level from an algorithm
developed in Matlab) generates a specific protocol for each group of participants. In that
algorithm, volunteers of Group 1 underwent certain stimuli, which are graphically detailed
in Figure 25(b); this protocol is called as “ordered”, because colors and frequencies followed
a determined order. On the other hand, the volunteers of Group 2 were stimulated in a
randomic way in both frequency and color, calling this protocol as “randomic” (see Figure
25(c)).

A structure moved the boxes that contained the LEDs during each sequence of
acquisition aiming at centralizing the flashing stimulus and keeping it completely still
in front of the volunteer in order to standardize the protocol. The experiments were
conducted in a quiet and dim room with illuminance of 300 lux measured through the
light meter. Then, the volunteers sat on a comfortable chair, in front of the stimulator
system, 60 cm far from this. The background plane was a black wall located very close
and behind the stimuli.
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Figure 25: (a) Block diagram of the system; (b) Protocol used by volunteers of Group
1, called “ordered”; (c) Protocol used by volunteers of Group 2, called “randomic”. Note
that both protocols were performed with the same time duration of 320s.
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4.6 EEG Pre-Processing and SSVEP Response Analysis
A Common Average Reference (CAR) spatial filter was applied to the EEG sig-

nals corresponding to each stimuli frequency and for each color, in order to reduce the
correlation between channels originated by external noise. The CAR filter was computed
according to Equation 4.1 (MCFARLAND et al., 1997):

𝑉𝑖
𝐶𝐴𝑅 = 𝑉𝑖

𝐸𝑅 − 1
𝑛

𝑛∑︁
𝑗=1

𝑉𝑗
𝐸𝑅, (4.1)

where 𝑉𝑖
𝐸𝑅 is the potential between the ith electrode and the reference, and 𝑛 is the

number of electrodes used (in our case, twelve). After that, just the resultant signals from
O1, O2 and Oz electrodes were selected, and a 5th-order elliptic band-pass filter between
3-60 Hz was applied. Since the elliptic filter has a transition band narrower than other
filters and as harmonic components are very close, this type of filter was chosen as the
more suitable. This filter has 1 dB of peak-to-peak pass-band ripple and 15 dB of stop-
band attenuation down the pass-band value. The SSVEP amplitude response was obtained
through PSDA (Power Spectral Density Analysis) or Fourier Power Analysis (WANG et
al., 2006) with Hamming window. The SSVEPs response curves were calculated by the
following formula:

𝑃𝑁𝑜𝑟𝑚(𝑓) = 𝑃𝑓

max𝑓 𝑃 𝑉 𝑆
𝑓

, (4.2)

where 𝑃𝑁𝑜𝑟𝑚(𝑓) is a normalized amplitude value obtained by the relation between the
average value (𝑃𝑓 ) among all subjects for each case (group and frequency), and max𝑓 𝑃 𝑉 𝑆

denotes the maximum average amplitude value obtained from all cases of visual stimuli
(𝑉 𝑆) analyzed between the groups.

Such as aforementioned, the data from twelve EEG channels were segmented and
windowed. The window lengths (WLs) used were 1, 2, 4 and 6 s; each one with an over-
lapping of 50 %. Signals from O1, O2 and Oz channels were selected after the process
of CAR spatial filtering. After that, a 5th-order elliptic band-pass filter between 3-60 Hz
was applied and the resultant signals were used in the feature extractor and classification
steps.

4.7 Feature Extraction and Classification
Such as aforementioned in section 3.3.7, Multivariate Synchronization Index (MSI)

is a novel method to estimate the synchronization between the actual mixed signals and
the reference signals as a potential index for recognizing the stimulus frequency. Math-
ematically, this method assumes that X is a matrix of size 𝑁 × 𝑀 whose 𝑁 represents
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discrete-time EEG signal segments and 𝑀 represents the channels from the occipital elec-
trodes (O1, O2 and Oz). On the other hand, Y𝑖 consists of a “Fourier series” of stimulus
signals.

Let 𝑓𝑖 denote the visual stimulus frequency in Hz, where 𝑖 = 1 (𝑓1 = 8 Hz), 2 (𝑓2 =
11 Hz), 3 (𝑓3 = 13 Hz) and 4 (𝑓4 = 15 Hz) denote the target or class of our visual stimuli.
Then, the total 𝐻 harmonic sine vectors 𝑠𝑖

1, 𝑠𝑖
2, · · · , 𝑠𝑖

𝐻 and cosine vectors 𝑐𝑖
1, 𝑐𝑖

2, · · · , 𝑐𝑖
𝐻

for frequency 𝑓𝑖, all of length 𝑀 , can be constructed as

𝑠𝑗
𝑖 = [𝑠𝑗,1, 𝑠𝑗,2, · · · , 𝑠𝑗,𝑀 ]𝑇 , (4.3)

𝑐𝑗
𝑖 = [𝑐𝑗,1, 𝑐𝑗,2, · · · , 𝑐𝑗,𝑀 ]𝑇 , (4.4)

for 𝑗=1, 2, · · · , 𝐻 , where

𝑠𝑗,𝑟 = sin(2𝜋𝑗𝑟𝑓𝑖/𝑓𝑠), (4.5)

𝑐𝑗,𝑟 = cos(2𝜋𝑗𝑟𝑓𝑖/𝑓𝑠), (4.6)

for r=[0 : 𝑁 − 1], where 𝑓𝑠 = 600 Hz is the sampling frequency used for the acquisition
of EEG signals. The reference matrix Y𝑖, of size 2𝐻 × 𝑀 , corresponds to the stimulus
frequency 𝑓𝑖, which can be constructed as

Y𝑖 =
[︁
𝑠𝑖

1𝑐
𝑖
1𝑠

𝑖
2𝑐

𝑖
2 · · · 𝑠𝑖

𝐻𝑐𝑖
𝐻

]︁𝑇
. (4.7)

In our case, we have considered the fundamental frequency (it is considered as the
first harmonic) and two multiples (harmonics) as the simulated frequency generator, i.
e. 𝐻 = 3. Autocorrelation matrices C11 and C22 for X and Y𝑖, respectively, and cross-
correlation matrices C12 and C21 were changed from the original version (ZHANG et al.,
2014a) due to its inconsistency in the dimensions of each component for the formation of
the correlation matrix C𝑖, such as explained in section 3.3.7. Recalling,

C11 = (1/𝑀).XX𝑇 , (4.8)

C22 = (1/𝑀).Y𝑖Y𝑖
𝑇 , (4.9)

C12 = (1/𝑀).XY𝑖
𝑇 , (4.10)
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C21 = (1/𝑀).Y𝑖X𝑇 , (4.11)

A correlation matrix C𝑖 can be constructed as

C𝑖 =
⎡⎣C11 C12

C21 C22

⎤⎦ (4.12)

The internal correlation structure of X and Y𝑖 contained in the matrices C11 and
C22, respectively, is irrelevant for the detection of the stimulus frequency (CARMELI et
al., 2005). It can be removed by constructing a linear transformation matrix

U =
⎡⎣C11

−1/2 0
0 C22

−1/2

⎤⎦ , (4.13)

so that C11
1/2C11

1/2 = C11,C22
1/2C22

1/2 = C22 and by applying the transformation
UC𝑖U𝑇 , resulting in a transformed correlation matrix C̃𝑖

C̃𝑖 = UC𝑖U𝑇 =
⎡⎣ 𝐼𝑀𝑥𝑀 C11

−1/2C12C22
−1/2

C22
−1/2C21C22

−1/2 𝐼2𝐻𝑥2𝐻

⎤⎦ (4.14)

of size 𝑃 × 𝑃 , where 𝑃=𝑁 + 2𝐻. The eigenvalues 𝜆𝑖
1, 𝜆𝑖

2, · · · , 𝜆𝑖
𝑃 of C̃𝑖, normalized as

𝜆̃𝑖
𝑚 = 𝜆𝑖

𝑚/
∑︀𝑃

𝑚=1 𝜆𝑖
𝑚 for 𝑚 = 1, 2, · · · , 𝑃 , can be used to evaluate the synchronization

index 𝑆𝑖 for matrix Y𝑖 as in Zhang et al. (2014a):

𝑆𝑖 = 1 +
∑︀𝑃

𝑚=1 𝜆̃𝑖
𝑚 log(𝜆̃𝑖

𝑚)
log(𝑃 ) . (4.15)

Then, 𝑖 indices and their respective classes (𝑆1,𝑆2,𝑆3,𝑆4) were obtained. Finally,
the class was obtained through a criterion of maxima.

𝑆 = max
1≤𝑖≤4

𝑆𝑖 (4.16)

Figure 26 shows the SSVEP response curves for each group of volunteers. From
these responses curves, Table 4 shows the maximum peaks values for each group evaluated.
The accuracy and ITR were computed for each case.

Table 5 presents scores provided by the volunteers. A statistical analysis was im-
plemented using a nonparametric method of two-way analysis named Friedman’s test with
the purpose of finding out any effect for the level of comfort of the colors for each group
of volunteers (Group 1 and Group 2). The results showed a statistic significance with 𝑝

= 1.8949× 10−5 using alpha = 0.05.
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Figure 26: Normalized SSVEP response curves for channels O1, O2 and Oz from average
results of volunteers of Group 1: ((a) 8 Hz, (b) 11 Hz, (c) 13 Hz and (d) 15 Hz); normalized
SSVEP response curves for channels O1, O2 and Oz from volunteers of Group 2: ((e) 8
Hz, (f) 11 Hz, (g) 13 Hz and (h) 15 Hz).
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Table 4: Maximum peaks values for each normalized amplitude response. The highlighted
numbers indicate the highest values of amplitude based on comparison between different
stimuli and channels for a specific frequency.

Freq. Ch. Group 1 Group 2

Red Green Blue Yellow Red Green Blue Yellow

O1 0.32 0.44 0.37 0.48 0.37 0.36 0.30 0.30
8 Hz O2 0.32 0.27 0.32 0.33 0.46 0.36 0.37 0.34

Oz 0.36 0.43 0.49 0.47 0.38 0.37 0.36 0.42
O1 0.37 0.40 0.37 0.39 0.42 0.44 0.31 0.55

11 Hz O2 0.34 0.25 0.32 0.29 0.56 0.34 0.47 0.46
Oz 0.48 0.40 0.40 0.50 0.70 0.42 0.46 0.68
O1 0.56 0.35 0.31 0.37 0.70 0.49 0.35 0.59

13 Hz O2 0.49 0.34 0.33 0.32 0.83 0.47 0.40 0.77
Oz 0.75 0.43 0.42 0.54 1.00 0.65 0.55 0.86
O1 0.55 0.28 0.24 0.30 0.50 0.39 0.33 0.34

15 Hz O2 0.36 0.25 0.26 0.29 0.70 0.41 0.34 0.38
Oz 0.64 0.33 0.31 0.39 0.78 0.62 0.54 0.53

Table 5: Score provided by volunteers about the level of comfort regarding the stimuli
color (7-point scale).

Group 1 Red Green Blue Yellow Group 2 Red Green Blue Yellow

s1 4 5 3 4 s11 6 2 7 3
s2 2 5 6 3 s12 4 6 6 4
s3 4 6 3 5 s13 2 5 6 4
s4 3 6 4 3 s14 4 5 7 4
s5 4 6 5 4 s15 4 6 7 3
s6 3 5 4 4 s16 2 6 5 6
s7 4 6 3 5 s17 5 6 3 5
s8 2 5 5 3 s18 4 5 7 4
s9 3 5 4 6 s19 3 5 5 3
s10 4 7 3 4 s20 4 5 7 3

Average 3.30 5.60 4.00 4.10 Average 3.8 5.10 6.00 3.90
SD 0.82 0.70 1.05 0.99 SD 1.23 1.20 1.33 0.99
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Figure 27 shows the average accuracy to detect the SSVEP for Group 1 and 2
derived from MSI method, respectively, with different Window Lengths (WL = 1, 2, 4
and 6 s).

Based on the results from Figure 27, it can be seen the accuracy is gradually
enhanced with the increase of WL for all frequencies used and group of volunteers. The
WL of 4 s was adopted as parameter of classification since the results were good and very
similar to WL of 6 s in most of the cases analyzed.

Figure 28 shows the classification in a box plot representation corresponding to
different frequencies stimuli (8, 11, 13 and 15 Hz) derived from the data of Group 1 and 2
with a WL of 4 s using MSI. A statistical analysis was also implemented using Friedman’s
test with the purpose of finding out any effect between colors and frequencies. Thus, the
frequencies were distributed in pairs for their analysis both for the ordered and random
stimulation: (i) 8 Hz and 11 Hz vs colors; (ii) 8 Hz and 13 Hz vs colors; (iii) 8 Hz and 15
Hz vs colors; (iv) 11 Hz and 13 Hz vs colors; (v) 11 Hz and 15 Hz vs colors; (vi) 13 Hz and
15 Hz vs colors. The statistical analysis results showed that, for Group: (i) 𝑝 = 0.0363,
(ii) 𝑝 = 0.1534, (iii) 𝑝 = 2.0765× 10−4, (iv) 𝑝 = 0.0142, (v) 𝑝 = 5.3185× 10−6 and (vi) 𝑝

= 1.2905× 10−4. The combinations (i), (iii), (iv), (v) and (vi) were statistically significant
using alpha = 0.05. On the other hand, for Group 2: (i) 𝑝 = 0.5589, (ii) 𝑝 = 0.9126, (iii) 𝑝

= 0.62, (iv) 𝑝 = 0.8457, (v) 𝑝 = 0.6049, (vi) 𝑝 = 0.1607 were not statistically significant.

ITR was calculated from each value of accuracy and compared to comfort values of
each stimulus color. Comparative graphics for ITR versus comfort are shown in Figure 29.
In order to obtain a way to determine a good relationship between ITR and level comfort,
we here proposed a method, which is based on a linear acting as a threshold. Thus, from
the experiments, a diagonal line is automatically generated, which is determined by two
points: a starting point (coordinates indicating minimum level of comfort and minimum
ITR) and an end point (maximum level of comfort and maximum ITR, which is achieved
when SSVEP is detected with 100% of accuracy). The values of the axis of ITR vary
between a minimum and a maximum of 0 to 30 bits/min, respectively, and for each 5
bits/min, there is one level of comfort associated.

The decision for the best choice of color stimulus is taken according to the following
rules:

∙ Each point of the graph represented a condition, involving data from ITR and level
of comfort.

∙ The choice of the best color is determined by the following: the point that is closer
to the coordinate of maximum ITR and maximum comfort (upper right) is taken as
the first best option, while the following closer ones define the order of the others
remaining.
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Figure 27: Average accuracy for SSVEP recognition for each color using MSI with different
WLs and frequencies for Group 1 and 2: (a-e) 8 Hz, (b-f) 11 Hz, (c-g) 13 Hz, and (d-h)
15 Hz.
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(a)

(b)

Figure 28: Median, quartiles and outliers of classification scores according to color with
WL of 4 s corresponding to the different target frequencies (8, 11, 13 and 15 Hz), obtained
through MSI for: (a) Group 1 and; (b) Group 2.
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Figure 29 shows the comparison between the parameters of ITR versus comfort
for WL of 4 s. The graphics were distributed in stimulus frequency for both groups of
volunteers. Moreover, Table 6 shows a summary of the values obtained in ITR, and choice
of the best colors based on Figure 29. Note that these choices are based on levels of
comfort and are here called as “1”, “2”, “3” and “4”.

Table 6: Average ITR (bits/min) for WL of 4 s and preferred colors by groups 1 and 2,
according to color and frequency, respectively.

Groups Frequency Red ITR Green ITR Blue ITR Yellow ITR Better choices
[Hz] [bits/min] [bits/min] [bits/min] [bits/min] (first choice/second choice)

Group 1 8 27.25 25.31 25.36 22.71 Green/Blue
11 28.63 23.05 22.07 18.89 Green/Blue
13 27.25 21.50 18.27 21.40 Green/Yellow
15 26.52 15.11 12.55 7.17 Red/Green

Group 2 8 19.62 18.68 22.83 22.60 Blue/Green
11 21.09 21.54 21.10 25.06 Blue/Green
13 21.38 17.40 17.13 18.99 Blue/Green
15 19.04 20.86 15.01 9.30 Green/Blue

In addition to results shown in Figure 29, the whole data were analyzed together.
The data were grouped according to the color of indifferent way between groups or frequen-
cies used. Thus, centroids were calculated since the coordinate values of each condition
are known (see Figure 30), and a single cluster is assigned for each color. The centroid of
the cluster is the center of the circle indicated with a mark “x”.

4.8 Discussion
According to Figure 26, the amplitude of the SSVEP response is affected by both

frequency and color of the stimuli, confirming the studies initially performed by Regan
(1966a) and Drew et al. (2001).

In our study, the red color obtained the highest peaks of SSVEP amplitude in
the majority of cases (Table 4). An interesting fact to highlight is that the fundamental
frequency of each color reached the highest peak of amplitude, which is confirmed by the
literature (HERRMANN, 2001). Also the frequencies of 13 and 15 Hz reached the highest
peaks of amplitude response for both groups, which is confirmed by studies described in
the curve of Wang et al. (2006), where the middle frequencies (13 and 15 Hz) exceeded
in magnitude the low frequencies (8 and 11 Hz).

On the other hand, Figure 27 shows that the accuracy to detect SSVEP is gradually
enhanced with the increase of WL for all frequencies and groups of volunteers. This
is widely known since SSVEP signals in larger time-windows is increased (ZHANG et
al., 2014a). According to the results of classification from Figure 27, a similar behavior
from results between group 1 and 2 can be appreciable. However, from the results of
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Figure 29: Plotting of average ITR versus average level of comfort for stimulus color and
different frequencies for volunteers of Group 1 and Group 2. In addition, the order of
choice of colors is also shown.
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Figure 30: Scatter plot for all cases analyzed, clustered by color, using k-means method
indicating its respective centroids.

group 2, a remarkable drop in the accuracy compared to its similar in group 1 can be
observed. This fact may be related to visual accommodation when color stimuli of random
way is presented, which is unlike of group 1, where the subjects previously knew the
sequence of colors and frequencies. This aspect can be associated with the responses
between color-sensitive cone pigments. Thus, that stabilization process could elicit delays
in the modulation of attention. Modulation in attention is an important parameter for the
increase of the precision in the recognition of visual evoked potentials (KIM et al., 2007).
Despite of subjects having performed different protocols, in both groups the tendency
in high accuracy terms is attributed to the frequency of 8 Hz, due to low dispersion of
results (the points are not far apart and indicate a high precision) in Figure 29. These
evidences could increase the development of accurate BCIs with frequencies very close to
the beginning of alpha band, as in 8 Hz, and different colored stimuli.

In Figure 28, the accuracy values using a box plot for different analyzed frequencies
using a WL of 4 s are shown. There, the median, quartiles and outliers were presented
for better appreciation of the distribution of our results. The accuracy for 8 and 11
Hz achieved the highest results, which is contrary to the results of amplitude SSVEP
presented in Figure 26, in which these frequencies have low amplitude. In addition, an
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opposite situation occurs with the frequencies of 11 and 13 Hz. These results confirm
some evidences about the fact that SSVEP amplitude is not decisive to detect it, for
the frequency range analyzed, such as demonstrated in (KELLY et al., 2005a). In their
studies, frequencies in alpha band allowed the detection SSVEPs in a more accurate way
during the modulation attentional. Regarding to the colors, it is remarkable to observe
that the red color achieved the highest median values followed by green, blue and yellow
in most cases, for both group 1 and 2. In addition, a low accuracy was obtained for 15
Hz and yellow color, which implies this color is not a good choice for the development of
a BCI.

According to Table 5, volunteers in group 1 and 2 agree that the red color turned
out to be quite uncomfortable for them. Moreover, the green color was chosen on average
by group 1, and blue by group 2, which were considered of best comfort for them. How-
ever, blue (and yellow) obtained an intermediate opinion from group 1, with a standard
deviation of 1. According to results of ITR from Table 6, the red color got the highest
values (25.52 - 28.63 bits/min) for group 1. It is worth to mention for group 2, red reached
the highest ITR only at 13 Hz.

Based on the results, we observed that red provides, in most frequencies, both
highest accuracy and ITR for detection of SSVEP. These results confirm studies of W. D.
Wright (GREGORY, 1997) and Regan (1966a) about the response of the red color in the
human eye. However, the red color, despite of the excellent results, showed to be the less
comfortable to be used in a BCI. Moreover, the red color can be dangerous in combination
with other colors (DREW et al., 2001) and, in low chromatic luminance, this color can in-
duce epileptic responses (EBERSOLE; PEDLEY, 2002). This fact is confirmed by studies
of Rubboli et al. (2004), showing red flicker could induce a Generalized Photoparoxysmal
Response (PPR), which has a relation to epilepsy and visually induced seizures. For these
reasons, its use requires some care.

From researches on color and selective attention in the literature, the red color has
shown to receive an attentional advantage (ELLIOT; FAIRCHILD; FRANKLIN, 2014).
In this aspect, researchers (LINDSAY et al., 2010; BUECHNER et al., 2014; POMER-
LEAU et al., 2014; ELLIOT; FAIRCHILD; FRANKLIN, 2014; ELLIOT, 2015) agree
that participants’ visual search times were faster for desaturated red (relative to several
other colored) targets. On the other hand, researches on color and alertness has shown
that blue color increases subjective alertness and performance on attention-based tasks
(CHELLAPPA et al., 2011). This aspect is quite related to the fact that the attention is
a powerful means of increasing the visual components of SSVEP and therefore increases
the accuracy in its detection (MORGAN; C.; HILLYARD, 1996).

As a summary, this study was performed by assessing twenty volunteers (none
of them knew the protocol or had contact with a BCI), distributed into two different
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protocols. In this study, an analysis of performance of colored stimuli for SSVEP response
using different flickering frequencies was performed. This is the first study published
related to effects on the amplitude of SSVEP and accuracy in its detection from visual
stimuli of colored LEDs. In addition, subjective opinions from volunteers about aspects
related to comfort were taken in account.

From our results, although red color is clearly special and has provided the majority
of research attention, conceptually, blue and green seem reasonable candidates for use
in an SSVEP-BCI, as both have positive links and have been shown to be associated
with positive evaluation [blue, e.g., openness, peace (MEHTA; ZHU, 2009); green, e.g.,
calmness, success (MOLLER; ELLIOT; MAIER, 2009)]. This fact is confirmed in Table
6 and Figure 29, which agree with studies of (MEHTA; ZHU, 2009; MOLLER; ELLIOT;
MAIER, 2009; ELLIOT, 2015), where green and blue got the highest nominations. The
term “nomination” was attributed as number of times in which a kind of color is elected.

However, taking into account the large number of times nominated in our studies
(5 out of 8, only as first choice), the green color is suggested in both groups as the first best
choice for a comfortable, safe and accurate SSVEP-BCI. The red color was disregard of
our nominations due to its low level of comfort and its trends to evoke epileptic responses.
The results from Figure 30 confirm that green color is the most suitable option for visual
stimuli, where the rule of selection of the best color was applied to each resulting centroid.
Finally, the order of choice was the following: green, blue and yellow.
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5 Development of a Compressive Sensing-
Based SSVEP-BCI

SSVEP-BCIs are desired to be comfortable and portable (HAIRSTON et al., 2014),
however traditional BCIs have numerous cables and wires. Thus, BCIs could be replaced
by wireless ones, in order to be more comfortable for users. On the other hand, Com-
pressive Sensing (CS) is an emerging and promising technique for the development of
low-power, small-chip, and robust wireless BCIs (PANT; KRISHNAN, 2014; ZHANG
et al., 2013). In addition, it is known that the use of sparse measurement matrix and
reconstruction algorithm based on promoting temporal correlation can offer improved re-
construction performance for CS of certain physiological signals (PANT; KRISHNAN,
2013).

In a previous study (TELLO et al., 2015b), we applied CS on an EEG database
obtained by using BrainNet-36 acquisition equipment, which acquires reliable EEG signals
by using wired electrodes. It was found that 75% of Compression Rate (𝐶𝑅) of the EEG
signals together a ℓ2𝑑

𝑝 −𝑅𝐿𝑆 algorithm offer a good accuracy rate in SSVEP detection. In
that study, five subjects participated of the experiments and five compression rates were
evaluated: 95, 90, 85, 80 and 75%. CS and MSI techniques were repeated 50 times by
using a different measurement matrix Φ each time. The error between the percentage of
accurate estimation (PoAE) for the original EEG and for the reconstructed EEG signals
was averaged over 50 repetitions, which is shown in Figure 31. Variance of PoAE for
subject 3 is shown in Figure 32, where variance for the algorithm Φ is less than or equal
to 10 for 𝐶𝑅 = 75%, 80%, 85%, and 90%. For these reasons, we chose 𝐶𝑅 of 75% as the
most suitable, due to its stability and low error rate.

In this study, an analysis of the MEC (Minimum Energy Combination), CCA
(Canonical Correlation Analysis), and MSI (Multivariate Synchronization Index) algo-
rithms was carried out, which are popular for the detection of visual stimulus frequency
in SSVEP-BCIs, in addition to ℓ𝑑

𝑝 −𝑅𝐿𝑆, ℓ2𝑑
𝑝 −𝑅𝐿𝑆, and 𝐵𝑆𝐵𝐿−𝐵𝑂 algorithms (PANT;

KRISHNAN, 2013), which are popular for reconstruction of physiological signals, for a
CS-based SSVEP-BCI. Emotiv EPOC, a comfortable and portable wireless EEG acqui-
sition device, was used in this study for EEG acquisition from the occipital region of the
brain. The block diagram of this SSVEP-BCI is shown in Figure 33.



60 Chapter 5. Development of a Compressive Sensing-Based SSVEP-BCI

Figure 31: Average PoAE error for the ℓ𝑑
𝑝 −𝑅𝐿𝑆, ℓ2𝑑

𝑝 −𝑅𝐿𝑆 and 𝐵𝑆𝐵𝐿−𝐵𝑂 algorithms.

Figure 32: Variance of PoAE for subject 3 for the ℓ𝑑
𝑝 − 𝑅𝐿𝑆, ℓ2𝑑

𝑝 − 𝑅𝐿𝑆 and 𝐵𝑆𝐵𝐿 − 𝐵𝑂
algorithms.
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Figure 33: Block diagram of the proposed SSVEP-BCI system.
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5.1 Block diagram of the SSVEP-BCI
The key blocks in Figure 33 are discussed below.

1. Acquisition

Emotiv EPOC Headset is a wireless device used for acquiring signal. EEG signals
from occipital O1 and O2 channels with 128 samples per second of sampling rate
(𝑓𝑠) were collected in this device. The sensors used for reference are: Common-Mode
Sensing (CMS) and Driven Right Leg (DRL), which are fixed for default, and in
parallel to P3/P4 channels (the two mastoids), respectively.

2. Compression

CS is here used for signal compression, which involves segmenting EEG signals into
non-overlapping segments {𝑥𝑖}, and applying the operation

𝑦 = Φ𝑥, (5.1)

where vector 𝑥 has length 𝑁 representing a signal, and its measurement is vector
𝑦 of length 𝑀 . Φ is a sparse matrix of size 𝑀 × 𝑁 with 5 numbers of unity valued
nonzero components in each column, where 𝑀 ≪ 𝑁 .

3. Reconstruction

The signal reconstruction is carried out by using ℓ𝑑
𝑝 −𝑅𝐿𝑆, ℓ2𝑑

𝑝 −𝑅𝐿𝑆, and 𝐵𝑆𝐵𝐿−
𝐵𝑂 algorithms (PANT; KRISHNAN, 2014; PANT; KRISHNAN, 2013; ZHANG;
RAO, 2013), where ℓ𝑑

𝑝 − 𝑅𝐿𝑆 and ℓ2𝑑
𝑝 − 𝑅𝐿𝑆 are based on solving the optimization

problem

minimize
𝑥

1
2 ||Φ𝑥 − 𝑦||22 + 𝜆𝑓(𝑥), with (5.2)

the minimization of
⃦⃦⃦
𝑥𝑑
⃦⃦⃦

𝑝
=
(︃

𝑁−1∑︁
𝑛=1

|𝑥𝑛 − 𝑥𝑛+1|𝑝
)︃1/𝑝

and (5.3)

⃦⃦⃦
𝑥2𝑑

⃦⃦⃦
𝑝

=
(︃

|𝑥1 − 𝑥2|𝑝 +
𝑁−1∑︁
𝑛=1

|𝑥𝑛−1 − 2𝑥𝑛 + 𝑥𝑛+1|𝑝 + |𝑥𝑛−1 − 𝑥𝑛|𝑝
)︃1/𝑝

(5.4)
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respectively, with 𝜆 > 0. On the other hand, 𝐵𝑆𝐵𝐿−𝐵𝑂 algorithm divides signal 𝑥

into signal blocks −→𝑥1,
−→𝑥2, · · · , −→𝑥𝑠 as 𝑥 =

[︁−→𝑥1,
−→𝑥2, · · · , −→𝑥𝑠

]︁𝑇
, with signal 𝑥 estimated

as

𝑥 =
∑︁

0 Φ𝑇 (𝜆𝐼 + Φ
∑︁

0 Φ𝑇 )−1
𝑦, (5.5)

where ∑︀0 = 𝑑𝑖𝑎𝑔{𝛾1B1, 𝛾2B2, · · · , 𝛾𝑠B𝑠} and parameters 𝛾𝑖 and B𝑖 control block-
sparsity and correlation structure, respectively (PANT; KRISHNAN, 2014; ZHANG;
RAO, 2013).

Once the EEG signals are reconstructed, MEC, CCA and MSI algorithms are applied
to them for the detection of the visual stimulus frequency. These methods were
explained in Chapter 3.

To conduct the experiment, each volunteer sat in a comfortable chair, in front of a
17-inch LCD monitor, and 70 cm away from it. Two stimuli based on checkerboards
(4×4) were simultaneously presented in bilateral way. These stimuli were generated
by a subsystem based on FPGA (Field-Programmable Gate Array) Xilinx Spartan
3E company. The stimuli were placed by side along a horizontal line separated by a
small distance (≈2cm) where the left and right target flickered at 𝑓1 = 8 Hz (left)
and 𝑓2 = 13 Hz (right), respectively.

Three male subjects participated in the study (Mean: 29.7 and SD: 0.58). The re-
search was carried out in compliance with Helsinki declaration, and the experiments
were performed according to the rules of the ethics committee of UFES/Brazil, un-
der registration number CEP-048/08. During the first five seconds, a fixed cross in
the center of the screen was presented. After finalizing the first five seconds, a beep
indicated to the volunteer to fix his/her attention on the left side of the stimulus for
thirty seconds. At the end of this time, the volunteer had five seconds to take rest
and another thirty seconds was asked to pay attention at the right side. The total
duration of the experiment was 70 seconds. The eye movements were also monitored
and volunteers were asked to keep a maximum visual angle of 1o for the stimulus
selection to guarantee a minimum degree of eye movement.

5.2 Signal processing
Initially, EEG signals from O1 and O2 channels were extracted and transmitted.

Once received, a compression stage of 75% of ratio was applied to the signals. During the
compression, a signal-vector of length 42000 samples (70 seconds time 𝑓𝑠) was divided
into total 42 non-overlapping segments each of length 𝑄 = 1000. A matrix 𝑤 of size
𝑄 × 42 was constructed by including the 42 segments as its columns. One value of the
number of measurements was selected as 𝑃 = 250, which corresponds to compression
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ratio (𝐶𝑅 = 75%), where 𝐶𝑅 was computed as (𝑄 − 𝑃 ) × 100/𝑄%. For reconstruction,
ℓ2𝑑

𝑝 − 𝑅𝐿𝑆, ℓ𝑑
𝑝 − 𝑅𝐿𝑆, and 𝐵𝑆𝐵𝐿 − 𝐵𝑂 algorithms were applied to the EEG signals

from each of the 42 columns of 𝑌𝑖. The ℓ2𝑑
𝑝 − 𝑅𝐿𝑆 algorithm was applied with parameters

𝑝 = 1, 𝑇 = 30, 𝜆1 = 1, 𝜆𝑇 = 10−2, 𝜖1 = 1, 𝜖𝑇 = 10−2 and the 𝐵𝑆𝐵𝐿 − 𝐵𝑂 algorithm was
applied with parameters such as in (PANT; KRISHNAN, 2014) with the discrete-cosine
transform basis. The EEG segments were reconstructed by applying the three algorithms,
which were concatenated to construct three reconstructed versions of the signal 𝑥. In the
pre-processing stage, the data were segmented and windowed with window lengths (WLs)
of 1 s and 4 s, each one, with overlap of 50%. Then, a temporal elliptic filter between
3-50 Hz was applied. MEC, CCA and MSI techniques were applied and the results were
compared in terms of performance. The comparison of performance (mean and standard
deviation) was tested in 50 repetitions of reconstructed EEG signals averaged for the
three subjects in different WL, as shown in Figure 34. In addition, these results were also
compared with the original EEG signal for each case. A summary of the results are shown
in Table 7.
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Figure 34: (a) Average of accuracy with WL of 1s and (b) 4s, respectively.

5.3 Conclusion and discussion
An analysis of MEC, CCA, and MSI algorithms for the detection of visual stim-

ulus frequency in SSVEP-BCI systems was carried out. The analysis was done for the
application in a CS-based wireless BCI. ℓ𝑑

𝑝-RLS, ℓ2𝑑
𝑝 -RLS, and 𝐵𝑆𝐵𝐿 − 𝐵𝑂 algorithms

were applied for the reconstruction of the signals from the compressed data. MEC, CCA,
and MSI algorithms were applied for the detection of visual stimulus frequency from the
reconstructed EEG signals. According to the obtained results, MEC was found to offer
the better trade-off between the highest mean value of CA offered by the MSI algorithm
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and the lowest variance of the CA offered by the CCA algorithm. The ℓ𝑑
𝑝 −𝑅𝐿𝑆 algorithm

was also found to balance the trade-off between the highest mean and lowest variance of
CA offered by the 𝐵𝑆𝐵𝐿 − 𝐵𝑂 algorithm and the lowest mean and highest variance of
CA offered by the ℓ2𝑑

𝑝 − 𝑅𝐿𝑆 algorithm. Also, the increase in the length of EEG signal
was found to increase not only the mean value of CA but also the variance of CA.

Table 7: Summary of results related to Mean (𝜇) and Variance(𝜎) in [%].

WL ℓ𝑑
𝑝 ℓ2𝑑

𝑝 BSBL-BO WL ℓ𝑑
𝑝 ℓ2𝑑

𝑝 BSBL-BO
1 s Mean (𝜇) 4 s Mean (𝜇)

MEC 56.96 56.57 59.73 MEC 62.64 61.16 65.31
CCA 50.79 50.27 53.68 CCA 51.24 50.64 55.21
MSI 55.51 51.36 61.86 MSI 64.23 54.26 69.90
1 s Variance (𝜎) 4 s Variance (𝜎)

MEC 8.28 7.48 8.77 MEC 13.09 12.43 11.97
CCA 1.99 1.08 4.27 CCA 3.46 2.22 7.20
MSI 5.52 1.86 9.95 MSI 13.68 5.47 13.89
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6 Development of the Novel Independent
SSVEP-BCI

6.1 Introduction

Such as aforementioned, in a typical SSVEP-BCI, several stimuli flickering at dif-
ferent frequencies are presented to users. The subject “overtly” directs his/her attention
to one of the stimuli by changing his/her gaze (ZHANG et al., 2010). This kind of SSVEP-
BCI is commonly called as “dependent”, since muscle activities, such as gaze shifting, are
necessary. However, patients with amyotrophiclateral sclerosis (ALS), multiplesclerosis
and Guillain-Barré syndrome may suffer from severe motor disabilities, which can dis-
rupt their communication with the external environment. Therefore, typical “dependent”
SSVEP-BCIs might not be applicable for these subjects. Nonetheless, an “independent”
can be an alternative solution, as this kind of BCI is controlled by subject’s attentions
without requiring head neuromuscular control or eye movements. It means that the at-
tention is performed in a “covertly” form.

Several studies have shown that people can covertly shift attention to different
spatial location tasks (MORGAN; C.; HILLYARD, 1996; KELLY et al., 2004b; ALLISON
et al., 2008; ZHANG et al., 2009; LESENFANTS et al., 2014). Morgan, C. and Hillyard
(1996) initially studied the effect of spatial attention on SSVEP, and Kelly et al. (2004b)
emphatized that there is a reduction in 20 % of accuracy in detecting SSVEP when a
volunteer does not perform eye movements compared to another who does it, which makes
more complex the SSVEP detection. In that study, the terms “attended” or “unattended”
implied an “overt” and “covert” attention, respectively. A similar procedure was performed
using flickering letters in a CRT monitor by Kelly et al. (2005b), in which six out of eleven
physically and neurologically healthy subjects demonstrated reliable control in binary
decision-making, achieving at least 75 % of correct selections in five sessions, each with
approximately 12 min duration. In (ALLISON et al., 2008), the hypothesis about whether
overlapped stimuli can evoke changes in SSVEP was evaluated in a BCI. On the other
hand, the modulation effects of SSVEP amplitude and phase response for covert shifts of
attention were investigated by Zhang et al. (2009) for two distinct colors. Finally, LEDs
were used as visual stimuli in an independent covert two-class SSVEP, which was evaluated
with twenty-four healthy subjects and six LIS patients (LESENFANTS et al., 2014). The
mean offline and online accuracies obtained for the healthy subjects were 85.00 ± 2 %
and 74.00 ± 13 %, respectively, and subjects with LIS obtained 60.75 ± 8 % accuracy in
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online tests.

According to literature, independent BCIs can be separated into two groups (see
Figure 35): those that use bilateral flickers from checkerboards (MORGAN; C.; HILL-
YARD, 1996; KELLY et al., 2004a; KELLY et al., 2005b), and those with an approach
based on overlapped stimuli or mixed in a reduced space (ALLISON et al., 2008; ZHANG
et al., 2009; LESENFANTS et al., 2014). Our independent BCI uses a different paradigm:
“Figure Ground Perception (FGP)” based on LEDs, in which two images are simultane-
ously present to the subject (Binocular Rivalry).

(a) (b)

(c) (d)

(e) (f)

Figure 35: Stimuli used in an independent SSVEP-BCI and presented in the following
references: (a) Morgan, C. and Hillyard (1996), (b) Allison et al. (2008), (c) Kelly et al.
(2004a), (d) Zhang et al. (2009), (e) Kelly et al. (2005b), (f) Lesenfants et al. (2014).

6.2 Figure Ground Perception (FGP)
The classic Gestalt psychology demonstrates the existence of an early autonomous

process of visual organization, which produces percepts that do not always conform to
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previous knowledge or expectations about the stimulus, as small changes to the stimulus
can induce extensive perceptual reorganization (WAGEMANS et al., 2012). Recordings of
border-ownership signals in visual cortex demonstrate how a stimulus is interpreted and
reorganized (QIU; HEYDT, 2007). Stephen E. et al. suggest that a slight modification
of the conditions of the good continuation (which refers to the tendency for elements
to be grouped to form smooth contours) may provide a spontaneous reorganization of
shapes that might be observed in the area V2 of the visual cortex (WAGEMANS et al.,
2012). On the other hand, according to (GRILL-SPECTOR, 2003), the lateral and ventral
occipito-temporal areas are valuable for perceiving and recognizing objects and faces.

In 1999, Leopold and Logothetis suggested that the multistable perception is
mostly non-sensory in its origin (PITTS; NERGER; DAVIS, 2007). Multistable percep-
tion is considered to be a powerful vehicle to recognize perceptual awareness from sensory
processing that occurs in ambiguous figures such as the Necker cube (NECKER, 1832). In
addition,the Rubin’s face-vase illusion has mutually exclusive interpretation when is ob-
served between dissimilar, and thus incompatible images, simultaneously presented to the
two eyes (binocular rivalry) (STERZER; KLEINSCHMIDT; REES, 2009). In both cases,
perceptual awareness of physically identical stimuli alternates stochastically between two
(or more) interpretations. For ambiguous figures, a single stimulus is presented to both
eyes, and perception switches (“reverses”) between each possible interpretation for every
few seconds (BRITZ; PITTS, 2011). According to the theory of multistable perception,
the perceptual reversals are the necessary consequences of a generalized high-level “ex-
ploratory” mechanism that directs spatial and selective attention in a way that forces
lower level perceptual systems to periodically refresh (STERZER; KLEINSCHMIDT;
REES, 2009).

Regarding attention, the role of this in perceptual (re)organization is essential to
be considered. Gestalt psychologists have pointed out that when attention is drawn to
figures, the background regions of figures often go unnoticed (WAGEMANS et al., 2012).
The way how the unattended objects are processed is difficult to be derived from phe-
nomenal reports by participants of these experiments, who cannot avoid paying attention
to the stimuli that they are supposed to judge. In contrast, neuronal recordings show the
processing of all stimuli, whether attended or not. Neuro-physiological studies investigat-
ing whether perceptual organization processes are preattentive, influenced by attention,
or take place only under attention, producing mixed results. In some situations, attention
initiates a process of organization that reflects the intrinsic connectivity of the cortex.
But in other situations, the organization emerges independently of attention, creating a
structure for selective attention (WAGEMANS et al., 2012).

Generally, the visual attention is most controlled through eye movements, and the
objects of interest are usually unambiguous. However, in multistable perception experi-
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ments, covert attention (without voluntary eye movements) may be altered by this central
exploratory mechanism (PITTS; NERGER; DAVIS, 2007).

In addition to changes in the figure in the field of multistable perception, a sub-
concept emerges, where the figure appears nearer than the background part, involving
depth perception, and the background appears to be occluded by the figure. This percep-
tual experience is named “figure-ground perception” (PETERSON; SALVAGIO, 2009).
Using this last concept, our work is presented here as a novel approach in SSVEP-BCIs
(see Figure 36).

A portable stimulator based on LEDs designing the model face-vase is also pro-
posed here (Figure 37). This kind of approach has the objective of being used for pa-
tients with severe motor disabilities where movements ocular are not required, with the
information about the targets coming from visual lateral inhibition. Lateral inhibition
is a term that describes the mutual interaction among the neural processing units of
the same processing level of bio vision (HOOD; JERNIGAN, 1994; CHEN; HONGWEI,
2010). Characterized by the inhibition of behavior among the adjacent processing units.
This interaction has positive effect on some of the early visual processing, such as edge
enhancement and contrast enhancement, creating a contrast in stimulation that allows
increased sensory perception. Lateral inhibition was first found and confirmed by Hartline
et al., who conducted electrophysiological experiments of the Limulus visual (HARTLINE;
WAGNER H. G.AND RATLIFF, 1956). Looking upon every ommatidia in the compound
eye of the Limulus as a photo receptor, they found that a receptor could be inhibited by
some other receptors in its proximity (CHEN; HONGWEI, 2010).

Therefore, visual lateral inhibition is the process in which photoreceptor cells aid
the brain in perceiving contrast within an image. Experiments are typically conducted
with achromatic stimuli, but a similar effect would hold for colored stimuli (CHEN;
HONGWEI, 2010). The contrast effect would be related to the distribution of Macu-
lar Pigment (MP) in humans, which is a yellow pigment that is found in the inner layers
of the central retina (HAMMOND, 2012). Humans have duplex vision: rods, which oper-
ate in dim light and are mostly not screened by MP, and cones, which operate at higher
light levels and are screened by MP (HAMMOND, 2012). In dim light levels, the pigment
migrates to the periphery, and in high light levels the pigment concentrates toward the
center of the distal retina (DOUGLAS; MARSHALL, 1999). Details of this response can
be seen in Figure 38.

Based on the principles of Figure 38, we decided to use blue and white colors
for the photo-stimulation setup in order to create this contrast effect. Additionally, our
previous research related to study of the effects of colored stimuli on SSVEP suggests that
blue color in 11 Hz provides results of high accuracy and, at the same time, high level
of user comfort in relation to other colored stimuli (TELLO et al., 2015a). Furthermore,
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Figure 36: From Brain–computer interface concept-map, a novel approach in SSVEP-
BCIs is presented in this study: Figure Ground Perceptionin (FGP). Modified from
(GRAIMANN; ALLISON; PFURTSCHELLER, 2010).
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Figure 37: Dimensions and characteristics of the stimulator (faces-vase) and their respec-
tive frequencies (faces: 11 Hz; vase: 15 Hz).
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according to our studies, white also offers quite promising results (TELLO et al., 2014b;
TELLO et al., 2014a). The flickering frequencies used in this novel BCI are 15.0 Hz (vase)
and 11.0 Hz (faces). More details can be seen in Figure 37.

6.3 Subjects
Ten subjects (all males), with ages from 27 to 36 years old, were recruited to

participate in this study (average age: 29.0; SD: 4.06). The research was carried out in
compliance with Helsinki declaration, and the experiments were performed according to
the rules of the ethics committee of UFES/Brazil, under registration number CEP-048/08.
The volunteers were labeled as: s1, s2, s3, s4, s5, s6, s7, s8, s9 and s10.

The subjects were free to withdraw at any time without any penalty. Previously,
a selection of volunteers was performed and topics related to precautions as visual prob-
lems, headaches, family history with epilepsy and problems related to brain damage were
consulted. The participants did not report any problems. In addition, no one had previous
experience in using a BCI.

6.4 Equipment and setup of stimulation unit
For the development of our BCI, 12 channels of EEG with reference at the left

ear lobe were recorded at 600 samples/s, with 1–100 Hz pass-band filter. The ground
electrode was placed on the forehead. The EEG electrode placements were based on
the International 10-20 System. The electrodes used were: P7, PO7, PO5, PO3, POz,
PO4, PO6, PO8, P8, O1, O2 and Oz. The equipment used for EEG signal recording was
BrainNet-36. The volunteers sat on a comfortable chair, in front of the stimulator, 70 cm
from it. Figure 39 shows a volunteer with the acquisition system and the corresponding
stimulator system designed.

At the beginning of the experiments, the participants were asked to watch the
photo-stimulator, which is controlled by a microcontroller (PIC18F4550), with 50/50 %
on-off duties. The block diagram and the experimental setup are shown in Figure 40.

The flickers stimuli are based on LEDs with two colors (blue for the faces and
white for the vase) covered with thin white papers diffusers. The figure represents the
vase, which is 3.5 cm depth with the faces, helping to create an effect of figure ground
perception (FGP), as shown in Figure 40.

The experiments were performed off-line. During the first 5 s the volunteer stayed
in a state of relaxation. Before finishing these 5 s, a beep was issued and the volunteer
had to fix his/her attention on the stimulus located at the vase (15.0 Hz) for 30 s. A rest
of 5 s and a new beep indicated to the volunteer fixing his/her attention to the faces (11.0
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Figure 39: Setup with photo-stimulator and acquisition system.
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Hz), ending in 70 s. This visualization was asked to be performed making a minimum
visual angle, in order to select the stimulus covertly.

6.5 Offline data analysis
Initially, the data were segmented and windowed in window lengths (WLs) of 1 s

and 4 s, each one, with an overlap of 50 %. Then, a spatial filtering was applied using a
Common Average Reference (CAR) filter and a band-pass filter between 3 and 60 Hz for
the twelve channels. Canonical correlation analysis (CCA) was used for feature extraction
to analyze the behavior of the signals independently for each channel for all subjects during
the task performed. CCA helps to find the most appropriate electrodes for improving the
classification in terms of accuracy. Based on the hypothesis that high values of energy
for detection of SSVEPs are located in channels O1, O2 and Oz, a comparison in terms
of classification between these three electrodes was done (as feature vectors inset), and
the choice of only one channel was performed. Later, it will be shown that the use of a
single electrode compared to three electrodes in a set causes a noticeable improvement in
the accuracy. Finally, CCA and a modified version of Multivariate Synchronization Index
(MSI), both with criterion of maxima for classification, were compared. Both methods
were explained in Chapter 3.

6.6 Discussions

6.6.1 Regarding the feature extraction

According to the experiments, the subjects were advised to gaze one target each
time (either face or vase). This way, an independent analysis for all channels and for each
subject was performed. From these results, it was further hypothesized that the average
correlation coefficients (obtained by Equation 3.12) varies inversely during the change of
focus from one target to other. This behavior is related to the experimental setup and
instructions for each subject were given, where perception helps to increase the correlation
between targets. This feature is called as “wished pattern” throughout the text. In our
case, when the subject gazes the vase, the correlation coefficients for the frequency of 15
Hz are higher than for 11 Hz (which represents the faces), and vice versa. On the other
hand, the number of channels and the selection of channels may play an important role in
this novel SSVEP-BCI. From our study, it seems that the gaze and perception capability is
not consistent in every subject. Therefore, cautions should be taken about which channel
is used for the purpose of quantification.

Once these wished patterns are reached, the evaluated electrodes are categorized
as suitable (results are shown in Tables 8 and 9). According to these tables, it is noticeable
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that the electrode Oz has the largest number of possibilities of choice for different WLs
(both for 1 or 4 s), due to that this feature is present in the major number of subjects
(7/10), equivalent to 70 % of votes. Therefore, it is shown that Oz channel might be more
suitable to be used in our novel SSVEP-BCI. From our observations, the focus on faces
generates higher values regarding correlation. It was found that the magnitudes of the
coefficients of the canonical correlation, while the attention was focused in the faces, were
slightly higher compared to the vase. This was noticeable in several channels (see in the
case of subject 1 – Figure 41 – showing the analysis for WL of 1 s, and Figure 42 for 4 s).
One of the possible explanations can be due that the distance to the vase is deep higher
in the setup compared to the face. Therefore, the subject’s perception was, most of the
time, on the face, even while the subjects were advised to look into the vase. Secondly,
the other possible reason may be due to our brains receive daily stimulation from human
faces, which implies that our brains are highly trained to focus on face.
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Figure 41: Correlation values in terms of mean (𝜇) and standard deviation (𝜎) from 12-
channels are shown for WL of 1 s. Here, channel Oz and P6 showed expected results
(Results from volunteer 1).

6.6.2 Regarding classification

A way of visualization of the performance of our algorithms is the use of confusion
matrices. For our case, signals using the channels O1, O2 and Oz in set, and signals from
just Oz were evaluated.
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Figure 42: Correlation values in terms of media (𝜇) and standard deviation (𝜎) from 12-
channels are shown for WL of 4 s. Here, channel O1, P8, P6 and Oz showed expected
results (Results from volunteer 1).

Table 8: Channels information showing good results of accuracy using WL of 1 s .

Subjects P7 PO7 P5 PO3 O1 P8 PO8 P6 PO4 O2 POz Oz

1 X X
2 X X
3 X X
4 X
5
6 X X
7 X X
8 X
9 X X
10 X
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Table 9: Channels information showing good results of accuracy using WL of 4 s.

Subjects P7 PO7 P5 PO3 O1 P8 PO8 P6 PO4 O2 POz Oz

1 X X X X
2 X X X
3 X X X X
4 X X X
5
6 X X
7 X
8 X
9 X X X X X
10 X X

True Positive (TP) and True Negative (TN) values were used for measuring the
accuracy in detecting the SSVEP using Equation 6.1.

ACC = TP+TN
P+N , (6.1)

where P indicates positive instances, and N indicates negative instances. In addition to the
accuracy rate, Command Transfer Interval (CTI) and Information Transfer Rate (ITR)
was also computed.

Tables 10-13 show the comparative results of performance (accuracy and ITR)
between three channels in a set (called as “before”), and Oz electrode (called as “after”)
for different WL, both for CCA and MSI, respectively. The gray shaded boxes indicate the
cases where we can notice an improvement in the accuracy per subject (between before
and after). In this decision criteria, a minimal threshold of 60 % is suggested, which
indicates a good choice.

Figures 43 and 44 show a comparison of values of accuracy between these two
different methods in terms of average and standard deviation values (𝜇 ± 𝜎) for each
subject. Improvements can also be seen between the use of three electrodes and just the
channel Oz. In addition, the comparison between different WLs were tested and are also
shown in these figures. It is also visible that subjects 3, 5 and 6 did not perform adequately
the tasks, which is reflected in the high value of 𝜎 and low accuracy.

A way to visualize the comparison between the two methods used (CCA and MSI)
is shown in Figure 45. For this, subjects 1, 2, 4, 7, 8, 9 and 10 were selected in our
analyses. It seems that MSI surpassed CCA both using three electrodes compared to one,
in different WLs. It is even evident that when using larger WLs, the classification increases
but the response time is delayed, which hinders real-time applications. Using this method
and with only the channel Oz, and WL of 1 s, the average accuracy and SD were 83.67 ±
13.71 %. This result shows that this novel SSVEP-BCI based on perception is feasible and
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Table 10: Comparison between accuracy results for WL of 1 s using three electrodes in
set (before) and Oz electrode (after) using CCA.

Window length [1s] (before) Window length [1s] (after)

Accuracy Accuracy

15 Hz 11 Hz Average ITR 15 Hz 11 Hz Average ITR
Subjects (vase) (faces) Accuracy [bits/min] (vase) (faces) Accuracy [bits/min]

s1 64.41 93.22 78.81 15.31 77.97 86.44 82.20 19.47
s2 61.67 90.00 75.83 12.14 76.67 90.00 83.33 21.01
s3 33.33 93.33 63.33 3.12 18.33 80.00 49.17 0.02
s4 36.67 76.67 56.67 0.78 41.67 73.33 57.50 0.99
s5 8.33 88.33 48.33 0.06 6.67 83.33 45.00 0.44
s6 42.37 67.80 55.08 0.46 50.85 49.15 50.00 0.01
s7 53.33 60.00 56.67 0.78 66.67 58.33 62.50 2.74
s8 38.98 76.67 57.82 1.07 57.63 68.33 62.98 2.96
s9 55.00 85.00 70.00 7.13 63.33 80.00 71.67 8.41
s10 30.00 91.80 60.90 2.08 60.00 73.77 66.89 5.04

Table 11: Comparison between accuracy results for WL of 4 s using three electrodes in
set (before) and Oz electrode (after) using CCA.

Window length [4s] (before) Window length [4s] (after)

Accuracy Accuracy

15 Hz 11 Hz Average ITR 15 Hz 11 Hz Average ITR
Subjects (vase) (faces) Accuracy [bits/min] (vase) (faces) Accuracy [bits/min]

s1 85.71 92.86 89.29 7.63 100.00 92.86 96.43 11.67
s2 85.71 93.33 89.52 7.74 85.71 86.67 86.19 6.31
s3 64.29 93.33 78.81 3.83 35.71 73.33 54.52 0.09
s4 64.29 86.67 75.48 2.95 71.43 80.00 75.71 3.01
s5 0.00 80.00 40.00 0.44 7.14 73.33 40.24 0.42
s6 14.29 85.71 50.00 0.00 28.57 42.86 35.71 0.90
s7 50.00 53.33 51.67 0.01 92.86 53.33 73.10 2.40
s8 42.86 80.00 61.43 0.57 64.29 80.00 72.14 2.20
s9 71.43 100.00 85.71 6.13 92.86 100.00 96.43 11.67
s10 35.71 93.33 64.51 0.93 64.29 100.00 82.14 4.85
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Table 12: Comparison between accuracy results for WL of 1 s using three electrodes in
set (before) and Oz electrode (after) using MSI.

Window length [1s] (before) Window length [1s] (after)

Accuracy Accuracy

15 Hz 11 Hz Average ITR 15 Hz 11 Hz Average ITR
Subjects (vase) (faces) Accuracy [bits/min] (vase) (faces) Accuracy [bits/min]

s1 67.80 98.31 83.05 20.62 91.53 86.44 88.98 29.98
s2 65.00 95.00 80.00 16.69 96.67 86.67 91.67 35.18
s3 30.00 96.67 63.33 3.12 16.67 80.00 48.33 0.06
s4 33.33 85.00 59.17 1.47 43.33 73.33 58.33 1.22
s5 6.67 95.00 50.83 0.02 13.33 83.33 48.33 0.06
s6 37.29 71.19 54.24 0.32 52.54 49.15 50.85 0.02
s7 50.00 75.00 62.50 2.74 63.33 56.67 60.00 1.75
s8 35.59 88.33 61.96 2.51 52.54 71.67 62.10 2.57
s9 46.67 90.00 68.33 5.97 63.33 80.00 71.67 8.41
s10 33.33 88.52 60.93 2.09 56.67 77.05 66.86 5.03

Table 13: Comparison between accuracy results for WL of 4 s using three electrodes in
set (before) and Oz electrode (after) using MSI.

Window length [4s] (before) Window length [4s] (after)

Accuracy Accuracy

15 Hz 11 Hz Average ITR 15 Hz 11 Hz Average ITR
Subjects (vase) (faces) Accuracy [bits/min] (vase) (faces) Accuracy [bits/min]

s1 85.71 100.00 92.86 9.43 100.00 92.86 96.43 11.67
s2 85.71 100.00 92.86 9.43 100.00 93.33 96.67 11.84
s3 57.14 100.00 78.57 3.76 28.57 73.33 50.95 0.01
s4 42.86 100.00 71.43 2.06 71.43 73.33 72.38 2.25
s5 0.00 100.00 50.00 0.00 7.14 53.33 30.24 1.74
s6 7.14 85.71 46.43 0.06 28.57 42.86 35.71 0.90
s7 57.14 80.00 68.57 1.53 85.71 53.33 69.52 1.70
s8 35.71 80.00 57.86 0.27 64.29 80.00 72.14 2.20
s9 78.57 100.00 89.29 7.63 92.86 100.00 96.43 11.67
s10 35.71 100.00 67.86 1.41 64.29 100.00 82.14 4.85
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Figure 43: Values of accuracy in the classification in terms of averages and standard
deviation values (𝜇 ± 𝜎) using CCA.
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Figure 44: Values of accuracy in the classification in terms of averages and standard
deviation values (𝜇 ± 𝜎) using MSI.



80 Chapter 6. Development of the Novel Independent SSVEP-BCI

has high accuracy, even using only one channel (Oz) from a previous filtering processing
of twelve channels, using either of two feature extraction methods. Moreover, this result is
quite acceptable considering that the subjects never had used a BCI neither had previous
training. These results demonstrate that the perception may play an important role in
the attention of the subject and therefore can be used in this novel SSVEP-BCI.
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Figure 45: Error bars showing a summary of cases evaluated related to performance of
the two methods analyzed.

6.7 Online SSVEP detection and performance
Five participants (5 males, 22-32 years of age; mean age 22.4 years) were instructed

to perform the online BCI tasks. The subjects didn’t have previous experience with BCI
experiments considered in this study. In order to familiarizing the system with the native
language of the participants, audio feedback in Portuguese was used (all participants
were Brazilian). The words were recorded in wav files and played indicating the suitable
instructions and decisions after signal processing. The algorithm was implemented on
a PC with 4 GB onboard memory and Intel 32-bit Core 2 duo processor (2.20 GHz,
800 MHz) running Windows 7. BrainNet-36 was the device used for EEG acquisition
with a cap of integrated electrodes according to the 10-20 international system. The
online data acquisition was obtained by a sniffer based on Java programming language,
as the equipment (BrainNet-36) is a clinical device that does not export data in online
mode. Additionally, on the computer screen it is possible to follow the process of SSVEP
detection and routines of the system during the process of data acquisition. Due to the
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good results obtained with the technique of MSI and Oz electrode in offline analysis, we
decided to use this setup also for online detection using WLs of 2 s. This decision was
adopted in order to improve the results and keep the trade-off between accuracy and
speed.

In order to check the proper execution of the experiments performed by the vol-
unteers, a commercial device of eye tracking (Eye Tribe) was used. Data from this device
demonstrated that the subjects did not perform eye movements outside the limits estab-
lished for this experiment. The eye tracker requires an initial calibration that is performed
by 9 points shown on the screen, with a distance between subject and eye tracker of 70
cm. The eye tracker has an accuracy ranging from 0.50 to 10 and a spatial resolution of
0.10. Metric parameters related to the distances between the subject and the setup are
detailed in Figure 46. Moreover, before beginning the experiments, volunteers performed
a previous training between 3 and 10 min. Failed tests were discarded and some subjects
got the “frustration state”.

Eye Tracker 

Subject 

 

 

24 cm 

22 cm 

10 cm 

40 cm 

14 cm 

70 cm 

Figure 46: Setup parameters and the designed structure containing calibration devices
and visual stimulator for validation of online tasks.

Results of the experiments showed an accuracy of 82.7 % for recognition of faces
and 76.0 % for vases (more details in Table 14). Three trials were performed by each
subject and each trial was 44 s of duration. According to data obtained by the eye tracker,
the tasks were performed in less than 30 of angle subtended from the center of users’ field of
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view. In addition, subjective opinions from volunteers about aspects related to frustration
and fatigue were taken into account.

Table 14: Online SSVEP detection in terms of accuracy (%). The values represent the
percentages of True Positive (TP), and True Negative (TN). Time duration of each ex-
periment was 44 seconds.

Number WL=2s Previous Has he/she Has he/she

Subjects of TP [Face] TN [Vase] time of reached the reached the

trial Recognized/Outputs (Accuracy) training [min] frustration? fatigue?

1 4/5(80%) 4/5(80%) 10
1 2 5/5(100%) 4/5(80%) 7 Yes Yes

3 5/5(100%) 4/5(80%) 4
1 4/5(80%) 3/5(60%) 8

2 2 5/5(100%) 4/5(80%) 5 Not Yes
3 4/5(80%) 4/5(80%) 4
1 3/5(60%) 3/5(60%) 8

3 2 3/5(60%) 3/5(60%) 6 Not Not
3 5/5(100%) 4/5(80%) 5
1 3/5(60%) 3/5(60%) 7

4 2 3/5(60%) 5/5(100%) 5 Not Not
3 5/5(100%) 4/5(80%) 3
1 4/5(80%) 4/5(80%) 8

5 2 4/5(80%) 4/5(80%) 6 Not Not
3 5/5(100%) 4/5(80%) 4

Average 82.7% 76% 6

6.8 Discussion
In this study, an alternative manner of presenting SSVEP stimuli was evaluated,

in which a portable photo-stimulator based on two flickering stimuli representing the
model face-vase was also here proposed. This novel concept of SSVEP-BCI is based on
perception, where the well-known example of Rubin’s face-vase illusion is here used in
order to create a bridge of communication for subjects with severe motor disabilities. The
contrast between a colored stimulus and other plays an important role because this effect
would be related to the visual lateral inhibition process, where photoreceptor cells aid the
brain in perceiving contrast within an image. Thus, the visual attention in multistable
perception experiments does not require head neuromuscular control or eye movements.

This study evaluated both an offline and an online SSVEP system, suggesting a
new concept of analysis and stimulation that might be applicable in daily life. Results of
this work provide individual analysis for each subject that can be useful for identifying
the behavior of the subject under evaluation. An improvement in terms of accuracy of
classification was observed using features from three electrodes (O1, O2 and Oz) compared
to using a single electrode (Oz) with both CCA and MSI methods. A comparison between
different window lengths showed than WL of 4 s is more accurate compared to 1 s.
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Furthermore, MSI was found to be more accurate compared to CCA in cases
with same conditions, either using three electrodes or one electrode (Oz) in different
WLs. Figure 45 presents a summary of this performance, where seven out of ten subjects
reached an average accuracy higher than 60 % for these, with average accuracy of 83.67
%.

The values of ITRs obtained are relative and dependent on setup parameters. The
highest value achieved was 35.18 bits/min using MSI, with 1 s of WL (values for subject
2). Our results demonstrate that the electrode Oz is the best channel for characterization
of visual perception from a quantitative point of view.

On the other hand, our studies also validated an online SSVEP-BCI using a specific
setup built at the laboratory. Muscular activities related to eye movements were also
evaluated in this study, using an eye tracker device to observe and evaluate the attention
objectively. The online performance seems decreasing the accuracy. The reason could be
attributed to the fact that stimuli are located in different depths of field, and the fact
that our brains receive daily stimulation of human faces, which implies that our brains are
highly trained to focus on faces. As a consequence, the loss of focus on vase could reduce
visual attention and thereby lead to the decreased SSVEP amplitude. These results are
consistent with our results in offline tasks.

Finally, these findings strongly support the hypothesis of visual selectivity by
means of the perception and neural mechanism of spatial attention. This novel SSVEP-
BCI based on Figure Ground Perception (FGP) has shown being a new approach com-
pared to traditional SSVEP-BCIs, in which the activation of commands is based on eye
moviments (gaze), and also a new type of independent SSVEP-BCIs based on bilateral
selective attention. Thus, this study contributes directly to the research area of alternative
or augmentative communication, oriented to people in locked-in syndrome, in final stages
of ALS, or in other extreme case of paralysis situation.
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7 Conclusions and Future Works

7.1 Summary of contributions
The major contributions of this thesis are:

1. Improvements of the Multivariate Synchronization Index (MSI). From the
inconsistency in the formation of the correlation matrix proposed by Zhang et al.
(2014a), a reformulation of this technique allowed the proposal of a MSI modified,
obtaining the highest rates of success for stimulation by LEDs compared to other
techniques of SSVEP detection and technologies of stimulation.

2. A new method of SSVEPs detection based on tensor models (PARAFAC).
A new way for automatic detection of SSVEPs through correlation analysis between
tensor models was developed. This novel technique uses 3-dimensions ( 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ×
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑡𝑖𝑚𝑒), where EEG signals are compared to simulated tensor models
(“template”). The classification is obtained from comparison of each of the extracted
signatures of the PARAFAC model with the corresponding simulated signatures of
a target SSVEP signal. This study was conducted in collaboration with researchers
of Ryerson University in Toronto, Canada.

3. A first study about evaluation of the influence of colored stimuli using
LEDs in SSVEPs. A novel study related to the influence of color in SSVEP
was conducted. It is worth to mention that none of the studies in literature did
comparison of performance of stimuli colors using LEDs. From results although its
high accuracy rates, red color was disregard of our nominations due to its low level
of comfort and its trends to evoke epileptic responses. Also, the results confirm that
green color is the most suitable option for visual stimuli, where the rule of selection
of the best color was applied to each resulting centroid. Finally, the order of choice
as a suitable color of stimulation was the following: green, blue and yellow.

4. Use of Compressive Sensive technique for an SSVEP-BCI. A Compres-
sion technique was applied to EEG signals and SSVEP approach. In this study,
different signal compression algorithms (ℓ𝑑

𝑝-regularized least-squares (ℓ𝑑
𝑝 − 𝑅𝐿𝑆),

ℓ2𝑑
𝑝 -regularized least-squares (ℓ2𝑑

𝑝 − 𝑅𝐿𝑆) and the block-sparse Bayesian learning
bound-optimization (𝐵𝑆𝐵𝐿 − 𝐵𝑂)) and different techniques to detect SSVEPs
were evaluated. Thus, Compressive Sensing (CS) was considered an emerging and
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promising technique for the development of low-power, small-chip, and robust wire-
less BCI (PANT; KRISHNAN, 2014; ZHANG et al., 2013). This approach is quite
novel in the areas of SSVEP-BCI. This study also was conducted in collaboration
with researches of Ryerson University.

5. Development of a new independent SSVEP-BCI using approach of Figure-
Ground Perception (FGP). In this study, offline and online experiments were
conducted with a new way of presenting visual stimuli through the model face-vase.
In this sense, a portable stimulator based on two flickering stimuli representing the
model face-vase was proposed. This novel concept of SSVEP-BCI is based on per-
ception, in which the well-known example of Rubin’s face-vase illusion is here used
in order to create a bridge of communication for subjects with severe motor disabil-
ities. Thus, this study developed a novel BCI that can offer to people with severe
motor disabilities (such as, patients with amyotrophiclateral sclerosis (ALS), multi-
plesclerosis, and Guillain-Barré syndrome) an alternative of communication through
attention modulation without requiring neuromuscular activities or eye movements.

7.2 Future works
The following are suggestions for future works related to the development of In-

dependent SSVEP-BCIs.

1. It is essential the realization of a deeper study about the choice of frequencies
of stimulation. A study that involves the participation of a considerable number
of volunteers and a greater number of frequencies could help identifying the best
frequencies that allow get higher accuracy rates and comfort for the user.

2. The development of technologies of acquisition of low cost is very important. Thus,
with the execution and development of a low cost device, it would be possible its
mass-production and the development of proprietary technology, versatile and of
easy configuration.

3. Experiments with patients that have suffered any type of neurological problem,
such as amyotrophiclateral sclerosis (ALS), multiplesclerosis and Guillain-Barré syn-
drome are necessary to confirm that they can properly command a BCI.

———————————————————-
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8 Appendix: Stay in Canada, publications
and technical visit

During this research, the following awards, publications and technical visit were
carried out:

8.1 Stay in Canada

∙ Obtainment of the first place in the selection process of the Foundation for Research
and Innovation of Espirito Santo (FAPES) to conduct scientific technical stage at
Ryerson University (Toronto, Canada). Process Number: 66492416/14.

8.2 Technical Visit

∙ Technical visit at the Machine Learning Lab of Prof. Robert Klaus Müller in the
Technische Universität Berlin (Germany).

8.3 Publications

8.3.1 Journal Papers

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; HASAN, M. A.; FERREIRA, A.; KR-
ISHNAN, S.; BASTOS FILHO, T. F. An Independent-BCI based on SSVEP using
Figure-Ground Perception (FGP). In: Biomedical Signal Processing and Control,
Elsevier, 2016.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; FERREIRA, A.; BASTOS FILHO, T.
F. Comparison of the Influence of Stimuli Color on Steady-State Visual Evoked
Potentials. Research on Biomedical Engineering, onlineISSN 2446-4740, printISSN
2446-4732. v.31, n.3. 2015.

8.3.2 Chapter of Book

∙ MULLER, S. M. T.; FERREIRA, A.; CASTILLO, J. F.; TELLO, R. J. M. G.; BAS-
TOS FILHO, T. F.; SARCINELLI FILHO, M. Brain-computer interfaces applied to
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a robotic wheelchair and an autonomous car. In: CBEB. (Org.). Tecnologias, Téc-
nicas e Tendências em Engenharia Biomédica. 1ed.Bauru: Canal6 Editora (Brazil),
2014. ISBN 978-85-7917-289-2.

8.3.3 Conference Papers

∙ TELLO, R. J. M. G.; BASTOS FILHO, T. F. Modulación Atencional en el Control
de una Silla de Ruedas Robotizada Basada en SSVEP-BCI Para Personas con Sín-
drome de Bloqueo. In: VIII Congreso Iberoamericano de Tecnologías de Apoyo a la
Discapacidad, 2015, Punta Arenas (Chile). 2015.

∙ TELLO, R. J. M. G.; VALADAO, C.; MULLER, S. M. T. ; FERREIRA, A.; BIS-
SOLI, A.; CARELLI, R.; BASTOS FILHO, T. F. Performance improvements for
navigation of a robotic wheelchair based on SSVEP-BCI. In: XII SBAI - Simpósio
Brasileiro de Automação Inteligente 2015, Natal (Brazil). 2015.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; FERREIRA, A.; BASTOS FILHO, T.
F. A novel system for control of a robotic wheelchair based on SSVEP-BCI for
people with Locked-in Syndrome. In: XII SBAI - Simpósio Brasileiro de Automação
Inteligente 2015, Natal (Brazil), 2015.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F. Desenvolvimento
de uma Cadeira de Rodas Robotizada Baseada em uma SSVEP -BCI Independente.
In: International Workshop on Assistive Technology (IWAT), 2015, Vitória (Brazil),
2015.

∙ TELLO, R. J. M. G.; PANT, J. K.; MULLER, S. M. T.; KRISHNAN, S.; BASTOS
FILHO, T. F. An Evaluation of Performance for an Independent SSVEP-BCI Based
on Compressive Sensing System. In: XIII IUPESM World Congress on Medical
Physics and Biomedical Engineering, 2015, Toronto (Canada). 2015.

∙ TELLO, R. J. M. G.; POURYAZDIAN, S.; FERREIRA, A.; BEHESHTI, S. ; KR-
ISHNAN, S.; BASTOS FILHO, T. F. A New Approach for SSVEP Detection Us-
ing PARAFAC and Canonical Correlation Analysis. In: 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 15),
Milano (Italy), 2015.

∙ TELLO, R. J. M. G.; BISSOLI, A.; FERRARA, F.; MULLER, S. M. T.; FER-
REIRA, A.; BASTOS FILHO, T. F. Development of a Human Machine Interface
for Control of Robotic Wheelchair and Smart Environment. In: 11th IFAC Sympo-
sium on Robot Control (SYROCO), 2015, Salvador (Brazil). IFAC-PapersOnLine,
Volume 48, Issue 19, 2015, Pages 136-141, ISSN 2405-8963. 2015.
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∙ TELLO, R. J. M. G.; VALADAO, C.; BASTOS FILHO, T. F. Control de una Silla de
Ruedas Robótica de Alto Rendimiento por Medio de Potenciales Evocados Visuales.
In: VI Congreso Internacional de Diseño, Redes de Investigación y Tecnología para
todos, DRT4ALL 2015, 2015, Madrid (Spain), 2015.

∙ TELLO, R. J. M. G.; BISSOLI, A.; FERRARA, F.; BASTOS FILHO, T. F. A
High Performance Human-Computer Interface to Control a Robotic Wheelchair
and an Intelligent Environment. In: VI Congreso Internacional de Diseño, Redes de
Investigación y Tecnología para todos, DRT4ALL, Madrid (Spain), 2015.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F.; FERREIRA,
A. Comparison of New Techniques Based on EMD for Control of a SSVEP-BCI. In:
IEEE International Symposium on Industrial Electronics, Istanbul (Turkey). 2014.
p. 1-4.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F.; FERREIRA, A.
A Comparison of Techniques and Technologies for SSVEP Classification. In: IEEE-
ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better
and Safer Living (BRC), Salvador (Brazil), 2014.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F.; FERREIRA,
A. Comparison Between Wire and Wireless EEG Acquisition Systems Based on
SSVEP in an Independent-BCI. In: 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC 14). Chicago (USA).
2014.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F.; FERREIRA,
A. Towards the portability of an Independent-BCI based on SSVEP. In: Congresso
Brasileiro de Engenharia Biomédica (CBEB), Uberlandia (Brazil). 2014.

∙ POMER-ESCHER, A.; TELLO, R. J. M. G.; SOUZA, M. D.; BASTOS FILHO,
T. F. Análise de estresse e fadiga em bombeiros através de EEG. In: Congresso
Brasileiro de Engenharia Biomédica (CBEB), 2014, Uberlandia (Brazil). 2014.

∙ TELLO, R. J. M. G.; MULLER, S. M. T.; BASTOS FILHO, T. F.; FERREIRA,
ANDRE. Evaluation of different stimuli color for an SSVEP-based BCI. In: XXIV
Congresso Brasileiro de Engenharia Biomédica (CBEB), Uberlandia (Brazil). 2014.

∙ TELLO, R. J. M. G.; POMER-ESCHER, A.; BASTOS FILHO, T. F. Análisis del
nivel de fatiga basado en EEG en bomberos profesionales. In: VI Jornadas AITADIS
de Rehabilitación y Tecnologías de Apoyo a la Discapacidad, Asuncion (Paraguay).
2014.
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∙ POMER-ESCHER, A.; TELLO, R. J. M. G.; BASTOS FILHO, T. F. Analysis of
mental fatigue in motor imagery and emotional stimulation based on EEG. In: XXIV
Congresso Brasileiro de Engenharia Biomédica (CBEB) 2014, Uberlandia (Brazil),
2014.
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