
Universidade Federal do Espírito Santo
Centro Tecnológico

Programa de Pós-Graduação em Informática

Mauro Cesar Martins Campos

Development of an Entropy-Based Swarm Algorithm for
Continuous Dynamic Constrained Optimization

Vitória ES, Brazil
2017

Mauro Cesar Martins Campos

Development of an Entropy-Based Swarm Algorithm for
Continuous Dynamic Constrained Optimization

Tese apresentada ao Programa de Pós-
Graduação em Informática do Centro
Tecnológico da Universidade Federal do
Espírito Santo, como requisito parcial
para obtenção do grau de Doutor em
Ciência da Computação.

Vitória ES, Brazil
2017

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Setorial Tecnológica,

Universidade Federal do Espírito Santo, ES, Brasil)

 Campos, Mauro Cesar Martins, 1972-
C198d Development of an entropy-based swarm algorithm for

continuous dynamic constrained optimization / Mauro Cesar
Martins Campos. – 2017.

 121f. : il.

 Orientador: Renato Antonio Krohling.
 Tese (Doutorado em Ciência da Computação) – Universidade

Federal do Espírito Santo, Centro Tecnológico.

 1. Entropia. 2. Enxame de partículas – PSO (Particle Swarm

Optimization) 3. Otimização em ambientes dinâmicos. 4. Índice de
diversidade. 5. TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution). I. Krohling, Renato Antonio. II.
Universidade Federal do Espírito Santo. Centro Tecnológico. III.
Título.

 CDU:

Agradecimentos

A Deus, meu Pai, por me abençoar em todos as situações da minha vida. Graças te dou por me proteger, me ouvir
e, apesar das minhas limitações, me propor caminhos para ter uma vida em comunhão com o Senhor e com
seu Filho, Jesus Cristo, único Intercessor e Salvador.

“Tomé disse: Senhor, não sabemos para onde vais. Como podemos conhecer o caminho? Jesus respondeu:
Eu sou o caminho, a verdade e a vida. Ninguém vai ao Pai senão por mim. Se me conhecestes, conhecereis

também o meu Pai. Desde já o conheceis e o tendes visto.”
(Jo 14, 5-7)

Aos meus Pais (Joel e Maria) por tudo desde sempre. Pela vida, pelos esforços dedicados à minha criação e,
principalmente, pelo amor incondicional em todos os momentos.

À minha linda namorada (Daniela) pelo amor, carinho, apoio e paciência, especialmente nos últimos anos.

Ao Professor Renato Krohling pela indicação do tema de tese, pela orientação durante o desenvolvimento dos
estudos e trabalhos, e pela disponibilidade em todos os momentos.

Aos Membros da Banca Examinadora pela participação na defesa deste trabalho e também pelos questionamentos,
contribuições e correções que melhoraram a versão final da tese.

Ao Programa de Pós-Graduação em Informática (PPGI) da Universidade Federal do Espı́rito Santo (UFES) pela
estrutura acadêmica durante o desenvolvimento do trabalho.

Aos Professores do PPGI/UFES por tudo que aprendi nas disciplinas do programa. Oportunidade verdadeira para
ampliar meus conhecimentos e crescer profissionalmente.

A UFES pela fundamental autorização de afastamento das minhas atividades docentes e administrativas, junto
ao Departamento de Estatı́stica (DEST) do Centro de Ciências Exatas (CCE) da Universidade, para fins de
estudos e aperfeiçoamento no PPGI/UFES.

Aos Professores do DEST/CCE/UFES pelo apoio ao meu afastamento.

v

Statement of Originality

The research work contained in this thesis has not been previously submitted for any degree or diploma at any
other university. This thesis is an original work and does not contain any material previously published by another
person, except where appropriate references are made. It is the product of my own work and all sources and
received assistance in its development have been cited and recognized.

Mauro Cesar Martins Campos
May 8, 2017
Vitória ES, Brazil.

vi

Abstract

Dynamic constrained optimization problems form a class of problems where the objective function or the con-
straints can change over time. In static optimization, finding a global optimum is considered as the main goal.
In dynamic optimization, the goal is not only to find an optimal solution, but also track its trajectory as closely
as possible over time. Changes in the environment must be taken into account during the optimization process in
such way that these problems are to be solved online. Many real-world problems can be formulated within this
framework. This thesis proposes an entropy-based bare bones particle swarm for solving dynamic constrained
optimization problems. The Shannon’s entropy is established as a phenotypic diversity index and the proposed al-
gorithm uses the Shannon’s index of diversity to aggregate the global-best and local-best bare bones particle swarm
variants. The proposed approach applies the idea of mixture of search directions by using the index of diversity as
a factor to balance the influence of the global-best and local-best search directions. High diversity promotes the
search guided by the global-best solution, with a normal distribution for exploitation. Low diversity promotes the
search guided by the local-best solution, with a heavy-tailed distribution for exploration. A constraint-handling
strategy is also proposed, which uses a ranking method with selection based on the technique for order prefer-
ence by similarity to ideal solution to obtain the best solution within a specific population of candidate solutions.
Mechanisms to detect changes in the environment and to update particles’ memories are also implemented into
the proposed algorithm. All these strategies do not act independently. They operate related to each other to tackle
problems such as: diversity loss due to convergence and outdated memories due to changes in the environment.
The combined effect of these strategies provides an algorithm with ability to maintain a proper balance between
exploration and exploitation at any stage of the search process without losing the tracking ability to search an
optimal solution which is changing over time. An empirical study was carried out to evaluate the performance of
the proposed approach. Experimental results show the suitability of the algorithm in terms of effectiveness to find
good solutions for the benchmark problems investigated. Finally, an application is developed, where the proposed
algorithm is applied to solve the dynamic economic dispatch problem in power systems.

vii

Abbreviations

BBPSO Bare bones particle swarm optimization
CMAES Covariance matrix adaptation evolution strategy
COPs Constrained optimization problems
DCOPs Dynamic constrained optimization problems
DCTC Dynamic constrained TCell
DMOOPs Dynamic multi-objective optimization problems
EBBPSO-T Entropy-based BBPSO
ES Evolution strategies
FIPS Fully informed particle swarm
GA Genetic algorithm
Gbest Global best
GBBPSOwJ Generalized BBPSO with jumps
GSA Gravitational search algorithm
G24 G24 benchmark set of DCOPs
HC Hill-climbing
Lbest Local best
ML Maximum likelihood
MCDC Multi-criteria decision making
MOOPs Multi-objective optimization problems
MSE Mean square error
pdf Probability density function
PSO Particle swarm optimization
SA Simulated annealing
SI Swarm intelligence
SMN Scale mixtures of normal distributions
SMABBPSO Scale matrix adaptation BBPSO
SUOPs Static unconstrained optimization problems
TOPSIS Technique for order of preference by similarity to ideal solution
UOPs Unconstrained optimization problems

viii

Notation

R Set of real numbers
RD D-dimensional real Euclidean space, where RD = R×·· ·×R
T Set of discrete times
t Discrete time
S Search space, where S⊂ RD

F Feasible space, where F⊂ S
F(t) Feasible space, where F(t)⊂ S for all t ∈ T
x Vector of decision variables, where x = (x1, . . . ,xD)

′ ∈ RD

N(x,r) Neighborhood of center x ∈ RD and radius r > 0
Ld Lower bound of xd
Ud Upper bound of xd
[U,L] Set defined as [L1,U1]×·· ·× [LD,UD]
f (x), f (x, t) Objective function
gi(x),gi(x, t) Constraint function
hi(x),hi(x, t) Constraint function
L(x,µµµ,λλλ) Lagrangian function
L(x, t,µµµ,λλλ) Lagrangian function
x̄ Feasible optimal solution
x∗ Best solution found by an optimization algorithm
f̄ = f (x̄) Objective value of x̄
f ∗ = f (x∗) Objective value of x∗
f̄ = f (x̄, t) Objective value of x̄ at time t
f ∗ = f (x∗, t) Objective value of x∗ at time t
s(x, t) Degree of constraint violation of x at time t
u(x, t) Number of constraints violated by x at time t
κ Parameter of the G24 set that determines the severity of objective function changes
S Parameter of the G24 set that determines the severity of constraint changes
∆ Window where the dynamic problem remains constant
δ ,C1,C2,Ra Other numerical parameters of the G24 set
τ = 0,1,2,3, . . . Iteration counter
P Swarm of particles
K Number of particles in the swarm
N Neighborhood system
Nk Neighborhood of a particle, where k = 1, . . . ,K
xk Position of a particle
vk Velocity of a particle
pk Personal-best position of a particle (pbest)
nk Local-best position of a particle (lbest)
g Global-best position (gbest)
BEST(x1,x2, . . .) Best solution with respect to objective f
x,y, . . . Random variables
x∼ p(x) Density of x
x,y∼ p(x,y) Joint density of x and y
x|y∼ p(x|y) Conditional density of x given y

ix

E(x) Mean of x
Var(x) Variance of x
Cov(x,y) Covariance of x and y
Unif(x|a,b) Uniform distribution in (a,b)
Ga(x|a,b) Gamma distribution
N(x|µ,σ2) Normal distribution
t(x|ν ,µ,σ2) t-distribution
r1,2 ∼ Unif(0,1) Random numbers in (0,1)
z∼ N(0,1) Standard normal distribution
x,y, . . . Random vectors
x∼ p(x) Density of x
µµµ = E(x) Mean vector of x
ΣΣΣ = Cov(x) Covariance matrix of x
N(x|µµµ,ΣΣΣ) Multivariate normal distribution
t(x|ν ,µµµ,ΣΣΣ) Multivariate t-distribution
πππ = (π1, . . . ,πM) Discrete distribution with M states
Dq(πππ) Measure of diversity of πππ

H (πππ) Shannon’s entropy of πππ

I (πππ) Information of πππ , where I (πππ) = 1−H (πππ)
θθθ Parameter (can be a scalar, vector, or matrix)
L(θθθ |x) Likelihood function of θθθ for fixed x
θ̂θθ Estimator of θθθ

Ĥ Shannon’s entropy estimator (Shannon’s index of diversity)
Ŵ Information estimator, where Ŵ = 1−Ĥ
A1, . . . ,Am Feasible alternatives
C1, . . . ,Cn Evaluation criterion
w j Weight of C j
xi j Performance rating of Ai under C j
D,Dn,Dw decision matrices
p+ Positive ideal solution
p− Negative ideal solution
∇x f (x̄) Gradient of f
∇2

x f (x̄) Hessian of f
∇xg(x̄) Jacobian of g

x

List of Figures

1.1 Economic dispatch of quantities produced by a system composed by n units. 8

2.1 Graphical representation of the G24-1 problem (Example 2.1). 20
2.2 Graphical representation of the G24-3 problem (Example 2.2). 21
2.3 Graphical representation of the G24-4 problem (Example 2.3). 22

3.1 MLE (red) of πππ ∼ p(m|100,0.3) (black) while n varies from 4 to 1024. 31
3.2 Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.2) while n varies from 4 to 4096. 32
3.3 Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.5) while n varies from 4 to 4096. 33
3.4 Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.8) while n varies from 4 to 4096. 34

4.1 The flowchart of EBBPSO-T . 45
4.2 Convergence plot for the G24-3 problem. 48
4.3 Shannon’s index of diversity. 48
4.4 Convergence plot for the G24-4 problem. 48
4.5 Shannon’s index of diversity. 48

5.1 Graphical representation of the results presented in Table 5.4. Box-plots of the offline errors for
each investigated algorithm: EBBPSO-T (with ν = 1.0 and 2.1), GSARepair (A19), dGenocop
(A18), Genocop (A14), GenocopwUPCwNRR (A17), dRepairHyperM-OOR (A13), dRepairRIGA-
OOR (A12), dRepairRIGA (A9), dRepairGA-OOR (A11), dRepairHyperM (A10). 55

5.2 Execution time for four swarm algorithms tested on the G24 set. 60
5.3 Offline error for EBBPSO-T with different neighborhood topologies tested on the G24 set. 60
5.4 Effect of the parameter ν on the performance of EBBPSO-T when the algorithm is applied to solve

the G24-4 problem. 61

B.1 Star structure. 90
B.2 Ring structure. 90
B.3 Von Neumann structure. 91
B.4 Four-clusters structure. 91
B.5 The convergence domain in the (c,w)-parameter space. 94
B.6 (a) Non-oscillatory convergence (◦, c = 0.20, w = 0.10). (b) Convergence with harmonic oscil-

lations (4, c = 0.10, w = 0.90). (c) Fast zigzagging convergence with harmonic oscillations (♦,
c = 1.70, w = 0.60). (d) Slow zigzagging convergence with harmonic oscillations (×, c = 3.00,
w = 0.90). (e) Zigzagging convergence (+, c = 2.10, w = 0.10). (f) Explosion (5, c = 3.00,
w = 0.20). See Figure B.5 to locate the point (c,w) according to the symbols ◦,4,♦,×,+, and5. 95

B.7 Distribution of points sampled by a PSO with inertia weight constituted of a single particle in two
dimensions, and considering p = (2,1)′ and g = (1,3)′. Note that µµµ = 1

2 (p+ g) = (3
2 ,2)

′ and
σσσ = |p−g|= (1,2)′. 99

B.8 Convergence plots for SMA-BBPSO (solid line), PSO (dashed line), BBPSO (dotted line), BBP-
SOwJ (dot-dash line), FIPS (long-dash line), and Lévy BBPSO (two-dash line) over nine bench-
mark functions. 107

B.9 Focus and spread of the search volume of a single particle in the SMABBPSO when τ increases. . 109

D.1 Box-plots of offline errors for each tested algorithm. 119

xi

List of Tables

1.1 Optimization problem classification . 4

2.1 Global optimum of the G24-1 problem for different environments (see Example 2.1). 20
2.2 Global optimum of the G24-3 problem for different environments (see Example 2.2). 21
2.3 Global optimum of the G24-4 problem for different environments (see Example 2.3). 22
2.4 Properties of each test problem in the G24 benchmark set. 23

4.1 Best solution using EBBPSO-T for the G24-3 problem (see Example 4.1). 47
4.2 Best solution using EBBPSO-T for the G24-4 problem (see Example 4.2). 47

5.1 Characteristics of the swarm algorithms investigated in the G24 set. 51
5.2 Mean and standard deviation of offline errors for four algorithms tested on 18 problems of the G24

set. 52
5.3 Mean and standard deviation of offline errors for four algorithms tested on 18 problems of the G24

set. 53
5.4 Comparison of the algorithm EBBPSO-T with respect to 9 other algorithms on 18 problems of the

G24 set. 54
5.5 Overall performance of EBBPSO-T over the G24 set of DCOPs. 57
5.6 Mean and standard deviation of execution times (in seconds) for four swarm algorithms tested on

18 problems of the G24 set. 58
5.7 Mean and standard deviation of offline errors for EBBPSO-T (ν = 1.0) with different neighborhood

topologies. 59
5.8 Mean of offline errors, best-errors-before-change, and execution times for EBBPSOT (ν = 1.0)

with different population sizes. 59
5.9 Generating units’ characteristics for 5-unit system. 63
5.10 Best generator schedule using EBBPSO-T for 5-unit system. 63

B.1 Benchmark problems used in the experiments. 104
B.2 Values of β used by SMABBPSO for each benchmark function. 104
B.3 Comparisons between SMABBPSO, PSO, BBPSO, BBPSOwJ, FIPS, CLPSO, Lévy BBPSO, ES,

and CMAES . 105
B.4 Wilcoxon signed-ranks test for pairwise comparisons of algorithms on each benchmark function . 106
B.5 Wilcoxon signed-ranks test for pairwise comparisons of algorithms on the set of benchmark functions108

D.1 Offline errors for different algorithms in the medium settings. Part I. 120
D.2 Offline errors for different algorithms in the medium settings. Part II. 121

xii

Contents

Agradecimentos v

Abstract vii

Abbreviations viii

Notation ix

List of Figures xi

List of Tables xii

I Introduction 1

1 Contextualization and Objectives 2
1.1 Overview of optimization . 2
1.2 Dynamic constrained optimization . 7
1.3 Objectives . 9
1.4 Contributions . 9
1.5 Thesis structure . 10

II Problem Definition and Methodology 12

2 Dynamic Constrained Optimization 13
2.1 Problem definition . 13
2.2 Essential characteristics of dynamic optimization problems . 14
2.3 Optimality conditions . 14
2.4 Population-based metaheuristics for dynamic optimization . 15
2.5 Benchmark problems . 16
2.6 Examples of benchmark problems . 18
2.7 Advantages and limitations of the benchmark problems . 19
2.8 Algorithmic attributes to deal with dynamic optimization problems 23
2.9 Performance measures . 24

3 Densities, Entropy, and Ranking 25
3.1 Probability densities . 25
3.2 Scale mixtures of normal distributions . 28
3.3 The Shannon’s entropy . 28
3.4 Entropy properties . 29
3.5 Diversity and entropy . 29
3.6 Entropy estimation . 30
3.7 Ranking decision alternatives . 34

xiii

Contents

4 Entropy-Based Bare Bones Particle Swarm for Dynamic Constrained Optimization 37
4.1 Introduction . 37
4.2 Swarm structure . 38
4.3 Index of diversity . 38
4.4 Dynamic rule . 39
4.5 Constraint handling . 41
4.6 Change detection . 42
4.7 Convergence analysis . 43

III Results, Discussion, and Conclusion 49

5 Experimental Results 50
5.1 Benchmark problems . 50
5.2 Experimental setup . 50
5.3 Results and discussion . 51

5.3.1 Offline error . 51
5.3.2 Comparisons with other algorithms . 53
5.3.3 Execution time . 57

5.4 Effect of varying the neighborhood topology . 57
5.5 Effect of varying the population size . 58
5.6 Effect of varying the parameter ν . 58
5.7 Application . 59

5.7.1 The economic dispatch problem . 59
5.7.2 The dynamic economic dispatch problem . 62

6 Conclusion 64
6.1 Summary and conclusions . 64
6.2 Future studies . 65

Bibliography 67

IV Appendices 74

A Optimization 75
A.1 Mathematical background . 75

A.1.1 Topological concepts in Rn . 75
A.1.2 Functions . 76
A.1.3 Convexity . 76

A.2 Global and local minima . 76
A.3 Optimization problems . 77
A.4 Existence of solutions . 77
A.5 Minimization of a convex function . 78
A.6 Optimality conditions . 78

A.6.1 Unconstrained optimization . 78
A.6.2 Constrained optimization . 78

A.7 Single-point numerical methods for optimization . 80
A.7.1 Gradient method . 81
A.7.2 The Newton-Raphson method . 81
A.7.3 The BFGS method . 81

A.8 Single-point metaheuristics for optimization . 82
A.8.1 Hill-climbing . 82
A.8.2 Simulated annealing . 83

A.9 Population-based metaheuristics for optimization . 84
A.9.1 Swarm computation . 84

xiv

Contents

A.9.2 Evolutionary computation . 84
A.10 The no-free-lunch theorem . 85

B Swarm Computation for Unconstrained Optimization 86
B.1 Introduction . 86
B.2 Particle swarm optimization and its early variants . 86

B.2.1 PSO with velocity clamping . 88
B.2.2 PSO with inertia weight . 89
B.2.3 PSO with neighborhood system . 89

B.3 Particle swarm optimization with constriction factor . 91
B.4 Fully informed particle swarm . 92
B.5 Convergence analysis of the PSO algorithm . 93
B.6 Bare bones particle swarm optimization . 98
B.7 Bare bones particle swarm with heavy-tailed distributions . 99
B.8 Scale matrix adaptation bare bones particle swarm . 101

B.8.1 Swarm structure and dynamic rule . 102
B.8.2 Experimental setup . 103
B.8.3 Results . 104
B.8.4 Discussion . 108

B.9 Convergence analysis of the SMABBPSO algorithm . 108

C Constraint Handling Methods in Swarm Computation 110
C.1 The penalty function method . 110

C.1.1 Static penalty . 111
C.1.2 Dynamic penalty . 112
C.1.3 Adaptive penalty . 113

C.2 Superiority of feasible solutions . 113
C.3 Ranking methods . 114

C.3.1 Stochastic ranking . 115
C.3.2 α-constrained method . 115
C.3.3 Addition of ranking terms . 116
C.3.4 TOPSIS-based ranking . 117

C.4 Multi-objective optimization concepts to handle constraints . 118

D Previous Results for the G24 set of DCOPs 119

xv

Part I

Introduction

1

Chapter 1

Contextualization and Objectives

1.1 Overview of optimization
Many problems of operations research, data analysis, and engineering may be formulated as optimization problems.
Managers aim to maximize efficiency in the operation of their production processes. Data analysts aim to maximize
or minimize decision criteria to build data-driven models for different random processes. Investors seek to create
portfolios that avoid excessive risk while achieving a high rate of return. Many other examples can be mentioned,
where it is necessary to identify the most desirable solution to be applied in a given situation to produce the best
possible response. Optimization problems motivate and generate the development of a scientific field known as
optimization theory.

To precisely capture the concept of optimization, the concept of system is introduced. A system is a collection
of interdependent elements working together with the purpose of processing an input x = (x1, . . . ,xD)

′ to produce a
response (or an output) y1. The problem of identifying the best feasible input to produce the best possible response
for a given system is called optimization2.

The solution to an optimization problem is usually obtained through a process that occurs in stages. The first
stage of this process is known as modelling, which is the construction of a model for the system under study.
This means translating the original system to a mathematical structure that can be handled through analytical or
computational methods. The model is a mathematical representation of the main features of the system that emulate
the observable reality associated with it. In optimization, a possible model for a system is initially formulated as
a function f relating the input x = (x1, . . . ,xD)

′ to the response y = f (x). This function is called the objective
function and the components of the input are usually called decision variables. Since the decision variables affect
the quality of the response of the system, the objective function is built in such a way that the most desirable
values for the decision variables correspond to the best possible responses of the system, i.e., the extremal values
of the objective function. Thus, the original problem is transformed to an equivalent problem of minimization (or
maximization) of a function. The main goal is to find values for the decision variables that minimize (or maximize)
the objective function. Often the decision variables are constrained in some way. As a result, a set of constraints
establishes the possible values that each decision variable can assume. In summary, modelling is the process of
identifying of the decision variables, objective function, and constraints for a given real-world system under study.
The problem of minimizing (or maximizing) the objective function subject to constraints on its variables works as
the related optimization problem. If the model is too simplistic, it cannot provide useful information on the system.
If the model is too complex, it may be very difficult to solve. A good model represents a compromise between
complexity and capacity to capture the essential features of the system under study. The main advantage of a
well-constructed model is that it offers a means of identifying and modifying the features of a system to produce
the best possible response without requiring its actual construction, thus saving time and cost.

The second stage of an optimization process is to find a solution for the model. Once the model has been for-
mulated, a method can be used to find its solution. There is no universal method for this task but rather a collection
of analytical and computational methods, which are applied to different classes of optimization problems. The
choice of the method that is appropriate for a specific application often falls on the model builder.

1A system can also have a feedback mechanism beyond input and output.
2Note that the word “optimization” is being used both to identify a scientific field and to identify its main problem.

2

Part I Chapter 1

The last stage of an optimization process occurs after a solution has been obtained. This stage is to check the
suitability of the proposed solution. In many cases, it is possible to use expressions known as optimality conditions
for checking whether the current set of values for the decision variables is indeed a solution of the problem. The
model may be improved by applying techniques such as sensitivity analysis, which reveal the sensitivity of a
solution to changes in the model. Interpretation of the solution in terms of the application may also suggest ways
in which the model can be improved. Finally, if any change is made in the model, a new optimization procedure is
again applied following what has been described here.

The following notation will be used to describe the general form of an optimization problem. The discussion
will be restricted to problems with continuous decision variables:

Decision variables. The vector x = (x1, . . . ,xD)
′ ∈ RD represents a container for D decision variables that affect

the value of the objective function.

Objective. The function f represents the objective function that is a real-valued function of x to be minimized
(or maximized) and f (x) is the objective function value of a solution x. Sometimes, f is also called of cost
function or fitness function and, consequently, f (x) is called cost of x or fitness of x.

Constraints. The numbers Ud and Ld are respectively the upper and lower bounds of the dth component of x.
These constraints are boundary constraints that define the domain of values for each decision variable and
these bounds define the search space of the problem as

S= [L1,U1]×·· ·× [LD,UD] = [L,U]⊂ RD. (1.1)

However, constraints can be more complex. In this case, gi and h j are real-valued functions of x that define
certain equations of inequality (gi(x) ≤ 0 for i = 1, . . . , I) and equality (h j(x) = 0 for j = 1, . . . ,J) that a
candidate solution x must satisfy. That is, gi and h j are constraint functions and gi(x)≤ 0 and h j(x) = 0 are
constraints that further restrict the values that can be assigned to x. The set

F= {x ∈ S : g1(x)≤ 0, . . . ,gI(x)≤ 0,h1(x) = 0, . . . ,hJ(x) = 0} (1.2)

is called the feasible space and a point x ∈ S that satisfies all the constraints (i.e., a point x ∈ F⊂ S) is called
a feasible solution to the problem.

Optimal solution. A point x̄ ∈ F is a global minimum of f on F if f (x̄) ≤ f (x) for all x ∈ F. If x̄ is a global
minimum of f on F, then x̄ is also called a minimizer of f on F. A point x̄ ∈ F is a local minimum of f on
F if f (x̄) ≤ f (x) for all x in neighborhood3 of x̄. Every global minimum is also a local minimum, but the
opposite is not true.

Using this notation, a constrained optimization problem (COP) is usually written as follows:

min f (x) where x = (x1, . . . ,xD)
′ ∈ RD

subject to gi(x)≤ 0 i = 1, . . . , I
h j(x) = 0 j = 1, . . . ,J
Ld ≤ xd ≤Ud d = 1, . . . ,D.

(1.3)

A COP is solved when a global minimum of f on F is found (when such solution exist). If there is a global
minimum x̄ for the problem, then f̄ = f (x̄) = min{ f (x) : x ∈ F} is the global minimum value of f on F and
that value is unique. However, note that the global minimum value may be reached by many global minimizers.
In practice, it may be difficult to find a global minimizer, then a good alternative solution can be when a local
minimizer is found. In addition, it is important to emphasize that a point x̄ is a maximum of a function f2 on
F if and only if x̄ is a minimum of f1 on F, where f1 is a function whose value at any point x ∈ F is given
by f1(x) = − f2(x). This means that a maximization problem can be converted into a minimization problem by
multiplying the objective function by −1.

An unconstrained optimization problem (UOP) occurs when I = J = 0 and S= F. Therefore, formally an UOP
is written as follows:

min f (x) where x = (x1, . . . ,xD)
′ ∈ RD

subject to Ld ≤ xd ≤Ud d = 1, . . . ,D.
(1.4)

Optimization problems can be categorized into different classes based on the properties of the objective func-
tion and the search space. Standard classes of problems are discussed as follows:

3A neighborhood of center x̄ ∈ RD and radius r > 0 is defined by N(x̄,r) = {x ∈ RD : d(x̄,x)< r}. For more details, see Appendix A.

3

Part I Chapter 1

Single- versus multi-objective optimization. When the quantity to be optimized is expressed using only one ob-
jective function, then the problem is referred to as single-objective optimization. Multi-objective optimiza-
tion problems specify more than one objective to be optimized simultaneously. In this case, having several
objective functions, the concept of optimal solution for the problem changes to the concept of trade-off (or
compromise), i.e., a solution in which one must balance the objectives that are in conflict and cannot be
satisfied at the same time. In these problems, the main goal is to find a set of trade-offs (or compromises)
between the objectives rather than an optimal solution as in single-objective optimization.

Static versus dynamic optimization. When the objective function and the constraints do not vary over time, then
the problem is referred to as static optimization. Dynamic optimization problems refer to problems that
involve either time-varying objective functions or time-varying constraints. The goal in this case is to track
the position of the optimal solution as soon as it moves in the search space as a consequence of changes in
objective function or constraints.

Unconstrained versus constrained optimization. When the problem uses only boundary constraints, then the
problem is referred to as unconstrained optimization. Constrained optimization problems have additional
equality or inequality constraints. The goal in this case is to find an optimal solution satisfying all constraints
of the problem, i.e., a feasible optimal solution.

Univariate versus multivariate optimization. When the objective function and the constraints are influenced by
only a single decision variable, then the problem is referred to as univariate optimization. Multivariate
optimization problems involve more than one decision variable.

Continuous versus discrete optimization. When the decision variables are continuous-valued variables, then the
problem is referred to as continuous optimization. Discrete optimization problems involve decision variables
that assume values in a countable set, i.e., a set whose elements can be put into a one-to-one correspondence
with the natural numbers 1,2,3, Note that the size of a countable set does not have to be finite, it can be
infinite as well.

It is important to note that these problem classes have intersections. For example, it is possible to have a dynamic
constrained optimization problem (DCOP) to be solved that involves only continuous decision variables. This
classification is summarized in Table 1.1.

Table 1.1: Optimization problem classification
Optimization
Objective(s) Environment Search Space Problem Abbreviation
Single-objective Static Unconstrained Unconstrained optimization problem UOP

Constrained Constrained optimization problem COP
Dynamic Unconstrained Dynamic UOP DUOP

Constrained Dynamic COP DCOP
Multi-objective For more details about this class of problems, see Section C.4 (Abbreviation: MOOP)
Optimization problem (OP)
Single-objective optimization problem (SOOP); Multi-objective optimization problem (MOOP)
Static environment (S); Dynamic environment (D)
Unconstrained search space (U); Constrained search space (C)

The difficulty in finding a solution for an optimization problem is heavily dependent on the form and mathemat-
ical properties of the objective function and the constraints describing the problem. On the other hand, optimization
is a scientific field extremely active. Many development cores are target of study and several methods have been
proposed for different classes of optimization problems.

It is possible that a solution can be obtained through an analytical method for a given optimization problem.
Appendix A presents a review of the optimization theory including its basic concepts, existence and uniqueness
theorems, and optimality conditions that characterize optimal solutions. For a detailed development of this theory,
the reader is referred to Luenberger & Ye (2008); Sundaram (1996), and Bazaraa, Sherall & Shetty (1993). Unfor-
tunately, analytical methods have a limited scope of application. In most real-world problems, complex systems
are described by complicated multidimensional functions that cannot be easily addressed by such methods. In this

4

Part I Chapter 1

cases, computational methods can be implemented to solve such optimization problems. It is clear that, under
this scope, only approximations of optimal solutions can be obtained. Appendix A also presents some algorithms
that exploit mathematical properties of the functions describing an optimization problem, such as continuity and
differentiability. These approaches use first- and second-order derivatives to achieve approximations of optimal
solutions. However, the necessary assumptions for their application are not usually met in practice. As a result,
derivative-based methods also have a limited scope of application.

Many real-world optimization problems have characteristics such as existence of discontinuity, lack of analyt-
ical representation of the objective function and the constraints, and existence of many optimal solutions (many
global minimizers). In addition, some real-world optimization problems also have time-varying objective functions
or time-varying constraints, which establish a dynamic environment where the problem must be solved. Given all
these circumstances, the applicability and effectiveness of classical algorithms are questionable, thus opening up
the opportunity for the development of different optimization algorithms for several classes of problems. Many
advances have been achieved in the last decades, especially in the field of nature-inspired metaheuristics for op-
timization problems. Two categories of metaheuristic algorithms can be highlighted at this point: swarm and
evolutionary computation. These terms are used to describe classes of algorithms that lie in the intersection of
two scientific fields: optimization and computational intelligence. These metaheuristics are usually adopted in
problems where classical optimization methods cannot be applied such as black-box optimization problems or
optimization problems in which probably neither the objective function nor the constraints are differentiable.

Evolutionary computation proposes optimization algorithms that are inspired by the process of natural evolu-
tion: the fittest members of a population have high chance of surviving to integrate the next generation or high
chance of transferring a part of their genetic material to their offspring that probably will be part of the next gener-
ation. In general, an evolutionary algorithm starts with a population of candidate solutions for a given optimization
problem, which are usually called individuals. This population is manipulated by selection, crossover and muta-
tion operators to generate a new population (or the next generation). Then, the objective function of the problem
is evaluated for each individual in the new population and those individuals associated with the best objective
function values will be selected with high probability to repeat the process again. Appendix A presents a generic
evolutionary algorithm that summarizes the main paradigms within evolutionary computation: genetic algorithms,
evolution strategies, and evolutionary programming.

Parallel to the development of evolutionary computation, a new category of optimization algorithms appeared in
the mid-90s. Instead of modelling the evolutionary process in microscopic level, this new category aimed to model
populations in a macroscopic level, in terms of social structures and collective behaviour. Once again, the nature
was offering inspiration and motivation to researchers. Since then, this new category of optimization algorithms
has developed under the name of swarm computation4. As in evolutionary algorithms, swarm algorithms use a
population of candidate solutions during the optimization process. The population is referred to as swarm and
its individuals are referred to as particles. Each particle (or potential solution) moves in the search space of the
problem obeying dynamic rules to update its position. The particles are capable of interacting with the environment
and with other particles, namely those particles in its neighborhood. Each particle searches an optimal solution
to a given optimization problem learning from its own past experience and from the experiences of its neighbors.
The swarm as a whole explores the search space, first at random, and then, when better solutions are found and
communicated, the swarm begins to converge by refining its search until a good enough solution is found.

This section ends with the discussion of two swarm algorithms to find approximations of optimal solutions for
optimization problems, namely: particle swarm optimization (PSO) (Kennedy & Eberhart, 1995; Shi & Eberhart,
1998; Clerc & Kennedy, 2002) and bare bones PSO (BBPSO) (Kennedy, 2003). The discussion of these algorithms
will be directed for solving UOPs. A detailed review on PSO and its variants for UOPs is provided in Appendix B.
Appendix C provides a survey on constraint-handling methods that can be incorporated in PSO and its variants for
solving COPs. For more details on swarm computation, the reader is referred to Engelbrecht (2007); Parsopoulos
& Vrahatis (2010), and Simon (2013). PSO and BBPSO are described as follows:

4Swarm computation is also known as swarm intelligence (SI) in the context of computational intelligence. SI is concerned with the design
of intelligent systems with many agents whose collective behaviour is inspired by the behaviour of social insects (ants, bees, and wasps) and
other animal societies such as bird flocks or fish schools. Examples of such systems include swarm robotic systems and swarm algorithms for
optimization problems. White & Pagurek (1998) define SI as a property of systems of unintelligent agents of limited individual capabilities
of exhibiting collectively intelligent behaviour. SI is also a scientific field where systems with many individuals are investigated in order to
exploit their collective behaviour to solve complex problems. Generally, this collective behaviour emerges from relatively simple actions and
interactions between the individual members of the systems. Even though a single member is a non-sophisticated individual, the system as
whole is able to achieve complex tasks in cooperation. This process of self-organization to realize complex tasks is spontaneous and it is not
coordinated by a centralized control, but it arises out of decisions in group.

5

Part I Chapter 1

Swarm. Let S ⊂ RD be the search space of an objective function f to be minimized over S. To tackle this task,
consider a swarm P with K particles. The position of a particle is denoted by a D-dimensional vector
xτ

k = (xτ
k1, . . . ,x

τ
kD)
′ in S. The index k (k = 1, . . . ,K) labels the k-th particle in P and the index τ (τ = 1,2, . . .)

represents the iteration counter of the algorithm.

Neighborhood. Each particle has a neighborhood consisting of a set of particles which it can communicate with.
The neighborhood of a particle is denoted by Nk and the neighborhood system N = {Nk : k = 1, . . . ,K}
represents a communication structure often thought of as a social network. There is a number of different
schemes to connect the particles. Most implementations use one of two simple sociometric principles. The
first, called global topology (also known as global-best model or Gbest model), connects each particle in the
population with all others, i.e., Nk = P for all k. The second, called local topology (also known as local-best
model or Lbest model), creates a neighborhood for each particle comprising generally of the particle itself
and L neighbors in the population P, i.e., Nk ⊂P for all k, with |Nk|= L+1<K. Section B.2 (see Appendix
B) shows examples of neighborhood systems commonly used in swarm algorithms.

Memories. Each particle keeps the memory of the best solution found by itself during the search process (the
personal-best position found up to the current iteration or pbest position). In addition, the particles use
the neighborhood system to exchange information between them. As a result, each particle also keeps the
memory of the best solution found by any particle in its neighborhood during the search process (the local-
best position found up to the current iteration or lbest position). The personal-best and local-best positions
are respectively denoted by pτ

k = (pτ
k1, . . . , pτ

kD)
′ and nτ

k = (nτ
k1, . . . ,n

τ
kD)
′. If the global-best model (or Gbest

model) is used, then the global-best position found so far (or gbest position) is defined as the best personal-
best position. If the local-best model (or Lbest model) is used, then the gbest position is defined as the best
local-best position. The global-best position is denoted by gτ = (gτ

1, . . . ,g
τ
D)
′.

PSO. Clerc & Kennedy (2002) introduced the PSO with constriction factor. This variant of PSO is currently
known as standard PSO. The local-best PSO (or Lbest PSO) is initialized with a population of particles with
random positions and velocities. On initialization, p0

k = x0
k for all k and

n0
k = BEST(p0

l : l ∈Nk) = argmin{ f (p0
l) : l ∈Nk} (1.5)

for all k. The particles are influenced by their own previous experiences and by the experiences of their
neighbors. Thus, the velocity of a particle is updated by

vτ+1
kd = χ[vτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(nτ
kd− xτ

kd) · r2] (1.6)

for all k, d, and τ ≥ 0. The change in its position is given by

xτ+1
kd = xτ

kd + vτ+1
kd (1.7)

for all k, d, and τ ≥ 0. In Eq. (1.6), r1 and r2 are random numbers uniformly distributed in the range (0,1),
ϕ = c1 + c2 > 4, and χ = 2/|2−ϕ−

√
ϕ2−4ϕ| is the constriction factor. After updating the position, the

personal-best position is given by
pτ+1

k = BEST(xτ+1
k ,pτ

k). (1.8)

Finally, the local-best position is given by

nτ+1
k = BEST(pτ+1

l : l ∈Nk). (1.9)

The process is repeated until some stopping criterion is met. At the end of the search process, the Lbest
PSO returns the global-best position g = BEST(nk : k = 1, . . . ,K) and the value of the objective function in
g. The parameter ϕ is commonly set to 4.1, c1 = c2 = 2.05, and χ ≈ 0.7298 (Clerc & Kennedy, 2002). The
global-best PSO (or Gbest PSO) updates the velocity of a particle as

vτ+1
kd = χ[vτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(gτ
d− xτ

kd) · r2] (1.10)

for all k, d, and τ ≥ 0, where gτ
d is the d-th component of the global-best position that is defined as gτ =

BEST(pτ
k : k = 1, . . . ,K) in this case. The essential steps of the PSO are summarized as the pseudo code

shown in Algorithm 1.

6

Part I Chapter 1

BBPSO. Kennedy (2003) introduced a variant of PSO named bare bones PSO (BBPSO). Kennedy proposed to
change the position of a particle according to a probability distribution rather than to add a velocity in the
current position, as is done in PSO. In BBPSO, the position of a particle is updated as

xτ+1
kd = µ

τ
kd +σ

τ
kd · z (1.11)

for all k, d, and τ ≥ 0, where

• µτ
kd = 0.5(pτ

kd +nτ
kd) or µτ

kd = 0.5(pτ
kd +gτ

d)

• σ τ
kd = |pτ

kd−nτ
kd | or σ τ

kd = |pτ
kd−gτ

d |
• z∼ N(0,1).

The symbol ∼ indicates that z is random variable which has normal distribution with mean 0 and variance 1
(for more details, see Chapter 3). The swarm explores the search space of a given problem by sampling of ex-
plicit probabilistic models constructed from the information associated with promising candidate solutions.
The search for solutions is the result of a constructive cooperation between particles by using probabilistic
models whose parameters are defined in terms of the information that is obtained during the optimization
process (pbest, lbest, and gbest positions). The essential steps of the BBPSO are summarized as the pseudo
code shown in Algorithm 1.

Algorithm 1 PSO and BBPSO for UOPs.
Input: D,K,N ,χ,c1,c2, and f

1: {Local-best PSO}
2: τ ← 0
3: for k ∈ {1, . . . ,K} do
4: Initialize xk and set vk ≈ 0
5: pk← xk
6: end for
7: for k ∈ {1, . . . ,K} do
8: nk← BEST(pl : l ∈Nk)
9: end for

10: repeat
11: τ ← τ +1
12: for k ∈ {1, . . . ,K} do
13: for d ∈ {1, . . . ,D} do
14: r1,r2 ∼ Unif(0,1)
15: vkd← χ[vkd +c1(pkd−xkd) ·r1+c2(nkd−xkd) ·r2]
16: xkd ← xkd + vkd
17: end for
18: pk← BEST(xk,pk)
19: end for
20: for k ∈ {1, . . . ,K} do
21: nk← BEST(pl : l ∈Nk)
22: end for
23: until some termination condition is met
24: g← BEST(nk : k = 1, . . . ,K)
25: return x∗ = g and f ∗ = f (g).

Input: D,K,N , and f
1: {Global-best BBPSO}
2: τ ← 0
3: for k ∈ {1, . . . ,K} do
4: Initialize xk
5: pk← xk
6: end for
7: g← BEST(pk : k = 1, . . . ,K)
8: repeat
9: τ ← τ +1

10: for k ∈ {1, . . . ,K} do
11: for d ∈ {1, . . . ,D} do
12: z∼ N(0,1)
13: µkd ← 0.5(pkd +gd)
14: σkd ← |pkd−gd |
15: xkd ← µkd +σkd · z
16: end for
17: pk← BEST(xk,pk)
18: end for
19: g← BEST(pk : k = 1, . . . ,K)
20: until some termination condition is met
21: return x∗ = g and f ∗ = f (g).

The decision to stop a swarm algorithm (PSO, BBPSO, and variants) can depend on several criteria related
to the problem information, resources, or the ability of the algorithm to obtain a good approximation of a global
optimum. Section A.7 (see Appendix A) describes some criteria that can also be used in swarm algorithms.

1.2 Dynamic constrained optimization
Dynamic constrained optimization problems (DCOPs) form a class of problems where the objective function or
the constraints can change over time. In static optimization problems, finding a global optimum is considered as

7

Part I Chapter 1

the main goal. In dynamic optimization problems, the goal is not only to find an optimal solution, but also track its
trajectory as closely as possible over time. Changes in the environment of the problem must be taken into account
during the optimization process in such way that these problems are to be solved online.

Many real-world applications are dynamic and consistently modelled as DCOPs. Examples of such problems
include:

1. economic dispatch of quantities produced by production units, when the total demand varies over time.

2. data analysis, where the contents of the database are continuously updated.

3. investment portfolio evaluation, where the assessment of investment risk varies over time.

4. financial trading models, where market conditions can change abruptly.

5. target recognition, where the sensor performance varies based on environmental conditions.

A prototype of the first problem listed above can be briefly described as follows. Consider a production system
composed by n units designed specifically to meet a total demand of quantities produced, which varies over time.
The main objective of this problem is to reduce the operational costs of the production system without violating
a set of security and efficiency constraints simultaneously. Therefore, a good solution is to find for each time
t a minimum cost production schedule, establishing the quantity xit that the unit Ui must produce at time t, for
all i = 1, . . . ,n, so that the demand Dt is met, taking into account losses during the delivery process and security
constraints for each production unit. Figure 1.1 shows a schematic diagram of this problem, which may be stated
formally as follows:

min ∑
n
i=1 Cost(xit , t) where t = 1,2, . . . , tmax

subject to ∑
n
i=1 xit = Dt +Lt for all t

0≤ xit − xi(t−1) ≤ Ai for all i, t
0≤ xi(t−1)− xit ≤ Bi for all i, t
xmin

i ≤ xit ≤ xmax
i for all i, t

(1.12)

where Ai,Bi,xmin
i , xmax

i are constants representing operational characteristics of the unit Ui.

U1

U2

Un

Dt

Units

.

.

.

x2t

x1t

xnt

Lt

Figure 1.1: Economic dispatch of quantities produced by a system composed by n units.

In general, a DCOP can be stated as follows (Liu, 2008; Nguyen & Yao, 2009; Nguyen, 2010; Nguyen & Yao,
2012; Aragón, Esquivel & Coello Coello, 2013; Pal et al., 2013; Fu et al., 2014; Campos & Krohling, 2014, 2016;
Mavrovouniotis, Li & Yang, 2017):

min f (x, t) where x = (x1, . . . ,xD)
′ ∈ RD and t ∈ T = {0,1,2, . . . , tmax}

subject to gi(x, t)≤ 0 i = 1, . . . , I
Ld ≤ xd ≤Ud d = 1, . . . ,D.

(1.13)

8

Part I Chapter 1

The decision variables contained in x are bounded by upper and lower bounds that define the search space S of the
problem and the variable t represents the discrete time. The function f (x, t) represents an objective function to be
minimized and gi(x, t) ≤ 0 are I inequality constraints. The functions f and gi are linear or nonlinear real-valued
functions. The inequality constraints define the feasible space F(t), such that F(t)⊂ S for all t ∈ T . For each value
of t ∈ T , solutions in F(t) are called of feasible solutions. A specific environment of a DCOP is defined by its full
configuration:

〈D,x ∈ RD, t, f (x, t),gi(x, t),Ld ,Ud : i = 1, . . . , I and d = 1, . . . ,D〉. (1.14)

For a fixed value of t, if there exists a solution x̄ ∈ F(t) such that f (x̄, t)≤ f (x, t) for all x ∈ F(t), then x̄ is called a
feasible optimal solution and f (x̄, t) is the optimal objective value of x̄ at time t. The main goal is to find a feasible
optimal solution for all t ∈ T . The reader is referred to Chapter 2 for a more detailed discussion on dynamic
constrained optimization.

DCOPs are clearly difficult problems. To deal with such optimization problems, algorithms must be able to
tackle various challenges throughout the optimization process, such as: detecting changes in the environment, re-
sponding efficiently to the changed environment, and updating memories that are implemented to keep promising
solutions. In addition, algorithms must be capable of maintaining a good balance between exploration (diversifica-
tion) and exploitation (intensification). Too much stress on exploration would result in pure global search and slow
convergence speed. On the other hand, too much stress on exploitation would result in pure local search and fast
loss of tracking ability (traceability) to search an optimal solution which is changing over time. As a consequence,
algorithms for DCOPs must contain several mechanisms to adequately address such problems, namely:

1. mechanism to detect changes in the environment.

2. mechanism to monitor the population diversity.

3. mechanism to maintain the proper balance between exploration and exploitation.

4. mechanism to deal with constraints and its dynamics.

5. mechanism to update memories keeping promising solutions.

1.3 Objectives
Swarm algorithms are traditionally designed to deal with optimization problems in static environments. However,
although swarm algorithms have shown potential to solve static problems, little attention has been paid to adapt
these algorithms to deal with dynamic optimization problems, which surely represents an important research gap to
be explored in swarm computation. The main objective of this thesis is to understand the characteristics of DCOPs
and to propose a new algorithmic methodology based on swarm computation for solving DCOPs. Formalized the
new algorithm, its performance should be compared to the performance of other approaches already established
as state-of-the-art in the field of dynamic constrained optimization. In addition, through experimental studies, the
main advantages and disadvantages of the new approach should be identified.

1.4 Contributions
This thesis proposes an entropy-based BBPSO (EBBPSO-T for short) for solving DCOPs. BBPSO has shown
potential to solve static optimization problems, but until recently it has not been adapted to deal with DCOPs. In
EBBPSO-T, the Shannon’s entropy (Shannon, 1948) is established as a phenotypic diversity index and the proposed
algorithm uses the Shannon’s index of diversity to aggregate the global-best and local-best BBPSO variants. The
proposed approach applies the idea of mixture of search directions, using the index of diversity as a factor to balance
the influence of the global-best and local-best search directions. High diversity promotes the search guided by the
global-best solution, with a normal distribution for exploitation. Low diversity promotes the search guided by the
local-best solution, with a heavy-tailed distribution for exploration (Andrews & Mallows, 1974; Choy & Chan,
2008). This dynamic rule works as a mechanism to maintain and introduce diversity during the search process.
A constraint-handling strategy is also proposed. It treats the objective function and the constraints separately
using a ranking method with selection based on technique for order of preference by similarity to ideal solution
(TOPSIS) (Hwang & Yoon, 1981; Behzadian et al., 2012) to obtain the best solution within a specific population of

9

Part I Chapter 1

candidate solutions (priv. comm., Krohling, 2012-2017). This constraint-handling strategy balances the objective
function against the degree of constraint violation in such a way that neither of them is dominant. Mechanisms to
detect changes in the environment and to update the particles’ memories are also implemented into the proposed
algorithm. The mechanism to detect changes in the environment is based on a fixed set of detectors uniformly
distributed in the search space (Richter, 2009; Richter & Dietel, 2010). The population of detectors differs fully
from particles that constitute the swarm, which means that this mechanism is not based on performance drop.
When a change in the environment is detected, a random-immigrants scheme acts to introduce diversity. Part of
the swarm is replaced with randomly generated particles and this strategy acts only on the first iteration of the
changed environment. Re-evaluation of fitness values and the ranking method combined with TOPSIS are also
used to update the particles’ memories. In summary, EBBPSO-T is endowed with mechanisms to maintain and
introduce diversity, handling constraints, detect changes in the environment, and update memories. It is important
to emphasize that these mechanisms do not act independently. They operate related to each other to tackle problems
such as: loss of diversity, outdated memories, and loss of tracking ability.

The main contribution of this thesis is to provide an adaptation of the BBPSO to deal with DCOPs using the
Shannon’s entropy as a decisive factor to maintain the proper balance between diversification and intensification
at any stage of the search process without loss of traceability to search an optimal solution which is changing over
time. The use of entropy is motivated by the relationship between entropy and population diversity. Experimental
results show the suitability of the new algorithm in terms of effectiveness to find good solutions for most of the
benchmark problems investigated. In addition, an application is developed, where EBBPSO-T is applied to solve
the dynamic economic dispatch problem (Abouheaf, Lee & Lewis, 2013), which is one of major problems in power
system operation.

1.5 Thesis structure
The remainder of this thesis is organized as follows:

Chapter 2 presents the background information on DCOPs. The problem is formally defined, its essential charac-
teristics are described, and optimality conditions are discussed. A literature review is presented, focusing on
recent works on swarm and evolutionary computation for dynamic optimization problems. A set of bench-
mark problems is presented and the advantages and limitations of this set of problems are critically discussed.
Finally, algorithmic attributes to deal with DCOPs are discussed along with performance measures used in
empirical studies designed to evaluate the performance of algorithms for solving DCOPs.

Chapter 3 compiles some definitions, concepts, and methods that are important for this thesis. It serves as a quick
reference for several topics as: random variables, entropy of a random variable, entropy estimation proce-
dures, relationship between diversity and entropy, and an exploratory method to rank decision alternatives
based on multi-criteria. These concepts and methods are essential to understand the subsequent development
of the proposed algorithm in this thesis for solving DCOPs.

Chapter 4 describes a new algorithmic methodology for solving DCOPs. The proposed algorithm, named as
EBBPSO-T, explores the principles of swarm computation jointly with the concepts and methods described
in Chapter 3 to design an approach for dealing with DCOPs. EBBPSO-T is endowed with different mecha-
nisms that are described in the context of dynamic optimization.

Chapter 5 presents an experimental analysis conducted to investigate the performance of EBBPSO-T when solv-
ing DCOPs. Results of experiments designed to evaluate the performance of the proposed algorithm are re-
ported and discussed along with experimental results obtained by other algorithms for comparison purposes.
An application is also developed, where EBBPSO-T is applied to solve the dynamic economic dispatch
problem in power systems.

Chapter 6 ends the work with conclusions and directions for future research.

Appendix A reviews the fundamentals of optimization theory. Basic concepts of theory, existence and uniqueness
of solutions, optimality conditions, and some computational methodologies are presented and discussed for
unconstrained and constrained optimization. The review aims to provide concepts and results related to the
main topic of research of this thesis.

10

Part I Chapter 1

Appendix B presents a short review about swarm algorithms for solving UOPs. Basic concepts are discussed,
including neighborhood systems for exchanging information between particles. A convergence analysis of
the standard PSO is presented along with guidelines for parameter selection. The review aims to provide
concepts and results related to the main topic of research of this thesis.

Appendix C provides a survey on constraint handling methods that have been adopted over the years to deal with
optimization problems in constrained search spaces. Special attention is given on how these methods can be
incorporated in swarm algorithms to solve COPs.

Appendix D summaries, for comparison purposes, several experimental results obtained by other algorithms when
their performances were tested on the benchmark problems of the G24 set of DCOPs.

Part of the research work presented in this thesis has been published in the following works:

1. M. Campos and R. A. Krohling. Entropy-based bare bones particle swarm for dynamic constrained opti-
mization. Knowledge-Based Systems, v. 97, pp. 203-223, 2016.
http://dx.doi.org/10.1016/j.knosys.2015.12.017

2. R. A. Krohling, R. Lourenzutti, and M. Campos. Ranking and comparing evolutionary algorithms with
Hellinger-TOPSIS. Applied Soft Computing, v. 37, pp. 217-226, 2015.
http://dx.doi.org/10.1016/j.asoc.2015.08.012

3. M. Campos, R. A. Krohling, and I. Enriquez. Bare bones particle swarm optimization with scale matrix
adaptation. IEEE Transactions on Cybernetics, v. 44(9), pp. 1567-1578, 2014.
http://dx.doi.org/10.1109/TCYB.2013.2290223

4. M. Campos and R. A. Krohling. Bare bones particle swarm with scale mixtures of Gaussians for dynamic
constrained optimization problems. In Proceedings of IEEE Congress on Evolutionary Computation, pp.
202-209, 2014.
http://dx.doi.org/10.1109/CEC.2014.6900256

5. M. Campos and R. A. Krohling. Hierarchical bare bones particle swarm for solving constrained optimiza-
tion problems. In Proceedings of IEEE Congress on Evolutionary Computation, pp. 805-812, 2013.
http://dx.doi.org/10.1109/CEC.2013.6557651

11

Part II

Problem Definition and Methodology

12

Chapter 2

Dynamic Constrained Optimization

This chapter presents the background information on dynamic constrained optimization problems (DCOPs). The
problem is formally defined, its essential characteristics are described, and optimality conditions are discussed.
A literature review is presented, focusing on recent works on swarm and evolutionary computation for dynamic
optimization problems. A set of benchmark problems is presented and the advantages and limitations of this set
of problems are critically discussed. Finally, algorithmic attributes to deal with DCOPs are discussed along with
performance measures used in empirical studies designed to evaluate the performance of algorithms for solving
DCOPs.

2.1 Problem definition
Without loss of generality, the general form of a dynamic constrained optimization problem (DCOP) is usually
written as follows (Liu, 2008; Nguyen & Yao, 2009; Nguyen, 2010; Nguyen & Yao, 2012; Aragón, Esquivel &
Coello Coello, 2013; Pal et al., 2013; Fu et al., 2014; Campos & Krohling, 2014, 2016; Mavrovouniotis, Li &
Yang, 2017):

min f (x, t) where x = (x1, . . . ,xD)
′ ∈ RD and t ∈ T = {0,1,2, . . . , tmax}

subject to gi(x, t)≤ 0 i = 1, . . . , I
Ld ≤ xd ≤Ud d = 1, . . . ,D.

(2.1)

The vector x represents a container for the decision variables and t represents the discrete time. The decision
variables are bounded by upper and lower bounds that define the search space S of the problem, i.e., S is written as

S= [L1,U1]×·· ·× [LD,UD] = [L,U]. (2.2)

The function f (x, t) is the objective function to be minimized and gi(x, t) ≤ 0 are I inequality constraints. The
functions f and gi are linear or nonlinear real-valued functions. The inequality constraints define the feasible
space F(t) of the problem, such that F(t)⊆ S for all t ∈ T . Formally, the feasible space is written as

F(t) = {x ∈ S : g1(x, t)≤ 0, . . . ,gI(x, t)≤ 0} for all t ∈ T (2.3)

and solutions in F(t) are called feasible solutions.
In words, a DCOP can be stated as a sequence of constrained optimization problems indexed by time, which

are to be solved on-line by an optimization algorithm as time goes by. For each value of t, a specific environment
of a given problem is defined by its full configuration:

〈D,x ∈ RD, t, f (x, t),gi(x, t),Ld ,Ud : i = 1, . . . , I and d = 1, . . . ,D〉. (2.4)

For each value of t, if there exists a solution x̄ ∈ F(t) such that f (x̄, t)≤ f (x, t) for all x ∈ F(t), then x̄ is a feasible
optimal solution (or a global optimum) and f (x̄, t) is the feasible optimal value of x̄ when the time is equal to t
(or the global optimum value of f on F(t)). The main goal is to find a feasible optimal solution for all t ∈ T . A
DCOP is solved optimally if and only if each of the constrained problems is solved optimally. This formulation is

13

Part II Chapter 2

certainly true for most of the real-world optimization problems in dynamic environments. An alternative notation
to define a DCOP is given by:

min f (x, t) where x ∈ RD and t ∈ T
subject to g(x, t)≤ 0

x ∈ S⊂ RD.
(2.5)

Note that f : RD×T → R and g : RD×T → RI .

2.2 Essential characteristics of dynamic optimization problems
In DCOPs, the objective function and the constraints can be combined in three different ways:

1. both the objective function and the constraints are dynamic.

2. the objective function is dynamic and the constraints are static.

3. the objective function is static and the constraints are dynamic.

If the objective function changes over time, this can affect the location of the global optimum. For example, the
global optimum can move from one disconnected feasible subregion of the search space to another one. If the
constraints are dynamic, this can affect the structure of the feasible region. For example, the size of the feasible
space, its shape, and possibly the number of disconnected feasible subregions can change over time. In problems
with a static objective function and dynamic constraints, a change in the feasible region can expose a new global
optimum without changing the value of the old optimum. In addition, DCOPs might also have the common
characteristics of constrained problems such as: global optima in the boundaries of feasible regions or global
optima in the search boundary. Regardless of the scenario to be considered, DCOPs are clearly difficult problems.

2.3 Optimality conditions
Consider a DCOP such as stated in Eq. (2.1). The Lagrangian function L : RD×T ×RI → R associated with this
problem is given by:

L(x, t,µµµ) = f (x, t)+µµµ
′g(x, t) = f (x, t)+

I

∑
i=1

µigi(x, t). (2.6)

Observe that

∇xL(x, t,µµµ) = ∇x f (x, t)+µµµ
′
∇xg(x, t) = ∇x f (x, t)+

I

∑
i=1

µi∇xgi(x, t) (2.7)

∇µµµ L(x, t,µµµ) = g(x, t) (2.8)

∇
2
xL(x, t,µµµ) = ∇

2
x f (x, t)+µµµ

′
∇

2
xg(x, t) = ∇

2
x f (x, t)+

I

∑
i=1

µi∇
2
xgi(x, t). (2.9)

If there is a feasible point x̃ such that gi(x̃, t) = 0 for some i = 1, . . . , I and t ∈ T , then gi is said to be active at
x̃ when the time is t. A feasible point x̃ is said to be a regular point of the constraints of the problem if ∇xgk(x̃, t)
for k ∈ Ax̃ = {k : gk(x̃, t) = 0} are linearly independent vectors. Optimality conditions for a DCOP are given by
Results 2.1, 2.2, 2.3, and 2.4.

Result 2.1 (First-order necessary conditions). Consider a DCOP such as stated in Eq. (2.1). Suppose that f ,g∈C1

(with respect to the decision variables of the problem) and let x̄ be a regular point of the constraints. If x̄ is a local
minimum of f on F(t), then there is a vector µ̄µµ such that

∇xL(x̄, t, µ̄µµ) = 0 (2.10)
µ̄µµ
′g(x̄, t) = 0 (2.11)

µ̄µµ ≥ 0. (2.12)

Eqs. (2.10), (2.11), and (2.12) represent the well-known Karush-Kuhn-Tucker conditions (see Appendix A).

14

Part II Chapter 2

For the next result, consider the following notation. Let x̄ be a local minimum of f on F(t) and let Ax̄ = {k :
gk(x̄, t) = 0}. In addition, denote A+

x̄ = {k ∈ Ax̄ : µ̄k > 0} and A0
x̄ = {k ∈ Ax̄ : µ̄k = 0}.

Result 2.2 (Second-order necessary conditions). Consider a DCOP such as stated in Eq. (2.1). Suppose that
f ,g ∈C2 (with respect to the decision variables of the problem) and let x̄ be a regular point of the constraints. If x̄
is a local minimum of f on F(t), then there is a vector µ̄µµ such that the KKT conditions are satisfied by (x̄, µ̄µµ) and
y′∇2

xL(x̄, t, µ̄µµ)y≥ 0 for all y ∈ Y , where Y = {y : ∇xgk∈A+
x̄
(x̄, t)′y = 0,∇xgk∈A0

x̄
(x̄, t)′y≤ 0}.

Result 2.3 (Second-order sufficient conditions). Consider a DCOP such as stated in Eq. (2.1). Suppose that
f ,g ∈C2 (with respect to the decision variables of the problem) and let x̄ be a regular point of the constraints. If
there is a vector µ̄µµ such that

∇xL(x̄, t, µ̄µµ) = 0 (2.13)
µ̄µµ
′g(x̄, t) = 0 (2.14)

µ̄µµ ≥ 0 (2.15)

and
y′∇2

xL(x̄, t, µ̄µµ)y > 0 (2.16)

for all y ∈ Y −{0}, then x̄ is a strict local minimum of f on F(t).

Result 2.4 (First-order condition). Consider a DCOP such as stated in Eq. (2.1). Assume that S is a convex set and
f ,g are convex functions on S. Assume also that f ,g ∈C1 (with respect to the decision variables of the problem)
and let x̄ be a regular point of the constraints. Then, there is a vector µ̄µµ such that the KKT conditions are satisfied
by (x̄, µ̄µµ) if and only if x̄ is a global minimum of f on F(t).

2.4 Population-based metaheuristics for dynamic optimization
Nguyen, Yang & Branke (2012) reported an in-depth survey of the state-of-the-art of academic research on evolu-
tionary computation to deal with dynamic optimization problems. Richter & Yang (2012) developed a comparative
study by discussing analytical and evolutionary approaches for dynamic optimization problems that occur in dy-
namic programming, optimal control, and evolutionary optimization. Recently, Mavrovouniotis, Li & Yang (2017)
presented a broad review on swarm computation for dynamic optimization focused on several classes of dynamic
problems, real-world applications, and considerations about future directions in this subject. These studies can be
seen as appropriate general introductions to the field of dynamic optimization.

In the literature on dynamic optimization, many algorithms have been designed and tested on unconstrained
optimization problems in dynamic environments (Eberhart & Shi, 2001; Morrison, 2004; Jin & Branke, 2005;
Blackwell & Branke, 2006; Lung & Dumitrescu, 2007; Du & Lin, 2008; Lung & Dumitrescu, 2010; Liu, Yang
& Wang, 2010; Li & Yang, 2012, 2013; Yazdani et al., 2013). Most of these approaches have been tested on the
moving peaks benchmark problem proposed by Branke (1999). However, there are few studies about constrained
optimization problems in dynamic environments. This gap has been filled with recent studies that focus their
attention on DCOPs (Liu, 2008; Nguyen & Yao, 2009; Nguyen, 2010; Nguyen & Yao, 2012; Aragón, Esquivel &
Coello Coello, 2013; Pal et al., 2013; Campos & Krohling, 2014, 2016; Mavrovouniotis, Li & Yang, 2017).

Liu (2008) developed one of the first studies in this field and proposed three benchmark problems called DCT
1, 2, and 3, respectively. Liu introduced an approach based on particle swarm optimization (PSO) for DCOPs. The
performance of the proposed algorithm by Liu was empirically tested on the DCT benchmark problems. The DCT
benchmark problems consider the time variable as the only time-dependent parameter. Therefore, the dynamic is
created by simply increasing this variable.

Nguyen & Yao (2009); Nguyen (2010) and Nguyen & Yao (2012) studied the characteristics that might make
DCOPs difficult to be solved by some existing dynamic optimization and constraint-handling algorithms. Nguyen
and Yao also introduced a set of benchmark problems, named the G24 set, with these characteristics and tested
different versions of genetic algorithms (GA) on these problems, including some new variants proposed by the
authors themselves. The G24 set of benchmark problems to simulate DCOPs is discussed in Section 2.5 of this
chapter. The DCT benchmark problems differ from the G24 benchmark set in the following aspects: (1) the DCT
problems only capture linear change, while problems in the G24 set depend on parameters that are time-dependent
functions determining how the objective function and the constraint functions change over time; (2) unlike the G24

15

Part II Chapter 2

benchmark set, the DCT problems do not reflect common situations like dynamic objective and fixed constraints,
fixed objective and dynamic constraints, and other common properties of DCOPs.

Aragón, Esquivel & Coello Coello (2013) investigated the behaviour of an adaptive immune system for solving
DCOPs. The approach proposed by Aragón and co-authors is called dynamic constrained TCell (DCTC) and it is
an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. The
performance of DCTC was compared with respect to two GA-based approaches tested on the G24 benchmark set.

Pal et al. (2013) introduced a new approach for DCOPs, combining the gravitational search algorithm (GSA)
with a modified version of the repair method (GSARepair). GSARepair was also tested on the G24 benchmark set
and its performance was compared with respect to several GA-based approaches tested on this benchmark set.

Li & Yang (2013) presented a review of different approaches based on PSO for DOPs. In fact, PSO has been
applied as an effective tool to solve many global optimization problems in static environments: there are variants
of PSO for unconstrained optimization (Clerc & Kennedy, 2002; Mendes, Kennedy & Neves, 2004; Kennedy &
Mendes, 2006; Liang et al., 2006; Richer & Blackwell, 2006; Parsopoulos & Vrahatis, 2007; Mendel, Krohling
& Campos, 2011; Krohling, Mendel & Campos, 2011; Campos, Krohling & Enriquez, 2014) and variants of PSO
for constrained optimization (Krohling & Coelho, 2006; He & Wang, 2007; Liu, Cai & Wang, 2010; Campos &
Krohling, 2013; Jordehi, 2015). However, there are difficulties with applying PSO to solve DOPs. The difficulties
lie in two aspects: diversity loss due to convergence and outdated memories due to changes in the environment.
The second difficulty can be solved by re-evaluating particles over time. However, it is hard to solve the diversity
loss issue due to the difficulty of balancing the exploration and exploitation during the search process. Hence, to
address the diversity loss issue, different kinds of approaches have been proposed to enhance the performance of
PSO in dynamic environments. As already mentioned, Li & Yang (2013) discussed several approaches based on
PSO for dynamic optimization and categorized the main ideas in different groups in terms of their main character-
istics: diversity maintaining schemes, multi-population schemes, adaptive schemes, and hybrid schemes. Memory
schemes to tackle diversity loss have rarely been studied in PSO, since each particle in the swarm has its own
memory.

Campos & Krohling (2016) proposed an entropy-based bare bones particle swarm (EBBPSO-T) for solving
DCOPs. In this work, the Shannon’s entropy is established as a diversity index and the proposed algorithm applies
the idea of mixture of search directions by using the Shannon’s index of diversity as a factor to balance the influence
of the global-best and local-best search directions. High diversity promotes the search guided by the global-best
solution and low diversity promotes the search guided by the local-best solution. A strategy to handle constraints is
proposed using a ranking method combined with the technique for order of preference by similarity to ideal solution
(Hwang & Yoon, 1981; Behzadian et al., 2012) to select the best solution within a population of candidate solutions.
Mechanisms to detect changes in the environment and to update particles’ memories are also implemented into the
proposed algorithm. All these strategies operate related to each other to tackle problems such as diversity loss and
outdated memories. The combined effect of these strategies provides an algorithm with ability to maintain a proper
balance between exploration and exploitation at any stage of the search process without losing the tracking ability
to search an optimal solution that is changing over time. EBBPSO-T was tested on the G24 benchmark set and its
performance was compared to the performances of GSARepair and GA-based approaches. For more details about
this algorithm the reader is referred to Chapter 4.

Bu, Luo & Yue (2017) adapted the dynamic species-based PSO (DSPSO), a representative multipopulation
algorithm, to locate and track multiple feasible regions in parallel using an ensemble of different strategies specif-
ically developed to solve DCOPs with this characteristic. Experiments show that the DSPSO with the ensemble of
strategies performs significantly better than the original DSPSO and other compared algorithms.

2.5 Benchmark problems
One useful way to create dynamic benchmark problems is to combine existing static benchmark problems with
dynamic rules found in dynamic constrained applications (Nguyen & Yao, 2009; Nguyen, 2010; Nguyen & Yao,
2012). In fact, this can be done by applying the dynamic rules to the parameters of the static problems. Formally,
this idea can be described as follows. Consider a static function f (x|Θ) with a set of parameters Θ= {θ1,θ2, . . .}. It
is possible to generalize f (x|Θ) to its dynamic version by replacing each static parameter in Θ by a time-dependent
expression θi(t). The dynamic of the time-dependent problem then depends on how θi(t) varies over time. As a
result, a dynamic function f (x, t) = f (x|Θ(t)) is defined. Similar reasoning can be applied to the constrained
functions.

16

Part II Chapter 2

Using this idea, Nguyen & Yao (2009) introduced a set of 6 benchmark problems named the G24 set. Sub-
sequently, Nguyen (2010) and Nguyen & Yao (2012) expanded this class of DCOPs to a set of 18 benchmark
problems. The general form for each problem in the G24 set is defined as in Eq. (2.1), where x = (x1,x2) ∈ F(t)⊆
S = [0,3]× [0,4] and t ∈ T = {0,1, . . . , tmax}. The objective function can take one of the following functional
forms:

1. f (1) =−(F1,t +F2,t)

2. f (2) =−3exp
(
−
√√

F2
1,t +F2

2,t

)
where Fj,t = Fj,t(x j, t) = p j(t)(x j +q j(t)) with p j(t) and q j(t), j = 1,2, as the dynamic parameters which deter-
mine how the objective function of each benchmark problem changes over time. The constraint functions can take
the following functional forms:

1. g(1) =−2G4
1,t +8G3

1,t −8G2
1,t +G2,t −2

2. g(2) =−4G4
1,t +32G3

1,t −88G2
1,t +96G1,t +G2,t −36

3. g(3) = 2G1,t +3G2,t −9

4. g(4) =−1 if (0≤ G1,t ≤ 1) or (2≤ G1,t ≤ 3); g(4) = 1 otherwise

5. g(5) =−1 if (0≤ G1,t ≤ 0.5) or (2≤ G1,t ≤ 2.5); g(5) = 1 otherwise

6. g(6) =−1 if [(0≤ G1,t ≤ 1) and (2≤ G2,t ≤ 3)] or (2≤ G1,t ≤ 3); g(6) = 1 otherwise

where G j,t =G j,t(x j, t)= r j(t)(x j+s j(t)) with r j(t) and s j(t), j = 1,2, as the dynamic parameters which determine
how the constraint functions of each benchmark problem changes over time.

Each benchmark problem in the G24 set has a different mathematical expression for p j(t),q j(t),r j(t) and s j(t):

1. G24-u. f = f (1) with p1(t) = sin(κπt +π/2), p2(t) = 1, and q1,2(t) = 0.

2. G24-1. f = f (1), g1 = g(1), and g2 = g(2) with p1(t) = sin(κπt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
and s1,2(t) = 0.

3. G24-f. f = f (1), g1 = g(1), and g2 = g(2) with p1,2(t) = 1, q1,2(t) = 0, r1,2(t) = 1, and s1,2(t) = 0.

4. G24-uf. f = f (1) with p1,2(t) = 1 and q1,2(t) = 1.

5. G24-2. f = f (1), g1 = g(1), and g2 = g(2) with p1(t) = sin(κπt/2+π/2),

p2(t) =

 0 if t = 0
p2(t−1) if t mod 2 = 0
sin(κπ(t−1)/2+π/2) if t mod 2 6= 0

q1,2(t) = 0, r1,2(t) = 1, and s1,2(t) = 0.

6. G24-2u. f = f (1) with p1(t) = sin(κπt/2+π/2),

p2(t) =

 0 if t = 0
p2(t−1) if t mod 2 = 0
sin(κπ(t−1)/2+π/2) if t mod 2 6= 0

q1,2(t) = 0.

7. G24-3. f = f (1), g1 = g(1), and g2 = g(2) with p1,2(t) = 1, q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) =
2+(δ/S)t.

8. G24-3b. f = f (1), g1 = g(1), and g2 = g(2) with p1(t) = sin(κπt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
s1(t) = 0, and s2(t) = 2+(δ/S)t.

17

Part II Chapter 2

9. G24-3f. f = f (1), g1 = g(1), and g2 = g(2) with p1,2(t) = 1, q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) = 2.

10. G24-4. f = f (1), g1 = g(1), and g2 = g(2) with p1(t) = sin(κπt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
s1(t) = 0, and s2(t) = (δ/S)t.

11. G24-5. f = f (1), g1 = g(1), and g2 = g(2) with p1(t) = sin(κπt/2+π/2),

p2(t) =

 0 if t = 0
p2(t−1) if t mod 2 = 0
sin(κπ(t−1)/2+π/2) if t mod 2 6= 0

q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) = (δ/S)t.

12. G24-6a. f = f (1), g1 = g(3), and g2 = g(6) with p1(t) = sin(πt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
s1,2(t) = 0.

13. G24-6b. f = f (1) and g1 = g(3) with p1(t) = sin(πt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1, s1,2(t) = 0.

14. G24-6c. f = f (1), g1 = g(3), and g2 = g(4) with p1(t) = sin(πt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
s1,2(t) = 0.

15. G24-6d. f = f (1), g1 = g(5), and g2 = g(6) with p1(t) = sin(πt +π/2), p2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,
s1,2(t) = 0.

16. G24-7. f = f (1), g1 = g(1), and g2 = g(2) with p1,2(t) = 1, q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) =
(δ/S)t.

17. G24-8a. f = f (2) with p1,2(t) =−1, q1(t) =−(C1 +Ra cos(κπt)), and q2(t) =−(C2 +Ra sin(κπt)).

18. G24-8b. f = f (2), g1 = g(1), and g2 = g(2) with p1,2(t) = −1, q1(t) = −(C1 +Ra cos(κπt)), and q2(t) =
−(C2 +Ra sin(κπt)), r1,2(t) = 1, and s1,2(t) = 0.

The parameter κ ∈ {1,1/2,1/4} determines the severity of objective function changes and the parameter S ∈
{10,20,50} determines the severity of constraint changes. In addition, consider that δ = 4, C1 = 1.470561702,
C2 = 3.442094786232, and finally Ra = 0.858958496.

2.6 Examples of benchmark problems
This section presents some examples of problems in the G24 benchmark set of DCOPs.

Example 2.1. The G24-1 problem is defined as follows:

min −sin [κπ(t +1)]x1− x2
subject to −2x4

1 +8x3
1−8x2

1 + x2−2≤ 0
−4x4

1 +32x3
1−88x2

1 +96x1 + x2−36≤ 0
(2.17)

where x = (x1,x2)
′ ∈ F(t) ⊂ S = [0,3]× [0,4] and t ∈ {0,1,2, . . .}. Figure 2.1 shows a graphical representation

of this problem in different environments by considering κ = 1/2, where κ determines the severity of objective
function changes. The objective function is represented by contour lines, the constraints are represented by lines
with blue and red colors, and the global optimum is represented by a black dot. The objective function is dynamic
and the constraints are static. The location of the global optimum is affected, i.e., it is switched (or transferred)
between two disconnected feasible regions. Using the optimality conditions discussed in Section 2.3 it is possible
to obtain the global optimum of this dynamic problem for different environments. Table 2.1 shows the results
for the environments corresponding to t = 0,1,2, . . . ,10: x̄ = (x̄1, x̄2)

′ is the global optimum, µ̄1 and µ̄2 are the
associated Lagrange multiplier, f (x̄, t) is the global optimum value of x̄ for each t, and both constraints are active
at x̄ for each t.

18

Part II Chapter 2

Example 2.2. The G24-3 problem is defined as follows:

min −x1− x2
subject to −2x4

1 +8x3
1−8x2

1 + x2− (δ/S)t ≤ 0
−4x4

1 +32x3
1−88x2

1 +96x1 + x2− (δ/S)t−34≤ 0
(2.18)

where x = (x1,x2)
′ ∈ F(t) ⊂ S = [0,3]× [0,4] and t ∈ {0,1,2, . . .}. Figure 2.2 shows a graphical representation

of this problem in different environments by considering δ = 4 and S = 20, where S determines the severity of
constraint changes. The objective function is static and the constraints are dynamic. As a result, the size and the
shape of the feasible regions change over time and a new global optimum is revealed whenever the environment is
changed. However, note that the old optimum value is not changed, since the objective function is static. Using the
optimality conditions discussed in Section 2.3 it is possible to obtain the global optimum of this dynamic problem
for different environments. Table 2.2 shows the results for the environments corresponding to t = 0,1,2, . . . ,10:
x̄ = (x̄1, x̄2)

′ is the global optimum, µ̄1 and µ̄2 are the associated Lagrange multiplier, f (x̄, t) is the global optimum
value of x̄ for each t, and both constraints are active at x̄ for each t.

Example 2.3. The G24-4 problem is defined as follows:

min −sin[κπ(t +1)]x1− x2
subject to −2x4

1 +8x3
1−8x2

1 + x2 +(δ/S)t−2≤ 0
−4x4

1 +32x3
1−88x2

1 +96x1 + x2 +(δ/S)t−36≤ 0
(2.19)

where x = (x1,x2)
′ ∈ F(t)⊂ S= [0,3]× [0,4] and t ∈ {0,1,2, . . .}. Figure 2.3 shows a graphical representation of

this problem in different environments by considering κ = 1/2, δ = 4, and S = 20, where κ determines the severity
of objective function changes and S determines the severity of constraint changes. Note that the objective function
and the constraints change over time. As a result, the location of the global optimum is affected, i.e., it is switched
between two disconnected feasible regions. In addition, the size and the shape of the feasible regions also change
over time. Using the optimality conditions discussed in Section 2.3 it is possible to obtain the global optimum of
this dynamic problem for different environments. Table 2.3 shows the results for the environments corresponding
to t = 0,1,2, . . . ,10: x̄ = (x̄1, x̄2)

′ is the global optimum, µ̄1 and µ̄2 are the associated Lagrange multiplier, f (x̄, t)
is the global optimum value of x̄ for each t, and both constraints are active at x̄ for each t.

2.7 Advantages and limitations of the benchmark problems
It is important to argue the advantages and limitations of the G24 set of benchmark problems for dynamic con-
strained optimization. Table 2.4 shows the main properties of each problem in this set, which shows a diversity of
problems presenting all the essential characteristics that were discussed in Section 2.2. A particular problem can
be interpreted as follows. For instance, the G24-4 problem has objective function and constraints that change over
time. Depending of the current environment (i.e., of the current value of t), this problem has the feasible space
composed of up to 3 disconnected feasible regions (DFR). The global optimum is switched between the discon-
nected feasible regions (SwO). For all environments, the global optimum is in the constraint boundary (OICB).
Once again, the G24-1 problem has dynamic objective function and static constraints. For all environments, this
problem has the feasible space consisting of exactly 2 disconnected feasible regions (DFR). The global optimum
is switched between the disconnected feasible regions (SwO). For all environments, the global optimum is in the
constraint boundary (OICB). The G24-3 problem has static objective function and dynamic constraints. Depending
of the current environment (i.e., of the current value of t), this problem has the feasible space composed of up to
3 disconnected feasible regions (DFR). A new global optimum is revealed whenever the environment is changed,
but the old optimum value is not changed since the objective function is static (bNAO). For all environments, the
global optimum is in the constraint boundary (OICB). The G24-7 problem has similar characteristics to the G24-3
problem. For the G24-7 problem, a new global optimum is also revealed whenever the environment is changed, but
in this case, the old global optimum becomes an infeasible solution for the new environment (bNAO). Analogous
interpretations can be made for all other problems.

The different characteristics presented by the G24 set of DCOPs are its main advantage when compared to
the DCT set of DCOPs (see Liu, 2008), which in turn does not contain this variety of problems. On the other
hand, some limitations of the G24 set can be discussed. As already mentioned in Section 2.1, a DCOP can be seen
as a sequence of constrained optimization problems indexed by time. Observing this fact, the main limitation of

19

Part II Chapter 2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 0

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 1

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 2

x1

x2
0.0 1.0 2.0 3.0

0
1

2
3

4

t = 3

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4
t = 4

x1

x2

0.0 1.0 2.0 3.0
0

1
2

3
4

t = 5

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 6

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 7

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 8

x1

x2

Figure 2.1: Graphical representation of the G24-1 problem (Example 2.1).

Table 2.1: Global optimum of the G24-1 problem for different environments (see Example 2.1).
t µ̄1 µ̄2 x̄1 x̄2 f (x̄, t) g1(x̄, t) g2(x̄, t)
0 0.28760 0.71240 2.32952 3.17849 -5.50801 0 0
1 0.88650 0.11350 0.61160 3.44210 -3.44210 0 0
2 0.92952 0.07048 0.61160 3.44210 -2.83050 0 0
3 0.88650 0.11350 0.61160 3.44210 -3.44210 0 0
4 0.28760 0.71240 2.32952 3.17849 -5.50801 0 0
5 0.88650 0.11350 0.61160 3.44210 -3.44210 0 0
6 0.92952 0.07048 0.61160 3.44210 -2.83050 0 0
7 0.88650 0.11350 0.61160 3.44210 -3.44210 0 0
8 0.28760 0.71240 2.32952 3.17849 -5.50801 0 0
9 0.88650 0.11350 0.61160 3.44210 -3.44210 0 0

10 0.92952 0.07048 0.61160 3.44210 -2.83050 0 0

20

Part II Chapter 2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 0

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 1

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 2

x1

x2
0.0 1.0 2.0 3.0

0
1

2
3

4

t = 3

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4
t = 4

x1

x2

0.0 1.0 2.0 3.0
0

1
2

3
4

t = 5

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 6

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 7

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 8

x1

x2

Figure 2.2: Graphical representation of the G24-3 problem (Example 2.2).

Table 2.2: Global optimum of the G24-3 problem for different environments (see Example 2.2).
t µ̄1 µ̄2 x̄1 x̄2 f (x̄, t) g1(x̄, t) g2(x̄, t)
0 0.28760 0.71240 2.32952 1.17849 -3.50801 0 0
1 0.28760 0.71240 2.32952 1.37849 -3.70801 0 0
2 0.28760 0.71240 2.32952 1.57849 -3.90801 0 0
3 0.28760 0.71240 2.32952 1.77849 -4.10801 0 0
4 0.28760 0.71240 2.32952 1.97849 -4.30801 0 0
5 0.28760 0.71240 2.32952 2.17849 -4.50801 0 0
6 0.28760 0.71240 2.32952 2.37849 -4.70801 0 0
7 0.28760 0.71240 2.32952 2.57849 -4.90801 0 0
8 0.28760 0.71240 2.32952 2.77849 -5.10801 0 0
9 0.28760 0.71240 2.32952 2.97849 -5.30801 0 0

10 0.28760 0.71240 2.32952 3.17849 -5.50801 0 0

21

Part II Chapter 2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 0

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 1

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 2

x1

x2
0.0 1.0 2.0 3.0

0
1

2
3

4

t = 3

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4
t = 4

x1

x2

0.0 1.0 2.0 3.0
0

1
2

3
4

t = 5

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 6

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 7

x1

x2

0.0 1.0 2.0 3.0

0
1

2
3

4

t = 8

x1

x2

Figure 2.3: Graphical representation of the G24-4 problem (Example 2.3).

Table 2.3: Global optimum of the G24-4 problem for different environments (see Example 2.3).
t µ̄1 µ̄2 x̄1 x̄2 f (x̄, t) g1(x̄, t) g2(x̄, t)
0 0.28760 0.71240 2.32952 3.17849 -5.50801 0 0
1 0.88650 0.11350 0.61160 3.24210 -3.24210 0 0
2 0.92952 0.07048 0.61160 3.04210 -2.43050 0 0
3 0.88650 0.11350 0.61160 2.84210 -2.84210 0 0
4 0.28760 0.71240 2.32952 2.37849 -4.70801 0 0
5 0.88650 0.11350 0.61160 2.44210 -2.44210 0 0
6 0.92952 0.07048 0.61160 2.24210 -1.63050 0 0
7 0.88650 0.11350 0.61160 2.04210 -2.04210 0 0
8 0.28760 0.71240 2.32952 1.57849 -3.90801 0 0
9 0.88650 0.11350 0.61160 1.64210 -1.64210 0 0

10 0.92952 0.07048 0.61160 1.44210 -0.83050 0 0

22

Part II Chapter 2

Table 2.4: Properties of each test problem in the G24 benchmark set.
n Name Obj. function Constraint DFR SwO bNAO OICB OISB Path
1 G24-u(dF,noC) Dynamic No constraint 1 No No No Yes NA
2 G24-1(dF,fC) Dynamic Static 2 Yes No Yes No NA
3 G24-f(fF,fC) Static Static 2 No No Yes No NA
4 G24-uf(fF,noC) Static No constraint 1 No No No Yes NA
5 G24-2(dF,fC) Dynamic Static 2 Yes No Yes/No Yes/No NA
6 G24-2u(dF,noC) Dynamic No constraint 1 No No No Yes NA
7 G24-3(fF,dC) Static Dynamic 2-3 No Yes Yes No NA
8 G24-3b(dF,dC) Dynamic Dynamic 2-3 Yes No Yes No NA
9 G24-3f(fF,fC) Static Static 1 No No Yes No NA

10 G24-4(dF,dC) Dynamic Dynamic 2-3 Yes No Yes No NA
11 G24-5(dF,dC) Dynamic Dynamic 2-3 Yes No Yes/No Yes/No NA
12 G24-6a(dF,fC) Dynamic Static 2 Yes No No Yes Hard
13 G24-6b(dF,fC) Dynamic Static 1 No No No Yes NA
14 G24-6c(dF,fC) Dynamic Static 2 Yes No No Yes Easy
15 G24-6d(dF,fC) Dynamic Static 2 Yes No No Yes Hard
16 G24-7(fF,dC) Static Dynamic 2 No No Yes No NA
17 G24-8a(dF,noC) Dynamic No constraint 1 No No No No NA
18 G24-8b(dF,fC) Dynamic Static 2 Yes No Yes No NA
DFR: number of disconnected feasible regions
SwO: switched global optimum between disconnected feasible regions
bNAO: better newly appear optimum without changing existing ones
OICB: global optimum is in the constraint boundary
OISB: global optimum is in the search boundary
Path: indicates if it is easy or hard to travel between feasible regions

the problems in the G24 set is that the sequence of time-indexed optimization problems associated with a given
dynamic problem is constituted of unlinked problems. This means that, for a given problem, the environment
corresponding to time t is not influenced by previous environments corresponding to times before t and also does
not affect subsequent environments corresponding to times after t. In other words, the parameters that define the
environment corresponding to time t is not linked with the parameters that define the environment corresponding
to time s, where s is different from t. As a result, this limitation does not clarify the connection that must exist
between dynamic optimization problems as defined by Eq. (2.1) and dynamic optimization problems that occur
in dynamic programming and optimal control (Hinderer, Rieder, & Stieglitz, 2016). Another important limitation
that should be emphasized is that all problems in the G24 set are unimodal optimization problems. In summary,
it is possible to state that the G24 set of DCOPs represents a great improvement over the DCT set of DCOPs,
but certainly does not synthesize all the variety of optimization problems in dynamic environments that exist in
different fields of knowledge.

2.8 Algorithmic attributes to deal with dynamic optimization problems
Besides the parameters κ and S that determine, respectively, the severity of changes in the objective function
and in the constraints, another important parameter must be defined when a DCOP is solved by an optimization
algorithm. This parameter, denoted by ∆, determines the window where the dynamic problem remains constant.
In other words, for a given fixed window, the environment of the dynamic problem is frozen and remains static
within that window.

Once again, a DCOP can be seen as a sequence of constrained optimization problems which are received on-
line in discrete times, each one having a window ∆ to be solved. The relationship between the time t and the
iteration counter τ of an algorithm used to solve a DCOP is given by

t = bτ/∆c= the largest integer not greater than the corresponding value of τ/∆. (2.20)

23

Part II Chapter 2

For solving a

DCOP = 〈D,x ∈ RD, t, f (x, t),gi(x, t),Ld ,Ud : i = 1, . . . , I and d = 1, . . . ,D〉t=b(0:τmax)/∆c (2.21)

an optimization algorithm has a window of ∆ iterations to find the solution of the current problem (or the current
environment) which is associated with the time t, before receiving the new problem (or the new environment)
which is associated with time (t +1). A DCOP is solved in

τmax +1 = ∆ · (tmax +1) iterations. (2.22)

To deal with DCOPs, optimization algorithms must be able to detect changes in the environment and effi-
ciently respond to the changed environment. Algorithms must be capable of maintaining a good balance between
exploration (diversification) and exploitation (intensification). Too much stress on exploration would result in pure
global search and slow convergence speed. On the other hand, too much stress on exploitation would result in pure
local search and fast loss of tracking ability to search an optimal solution which is changing over time.

2.9 Performance measures
To investigate the performance of an algorithm on a particular problem it is necessary to define a performance
measure. There are two classes of performance measures in dynamic optimization: behaviour-based performance
measures and optimality-based performance measures (Nguyen, Yang & Branke, 2012).

Behaviour-based performance measures usually describe the population diversity in population-based algo-
rithms when these algorithms are solving dynamic optimization problems. Chapter 3 will establish the Shannon’s
entropy as a index of phenotypic diversity of a particle population and will discuss an estimation procedure for this
index from small-sample data. In the following chapter (Chapter 4), the Shannon’s index will be used to monitor
the population diversity of an optimization algorithm and will have an important role as a mechanism to maintain
or introduce diversity during the search process.

Optimality-based performance measures usually describe the performance of an algorithm by using fitness
values associated with potential solutions and reference solutions. One optimality-based measure widely used is
the offline error, which is defined by:

Offline Error =
1

τmax

τmax

∑
τ=1

e(τ) (2.23)

where τmax is the number of iterations and e(τ) is the best error (or minimum error) obtained by the algorithm
since the last change at the iteration τ . The error means the absolute difference between the fitness of a solution
and the fitness of the global optimum. This measure is always greater than or equal to zero and would be zero for a
perfect performance. Researchers also use a measure named by offline performance that takes the following form:

Offline Performance =
1

τmax

τmax

∑
τ=1

F(τ) (2.24)

where F(τ) is the best fitness obtained by the algorithm since the last state change at the iteration τ . This measure
is provided to evaluate the performance of an algorithm in cases where exact values of the global optimum are not
known. Another measure widely used is the best-error-before-change, which is defined by:

Best-Error-Before-Change =
1

NC

NC

∑
l=1

e(l) (2.25)

where NC is the number of changes and e(l) is the best error just before the l-th change happens. Such optimality-
based measures will be used to measure the performance of different algorithms in Chapter 5.

24

Chapter 3

Densities, Entropy, and Ranking

This chapter compiles some definitions, concepts, and methods that are important for this thesis. It serves as a quick
reference for several topics as: random variables, entropy of a random variable, entropy estimation procedures,
relationship between diversity and entropy, and an exploratory method to rank decision alternatives based on
multi-criteria. These concepts and methods are essential to understand the subsequent development of the proposed
algorithm in this thesis for solving dynamic constrained optimization problems, whose detailed development will
be given in Chapter 4.

3.1 Probability densities
Let (Ω,F ,Pr) be a probability space for a given random experiment. It means that (Ω,F) is a measurable space
and Pr is a finite measure on F with Pr(Ω) = 1. The set Ω represents the set of all possible outcomes of the
experiment and F is a σ -algebra of subsets of Ω. The set Ω is called of sample space. Elements of the class
F are called of events and Pr(A) represents the probability of an event A in F . Suppose that an event B has
occurred and that it is important to compute the probability of another event A taking into account that B has
occurred. This probability is called the conditional probability of A given that the event B has occurred and it is
denoted by Pr(A|B). If Pr(B)> 0, this probability is calculated as Pr(A|B) = Pr(A∩B)/Pr(B); otherwise (i.e., if
Pr(B)= 0) Pr(A|B) can be arbitrarily defined, for example, Pr(A|B)= Pr(A). Events A and B are called statistically
independent with respect to the probability Pr, if Pr(A∩B) = Pr(A)Pr(B), and consequently Pr(A|B) = Pr(A) in
this case.

A random variable is a random point in the real line R. Formally, a real-valued random variable x is a function
defined in Ω and taking values in R such that the set [x ∈ B] = {ω ∈Ω : x(ω) ∈ B} is an event in F for any Borel
set B ⊆ R. It means that x is a F -measurable function and Pr(x ∈ B) is a well-defined quantity for any Borel set
B⊆ R. A probability measure Px defined as

Px(B) = Pr(x ∈ B) (3.1)

for any Borel set B ⊆ R is called the probability distribution of x. A random variable is called discrete if its
distribution is concentrated on a countable set and

Px(B) =
∫

B
Px(dx) = ∑

{m:xm∈B}
pm (3.2)

for any Borel set B, where ∑m pm = 1 and pm = Pr(x = xm). A random variable is called absolutely continuous if
there is a non-negative function p(x), called density or probability density function (pdf), such that

Px(B) =
∫

B
Px(dx) =

∫
{x:x∈B}

p(x)dx (3.3)

for any Borel set B, where
∫

p(x)dx = Px(R) = 1.
Let x be a random variable and suppose that at least one of the following integrals is finite: E− =

∫
x≤0 xPx(dx),

E+ =
∫

x≥0 xPx(dx). Then the expectation (or mean) of x is said to exist and is defined as E(x)=
∫

xPx(dx). If E− and

25

Part II Chapter 3

E+ are infinite, then E(x) does not exist. The variance of x is defined by Var(x) = E[(x−E(x))2] = E(x2)− [E(x)]2

(if E(x) < ∞). If x has infinite mean or if the mean of x does not exist, then Var(x) does not exist. The mean of a
random variable indicates its central value, being an useful summary value of the distribution. The variance of a
random variable measures the variability of the distribution around its mean.

The concept of distribution of a random variable can be generalized to the joint distribution of two random
variables. From now on, the discussion will be focused on the case of continuous random variables, however the
discrete and hybrid cases are similar. Two random variables x and y have an absolutely continuous joint distribution
if there is a non-negative function p(x,y), called joint density or joint pdf, such that

Px,y(B) =
∫

B
Px,y(dxdy) =

∫
{(x,y):(x,y)∈B}

p(x,y)dxdy (3.4)

for any Borel set B in R2, where
∫

p(x,y)dxdy = 1. Two important rules can be presented involving the case of
joint pdf:

Product rule. p(x,y) = p(x|y)p(y) where p(x|y) = p(x,y)/p(y) if p(y)> 0 (for x ∈ R).

Sum rule. p(x) =
∫

p(x,y)dy =
∫

p(x|y)p(y)dy.

Assuming that the expectations are defined, the covariance of x and y, denoted by Cov(x,y), is defined as
follows:

Cov(x,y) = E[(x−E(x))(y−E(y))] = E(xy)−E(x)E(y). (3.5)

The value of Cov(x,y) can be positive, negative, or zero and it is a measure of the linear association between x and
y. Note that, Cov(x,x) = Var(x). In addition, if Var(x)> 0 and Var(y)> 0, the number

−1≤ Cov(x,y)√
Var(x)Var(y)

≤ 1 (3.6)

is the correlation coefficient of x and y. If Cov(x,y) = 0, then x and y are uncorrelated. Another point to be
discussed is the extension of the concept of independence for random variables. Random variables x and y are
independent if and only if the following factorization

p(x,y) = p(x)p(y) (3.7)

is satisfied for all real numbers x and y. If x and y are independent, then Cov(x,y) = 0, because E(xy) = E(x)E(y).
Finally, it is important to note that uncorrelated random variables can be dependent.

A random vector is a vector whose elements are random variables, i.e., a D-dimensional random vector is a
random point in RD. In fact, if x is a random vector in RD and Proji(·) is the projection of RD on the ith coordinate
axis, then x can be represented in the form x = (x1, . . . ,xD)

′, where xi = Proji(x) is a real-valued random variable.
Therefore, x has a joint pdf, denoted by p(x), such that

Px(B) =
∫

B
Px(dx) =

∫
{x:x∈B}

p(x)dx (3.8)

for any Borel set B in RD, where
∫

p(x)dx = 1. Each element of x has its own probability distribution p(xi),
mean µi = E(xi), and variance σ2

i = σii = Var(xi). The behaviour of any pair of random variables, such as xi and
x j, is described by their joint pdf p(xi,x j) and a measure of the linear association between then is provided by
σi j = Cov(xi,x j), as discussed early. All this information can be summarized in matrix notation. The mean of each
element of x is contained in the mean vector

µµµ = E(x) = (µ1, . . . ,µD)
′ = (µi)i=1,...,D. (3.9)

The D variances σii and the D(D−1)/2 distinct covariances σi j (i < j) are contained in the symmetric covariance
matrix

ΣΣΣ = Cov(x) = E[(x−µµµ)(x−µµµ)′] = (σi j)i, j=1,...,D. (3.10)

The D random variables x1, . . . ,xD are mutually statistically independent if and only if their joint pdf can be factored
as

p(x) = p(x1) · . . . · p(xD) (3.11)

26

Part II Chapter 3

for all (x1, . . . ,xD)
′ ∈ RD. Statistical independence has an important implication for covariance:

p(x) = p(x1) · . . . · p(xD)⇒ ΣΣΣ = Diag(σ11, . . . ,σDD). (3.12)

The converse of Eq. (3.12) is not true in general.

Example 3.1. This example presents a list of densities that will be used in this work:

1. A random variable x has a uniform distribution in (a,b), denoted by x∼ Unif(a,b), if its pdf is given by

Unif(x|a,b) = (b−a)−1 (3.13)

for all −∞ < a < x < b < ∞. This distribution has mean (a+b)/2 and variance (b−a)2/12.

2. A random variable x has a gamma distribution with parameters a and b, denoted by x ∼ Ga(a,b), if its pdf
is given by

Ga(x|a,b) = ba

Γ(a)
xa−1 exp(−bx) (3.14)

for all x > 0 and a,b > 0, where Γ(·) is the well-known gamma function. This distribution has mean a/b
and variance a/b2.

3. A random vector x has a multivariate normal distribution with mean vector µµµ and covariance matrix ΣΣΣ,
denoted by x∼ N(µµµ,ΣΣΣ), if its joint pdf is given by

N(x|µµµ,ΣΣΣ) = 1
(2π)D/2|ΣΣΣ|1/2 exp

[
−1

2
∆∆∆

2(x|µµµ,ΣΣΣ)
]

(3.15)

where x ∈ RD, µµµ ∈ RD, ΣΣΣ is a D×D symmetric positive definite matrix, and ∆2 is the squared Mahalanobis
distance defined by ∆∆∆

2(x|µµµ,ΣΣΣ) = (x− µµµ)′ΣΣΣ−1(x− µµµ). When D = 1, x has a univariate normal distribution
with mean µ ∈R and variance σ2 > 0, denoted by x∼N(µ,σ2). When µ = 0 and σ2 = 1, N(0,1) is referred
to as standard normal distribution.

4. A random vector x has a multivariate t-distribution with location µµµ , scale C, and ν degrees of freedom,
denoted by x∼ t(ν ,µµµ,C), if its joint pdf is given by

t(x|ν ,µµµ,C) =
Γ((ν +D)/2)

Γ(ν/2)(νπ)D/2|C|1/2

[
1+

1
ν

∆∆∆
2(x|µµµ,C)

]− ν+D
2

(3.16)

where x ∈ RD, µµµ ∈ RD, C is a D×D symmetric positive definite matrix, and ν > 0. This distribution
has mean µµµ , for ν > 1, and covariance matrix [ν/(ν − 2)]C, for ν > 2. When D = 1, x has a univariate
t-distribution with location µ ∈ R, scale c > 0, and ν > 0 degrees of freedom, denoted by x ∼ t(ν ,µ,c2).
In the univariate case, this distribution has mean µ , for ν > 1, and variance [ν/(ν−2)]c, for ν > 2. When
µ = 0 and c = 1, t(ν ,0,1) is referred to as standard t-distribution.

This section ends discussing types of convergence of sequences of random variables to some limit random
variable. A sequence (xn)n≥1 of random variables converges in rth mean (r ≥ 1) to the random variable x if
E(xr

n)< ∞ for all n≥ 1, E(x)< ∞, and
lim
n→∞

E(|xn− x|r)→ 0.

This type of convergence is often denoted by xn
r→ x. The most important cases of convergence in rth mean are:

1. xn
1→ x that means xn converges in mean to x.

2. xn
2→ x that means xn converges in mean square to x.

Convergence in rth mean (for r ≥ 1) implies convergence in probability (by Markov’s inequality), which in turn
means that

lim
n→∞

Pr(|xn− x| ≥ ε) = 0

for all ε > 0. Convergence in probability is often denoted by xn
Pr→ x. In addition, if r > s ≥ 1, then convergence

in rth mean implies convergence in sth mean (by Lyapunov’s inequality). Hence, convergence in mean square
implies convergence in mean. Finally, xn converges in mean square to a constant c if and only if E(xn)→ c and
Var(xn)→ 0.

27

Part II Chapter 3

3.2 Scale mixtures of normal distributions
Scale mixtures of normal distributions (SMN distributions) or scale mixtures of Gaussians (Andrews & Mallows,
1974; Choy & Chan, 2008) are derived by mixing a normally distributed random vector y with a non-negative
random variable λ as follows:

x|λ = µµµ +φ
1/2(λ)y (3.17)

where µµµ is a location parameter, φ(·) is a positive function, and y ∼ N(0,ΣΣΣ). The random variable λ is in-
dependent of y and has a pdf h(λ |θθθ), where θθθ is a parameter vector indexing the distribution of λ . Given λ ,
x|λ ∼ N(µµµ,φ(λ)ΣΣΣ) and the pdf of x is given by

p(x|θθθ ,µµµ,ΣΣΣ) =
∫

∞

0
N(x|µµµ,φ(λ)ΣΣΣ)h(λ |θθθ)dλ . (3.18)

The pdf h is referred to as the mixing density of the SMN representation of the distribution of x, which in turn can
be expressed hierarchically as

x|λ ∼ N(µµµ,φ(λ)ΣΣΣ) λ ∼ h(θθθ). (3.19)

From a suitable choice of the density h, a rich class of continuous, symmetric, and unimodal distributions can be
described by p(x|θθθ ,µµµ,ΣΣΣ) that can readily accommodate a thicker-than-normal process. The normal distribution
can be retrieved when λ = 1 almost surely.

Example 3.2. The multivariate t-distribution with location µµµ , scale ΣΣΣ, and ν degrees of freedom is an important
heavy-tailed distribution. It is an example of scale mixture of Gaussians which can be described as

t(x|ν ,µµµ,ΣΣΣ) =
∫

∞

0
N(x|µµµ,λ−1

ΣΣΣ)Ga(λ |ν/2,ν/2)dλ . (3.20)

As a result, the distribution of x can be expressed hierarchically as

x|λ ∼ N(µµµ,λ−1
ΣΣΣ) λ ∼ Ga(ν/2,ν/2). (3.21)

Note that the Cauchy distribution can be retrieved when ν = 1 and the normal distribution when ν → ∞.

Example 3.3. The univariate case x∼ t(ν ,µ,σ2) is similar. The distribution of x can be expressed hierarchically
as

x|λ ∼ N(µ,λ−1
σ

2) λ ∼ Ga(ν/2,ν/2). (3.22)

and
t(x|ν ,µ,σ2) =

∫
∞

0
N(x|µ,λ−1

σ
2)Ga(λ |ν/2,ν/2)dλ . (3.23)

See Andrews & Mallows (1974); Choy & Chan (2008); Madan & Seneta (1990); Abanto-Valle et al. (2010) for
further examples of SMN distributions.

3.3 The Shannon’s entropy
Entropy is a fundamental quantity in physics, statistics, and computational intelligence with a large number of
applications (Shannon, 1948; Renyi, 1961; Tsallis, 1998; Chao & Shen, 2003; Hausser & Strimmer, 2009; Petalas,
Parsopoulos & Vrahatis, 2007; Liu, Mernik & Bryant, 2007, 2009; Kaleli, 2014). The entropy of a random variable
is a measure of its uncertainty. Since the amount of information obtained from observing the outcome of a random
experiment can be considered numerically equal to the amount of uncertainty associated with the outcome of
the experiment before carrying it out, then the entropy of a random variable can also be viewed as a measure of
information required to describe it. Let x be a discrete random variable with a finite alphabet containing M possible
states. Each state has an associated probability πm such that 0≤ πm ≤ 1 and ∑

M
m=1 πm = 1. The Shannon’s entropy

(Shannon, 1948) of x∼ πππ = (π1, . . . ,πM)′ is defined by

Hb(x)
or
= Hb(πππ) = Eπ(− logb π) =−

M

∑
m=1

πm logb πm for all 0 < b 6= 1. (3.24)

The convention that 0 logb 0 = 0 is used and it is easily justified by continuity since π logb π → 0 as π → 0. Thus,
adding terms of zero probability does not change the entropy. If b = 2, then the entropy is measured in bits. If
b = e, then the entropy is measured in nats. Note that the entropy is a functional of the distribution πππ . It does not
depend of the actual values taken by x, but only of the probabilities.

28

Part II Chapter 3

3.4 Entropy properties
Result 3.1. Properties of the Shannon’s Entropy (Cover & Thomas, 2006).

1. Hb(x)≥ 0 with equality if and only if x assumes a single value with probability 1.

2. Hb(x) = (logb a) ·Ha(x).

3. For any positive integer M, Hb(π1, . . . ,πM) = Hb(πτ1 , . . . ,πτM) where (τ1, . . . ,τM) represents a particular
permutation of (1, . . . ,M).

4. For any positive integer M, Hb satisfies

H min
b = 0 = Hb(1, . . . ,0)≤Hb(π1, . . . ,πM)≤Hb

(
1
M
, . . . ,

1
M

)
= logb M = H max

b . (3.25)

5. Hb(πππ) is a continuous function of πππ .

6. Hb(πππ) is a concave function of πππ .

7. For any positive integer M, Hb satisfies

Hb

(
1
M
, . . . ,

1
M

)
< Hb

(
1

M+1
, . . . ,

1
M+1

)
. (3.26)

8. For positive integers N1, . . . ,NK where N1 + · · ·+NK = M, Hb satisfies

Hb

(
1
M
, . . . ,

1
M

)
= Hb

(
N1

M
, . . . ,

NK

M

)
+

K

∑
k=1

Nk

M
Hb

(
1

Nk
, . . . ,

1
Nk

)
. (3.27)

9. Hb(x,y)≤Hb(x)+Hb(y) with equality if and only if the random variables x and y are independent.

10. Hb(y|x)≤Hb(y) with equality if and only if the random variables x and y are independent.

11. Hb(x,y) = Hb(x)+Hb(y|x) where Hb(y|x) =−Eπ(x,y)(logπ(y|x)).

3.5 Diversity and entropy
In biological studies, the diversity of the population is intended as a quantitative measure which reflects how many
different types (such as species) exist in the population (Ricotta & Szeidl, 2006; Izsák, 2007; Butturi-Gomes et al.,
2014). Consider a population composed of M different types. Let πm be the relative abundance of the mth type,
such that 0≤ πm ≤ 1 and ∑

M
m=1 πm = 1. A widely used measure of diversity is defined by

Dq(πππ) =

{ (
∑

M
m=1 π

q
m
)1/(1−q) if q 6= 1

1/∏
M
m=1 ππm

m if q = 1
(3.28)

where q is a real number representing the order of the measure. From Eq. (3.28), it is possible to see that the order
of Dq indicates its sensitivity to common and rare species. D0 is a measure of diversity completely insensitive to
species abundances, it simply quantifies how many different types the population contains (the effective number
of species). Each Dq with value of q greater than unity provides a diversity that disproportionately favor the most
common species (the weight given to abundant species is exaggerated), while Dq with value of q less than unity
provides a diversity that disproportionately favor the rare species.

The critical point that weighs all species by their relative abundances without favoring either common or rare
species occurs when q = 1. In addition, note that D1 is the limit of Dq when q→ 1. In fact, it can be observed that

M

∑
m=1

π
1+ε
m =

M

∑
m=1

πmeε·lnπm ≈ 1+ ε

M

∑
m=1

πm lnπm. (3.29)

29

Part II Chapter 3

Hence,

lim
ε→0

D1+ε(πππ) = lim
ε→0

(
1+ ε

M

∑
m=1

πm lnπm

)−1/ε

= eH (πππ) = D1(πππ) (3.30)

where H (πππ)=−∑m πm lnπm is the Shannon’s entropy associated with the distribution πππ =(π1, . . . ,πM) of relative
abundances. It follows from Eq. (3.30) that the Shannon’s entropy is a monotonic function of D1. In fact,

Hb(πππ) = (logb e) · lnD1(πππ) for all 0 < b 6= 1. (3.31)

Therefore, Hb can be considered as an index of diversity. The Shannon’s entropy takes into account simultane-
ously the number of different types that exist in the population and how the individuals within the population are
distributed among these types. It increases both when the number of types increases and also when the uniformity
of the distribution of individuals increases as well. For a given number of types, the value of the Shannon’s entropy
is maximized when all types are equally abundant.

3.6 Entropy estimation
In practice, πππ (the abundances of the different types) is unknown, then H and πm (for all m) need to be estimated
from observed cell counts ym ≥ 0 (observed data). Therefore, this section focuses on the entropy estimation
problem, with special emphasis on the small-sample case. A particularly simple and widely used estimator of
entropy is the maximum likelihood (ML) estimator

Ĥ ML =−
M

∑
m=1

π̂
ML
m logb π̂

ML
m (3.32)

constructed by plugging the ML frequency estimates

π̂
ML
m =

ym

n
(3.33)

into Eq. (3.24), with n = ∑m ym being the total number of counts. The connection between ym and πm is given by
the multinomial distribution:

L(πππ|y) = Pr(y|πππ) = n!
y1! · . . . · yM!

M

∏
m=1

π
ym
m . (3.34)

The ML estimator of πm maximizes L(πππ|y) (the likelihood function) for ym fixed, leading to the observed frequen-
cies defined in Eq. (3.33) with

E(π̂ML
m) = πm Var(π̂ML

m) = (n−1)−1
πm(1−πm)→ 0 (3.35)

when n → ∞. Fig. 3.1 shows a graphical representation of the ML estimator (in red) of πm = p(m|M, p) =
CM,m pm(1− p)M−m, m = 0,1, . . . ,M (in black), with M = 100, p = 0.3, and CM,m = M!/[m!(M−m)!], while the
sample size varies from n = 4 to n = 1024.

In general, when n�M, it is easy to infer the entropy reliably and it is well-known that in this case the ML
estimator is optimal. However, when n�M or n≈M (especially in high-dimensional problems), it becomes ex-
tremely challenging to estimate the entropy. In the last case, the ML estimator performs very poorly and severely
underestimates the true entropy. This drawback has lead to new approaches to the small-sample entropy estimation
problem. Nemenman, Shafee & Bialek (2002) introduced a Bayesian entropy estimator (NSB estimator) by using
a Dirichlet mixture prior with infinite number of components. This approach resulted in an estimator nearly un-
biased and with remarkably good statistical properties. However, the NSB estimator is computationally expensive
and sometimes slow for practical applications. Another proposed estimator is due to Chao & Shen (2003). This
approach combines the Horvitz-Thompson entropy estimator (Horvitz & Thompson, 1952) with the Good-Turing
correction (Good, 1953; Orlitsky, Santhanam & Zhang, 2003) of the empirical cell frequencies. The Chao-Shen
entropy estimator is nearly unbiased and statistically very efficient with small mean squared error (MSE) regard-
less of sample size. Hausser & Strimmer (2009) introduced an entropy estimator that employs James-Stein-type
shrinkage at the level of cell frequencies. This leads to an entropy estimator that is highly effective, both in terms
of statistical accuracy and computational complexity. James-Stein-type shrinkage is a simple analytic method

30

Part II Chapter 3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 4

x

D
en

si
ty

0 20 40 60 80 100
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

n = 8

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 16

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 32

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 64

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 128

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 256

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 512

x

D
en

si
ty

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n = 1024

x

D
en

si
ty

Figure 3.1: MLE (red) of πππ ∼ p(m|100,0.3) (black) while n varies from 4 to 1024.

to perform regularized high-dimensional inference. It is based on averaging two very different models: a high-
dimensional model with low bias and high variance and a lower-dimensional model with larger bias but smaller
variance. The intensity of the regularization is determined by the relative weighting of the two models. A general
description for constructing shrinkage estimators is given by Hausser & Strimmer (2009, Appendix A). Follow-
ing this description, the problem of estimating cell frequencies is addressed by considering the following convex
combination:

π̂
S
m = ξ β̂m +(1−ξ)π̂ML

m (3.36)

where ξ ∈ [0,1] is the shrinkage intensity and β̂m is the shrinkage target. A convenient choice of β̂m is the uniform

31

Part II Chapter 3

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 8

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 16

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 32

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 64

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 128

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 1024

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 2048

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4096

Estimator

E
nt

ro
py

 e
st

im
at

io
n

Figure 3.2: Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.2) while n varies from 4 to 4096.

distribution, β̂m = M−1 for all m. This is the distribution with maximum entropy. Considering the statistical
properties of π̂ML

m , the estimated shrinkage intensity is given by

ξ =
∑

M
m=1 Var(π̂ML

m)

∑
M
m=1 E[(π̂ML

m − β̂m)2]
=

1−∑
M
m=1 π̂ML

m

(n−1)∑
M
m=1(β̂m− π̂ML

m)2
(3.37)

and the resulting plugin shrinkage entropy estimator is given by

Ĥ S =−
M

∑
m=1

π̂
S
m logb π̂

S
m. (3.38)

Fig. 3.2 shows a comparison between Ĥ ML and Ĥ S for πππ ∼ πm = p(m|M, p) = CM,m pm(1− p)M−m, m =
0,1, . . . ,M, with M = 200 and p = 0.2, while the sample size varies from 4 to 4096. Similar results are also

32

Part II Chapter 3

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 8

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 16

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 32

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 64

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 128

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 1024

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 2048

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4096

Estimator

E
nt

ro
py

 e
st

im
at

io
n

Figure 3.3: Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.5) while n varies from 4 to 4096.

presented in Figs. 3.3 and 3.4, for p = 0.5 and p = 0.8 respectively. The red line represents the exact value of the
entropy of πππ (the target value) given by:

H (πππ) =−
M

∑
m=1

CM,m pm(1− p)M−m log10
[
CM,m pm(1− p)M−m]= log10[(2eπ)Mp(1− p)]

2
+O(1/M). (3.39)

When p = 0.2 or p = 0.8, then H (πππ) = 1.36840. When p = 0.5, then H (πππ) = 1.46572. The blue lines represent
the values H min = 0 and H max = log10 M = log10 200 = 2.30103.

The NSB, Chao-Shen, and shrinkage estimators are statistically very efficient with small MSEs regardless of
sample size. However, in terms of versatility, the shrinkage estimator has two distinct advantages over the NSB
and Chao-Shen estimators. First, in addition to estimating the entropy, it also provides the underlying multinomial
frequencies for use with the Shannon entropy. This is useful in the context of using mutual information to quantify

33

Part II Chapter 3

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 8

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 16

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 32

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 64

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 128

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 1024

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 2048

Estimator

E
nt

ro
py

 e
st

im
at

io
n

ML Shrinkage

0.
0

0.
5

1.
0

1.
5

2.
0

n = 4096

Estimator

E
nt

ro
py

 e
st

im
at

io
n

Figure 3.4: Ĥ ML versus Ĥ S for πππ ∼ p(m|200,0.8) while n varies from 4 to 4096.

nonlinear pairwise dependencies for instance. Second, unlike the NSB estimator, the shrinkage estimator is a full
analytic estimator. Also note that the relationship between diversity and entropy will be explored in Chapter 4 by
defining the Shannon’s entropy as a phenotypic diversity index associated with a population of particles during
the optimization process. The estimation procedure developed here will be used to estimate the Shannon’s index
of diversity that will be used to monitor the population diversity, having an important role in the mechanism to
maintain or introduce diversity during the search process.

3.7 Ranking decision alternatives
A decision matrix is a multivariate data set with m rows and n columns, where rows represent decision alternatives
to be selected and columns represent evaluation criteria of interest to be considered in this decision problem of

34

Part II Chapter 3

finding the best alternative (from the set of decision alternatives) based on evaluation criteria. Each row of a
decision matrix records the performance rating under different evaluation criteria for a given alternative and each
column records the performance rating for different alternatives under a given criterion. Formally, a decision
matrix can be expressed as follows:

D =


〈C1,w1〉 〈C2,w2〉 · · · 〈Cn,wn〉

A1 x11 x12 · · · x1n
A2 x21 x22 · · · x2n
...

...
...

. . .
...

Am xm1 xm2 · · · xmn


m×n

(3.40)

where A1,A2, . . . ,Am are feasible alternatives, C1,C2, . . . ,Cn are evaluation criteria, xi j is the performance rating of
alternative Ai under criterion C j, and w j is the weight of criterion C j, satisfying ∑ j w j = 1. Evaluation criteria can
be classified into two types: benefit and cost. A benefit criterion means that a larger value is more valuable, while
a cost criterion is just the reverse.

Given a decision matrix, the main objective is to find the best alternative from the set of feasible alternatives,
taking into account the set of evaluation criteria of this decision problem. This problem is commonly referred
to as a multi-criteria decision making (MCDM) problem. Technique for order preference by similarity to ideal
solution (TOPSIS) was first developed by Hwang & Yoon (1981) as an effective ranking method for solving
MCDM problems. This method uses two ideal solutions as reference. One is the positive ideal solution (PIS),
which minimizes the cost criteria and maximizes the benefit criteria simultaneously. The other is the negative ideal
solution (NIS), which maximizes the cost criteria and minimizes the benefit criteria simultaneously. TOPSIS is
based upon the principle that the chosen alternative should have the shortest distance from the PIS and the farthest
distance from the NIS. It can be described as follows. The data of a decision matrix come from different sources
so, in general, it is necessary to normalize them in order to obtain a dimensionless matrix. The normalized value
ri j can be calculated as

ri j =
xi j

∑
m
i=1 xi j

i = 1, . . . ,m; j = 1, . . . ,n (3.41)

or
ri j =

xi j√
∑

m
i=1 x2

i j

i = 1, . . . ,m; j = 1, . . . ,n. (3.42)

The normalized decision matrix Dn = (ri j)m×n represents the relative performance of the alternatives. After nor-
malization, the weighted normalized decision matrix Dw = (pi j) is calculated, where the weighted normalized
value pi j is given as

pi j = w jri j i = 1, . . . ,m; j = 1, . . . ,n. (3.43)

Define the positive ideal solution p+ and the negative ideal solution p− as

PIS = p+ = (p+1 , . . . , p+n)
′ p+j =

{
min{p1 j, . . . , pm j} if C j is a cost criterion
max{p1 j, . . . , pm j} if C j is a benefit criterion (3.44)

and

NIS = p− = (p−1 , . . . , p−n)
′ p−j =

{
max{p1 j, . . . , pm j} if C j is a cost criterion
min{p1 j, . . . , pm j} if C j is a benefit criterion. (3.45)

Calculate the distances from p+ and p− of each alternative, respectively as

d+
i =

√
n

∑
j=1

(p+j − pi j)2 i = 1, . . . ,m (3.46)

and

d−i =

√
n

∑
j=1

(p−j − pi j)2 i = 1, . . . ,m. (3.47)

35

Part II Chapter 3

Calculate the relative closeness of each alternative with respect to the positive ideal solution as

RCi =
d−i

d−i +d+
i

i = 1, . . . ,m. (3.48)

Rank the alternatives according to the relative closeness. The best alternatives are those that have a higher value
RCi and therefore should be chosen because they are closer to the positive ideal solution. That is

A(m) ≺ ·· · ≺ A(1) since RC(m) ≤ ·· · ≤ RC(1) (3.49)

where RC(m) ≤ ·· · ≤ RC(1) represents an increasing ordering of RC1, · · · ,RCm and A(i) ≺ A(i′) informs that A(i′) is
a better alternative than A(i).

This section ends by describing a strategy to define the weight vector based on the amount of information
associated with each evaluation criterion (see Huang, 2008). This strategy can be established when

m

∑
i=1

ri j = 1 (3.50)

which is the case when ri j is calculated, for example, by Eq. (3.41). In this case, (r1 j, . . . ,rm j)
′ represents a

probability distribution when j is fixed. The amount of uncertainty contained in the criterion C j can be measured
by the entropy associated with this criterion, which in turn can be calculated as

H j =−
1

ln(m)

m

∑
i=1

ri j ln(ri j) j = 1, . . . ,n. (3.51)

Therefore, the amount of decision information contained in criterion C j can be calculated as

I j = 1−H j j = 1, . . . ,n (3.52)

and the weight for each criterion is given by

w j =
I j

∑
n
j=1 I j

j = 1, . . . ,n. (3.53)

The criteria associated with higher weights influence more in the decision making process.

36

Chapter 4

Entropy-Based Bare Bones Particle
Swarm for Dynamic Constrained
Optimization

Dynamic constrained optimization problems (DCOPs) were discussed in detail in Chapter 2. This chapter is de-
voted to presenting a new algorithmic methodology for solving DCOPs. The proposed algorithm explores the
principles of swarm computation jointly with the concepts and methods described in Chapter 3 to design an ap-
proach for dealing with DCOPs. The approach is endowed with different mechanisms that are described in the
context of dynamic optimization. Results of experiments designed to evaluate the performance of the proposed
algorithm are presented and discussed in Chapter 5 along with experimental results found by other algorithms for
comparison purposes.

4.1 Introduction
This chapter presents an algorithmic methodology for solving DCOPs. The proposed algorithm is named as
entropy-based bare bone particle swarm (EBBPSO-T to be short) and it is endowed with the following mecha-
nisms:

1. A mechanism to monitor the population diversity that was defined as the entropy of a distribution of fitness
values.

2. An entropy-based dynamic rule for governing the search of each particle. This rule works as a scheme to
maintain or introduce diversity during the search process.

3. A neighborhood structure for information exchange between particles.

4. A constraint-handling method that deal with the objective function and the constraints separately using a
ranking method with selection based on TOPSIS.

5. A mechanism to detect changes in the environment based on a fixed set of detectors uniformly distributed in
the search space. The detectors differs fully from particles that constitute the swarm.

6. A mechanism to update particles’ memories based on re-evaluation of fitness values and replacement using
a ranking method with selection based on TOPSIS.

7. Finally, a scheme of random immigrants that acts only on the first iteration of a changed environment.

These mechanisms operate related to each other to tackle the inherent difficulties involved in optimization problems
in dynamic environments. The combined effect of these mechanisms provides an algorithm capable of maintaining
a proper balance between exploration and exploitation at any stage of the search process without losing traceability
to search an optimal solution that is changing its position in the search space over time.

37

Part II Chapter 4

The mechanism that monitors the population diversity operates continuously throughout the optimization pro-
cess. The Shannon’s entropy is established as a phenotypic diversity index and the proposed algorithm uses the
Shannon’s index to aggregate two variants of the bare bones particle swarm optimizer (BBPSO), namely: the
global-best and local-best BBPSO. The idea of mixture of search directions is used considering the index of diver-
sity as a factor to balance the influence of the global-best and local-best search directions. High diversity promotes
the search guided by global-best solution with a normal distribution for exploitation. Low diversity promotes
the search guided by local-best solution with a heavy-tailed distribution for exploration. This strategy works as a
scheme to maintain or introduce diversity during the search process that is continuously affected by the mechanism
that monitors the diversity.

The proposed constraint-handling strategy uses a ranking method combined with TOPSIS to obtain the best
solution within a population of candidate solutions P′. The particles (or candidate solutions) represent the alter-
natives and all the criteria are cost criteria to be minimized that are related to numerical values of the objective
function and the degree of constraint violation. When a new environment is established, the search is divided into
two phases. The first phase aims to find feasible solutions, regardless of the objective function value. After an
appropriate number of feasible solutions has been found, the second phase starts with the goal of optimizing the
objective function. To this aim, the parameters of TOPSIS are defined depending on whether or not there is at least
one feasible solution in P′. Note that in the initial iterations of a changed environment, it is likely that TOPSIS has
to manipulate a population of particles composed entirely of infeasible solutions.

When a change in the environment is detected, this information is used to trigger actions in order to react to
the change. These actions occur sequentially as follows: (1) the random immigrants mechanism operates and a
subset of particles of the swarm is replaced by particles randomly generated (this mechanism acts only on the
first iteration of the changed environment); (2) the numerical properties (such as f (x, t) and gi(x, t) for i ∈ I) of
each particle are updated according to the new environment; and (3) the mechanism to update particles’ memories
acts using a ranking method combined with TOPSIS to select the best particle (or solution) within a population of
particles associated with each specific case.

It is important to emphasize that significant diversity loss can be generated when constraint-handling strategies
treat the objective function and the constraints separately as different criteria in the selection mechanism of the best
particle within a specific population (Mezura-Montes & Coello, 2011). In this case, it is important to continuously
monitor the population diversity and use this information to trigger mechanisms to maintain and introduce diversity
in order to combat this problem. The following sections discuss in detail the proposed algorithm.

4.2 Swarm structure
The structure of the EBBPSO-T is equivalent to the structure of the canonical BBPSO. BBPSO and its variants
are presented in Section 1.1 and Appendix B for solving unconstrained optimization problems (UOPs) in static
environments. EBBPSO-T has a swarm P with K particles and a neighborhood system N defined by a ring
topology with |Nk| neighbors to each particle. Each particle is characterized by a vector (xk,pk,nk,g)′, where
xk = (xk1, . . . ,xkD)

′ denotes the position of the particle, pk and nk denote respectively the personal-best and local-
best positions (pbest and lbest), and g denotes the global-best position (gbest). In addition, each position xk is
associated with the following numerical properties:

1. f (xk, t): objective function value of xk at time t.

2. gi(xk, t): constraint function value of xk at time t.

3. s(xk, t) = ∑
I
i=1[max{0,gi(xk, t)}]2: degree of constraint violation related to xk at time t.

4. u(xk, t) = |{i : gi(xk, t)> 0}|: number of constraints violated by xk at time t.

Since the memories pk,nk, and g represent positions such as xk, it is obvious that each of these memories also has
the properties (f ,gi,s,u).

4.3 Index of diversity
The Shannon’s entropy was discussed in Chapter 3 (see Section 3.5) as an index of diversity. This index can be
applied in monitoring the diversity of a population of particles during an optimization process. Consider a swarm P

38

Part II Chapter 4

with K particles along with the set of variables and numerical properties associated with each particle. The entropy
estimation is performed based on a set of fitness values, for example, the set of values related to f (x, t) and f (p, t).
The approach is described in the following steps:

Step 1. The data related to f (x, t) must be discretized, with each measurement assuming one of M1 states. An
analogous procedure must be done with the data related to f (p, t), with each measurement assuming one of
M2 states.

Step 2. M =M1×M2 cell frequencies are estimated for the pair of variables f (x, t) and f (p, t), using the shrinkage
approach defined by Eq. (3.36) (see Chapter 3). Note that typically K (here representing the sample size) is
much smaller than M, thus simple approaches such as ML estimation should be avoided.

Step 3. Finally, the Shannon’s index of diversity is estimated using the plugin shrinkage entropy estimator Ĥ S,
defined in Eq. (3.38).

Large values of Ĥ S are related with small values of π̂S
m for nearly every state, i.e., the fitness values associated

with the particles are evenly distributed over practically all states. On the other hand, small values of Ĥ S are
related with large values of π̂S

m for a few states, i.e., the fitness values associated with the swarm of particles are
concentrated in few states. Therefore, high entropy indicates high diversity in the swarm and low entropy indicates
low diversity in the swarm. The essential steps of the shrinkage entropy estimation procedure can be summarized
as the pseudo code shown in Algorithm 2.

Algorithm 2 ShrinkageEntropyEstimation() procedure.
Input: f (xk, t), f (pk, t) for all k, M1, and M2.

1: Discretize the observations related to f (x, t) and f (p, t) into M = M1×M2 bins
2: Establish the M1×M2 table of counts
3: Calculate π̂S

m, m = 1, . . . ,M, according to Eq. (3.36)
4: Calculate Ĥ S according to Eq. (3.38)
5: return The shrinkage entropy estimate Ĥ S.

The Shannon’s index of diversity differs from the traditional approach used in swarm computation, where the
diversity of a population with K individuals is measured by:

Diversity =
1

n f ·K

K

∑
k=1

(
D

∑
d=1

(xkd− x̄d)
2

)1/2

(4.1)

where x̄ = (x̄1, . . . , x̄D) = K−1
∑

K
k=1 xk and n f is a normalization factor (the maximum distance between opposite

corners of the landscape or the diameter of the swarm are examples of factors that can be used for normalization).
The measure given by Eq. (4.1) is a genotypic diversity measure, because it monitors the diversity of solutions.
The Shannon’s index is a phenotypic diversity measure, because it monitors the diversity of fitness values, i.e.,
the diversity of solution responses. The reader is referred to Olorunda & Engelbrecht (2008) and Corriveau et al.
(2012) that provide an overview of genotypic diversity measures for real-coded representations.

4.4 Dynamic rule
EBBPSO-T explores three concepts to define the dynamic rule to update the position of a particle: (1) the neigh-
borhood system to exchange information between particles; (2) heavy-tailed distributions to encourage exploration
in the search space and diversify the solutions; and (3) the Shannon’s entropy as a phenotypic diversity index.

In swarm optimization, it is well-known that the global-best model converges faster than the local-best model,
since all particles are attracted by the same best position. Therefore, the global-best model is distinguished for its
exploitation ability. On the other hand, the local-best model has better exploration properties, since the information
regarding the best position of each neighborhood is gradually communicated to the rest of the particles through
their neighborhood system. Therefore, the attraction toward a specific point is weaker, thus preventing the swarm
to get trapped in suboptimal solutions.

The main idea is to apply the Shannon’s index of diversity as an unification factor to aggregate the global-best
and local-best BBPSO variants, combining their exploitation and exploration properties. Low diversity encourages

39

Part II Chapter 4

the search guided by the local-best solution, using a heavy-tailed distribution for exploration. High diversity en-
courages the search guided by the global-best solution, using a normal distribution for exploitation. The Shannon’s
index balances the influence of these search directions in a single dynamic rule to update the position of a particle.
The proposed dynamic rule combines the diversification and intensification properties and works as a mechanism
for introducing or maintaining diversity.

The first strategy defines the following search direction:

x(1)k = ηηηk +ρρρk� z1 (4.2)

where

• ηηηk = (ηk1, . . . ,ηkD)
′ = 1

2 (pk1 +g1, . . . , pkD +gD)
′

• ρρρk = (ρk1, . . . ,ρkD)
′ = (|pk1−g1|, . . . , |pkD−gD|)′

• z1 = (z11, . . . ,z1D)
′ ∼
(
N(0,1), iid. . .,N(0,1)

)′
.

In Eq. (4.2), � represents the componentwise vector multiplication. The symbol ∼ indicates that z1 is a vector of
independent and identically distributed random variables, where each component has a normal distribution with
mean 0 and variance 1. The pdf of x(1)kd is given by

x(1)kd ∼ N(x(1)kd |ηkd ,ρ
2
kd) (4.3)

for all d = 1, . . . ,D, i.e., x(1)kd has a normal distribution with mean ηkd and variance ρ2
kd .

The second strategy defines the following search direction:

x(2)k = µµµk +λλλ
−1/2�σσσ k� z2 λλλ ∼

(
Ga
(

ν

2
,

ν

2

)
, iid. . .,Ga

(
ν

2
,

ν

2

))′
(4.4)

where

• µµµk = (µk1, . . . ,µkD)
′ = 1

2 (pk1 +nk1, . . . , pkD +nkD)
′

• σσσ k = (σk1, . . . ,σkD)
′ = (|pk1−nk1|, . . . , |pkD−nkD|)′

• z2 = (z21, . . . ,z2D)
′ ∼
(
(N(0,1), idd. . .,N(0,1)

)′
• λλλ

−1/2 = (λ
−1/2
1 , . . . ,λ

−1/2
D)′.

Each λd ∼ Ga(ν

2 ,
ν

2) is independent of z2d ∼ N(0,1). The distribution of x(2)kd can be expressed hierarchically as

x(2)kd |λd ∼ N(x(2)kd |µkd ,λ
−1
d σ

2
kd) λd ∼ Ga(λd |ν/2,ν/2) (4.5)

and its pdf is given by
x(2)kd ∼ t(x(2)kd |ν ,µkd ,σ

2
kd) (4.6)

for all d = 1, . . . ,D, i.e., x(2)kd has a t-distribution with location µkd , scale σkd , and ν degrees of freedom. The

parameter ν can be used to control the heaviness of the tails of the distribution of x(2)kd .
The aggregation of the global-best and local-best search directions defines the new position of a particle as

follows:

xk =
Ĥ S

Hmax
·x(1)k +

(
1− Ĥ S

Hmax

)
·x(2)k (4.7)

where Ĥ S is the Shannon’s index of diversity and Hmax is the maximum entropy. Thus, the global-best search
strategy is realized with normal distributions and the local-best search strategy is realized with heavy-tailed distri-
butions in their hierarchical forms, as scale mixtures of normal distributions (see Section 3.2 in Chapter 3 for more
details). Small values of Ĥ S favor the local-best search for exploration. Large values of Ĥ S favor the global-best
search for exploitation.

40

Part II Chapter 4

It is important to emphasize that entropy has been used in swarm and evolutionary optimization as an index of
diversity (see Petalas, Parsopoulos & Vrahatis, 2007; Liu, Mernik & Bryant, 2007, 2009). Petalas, Parsopoulos &
Vrahatis (2007) introduced a memetic PSO that combines the PSO with a local search method for computing peri-
odic orbits of nonlinear mappings. Liu, Mernik & Bryant (2007, 2009) introduced an entropy-driven evolutionary
approach for solving UOPs in static environments. Our approach differs from the approaches used by Petalas,
Parsopoulos & Vrahatis (2007) and Liu, Mernik & Bryant (2007, 2009) in the following aspects: (1) the approach
used by Petalas, Parsopoulos & Vrahatis (2007) employs the Shannon’s entropy for deciding when the local search
method is applied to exploit the best position of each particle. This decision depends on two user-defined threshold
values. The approach used by Liu, Mernik & Bryant (2007, 2009) applies an user-defined threshold value to switch
(whenever necessary) from a low mutation rate to a high mutation rate and vice versa depending on whether or not
there is a degradation of the Shannon’s entropy (index of diversity). Our approach does not require any threshold
value to switch the search strategy between two regimes, for example, from global search to local search. Instead,
our approach uses the idea of mixture of search directions, having the Shannon’s index as a factor to balance the
influence of these search directions; (2) the approaches used by Petalas, Parsopoulos & Vrahatis (2007) and Liu,
Mernik & Bryant (2007, 2009) do not make clear how the entropy estimation problem was resolved. It is not clear
the estimator that was effectively used in that problem. Instead, our approach suggests an entropy estimator and
justifies its application as an index of diversity in swarm optimization.

4.5 Constraint handling
This section proposes a constraint-handling strategy that uses a ranking method with selection based on TOPSIS
to obtain the best solution within a population of candidate solutions. The solutions represents the alternatives
and all the criteria are cost criteria to be minimized that are related to numerical properties (f ,s,u). The idea is
divide the search in two phases. The first phase aims to find feasible solutions, regardless of the objective function
value. After an appropriate number of feasible solutions has been found, the second phase starts with the goal of
optimizing the objective function. The parameters of TOPSIS are defined depending on whether or not there is at
least one feasible solution in the population of candidate solutions. The proposed approach is described as follows.
Since the numerical properties f ,s, and u are of different orders of magnitude, a ranking method is used to deal
with the proper scaling of these properties. Consider a population of particles P′. The particles in P′ are ranked
with respect to each property (f ,s,u) independently. This produces three new terms, denoted by R1,R2, and R3,
respectively. Clearly this terms are all of the same order of magnitude. This information can be summarized in a
decision matrix

D =


R1 R2 R3

particle1 R11 R12 R13
...

...
...

particlem Rm1 Rm2 Rm3

 (4.8)

where the particles are alternatives, R1,R2, and R3 are criteria, and Ri j indicates the rank achieved by the i-th
particle (i = 1, . . . ,m) according to criteria R j (j = 1,2,3). The selection strategy is based on TOPSIS, which is
described in the following steps:

Step 1. Calculate the normalized decision matrix Dn = (ri j) from D, where the normalized value ri j is usually
calculated as:

ri j =
Ri j√

∑
m
i=1 R2

i j

i = 1, . . . ,m; j = 1,2,3. (4.9)

Step 2. After normalization, calculate the weighted normalized decision matrix Dw = (pi j), where the weighted
normalized value pi j is calculated as:

pi j = w jri j i = 1, . . . ,m; j = 1,2,3. (4.10)

The weight vector w = (w1,w2,w3)
′ satisfies w1 +w2 +w3 = 1.

Step 3. Define the positive ideal solution p+ and the negative ideal solution p− as:

p+ = (p+1 , p+2 , p+3)
′ p+j = min{p1 j, . . . , pm j} (4.11)

41

Part II Chapter 4

and
p− = (p−1 , p−2 , p−3)

′ p−j = max{p1 j, . . . , pm j}. (4.12)

Step 4. Calculate the distances from p+ and p− of each alternative, respectively as:

d+
i =

√
∑

j
(p+j − pi j)2 i = 1, . . . ,m (4.13)

and
d−i =

√
∑

j
(p−j − pi j)2 i = 1, . . . ,m. (4.14)

Step 5. Calculate the relative closeness of each alternative with respect to the positive ideal solution as:

RCi =
d−i

d−i +d+
i

i = 1, . . . ,m. (4.15)

Step 6. Rank the alternatives according to the relative closeness. The best alternatives are those that have higher
value RCi and therefore should be chosen because they are closer to the positive ideal solution.

Algorithm 3 RankingTOPSIS() procedure.
Input: P′, a population of solutions.

1: Evaluate each solution with respect to (f ,s,u)
2: Calculate the decision matrix D and define w
3: Calculate the normalized decision matrix Dn
4: Calculate the weighted normalized decision matrix Dw
5: Define p+ and p−
6: Calculate d+

i and d−i of each solution
7: Calculate the relative closeness of each solution
8: Rank the solutions according to the relative closeness
9: return The best solution (particle) in P′.

The essential steps of the RankingTOPSIS procedure can be summarized as the pseudo code shown in Algo-
rithm 3. When all particles in P′ are infeasible, our aim is to seek the first feasible solution from the search space.
The information from f then becomes unimportant and hence, only R2 and R3 are used. In this case, the weight
vector w is set to (0,1/2,1/2). When feasible individuals exist in P′, the algorithm should explore the search space
in order to find an optimum solution and hence, the information from f becomes relevant. In the last case, R2 and
R3 serve as terms to penalize infeasible solutions and w is set to (1/3,1/3,1/3), since R1 is also used along with
R2 and R3. In addition, R1 enables us to relate the infeasible individuals to the feasible individuals based on the
numerical property f . The consideration of this term allows us to retain for the next iteration only those infeasible
solutions with a small degree of constraint violation and a small objective function value. This strategy is necessary
to maintain the diversity of the population in order to explore into infeasible regions of the search space as well.

4.6 Change detection
Swarm algorithms operating in dynamic environments need a specific mechanism to detect changes in the environ-
ment. There are two types of changes that can affect the search process: (1) changes in the objective function and
(2) changes in the constraint functions. The change detection problem is addressed based on the use of information
extracted from the objective and constraint functions by a set of points in the search space. This extraction of
information can be done in two ways. One is to use the own swarm particles as points of information collection
(population-based detection) and the other is to use an additional population of sensors (or detectors) as points of
information collection (sensor-based detection) (Richter, 2009; Richter & Dietel, 2010).

This work addresses the change detection problem by using a fixed set of detectors. The detectors are estab-
lished in the search space and then their objective values and constraint violations are evaluated after each iteration.

42

Part II Chapter 4

If the present and past objective values and constraint violations are different, then, indeed, the environment has
changed. The essential steps of the mechanism to detect changes in the environment can be summarized as the
pseudo code shown in Algorithm 4.

The set of detectors differs fully from particles that constitute the swarm. Therefore, our mechanism is not
based on performance drop. The detectors are distributed in the search space using a low-discrepancy (quasi-
random) sequence that can cover the search space more evenly, since it can achieve a measure of discrepancy
much smaller when compared with the measure of discrepancy of a sequence of pseudo-random numbers (Nguyen
et al., 2007; Pant et al., 2008).

Algorithm 4 ChangeDetection() procedure.
Input: ϒ (the set of detectors), fo = f (ϒ, t− 1|Θt−1), so = s(ϒ, t− 1|Θt−1) (objective values and constraint vio-

lations at time t − 1), fc = f (ϒ, t|Θt), and sc = s(ϒ, t|Θt) (objective values and constraint violations at time
t).

1: Flag← false
2: if at least one value among the objective values and the constraint violations is not the same as those of the last

evaluation of the detectors then
3: Flag← true
4: end if
5: return Flag.

When a change in the environment is detected, a random-immigrants scheme acts to introduce population
diversity. Part of the swarm is replaced by particles randomly generated and this strategy acts only on the first
iteration of the changed environment. In addition, a mechanism to update memories associated with the particles
also acts on the first iteration of a changed environment. This mechanism is based on re-evaluation of fitness values
and replacement using the RankingTOPSIS procedure such as described in Section 4.5.

Now that all components of the new approach have been described, the pseudo code of EBBPSO-T for DCOPs
can be presented in Algorithm 5, followed by its flowchart shown in Figure 4.1.

4.7 Convergence analysis
Theoretical analyses of the PSO algorithm have been offered in the literature. A detailed review of these studies
is presented in Section B.5 (see Appendix B). Some studies are developed using results of the theory of stochastic
processes. Jiang, Luo & Yang (2007) were able to present a convergence analysis for the standard PSO by consid-
ering the positions of a particle as a collection of random variables indexed by time. Thus, PSO was studied using
results of stochastic convergence of random variables to formalize the idea that the swarm of particles can be ex-
pected to settle in a pattern. The convergence condition of the system and guidelines for parameter selection were
derived. In that study, the only assumption made by Jiang and co-authors was stagnation. Poli (2009) introduced
a method that allows one to exactly determine the moments of the sampling distribution produced by PSO and
explain how they change over the generations. Again, the only assumption made by Poli was stagnation. Zhang et
al. (2014a) introduced a new BBPSO with adaptive disturbance and developed a stochastic convergence analysis
for the proposed algorithm by using the same approach adopted by Jiang, Luo & Yang (2007).

Under the same assumptions adopted by Jiang, Luo & Yang (2007) and Zhang et al. (2014a), a convergence
analysis for EBBPSO-T is developed here. First, it is important to observe two points: (1) a dynamic optimization
problem can be seen as a sequence of static optimization problems over time, which are solved online by an
algorithm as time goes by. The overall algorithm performance depends on its performance in each environment.
For convenience, our analysis is carried out considering a unique environment, but its results can be applied to
any other environment of the dynamic problem; (2) when a swarm algorithm operates on an optimization problem,
the values of pbest, lbest, and gbest are continually updated. For convenience, stagnation is initially assumed as
a simplifying assumption, but subsequently this hypothesis will be partially relaxed. Now, our analysis can be
presented in steps:

Step 1. If EBBPSO-T is in a stagnation phase, each particle behaves independently. In addition, during stagnation,
each dimension is independent. So, the behaviour of each particle can be analysed in isolation, considering
a one-particle swarm in one dimension. Given p (pbest), n (lbest), and g (gbest), the dynamic rule can be

43

Part II Chapter 4

Algorithm 5 EBBPSO-T for DCOPs.
Input: K,N ,ν ,w, f (·|Θt), and gi(·|Θt), i ∈ I.

1: τ ← 1; t← 0; Flag← false
2: Θt = (p(t),q(t),r(t),s(t))′

3: Establish the set of detectors ϒ in S
4: for k ∈ {1, . . . ,K} do
5: Initialize xk
6: Set pk = xk
7: end for
8: for k ∈ {1, . . . ,K} do
9: nk← RankingTOPSIS(pl |l ∈Nk)

10: end for
11: g← RankingTOPSIS(nk|k = 1, . . . ,K)
12: x∗← /0; x∗← x∗∪g
13: f∗← /0; f∗← f∗∪ f (g, t|Θt)
14: repeat
15: τ ← τ +1
16: if Flag = true then
17: Call RandomImmigrants()
18: for k ∈ {1, . . . ,K} do
19: Call RankingTOPSIS() to update pk and nk
20: end for
21: g← RankingTOPSIS(nk|k = 1, . . . ,K)
22: Flag← false
23: end if
24: Ĥ S← ShrinkageEntropyEstimation()
25: for k ∈ {1, . . . ,K} do
26: Change the position according to Eq. (4.7)
27: Call RankingTOPSIS() to update pk and nk
28: end for
29: g← RankingTOPSIS(nk|k = 1, . . . ,K)
30: x∗← x∗∪g
31: f∗← f∗∪ f (g, t|Θt)
32: Evaluate fo = f (ϒ, t|Θt) and so = s(ϒ, t|Θt)
33: if τ mod ∆ = 0 then
34: t← t +1; Update Θt
35: end if
36: Evaluate fc = f (ϒ, t|Θt) and sc = s(ϒ, t|Θt)
37: Flag← ChangeDetection(fo,so, fc,sc)
38: until some termination condition is met
39: return x∗ and [1 : τmax]× f∗ (convergence plot).

44

Part II Chapter 4

Start

τ ← 1; Flag← false
Initialize the population

τ ← τ + 1

Flag = true?Keep in loop Call RandomImmigrants()
and update the population

Calculate Ĥ S; Update the popu-
lation and call ChangeDetection()

Stop?

Return the gbest solution and its
properties for all t = 0,1,2, . . . , tmax

End

yes

no

no

yes

Figure 4.1: The flowchart of EBBPSO-T

written as

xτ+1 = Ĥτ

[
p+g

2
+ |p−g| · z

]
+ Ŵτ

[
p+n

2
+ |p−n| · t

]
(4.16)

where Ĥτ = Ĥ τ
S /Hmax, Ŵτ = 1− Ĥτ , z ∼ N(0,1), t ∼ t(ν ,0,1), and τ represents the iteration counter.

Note that, for convenience in notation, τ is used as a subscript index rather than superscript as done in
Appendix B. From Eq. (4.16), it follows that for ν > 1

E(xτ+1) =
1
2
(

p+Ĥτ g+ Ŵτ n
)

(4.17)

for all τ ≥ 0 and for ν > 2

Var(xτ+1) = Ĥ 2
τ (p−g)2 + Ŵ 2

τ

ν(p−n)2

ν−2
(4.18)

45

Part II Chapter 4

and

E(x2
τ+1) = Ĥ 2

τ

[
(p+g)2

4
+(p−g)2

]
+

ĤτŴτ

2
(p+g)(p+n)+ Ŵ 2

τ

[
(p+n)2

4
+

ν(p−n)2

ν−2

]
(4.19)

for all τ ≥ 0.

Step 2. Now, the following situation can be considered: the values of pbest and lbest are constantly updated
during the search process, but the value of gbest is kept constant as the best position previously found by
the swarm. This means that the stagnation assumption is now partially relaxed. Search for the global-best
solution allowing changes in their memories (pbest and lbest) implies that the spatial extension of the search
for a particle decreases over time. In fact, Blackwell (2005) suggested that the maximum spatial extension
of a swarm along any axis decreases exponentially with time. Hence, pτ and nτ converge almost surely to g.
As a result, E(xτ)→ g, Var(xτ)→ 0, and xτ converges in mean square to g if ν > 2.

Step 3. As each dimension of the position of a particle is updated independently of the others, it follows that for
ν > 1

E(xτ+1
k) =

1
2
(
pτ

k +Ĥτ g+ Ŵτ nτ
k
)
→ g (4.20)

and for ν > 2

Var(xτ+1
k) = Ĥ 2

τ (pτ
k −g)2 + Ŵ 2

τ

ν(pτ
k −nτ

k)
2

ν−2
→ 0 (4.21)

since dist(pτ
k ,g)→ 0 and dist(nτ

k ,g)→ 0 almost surely when τ → ∞. Hence, xτ
k converges in mean square

to g if ν > 2. Finally, this conclusion applies to each particle, thus the swarm as a whole will converge to g
when τ tends to infinity.

In summary, three special cases can be highlighted:

1. For all ν > 2, the random process that generates the position of a particle has mean and variance both finite
for all iterations and the swarm converges in mean square to g when τ → ∞.

2. For all 1 < ν ≤ 2, the random process that generates the position of a particle has finite mean and infinite
variance for all iterations and the swarm converges in mean to g when τ → ∞.

3. For all ν ≤ 1, the random process that generates the position of a particle has undefined mean and also
undefined variance for all iterations, and therefore, no type of convergence can be established.

It is also important to note that this section provides an analysis to establish that the particles converge to a stable
point. The stable point is shown to be the global-best position. This is not a proof of convergence to a global
minimum, but only states that the swarm will reach an equilibrium point.

To complete this section, two examples are provided to empirically illustrate the convergence of EBBPSO-T
when it is applied to solve DCOPs.

Example 4.1. Consider the G24-3 problem that was discussed in Example 2.2 (see Chapter 2). This DCOP
was simulated considering δ = 4 and S = 20. The window ∆, where the dynamic problem remains constant,
was defined as 40 iterations. This problem was solved using EBBPSO-T with K = 25 particles, a neighborhood
system N defined by a ring topology, and ν = 2.1. Table 4.1 shows the obtained results for each environment
(t = 0,1,2, . . .): x∗ = (x∗1,x

∗
2) is the best solution obtained by EBBPSO-T and x̄ = (x̄1, x̄2) is the global minimum.

In addition, Table 4.1 shows f ∗ = f (x∗, t) (the objective value of x∗ at time t), f̄ = f (x̄, t) (the objective value
of x̄ at time t), and the absolute error | f ∗− f̄ | for each environment. Figure 4.2 shows the convergence plot of
EBBPSO-T and Figure 4.3 shows the Shannon’s index of diversity for each iteration. For each environment of
the problem, EBBPSO-T converges to an approximate solution close to the global minimum, thus obtaining small
absolute errors. Note that all obtained solutions are feasible solutions. As discussed in Example 2.2 the size and the
shape of the feasible regions change over time and a new global minimum is revealed whenever the environment is
changed. In addition, the old minimum value is not changed, since the objective function is static. In this scenario,
EBBPSO-T was able to track the global minimum whenever it is revealed. Finally, considering the performance
measures discussed in Section 2.9 of the Chapter 2, the solution shown in Figure 4.2 has an offline error of 0.029
and a best-error-before-change of 0.00023.

46

Part II Chapter 4

Table 4.1: Best solution using EBBPSO-T for the G24-3 problem (see Example 4.1).
t x̄1 x̄2 x∗1 x∗2 f ∗ f̄ | f ∗− f̄ | g∗1 g∗2
0 2.32952 1.17849 2.32965 1.17784 -3.50749 -3.50801 5.21E-04 -1.72E-03 -4.34E-05
1 2.32952 1.37849 2.32963 1.37792 -3.70755 -3.70801 4.58E-04 -1.46E-03 -5.68E-05
2 2.32952 1.57849 2.32954 1.57832 -3.90786 -3.90801 1.52E-04 -2.91E-04 -1.01E-04
3 2.32952 1.77849 2.32945 1.77784 -4.10765 -4.10801 3.62E-04 -6.56E-05 -9.95E-04
4 2.32952 1.97849 2.32958 1.97821 -4.30779 -4.30801 2.23E-04 -7.79E-04 -5.56E-06
5 2.32952 2.17849 2.32964 2.17785 -4.50757 -4.50801 4.36E-04 -1.63E-03 -7.75E-05
6 2.32952 2.37849 2.32959 2.37814 -4.70784 -4.70801 1.67E-04 -9.41E-04 -1.89E-05
7 2.32952 2.57849 2.32957 2.57818 -4.90796 -4.90801 4.53E-05 -7.42E-04 -6.18E-05
8 2.32952 2.77849 2.32956 2.77828 -5.10796 -5.10801 4.75E-05 -5.56E-04 -9.54E-06
9 2.32952 2.97849 2.32954 2.97835 -5.30794 -5.30801 6.93E-05 -2.94E-04 -5.74E-05

10 2.32952 3.17849 2.32953 3.17844 -5.50798 -5.50801 2.55E-05 -1.24E-04 -1.49E-05
x̄ = (x̄1, x̄2), x∗ = (x∗1,x

∗
2), f̄ = f (x̄, t), f ∗ = f (x∗, t), and g∗i = gi(x∗, t)

Example 4.2. Consider the G24-4 problem that was discussed in Example 2.3 (see Chapter 2). This DCOP was
simulated considering κ = 1/2, δ = 4, and S = 20. The window ∆, where the dynamic problem remains constant,
was defined as 40 iterations. This problem was solved using EBBPSO-T with K = 25 particles, a neighborhood
system N defined by a ring topology, and ν = 2.1. Table 4.2 shows the obtained results for each environment
(t = 0,1,2, . . .): x∗= (x∗1,x

∗
2) is the best solution obtained by EBBPSO-T and x̄= (x̄1, x̄2) is the global minimum. In

addition, Table 4.2 shows f ∗ = f (x∗, t), f̄ = f (x̄, t), and the absolute error | f ∗− f̄ | for each environment. Figure
4.4 shows the convergence plot of EBBPSO-T and Figure 4.5 shows the Shannon’s index of diversity for each
iteration. For each environment of the problem, EBBPSO-T converges to an approximate solution close to the
global minimum, thus obtaining small absolute errors. Note that all obtained solutions are feasible solutions. As
discussed in Example 2.3 the objective function and the constraints change over time. As a result, the location of
the global minimum is switched between two disconnected feasible regions. In addition, the size and the shape
of the feasible regions also change over time. In this scenario, EBBPSO-T was able to track the global minimum
whenever it is switched between feasible regions. Finally, considering the performance measures discussed in
Section 2.9 of the Chapter 2, the solution shown in Figure 4.4 has an offline error of 0.117 and a best-error-before-
change of 0.00094.

Table 4.2: Best solution using EBBPSO-T for the G24-4 problem (see Example 4.2).
t x̄1 x̄2 x∗1 x∗2 f ∗ f̄ | f ∗− f̄ | g∗1 g∗2
0 2.32952 3.17849 2.33016 3.17475 -5.50490 -5.50801 3.11E-03 -8.95E-03 -7.54E-04
1 0.61160 3.24210 0.61133 3.24107 -3.24107 -3.24209 1.02E-03 -3.10E-04 -6.65E-03
2 0.61160 3.04210 0.61105 3.04037 -2.42932 -2.43049 1.17E-03 -2.65E-04 -1.32E-02
3 0.61160 2.84210 0.61137 2.84127 -2.84159 -2.84210 5.12E-04 -2.29E-04 -5.60E-03
4 2.32952 2.37849 2.33004 2.37561 -4.70596 -4.70801 2.05E-03 -7.16E-03 -4.18E-04
5 0.61160 2.44210 0.61128 2.44106 -2.44141 -2.44209 6.75E-04 -1.78E-04 -7.81E-03
6 0.61160 2.24210 0.61138 2.24123 -1.63013 -1.63049 3.55E-04 -2.91E-04 -5.47E-03
7 0.61160 2.04210 0.61138 2.04090 -2.04181 -2.04210 2.92E-04 -6.22E-04 -5.75E-03
8 2.32952 1.57849 2.32974 1.57734 -3.90708 -3.90801 9.32E-04 -2.93E-03 -1.31E-04
9 0.61160 1.64210 0.61153 1.64183 -1.64193 -1.64209 1.56E-04 -9.47E-05 -1.69E-03

10 0.61160 1.44210 0.61156 1.44197 -0.83042 -0.83049 6.76E-05 -2.99E-05 -9.62E-04
x̄ = (x̄1, x̄2), x∗ = (x∗1,x

∗
2), f̄ = f (x̄, t), f ∗ = f (x∗, t), and g∗i = gi(x∗, t)

47

Part II Chapter 4

0 100 200 300 400

−
6

−
5

−
4

−
3

−
2

−
1

0

iteration

B
es

t f
itn

es
s

Figure 4.2: Convergence plot for the G24-3 problem.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

S
ha

nn
on

 in
de

x
of

 d
iv

er
si

ty

Figure 4.3: Shannon’s index of diversity.

0 100 200 300 400

−
6

−
5

−
4

−
3

−
2

−
1

0

iteration

B
es

t f
itn

es
s

Figure 4.4: Convergence plot for the G24-4 problem.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

S
ha

nn
on

 in
de

x
of

 d
iv

er
si

ty

Figure 4.5: Shannon’s index of diversity.

48

Part III

Results, Discussion, and Conclusion

49

Chapter 5

Experimental Results

This chapter presents an experimental analysis conducted to investigate the performance of the EBBPSO-T to solve
DCOPs. Results of experiments designed to evaluate the performance of the proposed algorithm are reported and
discussed along with experimental results obtained by other algorithms for comparison purposes. An application is
also developed, where EBBPSO-T is applied to solve the dynamic economic dispatch problem in power systems.

5.1 Benchmark problems
An experimental analysis was conducted to investigate empirically the performance of the EBBPSO-T to solve
DCOPs. The G24 set of DCOPs (Nguyen & Yao, 2009; Nguyen, 2010; Nguyen & Yao, 2012) was used in this
experimental study. These problems have characteristics that are representative of real-world DCOPs. Chapter
2 provides a description of all problems in this set, including the parameters used to simulate each problem. In
particular, some detailed examples of problems in this set are presented in Section 2.6. As discussed in Chapter
2, these problems can be simulated considering the following parameters: κ , S, and ∆, where κ determines the
severity of objective function changes, S determines the severity of constraint changes, and ∆ determines the
window where the dynamic problem remains constant. The basic principle used to select numerical values for
these parameters was to ensure that our experimental results could be fairly compared with the experimental results
obtained by other algorithms also tested on the problems of the G24 set. The values chosen are: κ = 1/2, S = 20,
and ∆ = 40 iterations, which is equivalent to define a change frequency equal to 1000 function evaluations if
the algorithm uses a swarm (population) with K = 25 particles. Furthermore, the constants C1 = 1.470561702,
C2 = 3.442094786232, and Ra = 0.858958496 are necessary to simulate the problems G24-8a and G24-8b.

5.2 Experimental setup
Four swarm algorithms were investigated in our experiments. These algorithms and their characteristics are de-
scribed as follows:

LBBPSO-SR. Lbest BBPSO-SR has two parameters: K (the number of particles) and N (the neighborhood
system). LBBPSO-SR was tested with K = 25 particles and N defined by a ring topology. Its dynamic rule
is defined by

xτ+1
kd = µ

τ
kd +σ

τ
kdzd (5.1)

for all k,d and τ ≥ 0, where µτ
kd = 0.5(pτ

kd + nτ
kd), σ τ

kd = |pτ
kd − nτ

kd |, and zd ∼ N(0,1). The constraint-
handling strategy is based on sum of ranks (Ho & Shimizu, 2007).

GBBPSO-SR. Gbest BBPSO-SR has two parameters: K and N . GBBPSO-SR was tested with K = 25 particles
and N defined by a fully connected topology. Its dynamic rule is defined by

xτ+1
kd = η

τ
kd +ρ

τ
kdzd (5.2)

for all k,d and τ ≥ 0, where ητ
kd = 0.5(pτ

kd +gτ
d), ρτ

kd = |pτ
kd−gτ

d |, and zd ∼N(0,1). The constraint-handling
strategy is based on sum of ranks (Ho & Shimizu, 2007).

50

Part III Chapter 5

EBBPSO-SR. Entropy-based BBPSO-SR has three parameters: K, N , and ν . EBBPSO-SR was tested with
K = 25 particles, N defined by a ring topology, ν = 1.0 and 2.1, and a mechanism to monitor the population
diversity that use the Shannon’s index such as discussed in Subsection 4.3. EBBPSO-SR has an entropy-
based dynamic rule such as discussed in Subsection 4.4, i.e., the position of a particle is updated as follows

xτ+1
kd = Ĥ τ · (ητ

kd +ρ
τ
kdz1d)+ Ŵ τ · (µτ

kd +λ
−1/2
d σ

τ
kdz2d) (5.3)

for all k,d and τ ≥ 0, where Ĥ τ = Ĥ τ
S /Hmax, Ŵ τ = 1−Ĥ τ , ητ

kd = 0.5(pτ
kd +gτ

d), µτ
kd = 0.5(pτ

kd +nτ
kd),

ρτ
kd = |pτ

kd − gτ
d |, σ τ

kd = |pτ
kd − nτ

kd |, z1d ,z2d ∼ N(0,1), and λd ∼ Ga(ν/2,ν/2). The constraint-handling
strategy is based on sum of ranks (Ho & Shimizu, 2007).

EBBPSO-T. Entropy-based BBPSO-T has three parameters: K, N , and ν . EBBPSO-T was tested with K = 25
particles, N defined by a ring topology, ν = 1.0 and 2.1, and a mechanism to monitor the population
diversity that use the Shannon’s index such as discussed in Subsection 4.3. EBBPSO-T has an entropy-based
dynamic rule such as discussed in Subsection 4.4, i.e, each particle uses Eq. (5.3) to update its position. The
constraint-handling strategy uses a ranking method with selection based on TOPSIS such as discussed in
Subsection 4.5.

The values chosen for the parameter ν represent two distinct characteristic cases. For ν = 1.0 (in fact, for
all ν ≤ 1), the random process that generates the position of a particle has undefined mean and also undefined
variance for all iterations. For ν = 2.1 (in fact, for all ν > 2), the random process that generates the position of a
particle has mean and variance both finite for all iterations. Table 5.1 summarizes this information. In addition, all
these algorithms are endowed with a mechanism to detect changes in the environment and a mechanism to update
particles’ memories. The mechanism to detect changes in the environment uses a set ϒ with min{d0.3 ·Ke,10}
detectors uniformly distributed in the search space. When a change in the environment is detected, a scheme of
random immigrants operates on the first iteration of the changed environment, such that d0.3 ·Ke particles are
replaced by particles randomly generated in the search space.

Table 5.1: Characteristics of the swarm algorithms investigated in the G24 set.
Algorithm K N Dynamic rule Constraint handling ν

LBBPSO-SR 25 R Lbest driven Ho & Shimizu (2007) -
GBBPSO-SR 25 FC Gbest driven Ho & Shimizu (2007) -
EBBPSO-SR 25 R Subsection 4.4? Ho & Shimizu (2007) 1.0 or 2.1
EBBPSO-T 25 R Subsection 4.4? Subsection 4.5? 1.0 or 2.1
R: ring topology; FC: fully connected topology.
? Dynamic rule proposed in this work.
? Constraint-handling strategy proposed in this work.

5.3 Results and discussion
The experimental study consists of a set of experiments. In each experiment, a pair problem/algorithm was con-
sidered and sequences of offline errors and execution times were obtained from 50 independent runs, where in
each run the tested algorithm was applied to solve the benchmark problem. Mean and standard deviation were
calculated for the sequences of errors and execution times. All experiments were executed on a computer with In-
tel Core(TM) i5-2450M(2.5GHz) processor, 4GB RAM, and MS Windows 8.1 operating system. The algorithms
were implemented with the R programming language1 using RStudio2 as an integrated development environment
for R. All results presented in this section were derived considering the experimental setup described in Section
5.2.

5.3.1 Offline error
Table 5.2 shows the mean and the standard deviation of the offline errors obtained by each algorithm tested on
18 benchmark problems of the G24 set, considering EBBPSO-SR and EBBPSO-T, both with ν = 1.0. The rank

1Version 2.15.3, https://www.r-project.org/
2Version 0.98.1087, https://www.rstudio.com/

51

Part III Chapter 5

Table 5.2: Mean and standard deviation of offline errors for four algorithms tested on 18 problems of the G24 set.
Algorithm LBBPSO-SR GBBPSO-SR EBBPSO-SR (ν = 1.0) EBBPSO-T (ν = 1.0)
Problem Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank]
G24-u 0.105 (0.038) [4] 0.072 (0.029) [3] 0.057 (0.005) [2] 0.056 (0.005) [1]
G24-1 0.212 (0.211) [4] 0.116 (0.128) [3] 0.090 (0.051) [2] 0.084 (0.041) [1]
G24-f 0.027 (0.009) [4] 0.016 (0.005) [2] 0.017 (0.006) [3] 0.014 (0.005) [1]
G24-uf 0.014 (0.004) [4] 0.007 (0.002) [1] 0.010 (0.003) [3] 0.009 (0.003) [2]
G24-2 0.206 (0.054) [4] 0.150 (0.068) [3] 0.149 (0.026) [2] 0.136 (0.013) [1]
G24-2u 0.051 (0.003) [4] 0.048 (0.003) [3] 0.047 (0.002) [2] 0.045 (0.001) [1]
G24-3 0.063 (0.015) [4] 0.038 (0.008) [2] 0.039 (0.008) [3] 0.032 (0.005) [1]
G24-3b 0.190 (0.114) [4] 0.138 (0.089) [3] 0.113 (0.033) [2] 0.104 (0.015) [1]
G24-3f 0.030 (0.019) [4] 0.014 (0.007) [2] 0.016 (0.007) [3] 0.012 (0.005) [1]
G24-4 0.212 (0.061) [4] 0.128 (0.051) [1] 0.146 (0.035) [3] 0.138 (0.022) [2]
G24-5 0.279 (0.142) [4] 0.177 (0.113) [3] 0.137 (0.020) [2] 0.126 (0.019) [1]
G24-6a 0.173 (0.222) [4] 0.170 (0.258) [3] 0.124 (0.150) [2] 0.116 (0.099) [1]
G24-6b 0.279 (0.053) [4] 0.182 (0.042) [1] 0.199 (0.046) [3] 0.184 (0.043) [2]
G24-6c 0.351 (0.059) [4] 0.255 (0.059) [2] 0.263 (0.053) [3] 0.251 (0.061) [1]
G24-6d 0.581 (0.232) [4] 0.346 (0.267) [2] 0.347 (0.214) [3] 0.312 (0.203) [1]
G24-7 0.081 (0.016) [3] 0.084 (0.035) [4] 0.046 (0.009) [2] 0.045 (0.009) [1]
G24-8a 0.383 (0.065) [4] 0.259 (0.067) [3] 0.215 (0.026) [2] 0.194 (0.022) [1]
G24-8b 0.535 (0.119) [4] 0.314 (0.115) [2] 0.369 (0.124) [3] 0.312 (0.086) [1]
Minimum 0.014 0.007 0.010 0.009
1st quartile 0.068 0.054 0.046 0.045
Median 0.198 0.133 0.118 0.110
Mean 0.210 0.140 0.132 0.121
3rd quartile 0.279 0.181 0.186 0.173
Maximum 0.581 0.346 0.369 0.312
SD 0.169 0.103 0.110 0.097

Wilcoxon signed-ranks test for pairwise comparisons of algorithms
Algorithm LBBPSO-SR GBBPSO-SR EBBPSO-SR -
Mean rank 3.94 2.39 2.50 1.17
W/L/T 18/0/0 15/3/0 18/0/0 -
p-value 7.629e-05 1.045e-03 7.629e-05 -

obtained by each algorithm in each problem is also shown and the best results are shown in boldface. Comparisons
between EBBPSO-T and its algorithms competitors are summarized in the last rows of Table 5.2, which shows
summary statistics of the offline errors, considering the complete set of problems. In addition, W/L/T counts are
also shown, which means that EBBPSO-T with ν = 1.0 wins in W problems, loses in L problems, and ties in T
problems.

A multi-problem analysis was developed based on the data presented in Table 5.2. The Wilcoxon signed-ranks
test (Demsar, 2006; Derrac et al., 2011) was used for pairwise comparisons of algorithms, when both algorithms
are applied to a common set of problems. The results of this analysis are summarized in the last rows of Table 5.2.
EBBPSO-T with ν = 1.0 shows a significant improvement over LBBPSO-SR, GBBPSO-SR, and EBBPSO-SR
with ν = 1.0. The results of the Wilcoxon signed-ranks test are in agreement with the results of the Sign test
(Demsar, 2006; Derrac et al., 2011). In our experimental setup, the critical value for a two-tailed Sign test for
paired comparisons of algorithms is 13 wins in 18 test problems for a significance level of 10%. This means that
an algorithm is significantly better than another if it performs better on at least 13 out of 18 problems.

Table 5.3 shows the mean and the standard deviation of the offline errors obtained by each algorithm tested on
18 benchmark problems of the G24 set, considering EBBPSO-SR and EBBPSO-T, both with ν = 2.1. Compar-
isons between EBBPSO-T and its algorithms competitors are summarized in Table 5.3. A multi-problem analysis
was also developed based on the data presented in Table 5.3. Taking in account the complete set of benchmark
problems, the results obtained by EBBPSO-T with ν = 2.1 are in agreement with the results obtained by EBBPSO-
T when ν = 1.0. EBBPSO-T with ν = 2.1 shows a significant improvement over LBBPSO-SR, GBBPSO-SR, and

52

Part III Chapter 5

Table 5.3: Mean and standard deviation of offline errors for four algorithms tested on 18 problems of the G24 set.
Algorithm LBBPSO-SR GBBPSO-SR EBBPSO-SR (ν = 2.1) EBBPSO-T (ν = 2.1)
Problem Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank]
G24-u 0.105 (0.038) [4] 0.072(0.029) [3] 0.057(0.005) [2] 0.053(0.005) [1]
G24-1 0.212 (0.211) [4] 0.116(0.128) [2] 0.118(0.089) [3] 0.072(0.015) [1]
G24-f 0.027 (0.009) [4] 0.016(0.005) [2] 0.019(0.006) [3] 0.015(0.005) [1]
G24-uf 0.014 (0.004) [4] 0.007(0.002) [1.5] 0.008(0.003) [3] 0.007(0.002) [1.5]
G24-2 0.206 (0.054) [4] 0.150(0.068) [3] 0.144(0.023) [2] 0.133(0.020) [1]
G24-2u 0.051 (0.003) [4] 0.048(0.003) [3] 0.046(0.002) [1.5] 0.046(0.002) [1.5]
G24-3 0.063 (0.015) [4] 0.039(0.008) [3] 0.037(0.008) [2] 0.031(0.005) [1]
G24-3b 0.190 (0.114) [4] 0.138(0.089) [3] 0.118(0.036) [2] 0.105(0.018) [1]
G24-3f 0.030 (0.019) [4] 0.014(0.007) [2] 0.016(0.008) [3] 0.011(0.005) [1]
G24-4 0.212 (0.061) [4] 0.128(0.051) [1] 0.156(0.045) [3] 0.147(0.027) [2]
G24-5 0.279 (0.142) [4] 0.177(0.113) [3] 0.133(0.017) [2] 0.129(0.020) [1]
G24-6a 0.173 (0.222) [4] 0.170(0.258) [3] 0.107(0.067) [1] 0.118(0.015) [2]
G24-6b 0.279 (0.053) [4] 0.182(0.042) [1] 0.216(0.053) [3] 0.185(0.048) [2]
G24-6c 0.351 (0.059) [4] 0.255(0.059) [2] 0.281(0.054) [3] 0.247(0.051) [1]
G24-6d 0.581 (0.232) [4] 0.346(0.267) [2] 0.363(0.261) [3] 0.278(0.174) [1]
G24-7 0.081 (0.016) [3] 0.084(0.035) [4] 0.044(0.010) [2] 0.043(0.009) [1]
G24-8a 0.383 (0.065) [4] 0.259(0.067) [3] 0.203(0.024) [2] 0.188(0.022) [1]
G24-8b 0.535 (0.119) [4] 0.314(0.115) [2] 0.378(0.109) [3] 0.290(0.076) [1]
Minimum 0.014 0.007 0.008 0.007
1st quartile 0.068 0.054 0.044 0.044
Median 0.198 0.133 0.118 0.111
Mean 0.210 0.140 0.136 0.117
3rd quartile 0.279 0.181 0.191 0.176
Maximum 0.581 0.346 0.378 0.290
SD 0.169 0.103 0.114 0.091

Wilcoxon signed-ranks test for pairwise comparisons of algorithms
Algorithm LBBPSO-SR GBBPSO-SR EBBPSO-SR -
Mean rank 3.94 2.42 2.42 1.22
W/L/T 18/0/0 15/2/1 16/1/1 -
p-value 7.629e-05 1.045e-03 4.196e-04 -

EBBPSO-SR with ν = 2.1.
These results suggest that EBBPSO-T performed globally well for most of the benchmark problems considered

in our experiments, especially when compared with traditional approaches such as LBBPSO-SR and GBBPSO-
SR. Empirically, it seems that the strategy of mixture of search directions weighted by the Shannon’s index of
diversity performed better than strategies using individually the global-best or local-best search directions. This
indicates that a mixture of search directions maintains the proper balance between diversification and intensification
throughout the search process without loss of traceability of the global optimum, which is dynamic for most of the
problems investigated. It is also apparent that the constraint-handling strategy combining the ranking of solutions
based on the numerical properties (f ,s,u) with TOPSIS-based selection performed better than the constraint-
handling strategy based on sum of ranks. Finally, it is also important to note that empirical convergence was
observed for EBBPSO-T with ν = 1.0 in all the problems investigated, although in this case, there is no theoretical
result establishing convergence for a stable fixed point, as is the case for EBBPSO-T with ν = 2.1.

5.3.2 Comparisons with other algorithms
It is important to compare the performance of EBBPSO-T with the performances of other algorithms established in
the literature on dynamic constrained optimization. Appendix D presents the full set of results obtained by Nguyen
(2010, p. 181) for 18 algorithms tested on the G24 set along with the results obtained by the algorithm GSARepair
proposed by Pal et al. (2013).

53

PartIII
C

hapter5

Table 5.4: Comparison of the algorithm EBBPSO-T with respect to 9 other algorithms on 18 problems of the G24 set.
Algorithm EBBPSO-T

ν = 1.0 ν = 2.1 A19 A18 A14 A17 A13 A12 A9 A11 A10
Problem Mean offline error [Rank]
G24-u 0.056[3] 0.053[2] 0.049[1] 0.091[4] 0.120[5] 0.123[6] 0.175[9] 0.152[7] 0.254[10] 0.156[8] 0.319[11]
G24-1 0.084[4] 0.072[1] 0.132[11] 0.085[5] 0.099[8] 0.103[9] 0.091[6] 0.078[2] 0.082[3] 0.104[10] 0.093[7]
G24-f 0.014[1] 0.015[2] 0.029[7.5] 0.021[4] 0.020[3] 0.022[5] 0.043[10] 0.029[7.5] 0.028[6] 0.041[9] 0.045[11]
G24-uf 0.009[2] 0.007[1] 0.047[6] 0.030[4.5] 0.030[4.5] 0.029[3] 0.249[11] 0.151[7] 0.194[8] 0.248[10] 0.218[9]
G24-2 0.136[3] 0.133[2] 0.182[10] 0.099[1] 0.177[9] 0.138[4] 0.161[5] 0.171[7.5] 0.162[6] 0.196[11] 0.171[7.5]
G24-2u 0.045[1] 0.046[2] 0.196[10.5] 0.060[3] 0.120[7] 0.123[8] 0.096[6] 0.082[4] 0.187[9] 0.084[5] 0.196[10.5]
G24-3 0.032[8] 0.031[7] 0.028[3.5] 0.028[3.5] 0.099[10] 0.103[11] 0.026[1] 0.029[5.5] 0.029[5.5] 0.035[9] 0.027[2]
G24-3b 0.104[10] 0.105[11] 0.076[9] 0.068[5] 0.020[1] 0.022[2] 0.074[7] 0.059[4] 0.058[3] 0.075[8] 0.071[6]
G24-3f 0.012[4] 0.011[3] 0.009[2] 0.005[1] 0.030[11] 0.029[10] 0.027[9] 0.014[5.5] 0.014[5.5] 0.026[8] 0.025[7]
G24-4 0.138[4.5] 0.147[9] 0.073[3] 0.140[6.5] 0.177[11] 0.138[4.5] 0.062[2] 0.143[8] 0.140[6.5] 0.164[10] 0.059[1]
G24-5 0.126[4] 0.129[5] 0.153[9] 0.114[3] 0.059[1] 0.074[2] 0.131[6.5] 0.154[10] 0.152[8] 0.177[11] 0.131[6.5]
G24-6a 0.116[4] 0.118[5] 0.033[1] 0.315[6] 0.041[3] 0.036[2] 0.339[7] 0.361[9] 0.366[10] 0.395[11] 0.358[8]
G24-6b 0.184[2] 0.185[3] 0.047[1] 0.334[5] 0.407[11] 0.319[4] 0.342[7] 0.352[9] 0.346[8] 0.391[10] 0.341[6]
G24-6c 0.251[3] 0.247[2] 0.045[1] 0.263[4] 0.296[6] 0.280[5] 0.330[9] 0.350[10] 0.323[7] 0.386[11] 0.326[8]
G24-6d 0.312[9] 0.278[3] 0.037[1] 0.242[2] 0.281[4.5] 0.291[7] 0.281[4.5] 0.302[8] 0.315[10] 0.352[11] 0.286[6]
G24-7 0.045[3] 0.043[2] 0.018[1] 0.192[10] 0.230[11] 0.171[8] 0.068[5] 0.153[6] 0.154[7] 0.179[9] 0.067[4]
G24-8a 0.194[2] 0.188[1] 0.202[3] 0.415[7] 0.408[5] 0.427[9] 0.397[4] 0.449[11] 0.448[10] 0.422[8] 0.413[6]
G24-8b 0.312[5] 0.290[4] 0.192[1] 0.416[8] 0.446[9] 0.447[10] 0.242[2] 0.339[6] 0.341[7] 0.449[11] 0.257[3]
Minimum 0.009 0.007 0.009 0.005 0.020 0.022 0.026 0.014 0.014 0.026 0.025
1st quartile 0.045 0.044 0.034 0.062 0.046 0.046 0.070 0.079 0.096 0.089 0.068
Median 0.110 0.111 0.048 0.107 0.120 0.123 0.146 0.152 0.174 0.178 0.184
Mean 0.121 0.117 0.086 0.162 0.170 0.160 0.174 0.187 0.200 0.216 0.189
3rd quartile 0.173 0.176 0.148 0.258 0.268 0.253 0.273 0.330 0.321 0.377 0.311
Maximum 0.312 0.290 0.202 0.416 0.446 0.447 0.397 0.449 0.448 0.449 0.413
SD 0.097 0.091 0.069 0.136 0.143 0.136 0.124 0.136 0.133 0.147 0.129

Friedman test for comparisons of algorithms (F=47.69, p-value=7.068e-07)
Mean rank 4.03 3.61 4.53 4.58 6.67 6.08 6.17 7.06 7.19 9.44 6.64
W/L/T - 7/11/0 7/11/0 12/6/0 14/4/0 13/4/1 13/5/0 14/4/0 15/3/0 17/1/0 13/5/0
p-value - 1.000000 1.000000 1.000000 0.089168 0.265137 0.265137 0.049342 0.037607 0.000010 0.089168

54

Part III Chapter 5

EBBPSO−T EBBPSO−T A19 A18 A14 A17 A13 A12 A9 A11 A10

0.
0

0.
1

0.
2

0.
3

0.
4

O
ffl

in
e

er
ro

r

ν = 1.0

ν = 2.1

Figure 5.1: Graphical representation of the results presented in Table 5.4. Box-plots of the offline errors for
each investigated algorithm: EBBPSO-T (with ν = 1.0 and 2.1), GSARepair (A19), dGenocop (A18), Geno-
cop (A14), GenocopwUPCwNRR (A17), dRepairHyperM-OOR (A13), dRepairRIGA-OOR (A12), dRepairRIGA
(A9), dRepairGA-OOR (A11), dRepairHyperM (A10).

For comparison purposes, Table 5.4 shows the experimental results of 9 algorithms (8 algorithms investigated
by Nguyen (2010, p. 181) and the algorithm GSARepair investigated by Pal et al. (2013)) along with the results
obtained by EBBPSO-T, all results obtained on the G24 set of DCOPs. The rank obtained by each algorithm in each
problem is also shown in Table 5.4 and the best results are shown in boldface. Comparisons between EBBPSO-T
and its algorithms competitors are summarized in the last rows of Table 5.4, which shows summary statistics of
the offline errors and W/L/T counts. Figure 5.1 shows a graphical representation of the results presented in Table
5.4.

Once again, a multi-problem analysis was developed based on the data presented in Table 5.4 in order to
investigate whether the performance obtained by EBBPSO-T is statistically different from those obtained by its
competitors on the set of benchmark problems. The Friedman test (Demsar, 2006; Derrac et al., 2011) was used for
multiple comparisons of algorithms. The results of this analysis are also presented in Table 5.4. EBBPSO-T with
ν = 1.0 is defined as the control method and a family of 10 hypotheses are established to be tested. The analysis
shows a significant improvement of EBBPSO-T with ν = 1.0 over dRepairGA-OOR (A11), dRepairRIGA (A9),
Genocop (A14), dRepairRIGA-OOR (A12), and dRepairHyperM (A10). None of the remaining 5 hypotheses
can be rejected, that means no significant difference between EBBPSO-T with ν = 1.0 and the following algo-
rithms: EBBPSO-T with ν = 2.1, GenocopwUPCwNRR (A17), dRepairHyperM-OOR (A13), dGenocop (A18),
and GSARepair (A19). In all comparisons, the level of significance considered was 10%. These results suggest that
the two versions of EBBPSO-T (with ν = 1.0 and ν = 2.1) investigated in our experiments were both competitive
compared to the best algorithms established in the literature for DCOPs, in particular they were very competitive
against dGenocop (A18) and GSARepair (A19). Considering all test problems, the mean ranks of the two versions
of EBBPSO-T are slightly better than the mean ranks of dGenocop (A18) and GSARepair (A19).

This subsection is concluded with an analysis of the performance obtained by EBBPSO-T in each group of
problems of the G24 set, namely: (1) group-(fF,dC), (2) group-(fF,fC), (3) group-(dF,fC), (4) group-(dF,dC), (5)
group-(dF,noC), and (6) group-(fF,noC). Table 5.5 summarizes the main results obtained from this analysis.

55

Part III Chapter 5

1. In the group of DCOPs with fixed objective function and dynamic constraints (fF,dC), EBBPSO-T presented
a good performance when applied to solve the G24-7 problem, obtaining good ranks. In this problem, the
size and the shape of the feasible regions change over time and a new global optimum is revealed whenever
the environment is changed. The old optimum value is not changed because the objective function is static.
However, the old optimum becomes infeasible because the size of the feasible regions decreases over time.
On the other hand, although the ranks obtained by EBBPSO-T are poor when the algorithm was applied to
solve the G24-3 problem, the offline errors obtained in this particular problem do not differ considerably from
the offline errors obtained by the best algorithms for this problem. For the G24-3 problem, the size and shape
of the feasible regions change over time and a new global optimum is revealed whenever the environment is
changed. The old optimum value is not changed because the objective function is static, but the old optimum
remains feasible because the size of the feasible regions increases over time. These results suggest that the
proposed constraint-handling strategy performs considerably well with the moving of feasible regions. In
addition, note that the two best algorithms (dRepairHyperM-OOR (A13) and dRepairHyperM (A10)) for this
particular problem have poor mean ranks when compared to the mean ranks of EBBPSO-T, demonstrating
that these algorithms have poor performance for most of the other problems investigated.

2. In the group of static constrained optimization problems (fF,fC), EBBPSO-T presented a good performance,
obtaining considerable ranks for the problems G24-f and G24-3f. In this case, the mechanism to detect
changes in the environment and the scheme of random immigrants are not triggered during de search and do
not affect the performance of our approach in solving problems in this group.

3. In the group of DCOPs with dynamic objective function and fixed constraints (dF,fC), EBBPSO-T presented
a moderate performance when applied to solve the problems in this group, obtaining moderate ranks. For
the G24-1 problem, EBBPSO-T performs better than GSARepair (A19), while presenting a performance
comparable to the performance of dGenocop (A18). For the problem G24-2, EBBPSO-T performs better
than GSARepair (A19), but performs worse than dGenocop (A18). For the G24-6a,b,c, and d problems, both
EBBPSO-T and dGenocop (A18) perform worse than GSARepair (A19). In general, the G24-6a,b,c, and
d problems are characterized by islands of feasible regions disconnected by regions of infeasible solutions,
which may be large infeasible regions depending on the problem at hand. The global optimum is switched
from a feasible region to another over time. The moderate performance of the EBBPSO-T when tested
on the G24-6a,b,c, and d problems suggests that our approach finds difficulties to travel easily through
the infeasible regions separating disconnected feasible regions, especially when these infeasible regions
are large. However, note that the problems G24-1 and G24-2 are also characterized by having two feasible
regions disconnected by a region of infeasible solutions, but on these problems it is apparently easier to track
the global optimum, which in turn is switched from one region to another over time. However, GSARepair
(A19) does not perform as significantly when tested on these problems.

4. In the group of DCOPs with dynamic objective function and dynamic constraints (dF,dC), EBBPSO-T pre-
sented a moderate performance when applied to solve the problems in this group, obtaining in general mod-
erate ranks. For the G24-4 problem, EBBPSO-T performs worse than GSARepair (A19), while presenting
a performance comparable to dGenocop (A18). For the G24-5 problem, EBBPSO-T performs better than
GSARepair (A19), while presenting a performance comparable to dGenocop (A18). Note that the best algo-
rithm for the G24-4 problem (see dRepairHyperM (A10)) has a poor mean rank when compared to the mean
ranks obtained by EBBPSO-T, dGenocop (A18), and GSARepair (A19), demonstrating that this algorithm
presents a poor performance for most of the other problems investigated. An analogous observation can be
made for the Genocop (A14) algorithm, which presented the best result for the G24-5 problem, but its mean
rank shows a poor performance for most other of the problems. In fact, considering the complete set of test
problems, the algorithms EBBPSO-T, dGenocop (A18), and GSARepair (A19) show a statistically signifi-
cant improvement over dRepairHyperM (A10) and Genocop (A14). For the G24-3b problem, EBBPSO-T
presents its worst performance.

5. For the group of dynamic unconstrained optimization problems (dF,noC), our approach preserves all pro-
posed mechanisms except the constraint-handling strategy that is not applied for the problems in this group,
since it is not necessary. In this group, our approach presented a considerable performance, presenting the
best ranks for the problems G24-u, G24-2u, and G24-8a.

6. Our approach also presented a considerable performance when applied to solve the problem G24-uf, which
is a static unconstrained optimization problem (fF, NoC). Once again, in this case, the mechanism to detect

56

Part III Chapter 5

Table 5.5: Overall performance of EBBPSO-T over the G24 set of DCOPs.
Group G24 problem Performance
(fF,noC) uf Good Mechanisms to deal with dynamic environments do not affect the

performance.
(dF,noC) u,2u,8a Good Good performance for the problems in this group. The strategy

of mixture of search directions maintains the proper balance between
diversification and intensification throughout the search process
without loss of traceability of the global optimum.

Group G24 problem Performance
(fF,fC) f,3f Good Mechanisms to deal with dynamic environments do not affect the

performance.
(dF,fC) 1,2,6abcd,8b Moderate Moderate performance for the problems in this group. Difficulties

were observed to overcome infeasible regions between feasible
regions, especially for the problems of the subgroup G24-6.

Group G24 problem Performance
(fF,dC) 3,7 Good Good performance for the problems in this group. The

CH strategy performs considerably well with the moving of feasible
regions. However, low convergence speed was observed for the
G24-3 problem.

(dF,dC) 3b,4,5 Moderate Moderate performance for the problems in this group. The worst
performance was obtained for the G24-3b problem.

changes in the environment and the scheme of random immigrants are not triggered during de search and do
not affect the performance of our approach in solving this problem.

5.3.3 Execution time
Table 5.6 shows the mean and the standard deviation of the execution times (in seconds) obtained by each swarm
algorithm defined in Section 5.2, when these algorithms are tested on benchmark problems considered in our ex-
perimental study. The shortest times are shown in boldface. Comparisons between EBBPSO-T and its competitors
are established in the last rows of Table 5.6, which shows summary statistics of the execution times of each algo-
rithm, considering the complete set of problems. EBBPSO-T takes, on average, 13.54 seconds to solve a problem
in the G24 set of DCOPs, which is approximately 1.23 seconds per environment, since in our experiments all
problems are composed of 11 environments. The shortest times for all problems investigated were observed by
GBBPSO-SR, since this algorithm uses a global topology. In general, the largest execution times were observed
by the algorithm EBBPSO-T, since this algorithm uses a more complex dynamic rule to define the new position
of a particle and also applies TOPSIS, after a ranking method, to select the solution that has the shortest distance
from the positive ideal solution. Figure 5.2 shows a graphical representation of the results presented in Table 5.6.

5.4 Effect of varying the neighborhood topology
This section presents an analysis of the effect of the neighborhood topology on the performance of EBBPSO-
T. Appendix B presents a discussion about different topologies commonly used in swarm algorithms. In this
experimental study, four topologies were investigated: ring, clusters, Von Neumann, and random ring, where the
last one topology is characterized by the fact that the neighbors of each particle are randomly selected at each
iteration.

Table 5.7 shows the results of this analysis, considering EBBPSO-T with different neighborhood structures.
The rank obtained in each problem by each EBBPSO-T with its respective topology is also shown and the best
results are shown in boldface. Comparisons between topologies are summarized in the last rows of Table 5.7,
which shows summary statistics of the offline errors considering the complete set of problems. The topology that
presented the worst performance was the random ring, followed by the cluster topology. The best performances
were observed by ring and Von Neumann topologies, with the Von Neumann topology apparently presenting

57

Part III Chapter 5

Table 5.6: Mean and standard deviation of execution times (in seconds) for four swarm algorithms tested on 18
problems of the G24 set.

Algorithm LBBPSO-SR GBBPSO-SR EBBPSO-SR EBBPSO-T (ν = 1.0)
Problem Mean (SD) Mean (SD) Mean (SD) Mean (SD)
G24-u 2.789 (0.018) 2.231 (0.016) 3.027 (0.028) 3.048 (0.021)
G24-1 12.831 (0.043) 6.502 (0.029) 13.105 (0.037) 16.498 (0.043)
G24-f 12.133 (0.057) 6.112 (0.028) 12.400 (0.040) 15.617 (0.043)
G24-uf 2.225 (0.042) 1.447 (0.016) 1.669 (0.023) 1.779 (0.037)
G24-2 13.663 (0.048) 6.954 (0.024) 14.686 (0.992) 17.266 (0.068)
G24-2u 3.778 (0.020) 2.231 (0.016) 4.019 (0.020) 4.022 (0.020)
G24-3 13.325 (0.055) 6.617 (0.027) 13.553 (0.054) 16.860 (0.057)
G24-3b 13.843 (0.042) 6.869 (0.026) 13.990 (0.041) 17.320 (0.061)
G24-3f 12.491 (0.053) 6.221 (0.030) 12.724 (0.073) 15.907 (0.082)
G24-4 13.605 (0.046) 6.809 (0.033) 13.843 (0.040) 17.187 (0.047)
G24-5 14.327 (0.048) 7.243 (0.036) 14.790 (0.062) 17.977 (0.061)
G24-6a 13.124 (0.096) 6.573 (0.104) 13.312 (0.041) 16.668 (0.065)
G24-6b 9.049 (0.056) 4.852 (0.019) 9.262 (0.023) 12.564 (0.049)
G24-6c 11.596 (0.035) 5.910 (0.022) 11.803 (0.046) 15.323 (0.049)
G24-6d 14.001 (0.084) 6.957 (0.025) 14.125 (0.054) 17.705 (0.059)
G24-7 13.182 (0.057) 6.570 (0.064) 13.354 (0.048) 16.705 (0.054)
G24-8a 4.272 (0.029) 2.216 (0.024) 3.974 (0.021) 4.002 (0.021)
G24-8b 13.681 (0.067) 6.905 (0.028) 13.835 (0.061) 17.248 (0.101)
Minimum 2.225 1.447 1.669 1.779
1st quartile 9.686 5.117 9.897 13.254
Median 12.977 6.536 13.209 16.583
Mean 10.773 5.512 10.971 13.539
3rd quartile 13.649 6.854 13.841 17.233
Maximum 14.327 7.243 14.790 17.977
SD 4.310 1.992 4.485 5.820

significant improvements in some of the problems investigated. Figure 5.3 shows a graphical representation of the
results presented in Table 5.7.

5.5 Effect of varying the population size
This section presents an analysis of the effect of the population size on the performance of EBBPSO-T. Table
5.8 shows the results of this analysis considering EBBPSO-T with different population sizes. The population
size affects the performance of the algorithm. The offline errors and the best-errors-before-change decrease with
increasing population size, but at the cost of execution times almost 5 times higher on average, when the population
size increases from 25 to 100 particles.

5.6 Effect of varying the parameter ν

This section presents an analysis of the effect of the parameter ν on the performance of EBBPSO-T. Fig. 5.4 shows
the results of this analysis when EBBPSO-T is applied to solve the G24-4 problem. As it can be seen, the choice
of ν can influence significantly the performance of the algorithm. Indeed, ν can be fitted according to the problem
at hand. For instance, considering the G24-4 problem, a satisfactory performance can be obtained with ν between
1.0 and 1.4. However, experimental results show that ν between 0.8 and 2.2 is an appropriate setting for many
problems investigated, taking into consideration the fixed number of evaluations.

58

Part III Chapter 5

Table 5.7: Mean and standard deviation of offline errors for EBBPSO-T (ν = 1.0) with different neighborhood
topologies.

N Ring Clusters Von Neumann Random Ring
Problem Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank] Mean (SD) [Rank]
G24-u 0.056 (0.005) [2] 0.061 (0.005) [4] 0.054 (0.005) [1] 0.058 (0.006) [3]
G24-1 0.084 (0.041) [3] 0.083 (0.019) [2] 0.077 (0.017) [1] 0.138 (0.164) [4]
G24-f 0.014 (0.005) [2.5] 0.014 (0.005) [2.5] 0.013 (0.005) [1] 0.019 (0.008) [4]
G24-uf 0.009 (0.003) [3] 0.007 (0.003) [1] 0.008 (0.003) [2] 0.010 (0.003) [4]
G24-2 0.136 (0.013) [1] 0.148 (0.019) [3] 0.137 (0.015) [2] 0.156 (0.044) [4]
G24-2u 0.045 (0.001) [1.5] 0.046 (0.002) [3] 0.045 (0.001) [1.5] 0.047 (0.003) [4]
G24-3 0.032 (0.005) [1.5] 0.043 (0.007) [4] 0.032 (0.006) [1.5] 0.039 (0.009) [3]
G24-3b 0.104 (0.015) [2] 0.123 (0.025) [3] 0.102 (0.019) [1] 0.136 (0.059) [4]
G24-3f 0.012 (0.005) [1] 0.014 (0.007) [2.5] 0.014 (0.006) [2.5] 0.017 (0.008) [4]
G24-4 0.138 (0.022) [2] 0.141 (0.025) [3] 0.134 (0.032) [1] 0.155 (0.051) [4]
G24-5 0.126 (0.019) [2] 0.139 (0.022) [3] 0.123 (0.019) [1] 0.160 (0.043) [4]
G24-6a 0.116 (0.099) [3] 0.080 (0.018) [2] 0.069 (0.011) [1] 0.155 (0.148) [4]
G24-6b 0.184 (0.043) [1] 0.205 (0.055) [3] 0.189 (0.044) [2] 0.230 (0.066) [4]
G24-6c 0.251 (0.061) [2] 0.275 (0.069) [3] 0.235 (0.058) [1] 0.298 (0.096) [4]
G24-6d 0.312 (0.203) [2] 0.373 (0.213) [3] 0.256 (0.147) [1] 0.405 (0.215) [4]
G24-7 0.045 (0.009) [2] 0.049 (0.010) [3] 0.043 (0.010) [1] 0.054 (0.018) [4]
G24-8a 0.194 (0.022) [2] 0.227 (0.034) [4] 0.192 (0.022) [1] 0.214 (0.033) [3]
G24-8b 0.312 (0.086) [2] 0.341 (0.070) [3] 0.286 (0.048) [1] 0.389 (0.072) [4]
Minimum 0.009 0.007 0.008 0.010
1st quartile 0.045 0.047 0.043 0.049
Median 0.110 0.103 0.090 0.147
Mean 0.121 0.132 0.112 0.149
3rd quartile 0.173 0.191 0.176 0.200
Maximum 0.312 0.373 0.286 0.405
SD 0.097 0.112 0.088 0.121
Mean rank 1.97 2.89 1.31 3.83
W/L/T - 14/3/1 3/13/2 18/0/0

Table 5.8: Mean of offline errors, best-errors-before-change, and execution times for EBBPSOT (ν = 1.0) with
different population sizes.

Problem Offline error Best-error-before-change Execution time (s)
K 25 50 100 25 50 100 25 50 100
G24-1 0.084 0.071 0.059 5.260e-02 8.954e-03 1.255e-03 16.376 36.360 71.712
G24-3 0.032 0.029 0.027 4.570e-04 1.467e-04 5.047e-05 16.829 37.662 74.061
G24-4 0.138 0.107 0.087 1.118e-02 1.505e-03 3.954e-04 17.097 38.244 74.986
G24-6a 0.116 0.091 0.074 1.729e-03 6.687e-04 2.237e-04 16.632 36.962 72.199
G24-6c 0.251 0.163 0.096 2.188e-03 6.022e-04 1.672e-04 15.170 33.830 65.684
G24-7 0.045 0.039 0.036 1.985e-03 3.528e-04 9.863e-05 16.672 37.222 73.042

5.7 Application
This section presents a real-world application as a case study. EBBPSO-T is applied for solving the dynamic
economic dispatch problem, which is one of the major optimization problems in dynamic environments in the field
of power system operation.

5.7.1 The economic dispatch problem
The economic dispatch problem (ED problem) is used to determine the optimal combination of power outputs of all
generating units to minimize the total fuel cost, while satisfying the load demand and also physical and operational

59

Part III Chapter 5

LB
B

P
S

O
−

S
R

G
B

B
P

S
O

−
S

R
E

B
B

P
S

O
−

S
R

E
B

B
P

S
O

−
T

5 10 15

Execution time (s)

Figure 5.2: Execution time for four swarm algorithms tested on the G24 set.

R
IN

G
C

LU
S

T
E

R
S

V
O

N
 N

E
U

M
A

N
N

R
A

N
D

O
M

 R
IN

G

0.0 0.1 0.2 0.3 0.4

Offline error

E
B

B
P

S
O

−
T

Figure 5.3: Offline error for EBBPSO-T with different neighborhood topologies tested on the G24 set.

60

Part III Chapter 5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 4.0 8.0 16.0 32.0 64.0

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

ν

O
ffl

in
e

er
ro

r

Figure 5.4: Effect of the parameter ν on the performance of EBBPSO-T when the algorithm is applied to solve the
G24-4 problem.

constraints (Abouheaf, Lee & Lewis, 2013; Zhang et al., 2014b). The ED problem for a N-unit system is defined
as:

min FC(P1, . . . ,PN)
subject to ∑

N
i=1 Pi−PL−PD = 0

Pmin
i ≤ Pi ≤ Pmax

i i = 1, . . . ,N.
(5.4)

Generally, the total fuel cost function FC to be minimized can be expressed as FC(P1, . . . ,PN) = ∑
N
i=1 FCi(Pi),

where FCi(Pi) (in $/h) is the fuel cost corresponding to power output Pi of the generator i. This function is defined
by

FCi(Pi) = aiP2
i +biPi + ci +

∣∣∣ei sin[fi(Pmin
i −Pi)]

∣∣∣ (5.5)

where ai,bi,ci,ei, and fi are cost coefficients of the generator i. The equality constraint represents the active power
balance, i.e., the generated power should be equal to the sum of the load demand (PD) with the transmission losses
(PL), given by PL = ∑

N
i=1 ∑

N
j=1 PiBi jPj, where Bi j are loss coefficients. Inequality constraints must be also satisfied.

The generated power of the generator i should be laid between max-min limits (Pmax
i and Pmin

i respectively).

61

Part III Chapter 5

5.7.2 The dynamic economic dispatch problem
Abouheaf, Lee & Lewis (2013) introduced a dynamic formulation of the ED problem. This dynamic formulation
was developed to optimally allocate the change in the total active load demand to the generating units. It is based
on two assumptions:

Assumption 1. Assume that for a total active load demand PD(t−1) at time t−1, each generating unit i has a power
generation Pi,(t−1). Thus, the change in the generated power of each generator i, due to the change in the
total active load demand δPDt = PDt −PD(t−1) at time t, is denoted by δPit = Pit −Pi(t−1). Therefore

N

∑
i=1

δPit = (PLt −PL(t−1))+δPDt (5.6)

for all t = 1,2, . . . ,T ′.

Assumption 2. One assumption that prevailed for simplifying the ED problem in many of the earlier research is
that the adjustments of the power outputs are instantaneous. However, under practical circumstances, ramp
rate limit restricts the operating range of all the online units for adjusting the operation between two periods.
The generation may increase or decrease, but it is bounded by corresponding upper and lower ramp rate
limits (URi and DRi). Therefore

Pit −Pi(t−1) ≤URi (5.7)

and
Pi(t−1)−Pit ≤ DRi (5.8)

for all i = 1, . . . ,N and t = 1, . . . ,T ′.

Given a set of N generators with initial outputs Pi0, the dynamic economic dispatch problem (DED problem)
can be defined as follows:

min ∑
N
i=1 FCi(Pi(t−1)+δPit)

subject to ∑
N
i=1(Pi(t−1)+δPit)−PLt −PDt = 0 for all t

∑
N
i=1 δPit − (PLt −PL(t−1))−δPDt = 0 for all t
−DRi ≤ δPit ≤URi for all i, t
Pmin

i −Pi(t−1) ≤ δPit ≤ Pmax
i −Pi(t−1) for all i, t

(5.9)

where t = 1,2, . . . ,T ′,

PLt =
N

∑
i=1

N

∑
j=1

(Pi(t−1)+δPit)Bi j(Pj(t−1)+δPjt) (5.10)

and

PL(t−1) =
N

∑
i=1

N

∑
j=1

Pi(t−1)Bi jPj(t−1). (5.11)

The DED problem can be seen as an optimization problem such as discussed in Sections 1.2 and 2.1. Both the
objective function and the constraints are dynamic. Moreover, the boundary constraints of this problem are also
dynamic. In our approach, equality constraints are transformed into inequality constraints, for instance,∣∣∣∣∣ N

∑
i=1

(Pi(t−1)+δPit)−PLt −PDt

∣∣∣∣∣≤ ε (5.12)

where ε is a tolerance allowed. Example 5.1 illustrates the use of our approach.

Example 5.1. Consider a 5-unit system. The valve-point effects, transmission losses, ramp rate constraints, and
generation limits are considered in this system. The prohibited operating zones are not considered in this test case.
The data for this system are presented in Table 5.9, including the B-matrix coefficients. This problem is solved
using EBBPSO-T with K = 25 particles, a neighborhood system N defined by a ring topology, and ν = 1.0. The
change frequency used was ∆ = 100 iterations (2500 function evaluations) per environment. Table 5.10 shows the
hourly load demand PDt and the best schedule obtained by EBBPSO-T for this system. The solution shown in Table

62

Part III Chapter 5

5.10 has a total cost of $44491.45 and a total loss of 195.55 MW, which means 1.32% of the total generated power
in the scheduled horizon. The execution time (CPU time) to obtain the solution was of 152.41 s (or 2.54 min).
For comparison purposes, Zhang et al. (2014b) presented a hybrid BBPSO to solve DED problems and reported a
average total cost of $43737 and a CPU time of 1.48 min for the 5-unit system.

Table 5.9: Generating units’ characteristics for 5-unit system.
- a b c e f Pmin Pmax UR DR -
Unit $/MW2h $/MWh $/h $/h 1/MW MW MW MW/h MW/h B-matrix (×10−5)
1 0.0080 2.0 25 100 0.042 10 75 30 30 4.9 1.4 1.5 1.5 2.0
2 0.0030 1.8 60 140 0.040 20 125 30 30 1.4 4.5 1.6 2.0 1.8
3 0.0012 2.1 100 160 0.038 30 175 40 40 1.5 1.6 3.9 1.0 1.2
4 0.0010 2.0 120 180 0.037 40 250 50 50 1.5 2.0 1.0 4.0 1.4
5 0.0015 1.8 40 200 0.035 50 300 50 50 2.0 1.8 1.2 1.4 3.5

Table 5.10: Best generator schedule using EBBPSO-T for 5-unit system.
Hour P1t P2t P3t P4t P5t ∑Pit Demand Loss Cost
t MW MW MW MW MW MW MW MW $
01 11.23 20.36 30.08 123.82 228.41 413.89 410 3.89 1245.58
02 17.64 27.04 34.99 129.94 229.82 439.42 435 4.42 1414.19
03 18.44 34.18 71.14 124.26 231.95 479.98 475 4.98 1658.59
04 24.87 36.35 95.36 146.58 232.87 536.04 530 6.04 1889.69
05 31.39 54.26 119.27 128.79 230.86 564.57 558 6.57 1849.64
06 37.17 79.08 121.60 142.91 235.06 615.81 608 7.81 2068.95
07 22.04 76.20 116.58 190.73 228.80 634.36 626 8.36 2019.94
08 13.25 97.63 112.18 210.23 229.97 663.26 654 9.26 1813.50
09 42.22 104.34 113.35 210.57 229.71 700.19 690 10.19 2016.01
10 64.21 97.48 112.48 210.61 229.78 714.56 704 10.56 2010.45
11 73.66 99.45 118.21 210.15 229.55 731.02 720 11.02 2052.22
12 74.54 124.50 112.62 209.44 230.63 751.73 740 11.73 2191.49
13 66.91 98.45 112.39 210.07 226.74 714.55 704 10.55 2013.21
14 51.59 97.98 111.40 209.74 229.46 700.17 690 10.17 1989.18
15 33.50 97.46 111.96 192.26 227.97 663.14 654 9.14 1998.40
16 11.44 91.09 111.98 147.38 225.38 587.26 580 7.26 1819.59
17 11.18 87.10 113.12 123.99 229.30 564.68 558 6.68 1632.96
18 10.54 98.07 110.83 167.43 229.08 615.96 608 7.96 1872.97
19 12.30 99.58 112.44 209.97 228.98 663.26 654 9.26 1807.66
20 41.43 119.71 112.55 211.52 229.46 714.67 704 10.67 2125.64
21 38.91 97.86 112.81 210.83 229.49 689.90 680 9.90 1955.48
22 10.83 98.55 109.83 165.64 228.03 612.88 605 7.88 1877.26
23 11.11 98.21 71.71 124.23 227.89 533.16 527 6.16 1665.07
24 11.63 72.50 32.90 123.48 227.60 468.11 463 5.11 1503.79
Total 742.01 2007.42 2381.77 4134.55 5506.81 14772.55 14577 195.55 $44491.45

63

Chapter 6

Conclusion

6.1 Summary and conclusions
Dynamic constrained optimization problems (DCOPs) are difficult to solve because both the objective function and
the constraints can vary over time. For these problems the goal is to find an optimal solution and track it as nearly as
possible over time. Changes in the environment of the problem must be taken into account during the optimization
process. The literature on swarm and evolutionary computation has documented the need to design algorithms
containing specific mechanisms to deal with DCOPs. Swarm algorithms have shown potential to solve constrained
optimization problems in static environments, but little attention has been paid to adapt these algorithms to deal
with DCOPs.

This thesis introduced a new algorithmic methodology based on swarm computation for solving DCOPs. The
proposed algorithm is named as entropy-based bare bone particle swarm (EBBPSO-T for short) and it applies the
idea of mixture of search directions using the Shannon’s index of diversity as a factor to balance the influence
of the global-best and local-best search directions. This dynamic rule works as a mechanism to maintain and
introduce diversity during the search process. A constraint-handling strategy is also proposed, which treats the
objective function and the constraints separately using a ranking method with selection based on TOPSIS to obtain
the best solution within a specific population of candidate solutions. This constraint-handling strategy balances
the objective function against the degree of constraint violation in such a way that neither of them is dominant.
Mechanisms to detect changes in the environment and to update the particles’ memories are also implemented into
the proposed algorithm. The mechanism to detect changes in the environment is based on a fixed set of detectors
uniformly distributed in the search space. When a change in the environment is detected, a random-immigrants
scheme acts to introduce diversity. Part of the swarm is replaced with randomly generated particles and this
strategy acts only on the first iteration of the changed environment. Re-evaluation of fitness values and the ranking
method combined with TOPSIS are also used to update the particles’ memories. It is important to emphasize that
these mechanisms do not act independently. They operate related to each other to tackle problems such as: loss
of diversity due to convergence, outdated memories due to changes in the environment, and loss of the tracking
ability to search a new optimal solution of a changed environment.

An experimental analysis was conducted to investigate empirically the performance of EBBPSO-T. The G24
set of DCOPs was used in this experimental study. These problems contain characteristics that are represen-
tative of real-world DCOPs. Experimental results show the suitability of the proposed algorithm in terms of
effectiveness to find good solutions for most of the benchmark problems investigated. Non-parametric statisti-
cal tests indicated that EBBPSO-T shows a statistically significant improvement when compared with different
GA-based algorithms (dRepairGA-OOR, dRepairRIGA, Genocop, dRepairRIGA-OOR, and dRepairHyperM),
while EBBPSO-T shows a competitive performance when compared with the following algorithms: Genocop-
wUPCwNRR, dRepairHyperM-OOR, dGenocop, and GSARepair. These results suggest that EBBPSO-T is com-
petitive compared to the best algorithms established in the literature for DCOPs, in particular it is very competitive
against dGenocop and GSARepair.

The proposed constraint-handling strategy performed considerably well with the moving of feasible regions in
DCOPs with fixed objective function and dynamic constraints, both when the size of the feasible regions decreases
over time and makes the old optimum an infeasible solution or when the size of the feasible regions increases over
time and reveals a new global optimum, keeping the old optimum value unchanged.

64

Part III Chapter 6

Our approach was tested on dynamic unconstrained optimization problems. In this case, the algorithm pre-
serves all proposed mechanisms except the constraint-handling strategy that is not applied for these problems.
Our approach presented a good performance for these problems, confirming that the strategy of mixture of search
directions performs considerably well with the tracking of the optimal solution, maintaining diversity during the
search process.

EBBPSO-T also presented a good performance in static constrained optimization problems. In this case, the
mechanism to detect changes in the environment and the scheme of random immigrants are not triggered during
the search and do not affect the performance of our approach in solving these problems.

The combined effect of the mechanisms implemented into EBBPSO-T provides an algorithm with ability to
maintain a proper balance between exploration and exploitation at any stage of the search process, without losing
the tracking ability to search an optimal solution that is changing over time. EBBPSO-T presented a moderate
performance when applied to solve DCOPs with dynamic objective function and dynamic constraints. Moderate
performance was also observed when EBBPSO-T was applied to solve DCOPs with dynamic objective function
and fixed constraints.

Some limitations of our approach were observed in our experimental study. EBBPSO-T presented difficulties
to travel between feasible regions in order to track the global optimum that is switched from one region to another,
especially when these feasible regions are islands disconnected by large regions of infeasible solutions. Problems
where this difficulty was sharply observed were: G24-3b, G24-4, and G24-6d. In addition, low convergence speed
was observed when EBBPSO-T was applied to solve the G24-3 problem that expose a new global optimum without
changing the objective value of the previous optimum.

The mechanisms implemented into EBBPSO-T can also be applied to other evolutionary algorithms to solve
optimization problems in dynamic environments. Another feature of our approach is that it is also very flexible,
allowing the inclusion of other distributions with heavy tails besides the t-distribution. From a suitable choice of
the mixing density, a rich class of continuous, symmetric and unimodal distributions can be applied in our dynamic
rule to update the position of a particle in order to maintain a good level of population diversity during the search
process.

6.2 Future studies
The topics studied in this thesis open up possibilities for future studies.

• The proposed approach in this thesis to solve DCOPs can be extended to deal with dynamic multi-objective
optimization problems (DMOOPs). These problems can be defined as:

min f(x, t) = (f1(x, t), . . . , fK(x, t))′ where x ∈ RD and t ∈ T = {0,1,2, . . .}
subject to Ld ≤ xd ≤Ud d = 1, . . . ,D (6.1)

where x is the vector of the D decision variables and f(x) is the vector of K functions to be minimized over
the feasible space F(t) = S= [L,U] = [L1,U1]×·· ·× [LD,UD]. Two approaches can be followed:

1. Reformulate the dynamic multi-objective optimization problem as a dynamic constrained optimization
problem using the εεε-constraint method as described in Section C.4 (see Appendix C). This approach
may be of potential use for DMOOPs with low-dimensional objective space, usually for K = 2 or 3.

2. Alternatively, the dynamic multi-objective optimization problem can be addressed directly using Pareto
dominance (see again Section C.4) to guide the search and return a set of nondominated solutions as
result. This approach carry out some type of vector ranking scheme based on the dominance relation-
ships between different solutions in the population. As a result, every solution has a ranking, which
serves as an indicator for measuring how important each solution is. These ranking methods contribute
to the selection of solutions with high ranking over solutions with low ranking, which determines the
solutions that can be memorized in each given generation of a swarm algorithm or the solutions that
can survive into the next generation of an evolutionary algorithm. Different vector ranking schemes
can be investigated, including recent approaches such as the scheme proposed by Zhou, Chen & Zhang
(2017).

In both approaches, the strategy of mixture of search directions using the Shannon’s index of diversity as a
weighting factor may be of potential use to maintain and introduce diversity during the search process, which

65

Part III Chapter 6

is important to obtain a set of non-dominated solutions as diverse as possible. In addition, the estimation
procedure of the diversity index can be applied in the objective space that is K-dimensional.

• Luchi & Krohling (2015) and Luchi (2016) introduced an estimation procedure of the Shannon’s index of
diversity that uses both the fitness values f (x) and the satisfaction levels of the constraints µ(x) associated
with solutions in the population through the product f (x) · µ(x). This product rule may be of potential use
for DCOPs in order to incorporate information related with the degree of violation of constraints that change
over time in dynamic environments.

66

Bibliography

Abanto-Valle, C.; Bandyopadhyay, D.; Lachos, V.; Enriquez, I. Robust Bayesian analysis of heavy-tailed stochastic
volatility models using scale mixtures of normal distributions. Computational Statistics and Data Analysis, v.
54, pp. 2883-2898, 2010.

Abouheaf, M.; Lee, W.-J.; Lewis, F. Dynamic formulation and approximation methods to solve economic dispatch
problems. IET Generation, Transmission and Distribution, 7(8), pp. 866-873, 2013.

Andrews, D.; Mallows, C. Scale mixtures of normal distributions. Journal of the Royal Statistical Society. Series
B (Methodological), v. 36(1), pp. 99-102, 1974.

Aragón, V.; Esquivel, S.; Coello Coello, C. Artificial immune system for solving dynamic constrained optimization
problems. In Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433. Heidelberg: Springer-
Verlag, 2013. pp. 225-263.

Back, T.; Schwefel, H.-P. An overview of evolutionary algorithms for parameter optimization. Evolutionary Com-
putation, v. 1(1), pp. 1-23, 1993.

Bazaraa, M.; Sherall, H.; Shetty, C. Nonlinear programming: theory and algorithms, 2nd ed. New York: John
Wiley and Sons, 1993.

Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state of the art survey of TOPSIS applications. Expert
Systems with Applications, v. 39, pp. 13051-13069, 2012.

Beyer, H.-G.; Schwefel, H.-P. Evolution strategies: a comprehensive introduction. Natural Computing, v. 1, pp.
3-52, 2002.

Beyer, H.-G.; Finck, S. On the design of constraint covariance matrix self-adaptation evolution strategies including
a cardinality constraint. IEEE Transactions on Evolutionary Computation, v. 16(4), pp. 578-596, 2012.

Blackwell, T. Particle swarms and population diversity. Soft Computing, v. 9(11), pp. 793-802, 2005.

Blackwell, T.; Branke, J. Multiswarms, exclusion, and anti convergence in dynamic environments. IEEE Trans-
actions on Evolutionary Computation, v. 10(4), pp. 459-472, 2006.

Blackwell, T. A study of collapse in bare bones particle swarm optimization. IEEE Transactions on Evolutionary
Computation, v. 16(3), pp. 354-372, 2012.

Branke, J. Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings of
IEEE Congress on Evolutionary Computation, 1999. pp. 1875-1882.

Bratton, D; Kennedy, J. Defining a standard for particle swarm optimization. In Proceedings of IEEE Swarm
Intelligence Symposium, 2007. pp. 120-127.

Bu, C.; Luo, W.; Yue, L. Continuous dynamic constrained optimization with ensemble of locating and tracking
feasible regions strategies. IEEE Transactions on Evolutionary Computation, v. 21(1), pp. 14-33, 2017.

Butturi-Gomes, D.; Petrere Junior, M.; Giacomini, H.; De Marco Junior, P. Computer intensive methods for con-
trolling bias in a generalized species diversity index. Ecological Indicators, v. 37, pp. 90-98, 2014.

67

Bibliography

Campos, M; Krohling, R.A. Hierarchical bare bones particle swarm for solving constrained optimization problems.
In Proceedings of IEEE Congress on Evolutionary Computation, 2013. pp. 805-812.

Campos, M.; Krohling, R.A.; Enriquez, I. Bare bones particle swarm optimization with scale matrix adaptation.
IEEE Transactions on Cybernetics, v. 44(9), pp. 1567-1578, 2014.

Campos, M.; Krohling, R.A. Bare bones particle swarm with scale mixtures of Gaussians for dynamic constrained
optimization problems. In Proceedings of IEEE Congress on Evolutionary Computation, 2014. pp. 202-209.

Campos, M.; Krohling, R.A. Entropy-based bare bones particle swarm for dynamic constrained optimization.
Knowledge-Based Systems v. 97, pp. 203-223, 2016.

Cerny, V. A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm.
Journal of Optimization Theory and Applications, v. 45, pp. 41-51, 1985.

Chao, A.; Shen, T.-J. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in
sample. Environmental and Ecological Statistics, v. 10, pp. 429-443, 2003.

Choy, S.; Chan, J. Scale mixtures of distributions in statistical modelling. Australian and New Zealand Journal
of Statistics, v. 50(2), pp. 135-146, 2008.

Clerc, M.; Kennedy, J. The particle swarm - explosion, stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation, v. 6(1), pp. 58-73, 2002.

Coello, C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey
of the state of the art. Computer Methods in Applied Mechanics and Engineering, v. 191, pp. 1245?1287,
2002.

Corriveau, G.; Guilbautl, R.; Tahan, A.; Sabourin, R. Review and study of genotypic diversity measures for real-
coded representations. IEEE Transactions on Evolutionary Computation, v. 16(5), pp. 695-710, 2012.

Cover, T; Thomas, J. Elements of information theory, 2nd Edition. New Jersey: Wiley, 2006.

Darwin, C. On the origin of species by means of natural selection or the preservation of favoured races in the
struggle for life. London: John Murray (Albemarle Street), 1859.

Deb, K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechan-
ics and Engineering, v. 186, pp. 311-338, 2000.

Demsar, J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research,
v. 7, pp. 1-30, 2006.

Derrac, J.; Garcia, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary
Computation, v. 1, pp. 3-18, 2011.

Dorigo, M. Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy, 1992.

Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: optimization by a colony cooperating agents. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, v. 26(1), pp. 29-41, 1996.

Dorigo, M.; Birattari, M; Stützle, T. Ant colony optimization. IEEE Computational Intelligence Magazine,
November, pp. 28-39, 2006.

Du, W.; Lin, B. Multi-strategy ensemble particle swarm optimization for dynamic optimization. Information
Sciences, v. 178, pp. 3096-3109, 2008.

Eberhart, R.; Shi, Y. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of IEEE
Congress on Evolutionary Computation, 2001, pp. 94-97.

Engelbrecht, A. Computational intelligence: an introduction. New Jersey: Wiley, 2007.

68

Bibliography

Fogel, D. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, v.
5(1), pp. 3-14, 1994.

Fu, H.; Lewis, P.; Sendhoff, B.; Tang, K.; Yao, X. What are dynamic optimization problems?. In Proceedings of
IEEE Congress on Evolutionary Computation, 2014, pp. 1550-1557.

Good, I. The population frequencies of species and the estimation of population parameters. Biometrika, v. 40,
pp. 237-264, 1953.

Hadj-Alouane, A. B.; Bean, J. C. A genetic algorithm for the multiple-choice integer program. Operations Re-
search, v. 45, pp. 92-101, 1997.

Hastings, W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, v. 57, pp.
pp. 97-109, 1970.

Hausser, J.; Strimmer, K. Entropy inference and the James-Stein estimator with application to nonlinear gene
association networks. Journal of Machine Learning Research, v. 10, pp. 1469-1484, 2009.

He, Q.; Wang, L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization.
Applied Mathematics and Computation, v. 186(2), pp. 1407-1422, 2007.

Hinderer, K.; Rieder, U.; Stieglitz, M. Dynamic optimization: deterministic and stochastic models. Switzer-
land: Springer International Publishing, 2016.

Ho, P.; Shimizu, K. Evolutionary constrained optimization using an addition of ranking method and a percentage-
based tolerance value adjustment scheme. Information Sciences, v. 177, pp. 2985-3004, 2007.

Hoffmeister, F.; Sprave, J. Problem-independent handling of constraints by use of metric penalty functions. In
Proceedings of the Fifth Annual Conference on Evolutionary Programming, 1996. pp. 289-294.

Holland, J. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975.

Homaifar, A.; Lai, S; Qi, X. Constrained optimization via genetic algorithms. Simulation, v. 62(4), pp. 242-254,
1994.

Horvitz, D.; Thompson, D. A generalization of sampling without replacement from a finite universe. Journal of
the American Statistical Association, v. 47, pp. 663-685, 1952.

Hsieh, H.-I.; Lee, T.-S. A modified algorithm of bare bones particle swarm optimization. International Journal
of Computer Science, v. 7(6), pp. 12-17, 2010.

Huang, J. Combining Entropy Weight and TOPSIS Method for Information System Selection. In Proceedings of
the IEEE Conference on Cybernetics and Intelligent Systems, CIC2008, 2008. pp. 1281-1284.

Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and applications. New York: Springer-
Verlag, 1981.

Izsák, J. Parameter dependence of correlation between the Shannon index and members of parametric diversity
index family. Ecological Indicators, v. 7, pp. 181-194, 2007.

Jiang, M.; Luo, Y.; Yang, S. Stochastic convergence analysis and parameter selection of the standard particle
swarm optimization algorithm. Information Processing Letters, 102, pp. 8-16, 2007.

Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments a survey. IEEE Transactions on Evolu-
tionary Computation, v. 9(3), pp. 303-317, 2005.

Joines, J.; Houck, C. On the use of nonstationary penalty functions to solve nonlinear constrained optimization
problems with GAs. In Proceedings of IEEE Congress on Evolutionary Computation, 1994. pp. 579-584.

Jordehi, A. A review on constraint handling strategies in particle swarm optimisation. Neural Computing and
Applications, v. 26(6), pp. 1265-1275, 2015.

69

Bibliography

Kaleli, C. An entropy-based neighbor selection approach for collaborative filtering. Knowledge-Based Systems,
v. 56, pp. 273-280, 2014.

Kennedy, J. Bare bones particle swarms. In Proceedings of IEEE Swarm Intelligence Symposium, 2003. pp.
80-87.

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of IEEE International Conference on
Neural Networks, 1995. pp. 1941-1948.

Kennedy, J.; Mendes, R. Neighborhood topologies in fully Informed and best-of-neighborhood particle swarms.
IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, v. 36(4), pp.
515-519, 2006.

Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science, v. 220(4598), pp. 671-
680, 1983.

Krohling, R.A. Private communication, PPGI/UFES, 2012-2017.

Krohling, R.A.; Coelho, L.S. Coevolutionary particle swarm optimization using Gaussian distribution for solv-
ing constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, v. 36(6), pp. 1407-1416, 2006.

Krohling, R.A.; Mendel, E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In Proceed-
ings of IEEE Congress on Evolutionary Computation, 2009. pp. 3285-3291.

Krohling, R.A.; Mendel, E.; Campos, M. Swarm algorithms with chaotic jumps for optimization of multimodal
functions. Engineering Optimization, v. 43, pp. 1243-1261, 2011.

Lai, Y-J.; Liu, T-Y; Hwang, C-L. TOPSIS for MODM. European Journal of Operational Research, v. 76, pp.
486-500, 1994.

Lee, C.-Y.; Yao, X. Evolutionary programming using mutations based on the Lévy probability distribution. IEEE
Transactions on Evolutionary Computation, v. 8(1), pp. 1-13, 2004.

Lemonge, A.; Barbosa, H. An adaptive penalty scheme for genetic algorithms in structural optimization. Interna-
tional Journal for Numerical Methods in Engineering, v. 54, pp. 703-736, 2004.

Li, C.; Yang, S. A general framework of multipopulation methods with clustering in undetectable dynamics envi-
ronments. IEEE Transactions on Evolutionary Computation, v. 16(4), pp. 556-577, 2012.

Li, C.; Yang, S. A comparative study on particle swarm optimization in dynamic environments. In S. Yang and X.
Yao (Eds.): Evolutionary Computation for DOPs, SCI 490. Heidelberg: Springer-Verlag, 2013. pp. 109-136.

Liang, J.; Qin, A.; Suganthan, P.; Baskar, S. Comprehensive learning particle swarm optimizer for global opti-
mization of multimodal functions. IEEE Transactions on Evolutionary Computation, v. 10(3), pp. 281-295,
2006.

Liu, C.-A. New dynamic constrained optimization PSO algorithm. In Proceedings of the Fourth International
Conference on Natural Computation, 2008. pp. 650-653.

Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained
numerical and engineering optimization. Applied Soft Computing, v. 10, pp. 629-640, 2010.

Liu, H.; Ding, G.; Wang, B. Bare-bones particle swarm optimization with disruption operator. Applied Mathe-
matics and Computation, v. 238, pp. 106-122, 2014.

Liu, S.-H.; Mernik, M.; Bryant, B. Entropy-driven parameter control for evolutionary algorithms. Informatica, v.
31, pp. 41-50, 2007.

Liu, S.-H.; Mernik, M.; Bryant, B. To explore or to exploit: an entropy-driven approach for evolutionary algo-
rithms. International Journal of Knowledge-based and Intelligent Engineering Systems, v. 13, pp. 185-206,
2009.

70

Bibliography

Liu, L.; Yang, S.; Wang, D. Particle swarm optimization with composite particles in dynamic environments. IEEE
Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, v. 40(6), pp. 1634-1648, 2010.

Luchi, F. Um algoritmo hı́brido entre evolução diferencial e Nelder-Mead usando entropia para problemas de
otimização não-linear inteira mista. Dissertação de Mestrado (em Português), Universidade Federal do
Espı́rito Santo, Vitória ES, 2016.

Luchi, F.; Krohling, R.A. Differential Evolution and Nelder-Mead for constrained non-linear integer optimization
problems. Procedia Computer Science, v. 55, pp. 668-677, 2015.

Luenberger, D.; Ye, Y. Linear and Nonlinear Programming, 3rd ed. New York: Springer, 2008.

Lung, R.; Dumitrescu, D. A collaborative model for tracking optima in dynamic environments. In Proceedings of
IEEE Congress on Evolutionary Computation, 2007, pp. 564-567.

Lung, R.; Dumitrescu, D. Evolutionary swarm cooperative optimization in dynamic environments. Natural Com-
puting, v. 9, pp. 83-94, 2010.

Madan, D.; Seneta, E. The variance gamma (V.G.) model for share market returns. The Journal of Business, v.
63(4), pp. 511-524, 1990.

Mantegna, R. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Physical
Review E, v. 49(5), pp. 4677-4683, 1994.

Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: algorithms and
applications. Swarm and Evolutionary Computation, v. 33, pp. 1-17, 2017.

Mendel, E.; Krohling, R.A.; Campos, M. Swarm algorithms with chaotic jumps applied to noisy optimization
problems. Information Sciences, v. 181, pp. 4494-4514, 2011.

Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: simpler, maybe better. IEEE Transactions
on Evolutionary Computation, v. 8(3), pp. 204-210, 2004.

Mezura-Montes, E.; Coello, C. Constraint-handling in nature-inspired numerical optimization: past, present, and
future. Swarm and Evolutionary Computation, v. 1, pp. 173-194, 2011.

Morales, A.; Quezada, C. A univesal eclectic genetic algorithm for constrained optimization. In Proceedings of
the 6th European Congress on Intelligent Techniques and Soft Computing, 1998, pp. 518-522.

Morrison, R. Designing evolutionary algorithms for dynamic environments. Heidelberg: Springer, 2004.

Nemenman, I.; Shafee, F.; Bialek, W. Entropy and inference, revisited. In T. Dietterich, S. Becker, and Z. Ghara-
mani (Eds.): Advances in Neural Information Processing Systems 14. Cambridge (Massachusetts): MIT
Press, 2002. pp. 471-478.

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by
fast computing machines. Journal of Chemical Physics, v. 21, pp. 1087-1092, 1953.

Nguyen, Q.; Nguyen, X.; Mckay, R.; Tuan, P. Initializing PSO with randomised low-discrepancy sequences: the
comparative results. In Proceedings of IEEE Congress on Evolutionary Computation, 2007. pp. 1985-1992.

Nguyen, T.; Yao, X. Benchmarking and solving dynamic constrained optimization. In Proceedings of IEEE
Congress on Evolutionary Computation, 2009. pp. 690-697.

Nguyen, T. Continuous dynamic optimisation using evolutionary algorithms. Ph.D. thesis, The University of Birm-
ingham, Birmingham UK, 2010.

Nguyen, T.; Yao, X. Continuous dynamic constrained optimization the challenges. IEEE Transactions on Evolu-
tionary Computation, v. 16(6), pp. 769-786, 2012.

Nguyen, T.; Yang, S.; Branke, J. Evolutionary dynamic optimization: a survey of the state of the art. Swarm and
Evolutionary Computation, v. 6, pp. 1-24, 2012.

71

Bibliography

Olorunda, O.; Engelbrecht, P. Measuring exploration/exploitation in particle swarms using swarm diversity. In
Proceedings of IEEE Congress on Evolutionary Computation, 2008. pp. 1128-1134.

Orlitsky, A.; Santhanam, N.; Zhang, J. Always Good Turing: asymptotically optimal probability estimation. Sci-
ence, v. 302, pp. 427-431, 2003.

Pal, K.; Saha, C.; Das, S.; Coello Coello, C. Dynamic constrained optimization with offspring repair based gravi-
tational search algorithm. In Proceedings of IEEE Congress on Evolutionary Computation, 2013. pp. 2414-
2421.

Pant, M.; Thangaraj, R.; Grosan, C.; Abraham, A. Improved particle swarm optimization with low-discrepancy
sequences. In Proceedings of IEEE Congress on Evolutionary Computation, 2008. pp. 3011-3018.

Parsopoulos, K.; Vrahatis, M. Parameter selection and adaptation in unified particle swarm optimization. Mathe-
matical and Computer Modelling, v. 46, pp. 198-213, 2007.

Parsopoulos, K.; Vrahatis, M. Particle swarm optimization and intelligence: advances and applications. New
York: Information Science Reference, 2010.

Petalas, Y.; Parsopoulos, K.; Vrahatis, M. Entropy-based memetic particle swarm optimization for computing
periodic orbits of nonlinear mappings. In Proceedings of IEEE Congress on Evolutionary Computation,
2007. pp. 2040-2047.

Poli, R. Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE
Transactions on Evolutionary Computation, v. 13(4), pp. 712-721, 2009.

Renyi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on
Mathematics, Statistics, and Probability, 1961. pp. 547-561.

Richer, T.; Blackwell, T. The Lévy particle swarm. In Proceedings of IEEE Congress on Evolutionary Compu-
tation, 2006. pp. 3150-3157.

Richter, H. Detecting change in dynamic fitness landscapes. In Proceedings of IEEE Congress on Evolutionary
Computation, 2009. pp. 1613-1620.

Richter, H.; Dietel, F. Change detection in dynamic fitness landscapes with time-dependent constraints. In Pro-
ceedings of IEEE Second World Congress on Nature and Biologically Inspired Computing, 2010. pp.
580-585.

Richter, H.; Yang, S. Dynamic optimization using analytic and evolutionary approaches: a comparative review. In
I. Zelinka et al. (Eds.): Handbook of Optimization, Intelligence Systems Reference Library 38. Heidelberg:
Springer-Verlag, 2012. pp. 1-28.

Ricotta, C.; Szeidl, L. Towards a unifying approach to diversity measures: bridging the gap between the Shannon
entropy and Rao’s quadratic index. Theoretical Population Biology, v. 70, pp. 237-243, 2006.

Runarsson, T.; Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evo-
lutionary Computation, v. 4(3), pp. 284-294, 2000.

Schneider, E.; Krohling, R.A. A hybrid approach using TOPSIS, differential evolution, and tabu search to find
multiple solutions of constrained non-linear integer optimization problems. Knowledge-Based Systems, v. 62,
pp. 47-56, 2014.

Shannon, C. A mathematical theory of communication. The Bell System Technical Journal, v. 27(3), pp. 379-
423, 1948.

Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of IEEE Congress on Evolutionary
Computation, 1998. pp. 69-73.

Simon, D. Evolutionary optimization algorithms. New Jersey: Wiley, 2013.

72

Bibliography

Suganthan, P.; Hansen, N.; Liang, J.; Deb, K.; Chen, Y.-P.; Auger, A.; Tiwari, S. Problem definitions and eval-
uation criteria for the CEC 2005 special session on real-parameter optimization. Nanyang Technological
University (Singapore) and KanGAL IIT (Kanpur, India), Technical Report, pp. 1-49, 2005.

Sundaram, R.K. A first course in optimization theory. New York: Cambridge University Press, 1996.

Takahama, T; Sakai, S. Constrained optimization by applying the α constrained method to the nonlinear simplex
method with mutations. IEEE Transactions on Evolutionary Computation, v. 9(5), pp. 437-451, 2005.

Trelea, I. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information
Processing Letters, v. 85, pp. 317-325, 2003.

Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, v. 52, pp. 479-
487, 1988.

Wang, H.; Rahnamayan, S; Sun, H.; Omran, M. Gaussian bare-bones differential evolution. IEEE Transactions
on Cybernetics, v. 43(2), pp. 634-647, 2013.

Wolpert, D; Macready, W. No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary
Computation, v. 1(1), pp. 67-82, 1997.

White, T.; Pagurek, B. Towards multi-swarm problem solving in networks. In Proceedings of the third Interna-
tional Conference on Multi Agent Systems, 1998. pp. 333-340.

Yao, X; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Transactions on Evolutionary Compu-
tation, v. 3(2), pp. 82-102, 1999.

Yazdani, D.; Nasiri, B.; Sepas-Moghaddam, A.; Meybodi, M. A novel multi-swarm algorithm for optimization in
dynamic optimization based on particle swarm optimization. Applied Soft Computing, v. 13, pp. 2144-2158,
2013.

Zhang, Y.; Gong, D.-W.; Sun, X.-Y.; Geng, N. Adaptive bare-bones particle swarm optimization algorithm and its
convergence analysis. Soft Computing, v. 18(7), pp. 1337-1352, 2014.

Zhang, Y.; Gong, D.-W.; Geng, N.; Sun, X.-Y. Hybrid bare bones PSO for dynamic economic dispatch with
valve-point effects. Applied Soft Computing, v. 18, pp. 248-260, 2014.

Zhou, Y.; Chen, Z; Zhang, J. Ranking vectors by means of the dominance degree matrix. IEEE Transactions on
Evolutionary Computation, v. 21(1), pp. 34-51, 2017.

73

Part IV

Appendices

74

Appendix A

Optimization

This appendix presents a short review of optimization theory. Basic concepts of the theory are presented and
conditions are discussed to guarantee the existence of optimal solutions, to ensure the uniqueness of an optimal
solution, and to verify the optimality of a solution for unconstrained and constrained optimization problems. Some
computational methods are also presented to solve optimization problems. For a detailed development of this
theory, the reader is referred to Luenberger & Ye (2008); Sundaram (1996), and Bazaraa, Sherall & Shetty (1993).

A.1 Mathematical background
The set of positive integers is denoted by Z+ = {1,2,3, . . .} and the set of integers by Z= {. . . ,−2,−1,0,1,2, . . .}.
The set of real numbers is denoted by R. Given a real number x, its absolute value will be denoted by |x|, where
|x|= x if x≥ 0 and |x|=−x if x < 0. The Euclidean distance between two points (elements) x and y in R is defined
as d(x,y) = |x− y|.

For any positive integer n, Rn will denote the n-dimensional Euclidean space. An element in Rn is a column
vector x = (x1, . . . ,xn)

′, where xi is a real number for each i = 1, . . . ,n. The number xi is called the ith coordinate
of x. The vector 0 denotes the null vector (0, . . . ,0)′ in Rn. Given two vectors x and y in Rn, the scalar product of x
and y is defined as x′y = x1y1 + · · ·+ xnyn, where x′ = (x1, . . . ,xn) represents the row vector related to the column
vector x = (x1, . . . ,xn)

′. The Euclidean norm of a vector x in Rn is defined as ‖x‖2 = (x′x)1/2. The Euclidean
distance between two vectors x and y in Rn is given by d(x,y) = ‖x− y‖2. An open ball of center x ∈ Rn and
radius r > 0 is defined by Nx,r = {y ∈ Rn : d(x,y) < r}. If < is replaced by ≤, then a closed ball is defined. An
open ball of center x and radius r is also called a neighborhood of x. The concept of neighborhood of a point in Rn

will be used to discuss the concepts of global and local minima.
A matrix is a rectangular array of numbers (symbols or expressions) arranged in rows and columns. A matrix

having m rows and n columns is denoted by a boldface letter, for example, A = [ai j]m×n. Such a matrix is referred
to as an m×n matrix. The transpose of a m×n matrix A is the n×m matrix A′ with elements a′i j = a ji. A matrix
which has the same number of rows and columns is called a square matrix. A square matrix A is symmetric if
A′ = A. A symmetric matrix A is said to be positive definite if x′Ax > 0 for all nonzero vectors x. Similarly, a
symmetric matrix A is said to be positive semidefinite if x′Ax≥ 0 for all x. These concepts will be used to discuss
optimality conditions for candidate solutions of optimization problems.

A.1.1 Topological concepts in Rn

A point x ∈Rn is called an interior point of X ⊂Rn if x has a neighborhood consisting entirely of points of X . The
set of all interior points of X is denoted by Int(X) and is called the interior of X . A set O⊂Rn is said to be open if
its points are all interior points. An open ball is an open set and the interior of a set X ⊂ Rn is obviously an open
set. A set C ⊂ Rn is said to be closed if and only if its complement Cc = {x ∈ Rn : x 6∈C} is open. An equivalent
definition says that a set C is closed if and only if any convergent sequence formed by points of C converges to a
limit-point in C. A set B⊂ Rn is said to be bounded if there is a r > 0 such that B⊂ N0,r. A set Y ⊂ Rn is said to
be compact if and only if it is closed and bounded. Topological concepts along with that of continuous function
will be used to discuss the set of conditions under which the existence of solutions to an optimization problem is
guaranteed.

75

Part IV Appendix A

A.1.2 Functions
A real-valued function f defined on X ⊂Rn is said to be continuous at x0 ∈ X if the following holds: for any ε > 0
there is a δ > 0 such that for all x ∈ Nx0,δ implies f (x) ∈ N f (x0),ε . Intuitively, f is continuous at x0 if the value of
f at any point x that is close to x0 is a good approximation of the value of f at x0. In addition, f is continuous on
X if it is continuous at every point of X .

The class C0 represents the space of continuous functions. A function is said to be of class C1 if its first
derivative exist and is continuous, i.e., C1 is the space of (continuously) differentiable functions. A function is said
to be of class C2 if its first and second derivative both exist and are continuous, i.e., C2 is the space of (continuously)
twice-differentiable functions. More generally, a function is said to be of class Ck if the first k derivatives of the
function all exist and are continuous. If derivatives of a function exist for all positive integers, this function is said
to be smooth, or equivalently, of class C∞.

Let f : X ⊂ Rn → R be a real-valued function and suppose that f ∈ C1. The gradient of f at x̄ ∈ Int(X) is
defined as the vector

∇x f (x̄) =
(

∂ f (x̄)
∂x1

, . . . ,
∂ f (x̄)
∂xn

)′
n×1

= G f (x̄). (A.1)

Let f : X ⊂ Rn → R be a real-valued function and suppose that f ∈ C2. The Hessian of f at x̄ ∈ Int(X) is
defined as the matrix

∇
2
x f (x̄) =


∂ 2 f (x̄)

∂x2
1

· · · ∂ 2 f (x̄)
∂x1∂xn

...
. . .

...
∂ 2 f (x̄)
∂xn∂x1

· · · ∂ 2 f (x̄)
∂x2

n


n×n

= H f (x̄). (A.2)

A set of real-valued functions g1, . . . ,gm, all defined on X ⊂ Rn, can be regarded as a vector-valued function
g= (g1, . . . ,gm) defined on X . This function assigns a vector g(x) = (g1(x), . . . ,gm(x))∈Rm to every vector x∈ X .
A vector-valued function is said to be continuous at x0 ∈ X if each of its component functions is continuous at x0.
In addition, a vector-valued function is said to be of class Ck if each of its component functions is of class Ck.

Let g = (g1, . . . ,gm) : X ⊂Rn→Rm be a vector-valued function and suppose that g ∈C1. The Jacobian of g at
x̄ ∈ Int(X) is defined as the matrix

∇xg(x̄) =

 ∇xg1(x̄)′
...

∇xgm(x̄)′

=


∂g1(x̄)

∂x1
· · · ∂g1(x̄)

∂xn
...

. . .
...

∂gm(x̄)
∂x1

· · · ∂gm(x̄)
∂xn


m×n

= Jg(x̄). (A.3)

Gradient, Hessian, and Jacobian will be used to provide answers to questions about optimality conditions for
candidate solutions of optimization problems.

A.1.3 Convexity
Let W be a subset of Rn and suppose that x1 and x2 are points in W . Any point (1−λ)x1 +λx2 with λ ∈ [0,1] is
referred to as a convex combination of x1 and x2. If λ ∈ (0,1), then it is a strict convex combination. A set W ⊂Rn

is said to be convex if the convex combination of any two points in W is also in W .
Suppose that /0 6=W ⊂ Rn is a convex set and let f be a real-valued function defined on W . The function f is

said to be convex on W if f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2) for every x1,x2 ∈W and every λ ∈ [0,1].
The function f is called strictly convex on W if the inequality is true as a strict inequality for every x1 6= x2 and
λ ∈ (0,1).

A.2 Global and local minima
Let f be a real-valued function defined on RD (for some positive integer D) and consider a set S ⊂ RD. A point
x̄∈ S is a global minimum of f on S if f (x̄)≤ f (x) for all x∈ S. If x̄ is a global minimum of f on S, it is also called
a minimizer of f on S and f (x̄) is called the global minimum value of f on S. A point x̄ ∈ S is a local minimum of
f on S if there is a r > 0 such that f (x̄)≤ f (x) for all x ∈ Nx̄,r ∩S. A point x̄ ∈ S is a strict local minimum of f on
S if there is a r > 0 such that f (x̄)< f (x) for all x ∈ Nx̄,r ∩S and x 6= x̄.

76

Part IV Appendix A

Let g be a real-valued function defined on RD and consider a set S⊂ RD. A point x̄ ∈ S is a global maximum
of g on S if g(x̄) ≥ g(x) for all x ∈ S. If x̄ is a global maximum of g on S, it is also called a maximizer of g on S
and g(x̄) is called the global maximum value of g on S. A point x̄ ∈ S is a local maximum of g on S if there is a
r > 0 such that g(x̄)≥ g(x) for all x ∈ Nx̄,r∩S. A point x̄ ∈ S is a strict local maximum of g on S if there is a r > 0
such that g(x̄)> g(x) for all x ∈ Nx̄,r ∩S and x 6= x̄.

The term local optimum is used to refer either a local minimum or a local maximum. The concept of global
optimum is defined analogously. Every global optimum is also a local optimum. In general, the opposite is not true.
Note that local optimality applies only around a neighborhood of the local optimum point and global optimality
applies over the entire set S.

A.3 Optimization problems
Let f be a real-valued function defined on S⊂ RD. A minimization problem can be stated as:

min f (x)
subject to x ∈ S. (A.4)

The vector x = (x1, . . . ,xD)
′ represents a container for the decision variables of the problem, the function f is called

the objective function, and the set S the search space (or feasible set). Some authors assume that Ld ≤ xd ≤Ud , for
all d = 1, . . . ,D, where Ud and Ld are the upper and lower bounds of xd , respectively. In this case, these bounds
define the search space as

S= [L1,U1]×·· ·× [LD,UD] = [L,U]⊂ RD. (A.5)

A point x in S is called a feasible solution to the problem. The objective function f is to be minimized and f (x) is
the objective function value of a feasible solution x. Sometimes, f is also called of cost function and, consequently,
f (x) is called cost of x. Regardless of how f is called, f (x) represents a measure of the quality of a feasible solution
x. Two types of solutions can occur when a minimization problem is considered: local minimum points or global
minimum points. The main goal is to find a global minimum of f on S, i.e., a point x̄ in S that achieves the global
minimum value of f on S (the smallest value of f on S). The set of all feasible solutions that achieve the global
minimum value of f on S is denoted by argmin{ f (x) : x ∈ S}.

Let g be a real-valued function defined on S⊂ RD. A maximization problem can be stated as:

max g(x)
subject to x ∈ S. (A.6)

This problem has the same elements of the problem (A.4), except that the objective function g is to be maximized.
Two types of solutions can occur when a maximization problem is considered: local maximum points or global
maximum points. The main goal is to find a global maximum of g on S, i.e., a point x̄ in S that achieves the global
maximum value of g on S. The set of all feasible solutions that achieve the global maximum value of g on S is
denoted by argmax{g(x) : x ∈ S}

Result A.1. Consider the problem (A.6). A point x̄ is a maximum of g on S if and only if x̄ is a minimum of f on
S, where f is a function whose value at any point x ∈ S is given by f (x) =−g(x).

Result A.1 shows that a maximization problem can be converted into a minimization problem by multiplying
the objective function by −1. Therefore, without loss of generality, a minimization problem can be considered as
an optimization problem in its general form. It is important to note that a minimization problem can have many
local minimizers, each one with its corresponding local minimum value. However, if there is a global minimum
value, then that value is unique. But note that the global minimum value may be probably reached by many global
minimizers. In practice, it may be difficult to find a global minimizer, then a good alternative result could be when
a local minimizer is found.

A.4 Existence of solutions
This section discusses the existence of solutions for a minimization problem. The main goal is to establish the set
of conditions on f and S under which the existence of solutions is guaranteed. First, note that inf f (x) = inf{ f (x) :

77

Part IV Appendix A

x ∈ S} = +∞ if S = /0 (in this case, the non-existence of solutions is evident). Furthermore, inf f (x) = −∞ if f
is unbounded below on S 6= /0. However, even if inf f (x) is finite on S, a global minimizer can not exist (see:
minimize ex subject to x > 0). But, if inf f (x) is finite and there is a global minimum x̄ to the problem (A.4), then
f̄ = f (x̄) = min{ f (x) : x ∈ S} is the global minimum value of f on S and f̄ = inf f (x).

Result A.2. Consider the problem (A.4). If S is a compact set and f is a continuous function on S, then f attains
a minimum and a maximum on S, i.e., there exist points x̄min and x̄max in S such that f (x̄min)≤ f (x)≤ f (x̄max) for
all x in S.

Result A.2 describes a general set of conditions that represents an answer to the question of the existence of
solutions for an optimization problem. It can be used as a criterion to ensure the existence or not of an optimal
solution for a given minimization problem. This result implies that the minimization problem of a continuous
function over a compact set is guaranteed to have an optimal solution.

A.5 Minimization of a convex function
This section discusses the minimization problem (A.4) when f is a convex function on S. A first-order optimality
condition for this problem is presented. In addition, conditions to deal with the uniqueness of an optimal solution
(i.e. a single local optimum that is also the global optimum) are also presented.

Result A.3. Consider the problem (A.4). Assume that S is a convex set and f is a convex function on S.

1. If x̄ is a local minimum of f on S, then x̄ is global minimum.

2. The set of minimizers of f on S is either empty or convex.

3. (Uniqueness) If f is strictly convex on S, then the set of minimizers of f on S is either empty or contains a
single point.

4. (First-order condition) Finally, assume also that f ∈C1 and let x̄ be an interior point of S. Then, ∇x f (x̄) = 0
if and only if x̄ is a global minimum of f on S.

A.6 Optimality conditions

A.6.1 Unconstrained optimization
The minimization problem (A.4) is also called an unconstrained optimization problem (UOP). This section dis-
cusses optimality conditions for an UOP.

Result A.4. Consider the problem (A.4):

1. (First-order necessary condition). Suppose that f ∈ C1 and let x̄ be an interior point of S. If x̄ is a local
minimum of f on S, then ∇x f (x̄) = 0.

2. (Second-order necessary conditions). Suppose that f ∈C2 and let x̄ be an interior point of S. If x̄ is a local
minimum of f on S, then ∇x f (x̄) = 0 and ∇2

x f (x̄) is positive semidefinite.

3. (Second-order sufficient conditions). Suppose that f ∈C2 and let x̄ be an interior point of S. If ∇x f (x̄) = 0
and ∇2

x f (x̄) is positive definite, then x̄ is a strict local minimum of f on S.

A.6.2 Constrained optimization
Without loss of generality, a constrained optimization problem (COP) can be stated as:

min f (x) where x = (x1, . . . ,xD)
′ ∈ RD

subject to gi(x)≤ 0 i = 1, . . . , I
h j(x) = 0 j = 1, . . . ,J
Ld ≤ xd ≤Ud d = 1, . . . ,D.

(A.7)

78

Part IV Appendix A

Once again, the vector x = (x1, . . . ,xD)
′ represents a container for the decision variables of the problem and f : S⊂

RD→ R is the objective function to be minimized. The functions g1, . . . ,gI ,h1, . . . ,hJ : S⊂ RD→ R are called of
constraint functions. All these functions (f ,g1, . . . ,gI ,h1, . . . ,hJ) can be linear or nonlinear. As is usually done the
search space is defined as S= [L1,U1]×·· ·× [LD,UD] = [L,U] and the set

F= {x ∈ S : g1(x)≤ 0, . . . ,gI(x)≤ 0,h1(x) = 0, . . . ,hJ(x) = 0} (A.8)

is called the feasible space. A point x∈ S that satisfies all the constraints, i.e., a point x∈ F⊂ S, is called a feasible
solution to the problem. The problem (A.7) is solved when a global minimum of f on F is found (when such
solution exist). Remember that if inf f (x) is finite and there is a global minimum x̄ to the problem (A.7), then
f̄ = f (x̄) = min{ f (x) : x ∈ S} is the global minimum value of f on S and f̄ = inf f (x).

An alternative notation for the problem (A.7) is given by:

min f (x)
subject to g(x)≤ 0

h(x) = 0
x ∈ S⊂ RD

(A.9)

where x ∈RD, f : S⊂RD→R, g : S⊂RD→RI , and h : S⊂RD→RJ . By considering the notation in (A.9), the
Lagrangian function L : RD×RI×RJ → R associated with the problem (A.7) (or A.9) is given by:

L(x,µµµ,λλλ) = f (x)+µµµ
′g(x)+λλλ

′h(x) = f (x)+
I

∑
i=1

µigi(x)+
J

∑
j=1

λ jh j(x). (A.10)

Observe that

∇xL(x,µµµ,λλλ) = ∇x f (x)+µµµ
′
∇xg(x)+λλλ

′
∇xh(x) = ∇x f (x)+

I

∑
i=1

µi∇xgi(x)+
J

∑
j=1

λ j∇xh j(x) (A.11)

∇µµµ L(x,µµµ,λλλ) = g(x) ∇λλλ L(x,µµµ,λλλ) = h(x) (A.12)

and

∇
2
xL(x,µµµ,λλλ) = ∇

2
x f (x)+µµµ

′
∇

2
xg(x)+λλλ

′
∇

2
xh(x) = ∇

2
x f (x)+

I

∑
i=1

µi∇
2
xgi(x)+

J

∑
j=1

λ j∇
2
xh j(x). (A.13)

If there is a feasible point x̃ such that gi(x̃) = 0 for some i = 1, . . . , I, then gi is said to be active at x̃. Every
equality constraint is active for all feasible points. A feasible point x̃ is said to be a regular point of the constraints
of the problem if ∇xgk(x̃) for k ∈ Ax̃ = {k : gk(x̃) = 0} and ∇xh j(x̃) for j = 1, . . . ,J are linearly independent.
Optimality conditions for a COP are given by Results A.5, A.6, A.7, and A.8.

Result A.5 (First-order necessary conditions). Consider the problem (A.9). Suppose that f ,g,h ∈C1 and let x̄ be
a regular point of the constraints. If x̄ is a local minimum of f on F, then there are vectors µ̄µµ and λ̄λλ such that

∇xL(x̄, µ̄µµ, λ̄λλ) = 0 (A.14)
µ̄µµ
′g(x̄) = 0 (A.15)

µ̄µµ ≥ 0. (A.16)

Eqs. (A.14), (A.15), and (A.16) are named as Karush-Kuhn-Tucker necessary conditions (or KKT conditions).

For the next result, consider the following notation. Let x̄ be a local minimum of f on F and let Ax̄ = {k :
gk(x̄) = 0}. In addition, denote A+

x̄ = {k ∈ Ax̄ : µ̄k > 0} and A0
x̄ = {k ∈ Ax̄ : µ̄k = 0}.

Result A.6 (Second-order necessary conditions). Consider the problem (A.9). Suppose that f ,g,h ∈C2 and let x̄
be a regular point of the constraints. If x̄ is a local minimum of f on F, then there are vectors µ̄µµ and λ̄λλ such that
the KKT conditions are satisfied by (x̄, µ̄µµ, λ̄λλ) and y′∇2

xL(x̄, µ̄µµ, λ̄λλ)y≥ 0 for all y ∈ Y , where

Y = {y : ∇xhi=1,...,I(x̄)′y = 0,∇xgk∈A+
x̄
(x̄)′y = 0,∇xgk∈A0

x̄
(x̄)′y≤ 0}. (A.17)

79

Part IV Appendix A

Result A.7 (Second-order sufficient conditions). Consider the problem (A.9). Suppose that f ,g,h ∈C2 and let x̄
be a regular point of the constraints. If there are vectors µ̄µµ and λ̄λλ such that

∇xL(x̄, µ̄µµ, λ̄λλ) = 0 (A.18)
µ̄µµ
′g(x̄) = 0 (A.19)

µ̄µµ ≥ 0 (A.20)

and
y′∇2

xL(x̄, µ̄µµ, λ̄λλ)y > 0 (A.21)

for all y ∈ Y −{0}, then x̄ is a strict local minimum of f on F.

Result A.8 (First-order condition). Consider the problem (A.9). Assume that S is a convex set, f and g are convex
functions on S, and h is affine. Assume also that f ,g∈C1 and let x̄ be a regular point of the constraints. Then, there
are vectors µ̄µµ and λ̄λλ such that the KKT conditions are satisfied by (x̄, µ̄µµ, λ̄λλ) if and only if x̄ is a global minimum of
f on F.

COPs are classified into different classes of problems based on the properties of the objective function f and
the properties of the set F of feasible solutions. Three of these classes are mentioned here as examples:

Linear programming. Minimize q′x subject to Ax≤ b, where q ∈ RD, b ∈ RJ , and A is a J×D matrix (of real
numbers).

Quadratic programming with linear constraints. Minimize 1
2 x′Qx+q′x subject to Ax≤ b, where Q is a D×D

matrix (of real numbers) positive semidefinite, q ∈ RD, b ∈ RI , and A is a I×D matrix (of real numbers).

Convex optimization. When S is a convex set, f ,g1, . . . ,gI are convex functions, and h1, . . . ,hJ are affine (i.e.,
h j(x) = a′jx+ b j, for all j, where a j ∈ RD and b j ∈ R). Note that linear programming and quadratic pro-
gramming with linear constraints are convex optimization problems.

A.7 Single-point numerical methods for optimization
Consider an UOP such as defined in (A.4). An algorithm for solving this problem can be viewed as an iterative
process that generates a sequence of points in S according to a prescribed set of instructions and a termination
criterion. Given a vector xτ ∈ S, a new point xτ+1 ∈ S is obtained by applying the instructions of the algorithm,
where the index τ (τ = 0,1,2,3, . . .) represents the iteration counter of this process. Formally, this process can be
described by an algorithmic map

A : S→ S xτ 7→ xτ+1 = A (xτ). (A.22)

Given a initial point x0, the map A generates a sequence x1,x2, . . . of points in S. The transformation of xτ into
xτ+1 through the map constitutes an iteration of the algorithm. A desirable property of an algorithm for solving an
UOP is that it generates a sequence of points converging to a global minimum. However, in many practical cases,
it is satisfactory when a less favorable solution is obtained (for example, a local minimum). In fact, the iterative
procedure of an algorithm stops if a point belonging to a prescribed set, called solution set, is reached. Given an
UOP, the following are some typical solution sets (Luenberger & Ye, 2008; Bazaraa, Sherall & Shetty, 1993):

1. {x∗ ∈ S : ‖∇x f (x∗)‖< ε}, where ε > 0 is specified.

2. {x∗ ∈ S : τ = τmax and x∗ is the best value obtained so far}, where τmax is specified.

3. {x∗ ∈ S : | f (x∗)− f̄ |< ε}, where f̄ is the known global minimum value and ε > 0 is specified.

4. {x∗ ∈ S : | f (x∗)| ≤ b}, where b is an acceptable value.

A number of algorithms have been developed for solving UOPs. Many of these methods evolve a single point
according to the following algorithmic map:

xτ+1 = A (xτ) = xτ +η
τ dτ (A.23)

80

Part IV Appendix A

for τ = 0,1,2, . . ., where dτ is the search direction at the point xτ and ητ is a suitable step size (or a learning rate).
Three single-point numerical methods for UOPs can be presented here: the gradient method, the Newton-Raphson
method, and the BFGS quasi-Newton method (see Luenberger & Ye, 2008; Bazaraa, Sherall & Shetty, 1993).
These algorithms make use of information based on gradients and Hessians to locate a global minimum or, more
exactly, to obtain an approximation of a global minimum. The gradient method is a first-order derivative method
because it uses the gradient vector of the objective function to obtain an approximation of a global minimum. The
Newton-Raphson method is a second-order derivative method because it uses the gradient vector and the inverse
Hessian matrix of the objective function to obtain an approximation of a global minimum. The BFGS method uses
an approximation to the inverse Hessian in place of the true inverse.

A.7.1 Gradient method
Suppose that f ∈C1. The gradient method is defined by the map

xτ+1 = A (xτ) = xτ −η
τ
∇x f (xτ) (A.24)

for τ = 0,1,2, . . ., where ητ = argminη f (xτ −η∇x f (xτ)) subject to 0 ≤ η < ηmax. The essential steps of this
method are summarized in Algorithm 6.

Algorithm 6 Gradient method for UOPs.
Input: f ,x0,ηmax,ε > 0, and τmax

1: τ ← 0; x← x0
2: repeat
3: τ ← τ +1
4: η̄ = argminη φ(η) subject to 0≤ η < ηmax, where φ(η) = f (x−η∇x f (x))
5: x∗← x− η̄∇x f (x) and f ∗← f (x∗)
6: x← x∗
7: until ‖∇x f (x∗)‖< ε or τ = τmax
8: return x∗ and f ∗.

A.7.2 The Newton-Raphson method
Suppose that f ∈C2. The Newton-Raphson method is defined by the map

xτ+1 = A (xτ) = xτ − [∇2
x f (xτ)]−1

∇x f (xτ) (A.25)

for τ = 0,1,2, The idea behind of the Newton-Raphson method is that the function being minimized is approx-
imated locally by a quadratic function and this approximate function is minimized exactly. The essential steps of
this method are summarized in Algorithm 7.

Algorithm 7 Newton-Raphson method for UOPs.
Input: f ,x0,ε > 0, and τmax

1: τ ← 0; x← x0
2: repeat
3: τ ← τ +1
4: x∗← x− [∇2

x f (x)]−1∇x f (x) and f ∗← f (x∗)
5: x← x∗
6: until ‖∇x f (x∗)‖< ε or τ = τmax
7: return x∗ and f ∗.

A.7.3 The BFGS method
There are a number of so-called quasi-Newton methods that gradually build up the inverse Hessian in the successive
iterations. The BFGS method (named by its developers Broyden, Fletcher, Goldfarb, and Shanno) is defined by

81

Part IV Appendix A

the map
xτ+1 = A (xτ) = xτ −η

τ Hτ
∇x f (xτ) (A.26)

for τ = 0,1,2, . . ., where H0 = I (the identity matrix) and

Hτ+1 = (I−ρτ sτ y′τ)H
τ(I−ρτ yτ s′τ)+ρτ sτ s′τ (A.27)

approximates [∇2
x f (xτ)]−1, with sτ = xτ+1− xτ , yτ = ∇x f (xτ+1)−∇x f (xτ), and ρτ = (y′τ sτ)

−1. The essential
steps of this method are summarized in Algorithm 8.

Algorithm 8 The BFGS method for UOPs.
Input: f ,x0,ε > 0, and τmax

1: τ ← 0; x← x0; H← I
2: repeat
3: τ ← τ +1
4: p←−H∇x f (x)
5: η̄ = argminη φ(η) s.t. 0≤ η ≤ ηmax, where φ(η) = f (x−η∇x f (x))
6: x∗← x+ η̄p and f ∗← f (x∗)
7: s← x∗−x and y = ∇x f (x∗)−∇x f (x)
8: ρτ ← (y′τ sτ)

−1

9: H← (I−ρsy′)H(I−ρys′)+ρss′
10: x← x∗
11: until ‖∇x f (x∗)‖< ε or τ = τmax
12: return x∗ and f ∗.

A.8 Single-point metaheuristics for optimization
All algorithms that have been presented so far for UOPs depend on assumptions such as: continuity and deriva-
tive information of the objective function or convexity of the objective function and of the search space. These
assumptions can not be satisfied for many real-world optimization problems, which are problems characterized by
high dimensionality, discontinuities, lack of derivative information, and disjoint search spaces. In addition, none
of these approaches can be applied for solving black-box optimization problems, which are characterized by the
lack of information related to the analytical form of the functions involved in the problem.

This section introduces two single-point metaheuristics to overcome these drawbacks, namely: hill-climbing
and simulated annealing. These metaheuristics are zero-order methods, since these algorithms only use the values
of the objective function. Hill-climbing and simulated annealing can be viewed as alternative methods when the
classical optimization methods can not be applied (see Simon, 2013). To discuss these two single-point meta-
heuristics, consider an UOP such as defined in (A.4).

A.8.1 Hill-climbing
Hill-climbing (HC) is a local search method that uses a simple strategy to evolve a single-point in the search space.
At each iteration, a candidate solution xc is selected by performing a small perturbation in the current solution
xτ . This perturbation can be implemented by simply sampling xc from the neighborhood of xτ or by adding a
small random vector, w, to the current solution: xc = xτ +w. If the new solution provides a better value for the
objective function, then the new solution becomes the current solution. Otherwise, the current solution remains as
the reference point for a new perturbation. HC is defined by the map

xτ+1 = A (xτ) =

{
xc f (xc)< f (xτ)
xτ otherwise (A.28)

for τ = 0,1,2, HC has some weaknesses, it usually terminates in a local minimum and the minimum found
depends on the initial solution. In addition, this method has no mechanism to escape of local minima. These
drawbacks can eventually be overcome by introducing multiple initializations and a memory designed to keep the
best solution found over all iterations. The essential steps of this metaheuristic are summarized in Algorithm 9.

82

Part IV Appendix A

Algorithm 9 Hill-climbing for UOPs.
Input: f ,x0, and τmax

1: {Hill-climbing}
2: τ ← 0; x← x0; fx← f (x0)
3: repeat
4: τ ← τ +1
5: xc← Perturbation(x) and f c← f (xc)
6: if f c < fx then
7: x← xc and fx← f c

8: end if
9: until τ = τmax

10: return x and fx.

Input: f ,x0, and τmax
1: {Multi-start Hill-climbing}
2: x∗← x0 and f ∗← f (x0)
3: repeat
4: x← HillClimbing(f ,x0,τmax) and fx← f (x)
5: if fx < f ∗ then
6: x∗← x and f ∗← fx
7: end if
8: Set a new x0 ∈ S
9: until some termination condition is met

10: return x∗ and f ∗.

A.8.2 Simulated annealing
Annealing is a physical process for obtaining low energy states of a solid in a heat bath. The process contains the
following two steps: (1) increase the temperature of the heat bath to a maximum value at which the solid melts and
(2) decrease carefully the temperature of the heat bath until the particles arrange themselves in the ground state of
the solid. In the liquid phase all particles of the solid arrange themselves randomly. In the ground state the particles
are arranged in a highly structured lattice and the energy of the system is minimal. The ground state of the solid is
obtained only if the maximum temperature is sufficiently high and the cooling is done sufficiently slow. Otherwise
the solid will be frozen into a meta-stable state rather than into the ground state.

Simulated annealing (SA) is a single-point metaheuristic inspired by the annealing process of physical systems.
SA was proposed by Kirkpatrick, Gelatt & Vecchi (1983) to find optimal solutions of problems related to computer
design. Independently, SA was proposed by Cerny (1985) to solve the well-known travelling salesman problem.
SA is formulated as an algorithm whose goal is to find a solution with minimal objective value among a potentially
large number of feasible solutions. It is assumed an analogy between a many-particle physical system and the
optimization problem (A.4) based on the following equivalences:

Solutions × states. Solutions of the optimization problem are equivalent to states of a physical system.

Objective value × energy. The objective function value of a solution is equivalent to the energy of a state.

Based on these equivalences, SA is implemented using the well-known Metropolis algorithm (see Metropolis et
al., 1953; Hastings, 1970). SA realizes a random search in terms of a non-homogeneous Markov chain, which
not only accepts changes that improve the objective value of a solution, but also keeps some changes that are
not ideal. In fact, for a minimization problem, any changes that decrease the objective value of a solution will
be accepted. However, some changes that increase the objective value of a solution will also be accepted with a
certain probability. This strategy works as a mechanism to escape of local minima.

The essential steps of SA are described as follows and can be summarized in Algorithm 10. Suppose that the
current solution is xτ and consider a fixed temperature T . A mechanism specific is applied to randomly generate
a candidate solution xc from xτ . Once again, this perturbation can be implemented by sampling xc from the
neighborhood of xτ . The candidate solution xc is accepted from xτ by applying the following probability:

Pr(xτ ,xc) = min
{

1,
exp[f (xτ)− f (xc)]

T

}
. (A.29)

SA is defined by the map

xτ+1 = A (xτ) =

{
xc with probability Pr(xτ ,xc)
xτ otherwise (A.30)

for τ = 0,1,2, It continues by selecting and testing new solutions, and setting its current solutions in this way.
The temperature T is reduced and the process is repeated again. Note that, at high temperatures a solution less
favorable will be accepted with high probability. As previously cited, this feature means that SA can escape from
local minima. At very low temperatures a solution less favorable will be accepted with low probability and SA
becomes more like a greedy algorithm. SA terminates when the temperature is very low (near zero). If this cooling
is done sufficiently slow, the algorithm has a high probability to obtain a globally optimal solution.

83

Part IV Appendix A

Algorithm 10 Simulated annealing for UOPs.
Input: f and Lmax

1: Initialize T and x
2: x∗← x and f ∗← f (x) {best solution found so far}
3: repeat
4: for l ∈ {1, . . . ,Lmax} do
5: xc← Perturbation(x) and f c← f (xc)
6: ∆ f ← f (x)− f (xc)
7: if ∆ f ≥ 0 then
8: x← xc

9: else
10: r ∼ Unif(0,1) {random number sampled from (0,1)}
11: if r < exp(∆ f/T) then
12: x← xc

13: end if
14: end if
15: if f (x)< f ∗ then
16: x∗← x and f ∗← f (x)
17: end if
18: end for
19: T ← CoolingSchedule(T) {define the new value of T}
20: until some termination condition is met
21: return x∗ and f ∗.

A.9 Population-based metaheuristics for optimization
Two scientific fields will be discussed in this section: swarm and evolutionary computation. These terms are used
to describe two categories of population-based metaheuristic algorithms that lie in the intersection between opti-
mization and computational intelligence. Swarm and evolutionary computation are usually adopted in problems
where classical optimization methods can not be applied such as black-box optimization problems or optimization
problems in which probably neither the objective function nor the constraints are differentiable.

A.9.1 Swarm computation
Appendix B discusses swarm algorithms to solve UOPs. Appendix C provides a survey on constraint handling
methods that have been adopted over the years to solve COPs, including special attention on how these methods
can be incorporated in swarm algorithms to deal with constrained search spaces. Next subsection is exclusively
concerned with evolutionary computation for UOPs. All methods discussed in Appendix C can be also incorpo-
rated in evolutionary algorithms to deal with COPs.

A.9.2 Evolutionary computation
Evolutionary computation encompasses a set of optimization algorithms that emulate evolutionary processes based
on the principle of the survival of the fittest from Darwin’s theory on the origin of species by means of natural
selection (Darwin, 1859).

In nature, individuals have to adapt to their environment in order to survive in a process called evolution, in
which those features that make an individual more stronger and suited to compete are preserved when it reproduces,
and those features that make it weaker are eliminated. Such features are controlled by units called genes which
form sets called chromosomes. Over subsequent generations not only the fittest individuals survive, but also their
fittest genes which are transmitted to their descendants during the sexual recombination process which is called
crossover (Coello, 2002).

Evolution and natural selection are simulated in a computer as a method to solve optimization problems. The
general idea of this method is to use a population of individuals to encode solutions of an given problem and
to manipulate these individuals by using genetic operators as: selection, crossover, and mutation. The aim is to

84

Part IV Appendix A

reach a good approximation of a global minimum for the problem as an individual which evolved through the
generations.

There are three main paradigms within evolutionary computation, whose motivations and origins were inde-
pendent from each other: genetic algorithms, evolution strategies, and evolutionary programming (Holland, 1975;
Back & Schwefel, 1993; Fogel, 1994; Yao, Liu & Lin, 1999; Beyer & Schwefel, 2002; Engelbrecht, 2007; Simon,
2013). However, the current trend has been to decrease the difference among these three paradigms and refer, in
generic terms, simply to evolutionary algorithms when talking about any of them. In general, some elements are
required to describe an evolutionary algorithm (Coello, 2002):

Representation. A suitable representation of the potential solutions of the problem to be solved.

Initial population. A mechanism to generate an initial population of individuals representing candidate solutions.

Fitness function. A fitness function that plays the role of the environment, rating solutions in terms of their fitness.

Natural selection. A selection operator that chooses the parents that will reproduce.

Crossover and Mutation. Evolutionary operators that alter the composition of children.

Parameters. Values for various parameters that the algorithm uses like population size and probabilities to be
used during the crossover and mutation processes.

In a general way, to solve a optimization problem using an evolutionary algorithm the following steps should
be performed: (1) generate a random initial population of individuals; (2) select the fittest individuals based on
their fitness to reproduce; (3) apply the crossover and mutation operators to generate new individuals (offspring
or children); (4) loop this process until a stop condition is satisfied. These essential steps are summarized in
Algorithm 11.

Algorithm 11 Generic evolutionary algorithm for UOPs.
Input: f , population size, and other parameter values.

1: Generate randomly an initial population of solutions
2: Calculate the fitness of each solution in the initial population.
3: repeat
4: Select a pair of solutions (or parents) to create two offspring using crossover
5: Apply mutation to each offspring
6: The new population is formed by all offspring
7: Calculate the fitness of each solution in the new population.
8: until some termination condition is met
9: return The best solution and its fitness.

A.10 The no-free-lunch theorem
The no-free-lunch theorem (Wolpert & Macready, 1997) states that, if no a priori assumption can be made about
an optimization problem that must be solved, no optimization strategy can be expected to perform better than any
other. In fact, all optimization algorithms perform exactly the same when averaged over all possible optimization
problems. This result is an impossibility theorem that tells us that there is no strategy of any kind that outperforms
all others on all optimization problems. Put in another way, a general-purpose universal optimization strategy is
theoretically impossible. The only way that a strategy can outperform another if it is specialized to the specific
problem under consideration.

85

Appendix B

Swarm Computation for Unconstrained
Optimization

This appendix presents a short review about swarm algorithms for solving unconstrained optimization problems
(UOPs). Basic concepts are discussed, including neighborhood systems for exchanging information between par-
ticles. A convergence analysis of the standard PSO is presented along with guidelines for parameter selection. The
review aims to provide concepts and results related to the main topic of research of this thesis.

B.1 Introduction
Swarm computation has increasingly become an important tool for solving optimization problems. The advan-
tages of these approaches over the traditional techniques from non-linear programming (discussed in Appendix
A) are their robustness and flexibility. The first two swarm algorithms proposed in the literature were: ant colony
optimization (ACO) and particle swarm optimization (PSO). ACO was introduced by Dorigo (1992); Dorigo,
Maniezzo & Colorni (1996) and it has been widely used for solving combinatorial optimization problems (see
Dorigo, Birattari & Stützle (2006) for a nice introduction in ACO).

PSO was introduced by Kennedy & Eberhart (1995) and it has been widely used for solving optimization
problems in continuous search space (continuous optimization problems). It is a population-based optimization
algorithm and its original idea was inspired by the social behaviour of some species of animals to work as a whole
in locating desirable positions in a given area. This seeking behaviour was associated with that of a search for
solutions to a given optimization problem. Therefore, PSO is motivated by the simulation of social behaviour,
instead of evolution as in evolutionary algorithms. In addition, like a population-based algorithm, PSO evolves
a population of solutions for a given optimization problem, unlike hill-climbing and simulated annealing that are
single-point algorithms. The main advantage of population-based approaches over single-point strategies is that
the large number of members that make up the population makes the technique resilient to the problem of local
minima. PSO has been designed to address continuous optimization problems that cannot be tackled by traditional
techniques from non-linear programming. These problems are black-box optimization problems and optimization
problems characterized by discontinuities, lack of derivative information, and disjoint search spaces.

The interest in swarm computation has grown steadily. Many researchers have contributed to this field by
proposing new algorithms, applications, and developing empirical and theoretical studies on the effects of various
parameters and aspects of the proposed algorithms. Besides ACO and PSO, other examples of swarm algorithms
are: bare bones particle swarm optimization (Kennedy, 2003) and fully informed particle swarm (Mendes, Kennedy
& Neves, 2004; Kennedy & Mendes, 2006). Examples of swarm algorithms recently developed are: gravitational
search algorithm, artificial bee colony algorithm, and the firefly algorithm (see Simon, 2013, Chap. 17).

B.2 Particle swarm optimization and its early variants
Consider an UOP such as defined in Eq. (1.4). The original PSO (Kennedy & Eberhart, 1995) can be viewed
as an iterative process that evolves a population of solutions in the search space of the problem according to a
prescribed set of instructions and a termination criterion. Given a population Pτ of solutions in the search space, a

86

Part IV Appendix B

new population Pτ+1 of solutions is obtained by applying the instructions of the PSO on Pτ . This iterative process
can be described by an algorithmic map

A : S→ S Pτ 7→ Pτ+1 = A (Pτ). (B.1)

Formally, given a initial population P0, A generates a sequence P1,P2, . . . of populations in the search space.
The transformation of Pτ into Pτ+1 through the map constitutes an iteration of the PSO and the index τ (τ =
0,1,2,3, . . .) represents the iteration counter. The population Pτ is referred to as swarm and its individuals are
referred to as particles. Each particle is characterized by four vectors (xτ

k ,v
τ
k ,p

τ
k ,g

τ), where the index k (k =
1, . . . ,K) represents the label of a particle in Pτ , K is the population size, and:

1. (Position) xτ
k = (xτ

k1, . . . ,x
τ
kD)
′ is the position of a particle in the τ-th iteration. This is a potential solution to

the problem and it is used to evaluate the particle quality (in terms of objective value) in the τ-th iteration.

2. (Velocity) vτ
k = (vτ

k1, . . . ,v
τ
kD)
′ is the velocity of a particle in the τ-th iteration. This is the direction and length

of movement of a particle in the τ-th iteration.

3. (Pbest position) pτ
k = (pτ

k1, . . . , pτ
kD)
′ is the personal-best position of a particle in the τ-th iteration. This is

the best position (in terms of objective value) that the particle has visited until iteration τ . The role of this
vector is to store the knowledge of the best solution found by the particle.

4. (Gbest position) gτ = (gτ
1, . . . ,g

τ
D)
′ is the global-best position in the τ-th iteration. This is the best position

(in terms of objective value) that any particle in Pτ has visited until iteration τ . The role of this vector is to
store the knowledge of the best solution found by the swarm as whole. The global-best position is the best
personal-best position in the swarm.

PSO is initialized with a population of particles with random positions and velocities. On the initialization,

v0
k ≈ 0 = (0, . . . ,0)′ and p0

k = x0
k (B.2)

for all k. The global-best position is initialized as

g0 = BEST(p0
k : k = 1, . . . ,K) = argmin{ f (p0

k) : k = 1, . . . ,K}. (B.3)

The velocity of a particle is updated by

vτ+1
kd = vτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(gτ
d− xτ

kd) · r2 (B.4)

and its position is updated by
xτ+1

kd = xτ
kd + vτ+1

kd (B.5)

for all k, d (d = 1, . . . ,D), and τ ≥ 0. The second part of the Eq. (B.4) (c1(pτ
kd − xτ

kd) · r1) is the cognitive part1,
which represents the private thinking of a particle. The third part (c2(gτ

d − xτ
kd) · r2) is the social part, which

represents the collaboration among the particles. The parameters c1,c2 are positive constants used to scale the
contribution of the cognitive and social components of the learning process of a particle and r1,r2 are random
numbers uniformly distributed in the range [0,1]. After updating the position, the personal-best position is updated
as follows

pτ+1
k = BEST(xτ+1

k ,pτ
k). (B.6)

Finally, the global-best position is updated by

gτ+1 = BEST(pτ+1
k : k = 1, . . . ,K). (B.7)

The process is repeated until some stopping criterion is met. At the end of this process, PSO returns the global-best
position and its objective value. Note that Eq. (B.7) informs that the swarm can be thought of as a social network
having a communication structure, since the best solution is reported for all particles. In fact, all particles are
interconnected and each particle can communicate with every other particles. Each particle is attracted towards the
best solution found by swarm. The essential steps of PSO are summarized in Algorithm 12.

1Cognitive abilities are processes involved in acquisition and understanding of knowledge, formation of beliefs, and decision making.

87

Part IV Appendix B

Algorithm 12 Particle swarm optimization for UOPs.
Input: D,K,c1,c2, and f

1: τ ← 0
2: for k ∈ {1, . . . ,K} do
3: Initialize xk and set vk ≈ 0
4: pk← xk
5: end for
6: g← BEST(pk : k = 1, . . . ,K)
7: repeat
8: τ ← τ +1
9: for k ∈ {1, . . . ,K} do

10: for d ∈ {1, . . . ,D} do
11: Update vkd (Eq. (B.4))
12: Update xkd (Eq. (B.5))
13: end for
14: pk← BEST(xk,pk)
15: end for
16: g← BEST(pk : k = 1, . . . ,K)
17: until some termination condition is met
18: return x∗ = g and f ∗ = f (g).

In summary, PSO utilizes a population of particles during the optimization process. Each particle moves in the
search space obeying dynamic rules to update its position. Each particle searches a global solution to the problem
learning from its own past experience and from the experiences of the other particles. The swarm as a whole
explores the search space, first at random, and then, when better solutions are found and communicated, the swarm
begins to converge by refining its search until a good enough solution is found.

A desirable property of a swarm algorithm in solving an UOP is that it generates a sequence of populations
converging to a global optimal solution of the problem. Formally, this means that: for all ε > 0,

lim
τ→∞

Pr(‖gτ − x̄‖< ε) = 1 (B.8)

where x̄ is a global minimum. The original PSO presented a satisfactory performance for simple optimization
problems. However, it also presented some deficiencies when it was applied to harder problems involving large
search spaces and multimodal functions. This deficiencies can be listed as:

1. Swarm explosion effect. This refers to the uncontrolled increase of magnitude of the velocities, resulting in
swarm divergence.

2. Inability to converge. This refers to the fact that the swarm was unable either to achieve convergence on a
promising position or perform a refined search around it.

3. Inability to escape from local minima. This refers to the fact that particles were highly susceptible to being
trapped in local minima.

The refinements developed to address these deficiencies are discussed in the following subsections.

B.2.1 PSO with velocity clamping
The swarm explosion effect was addressed by using strict bounds for velocity clamping at desirable levels, pre-
venting particles from taking extremely large steps from their current positions. More specifically, a user-defined
maximum velocity threshold was considered. After determining the new velocity of each particle with Eq. (B.4),
the following restriction is applied prior to the position update with Eq. (B.5):

−vmax,d ≤ vτ+1
kd ≤ vmax,d (B.9)

where vmax,d ∝ (Ud−Ld), d = 1, . . . ,D. In case of violation, the corresponding velocity component is defined as

vτ+1
kd = vmax,d if vτ+1

kd > vmax,d or vτ+1
kd =−vmax,d if vτ+1

kd <−vmax,d . (B.10)

88

Part IV Appendix B

Velocity clamping offered a solution to the problem of swarm explosion. However, the choice of these parameters
(vmax,d , d = 1, . . . ,D) require some care because their influences on the swarm diversity and consequently on the
balance between global search (exploration or diversification) and local search (exploitation or intensification).
Global search is the ability to test various regions in the problem search space in order to locate a good solution,
hopefully the global optimum. Local search is the ability to concentrate the search around of a promising candidate
solution in order to locate the optimum precisely. Finally, swarm diversity is defined as a quantitative measure that
reflects how many different particles (or different solutions) exist in the swarm (or solution population).

B.2.2 PSO with inertia weight
The second deficiency presented by PSO was the inability to converge. This problem was addressed by the intro-
duction of a new parameter in the original PSO. In fact, Shi & Eberhart (1998) introduced a new parameter, called
inertia weight, into the original PSO. This new parameter plays the role of balancing the global search and local
search, at the same time that promotes good convergence ability, if this parameter is well tuned. The result is a
PSO with the following update rule for the velocity of a particle:

vτ+1
kd = wvτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(gτ
d− xτ

kd) · r2 (B.11)

for all k, d, and τ ≥ 0. For w ≥ 1, the velocity increases over time up to the maximum velocity (when velocity
clamping is used) and the swarm diverges. For w < 1, the velocity decreases until to reach zero (depending on
the values of c1 and c2). Large values of w facilitate global search, with increased diversity. Small values of w
promotes local search. However, too small values of w completely eliminate the swarm exploration ability.

Simulation results showed the significant and effective impact of this new parameter on the PSO. Initial im-
plementations of PSO with inertia weight used a static value for w during the search process of a global optimal
solution. Later implementations made use of dynamically changing inertia values, usually starting with large iner-
tia values which decreases over time to smaller values. Shi & Eberhart (1998) suggested that a decreasing inertia
weight present a better performance. In general, a linearly decreasing scheme for w can be defined as follows:

wτ = wmax− (wmax−wmin) ·
τ

τmax
. (B.12)

For instance, w can be started at 0.9 and be linearly decreased until 0.4.

B.2.3 PSO with neighborhood system
The use of inertia weight provided a PSO algorithm with convergence capability, but did not solve the deficiency
related to the fact that particles were still highly susceptible to being trapped in local minima. The swarm reaches
convergence, but after a number of iterations, shows total diversity loss. As a consequence, further exploration is
not possible and the particles can perform only local search around their convergence points. Although the effect of
fast convergence can be satisfactory in some optimization problem, such as optimization of unimodal and convex
functions, it becomes detrimental in optimization problems involving multimodal functions. This deficiency can
be attributed to the global information exchange scheme that allows each particle to know the global best position
at each iteration. Using this scheme, all particles assume new positions in regions of the search space that are
related to the same information, reducing the exploration capability of the swarm.

This problem was addressed by introducing the concept of neighborhood of a particle. Following this idea, each
particle has a neighborhood consisting of a set of particles which it can communicate with. The neighborhood of
a particle is denoted by Nk and the neighborhood system N = {Nk : k = 1, . . . ,K} represents a communication
structure often thought of as a social network. There is a number of different schemes to connect the particles.
Most implementations use one of two simple sociometric principles. The first, called global topology (also known
as global-best model or Gbest model), connects each particle in the population with all others, i.e., Nk = P for all
k. The second, called local topology (also known as local-best model or Lbest model), creates a neighborhood for
each particle comprising generally of the particle itself and L neighbors in the population P, i.e., Nk ⊂ P for all k,
with |Nk|= L+1 < K.

Each particle keeps the memory of the best position (in terms of objective value) that the particle has visited
until iteration τ (the personal-best position or pbest position). This vector stores the knowledge of the best solution
found by the particle, as a personal learning. In addition, the particles use the neighborhood system to exchange

89

Part IV Appendix B

information between them. As a result, each particle also keeps the memory of the best position (in terms of ob-
jective value) that any particle in its neighborhood has visited until iteration τ . This is the local-best position in the
τ-th iteration (or lbest position). This vector stores the knowledge of the best solution found by its neighborhood,
as a social learning. The personal-best position, as already established, is denoted by pτ

k = (pτ
k1, . . . , pτ

kD)
′ and

the local-best position is denoted by nτ
k = (nτ

k1, . . . ,n
τ
kD)
′. Finally, the global-best position is defined as the best

local-best position. In local-best model, pτ
k , nτ

k , and gτ are updated as follows:

(Pbest position) pτ+1
k = BEST(xτ+1

k ,pτ
k) (B.13)

(Lbest position) nτ+1
k = BEST(pτ+1

l : l ∈Nk) (B.14)

(Gbest position) gτ+1 = BEST(nτ+1
k : k = 1, . . . ,K). (B.15)

Figures B.1 - B.4 show examples of neighborhood systems (Mendes, Kennedy & Neves, 2004; Kennedy & Mendes,
2006):

1. In the star structure, all particles are interconnected as illustrated in Figure B.1. Each particle can commu-
nicate with every other particles. In this case, each particle is attracted towards the best solution found by
the entire swarm. The first implementation of the PSO and its first variants used a star structure. As this
structure is a global topology, all algorithms that use this structure are referred to as global-best PSO (or
Gbest PSO). The global-best PSO has been shown to converge faster than other neighborhood systems, but
with greater susceptibility to be trapped in local minima. Generally, the global-best PSO performs better for
unimodal problems.

1

2

3

4

5

6

Figure B.1: Star structure.

1

2

3

4

5

6

7

8

9

Figure B.2: Ring structure.

2. In the ring structure, each particle communicates with its L immediate neighbors. In the case of L = 2, each
particle communicates with its immediately adjacent neighbors as illustrated in Figure B.2. The ring struc-
ture is a local topology, then the resulting PSO is referred to as local-best PSO (or Lbest PSO). Each particle
attempts to imitate its best neighbor by moving towards the best solution found within of its neighborhood.
Since the information flow through the structure is smaller due to a smaller connectivity between the parti-
cles, the speed of convergence towards an optimal solution is slower compared to the star structure, but with
the advantage of lower susceptibility to be trapped in local minima. As a consequence, the local-best PSO
provides better performance in terms of the quality of solutions than the global-best PSO for multimodal
problems.

3. The Von Neumann structure is also a local topology, where the particles are connected in a grid structure as
illustrated in Figure B.3. It is important to note that the Von Neumann structure is a toroidal grid, because it

90

Part IV Appendix B

is connected circularly in both dimensions. It means that all particles has four neighbors. For example, the
neighbors of the particle 1 are the particles 2, 5, 4, and 13. Once again, the neighbors of the particle 15 are
the particles 16, 3, 14, and 11.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure B.3: Von Neumann structure.

1
2

3

4

5

6

7
8

9

10

11

12

Figure B.4: Four-clusters structure.

4. The clusters structure is also a local topology, where the structure is organized by clusters of particles as
illustrated in Figure B.4. The clusters are connected in ring, considering one particle in each cluster as a link
point. Within of each cluster, the particles can be connected in ring or in star.

In summary, the velocity of a particle and its position in local-best PSO with inertia weight are updated as

vτ+1
kd = wvτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(nτ
kd− xτ

kd) · r2 (B.16)

xτ+1
kd = xτ

kd + vτ+1
kd (B.17)

for all k, d, and τ ≥ 0. The velocity of a particle and its position in global-best PSO with inertia weight are updated
as

vτ+1
kd = wvτ

kd + c1(pτ
kd− xτ

kd) · r1 + c2(gτ
d− xτ

kd) · r2 (B.18)

xτ+1
kd = xτ

kd + vτ+1
kd (B.19)

for all k, d, and τ ≥ 0. The essential steps of PSO with inertia weight are summarized in Algorithm 13.

B.3 Particle swarm optimization with constriction factor
Clerc & Kennedy (2002) introduced a PSO with constriction factor. In this case, the velocity of a particle is updated
as follows:

vτ+1
kd =

{
χ[vτ

kd +ϕ1(pτ
kd− xτ

kd) · r1 +ϕ2(nτ
kd− xτ

kd) · r2] for the local-best model
χ[vτ

kd +ϕ1(pτ
kd− xτ

kd) · r1 +ϕ1(gτ
d− xτ

kd) · r2] for the global-best model (B.20)

for all k, d, and τ ≥ 0. The parameters ϕ1,ϕ2 are positive constants used to scale the contribution of the cognitive
and social components and r1,r2 are random numbers uniformly distributed in the range [0,1]. The parameter χ ,
called constriction factor, is given by

χ =
2

|2−ϕ−
√

ϕ2−4ϕ|
(B.21)

91

Part IV Appendix B

Algorithm 13 Particle swarm optimization with inertia weight for UOPs.
Input: D,K,N ,w,c1,c2, and f

1: {Local-best PSO}
2: τ ← 0
3: for k ∈ {1, . . . ,K} do
4: Initialize xk and set vk ≈ 0
5: pk← xk
6: end for
7: for k ∈ {1, . . . ,K} do
8: nk← BEST(pl : l ∈Nk)
9: end for

10: repeat
11: τ ← τ +1
12: for k ∈ {1, . . . ,K} do
13: for d ∈ {1, . . . ,D} do
14: Update vkd (Eq. (B.16))
15: Update xkd (Eq. (B.17))
16: end for
17: pk← BEST(xk,pk)
18: end for
19: for k ∈ {1, . . . ,K} do
20: nk← BEST(pl : l ∈Nk)
21: end for
22: until some termination condition is met
23: g← BEST(nk : k = 1, . . . ,K)
24: return x∗ = g and f ∗ = f (g).

Input: D,K,N ,w,c1,c2, and f
1: {Global-best PSO}
2: τ ← 0
3: for k ∈ {1, . . . ,K} do
4: Initialize xk and set vk ≈ 0
5: pk← xk
6: end for
7: g← BEST(pk : k = 1, . . . ,K)
8: repeat
9: τ ← τ +1

10: for k ∈ {1, . . . ,K} do
11: for d ∈ {1, . . . ,D} do
12: Update vkd (Eq. (B.18))
13: Update xkd (Eq. (B.19))
14: end for
15: pk← BEST(xk,pk)
16: end for
17: g← BEST(pk : k = 1, . . . ,K)
18: until some termination condition is met
19: return x∗ = g and f ∗ = f (g).

where ϕ = ϕ1 +ϕ2 > 4. The parameter ϕ is commonly adjusted to 4.1 (for example, if ϕ1 = ϕ2 = 2.05) and
χ = 0.7298 (Clerc & Kennedy, 2002).

Using vector notation, the velocity of a particle and its position in local-best model are updated as

vτ+1
k = χ [vτ

k +ϕ1(pτ
k −xτ

k)� r1 +ϕ2(nτ
k −xτ

k)� r2] (B.22)

xτ+1
k = xτ

k +vτ+1
k (B.23)

for all k and τ ≥ 0, where � represents the componentwise vector multiplication and r1,2 are vectors of random
numbers uniformly distributed in [0,1]. The velocity of a particle and its position in global-best model are updated
as

vτ+1
k = χ [vτ

k +ϕ1(pτ
k −xτ

k)� r1 +ϕ2(gτ −xτ
k)� r2] (B.24)

xτ+1
k = xτ

k +vτ+1
k (B.25)

for all k and τ ≥ 0. The PSO with constriction factor is currently known as standard PSO (Bratton & Kennedy,
2007) and it is algebraically equivalent to PSO with inertia weight, where

w = χ , c1 = χϕ1, and c2 = χϕ2. (B.26)

However, PSO with constriction factor is distinguished in literature due to its theoretical properties discussed in
details by Clerc & Kennedy (2002).

B.4 Fully informed particle swarm
Mendes, Kennedy & Neves (2004) developed a fully informed particle swarm (FIPS), where each particle is
influenced by all of its neighbors rather than just by the best one in its neighborhood. The FIPS algorithm was
further improved by Kennedy & Mendes (2006) and it can be considered a generalization of the standard PSO

92

Part IV Appendix B

(Bratton & Kennedy, 2007). While the standard PSO adds two terms to the velocity and divides the constant ϕ in
half to weight each one of them, FIPS distributes the weight of ϕ across the entire neighborhood. In this case, the
velocity and the position of a particle are updated as

vτ+1
k = χ

[
vk + ∑

l∈Nk

cl(pl−xk)� rl

|Nk|

]
(B.27)

xτ+1
k = xτ

k +vτ+1
k (B.28)

for all k and τ ≥ 0, where |Nk| is the number of neighbors of a particle and rl are vectors of random numbers
uniformly distributed in [0,1]. FIPS has been applied to solve multimodal optimization problems providing very
good results (Kennedy & Mendes, 2006). It is considered a powerful optimization algorithm with good capacity
to maintain the diversity among particles due to the strong social influence to update the velocity. Next section
presents a detailed discussion about convergence and parameter selection for the PSO with inertia weight.

B.5 Convergence analysis of the PSO algorithm
Theoretical analyses of the PSO algorithm have been offered in the literature. Some of these studies use results
of the theory of dynamical systems (Clerc & Kennedy, 2002; Trelea, 2003) and others use results of the theory of
stochastic processes (Jiang, Luo & Yang, 2007; Poli, 2009). It has been hard to find general results. Nevertheless,
some progress has been made by considering simplifying assumptions such as: swarm with a single particle in one
dimension, stagnation (i.e., when no improved solution is found and memories are kept constant), and deterministic
behaviour without randomness.

Clerc & Kennedy (2002) studied the behaviour of one particle in one dimension during stagnation (without
randomness). Under these conditions the swarm is described as a linear dynamical system in discrete time. The
dynamics of the state of the particle (position and velocity) can be determined by finding the eigenvalues and
eigenvectors of the dynamic matrix of the system. The proposed model predicts that the particle will converge
to equilibrium if the magnitude of the eigenvalues is smaller than 1. This study presented a model for the PSO
algorithm, containing a set of parameters to control the convergence of the system. Trelea (2003) developed,
under the same assumptions adopted by Clerc & Kennedy (2002), an dynamic analysis of a PSO model with
four-parameter. This study identified regions in the parameter space where the model exhibits different dynamic
behaviours such as: explosion, stability (or equilibrium point), non-oscillatory convergence, convergence with
harmonic oscillations, zigzagging convergence with harmonic oscillations, and zigzagging convergence.

Applying the approach used by Trelea (2003), a dynamic analysis is presented for the PSO with inertia weight.
For convenience, stagnation is initially assumed as a simplifying assumption, but subsequently this hypothesis will
be relaxed. During stagnation, each particle behaves independently, since each dimension is updated independently.
Thus, the behaviour of each particle can be analysed in isolation, considering one-particle swarm (K = 1) in one
dimension (D = 1). In this case, the PSO with inertia weight can be described as follows:

vτ+1 = wvτ + c1(p− xτ) · r1 + c2(g− xτ) · r2 (B.29)
xτ+1 = xτ + vτ+1. (B.30)

For convenience in notation, note that τ is being used as a subscript index rather than superscript as done in last
sections. The deterministic model of this PSO is obtained by setting

r1 = r2 =
1
2

c = c1 = c2 p̃x =
p+g

2
. (B.31)

Using this notation, the deterministic PSO can be expressed as:

vτ+1 = wvτ + c(p̃x− xτ) (B.32)
xτ+1 = xτ + vτ+1. (B.33)

Eqs. (B.32) and (B.33) can be combined and written in matrix form as

yτ+1 = Ayτ + p̃xC (B.34)

93

Part IV Appendix B

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

w

Figure B.5: The convergence domain in the (c,w)-parameter space.

where

yτ = (xτ ,vτ)
′ A =

(
1− c w
−c w

)
C =

(
c
c

)
. (B.35)

In this context, yτ is the particle state, A is the dynamic matrix whose properties determine the time behaviour of
the particle, p̃x is the external input used to drive the particle towards a specified position, and C is the input matrix
that gives the effect of the external input on the particle state.

Consider the deterministic PSO defined by Eq. (B.34). If y0 = yeq = (p̃x,0)′, then yτ = yeq = (p̃x,0)′ for
all τ > 0. The state yeq = (p̃x,0)′ is the equilibrium state of the particle. This result is intuitively reasonable. At
equilibrium, the particle must have zero velocity and must be positioned at the attraction point p̃x. In general, the
initial state of the particle is not the equilibrium. Therefore, it is important to determine whether the particle will
eventually reach the equilibrium and how the particle will move in the state space over time. The time behaviour
of the particle depends on the eigenvalues of the dynamic matrix A. The eigenvalues λ1 and λ2 of A (either real or
complex) are the solutions of the characteristic equation associated to A, derived as

λ
2− trace(A)λ +determinat(A) = λ

2− (1+w− c)λ +w = 0. (B.36)

The necessary and sufficient condition for the stability of the equilibrium state is that both eigenvalues of A have
magnitude less than 1. In this case, the equilibrium state will be an attractor, the particle will converge to its equi-
librium, and the deterministic PSO will converge. Result B.1 provides a set of conditions to ensure the convergence
of the particle in the deterministic PSO to its equilibrium state.

Result B.1 (Trelea (2003)). Consider the deterministic PSO defined by Eq. (B.34). For any initial state, the
particle will converge to its equilibrium state if and only if the parameters w and c are selected such that 0≤w < 1
and 0 < c < 2(1+w).

Figure B.5 shows the convergence domain in the (c,w)-parameter space. Two sets of parameters w and c are
frequently used by users of PSO: (i) w = 0.6 and c = 1.7 was recommended by Trelea (2003) and (ii) w = χ =

94

Part IV Appendix B

0 10 20 30 40 50

−
4

−
2

0
2

4

a

time

x

0 10 20 30 40 50
−

4
−

2
0

2
4

b

time

x
0 10 20 30 40 50

−
4

−
2

0
2

4

c

time

x

0 10 20 30 40 50

−
4

−
2

0
2

4

d

time

x

0 10 20 30 40 50

−
4

−
2

0
2

4

e

time

x

0 10 20 30 40 50
−

5e
+

11
0e

+
00

5e
+

11
1e

+
12

f

time

x

Figure B.6: (a) Non-oscillatory convergence (◦, c = 0.20, w = 0.10). (b) Convergence with harmonic oscillations
(4, c = 0.10, w = 0.90). (c) Fast zigzagging convergence with harmonic oscillations (♦, c = 1.70, w = 0.60). (d)
Slow zigzagging convergence with harmonic oscillations (×, c = 3.00, w = 0.90). (e) Zigzagging convergence (+,
c = 2.10, w = 0.10). (f) Explosion (5, c = 3.00, w = 0.20). See Figure B.5 to locate the point (c,w) according to
the symbols ◦,4,♦,×,+, and5.

0.7298 and c = 1.4961 (ϕ = 2c/χ = 4.1) was recommended by Clerc & Kennedy (2002). These points (c,w) are
shown in Figure B.5 using the symbols ♦ and • respectively.

Before convergence, the particle exhibits different dynamic behaviours. In fact, the convergence domain is
divided into areas, so that each area is associated with a different dynamic behaviour that can be classified as:
non-oscillatory convergence; convergence with harmonic oscillations; zigzagging convergence with harmonic os-
cillations; and zigzagging convergence. Outside of the convergence domain, the particle diverges and the explosion
effect is observed in deterministic PSO. Formally, the dynamic behaviour of the particle depends on whether the
eigenvalues of A are real or complex and each one of these cases can be easily summarized. Consider the deter-
ministic PSO defined by Eq. (B.34) and suppose that 0≤ w < 1 and 0 < c < 2(1+w). The dynamic behaviour of
the particle is described as follows:

1. If (1+w− c)2−4w > 0, then the eigenvalues of A are real and given by

λ1,2 =
(1+w− c)

2
±
√
(1+w− c)2−4w

2
. (B.37)

In addition, |λ1,2|< 1 and xτ =C1λ τ
1 +C2λ τ

2 + p̃x for all τ ≥ 0.

2. If (1+w− c)2−4w = 0, then the repeated eigenvalues of A are given by

λ = λ1 = λ2 =
(1+w− c)

2
. (B.38)

In addition, |λ |< 1 and xτ =C1λ τ +C2τλ τ + p̃x for all τ ≥ 0.

95

Part IV Appendix B

3. If (1+w− c)2−4w < 0, then the eigenvalues of A are complex and given by

λ1,2 =
(1+w− c)

2
± i

√
4w− (1+w− c)2

2
. (B.39)

In addition, |λ1,2|< 1 and xτ = wτ [C1 sinτθ +C2 cosτθ]+ p̃x for all τ ≥ 0, where

θ = arctan

(√
4w− (1+w− c)2

1+w− c

)
. (B.40)

For all these cases, the values of C1 and C2 for any given trajectory are obtained from the initial conditions x0 and
v0 of the particle. Finally, limτ→∞ xτ = p̃x for all cases discussed. In order to illustrate this result, simulations of
the dynamic behaviour of the particle for different parameter couples are shown in Figure B.6 (see also Figure B.5
to locate the point (c,w) according to the symbols ◦,4,♦,×,+, and 5.). All simulations were performed with
y0 = (x0 = 2,v0 = −0.1)′, p̃x = 0, and τmax = 50 iterations. It is important to note that the analysis presented so
far does not consider that r1 and r2 are random numbers. Instead, these variables were defined as 1/2. However,
simulation studies show that the presence of random numbers just enhances the zigzagging tendency and slows
down convergence, thus improving the state space exploration and preventing premature convergence to local
minima. Then, qualitatively the analysis presented remains valid.

A rigorous analysis of the PSO algorithm should be done considering that r1 and r2 are random numbers and,
consequently, xτ should be seen as a random variable whose distribution should be investigated in order to reveal
its functional form and its properties when τ → ∞. These problems are open problems in swarm computation.
However, some concrete steps have been taken in this direction. Applying the approach used by Poli (2009), a
set of coupled difference equations for the moments E(xτ),E(x2

τ), and E(xτ xτ−1) can be presented considering
r1,2 ∼Unif(0,1). To get this set of coupled equations, the first step is combine the Eqs. (B.29) and (B.30) to obtain
a difference equation for xτ as follows:

xτ+1 = (1+w− c1r1− c2r2)xτ −wxτ−1 + pc1r1 +gc2r2 = axτ −wxτ−1 +b (B.41)

where a = a(r1,r2) = (1+w− c1r1− c2r2) e b = b(r1,r2) = pc1r1 +gc2r2. Consequently, it follows that

x2
τ+1 = a2x2

τ +w2x2
τ−1 +2abxτ −2wbxτ−1−2waxτ xτ−1 +b2 (B.42)

and
xτ+1xτ = ax2

τ −wxτ xτ−1 +bxτ . (B.43)

Note that the stagnation assumption has been assumed again in the context where a swarm with a single particle
in one dimension is considered. When the expectation operator is applied to both sides of the Eqs (B.41), (B.42),
and (B.43), a set of coupled difference equations for E(xτ),E(x2

τ), and E(xτ xτ−1) are given by:

E(xτ+1) = E(a)E(xτ)−wE(xτ−1)+E(b) (B.44)
E(x2

τ+1) = E(a2)E(x2
τ)+w2E(x2

τ−1)+2E(ab)E(xτ)−2wE(b)E(xτ−1)−2wE(a)E(xτ xτ−1)+E(b2)(B.45)

E(xτ+1xτ) = −wE(xτ xτ−1)+E(a)E(x2
τ)+E(b)E(xτ) (B.46)

for all τ ≥ 1, where

E(a) = 1+w− c1/2− c2/2 (B.47)
E(a2) = (1+w)2− (1+w)(c1 + c2)+ c2

1/3+ c2
2/3+ c1c2/2 (B.48)

E(b) = c1 p/2+ c2g/2 (B.49)
E(b2) = c2

1 p2/3+ c2
2g2/3+ c1c2 pg/2 (B.50)

E(ab) = (1+w)c1 p/2+(1+w)c2g/2− c2
1 p/3− c2

2g/3− c1c2 p/4− c1c2g/4. (B.51)

These set of equations can be integrated numerically if values for

E(x0),E(x1),E(x2
0),E(x

2
1),E(x0x1) (B.52)

96

Part IV Appendix B

are known (initial conditions). In addition, the standard deviation of xτ is defined by

SD(xτ) =
√

Var(xτ) =
√

E(x2
τ)− (E(xτ))2 (B.53)

for all τ ≥ 0. Although the functional form of the distribution of xτ is unknown, at least the first and second
moments of xτ can be calculated by using these results.

The stability analysis based on the difference equation for E(xτ) is similar to stability analysis of the determin-
istic PSO defined by Eq. (B.34). The characteristic equation associated to difference equation for E(xτ) is given
by

λ
2− (1+w− c1/2− c2/2)λ +w = 0 (B.54)

which is equivalent to Eq. (B.36). According to Poli (2009), the PSO algorithm is order-1 stable if E(xτ) has a
stable fixed point and E(xτ) converges to this fixed point. In addition, the PSO algorithm is order-2 stable if E(xτ),
E(x2

τ), and E(xτ xτ−1) have stable fixed points and E(xτ), E(x2
τ), and E(xτ xτ−1) converge to these fixed points. As a

consequence, if PSO is order-2 stable, then it is ensured that the focus of the search volume reach the equilibrium
and the spread of the search volume does not expand without limit (swarm stability). Thus, the following results
can be presented.

Result B.2 (Jiang, Luo & Yang (2007); Poli (2009)). Consider the PSO with inertia weight and with a single
particle in one dimension, where r1,2 ∼Unif(0,1), and assume that c = c1 = c2. Under the stagnation assumption,
the following can be stated:

1. If E(x0) = p̃x = (p+g)/2, then E(xτ) = p̃x for all τ ≥ 1.

2. For any value of E(x0), limτ→∞ E(xτ) = p̃x if and only if 0≤ w < 1 and 0 < c < 2(1+w).

3. This PSO is order-1 stable if and only if 0≤ w < 1 and 0 < c < 2(1+w).

Result B.2 ensures that PSO with inertia weight is order-1 stable if the parameters of this algorithm are selected
appropriately. Analysing all fixed points of the set of coupled equations for E(xτ),E(x2

τ), and E(xτ xτ−1), it is also
possible to show that PSO with inertia weight is order-2 stable if the parameters are appropriately selected again.

Result B.3 (Jiang, Luo & Yang (2007); Poli (2009)). Consider the PSO with inertia weight and with a single
particle in one dimension, where r1,2 ∼Unif(0,1), and assume that c = c1 = c2. Under the stagnation assumption,
this PSO is order-2 stable if and only if 0≤ w < 1 and 0 < c < 12(w2−1)/(5w−7). In addition, the stable fixed
points of E(xτ), E(x2

τ), and SD(xτ) are respectively given by

lim
τ→∞

E(xτ) = p̃x =
p+g

2
(B.55)

lim
τ→∞

E(x2
τ) = p̃x2 =

[
1+

2(ν̃− µ̃2)

∆̃

]
p̃2−

[
4p(ν̃− µ̃2)

∆̃

]
p̃+
[

2p2(ν̃− µ̃2)

∆̃

]
(B.56)

lim
τ→∞

SD(xτ) = p̃sd =
1
2

√
2(ν̃− µ̃2)

∆̃
|p−g| (B.57)

where µ̃ = c/2, ν̃ = c3/3, and ∆̃ = [c2(5w−7)−12c(w2−1)]/[6(1+w)].

Note that, in general, (p̃x)
2 6= p̃x2 and p̃sd 6= 0. Consequently, the process xτ does not converge in mean square

to p̃x during stagnation. However, if p = g, then E(xτ) = g, E(x2
τ) = g2, and SD(xτ) = 0 for all τ . To complete

our analysis of convergence, the following situation should be considered: the values of pτ (pbest) and gτ (gbest)
are now constantly updated during the search process. This means that the stagnation assumption is relaxed. As a
consequence, the following results can be presented.

Result B.4 (Jiang, Luo & Yang (2007)). Consider the PSO with inertia weight and with a single particle in one
dimension, where r1,2 ∼ Unif(0,1). Assume that c = c1 = c2, 0 ≤ w < 1, and 0 < c < 12(w2− 1)/(5w− 7). If
gτ → g∗ and pτ → g∗ with probability 1, then the process xτ converges in mean square to g∗.

Result B.5 (Jiang, Luo & Yang (2007)). Consider the PSO with inertia weight and K particles in a D-dimensional
search space. Assume that 0 ≤ w < 1 and 0 < c1 + c2 < 24(w2− 1)/(5w− 7). If gτ

kd → g∗d and pτ
kd → g∗d with

probability 1, then xτ
kd converges in mean square to g∗d for all d = 1, . . . ,D and xτ

k converges in mean square to
g∗ = (g∗1, . . . ,g

∗
D). Finally, this conclusion applies to each particle, thus the swarm as a whole will converge to g∗

when τ tends to infinity.

97

Part IV Appendix B

A search process allowing changes in pτ
k for all k over time implies that the spatial extension of the search

volume decreases over time. In fact, Blackwell (2005) suggested that the maximum spatial extension of a swarm
along any axis decreases exponentially with time. It is important to emphasize that this section provides an analysis
to prove that the particles converge to a stable point. Note that there is no guarantee that the equilibrium point is a
high quality solution (for instance, a local minimum). Hence, there is no guarantee that PSO with inertia weight is
locally convergent. In fact, the study developed in this section is not a proof of convergence to a local minimum,
but only states that the swarm will reach an equilibrium point with high probability. A formal proof of convergence
to a local minimum is currently an open problem in swarm computation (a hard problem still unsolved).

B.6 Bare bones particle swarm optimization
Bare bones PSO (BBPSO) is a variant of the PSO algorithm originally introduced by Kennedy (2003). Compared to
PSO, it is simpler and has only two parameters to be tuned by users, namely: the swarm size and the neighborhood
system. BBPSO uses a probability distribution to update the position of a particle instead of adding a velocity in
the current position as is done in the standard PSO (Bratton & Kennedy, 2007). Global-best and local-best models
are possible such as in the PSO. The position of a particle is updated as

xτ+1
k = µµµ

τ+1
k +σσσ

τ+1
k � z (B.58)

for all k and τ ≥ 0, where

• µµµ
τ+1
k = 0.5 · (pτ

k +gτ) or µµµ
τ+1
k = 0.5 · (pτ

k +nτ
k)

• σσσ
τ+1
k = |pτ

k −gτ | or σσσ
τ+1
k = |pτ

k −nτ
k |

• z∼ N(0,I) = (N(0,1), iid. . .,N(0,1))′.

As already discussed pτ
k , nτ

k , and gτ are respectively the personal best, local best, and global best positions, and z
is a random variable which has multivariate normal distribution with mean vector 0 and covariance matrix I, such
as discussed in Chapter 3.

Result B.6. Consider the global-best BBPSO. The distribution of xτ
k is given by xτ

k ∼ N
(
µµµτ

k ,ΣΣΣ
τ
k
)

for all k and
τ > 0, where

E(xτ
k) = µµµ

τ
k =

1
2
· (pτ−1

k +gτ−1) and Cov(xτ
k) = ΣΣΣ

τ
k = diag(|pτ−1

k −gτ−1|). (B.59)

A similar result can be reported for the local-best model.

Result B.7. Consider the global-best BBPSO. Under the stagnation assumption, each particle behaves indepen-
dently, since each dimension is updated independently. Therefore

E(xτ
k) =

1
2
· (p+g) and Cov(xτ

k) = diag(|p−g|) (B.60)

for all k and τ > 0. As a consequence, this algorithm is order-2 stable. A similar result can be reported for the
local-best model.

The original idea of the BBPSO was inspired by a plot of the distribution of positions attained by a single
particle in the PSO under the influence of the personal and global best positions fixed in two constant values.
This plot is presented in Figure B.7, considering a PSO with inertia weight in two dimensions, p = (2,1)′, and
g = (1,3)′. Note that the empirical distribution resembles a bell curve, such as a normal density, but with heavier
tails than those of a normal distribution. Nevertheless, the original proposal of BBPSO considers the normal
density to sample new positions during the optimization process. On the other hand, the empirical distribution
seems actually centered midway between p and g, having the absolute difference between p and g as an important
parameter for scaling the amplitude of the trajectory of the particle.

Result B.8. Consider the global-best BBPSO. If the stagnation assumption is relaxed, gτ
k → g∗ with probability 1,

and pτ
k → g∗ with probability 1, then xτ

k converges in mean square to g∗ for all k. This conclusion applies to each
particle, thus the swarm as a whole will converge to g∗ when τ tends to infinity. A similar result can be reported
for the local-best model.

98

Part IV Appendix B

x1

D
en

si
ty

−5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

D
en

si
ty

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

iterations

x1

0 2000 4000 6000 8000 10000

−
30

−
20

−
10

0
10

20
30

iterations

x2

Figure B.7: Distribution of points sampled by a PSO with inertia weight constituted of a single particle in two
dimensions, and considering p = (2,1)′ and g = (1,3)′. Note that µµµ = 1

2 (p+g) = (3
2 ,2)

′ and σσσ = |p−g|= (1,2)′.

The search for solutions of an optimization problem using BBPSO is the result of a constructive cooperation
between particles applying explicit probabilistic models whose parameters are defined in terms of the information
associated with some promising candidate solutions, namely the values related with the positions pbest, lbest, and
gbest.

B.7 Bare bones particle swarm with heavy-tailed distributions
The design of algorithms in swarm and evolutionary computation has shown that to avoid the premature con-
vergence problem during an optimization process of multimodal functions, the algorithms must provide a proper
equilibrium between global search (exploration) and local search (exploitation) at any stage of the search. Several
strategies have been investigated, including the use of heavy-tailed distributions for sampling the search space of
the problem. It has been conjectured that heavy-tailed distributions can increase the chances of a particle (or in-
dividual in a population) to move away from a local optimum. The general idea is to allow exploration in regions
far away from the current position. Following this idea, two works in evolutionary computation using heavy-tailed
distributions can be highlighted, namely the study developed by Yao, Liu & Lin (1999) and also the study devel-
oped Lee & Yao (2004). Yao, Liu & Lin (1999) introduced a fast evolutionary programming (FEP) which uses
mutations based on the Cauchy distribution instead of mutations based on the Gaussian distribution, which is used

99

Part IV Appendix B

in the classical evolutionary programming (CEP). Experimental results show that FEP performs much better than
CEP for multimodal functions with many local minima, while it remains comparable in performance to CEP for
unimodal functions and multimodal functions with only a few local minima. This work report the fact that Cauchy
mutation performs better when the current search point is far away from the global minimum, while Gaussian
mutation is better at finding a local minimum in a good region. Lee & Yao (2004) introduced a evolutionary
programming (EP) with mutations based on the Lévy distribution. This distribution is symmetrical with respect
to zero and has two parameters α and γ , where γ is the scaling factor satisfying γ > 0 and α controls the shape
of the distribution satisfying 0 < α ≤ 2. Its density resembles a bell curve, such as a Gaussian density, but with
heavier tails (α can be used to control the heaviness of the tails). The Lévy distribution includes some models
as special cases: the Cauchy distribution when α = 1 and the normal distribution when α = 2. An algorithm for
generating Lévy random numbers was introduced in Mantegna (1994). The work developed by Lee & Yao (2004)
reports empirical evidences that the performance of the EP with Lévy mutation was better than that of the CEP for
multimodal functions with many local minima since that Lévy mutation is more general and flexible than Cauchy
and Gaussian mutations.

BBPSO has shown potential for solving optimization problems defined on continuous search spaces. However,
it suffers from the premature convergence problem when solving multimodal problems. In order to address this
drawback and improve the performance of the original algorithm, some strategies have been developed. New
variants of BBPSO have been proposed (Richer & Blackwell, 2006; Krohling & Mendel, 2009; Hsieh & Lee, 2010;
Blackwell, 2012; Liu, Ding & Wang, 2014; Campos, Krohling & Enriquez, 2014) and some of these variants are
discussed in Sections B.7 and B.8.

Richer & Blackwell (2006) investigated the effectiveness of using the Lévy distribution in BBPSO. Based on
a series of trials, this work reports that the Lévy BBPSO with α = 1.4 reproduces the behaviour of the standard
PSO (Bratton & Kennedy, 2007). These results support the conjecture that heavy-tailed distributions to update the
position of a particle provide an increase in its ability to move away from a local minimum, improving at the same
time the balance between exploration and exploitation.

Krohling & Mendel (2009) introduced a BBPSO with a particular jump strategy, when no improvement on
the value of the objective function is observed. This jump strategy was implemented based on the Gaussian or
Cauchy distributions. The algorithm was tested on a well-known suite of benchmark multimodal functions and
the results were compared with those obtained by the BBPSO algorithm. Simulation results have shown that the
BBPSO algorithm with jump strategy has performed well in all functions investigated. Krohling & Mendel (2009)
also pointed that the improved performance was due to a successful number of Gaussian or Cauchy jumps, with a
performance slightly better for the case of Cauchy jumps. This result is essentially compatible with the conjecture
that distributions with heavy tails increase the chances of a particle to escape from local minima, exploring the
search space without losing exploitation in promising regions.

Blackwell (2012) formulated the dynamic update rule of the PSO as a second-order stochastic difference equa-
tion. This formulation was used to derive general expressions for search focus, search spread, and swarm stability
at stagnation. The results were applied to three swarm algorithms: the standard PSO, PSO with discrete recombi-
nation, and BBPSO. Blackwell (2012) proposed a generalized BBPSO (GBBPSO) such that the search focus and
the search spread can each one be chosen from the global or local neighborhoods. The position of a particle is
updated as

xτ+1
k = µµµ

τ+1
k +αδδδ

τ+1
k � z (B.61)

for all k and τ ≥ 0, where α > 02 and

• µµµ
τ+1
k = BEST(pτ

l : l ∈Nk) or BEST(pτ
k : k = 1, . . . ,K)

• δδδ
τ+1
k = |pτ

k −nτ
k | or |pτ

k −gτ | or |pτ
k+1−pτ

k−1| (mod K)

• z∼ N(0,I) = (N(0,1), iid. . .,N(0,1))′.

The theoretical analysis, presented by Blackwell (2012), predicts a no-collapse condition when α > αc = 0.65.
Collapse is a swarm pathology, where the particles approach each other faster than the swarm as a whole approaches
a local minimum. As a result, the convergence toward a limit point becomes exponentially slow and the swarm
stagnates. Another important result is that the fastest rate of convergence of the GBBPSO occurs at the critical

2Note that in the GBBPSO algorithm, the parameter α has a conceptual meaning completely different from that the parameter α has in the
Lévy distribution.

100

Part IV Appendix B

value αc. Experimental results confirm that GBBPSO situated at the edge of collapse is comparable to the standard
PSO and PSO with discrete recombination. The main loop of GBBPSO is shown in Algorithm 14.

Algorithm 14 GBBPSO and GBBPSOwJ.
Input: α > 0

1: {GBBPSO}
2: loop
3: for k ∈ {1, . . . ,K} do
4: µµµk← BEST(pl : l ∈Nk)
5: δδδ k← |pk−nk|
6: for d ∈ {1, . . . ,D} do
7: z∼ N(0,1)
8: xkd ← µkd +αδkd · z
9: end for

10: pk← BEST(xk,pk)
11: end for
12: for k ∈ {1, . . . ,K} do
13: nk← BEST(pl : l ∈Nk)
14: end for
15: end loop

Input: α > 0 and 0≤ pJ < 1
1: {GBBPSOwJ}
2: loop
3: for k ∈ {1, . . . ,K} do
4: µµµk← BEST(pl : l ∈Nk)
5: δδδ k← |pk−nk|
6: for d ∈ {1, . . . ,D} do
7: r ∼ Unif(0,1)
8: if r < pJ then
9: xkd ∼ Unif(Ld ,Ud)

10: else
11: z∼ N(0,1)
12: xkd ← µkd +αδkd · z
13: end if
14: end for
15: pk← BEST(xk,pk)
16: end for
17: for k ∈ {1, . . . ,K} do
18: nk← BEST(pl : l ∈Nk)
19: end for
20: end loop

Additional results indicated that the performance of the proposed algorithm can be still further improved with
the use of an adaptive distribution with heavy tails. In fact, Blackwell (2012) also proposed a GBBPSO with
jumps (GBBPSOwJ) following a different strategy from that which was considered by Krohling & Mendel (2009).
GBBPSOwJ can be seen as the GBBPSO combined with a probabilistic jumping mechanism: a particle may jump
uniformly in any dimension with probability pJ . This strategy can be seen as a partial re-initialization (since, in
general, not every component undergoes a jump) or, alternatively, as a mechanism to fatten the tails of the normal
distribution that generates new positions in the search space, allowing search in areas where the tails of the normal
distribution are thin. This adaptive distribution allows exploration throughout the search volume at any stage of
the optimization. The main loop of GBBPSOwJ is shown in Algorithm 14.

Hsieh & Lee (2010) also introduced a modified BBPSO. Empirical studies, considering a well-known set of
test functions, have showed that the proposed algorithm is a competitive optimizer due to its good performance
and fast convergence rate. The BBPSO proposed by Hsieh & Lee (2010) shows some similar characteristics to
BBPSO proposed by Blackwell (2012), with the former having an additional parameter to focus the search.

B.8 Scale matrix adaptation bare bones particle swarm
Campos, Krohling & Enriquez (2014) recently introduced a BBPSO with scale matrix adaptation for solving
unconstrained optimization problems (SMABBPSO for short). In the SMABBPSO, the position of a particle
is selected from a multivariate t-distribution with a rule for adaptation of its scale matrix. The multivariate t-
distribution is used in its hierarchical form as a scale mixture of normal distributions (Andrews & Mallows, 1974;
Choy & Chan, 2008). The t-distribution has heavier tails than those of the normal distribution, which increases the
ability of the particles to escape from a local optimum. The proposed approach includes the normal distribution
as a particular case. A simple update rule was proposed to adapt the scale matrix associated with a particle,
such that the best position found by any particle in its neighborhood is sampled with maximum likelihood in the
next iteration. As a consequence, each particle selects new positions in the search space of the problem using an
adaptive distribution and considering its accumulated learning until the current iteration without discarding any
information so far. This approach uses an adaptive distribution with heavy tails in order to improve the balance
between exploration and exploitation during the optimization process.

101

Part IV Appendix B

B.8.1 Swarm structure and dynamic rule
The swarm structure of the SMABBPSO is equivalent to the structure of the canonical BBPSO. SMABBPSO has
a swarm P with K particles and a neighborhood system N defined by a local topology with |Nk| neighbors to each
particle. Each particle is characterized by a vector (xk,pk,nk,g)′. The position of a particle is updated by

xτ+1
k |λ = µµµ

τ+1
k +λ

−1/2
√

ΣΣΣ
τ+1
k z λ ∼ Ga

(
ν

2
,

ν

2

)
(ν > 0) (B.62)

for all k and τ ≥ 0, where

• µµµ
τ+1
k = nτ

k = BEST(pτ
l : l ∈Nk)

• ΣΣΣ
τ+1
k = (1−β)ΣΣΣτ

k +βnτ
knτ,′

k , with ΣΣΣ
0
k = I and 0≤ β ≤ 1

• z∼ N(0,I) = (N(0,1), iid. . .,N(0,1))′.

The following results can be presented to clarify the proposed approach and its implementation.

Result B.9. If the Eq. (B.62) is adopted to update the position of a particle, then xτ
k ∼ t(ν ,µµµτ

k ,ΣΣΣ
τ
k) for all k and

τ > 0, where
E(xτ

k) = µµµ
τ
k = nτ−1

k if ν > 1 (B.63)

and

Cov(xτ
k) =

(
ν

ν−2

)
ΣΣΣ

τ
k = (1−β)Cov(xτ−1

k)+β

(
ν

ν−2

)
nτ−1

k nτ−1,′
k if ν > 2. (B.64)

The normal-distributed SMABBPSO can be obtained when λ = 1 almost surely, or when ν → ∞. Therefore, the
parameter ν can be used to control the heaviness of the tails of the distribution of xτ

k .

Result B.10. For purposes of implementation, it is important to know that the Eq. (B.62) is equivalent to

xτ+1
k |λ = µµµ

τ+1
k +λ

−1/2Pτ+1
k

√
ΘΘΘ

τ+1
k z λ ∼ Ga

(
ν

2
,

ν

2

)
(ν > 0) (B.65)

for all k and τ ≥ 0, where Pτ+1
k is an orthogonal matrix whose columms are the eingenvectors of ΣΣΣ

τ+1
k and√

ΘΘΘ
τ+1
k = diag(θ 1/2

1 , . . . ,θ
1/2
D) (B.66)

where θ1, . . . ,θD are the eigenvalues associated. This result follows from the spectral decomposition of ΣΣΣ
τ+1
k (a

D×D symmetric positive definite matrix). In addition, it follows that SMABBPSO can be implemented simply
knowing how to simulate from univariate probability distributions.

When a swarm algorithm is used to solve an optimization problem, each particle in the swarm is subject to a
sequential learning process, where L τ

k = (n0
k ,n

1
k , . . . ,n

τ
k) represents the accumulated learning of a particle until

time τ (the iteration counter). If the neighborhood system chosen admits that the particle itself belongs to its
neighborhood (i.e. k ∈Nk for all k), then L τ

k does not exclude personal information, since ns
k can eventually be

equal to ps
k for some s ≤ τ . In addition, ns

k � ps
l for all s ≤ τ and l ∈Nk. Considering these facts, the following

result can be presented.

Result B.11. For the SMABBPSO, the scale matrix of a particle at time τ +1 uses its accumulated learning until
τ , without discarding any information so far. This means that

ΣΣΣ
τ+1
k = (1−β)τ+1I+β

τ

∑
s=0

(1−β)τ−sns
kns,′

k (B.67)

for all k and τ ≥ 0. In addition,

xτ+1
k |λ = nτ

k +

[
(1−β)τ+1

λ

]1/2

I+
(

β

λ

)1/2 τ

∑
s=0

(1−β)(τ−s)/2ns
kzs λ ∼ Ga

(
ν

2
,

ν

2

)
(ν > 0) (B.68)

for all k, τ ≥ 0, and z0, . . . ,zτ

iid∼ N(0,1). This result implies that each particle selects new positions in the search
space using an adaptive distribution with heavy tails and considering its accumulated learning until the current
iteration. The value of β determines the influence of the accumulated learning on the new position. This influence
is strong when β is near to 0 and weak when β is near to 1, with no influence when β = 1.

102

Part IV Appendix B

Result B.12. Under the stagnation assumption and ν > 2, it follows that

E(xτ
k) = n and lim

τ→∞
Cov(xτ

k) =

(
ν

ν−2

)
β (2−β)nn′ (B.69)

for all k. In addition, SMABBPSO is order-2 stable, if ν > 2 and β → 1 when τ → ∞. Note that [ν/(ν−2)]nn′ is
a fixed point for Cov(xτ

k). The pseudo code of SMABBPSO for UOPs is presented in Algorithm 15.

Algorithm 15 SMABBPSO for UOPs.
Input: D,K,N ,ν ,β , and f

1: τ ← 0
2: for k ∈ {1, . . . ,K} do
3: Initialize xk and set ΣΣΣk = I (the identity matrix)
4: pk← xk
5: end for
6: for k ∈ {1, . . . ,K} do
7: nk← BEST(pl : l ∈Nk)
8: end for
9: repeat

10: τ ← τ +1
11: for k ∈ {1, . . . ,K} do
12: λ ∼ Ga(ν

2 ,
ν

2)

13: z∼ (N(0,1), iid. . .,N(0,1))′

14: µµµk← nk
15: ΣΣΣk← (1−β)ΣΣΣk +βnkn′k
16: xk← µµµk +λ−1/2√ΣΣΣkz
17: pk← BEST(xk,pk)
18: end for
19: for k ∈ {1, . . . ,K} do
20: nk← BEST(pl : l ∈Nk)
21: end for
22: until some termination condition is met
23: g← BEST(nk : k = 1, . . . ,K)
24: return x∗ = g and f ∗ = f (g).

B.8.2 Experimental setup
An experimental analysis was conducted to investigate empirically the performance of the SMABBPSO to solve
UOPs. A suite of 15 benchmark problems was used in this experimental study. These problems along with their
references are shown in Table B.1. According to their properties, these problems are divided into two classes:
f01−04 are unimodal problems and f05−15 are multimodal problems with many local minima. These functions have
been widely used in many works. Yao, Liu & Lin (1999); Liang et al. (2006); Suganthan et al. (2005), and Wang
et al. (2013) provide a detailed description of each problem. All benchmark functions used in the experiments are
to be minimized over a search space D-dimensional with D = 30.

For purposes of comparison, 9 algorithms were considered in this experimental study. These algorithms along
with their parameters settings are listed as follows:

1. SMABBPSO(K,D,N ,ν ,β) where K = 30,D = 30,ν = 1.0, and N defined by a ring topology with |Nk|=
3 for all k. Table B.2 shows the value of β for each benchmark function.

2. Clerc & Kennedy (2002): PSO(K,D,N ,ϕ1,ϕ2) where K = 30,D = 30,ϕ1 = ϕ2 = 2.05, and N such as in
SMABBPSO.

3. Kennedy (2003): BBPSO(K,D,N) where K = 30,D = 30, and N such as in SMABBPSO.

103

Part IV Appendix B

Table B.1: Benchmark problems used in the experiments.
f Problem References

f01 Sphere function Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f02 Schwefel’s problem 1.2 Yao, Liu & Lin (1999); Wang et al. (2013)
f03 Rosenbrock’s function Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f04 Schwefel’s problem 2.22 Yao, Liu & Lin (1999); Wang et al. (2013)
f05 Schwefel’s problem 2.26 Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f06 Rastrigin’s function Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f07 Ackley’s function Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f08 Griewank’s function Yao, Liu & Lin (1999); Liang et al. (2006); Wang et al. (2013)
f09 Weierstrass’ function Liang et al. (2006)
f10 Rotated Rastrigin’s function Liang et al. (2006)
f11 Rotated Ackley’s function Liang et al. (2006)
f12 Rotated Griewank’s function Liang et al. (2006)
f13 Rotated Weierstrass’ function Liang et al. (2006)
f14 Shifted Rastrigin’s function Suganthan et al. (2005)
f15 Shifted rotated Griewank’s function Suganthan et al. (2005)

Table B.2: Values of β used by SMABBPSO for each benchmark function.
f f14, f15 f03, f05, f06, f08, f09, f10, f12, f13 f07, f11 f02, f04 f01
β 0.01 0.05 0.10 0.20 0.30

4. Blackwell (2012): BBPSOwJ(K,D,N ,α, pJ) where K = 30,D = 30,α = 0.7, pJ = 0.01, and N such as in
SMABBPSO.

5. Mendes, Kennedy & Neves (2004); Kennedy & Mendes (2006): FIPS(K,D,N ,ϕ) where K = 30,D =
30,ϕ = 4.1, and N such as in SMABBPSO.

6. Liang et al. (2006): Comprehensive learning PSO (CLPSO).

7. Richer & Blackwell (2006): Lévy BBPSO(K,D,N ,α) where K = 30,D = 30,α = 1.4, and N such as in
SMABBPSO.

8. Beyer & Schwefel (2002): ES(µ/ρ ,λ) where µ = 30,ρ = 7, λ = ρµ , τ0 = (
√

2D)−1, and τ = (
√

2
√

D)−1.

9. Beyer & Finck (2012): CMSAES(µ/ρ ,λ) where µ,ρ , λ , and τ0 such as in ES, and τc = 1+D(D+1)/(2µ).

B.8.3 Results
A set of experiments was carried out to compare empirically 9 algorithms (including SMABBPSO) on 15 bench-
mark problems. In each experiment, a pair problem/algorithm was considered and a sequence of empirical errors
was obtained from 30 independent runs of 1500 iterations, where in each run the algorithm was applied to solve
the problem. The empirical error is defined by

Error = | f (x∗)− f (x̄)| (B.70)

where f is the benchmark function, x∗ is the best solution obtained by the algorithm into a particular run, and x̄
is the global minimum of f . Summary statistics were calculated to each sequence of empirical errors. In each
experiment, a nonuniform and asymmetric initialization that does not contain the global minimum was used.

Table B.3 shows the mean and the standard deviation of the errors obtained by each algorithm on 15 benchmark
problems. The best result for each problem is shown in boldface. It is important to observe that for the specific
case of the CLPSO algorithm, the mean and the standard deviation presented in Table B.3 are those available
in the original paper (Liang et al., 2006), where the algorithm was proposed. All the other results in Table B.3
were derived from computational simulations, considering the benchmark functions listed in Table B.1 and the
experimental setup described for each algorithm.

104

PartIV
A

ppendix
B

Table B.3: Comparisons between SMABBPSO, PSO, BBPSO, BBPSOwJ, FIPS, CLPSO, Lévy BBPSO, ES, and CMAES
- Error mean (standard deviation)

Problem PSO BBPSO BBPSOwJ FIPS SMABBPSO
f01 1.13e-10 (7.94e-11) 1.58e-06 (1.75e-06) 4.34e-03 (2.37e-02) 1.03e-04 (6.95e-05) 2.42e-154 (2.71e-154)
f02 1.41e+03 (7.93e+02) 5.11e+03 (1.90e+03) 2.14e+03 (2.62e+03) 1.44e+03 (1.32e+03) 5.24e-153 (5.13e-153)
f03 5.26e+01 (4.20e+01) 9.47e+01 (8.55e+01) 6.50e+01 (4.22e+01) 4.29e+01 (4.01e+01) 2.87e+01 (1.37e-02)
f04 4.04e-04 (1.33e-04) 9.67e-04 (4.44e-04) 4.25e-03 (8.31e-03) 2.67e-04 (1.08e-04) 2.32e-84 (2.17e-84)
f05 3.19e+03 (1.18e+02) 2.51e+03 (2.88e+02) 3.81e+01 (5.79e+01) 3.36e+03 (2.48e+02) 1.61e+02 (4.14e+01)
f06 8.36e+01 (1.98e+01) 8.28e+01 (1.83e+01) 1.11e+01 (3.45e+00) 7.78e+01 (1.63e+01) 0.00e+00 (0.00e+00)
f07 1.90e+01 (3.59e+00) 5.08e-01 (8.70e-01) 1.54e-01 (3.55e-01) 6.86e-01 (1.04e+00) 2.22e-15 (1.81e-15)
f08 2.10e-03 (4.16e-03) 5.23e-03 (7.96e-03) 3.05e-02 (2.84e-02) 5.53e-02 (8.15e-02) 0.00e+00 (0.00e+00)
f09 3.19e-03 (4.95e-04) 5.23e-03 (3.18e-03) 5.21e-01 (1.22e-01) 8.01e-02 (7.05e-02) 4.80e-12 (2.39e-12)
f10 1.60e+02 (4.31e+01) 1.88e+02 (3.44e+01) 1.61e+02 (3.71e+01) 1.10e+02 (4.61e+01) 0.00e+00 (0.00e+00)
f11 4.24e+00 (6.99e+00) 1.91e+00 (4.86e-01) 4.15e+00 (9.56e-01) 1.64e+00 (8.12e-01) 1.98e-15 (1.79e-15)
f12 4.20e-03 (6.84e-03) 5.69e-03 (7.01e-03) 1.97e-02 (1.88e-02) 6.99e-02 (9.03e-02) 0.00e+00 (0.00e+00)
f13 2.30e+01 (1.48e+00) 2.61e+01 (1.88e+00) 2.86e+01 (2.34e+00) 1.79e+01 (2.97e+00) 7.28e-12 (2.16e-12)
f14 6.70e+01 (1.54e+01) 6.11e+01 (1.45e+01) 1.02e+01 (2.86e+00) 1.26e+02 (3.19e+01) 4.64e+01 (1.31e+01)
f15 3.21e-02 (1.06e-01) 6.62e-03 (5.20e-03) 1.69e-02 (1.94e-02) 1.15e-01 (1.00e-01) 5.19e-03 (7.63e-03)

W/L/T 15/0/0 15/0/0 13/2/0 15/0/0 -
Problem Lévy BBPSO CLPSO ES CMAES SMABBPSO

f01 2.23e-10 (4.59e-10) 4.46e-14 (1.73e-14) 2.49e-104 (7.62e-104) 6.15e-156 (7.33e-156) 2.42e-154 (2.71e-154)
f02 1.04e+00 (7.75e-01) Not available 1.62e+03 (5.12e+02) 5.13e-147 (1.16e-146) 5.24e-153 (5.13e-153)
f03 6.01e+02 (2.29e+02) 2.10e+01 (2.98e+00) 1.98e+01 (9.76e+00) 9.59e+00 (1.26e+00) 2.87e+01 (1.37e-02)
f04 5.98e-02 (2.58e-02) Not available 3.88e+00 (2.87e+00) 7.68e-70 (2.94e-70) 2.32e-84 (2.17e-84)
f05 1.46e+03 (1.78e+02) 0.00e+00 (8.79e-13) 8.87e+03 (3.28e+02) 1.03e+04 (4.21e+02) 1.61e+02 (4.14e+01)
f06 3.19e+01 (7.71e+00) 4.85e-10 (3.63e-10) 3.64e+01 (7.96e+00) 9.37e+00 (2.19e+00) 0.00e+00 (0.00e+00)
f07 1.27e+00 (5.43e-01) 0.00e+00 (0.00e+00) 4.00e-15 (0.00e+00) 4.00e-15 (0.00e+00) 2.22e-15 (1.81e-15)
f08 6.12e-01 (1.72e-01) 3.14e-10 (4.64e-10) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)
f09 4.93e-01 (1.01e-01) 3.45e-07 (1.94e-07) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00) 4.80e-12 (2.39e-12)
f10 1.80e+02 (1.05e+01) 3.46e+01 (4.59e+00) 9.63e+01 (1.96e+01) 8.16e+00 (2.34e+00) 0.00e+00 (0.00e+00)
f11 3.10e+00 (4.73e-01) 3.43e-04 (1.91e-04) 4.00e-15 (0.00e+00) 4.00e-15 (0.00e+00) 1.98e-15 (1.79e-15)
f12 6.57e-01 (1.33e-01) 7.04e-10 (1.25e-11) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)
f13 1.95e+01 (3.17e+00) 3.07e+00 (1.61e+00) 1.27e-01 (3.46e-01) 6.86e-04 (1.90e-03) 7.28e-12 (2.16e-12)
f14 3.82e+01 (6.18e+00) Not available 1.21e+02 (2.34e+01) 2.04e+01 (5.53e+00) 4.64e+01 (1.31e+01)
f15 7.63e-01 (1.35e-01) Not available 1.06e+00 (5.74e+00) 4.93e-04 (1.88e-03) 5.19e-03 (7.63e-03)

W/L/T 14/1/0 8/3/0 11/2/2 8/5/2 -

105

Part IV Appendix B

A single-problem analysis was developed considering the sequence of results obtained from all runs of an
algorithm as an optimizer for a given problem. The results of this analysis are summarized in Table B.4.

Table B.4: Wilcoxon signed-ranks test for pairwise comparisons of algorithms on each benchmark function
Comparison: SMABBPSO versus

Problem PSO BBPSO BBPSOwJ FIPS Lévy BBPSO ES CMSAES
f01 + + + + + + −
f02 + + + + + + +
f03 + + + = + − −
f04 + + + + + + +
f05 + + − + + + +
f06 + + + + + + +
f07 + + + + + + +
f08 + + + + + = =
f09 + + + + + − −
f10 + + + + + + +
f11 + + + + + + +
f12 + + + + + = =
f13 + + + + + + +
f14 + + − + − + −
f15 + = + + + + −

(+): means that SMABBPSO is significantly better than its competitor algorithm.
(=): means that SMABBPSO does not differ significantly from its competitor algorithm.
(−): means that the competitor algorithm is significantly better than SMABBPSO.

The Wilcoxon signed-rank test (Demsar, 2006; Derrac et al., 2011) was used for pairwise comparisons of
algorithms when both are applied to optimize a benchmark function. It was tested whether the results obtained
by SMABBPSO are statistically different from those obtained by its competitor algorithm on each benchmark
function. The symbol (+) denotes that SMABBPSO is significantly better than its competitor algorithm. The
symbol (=) denotes that SMABBPSO does not differ significantly from its competitor algorithm. Finally, the
symbol (−) denotes that the competitor algorithm is significantly better than SMABBPSO, which means that the
mean error of the SMABBPSO is greater than the mean error of its competitor. In all comparisons, a level of
significance of 5% was considered.

A quick and easy test to compare the performance of two algorithms in a multi-problem analysis is to count
the number of cases on which an algorithm is the winner. If two algorithms are equivalent (as assumed under the
null hypotheses), then it is hoped that each algorithm wins on approximately N/2 out of N problems investigated.
Since tied matches support the null hypothesis, they should not be discounted when applying this test, but equally
divided between the two algorithms. If there is an odd number of tied matches, one of them should be ignored.
This procedure is known as the Sign test (Demsar, 2006; Derrac et al., 2011). The Sign test can provide a first
snapshot about the pairwise comparisons of algorithms on the set of benchmark problems.

Comparisons between SMABBPSO and its competitors are summarized in Table B.3 as W/L/T counts, which
means that SMABBPSO wins in W problems, loses in L problems, and ties in T problems. In our experimental
framework, the critical value for the two-tailed sign test (with a significance level of 5%) for paired comparisons of
algorithms is 12, since 15 benchmark problems were used. This means that an algorithm is significantly better than
another if it performs better on at least 12 out of 15 problems. Our experimental results show that SMABBPSO
is significantly better than PSO, BBPSO, BBPSOwJ, FIPS, Lévy BBPSO, and ES with a level of significance
of 5%. However, based on the Sign test, there is no experimental evidence to assert that SMABBPSO presents
a statistically significant improvement compared to CMSAES, that is, there is no significant difference between
these algorithms.

106

PartIV
A

ppendix
B

0 500 1000 1500

−
10

0
−

60
−

20

f01

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

2
4

6
8

f03

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

1.
0

2.
0

3.
0

4.
0

f05

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

−
15

−
10

−
5

0

f06

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

−
15

−
10

−
5

0

f07

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

−
15

−
5

0

f08

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

−
10

−
5

0

f11

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

−
15

−
5

0

f12

Iteration

lo
g(

E
rr

or
)

0 500 1000 1500

1.
5

2.
5

3.
5

4.
5

f14

Iteration

lo
g(

E
rr

or
)

Figure B.8: Convergence plots for SMA-BBPSO (solid line), PSO (dashed line), BBPSO (dotted line), BBPSOwJ (dot-dash line), FIPS (long-dash line), and Lévy
BBPSO (two-dash line) over nine benchmark functions.

107

Part IV Appendix B

Once again, a multi-problem analysis was developed using the Wilcoxon signed-rank test for pairwise compar-
isons of algorithms on the set of benchmark problems. The results of this analysis are summarized in Table B.5.

Table B.5: Wilcoxon signed-ranks test for pairwise comparisons of algorithms on the set of benchmark functions
Comparison p-value Conclusion
SMABBPSO × PSO 6.104E-06 SMABBPSO shows a significant improvement over PSO
SMABBPSO × BBPSO 6.104E-06 SMABBPSO shows a significant improvement over BBPSO
SMABBPSO × BBPSOwJ 0.04126 SMABBPSO shows a significant improvement over BBPSOwJ
SMABBPSO × FIPS 6.104E-06 SMABBPSO shows a significant improvement over FIPS
SMABBPSO × LBBPSO 0.002625 SMABBPSO shows a significant improvement over LBBPSO
SMABBPSO × ES 0.01709 SMABBPSO shows a significant improvement over ES
SMABBPSO × CMSAES 0.6355 there is no significant difference

The results of the Wilcoxon signed-rank test are in agreement with the results of the Sign test previously
obtained. SMABBPSO shows a significant improvement over PSO, BBPSO, BBPSOwJ, FIPS, Lévy BBPSO, and
ES with a level of significance of 5%. However, based on the Wilcoxon signed-rank test, there is no significant
difference between SMABBPSO and CMSAES.

Fig. B.8 shows convergence plots for SMABBPSO, PSO, BBPSO, BBPSOwJ, FIPS, and Lévy BBPSO over
nine benchmark functions: f01, f03, f05, f06, f07, f08, f11, f12, and f14.

B.8.4 Discussion
A variant of the BBPSO was introduced and named as BBPSO with scale matrix adaptation (SMABBPSO). A
theoretical analysis was presented to explain how the SMABBPSO works, emphasizing the differences between
the proposed approach and those of other swarm algorithms. Each particle in SMABBPSO selects new positions
in the search space using an adaptive distribution with heavy tails and considering its accumulated learning until
the current iteration. This strategy induces exploration and exploitation at any stage of the search process.

Experimental results obtained from an empirical study revealed the suitability of the proposed approach in
terms of effectiveness to find good solutions for all benchmark problems investigated. Non-parametric statistical
tests for pairwise comparisons of algorithms on a set of benchmark functions indicated that SMABBPSO shows a
statistically significant improvement compared with other swarm algorithms.

SMABBPSO is very flexible, allowing the inclusion of other distributions with heavy tails besides the t-
distribution. From a suitable choice of the mixing density, a rich class of continuous, symmetric and unimodal
distributions can be described. Furthermore, the particular case of the normal distribution can be recovered when
λ = 1 almost surely or when ν→∞ if the mixing density is given by Ga(ν

2 ,
ν

2). Finally, several constraint-handling
strategies can be combined with SMABBPSO for solving constrained optimization problems, with many potential
applications in science and engineering.

B.9 Convergence analysis of the SMABBPSO algorithm
Result B.13. Assume that the Eq.(B.67) is rewritten as

ΣΣΣ
τ+1
k = (1−β)τ+1I+β

τ−1

∑
s=0

(1−β)τ−sns
kns,′

k +ηnτ
knτ,′

k (B.71)

for all k and τ ≥ 0. When τ→∞, if gτ
k → g∗ and nτ

k → g∗ with probability 1, β → 1, and η→ 0, then xτ
k converges

in mean square to g∗ for all k. Thus, the swarm as a whole will converge to g∗ when τ → ∞.

In order to empirically illustrate the Result B.13, simulations of the behaviour of a single particle in the
SMABBPSO are shown in Fig. B.9. Selected samples from the distribution of xτ are presented for τ ≥ 0, con-
sidering ν = 2.1, β → 1, η → 0, and n0 = (8,9)′, n1 = (6,−3)′, n2 = (−2,4)′, n3 = (−1,3/2)′, n4 = (−2,3)′,
n5 = (−1,−2)′, n6 = (−5/2,−3)′, n7 = (−3,−5/2)′, and n8 = (−3,−3)′ (with nτ+1 ≺ nτ). Note that the focus
of the search volume reaches the best solution (−3,−3)′ and the spread of the search volume does not expand
without limit. Instead, the distribution of xτ converges to a degenerated distribution on (−3,−3)′.

108

Part IV Appendix B

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 0

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 1

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 2

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 3

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 4

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 5

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 6

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 7

x1

x2

−20 −10 0 10 20

−
20

−
10

0
10

20

τ = 8

x1

x2

Figure B.9: Focus and spread of the search volume of a single particle in the SMABBPSO when τ increases.

109

Appendix C

Constraint Handling Methods in Swarm
Computation

Particle swarm optimization (PSO) was originally proposed for unconstrained optimization problems (UOPs).
However, many problems in science and engineering are described as optimization problems involving constraints,
which the optimal solution of the problem must satisfy. This appendix provides a survey on constraint handling
methods that have been adopted over the years to deal with constrained search spaces. Special attention is given
on how these methods can be incorporated in the PSO for solving constrained optimization problems (COPs).

C.1 The penalty function method
Consider a COP such as defined in Eq. (1.3). In trying to solve this problem, the penalty function method has
been the most standard approach because of its simplicity of implementation. This method converts a constrained
problem in an unconstrained problem (or in a sequence of unconstrained problems). The constraints are placed into
the objective function via a penalty function in a way that it penalizes any violation of the constraints. A suitable
penalty function is usually of the form

p(x;β1,β2) =
I

∑
i=1

[max{0,gi(x)}]β1 +
J

∑
j=1
|h j(x)|β2 (C.1)

where β1 and β2 are normally 1 or 2 and the function

φ(x) = f (x)+Cp(x;β1,β2) (C.2)

is called of penalized objective function, where C > 0 is the penalty parameter. The purpose of this parameter is to
make the penalty p(x;β1,β2) of x of the same order of magnitude of its objective function value f (x). A penalty
function associates a positive penalty for infeasible solutions (i.e., x ∈ S−F) and no penalty for feasible solutions
(i.e., x∈ F). This method can deal with inequality and equality constraints, but a common approach is to transform
equality constraints in inequality constraints as follows:

g j(x) = |h j(x)|−δ ≤ 0 j = 1, . . . ,J (C.3)

where δ is a tolerance allowed (δ = 10−4 or 10−5). This approach increases the number of inequality constraints
to M = I + J constraints and it establishes that the penalized objective function is written as

φ(x) = f (x)+Cp(x;β) = f (x)+C
M

∑
m=1

υ
β
m(x) (C.4)

where

υm(x) =
{

max{0,gm(x)} m = 1, . . . , I
max{0, |hm(x)|−δ} m = I +1, . . . ,M = I + J. (C.5)

110

Part IV Appendix C

The penalty function method is a generic approach that can be applied to any COP. The most difficult aspect of
this method is to find an appropriate penalty parameter needed to guide the search towards the constrained global
optimum. Result C.1 justifies the use of the method to solve COPs.

Result C.1. Consider a COP such as defined in Eq. (1.3). Suppose that the original constrained problem has an
optimal solution and let p(x;β) be a continuous penalty function (p ∈ C0). Furthermore, suppose that for each
C > 0 there exists a solution x̄C to the problem

minimize φ(x) = f (x)+Cp(x;β) subject to x ∈ S (C.6)

and suppose that the sequence (x̄C)C>0 is contained in a compact subset of the search space. Then,

lim
C→∞

φ(x̄C) = inf{ f (x) : g(x)≤ 0,h(x) = 0,x ∈ S}. (C.7)

Furthermore, the limit of any convergent subsequence of (x̄C)C>0 is an optimal solution to the original constrained
problem and Cp(x̄C;β)→ 0 as C→ ∞.

Algorithm 16 The penalty function method for COPs.
Input: f ,β ,c > 1,ε > 0, and τmax

1: τ ← 0
2: Choose an initial point x0 and a penalty parameter C > 0
3: x∗← x0 and φ ∗← φ(x0)
4: p∗← p(x0;β)
5: repeat
6: τ ← τ +1
7: C← c ·C
8: Given x0 and C, find x̂ = argminx φ(x;β ,C) subject to x ∈ S
9: x0← x̂ and φx̂← φ(x̂)

10: if φx̂ < φ ∗ then
11: x∗← x̂ and φ ∗← φx̂
12: p∗← p(x̂;β)
13: end if
14: until C · p∗ < ε or τ = τmax
15: return x∗ and φ ∗.

Result C.1 informs that the optimal solution to the penalized objective function can be made arbitrarily close
to the optimal solution of the original constrained problem by choosing C sufficiently large. However, if a very
large C is selected and directly applied to solve the penalized problem, some computational difficulties may be
encountered. When a large C is used, more emphasis is placed on feasibility and the procedure used to solve
the penalized problem could quickly move toward a feasible solution, even being a feasible solution far from of
the optimal solution, resulting in premature convergence. Due to this difficulty, a common approach is to use a
sequence of increasing values for the penalty parameter as shown in Algorithm 16.

The performance of the penalty function method is not always satisfactory. Consequently, researchers have
developed new strategies and some of these approaches are discussed in the following subsections. For all these
approaches, assume that the total number of inequality constraints is M = I + J, including transformed equality
constraints in inequality constraints. Finally, note that swarm algorithms can be used to solve COPs transformed
into UOPs by using the penalty function method and all penalty approaches discussed here can be easily combined
with these algorithms.

C.1.1 Static penalty
Homaifar, Lai & Qi (1994) proposed an approach that uses different penalty parameters for different levels of
violation of each constraint. The penalized objective function is written as

φ(x) = f (x)+
M

∑
m=1

Clm[max{0,gm(x)}]β l = 1, . . . ,L (C.8)

111

Part IV Appendix C

where l denotes one of the L levels of violation defined for the mth constraint. At least in principle, this approach
allows greater control of the penalization process by allowing to define a set of penalty parameters for each con-
straint of the problem. The main drawback of this approach is the high number of parameters required to be
hand-tuned by the user. In fact, it requires (2L−1)M parameters since

Clm =


C1m if υ

β
m(x) ∈ (0,V2m)

C2m if υ
β
m(x) ∈ [V2m,V3m)

...
CLm if υ

β
m(x) ∈ [VLm,∞)

(C.9)

where the Vlm values are user-defined constraint thresholds.
Hoffmeister & Sprave (1996) proposed another static method with the following penalized objective function:

φ(x) = f (x)+

√
M

∑
m=1

H(gm(x))(gm(x))2 =

{
f (x) if x is feasible
f (x)+ |gm(x)| otherwise (C.10)

where H : R→ R is the Heaviside function defined as

H(y) =
{

1 if y > 0
0 if y≤ 0. (C.11)

The weakness of this method is that it is based on the assumption that infeasible solutions will always be evaluated
worse than feasible ones, and this is not always the case.

Morales & Quezada (1998) proposed a static penalty method with the following penalized objective function:

φ(x) =

{
f (x) if x is feasible

K
(

1− ū(x)
M

)
otherwise (C.12)

where K is a large constant (K ≈ 109), M is the total number of constraints, and ū(x) = |{m : gm(x) ≤ 0}| is the
number of constraints that are satisfied by x. The user-defined constant K needs to be large enough to guarantee
that φ(x) ≤ φ(y) for all x ∈ F and y 6∈ F. The main drawback of this method is related with the fact that when
a solution is infeasible, its penalized objective function value is not computed and all solutions that violate the
same number of constraints receive the same penalty regardless of how close these solutions are from the feasible
region. This characteristic may reduce the swarm diversity, which seriously limits the application of this method
combined with PSO to solve COPs, especially in highly constrained search space.

C.1.2 Dynamic penalty
These methods use penalty parameters which depend of the iteration counter in such a way that the parameters
increase during the optimization process. Joines & Houck (1994) proposed a dynamic penalty method in which
the penalty parameter varies during the search according to a pre-defined schedule. In this case, the penalty
parameter increases with the iteration counter τ , i.e. C(τ) = kτ (for k > 0), and the penalized objective function is
written as

φ(x) = f (x)+(kτ)α
M

∑
m=1

[max{0,gm(x)}]β (C.13)

where k, α , and β are constant defined by the user (the authors used k = 0.5, α = 1 or 2, and β = 1 or 2). Joines
& Houck (1994) also experimented the following penalized objective function:

φ(x) = f (x)+ exp

{
(kτ)α

M

∑
m=1

[max{0,gm(x)}]β
}

(C.14)

with k = 0.05 and α = β = 1. The quality of the solution found by this method was very sensitive to changes in the
values of α and β and there were no clear guidelines regarding the sensitivity of this approach to different values of
C. In general, the problem associated with static penalty methods is also present with dynamic penalty methods. If
a bad schedule is chosen to increase the penalty parameter, the search may converge to either non-optimal feasible
solutions (if the penalty is too high) or to infeasible solutions (if the penalty is too low).

112

Part IV Appendix C

C.1.3 Adaptive penalty
These methods modify the penalty parameter according to the feedback taken from the optimization process. Hadj-
Alouane & Bean (1997) developed a method that uses a penalized objective function

φ(x) = f (x)+C(τ)
M

∑
m=1

[max{0,gm(x)}]β (C.15)

with the penalty parameter C(τ) adapted at each iteration by the following rule:

C(τ +1) =

 C(τ)/γ1 if case 1
γ2C(τ) if case 2
C(τ) otherwise

(C.16)

where γ1 and γ2 are constants satisfying γ1 > γ2 > 1 and cases 1 and 2 denote situations where the best solution in
the last k iterations was always feasible (case 1) or was never feasible (case 2). The update rule implies that if the
optimization process is searching mainly in feasible regions, the penalty is decreased to increase the exploration in
infeasible regions and, conversely, if the search is being conducted insufficiently in infeasible regions, the penalty
is increased to attract solutions more towards feasible regions. The main drawback of this method is the definitions
of the parameters γ1,γ2,k, and C(0).

Lemonge & Barbosa (2004) introduced an adaptive penalty method without any type of user-defined penalty
parameter. This method uses information from the population such as the average of the objective function values
and the level of violation of each constraint during the optimization process. The penalized objective function is
written as

φ(x) =
{

f (x) if x is feasible
f̄ (x)+∑

M
m=1 Cm max{0,gm(x)} otherwise

(C.17)

where

f̄ (x) =
{

f (x) if f (x)> 〈 f 〉
〈 f 〉 otherwise (C.18)

and

Cm =
〈 f 〉〈max{0,gm}〉

∑
M
m=1〈max{0,gm}〉2

(C.19)

with 〈 f 〉 representing the average of the objective function values (weighted over the current population) and
〈max{0,gm}〉 the average of the level of violation of the m-th constraint (also weighted over the current population).
The main idea is that the values of the penalty parameters should be distributed in a way that those constraints which
are more difficult to be satisfied should have a relatively higher penalty parameter.

C.2 Superiority of feasible solutions
Deb (2000) introduced a constraint-handling method to be implemented in genetic algorithms, which uses a tour-
nament selection operator where two solutions are compared by using the following criteria (Deb’s rules):

• Any feasible solution is preferred to any infeasible solution.

• Among two feasible solutions, the one having better objective function value is preferred.

• Among two infeasible solutions, the one having smaller constraint violation value is preferred.

Note that, penalty parameters are not needed because in any of the three criteria mentioned above, solutions are
never compared in terms of both objective function and constraint violation information. In the first criterion,
neither objective function value nor the constraint violation information are used, simply the feasible solution is
preferred. In the second criterion, solutions are compared exclusively in terms of objective function values. Finally,
in the third criterion, solutions are compared exclusively in terms of the constraint violation information.

This method can also be seen as a member of the class of penalty methods with the following penalized
objective function:

φ(x) =
{

f (x) if x is feasible
fworst +∑

M
m=1 max{0,gm(x)} otherwise

(C.20)

113

Part IV Appendix C

where fworst is the objective function value of the worst feasible solution in the population. Thus, the penalized
objective value of an infeasible solution not only depends on the amount of constraint violation, but also on the
population of solutions at hand. However, the penalized objective value of a feasible solution is always equal to its
original objective value.

Using the penalized objective function φ , this approach can be combined with PSO to solve COPs. In fact:

• Any feasible solution is preferred to any infeasible solution, since

φ(x) = f (x)< fworst +
M

∑
m=1

max{0,gm(y)}= φ(y) (C.21)

for two solutions x and y, where x is feasible and y is infeasible.

• Among two feasible solutions, the one having better objective function value is preferred, since

φ(x) = f (x)< f (y) = φ(y) (C.22)

for two feasible solutions x and y with f (x)< f (y).

• Among two infeasible solutions, the one having smaller constraint violation value is preferred, since

φ(x) = fworst +
M

∑
m=1

max{0,gm(x)}< fworst +
M

∑
m=1

max{0,gm(y)}= φ(y) (C.23)

for two infeasible solutions x and y with ∑
M
m=1 max{0,gm(x)} < ∑

M
m=1 max{0,gm(y)}. Alternatively, the

Deb’s rules can be implemented directly in any swarm algorithm through a classical bubble-sort procedure
to update the local-best and global-best positions. This procedure is presented as a pseudo-code in Algorithm
17.

Algorithm 17 Deb’s rule to rank candidate solutions of a population P′.
Input: P′ = {x1, . . . ,xk} (k ≤ K)

1: for i ∈ (k−1) : 1 do
2: for j ∈ 1 : i do
3: if s(x j) = s(x j+1) = 0 then
4: {Comment: where s(x) = ∑m max{0,gm(x)}, m = 1, . . . ,M}
5: if f (x j)> f (x j+1) then
6: swap(x j,x j+1)
7: end if
8: else
9: if s(x j)> s(x j+1) then

10: swap(x j,x j+1)
11: end if
12: end if
13: end for
14: end for
15: return x(k) ≺ x(k−1) ≺ ·· · ≺ x(2) ≺ x(1) since φ(x(k))≥ φ(x(k−1))≥ ·· · ≥ φ(x(2))≥ φ(x(1)).

The proposed approach by Deb is a constraint handling method widely used in evolutionary computation to
solve COPs. However, it seems to have problems to maintain diversity in the population, and the use of niching
methods combined with high mutation rates is apparently necessary to avoid stagnation.

C.3 Ranking methods
The main idea of penalty methods to solve COPs is to modify the objective value of a candidate solution with a
penalty value based on a measure of its degree of constraint violation and, thus, promote the selection of feasible

114

Part IV Appendix C

solutions and, at the same time, also allow some infeasible solutions in the population with low degree of con-
straint violation. To achieve this goal, penalty methods require a careful fine-tuning of their penalty parameters
to determine the severity of the penalties. However, it is difficult to strike the proper balance between objective
and penalty functions using penalty parameters, which are highly problem-dependent. This section presents some
alternative approaches based on ranking methods, which can be combined with PSO to deal with optimization
problems having constrained search spaces.

C.3.1 Stochastic ranking
Runarsson & Yao (2000) developed a constraint-handling method that uses a random procedure to rank candidate
solutions. This method is called stochastic ranking and it applies an user-defined probability to choose the criterion
used for comparison of solutions, in order to determine which one is the best. That is, given a pair of solutions in
the search space, the probability of comparing them according to the objective function is 1, if both solutions are
feasible. Otherwise (i.e., if at least one solution is infeasible), the probability of comparing them according to the
objective function is P and, finally, the probability of comparing them according to the sum of constraint violation
is 1−P.

The comparison of solutions is defined as an order relation on the set of values associated with (f (x),s(x) =
∑

M
m=1 υ2

m(x)). Let f1(f2) and s1(s2) be the objective value and the constraint violation, respectively, at a candidate
solution x1(x2). Then, for any P satisfying 0≤ P≤ 1, the comparison of x1 and x2 is defined as follows:

x1 ≺ x2 (x1 is better than x2) when

 f1 < f2 if (s1 and s2 = 0)
f1 < f2 if (s1 > 0 or s2 > 0) and r < P
s1 < s2 if (s1 > 0 or s2 > 0) and r ≥ P

(C.24)

where r ∼ Unif(0,1). Stochastic ranking uses a bubble-sort-like procedure to rank solutions of a population. This
procedure is presented as a pseudo-code in Algorithm 18) and it can be implemented in any swarm algorithm to
update the local-best and global-best positions.

Algorithm 18 Stochastic ranking to rank candidate solutions of a population P′.
Input: P′ = {x1, . . . ,xk} (k ≤ K) and 0≤ P≤ 1

1: for i ∈ (k−1) : 1 do
2: for j ∈ 1 : i do
3: r ∼ Unif(0,1)
4: if s(x j) = s(x j+1) = 0 or r < P then
5: if f (x j)> f (x j+1) then
6: swap(x j,x j+1)
7: end if
8: else
9: if s(x j)> s(x j+1) then

10: swap(x j,x j+1)
11: end if
12: end if
13: end for
14: end for
15: return x(k) ≺ x(k−1) ≺ ·· · ≺ x(2) ≺ x(1).

C.3.2 α-constrained method
Takahama & Sakai (2005) introduced the α-constrained method to deal with constraints in optimization problems.
This method is based on a function that describes the satisfaction level of the constraints of a candidate solution
(i.e., how well a candidate solution satisfies the constraints of the problem). This function is defined as

µ(x) = min
i, j
{µgi(x),µh j(x)}= min{min

i
{µgi(x)},min

j
{µh j(x)}} (C.25)

115

Part IV Appendix C

where

µgi(x) =


1 if gi(x)≤ 0
1− gi(x)

bi
if 0 < gi(x)≤ bi

0 otherwise
(C.26)

is the satisfaction level of the constraint gi(x)≤ 0 with a fixed tolerance bi > 0 and

µh j(x) =

{
1− |h j(x)|

b j
if 0≤ |h j(x)| ≤ b j

0 otherwise
(C.27)

is the satisfaction level of the constraint h j(x) = 0 with a fixed tolerance b j > 0. Note that the satisfaction level of
the constraints satisfies {

µ(x) = 1 if gi(x)≤ 0 and h j(x) = 0 for all i, j
0≤ µ(x)< 1 otherwise. (C.28)

Alternatively, it is possible to define the satisfaction level of the constraints as

µ(x) =
{

1− p(x;β1,β2)
B if 0≤ p(x;β1,β2)≤ B

0 otherwise
(C.29)

where p(x;β1,β2) is the well-known penalty function (see Eq. (C.1)) and B is a positive fixed tolerance.
After the definition of µ , the α-level comparison of solutions is defined as an order relation on the set of

values associated with (f (x),µ(x)) in which µ(x) precedes f (x) (if µ(x)< α), because the feasibility of x is more
important than the minimization of f (x). Let f1(f2) and µ1(µ2) be the objective value and the satisfaction level,
respectively, at a candidate solution x1(x2). Then, for any α satisfying 0≤ α ≤ 1, the α-level comparison between
x1 and x2 is defined as follows:

x1 ≺ x2 when

 f1 < f2 if µ1,µ2 ≥ α

f1 < f2 if µ1 = µ2
µ1 > µ2 otherwise.

(C.30)

Note that, if α = 0, then the α-level comparison is equivalent to the ordinal comparison using solely the objective
function (i.e., candidate solutions are ranked solely based on their objective values). If α = 1, then the α-level
comparison works like the Deb’s rules (i.e., feasible solutions are ranked solely based on their objective values,
infeasible solutions are ranked solely based on their satisfaction levels of the constraints, and feasible solutions are
always ranked better than infeasible solutions). Finally, the tuning process for α , bi, and b j (or α and B) is the main
concern in the α-constraint method. Takahama & Sakai (2005) used a dynamic strategy for the parameter α with
bi = b j = 1000 to solve the all benchmark problems mentioned in Runarsson & Yao (2000) and the experimental
results obtained by the α-constrained method were compared with the results obtained by stochastic ranking.

C.3.3 Addition of ranking terms
Ho & Shimizu (2007) developed a ranking method to deal with constraints in optimization problems. The method
is based on a new objective function to be minimized that comprises three ranking terms focused on the objective
function values, constraint violation values, and number of constraints violated. The multiple rankings objective
function is defined as

φ(x) =
{

rank(s(x),x ∈ S)+ rank(u(x),x ∈ S) if all solutions in S are infeasible
rank(f (x),x ∈ S)+ rank(s(x),x ∈ S)+ rank(u(x),x ∈ S) otherwise (C.31)

where x is a candidate solution, f (x) is the objective function value of x, s(x) = ∑
M
m=1 υ2

m(x) is the constraint
violation value of x, and u(x) = |{m : gm(x)> 0}| is the number of constraints violated by x. The comparison
between two solutions x1 and x2 is defined as follows:

x1 ≺ x2 when φ(x1)< φ(x2). (C.32)

The method uses sum of ranks to balance the objective function versus the constraint violation degree. When all
solutions in the search space are infeasible, the main goal is to seek the first feasible solution in the feasible space.

116

Part IV Appendix C

Algorithm 19 Sum of ranks to find the best solution of a population P′.
Input: P′ = {x1, . . . ,xk} (k ≤ K)

1: for each solution in P′ do
2: Calculate the properties f (x),s(x), and u(x)
3: end for
4: Rank the solutions with respect to f ,s, and u independently
5: if feasible solutions exist in P′ then
6: for each solution do
7: φ(x)← rank(f (x),x ∈ S)+ rank(s(x),x ∈ S)+ rank(u(x),x ∈ S)
8: end for
9: else

10: for each solution do
11: φ(x)← rank(s(x),x ∈ S)+ rank(u(x),x ∈ S)
12: end for
13: end if
14: Sort the solutions according to φ

15: TheBestSolution← argmin{φ(x) : x ∈ P′}
16: return TheBestSolution

In this case, the information from f (x) becomes unimportant and, hence, only rank(s(x),x ∈ S) and rank(u(x),x ∈
S) are used. When feasible solutions exist in the search space, the method explores the search space in order to
find an optimum solution. In this case, rank(s(x),x ∈ S) and rank(u(x),x ∈ S) serve as terms to penalize infeasible
solutions. On the other hand, the term rank{ f (x) : x∈ S} allows to retain for the next iteration only those infeasible
solutions with small objective value and small constraint violation degree. This strategy is necessary to maintain
the population diversity and exploration ability in infeasible regions of the search space. Algorithm 19 outlines the
method proposed by Ho & Shimizu (2007).

Clearly φ attempts to integrate the information from the objective function and constraint violation for candi-
date solutions. However, it is important to note that φ does not require a penalty coefficient and this is the most
important feature of the proposed strategy. By transforming the relevant numerical properties into ranking terms
of the same order of magnitude, different terms can be added directly without invoking a penalty coefficient. Ho
& Shimizu (2007) applied the proposed method to solve all benchmark problems mentioned in Runarsson & Yao
(2000) and the results obtained by this method were compared with the results obtained by stochastic ranking.

C.3.4 TOPSIS-based ranking
TOPSIS is a method proposed by Hwang & Yoon (1981) for multi-criteria decision making problems. It evaluates
the performances of the alternatives through the similarity with the best possible solution. According to this
technique, the best alternative would be the one which is closest to the positive ideal solution and farthest from
the negative ideal solution. The positive ideal solution is the one that minimizes the cost criteria and maximizes
the benefit criteria. The negative ideal solution is the one that maximizes the cost criteria and minimizes the
benefit criteria. In summary, the positive ideal solution is composed of all best attainable values of the criteria
and the negative ideal solution consists of all the worst attainable values of the criteria. To make use of TOPSIS,
the attribute values must be numeric and TOPSIS makes use of this information to provide a ranking for all the
alternatives within a population of candidate solutions. For a broad survey about TOPSIS, the reader is referred to
Behzadian et al. (2012).

Lai, Liu & Hwang (1994) extended TOPSIS to solve a multi objective decision making problem. The proposed
approach reduces a k-dimensional objective space to a two-dimensional objective space by a first-order compromise
procedure. Then, membership functions of fuzzy set theory are used to represent the satisfaction level for both
criteria, obtaining a single-objective programming problem by using the max−min operator for the second-order
compromise operation.

Schneider & Krohling (2014) proposed a method to find multiple solutions of constrained nonlinear integer
optimization problems. This approach transforms the constrained optimization problem into a bi-objective opti-
mization problem. The transformed problem is solved by using a hybrid approach with differential evolution and
tabu search as search engines, and TOPSIS combined with membership functions to deal with the constraints.

117

Part IV Appendix C

C.4 Multi-objective optimization concepts to handle constraints
Among the several approaches that have been proposed as alternatives to the use of penalty methods, there is a class
of methods in which the constraints of the problem are handled as objective functions, i.e., a single-objective COP
is cast as a multi-objective (unconstrained) optimization problem (MOOP). This section discusses the concept of
Pareto optimality and how a COP can be viewed as a MOOP.

A MOOP is defined as follows:

min f(x) = (f1(x), . . . , fK(x)) where x = (x1, . . . ,xD)
′ ∈ RD

subject to Ld ≤ xd ≤Ud d = 1, . . . ,D (C.33)

where x is the vector of the D decision variables and f(x) is the vector of K functions to be minimized over the
search space S = [L,U] = [L1,U1]× ·· · × [LD,UD]. It is not possible to minimize a vector of functions in the
typical sense of the word minimize. Having several objective functions, the concept of an optimum solution for the
problem changes to the concept of trade-off solution (or compromise), i.e., a solution in which one must balance
objectives that are in conflict and cannot be satisfied at the same time. In MOOPs the main goal is to find good
trade-offs (or compromises) between the objectives rather than a single optimum solution as in single-objective
optimization. The notion of trade-off solutions is normally referred to as Pareto optimality, which is defined based
on following concepts (see Simon, 2013, chap. 20):

Pareto dominance. A solution x1 is said to dominate the solution x2 if the following two conditions hold: (1)
fk(x1)≤ fk(x2) for all k ∈ {1, . . . ,K}, and (2) fk(x1)< fk(x2) for at least one k ∈ {1, . . . ,K}. That is, x1 is at
least as good as x2 for all objective function values and x1 is better than x2 for at least one objective function
value. The notion of Pareto dominance is denoted as x1 ≺ x2 to indicates that x1 dominates x2.

Nondominated solution. A solution x̄ is said to be nondominated, if there is no solution x that dominates it.

Pareto optimality. A solution x̄ in the search space is Pareto optimal if it is a nondominated solution in the search
space. That is, x̄ is Pareto optimal if and only if there is no solution x in the search space such that: (1)
fk(x)≤ fk(x̄) for all k ∈ {1, . . . ,K}, and (2) fk(x)< fk(x̄) for at least one k ∈ {1, . . . ,K}.

Pareto set. The Pareto set is defined as the set of all x̄ in the search space that are Pareto optimal solutions. That
is,

Pareto set = {x̄ ∈ S : 6 ∃x ∈ S,x≺ x̄}. (C.34)

Pareto front. The Pareto front is defined as

Pareto front = {f(x̄) : x̄ belongs to Pareto set}. (C.35)

The main idea of adopting multi-objective optimization concepts to handle constraints is to transform a single-
objective COP in a MOOP by defining the first objective as the objective function of the original problem and
defining the remaining objectives as the constraint functions. As a result, the original COP with M constraints
is transformed in a MOOP with K = M + 1 objectives and algorithms designed for MOOPs can be used to solve
COPs (see Mezura-Montes & Coello, 2011).

It is important to note that the opposite direction can also be followed. A MOOP with K objectives can be
formulated as a COP by just keeping one of the objectives and restricting the rest of the objectives within user-
specified values. This approach is known in the multi-objective optimization literature as the εεε-constraint method.
The reformulated problem is as follows:

min f j(x) where x ∈ RD

subject to fk(x)≤ εk k = 1, . . . ,K and k 6= j
Ld ≤ xd ≤Ud d = 1, . . . ,D

(C.36)

where the parameter εk represents an upper bound of the value of fk. The solution of the reformulated problem is
Pareto optimal for any upper bound vector εεε = (ε1, . . . ,ε j−1,ε j+1, . . . ,εK)

′. The main advantage of this method is
that it can be used for any problem independent of whether the objective space is convex or nonconvex. However,
the solution to the reformulated problem largely depends on the chosen εεε-vector. In addition, as the number of
objectives increases, there exist more elements in the εεε-vector, thereby requiring more information from the user.

118

Appendix D

Previous Results for the G24 set of DCOPs

This appendix presents the full set of results obtained by Nguyen (2010, p. 181) for 18 algorithms tested on
18 problems of the G24 benchmark set of DCOPs along with the results obtained by the algorithm GSARepair
proposed by Pal et al. (2013). Fig. D.1 shows a graphical representation of these results that are presented in Tables
D.1 and D.2.

A19 A18 A14 A17 A13 A12 A9 A11 A10 A8 A7 A4 A2 A15 A6 A1 A3 A5 A16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

O
ffl

in
e

er
ro

r

Figure D.1: Box-plots of offline errors for each tested algorithm.

119

PartIV
A

ppendix
D

Table D.1: Offline errors for different algorithms in the medium settings. Part I.
Probl. G24-u G24-1 G24-f G24-uf G24-2 G24-2u G24-3 G24-3b G24-3f
Alg. Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)
A1 0.214(0.037) 0.587(0.085) 0.227(0.065) 0.095(0.044) 0.329(0.074) 0.103(0.022) 0.384(0.092) 0.637(0.101) 0.241(0.051)
A2 0.131(0.034) 0.401(0.046) 0.171(0.100) 0.086(0.028) 0.283(0.021) 0.110(0.030) 0.340(0.045) 0.472(0.053) 0.203(0.042)
A3 0.173(0.042) 0.475(0.060) 0.224(0.052) 0.093(0.032) 0.376(0.055) 0.111(0.030) 0.561(0.104) 0.511(0.115) 0.142(0.058)
A4 0.468(0.059) 0.226(0.024) 0.041(0.011) 0.218(0.018) 0.281(0.036) 0.294(0.029) 0.156(0.008) 0.171(0.019) 0.025(0.008)
A5 0.602(0.211) 0.624(0.202) 0.238(0.159) 0.813(0.224) 0.497(0.066) 0.573(0.092) 0.239(0.128) 0.421(0.142) 0.040(0.047)
A6 0.577(0.082) 0.620(0.153) 0.238(0.137) 0.807(0.226) 0.455(0.109) 0.550(0.128) 0.200(0.098) 0.397(0.105) 0.038(0.008)
A7 0.306(0.084) 0.104(0.025) 0.041(0.009) 0.218(0.030) 0.202(0.027) 0.198(0.015) 0.038(0.007) 0.075(0.013) 0.025(0.004)
A8 0.362(0.063) 0.101(0.022) 0.042(0.011) 0.219(0.073) 0.198(0.030) 0.201(0.023) 0.034(0.005) 0.079(0.012) 0.025(0.002)
A9 0.254(0.048) 0.082(0.015) 0.028(0.006) 0.194(0.043) 0.162(0.021) 0.187(0.011) 0.029(0.004) 0.058(0.007) 0.014(0.002)
A10 0.319(0.034) 0.093(0.023) 0.045(0.010) 0.218(0.050) 0.171(0.026) 0.196(0.024) 0.027(0.005) 0.071(0.014) 0.025(0.005)
A11 0.156(0.018) 0.104(0.025) 0.041(0.010) 0.248(0.080) 0.196(0.035) 0.084(0.030) 0.035(0.007) 0.075(0.012) 0.026(0.004)
A12 0.152(0.026) 0.078(0.014) 0.029(0.009) 0.151(0.032) 0.171(0.021) 0.082(0.010) 0.029(0.005) 0.059(0.013) 0.014(0.002)
A13 0.175(0.040) 0.091(0.016) 0.043(0.010) 0.249(0.072) 0.161(0.029) 0.096(0.022) 0.026(0.005) 0.074(0.014) 0.027(0.006)
A14 0.120(0.028) 0.099(0.034) 0.020(0.008) 0.030(0.008) 0.177(0.031) 0.120(0.028) 0.099(0.034) 0.020(0.008) 0.030(0.008)
A15 0.302(0.101) 0.494(0.167) 0.109(0.072) 0.170(0.057) 0.701(0.100) 0.302(0.101) 0.494(0.167) 0.109(0.072) 0.170(0.057)
A16 0.412(0.195) 0.719(0.185) 0.107(0.083) 0.170(0.053) 0.638(0.178) 0.412(0.195) 0.719(0.185) 0.107(0.083) 0.170(0.053)
A17 0.123(0.029) 0.103(0.024) 0.022(0.014) 0.029(0.016) 0.138(0.030) 0.123(0.029) 0.103(0.024) 0.022(0.014) 0.029(0.016)
A18 0.091(0.035) 0.085(0.024) 0.021(0.014) 0.030(0.030) 0.099(0.028) 0.060(0.033) 0.028(0.007) 0.068(0.022) 0.005(0.003)
A19 0.049(0.004) 0.132(0.015) 0.029(0.012) 0.047(0.009) 0.182(0.019) 0.196(0.012) 0.028(0.004) 0.076(0.009) 0.009(0.007)
(i) A1: GAelit A7: GARepairwUPCwNRR A13: dRepairHyperM-OOR

A2: RIGAelit A8: dRepairGA A14: Genocop
A3: HyperMelit A9: dRepairRIGA A15: GenocopwUPGwNRR
A4: GARepair A10: dRepairHyperM A16: GenocopwUPGwRR
A5: GARepairwUPGwNRR A11: dRepairGA-OOR A17: GenocopwUPCwNRR
A6: GARepairwUPGwRR A12: dRepairRIGA-OOR A18: dGenocop

(ii) Medium settings: change frequency = 1000, κ = 1/2, and S = 20 A19: GSARepair

120

PartIV
A

ppendix
D

Table D.2: Offline errors for different algorithms in the medium settings. Part II.
Probl. G24-4 G24-5 G24-6a G24-6b G24-6c G24-6d G24-7 G24-8a G24-8b
Alg. Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)
A1 0.627(0.045) 0.373(0.031) 0.826(0.154) 0.571(0.071) 0.563(0.062) 0.614(0.108) 0.518(0.095) 0.409(0.027) 1.303(0.083)
A2 0.492(0.071) 0.259(0.031) 0.458(0.050) 0.426(0.045) 0.413(0.040) 0.427(0.028) 0.459(0.057) 0.410(0.019) 1.085(0.111)
A3 0.494(0.039) 0.297(0.047) 0.575(0.074) 0.469(0.074) 0.527(0.039) 0.585(0.057) 0.478(0.072) 0.406(0.046) 1.081(0.084)
A4 0.211(0.015) 0.236(0.024) 0.431(0.074) 0.427(0.048) 0.390(0.038) 0.354(0.038) 0.181(0.017) 0.496(0.032) 0.391(0.068)
A5 0.339(0.137) 0.286(0.059) 0.744(0.439) 0.708(0.185) 0.620(0.136) 0.516(0.208) 0.351(0.163) 0.448(0.100) 1.327(0.116)
A6 0.356(0.101) 0.281(0.084) 0.454(0.154) 0.656(0.151) 0.613(0.103) 0.588(0.173) 0.312(0.136) 0.415(0.092) 1.149(0.209)
A7 0.178(0.018) 0.181(0.023) 0.408(0.058) 0.381(0.048) 0.388(0.037) 0.341(0.029) 0.172(0.025) 0.468(0.053) 0.428(0.086)
A8 0.170(0.026) 0.181(0.032) 0.422(0.059) 0.393(0.038) 0.386(0.045) 0.356(0.037) 0.181(0.043) 0.438(0.031) 0.418(0.047)
A9 0.140(0.028) 0.152(0.017) 0.366(0.033) 0.346(0.028) 0.323(0.037) 0.315(0.029) 0.154(0.031) 0.448(0.020) 0.341(0.053)
A10 0.059(0.010) 0.131(0.019) 0.358(0.049) 0.341(0.039) 0.326(0.047) 0.286(0.035) 0.067(0.014) 0.413(0.032) 0.257(0.042)
A11 0.164(0.031) 0.177(0.034) 0.395(0.048) 0.391(0.045) 0.386(0.037) 0.352(0.035) 0.179(0.047) 0.422(0.037) 0.449(0.075)
A12 0.143(0.024) 0.154(0.028) 0.361(0.051) 0.352(0.035) 0.350(0.032) 0.302(0.022) 0.153(0.034) 0.449(0.017) 0.339(0.051)
A13 0.062(0.011) 0.131(0.019) 0.339(0.038) 0.342(0.040) 0.330(0.034) 0.281(0.036) 0.068(0.015) 0.397(0.038) 0.242(0.038)
A14 0.177(0.031) 0.059(0.039) 0.041(0.009) 0.407(0.073) 0.296(0.050) 0.281(0.050) 0.230(0.052) 0.408(0.043) 0.446(0.095)
A15 0.701(0.100) 0.378(0.121) 0.293(0.105) 0.809(0.175) 0.557(0.076) 0.725(0.397) 0.257(0.092) 0.682(0.141) 1.273(0.160)
A16 0.638(0.178) 0.440(0.279) 0.294(0.116) 0.688(0.187) 0.593(0.176) 0.578(0.189) 0.440(0.123) 0.784(0.093) 1.356(0.193)
A17 0.138(0.030) 0.074(0.025) 0.036(0.008) 0.319(0.074) 0.280(0.049) 0.291(0.061) 0.171(0.033) 0.427(0.039) 0.447(0.101)
A18 0.140(0.043) 0.114(0.025) 0.315(0.063) 0.334(0.085) 0.263(0.042) 0.242(0.041) 0.192(0.054) 0.415(0.039) 0.416(0.085)
A19 0.073(0.012) 0.153(0.013) 0.033(0.003) 0.047(0.003) 0.045(0.004) 0.037(0.007) 0.018(0.002) 0.202(0.041) 0.192(0.034)
(i) A1: GAelit A7: GARepairwUPCwNRR A13: dRepairHyperM-OOR

A2: RIGAelit A8: dRepairGA A14: Genocop
A3: HyperMelit A9: dRepairRIGA A15: GenocopwUPGwNRR
A4: GARepair A10: dRepairHyperM A16: GenocopwUPGwRR
A5: GARepairwUPGwNRR A11: dRepairGA-OOR A17: GenocopwUPCwNRR
A6: GARepairwUPGwRR A12: dRepairRIGA-OOR A18: dGenocop

(ii) Medium settings: change frequency = 1000, κ = 1/2, and S = 20 A19: GSARepair

121

