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The scientist does not study nature because it is useful to do so. He studies it because he

takes pleasure in it, and he takes pleasure in it because it is beautiful. If nature were not

beautiful it would not be worth knowing, and life would not be worth living.

Henri Poincaré



Abstract

There is a 3.4σ tension between local and global measurements of the Hubble constant H0

provided by observations of SNe Ia [1] and CMB [2], respectively. This tension cannot be

totally explained by the concordance ΛCDM model and could be produced by unknown

systematics on the calibration of the cosmic distance ladder or CMB analysis. However,

in the absence of these systematics, the tension could be a hint for physics beyond the

ΛCDM model. On the other hand, it is well known that the linear perturbation theory

predicts a cosmic variance on the Hubble parameter H0, produced by peculiar velocities

and local structures, which leads to systematic errors on local determinations of H0. Here,

we consider this cosmic variance, predicted by linear perturbation theory, in a presence of

a non-standard dark energy, in order to compute the systematic error on the local Hubble

rate. Non-standard dark energy models are represented by the coupled quintessence models

and the γCDM, γwCDM and γaCDM parametrizations. Then, we include this systematic

error in the Bayesian statistical analysis that uses CMB, BAO, SNe Ia, RSD and H locl
0

data. Thus, we show the effect of the cosmic variance on the cosmological constraints and

the tension problem. Finally, we accomplish the model selection using the AIC and BIC

criteria and also show how the systematic error provided for the models of non-standard

dark energy could help to alleviate the current tension in determinations of H0.

Keywords: dark energy, observational cosmology, Hubble constant, statistical analysis.



Resumo

Existe uma tensão ao redor de 3.4σ entre as determinações globais e locais da constante de

Hubble H0 fornecidas por observações de supernovas de tipo Ia [1] e da radiação cósmica de

fundo [2], respetivamente. Esta tensão não pode ser explicada pelo modelo de concordança

ΛCDM e ela poderia ser produzida por erros sistemáticos desconhecidos na calibração da

escadaria cósmica ou na análise da radiação cósmica de fundo. Contudo, na ausência destes

erros, a tensão poderia ser uma sugestão da existência de f́ısica além do modelo ΛCDM. Por

outro lado, é bem sabido que a teoria linear de perturbações prevê uma variância cósmica

sobre o parâmetro de Hubble H0, produzida pelas velocidades peculiares e estruturas locais,

que conduz a um erro sistemático na determinações locais de H0. No presente trabalho,

nós consideramos a variância cósmica, prevista pela teoria de perturbações lineares, na

presença de uma energia escura não padrão, com o fim de calcular o erro sistemático

sobre a taxa de Hubble local. A energia escura não padrão é representada pelo modelo de

quintessência e pelas parametrizações γCDM, γwCDM e γaCDM. Logo, nós inclúımos o

erro sistemático na análise estat́ıstica Bayesiana que usa dados da radiação cósmica de

fundo, oscilações acústicas dos bárions, supernovas de tipo Ia, distorções no espaço de

redshift e H locl
0 . Assim, nós mostramos o efeito da variância cósmica na determinação de

parâmetros cosmológicos e o problema de tensão. Finalmente, nós realizamos a seleção

de modelos usando os critérios de seleção AIC e BIC e também mostramos como o erro

sistemático, fornecido pelos modelos de energia escura não padrão, poderia ajudar a aliviar

a atual tensão nas determinações de H0.

Palavras-chave: energia escura, cosmologia observacional, constante de Hubble, análise

estat́ıstica.
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Introduction

The Hubble parameter, H(a), is one of the most important cosmological parameters.

It quantifies the expansion rate of the universe. The value that the Hubble parameter takes

today, H0, is known as the Hubble constant. Historically, the Hubble constant showed up

in 1929 [3], when Edwin Hubble showed that the apparent distances of galaxies and its

recession velocities obey the relationship v = H0d, where v is the recession velocity and d

is the apparent distance. The latter expression is often known as the Hubble law and it

is a consequence of the expansion of the universe. Measurements of the Hubble constant

have been a fundamental topic in the development of cosmology, its value allows us to

constrain, for example, the content of the universe [9, 5].

Roughly speaking, there are two ways to measure H0: through model-dependent

or model-independent methods. For instance, we can use a fiducial cosmological model

and observations, such as CMB or GW, to constrain the Hubble constant H0, whose

value, evidently, will dependent of the fiducial model. Also, one could use, for example,

the Hubble law in order to obtain a model-independent value of H0. Among the model-

independent determinations of the Hubble constant we can find the approaches presented

in [1, 10, 11, 12, 13]. On the other hand, determinations given by [2, 6, 14, 15, 16] constrain

H0 through a fiducial cosmological model. The values given by [2] and [1] are the most

important model-dependent and model-independent determinations of the Hubble constant,

respectively.

The value provided by [2] is H0 = 66.93 ± 0.62 km s−1Mpc (hereafter HPl
0 ) and

comes from the most recent analysis of the temperature fluctuations of CMB. Meanwhile,

observations of SNe Ia coupled with Cepheid distances to SNe Ia host galaxies [1] provides

a measurement H0 = 73.24± 1.74 km s−1Mpc (hereafter HR16
0 ). So, it is easy to note that

there is a tension between these determinations of H0. This tension or discordance, between

the global (from CMB) and local (from SNe Ia) determinations, is often characterized as a

tension of about 3.4σ [1, 17] and could be generated by both misunderstanding on the

astrophysical process used to measure HR16
0 and unknown systematics on CMB or cosmic

ladder-distance. However, in the absence of these kind of misunderstandings, the tension

could be a hint for physics beyond the standard ΛCDM model.

Thus, in this sense, there have been proposed different possible solutions to the

tension problem. For example, it has been considered that physics beyond ΛCDM could

provide a higher value of H0, which would be in agreement with local determinations of

H0 [18, 19, 20, 21, 22, 23, 24, 25]. Also, modifications and systematic errors on the cosmic

ladder-distance used to determinate HR16
0 have been proposed [26, 27, 28, 29, 30, 31, 32].
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None of the above proposals have provided a satisfactory explication of the discordance of

3.4σ.

On the other hand, linear perturbation theory predicts a deviation of HR16
0 with

respect to HPl
0 . This deviation, produced by the field of peculiar velocities at local scales,

could have non-negligible effects on the local determinations of H0. Statistically, the

deviation, due to peculiar velocities and local gravitationally fields, can be characterized by

a variance on the local H0. This variance, dubbed cosmic variance, allows us to compute

the systematic error produced by peculiar velocities in local measurements of H0, which

could be fundamental in the study of the tension problem. The cosmic variance has already

been considered in order to cure the current tension in the ΛCDM context. Thus, it has

been showed that, despite having non-negligible effects, the cosmic variance is not able to

explain the whole tension [33, 34].

So, in a attempt to explain the 3.4σ tension, we shall study the effect of a cosmic

variance on local determinations of H0 when a presence of a non-standard dark energy is

considered.1 For that, first, we will compute the cosmic variance and its error budget, using

the estimator proposed in [33]. Then, this error budget will be included into the analysis

of the current cosmological data, in order to recognize the impact of the cosmic variance

on cosmological parameters. Our cosmological data sets will be composed of data coming

from CMB, BAO, SNe Ia, RSD and H loc. Also, in order to represent a non-standard dark

energy, we will use the coupled quintessence model, which has already considered in order

to alleviate the tension [18, 19], and some parametric extensions of ΛCDM, here labelled

as γCDM, γwCDM and γaCDM.

Data analysis will be performed in the framework of Bayesian statistics. Using the

results of data analysis we will compute the tension value by the simple estimator proposed

in [35]. Also, in order to determinate which of all cosmological models here considered

provides a better agreement with the data, we will carry out model selection using the

AIC [36] and BIC criteria [37].

This dissertation is organized as follows. In Chapter 1 we will discuss the basis

of standard cosmology, such as the theory of gravity and the cosmological principle.

Besides that, we will also give a brief review of the ΛCDM model, focusing both on its

theoretical and observational features. Then, in Chapter 2 we will discuss dark energy

models beyond the cosmological constant, Λ. We shall emphasize non-standard dark energy

models that could be able to cure the tension. These non-standard dark energy models will

be represented by the coupled quintessence model and the three parametrized extensions

γCDM, γwCDM and γaCDM. The heart of this work will be discussed in Chapter 3,

1 When we refer to a non-standard dark energy, actually we refer to any model, different from Λ, that
are able to explain the current accelerated expansion of the universe. That is, a non-standard dark
energy model could be defined on a framework of general relativity or modified gravity.
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where we will argue about the tension and the estimator adopted in order to computed it.

Additionally, we will introduce the cosmic variance and its error budget through linear

perturbation theory. The basis of Bayesian statistical methods here used will be discussed

in Chapter 4, where we also show the cosmological data sets used in order to obtain the

cosmological constraints. Results of the data analysis, provided by Bayesian inference, will

be showed and discussed in Chapter 5. Finally, we will conclude in Chapter 6.

Also, it is worth to stress that this dissertation has three Appendixes, which were

included in order to provide a better understanding of some topics. For example, Appendix A

shows a qualitative derivation of the Friedmann-Lemâıtre-Robertson-Walker metric through

the theory of maximal symmetric spaces. On the other hand, Appendix B shows a brief

discussion about cosmological distances, which are essential to the understanding of

cosmological observations presented in the Chapter 4. Last but not least, the Appendix C

shows the discussion and results of cosmological constraints when the full likelihood does

not include the local Hubble constant HR16
0 and RSD data is not marginalized. We have

to mention that most of the results and discussions here showed are presented in [38].

Finally, a few clarifications regarding notation. We adopt the signature (-,+,+,+)

and after the beginning of Subsection 1.1.1 we put the speed of light to c = 1. Also,

hereafter the subscript “0” will be used to denote the present value of the corresponding

quantity.
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1 Standard cosmology and the concordance
model

Cosmology is a field of physics that studies the universe as a whole, as a unique

system, concentrating mainly on aspects such as its dynamics and content. The cosmological

approximation of the universe as a homogeneous whole is meaningful if we look, and

therefore study, the universe at large scales or, as we usually say, cosmological scales.1

The uniqueness of the universe puts cosmology in a special place with respect to another

fields of physics and leads to philosophical particularities as, for instance, the anthropic

principle [39]. Though these philosophical issues can play an important role in cosmology,

we should distinguish between problems caused by the uniqueness of universe and those

that arise by its own physical features. The status of cosmology as an empirical science has

strikingly changed owing to the increase of observational data during the last decades, to

the point that it is now playing an important role on other fields of physics. For example,

the best constraints on neutrinos masses are obtained from cosmological observations [40].

At large scales non-gravitational forces are negligible and therefore the dynamics of the

universe is dictated by the theory of gravity. It could be difficult to explain our current

understanding of gravitational phenomena without first mention at least some facts about

the history behind gravitation. For a deep discussion about this topic see [41, 42].

Before Einstein’s proposal, Newton’s mechanics and laws of universal gravitation,

introduced in 1687 [43], were widely used in physics and in the study of gravitational

phenomena. For instance, movement of the planets, or celestial bodies, were predicted

with great success by Newtonian gravity. Part of Newton’s works is built on definition of

inertial frames and the idea of an absolute space. On the other hand, all Newton’s laws

are only valid in inertial frames and therefore invariant under Galilean transformations,

which are transformations performed by the set of ten parameters of Galilean group. This

fact leads to think that all physical laws would have to be invariant under transformations

of the Galilean group, but the electrodynamics would contradict this idea. The laws of

electrodynamics are sum up in the Maxwell equations, which are not invariant under

Galilean transformations and also establish that the speed of light in the vacuum is a

universal constant. This latter result suggested that electromagnetic waves were carried by

a medium, denominated ether, hypothesis that were ruled out by experiments, such as

performed in 1887 by Michelson and Morley [44]. Besides the lack of concordance between

Newtonian laws and electrodynamics, Newtonian gravity showed not to be able to explain

Mercury’s perihelion precession.

1 A accurate definition of cosmological scales will be stated in the subsection 1.2.1.
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It is not clear if Einstein knew about the results obtained in [44] or whether he

was motivated by Mercury’s perihelia problem to construct his theories, but is clear that

Einstein looked for a set of transformations, that had already been derived by Lorentz

[45], that could leave Maxwell equations invariant. The new set of transformations used by

Einstein, that would substitute the Galilean group, belongs to the Lorentz group. The use

of the Lorentz transformations led Einstein to modify the laws of Newtonian mechanics

that later would yield the theory of special relativity [46]. After he presented the theory

of special relativity, and showed that both laws of Newtonian mechanics and Maxwell

equations are not invariant under the same group of transformations, Einstein starts

to work on the idea of a relativistic gravitational theory. Thus, finally in 1916 Einstein

introduced the theory of general relativity [47].

As we already pointed out, the theory of gravitation is at the heart of cosmology.

We use Einstein’s field equations to describe the dynamics of the universe. Though a

variety of matter contents and geometries are possible, only a small subset of the latter is

capable of explaining the wealth of present-day observations. For example, a model such as

the standard cold dark matter (sCDM) model [48, 49] is not a suitable cosmological model

as it cannot explain the acceleration of the universe. Nowadays, the model that presents

the highest level of concordance with data is the ΛCDM model.2 Its material content is

composed of three physical species: non-relativistic matter (baryons and cold dark matter),

radiation (photons and massless neutrinos) and dark energy (represent by the cosmological

constant Λ), being the last component responsible by the current accelerated expansion of

the universe.

In this first chapter, we show a brief review of the theory of gravity used in standard

cosmology, the theory of general relativity. We will then discuss the basis of the ΛCDM

model, discussing its relationship with observations and some problems that it suffers.

1.1 GENERAL RELATIVITY

General relativity can be thought of as a geometrical theory of gravity. It uses

concepts such as: manifolds, tensors and curvature. Thus, before studying standard

cosmology from the point of view of the theory of general relativity, it is important to

state some fundamental concepts about Einstein’s theory.

1.1.1 Geometry of spacetime

At the beginning of this chapter, we said that it is necessary to introduce a new set

of transformations, that replaces the Galilean transformations, and modifies the Newtonian

2 We will refer to ΛCDM model as the model of concordance or standard cosmological model, indistin-
guishably.
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mechanics in order to find agreement among the laws of mechanics and electrodynamics.

However, we did not indicate how this changes the structure of spacetime. In non-relativistic

physics, spacetime is understood like a continuous composition of events, that can be

represented by four numbers, three for space and one to time, where time has an absolute

definition. That definition of spacetime is partially kept in relativistic physics. Maybe,

the most important difference is the conception of time as absolute, which is dropped

as the latter becomes a coordinate with the same status of the spatial coordinates. For

instance, consider two events A = (ta, xa, ya, za) and B = (tb, xb, yb, zb). In non-relativistic

physics all inertial observers will be agree on value of the quantities ∆t = ta − tb and

d2 = ∆x2 + ∆y2 + ∆z2, independently among them. While in special relativity, observers

only agree on the measure of

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 , (1.1)

where c is the velocity of light. For the sake of simplicity, henceforth, we shall adopt c = 1.

So, introducing time as a new coordinate alters the geometrical structure of spacetime.

Formally, both for special relativity and general relativity, the distance in the spacetime is

defined according to

ds2 = gµνdx
µdxν , (1.2)

where gµν is the metric tensor. It is a symmetric tensor of second rank and has, at most,

ten independent components. In the particular case of special relativity, the metric tensor

is the Minkowski tensor:

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3)

The spacetime of special relativity is a flat spacetime known as the Minkowski spacetime.

The theory of special relativity establish a metric, ηµν , that remains fixed in the presence

of matter. This will not be true for general relativity, where the geometry of spacetime is

influenced by the presence of matter and the properties of the spacetime are described by

the metric, which is not necessarily flat. It is worth mentioning that Einstein was motivated

by Mach’s principle when he included a metric that should be affected by the presence

of matter [50]. The connection between spacetime geometry, gravity and the distribution

of matter will be qualitatively more clear after stating the principle of equivalence and

quantitatively more clear with Einstein equations.

The spacetimes required by general relativity are represented by pseudo-Riemannian

manifolds endowed with a metric gµν . The mathematical structure of the semi-Riemannian

manifolds is studied in the framework of differential geometry and has a non-trivial

structure. Perhaps, the first thing that one has to point out is the importance of gµν . The

metric tensor shall come on the scene in almost all quantities defined in space time, such
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as distances, curvature and others and it shall carry out information about the geometry

of spacetime. In general relativity one requires the compatibility of the metric ∇αgµν = 0,

which leads us to define a unique differential operator, characterized by the connection:

Γαµν = 1
2g

αβ (∂µgνβ + ∂νgβµ + ∂βgµν) , (1.4)

known as the Christoffel symbol, where ∇α is the covariant derivative defined as

∇γT
µ1...µm

ν1...νn = ∂γT
µ1...µm

ν1...νn − Γαγν1T
µ1...µm

α...νn − ...− ΓαγνnT
µ1...µm

νn...α

+Γµ1
γαT

α...µm
ν1...νn + ...+ ΓµnγαT µ1...α

ν1...νn , (1.5)

and T µ1...µm
ν1...νn is a tensor of rank m+ n.

Note that ∇µ differs from ∂µ: the first have a more complex definition because the

tensorial structure has to be kept after applying it to any tensor. It means that equation

(1.5) ensures that ∇γT
µ1...µm

ν1...νn is a tensor, and, hence, obeys the law of transformation

of tensors. Derivative operators are often read as a rate of change. For instance, if we have

a differentiable function T = T (x, y) that represents the temperature field of a 2d-surface,

the partial derivative ∂yT (x, y)|x=x0 will represent how fast the temperature changes along

the y direction at x = x0. Because that tensors are not simple functions, but rather maps

that take vectors and duals vectors towards the space of real numbers, the interpretation of

∇µ as a rate of change is neither immediately nor easily intuitive. If we wish to approach

this kind of interpretation, it is necessarily to call upon the definition of parallel transport.

In a flat spacetime, either Euclidean or pseudo-Euclidean, parallel transport of a

vector is trivial. That is different in non-flat spacetime. A classic example of that is the

case of a vector parallel transported on a 2-sphere to the same point along two different

paths. As shown in [51], the vector that results from the parallel transport depends on the

path followed. Given a path xµ(λ) it is useful to define the directional derivative

D

dλ
= dxµ

dλ
∇µ . (1.6)

Bearing this in mind, we shall say that a tensor is parallel transported along a path xµ(λ)
if the application of the directional derivative on the tensor gives zero. Then, instead of

relating the covariant derivative to a rate of change, we use the directional derivative (1.6)

to represent the variation that would suffer the tensor T if it would be parallel transported

along a path.

After having defined the directional derivative we are able to discuss geodesics. A

geodesic is defined as a curve along which its own tangential vector is parallel transported.

Thereby, a curve xµ(λ) with the tangent vector dxµ/dλ, will be a geodesic if:

D

dλ

dxµ

dλ
= 0 ,
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or in a more explicit way

d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
= 0 . (1.7)

Equation (1.7) is dubbed the geodesic equation and is particularly important as non-

accelerated test particles follow geodesic paths, i.e. observers in free fall follow geodesics.

Using the four-velocity of a test particle Uµ = dxµ/dλ, we can cast (1.7) as

Uα∇αU
µ = 0 , (1.8)

which could be trivially repeated using the four-momentum pµ = mUµ. Also, it is possible

to obtain the geodesic equation by means of the variational principle applied to the

functional form of the proper time with respect to the metric.

The path that one follows when parallel transported matters, this leads to think

that the order in which the covariant derivatives act on a vector matters as well, i.e. the

commutator [∇µ,∇ν ]V γ is not trivial. Formally, and in absence of torsion, this commutator

is defined by

[∇µ,∇ν ]V γ = Rγ
αµνV

α , (1.9)

where Rγ
αµν is the Riemann tensor. Thus, it is not a surprise that the mathematical

entity that quantifies the curvature of the spacetime, Rγ
αµν , comes from definitions such as

parallel transport or covariant derivative. Once the covariant derivative is uniquely defined,

i.e. the connexion is strictly the Christoffel symbols, the Riemann tensor is [51]

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (1.10)

Besides the Riemann tensor, there are others quantities used to describe the curvature

of spacetime. Two of most used are the Ricci tensor Rµν = Rλ
µλν and the Ricci scalar

R = Rα
α. Here, it is important to mention some properties of Riemann tensor.

The Riemann tensor is antisymmetric both in its first two indices as in its last two

indices,

Rρσµν = −Rσρµν ,

Rρσµν = −Rρσνµ ,

also it obeys

Rρσµν = Rµνρσ ,

which takes to

Rρσµν +Rρµνσ +Rρνµσ = 0 .

However, the most important property of the curvature tensor is the Bianchi identity,

which states

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 . (1.11)
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Using the definition of the Ricci tensor, the Ricci scalar and some of the properties above,

we can recast the Bianchi identity (1.11) [51] as

∇µRαµ = 1
2∇αR . (1.12)

This form of the Bianchi identity will be important later.

The previous review is far from being a rigorous and complete description of

spacetime geometry, but we consider it a sufficient discussion for the purposes of this work.

Softicated, rigorous and complete descriptions of this physical-mathematical formalism

can be found in the literature, for instance [41, 50, 51].

1.1.2 Equivalence principle

The weak equivalence principle is a cornerstone of Newton laws. It states that,

for any object independently of its composition, the inertial mass – that quantifies the

resistance of a body against changes of its current state of motion – is equivalent to the

gravitational mass – which is proportional to gravitational force according to the laws

of universal gravitation. Then, the behavior of trajectories that bodies in free fall follow

is universal and independent of the bodies’ composition. There is no such thing as a

gravitationally neutral body and all bodies interact in the same way with gravity. Thus,

in tiny regions of space-time, the movement of particles in free fall is the same both in a

gravitational field and in a uniformly accelerated frame.

Einstein proposed an extension of the weak equivalence principle, known as Ein-

stein’s equivalence principle. It establishes that it is not possible to detect the existence

of a gravitational field by local experiments in small regions of space-time, where laws of

physics reduce to laws of special relativity [51]. Roughly speaking, space-time is always

locally Minkowski space-time. Einstein’s equivalence principle shows a similarity with

Gauss’ axiom, that states that at any point in a curved space one can build a coordi-

nate system which is locally Cartesian and it is governed by Pythagora’s laws [41]. This

connection among family of paths and gravity suggests an intrinsic relationship between

the geometry of the space-time and gravity. Consequently, to incorporate these ideas it is

necessary a mathematical structure consistent with them. Such mathematical structure,

as we discussed before, is associated with differential manifolds.

Both the weak and Einstein’s equivalence principles have been largely tested by

experiments. Perhaps the most famous was the one performed by Loránd Eötvös. The

original experiment of the austro-hungarian physicist consisted in a torsion balance with

two weights of wood and platinum. He obtained that the difference between inertial and

gravitational mass was less that 10−9 [52]. After Eötvös’s measurements more experiments

were performed, including more sophisticated and accurate methods, see [53] and references

therein. For instance, Baeßler et al.[54] use data from lunar-ranging to constraint the
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deviation to 1.3× 10−13 and Schlamminger et al.[55] use a torsion balance with test bodies

of beryllium and titanium to found a deviation about 10−15.

1.1.3 Einstein equations

Einstein equations are the main result of the theory of general relativity and they

can be obtained in different ways. One of the most elegant way is through the Lagrangian

formalism with Hilbert-Einstein action

SH [g] = 1
2κ2

∫
R
√
−g d4x , (1.13)

where κ2 = 8πG, G is the universal gravitational constant, g = det[gµν ] and R the Ricci

scalar. Thus, using the principle of least action

δSH = 0 ,∫ √
−ggµνδRµν d

4x+
∫ √

−gδgµνRµν d
4x+

∫
δ
√
−ggµνRµν d

4x = 0 . (1.14)

The first term on the left-hand side of the previous equation, related to δRµν , will become

a boundary contribution at infinity which will be set to zero, due to Stokes’s theorem

and the compatibility of metric [51]. In contrast, the last term shall give an important

contribution to the Einstein equations. Using the property of the determinant of a matrix

ln g = Tr(ln gµν), we have

δ
√
−g = −1

2
√
−ggµνδgµν . (1.15)

Thus, replacing (1.15) in equation (1.14) we arrived to Einstein equations

Rµν −
1
2Rgµν = 0 . (1.16)

Note that an important step in the derivation of (1.16) was the assumption of a

compatible metric; this allows to avoid the first term. The application of the principle of

least action under the assumption of ∇αgµν = 0 is dubbed metric formalism. However, it

is possible to drop the compatibility of the metric and perform the Palatini formalism.

Differently from the metric formalism, in Palatini formalism the connection is not assumed

to be the Cristhoffel symbols (1.4) and hence the Ricci tensor does not depend on the

seconds derivatives of metric. Surprisingly, variation of SH using the Palitini formalism

also leads to Einstein equations, leading more naturally to the compatibility of metric.3

Variation of (1.13), both by metric and Palatini formalism, takes us to Einstein equations

in vacuum (1.16), given that only the gravity action was considered. Einstein equations in

presence of matter fields will be obtain from the general action

S[g,Ψ] = SH [g] + SM [g,Ψ] , (1.17)
3 This could be not true in modified gravity models, for instance, in f(R) models [56, 57].
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where Ψ represents the matter fields. Thus, we shall have

Gµν ≡ Rµν −
1
2Rgµν = 8πG

c4 Tµν , (1.18)

where Gµν is called Einstein tensor and the energy-momentum tensor is defined by

Tµν = −2 1√
−g

δSM
δgµν

. (1.19)

Equation (1.18) shows explicitly the relation between matter and geometry. The left

hand-side depends on the curvature tensor, metric and curvature scalar, therefore it is

identified as the geometry of space-time. On the other hand, the right-hand side has the

energy-momentum tensor that is built from SM and represents the matter distribution on

space-time. Then, space-time geometry is disturbed by the presence of matter and this

will have a dynamics governed by space-time geometry.

In addition to Einstein equations we have another set of equations, the equations

of conservation of matter and momentum. The laws of conservation in general relativity

becomes ∇µTµν . From equation (1.12) it is obvious that

∇αGαν = ∇αRαν −
1
2g

αν∇αR = 0 , (1.20)

so that, due to Einstein equations, we get the law of conservation of matter and momentum,

∇µT
µν = 0.

1.1.4 Cosmological constant

The history of the cosmological constant is comparable to the ugly duckling story.

It appeared for the first time in 1917, when Einstein introduced the first cosmological

model in the framework of general relativity [58]. The cosmological constant was included

by Einstein in order to obtain a static and finite universe, which could not otherwise be

found using the field equations. Although this model failed in the attempt to represent our

universe [59], the cosmological constant Λ plays a important role in the current standard

cosmological model.

The cosmological constant can be introduced in the fields equations through the

action:

SH = 1
2κ2

∫
(R− 2Λ)

√
−g d4x , (1.21)

which leads to reshape Einstein’s equations according to

Rµν −
1
2Rgµν + 2Λgµν = 8πGTµν . (1.22)

The cosmological constant can be interpreted as an intrinsic constant of the gravitational

theory or as vacuum energy. This last because it has a parameter of equation of state equal

to −1 (see Section ??), which coincides with the parameter of vacuum according quantum

field theory. Some aspects of Λ deserve a deeper discussion, for an extensive discussion

about cosmological constant see [60, 61].
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1.2 STANDARD COSMOLOGY

The basis of standard cosmology lies on general relativity and so the dynamics of

universe is governed by Einstein equations. Nevertheless, dynamics is not completely fixed

by the theory of general relativity, so we need to take other considerations. In the present

section we will discuss which are the considerations that have to be take into account to

fully define the cosmological context.

1.2.1 Cosmological principle and the FLRW metric

The cosmological principle says that at large scales the universe is spatially homoge-

neous and isotropic (or isotropic at all points), pragmatically: we do not occupy a privileged

place in the universe. This means, space-time has a maximally symmetric subspace, or

said in a more attractive way for physicists, hypersurfaces of space-time at a given time

t = t0 are maximally symmetric. According to the theory of maximally symmetric spaces,

summarized in the Appendix A, the metric that satisfies the cosmological principle is given

by (A.7). Considering the coordinates t, r, θ e φ, we are able to write

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
]
, (1.23)

where we defined a2(t) = f(t) (see Appendix A) and k takes values according to

the curvature of the maximally symmetric sub-space

k =


+1 spherical sub-space K > 0 ,
0 Euclidean sub-space K = 0 ,
−1 hyperbolic sub-space K < 0 .

(1.24)

This metric is known as the Friedmann-Lemâıtre-Roberson-Walker metric or simply FLRW

metric. It is worth to point out that if two metrics have the same symmetries, the same

value to K and the same numbers of positive and negative eigenvalues is always possible to

find a coordinate transformation that leads from one to the other [41]. This guarantees that

the FLRW metric is the unique metric that describes a universe in which the cosmological

principle is valid.

Homogeneity and isotropy of the universe can be tested to find at which scale can

be applied the cosmological principle. For instance, Beisbart[62] show that data coming

from the CMB, the X-ray background, radio sources and the Lyman-α support very well

the cosmological principle at scales of ∼ 100− 1000h−1, where h is the Hubble constant

normalized to 100 km s−1 Mpc−1. Gonçalves et al.[63] besides showing that BAO data are

in good agreement with the cosmological principle, he proclaims that scale of homogeneity

is about 70−150h−1 Mpc. Despite the several data supporting the cosmological principle, it

has been questioned if it is justified to assume its validity [62] and it has been discussed the
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philosophical problems related to its status [39]. Here, we consider that the cosmological

principle is valid at scales larger than & 100 Mpc.

1.2.2 Friedmann equations

Once the cosmological principle is assumed, quantities corresponding to geometry

are fixed and, hence, the left-hand side of the Einstein equation is completely determined.

However, to obtain the differential equations related to cosmological dynamics we should

specify the right-hand side of (1.18), i.e. the energy-momentum tensor Tµν . In the present

case, the energy-momentum tensor for a homogeneous and isotropic universe is the energy-

momentum tensor for a perfect fluid, which is:

Tµν = (ρ+ p)UµUν + pgµν , (1.25)

where Uµ is the four-velocity of fluid, p is the pressure and ρ the energy density. For a perfect

fluid it is often used a barotropic equation of state (hereafter, EoS) with the functional

form p = wρ, where w is named the EoS parameter, or simply the EoS. Conservation of

energy and momentum lead to the continuity equation:

ρ̇+ 3H(ρ+ p) = 0 , (1.26)

ρ̇+ 3H(1 + w)ρ = 0 . (1.27)

Using (1.18), (1.23) and (1.25) we have

H2 = 8πG
3 ρ− k

a2 , (1.28)

ä

a
= −4πG

3 (ρ+ 3p) , (1.29)

where H(a) is the Hubble parameter, defined as H = ȧ
a
. Also it is possible to obtain the

Friedmann equations with the cosmological constant. For that, we will have to use (1.22)

instead to (1.18):

H2 = 8πG
3 ρ+ Λ

3 −
k

a2 , (1.30)

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 . (1.31)

As we have mentioned earlier, the cosmological constant can be interpreted as an intrinsic

constant of gravity or a vacuum energy—a component of the perfect fluid. So, consider

equation (1.22), if the term related to Λ is put on the right-hand side we could define

TΛ
µν = − Λ

8πG gµν , (1.32)
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and taking into account the definition of the energy-momentum tensor for a perfect fluid,

one has

ρΛ = Λ
8πG , (1.33)

pΛ = − Λ
8πG . (1.34)

From these equations it is easily to note that wΛ = −1. The EoS to the cosmological

constant matches the EoS of the vacuum, according to quantum field theory. Thus, the

cosmological constant is often dubbed vacuum energy. It is worth noting that (1.28) is

named the Friedmann equation, while (1.29) is known as the acceleration equation, this

due to the fact that the sign on the right-hand side of equation (1.29) will define whether

the universe has an accelerated or decelerated expansion. Specifically, just a component

with w < −1/3 is able to accelerate the expansion of the universe, this will be important

for dark energy models. We will not distinguish between Friedmann equations with and

without cosmological constant because they are equivalent under the definition of ρΛ and

pΛ.

We define the critical density as the energy density that is necessary to obtain an

euclidean sub-space k = 0:

ρcri ≡
3H2

8πG .

From this definition we can define the density parameter, which is

Ω ≡ ρ

ρcri
= 8πG

3H2 ρ , (1.35)

and recast equation (1.28) as

1 = Ω− k

a2H2 . (1.36)

Note that in the case of a flat universe, i.e. k = 0, the total parameter energy density is

constrained to be 1.

1.2.3 The expanding universe and the Hubble law

The idea of an expanding universe is very well supported by data. Also, it is

compatible with the cosmological principle and its FLRW metric, which features the effect

of expansion through the scale factor a(t). The expansion of the universe implies that not

only the scale factor is a function of time, but also that it increases with time, i.e. at early

times a < a0. Thus, because the scale factor plays an important role in the FLRW metric,

distances are obviously affected by the expansion. Distances in the context of an expanding

universe are not trivial and deserve a special discussion, which is showed in Appendix B.

Observations unveil that we are living in an expanding universe and hence we can

see galaxies receding from us. The rate of expansion is quantified by the Hubble parameter
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H(a), which determines how fast the scale factor increases. To determine how the Hubble

parameter (or the scale factor) evolves with time we have to know the energy density of

the universe and use the Friedmann equations. Particular is the case of the current value of

H(a), named Hubble constant H0, whose value can be determined in a model independent

way.

The universe is composed of different large structures, such as galaxies, clusters

and others, which are very far from us. Because we live on the Earth, we are only able to

observe cosmological structures from our position, i.e. we are limited to study them by their

emitted radiation. Before the detection of gravitational waves, we observed the universe

mainly through electromagnetic radiation.4 However, the first direct detection of gravi-

tational waves, performed by LIRGO/Virgo collaborations (GW150914 [64], GW151226

[65], GW170104 [66], GW170814 [67] and GW170817 [68]) changed the paradigm and

opened a new window on cosmology (and physics in general). Despite of that, most of the

information continues to be provided by photons.

Light emitted, for instance, by a galaxy is stretched out due to the expansion of

the universe, and is observed at a wavelength λo larger than the emitted one λe. This leads

us to define a parameter that quantifies this stretching [69],

z ≡ λo

λe

− 1 , (1.37)

which is named redshift. The geodesic equations allow us to show that photon energy is

inversely proportional to the scale factor. As photon energy is also inversely proportional

to its wave length, it is easily to show:

z = a0

a
− 1 ,

where a corresponds to the scale factor of λemit and a0 to λobs. The current value of the

scale factor, a0, is often normalized to 1, we will follow this choice.5

Hubble law provided the first observational and most direct evidence of the ex-

pansion of the universe. Although there is a discussion about whether it is correct to

attribute the discover to Edwin Hubble, there is nothing we can do to remove its name

from the Hubble law. Instead, we can say that the discovery of the Hubble law resulted

from the efforts of several physicists, such as: Lemâıtre[70], Slipher[71], Lundmark[72] and,

finally, Hubble[3] himself. For a thorough discussion of the discovery of the Hubble law

see [73, 74, 75] and references therein. The Hubble law states that the radial velocity v of

an object, for instance a galaxy, away from us is directly proportional to the distance d,

where the slope is given by H0:

v = H0 d . (1.38)

4 Cosmic rays coming from galactic and extra-galactic sources are also observed.
5 There is not a problem in setting a0 = 1, because we do not measure it directly, rather, we measure,

for instance, H0 which is invariant under the scale transformation of a.
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Note that d is the physical distance and, at z � 1, the recessional velocity v ≈ cz. Hubble

used the 100-inch Hooker telescope to measure the distances to 24 galaxies, belonging

to the Local Group and the Virgo cluster, and employed published radial velocities to

determinate H0 = 500 km s−1Mpc−1 [3], which can be inferred by Figure 1. Units of

Hubble constant are given in km s−1Mpc−1, it means a galaxy at 1 Mpc away from us

has a velocity v = 100h km s−1, while a galaxy at 20 Mpc away from us has velocity

v = 2000h km s−1.6

Figure 1 – Hubble diagram from [3].

The use of the Hubble law to determinate H0 consists, basically, in measuring

distances and velocities. The latter, at z � 1, can be easily determined from redshift

v ≈ cz, where we have assumed the effect of peculiar velocities as negligible; the real

problem lies in determining distances. Thus, the challenge to get an accurate value of H0

is actually the challenge to get an accurate d. Nowadays, we are using several methods

to measure distances, among them we can mention: Cepheid distance scale, tip of the

Red Giant Branch method, Faber-Jackson relation, Tully-Fisher relation and type Ia

Supernovae.7 The most accurate and current measurement of the Hubble constant is

provided by Riess et al.[1]:

H0 = 73.24± 1.74km s−1 Mpc−1 . (1.39)

Besides the Hubble law, there are other ways to constraint H0. Due to the Friedmann

equation (1.28), cosmological quantities such as distances depend on H0. Thus, cosmological

observations, such as the CMB [6], gravitational time delays [14], BAO [15] and recently

6 Remember that is often used the dimensionless h instead H0, considering the relationship H0 =
100h km s−1Mpc−1.

7 See [76, 9], and references therein, for detailed descriptions of some of these methods.



Chapter 1. Standard cosmology and the concordance model 30

gravitational waves [16], also are able to measure H0. Perhaps, the most important is the

most recent estimation from Planck [2]

H0 = 66.93± 0.62km s−1 Mpc−1 . (1.40)

1.3 THE ΛCDM MODEL

The ΛCDM model is often dubbed the concordance model, due to the large level

of agreement with the observations, see for instance Figure 2. It is composed of three

kinds of material components: non-relativistic matter (baryons and cold dark matter),

radiation (photons and massless neutrinos) and dark energy, represented by Λ. Each of

these components contributes in a particular way to the dynamics of the universe. Despite

that ΛCDM can show a well agreement with the data, the physics behind it is not fully

understood. Perhaps, the most mysterious components are the dark energy and the dark

matter, altogether called the dark sector of the universe. The standard cosmological model

has six free parameters that are not fixed by theory but rather by observations, these

parameters are showed in Table 1.

Figure 2 – ΛCDM show a good agreement with cosmological data, in this cases data
corresponding to SNe Ia, BAO and CMB. One can see that inference about
cosmological parameters, ΩΛ − Ωm, are in concordance to experiments of
different nature. Although this figure does not correspond to recently analysis,
it is useful to illustrated concordance in ΛCDM. This figure is from [4].
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In the present section, we review the cosmological concordance model. First, we

show the properties of its components and the background dynamics. Then, we will discuss

briefly the ΛCDM model at level of perturbations focusing on results that will be important

for the scope of this work. It is worth mentioning that data constrain Ωk0 ≡ k
a2

0H
2
0
≈ 0 [6].

Therefore, hereafter, we will consider a flat universe.

Parameter Value constraints [6]
Ωbh

2 0.0223± 0.00014
Ωch

2 0.1188± 0.0010
100θ 1.04093± 0.00030
τ 0.066± 0.012

ln (1010As) 3.064± 0.023
ns 0.9667± 0.0040

Table 1 – The 6 free parameters of ΛCDM: baryon energy density Ωbh
2, cold dark matter

energy density Ωmh
2, angular diameter distance to sound horizon at last scatter-

ing θ, reionization optical depth τ , amplitude As and tilt ns of primordial scalar
fluctuations. We also show the latest constraints by the Planck satellite [6].

1.3.1 Radiation

Radiation, or relativistic matter, consists of photons and massless neutrinos.8

Radiation has a parameter EoS wr = 1/3, which according to the conservation of energy

and momentum gives:

ρ̇r + 4 ȧ
a
ρr = 0 ,

ρr(a) = ρr0a
−4 ; (1.41)

or using the density parameter:

ρr(a) = 3H2
0

8πGΩr0a
−4 ,

Ωr(a) =
(
H0

H

)2

Ωr0a
−4 , (1.42)

where the subscript r refers to radiation. Roughly speaking, the energy density is the total

energy in a unit of volume. Thus, if the energy is constant, energy density should obey

ρ ∝ a−3, as the volume is proportional to a3. However, as one can see from (1.42), this is

not true for radiation. The extra a−1, in the behavior of ρr, comes from the fact that the

energy of a photon decreases with the scale factor a due to the expansion of the universe

(as we have already pointed, this can be demonstrated by geodesic equations).

8 Although neutrino flavour oscillations suggest the existence of massive neutrinos, we follow the Standard
model of particles, which consider massless neutrinos species. For a thorough discussion of neutrinos
see [77, 78].
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Now, consider a flat universe (k = 0) dominated by radiation ρ = ρr0a
−4. Thus,

from the Friedmann equation (1.28)(
ȧ

a

)2

= 8πG
3 ρr0a

−4 ,

⇒ a ∝ t1/2 . (1.43)

1.3.2 Matter

In the ΛCDM model, the matter sector is composed by baryons and cold dark

matter. The baryons are very well known and described by Standard Model of particles,

while cold dark matter has still an unknown nature.9 Matter, or non-relativistic matter, is

expected to have a negligible pressure, and so wm = 0. Note that a negligible pressure does

not guarantee an EoS equal to zero, but rather it sets wm � 1. However, it is useful to

pragmatically approximate it to zero. Thus, due to conservation of energy and momentum

˙ρm + 3 ȧ
a
ρm = 0 ,

ρr(a) = ρr0a
−3 , (1.44)

or using the density parameter:

ρm(a) = 3H2
0

8πGΩm0a
−3 ,

Ωm(a) =
(
H0

H

)2

Ωm0a
−3 , (1.45)

where the subscript m refers to matter. In this case, as expected, matter follows ρ ∝ a−3.

Note that Ωm = Ωb + Ωc, where subscripts b and c represent baryons and cold dark matter,

respectively.

In analogy to the radiation case, we consider a flat universe dominated by matter.

So, the Friedmann equation (1.28) gives:(
ȧ

a

)2

= 8πG
3 ρr0a

−3 ,

⇒ a ∝ t2/3 . (1.46)

1.3.3 Dark Energy

The last, but not less important, component of our universe is the dark energy.

Contrary to its already mentioned birth [58], Λ is not used to address a static universe

but rather an accelerated expanding universe. As already discussed, the parameter of the

9 It has also been considered the existence of warm and hot dark matter [79]. For extensive reviews
concerning dark matter see [80, 81].
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EoS of the cosmological constant is wΛ = −1. Also, the energy density ρΛ and pressure pΛ

were already defined by (1.33) and (1.34), respectively.

Unlike radiation and matter, the energy density of dark energy, in the ΛCDM

context, does not dependent on scalar factor and hence it remains constant in time. As we

see later, this will be problematic for ΛCDM. Considering k = 0 and a universe dominated

by Λ, we obtain: (
ȧ

a

)2

= Λc2

3 ,

⇒ a = exp
√

Λ
3 ct . (1.47)

1.3.4 Background dynamics

As the universe is expanding (ȧ > 0), at early times a < a0 = 1. Equations (1.44),

(1.41) and (1.33) say which density energy decreases faster, slower or remains constant.

Consequently, the background dynamics of universe will consist basically of three stages: a

radiation dominated era, a matter dominated era and a dark energy dominated era.10

To understand background evolution, we should use the Friedmann (1.28) and

acceleration (1.29) equations, with the total energy density ρT = ρr + ρm + ρΛ. Therefore,

according to (1.44), (1.41) and (1.33), we have:

E2(a) = Ωm0a
−3 + Ωr0a

−4 + ΩΛ0 , (1.48)

q(z) = 1
2 [Ωm(z) + 2Ωr(z)− 2ΩΛ(z)] , (1.49)

where we have defined the nomalized Hubble rate E(a) ≡ H(a)/H0 and the deceleration

parameter q ≡ −äa/ȧ2. The parameter q is particularly important because it determines if

the universe is accelerating, q < 0, or decelerating, q > 0. Note that, though ρΛ is constant,

ΩΛ is not, due to the Hubble parameter. Thus, ΩΛ 6= ΩΛ0.

To solve (1.48) and (1.49) we need to know the initial conditions, which will be

given, in this case, at the present time by Ωm0, Ωr0 and ΩΛ0. For instance, observations

of SNe Ia give Ωm0 = 0.295 [83], for a flat ΛCDM universe. While observations of the

CMB, obtained by the Planck collaboration, yeld Ωm0 = 0.3089, Ωr0 = 5.38916 × 10−5

and ΩΛ0 = 0.691046 [6]. We adopted these Planck results as initial conditions.

Figure 3 shows the background evolution of each component as a function of redshift.

It is easy to note the three stages of the universe. At high redshift, the dynamics of the

universe is dominated by radiation. Later, the contribution of matter becomes important

10 A rigorous discussion requires the inclusion of another stage of accelerated expansion, which occurs at
very early times and is dubbed inflation. Inflation is out of the scope of this work; for an extensive
review see [82].
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and at zeq we have Ωm(zeq) = Ωr(zeq), the epoch of matter-radiation equality. The redshift

of equality is formally defined as zeq = (Ωm0/Ωr0)− 1. Thus, the universe enters the era

dominated by matter, during which the cosmological structures that we see form. Finally,

we arrive at the current state of the universe, the accelerated expansion. Dark energy will

drive the accelerated expansion at later times.
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Figure 3 – Background evolution of dark energy ΩΛ, cold dark matter Ωc, baryons Ωb

and radiation Ωr in a ΛCDM universe. Vertical line point out the equivalence
redshift, here zeq ∼ 3370.

On the other hand, we have computed the Hubble rate and the deceleration

parameter according to (1.48) and (1.49), respectively, see Figure 4. At z > 1, the universe

is decelerating. This because the dark energy does not yet contribute and the EoS of both

matter and radiation are not able to cause an accelerated expansion. Later, at z < 1 the

cosmological constant starts to play an important role, as we see from Figure 3. Note that

the change of sing on the deceleration parameter, occurs at z ∼ 0.643.

1.3.5 Evolution of perturbations

In this section we will use conformal time, η =
∫
dt/a, instead of cosmic time t.

Derivatives respect η will be denoted by ′ and we define the Hubble parameter in conformal

time as H ≡ a′

a
= aH. Thus, it is easily to show that the Friedmann (1.28) and acceleration

(1.29) equations, in conformal time, are

H2 = 8πG
3 ρa2 , (1.50)

H′ = −4πG
3 (1 + 3w)ρa2 . (1.51)
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Figure 4 – Left panel: Hubble rate as function of redshift (or scale factor) to ΛCDM
model. Right panel: Deceleration parameter on function of z (or a). The
vertical and horizontal dashed line indicate when the deceleration becomes
negative, in this case is estimated z ∼ 0.643.

The universe seems homogeneous and isotropic at large scales. Despite of that, we

cannot avoid to note that, at non-cosmological scales, this homogeneity and isotropy is

broken. That is, the universe is full of structures such as galaxies, galaxy clusters, voids

and filaments, and if we study them at scales of a few Mpc we will not be able to infer that

we live in a homogeneous and isotropic universe. Although we embraced the cosmological

principle, we must be aware that it is necessary to describe deviations from a homogeneous

and isotropic background. This can be done through a very useful mathematical structure,

perturbation theory. General relativity allows us to use the theory of perturbation not only

to study cosmological perturbations but also, for instance, to study gravitational waves

and black holes.

Cosmological perturbation theory is built under the assumption that the general

metric is composed by the FLRW metric plus a small deviation. That is:

gµν = gµν + δgµν , (1.52)

where gµν is the background metric, in this case FLRW metric, and δgµν is the small

deviation. We will use the over line of a quantity to label that as a background quantity.

Also, δgµν is small in sense that it is much smaller than gµν . Here, we aim at obtaining

the perturbed Einstein equations, which are:

δGµν = 8πGδTµν ,

δRµν −
1
2δgµνR−

1
2gµνδR = 8πGδTµν . (1.53)

First, we shall concentrate on the geometric part, δGµν . Subsequently, we will address the

matter side, δTµν .

Although the basic statement of cosmological perturbation theory, equation (1.52),

seems very simple and trivial, there is something about it that has to be discussed. The
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metrics gµν and δgµν are not defined on the same manifold. Then, in order to be possible to

write (1.52), it is necessary to define a map between both manifolds. However, a problem

arises, this map is not uniquely defined, and, therefore, perturbations will be dependent on

the map that one chooses. This is problem is known as the gauge problem. A pragmatical

solution to the gauge problem is to define gauge invariant quantities. Before arguing about

gauge invariant perturbations it is useful to define the perturbed metric.

The background metric, gµν , will be the FLRW metric. Thus, the most general

perturbed metric of FLRW is

δgµν = a2

(
−2ψ (η, ~x) wi (η, ~x)
wi (η, ~x) 2φ (η, ~x) δij + hij (η, ~x)

)
, (1.54)

where ψ and φ are scalars, wi is a 3-vector and hij is traceless a 3-tensor [84]. For the sake

of simplicity, we will write only ζ instead of ζ (η, ~x), where ζ represents a perturbation

quantity, such as ψ, φ, wi or hij. Although δgµν is the most general perturbed metric to a

homogeneous and isotopic universe, it can be decomposed in a more useful form using the

scalar-vector decomposition (hereafter, SVT decomposition).

Lifshitz was the first to performe SVT decomposition [85]. He used Helmholtz’s

theorem to recast (1.54), considering that it can be separated in scalar, vector and tensor

perturbations. For instance, we can decompose wi as:

wi = w
‖
i + w⊥i ,

where it is imposed εijk∂jw
‖
k = ∂iw⊥i = 0. Also, by Stokes theorem one has w

‖
i = ∂iE.

Therefore, the vector wi can be rewritten as

wi = ∂iE + Si , (1.55)

where Si ≡ w⊥i . One can apply the same procedure to hij so that:

hij =
(
∂i∂j −

1
3δij∇

2
)
B + ∂iAj + ∂jAi + hTij , (1.56)

where E and B are scalar perturbations, Si and Ai are vector perturbations and hij is a

tensor perturbation. Here, vector perturbations are solenoidal, i.e. ∂kSk = ∂kAk = 0, and

tensor perturbations are traceless hkk
T = 0. The importance of the SVT decomposition

lies in the fact that, if one considers perturbations at first order, the different kinds of

perturbations will not be coupled and we shall able to track their evolutions, one by one

independently.

Both tensor and vector perturbations are important in cosmology, for instance, to

study gravitational waves or topological defects. However, we shall only focus on the scalar

perturbations.11 Considering only scalar cosmological perturbations Si = Ai = hTij = 0,

11 See [86] for a discussion about the three kinds of perturbations.
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then one has

δgµν = a2

(
−2ψ ∂iE

∂iE 2φδij +
(
∂i∂j − 1

3δij∇
2)B

)
. (1.57)

Now, in order to fix completely the gauge, we choose E = B = 0. Thereby, we will have

the perturbed metric in the Newtonian (or longitudinal or shear-free) gauge [84]:

ds2 = a2 (η)
[
− (1 + 2ψ) dη2 + (1 + 2φ) δijdxidxj

]
. (1.58)

Gauges invariant quantities are built in order to tackle the gauge problem. For the

case of geometry one usually uses the Bardeen’s potentials [87], which are:

Ψ = ψ + 1
a

[(
E + B′

2

)
a

]′
,

Φ = φ+H
(
E − B′

2

)
− 1

6∇
2B .

It is easy to note that in the Newtonian gauge the Bardeen’s potentials are the potentials of

the metric, i.e. Ψ = ψ and Φ = φ. We will assemble the Einstein equation using Bardeen’s

potentials. So far, we have used “φ” to represent the gravitational potential. Henceforth,

we will use only the Bradeen’s potentials Φ and Ψ. Later on we will use “φ” to represent

the scalar field of coupled quintessence models.

Given (1.58), we are able to compute δGµν . For that, we have to use the perturbed

version of (1.4) and (1.10), which are:

δΓµνλ = 1
2δg

µα (∂λgαν + ∂νgαλ − ∂αgνλ) + 1
2g

µα (∂λδgαν + ∂νδgαλ − ∂αδgνλ) ,

δRµν = ∂αδΓαµν − ∂νδΓαµα + δΓαµνΓ
β
αβ + ΓαµνδΓ

β
αβ − δΓαµβΓβαν − ΓαµβδΓβαν .

Thus, the components of Einstein tensor are:

δG0
0 = 2a−2 [3H (HΨ− Φ′) +∇2Φ

]
, (1.59)

δG0
i = 2a−2∂i (Φ′ −HΨ) , (1.60)

δGi
j = 2a−2 [(H2 + 2H′

)
Ψ +HΨ′ − Φ′′ − 2HΦ′

]
δij

+ a−2 [∇2 (Ψ + Φ) δij − ∂i∂j (Ψ + Φ)
]
. (1.61)

Now, we shall focus on δTµν .

Before showing the perturbed energy-momentum tensor it is useful to define the

density contrast ρ and the velocity divergence θ. They are defined as:

δ ≡ δρ

ρ
, (1.62)

θ ≡ ∂iv
i , (1.63)
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where vi = dxi

dη
is the peculiar velocity, which comes from the definition of the four-velocity

Uµ =
[

1
a

(1−Ψ) , v
i

a

]
. (1.64)

Also, the sound speed is defined according to:

c2
s ≡

δp

δρ
. (1.65)

Thus, the perturbed energy-momentum tensor for a perfect fluid (1.25), is

δT µν =
[(

1 + c2
s

)
UµUν + c2

sδ
µ
ν

]
δρ+ (1 + w) (δUµUν + UµδUν) ρ . (1.66)

From (1.66) we determine its components

δT 0
0 = −δρ , (1.67)

δT 0
i = (1 + w) ρvi , (1.68)

δT ij = c2
sδ
i
j δρ . (1.69)

We have derived both sides of (1.53). Then, using (1.59)-(1.61) and (1.67)-(1.69),

we arrive to

3H (HΨ− Φ′) +∇2Φ = 4πGa2ρδ , (1.70)

∇2 (Φ′ −HΨ) = −4πGa2 (1 + w) ρθ , (1.71)

Ψ = −Φ , (1.72)

Φ′′ + 2HΦ′ −HΨ′ −
(
H2 + 2H′

)
Ψ = −4πGa2c2

sρδ . (1.73)

This set of equations is the perturbed Einstein equation and each of them has a particular

role in the physics of cosmological perturbations. For instance, (1.70) is called the relativistic

Poisson equation, as in the limit a = 1 and H = 0 it becomes to the Newtonian Poisson

equation. It relates directly the matter distribution to the gravitational potentials. On

the order hand, equation (1.72) comes from the anisotropic stress of Tµν , which is often

represented by πµν . We have approached the Einstein equations using a perturbed perfect

fluid and so πµν = 0. This is completely valid for the aim of this work, but we have to be

careful. At early times, neutrinos and photons cause anisotropic stress due their quadrupole

moments [69]. Also, finding any deviation from Ψ = −Ψ have become an important test

for physics beyond ΛCDM [88, 8]. Finally, (1.73) is related to pressure perturbations.

Besides the perturbed Einstein equation, we can derive the perturbed conservation

equation (1.27) by calculating δ (∇µT
µ
ν ) = 0:

δ (∇µT
µ
ν ) = ∂uδT

µ
ν − δΓανβT βα − ΓανβδT βα + δΓαβαT βν + +ΓαβαδT βν . (1.74)

For ν = 0 (1.74) becomes:

δ′ + 3H
(
c2
s − w

)
δ = − (1 + w) (θ + 3Φ′) , (1.75)
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which is called the perturbed continuity equation. On the other hand, if ν = i, we get

θ′ +
[
H (1− 3w) + w′

1 + w

]
θ = −∇2

(
c2
s

1 + w
δ + Ψ

)
, (1.76)

which is the perturbed Euler equation. We can see that most of equations (1.59)-(1.76)

have both spatial and temporal derivatives. So, in order to simply the treatment we use

the Fourier transformation.

Given a function g(~x), we define its Fourier transform by

g̃(~k) =
∫
g(~x)e−i~k·~xd3x , (1.77)

and, consequently, its inverse as

g(~x) = 1
(2π)3

∫
g̃(~k)ei~k·~xd3k . (1.78)

Thus, to practical effects, performing Fourier transforms means:

g (~x)→ ei
~k·~xg̃(~k) ,

∂ig (~x)→ ikie
i~k·~xg̃(~k) ,

∇2g (~x)→ −k2ei
~k·~xg̃(~k) .

In order to simplify notation, in this chapter, we drop the ˜ of quantities defined in Fourier

space. Tilde will only be used if we need to distinguish between quantities in the real or

Fourier space.

In Fourier space, equations (1.59)-(1.76) are (note that we have used Φ = −Ψ):

k2Φ + 3H (Φ′ +HΦ) = 4πGa2ρδ , (1.79)

k2 (Φ′ +HΦ) = −4πGa2 (1 + w) ρθ , (1.80)

Φ′′ + 3HΦ′ +
(
H2 + 2H′

)
Φ = −4πGa2c2

sρδ , (1.81)

δ′ + 3H
(
c2
s − w

)
δ = − (1 + w) (θ + 3Φ′) , (1.82)

θ′ +
[
H (1− 3w) + w′

1 + w

]
θ = k2

(
c2
s

1 + w
δ − Φ

)
. (1.83)

To track the evolution of perturbations, we should solve this set of equations. As we have

already pointed out, considering (1.66) was an important step to obtain (1.79)-(1.83).

However, we have not specified δTµν . As it happens in the background, we address the

cosmos as a perfect fluid composed of radiation, matter and dark energy. Then, energy

density, density contrast, velocity divergence and the EoS parameter in the perturbed
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Einstein equations (1.79)-(1.81) that represent the total material contributions are

ρT = ρm + ρr + ρΛ ,

δT = Ωmδm + Ωrδr ,

θT = (1 + wm) Ωmθm + (1 + wr) Ωrθr
1 + wef

,

wef = Ωmwm + Ωrwr + ΩΛwΛ .

Instead, due to the absence of interactions between species the relationship δ∇µTµν = 0 is

always true, at least in general relativity, and equations (1.82) and (1.83) are valid for all

material components. It means that the quantities δ, θ, w and c2
s are related to just one

material component. Thus, we have for matter and radiation

δ′m = − (θm + 3Φ′) , (1.84)

θ′m = −
(
Hθm + k2Φ

)
, (1.85)

δ′r = −4
3 (θr + 3Φ′) , (1.86)

θ′r = k2
(
δr
4 − Φ

)
, (1.87)

where we have been used, c2
s = w, which is valid both for matter and radiation.

We can put together the equations previously shown. For example, using (1.79)

and (1.80), one can demonstrate that

k2Φ = 4πGρT
[
δT + 3H

k2 (1 + wef ) θT
]
. (1.88)

Also, using (1.79) and (1.81), we have

Φ′′ + 3H
(
1 + c2

s

)
Φ′ +

[
c2
sk

2 +
(
1 + 3c2

s

)
H2 + 2H′

]
Φ = 0 . (1.89)

Now, using (1.82) and (1.83), we get

δ′′i +H (1− 3wi) δ′i + k2c2
sδi = (1 + wi)

{
−3 [Φ′′ +H (1− 3wi) Φ′] + k2Φ

}
, (1.90)

whenever the subscript is i = {r,m}. Obtaining solutions of these equations is only possible

for particular cases. It means that we have to restrict our study to particularly scales,

such as super-horizon (k � H) or sub-horizon scales (k � H), and for specific epochs of

the universe, for instance, matter-dominated or radiation-dominated epochs. Despite in

this work we have interest in the evolution of perturbations at scales inside the Hubble

radius in the matter-dominated epoch, let us show a brief discussion about the evolution

on super-horizon scales.

By (1.50) and (1.51), we obtain the useful relation 2H′ = − (1 + 3wef )H2. Thus,

Φ′′ + 3H
(
1 + c2

s

)
Φ′ +

[
c2
sk

2 +H2 (c2
s − wef

)]
Φ = 0 ,
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under assumption that c2
s = wef , and for scales outside of Hubble radius (k � H), we have

Φ′′ + 3H
(
1 + c2

s

)
Φ′ = 0 ,

which leads to the solution Φ′ = 0. The hypothesis c2
s = wef is only satisfied during the

radiation- or matter-dominated epochs. In order to clarify this fact, we use the definition

of c2
s and wef which is valid for a radiation-matter fluid, given by

c2
s = 1

3(1 + 3Ωm/4Ωr)
, (1.91)

wef = wrΩr + wmΩm . (1.92)

Asymptotically, one can note that c2
s = wef . For instance, deep into the radiation-dominated

epoch, Ωr → 1, we have c2
s = wef = 1/3. Analogously, when Ωm → 1 it is c2

s = wef = 0.

However, during the equality epoch, where Ωr ∼ Ωm, the situation looks different. We

illustrate c2
s and wef as a function of redshift in Figure 5. In conclusion, for scales k � H,

the gravitational potential remains constant both for the radiation-dominated and matter-

dominated epochs, being this not true for the transition epoch.12 Using the Poisson equation

(1.79), we can also find that δ = const. Therefore, perturbations at scales outside the

Hubble radius, 1/H, do not evolve during matter-dominated and radiation-dominated

epochs.

We now particularize (1.90) to the matter case (wi = 0). Taking into account (1.88),

we have

δ′′m +Hδ′m + k2c2
sδm = −3 [Φ′′ +HΦ′] + 4πGρT

[
δT + 3H

k2 (1 + wef ) θT
]
.

As we have said before, at k � H scales, both Φ and δ remain constant. Here, we investigate

the case of sub-horizon scales, defined by k � H. A limit at sub-horizon scales neglects

the term related to velocity fields θT coming from the Poisson equation. However, it is not

the only term that shall be neglected. The first term on the right-hand side of the last

equation will also be negligible. Using (1.80) and the Friedmann equation (1.50) one has,

under k � H, Φ′′ +HΦ′ ≈ 0. Therefore:

δ′′m +Hδ′m + c2
sk

2δm −
3
2H

2δT = 0 , (1.93)

where we have used again the Friedmann equation (1.50). This is the fundamental equation

in the study of gravitational instability [89]. For example, considering δT = δm, one has

δ′′m +Hδ′m +
(
c2
sk

2 − 3
2H

2
)
δm = 0 ,

in which the behavior of δm will be defined by the sign of
(
c2
sk

2 − 3
2H

2). Matter shall

cluster, δ′m > 0, if the effect of pressure is negligible and so
(
c2
sk

2 − 3
2H

2) < 0. Instead

12 Actually, it is possible to demonstrate that during the transition the potential loses 1/10 of its value
[69].
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Figure 5 – Sound velocity c2
s and wef for a matter-radiation fluid. Red dotted lines are

the values wr = 1/3 and wm = 0. It is easy to note that during the transition
between radiation-dominated and matter-dominated epoch c2

s 6= w.

clustering will be stoped when the pressure is strong enough to be comparable to the force

of gravity. Pressure of non-relativistic matter is negligible and then we expecte that δm

always grows. How fast δm grows will be determined by H2δm (or H2δT , in general).

We are interested in the phase of the universe during which radiation can be

neglected in the δT shown in (1.93). Consequently, we have δT = Ωmδm. Obviously, δΛ = 0,

because ρΛ is constant. It is useful to define the growth rate f(z), given by

f(z) ≡ d ln δm
d ln a , (1.94)

which quantifies how fast matter clusters with respect to the scale factor. Also, we use de

e-fold numbers N ≡ ln a. From dN = Hdη, and using (1.94), we can recast (1.93) as:

df

dN
+ f 2 + 1

2 [1− 3wef ] f −
3
2Ωm = 0 ,

where we have used 2dH/dN = −(1 + wef )H. Finally, we have neglected radiation, i.e.

wef = wΛΩΛ = wΛ(1− Ωm), and hence

df

dN
+ f 2 + 1

2 [1− 3wΛ(1− Ωm)] f − 3
2Ωm = 0 . (1.95)

This equation does not have an analytic solution. Instead one can obtain an approximate

solution using the template f(z) = Ωγ
m. For ΛCDM one has γ ≈ 0.55. We reserve a more

extensive discussion of this equation and its solution for the next chapter.
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So far, we have dealt with the density contrast δ. Now, we discuss the velocity

fields θ. Equation (1.79) for scales inside the Hubble horizon, k � H, is

k2Φ = 4πGa2ρT δT = 3
2H

2δT ,

substituting that in (1.84), we have

δ′m = −θm −
9
2
H2

k2 [δ′T − (1 + 3wef ) δTH] .

At sub-horizon scales, k � H, the last term is negligible and hence

δ′m = −θm .

We have introduced the velocity gradient in (1.63) in order to simply the computation,

but here it is convenient to return to the peculiar velocity vi. Equation (1.63) in Fourier

space becomes θ = iklv
l so that we have

δ′m = −ikjvj (1.96)

or, using the growth rate f ≡ d ln δm/d ln a = δ′m/Hδm:

vj = iHfδm
kj

k2 . (1.97)

While equation (1.96) relates the distribution of matter to the peculiar velocity field,

equation (1.97) shows how the field of peculiar velocity can be computed using the growth

rate f(z). The peculiar velocity is the deviation from the recession velocity due to Hubble

expansion. Likewise to δm, the field of velocities vi becomes important at local scales.

Later, we shall investigate how peculiar velocities could bias the local measurements of H0.

The target of this subsection was to arrive at equations (1.95) and (1.97), which

will be fundamental in the study of the cosmic variance . We have not discussed other

important topics about cosmological perturbations. For instance, using the perturbed

Einstein equations (corrected to πij) together with the Boltzmann equations allow us to

study the spectrum of CMB and thermal history of the universe, see for example [69, 76].

Here, we have based our examination of cosmological perturbations mostly on [84].

1.4 PROBLEMS IN THE STANDARD PARADIGM

Despite the incredible success of the ΛCDM model, some problems, both theoretical

and observational, do affect this cosmological model. For instance: the fine-tuning problem

[90], the coincidence problem [91], the small scales problems [92], the Lithium problem

[93], the CMB anomalies [94] and tensions on the values of parameters such as H0 and
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σ8
13. Although all of them are largely discussed in the literature, we shall focus the ones

that relate to dark energy, that is, the fine-tuning problem and the coincidence problem.

Cosmological observations allow us to constraint the energy density of Λ to the

very small value ρobs
Λ ≈ 10−47GeV4 [6]. The value of vacuum energy should be predicted by

quantum field theory. A problem arises when one compares ρobs
Λ with the value predicted by

quantum field theory, which is ρQTF
Λ ≈ 1076GeV4. The ratio between these is about 10123

(or ∼ 1030 if one considers energy scales). This mismatch between ρobs
Λ and ρQTF

Λ is dubbed

the fine-tuning problem and it would indicate that vacuum energy is not well represented

by ρΛ. Another problem related to dark energy is the so-called coincide problem. In essence,

the coincidence problem questions why the universe is currently dominated by the dark

energy, that is why ΩΛ0/Ωc0 ∼ O(1).

Both the coincidence and fine-tuning problems are often used to attack the ΛCDM

model. In fact, both problems are interconnected: solving the fine-tuning problem could

help explaining why ΩΛ0/Ωc0 ∼ O(1), see for example [95]. Although the fine-tuning

problem could be the biggest problem of ΛCDM, some authors point out that there is

not nothing relevant behind the ratio ρQTF
Λ /ρobs

Λ ∼ 10123, and that this problem concerns

quantum field theory rather than cosmology [96].

13 Strictly speaking, tensions are not yet problems of ΛCDM. We will discuss this later.
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2 Beyond the cosmological constant

As we have already pointed out before, the cosmological constant is the first (and

perhaps the simplest) attempt to explain the accelerated expansion of the universe. We

can put Λ on the right-hand side or left-hand side of Einstein equations, consider it as a

material component or a geometrical feature. In fact, this ambiguity is inherent to most of

the dark energy models; modifying Tµν or Gµν can lead to equivalent models. Summarizing,

to tackle the accelerated expansion of the universe we can either modify gravity or add a

new material component.

The number of dark energy models that have been proposed could be found scary.

They do not only quantify our scientific enthusiasm, but they also reflect the level of our

ignorance. Among them, we can mention: quintessence model, k-essence model, Chaplygin

gas model, dark sector interactions, f(R) theories, braneworld models and scalar tensor

theories.1 For the scope of this work, we study interacting quintessence models, which have

been considered in order to cure tensions in ΛCDM [18, 19]. Here, we show the background

dynamics and some aspects of perturbations that characterize this model. Also, we consider

some useful extensions of ΛCDM in order to better understand the nature of dark energy

and cure the tension on H0 (which will be discussed in Chapter 3).

2.1 COUPLED QUINTESSENCE

The presumable existence of a dark sector and the fact that ΩΛ0/Ωc0 ∼ O(1)
seems to suggest that there is a “communication” between components of the dark sector.

Coupled quintessence corresponds to an extension of classical quintessence [101, 102]

in which the canonical scalar field, φ, interacts with the non-relativistic matter. This

model was proposed by Amendola[103] and has been largely studied in the literature

[18, 19, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. The action is:,

S =
∫ (

R

2κ2 + LCQ
)√
−g d4x + SM , (2.1)

LCQ = −1
2∂µφ∂νφ− V (φ)−m (φ)ψψ + Lkin [ψ] , (2.2)

where V (φ) is the self-interaction potential, m(φ) is the mass of a matter particle, ψ

represent the matter fields and Lkin [ψ] is the kinetic term of the matter Lagrangian.

1 See [56, 84, 97, 98, 99, 100], and references therein, for a review of the most important models of dark
energy.
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2.1.1 Background dynamics

Evidently, Friedmann equations will govern background dynamics, but unlike the

ΛCDM case the equations coming from ∇νT
ν
µ = 0 will be modified by the presence of the

interaction between φ-DM. For a multi-component system, the total energy-momentum

tensor is conserved, but this is not necessarily true for the energy-momentum tensor of

each component [116]. Consider that T µν =
∑

i T
µ
(i)ν , where i represents each component,

that is, radiation, matter and dark energy (scalar field φ). Energy-momentum conservation

states

∇µ

∑
i

T µ(i)ν = 0 ,

but for each component one has:

∇µT
µ
(i)ν = Q(i)ν ,

where, in order to satisfy the total conservation, it is necessary that
∑

iQ(i)ν = 0. In oder

not to affect the dynamics of baryons, we consider only interactions between dark energy

φ and dark matter. So,

φ̇φ̈+ 3Hφ̇2 + φ̇
dV

dφ
= Q(φ)0 ,

ρ̇c + 3Hρ = Q(c)0 = −Q(φ)0 .

The coupling term, Q(φ)µ, is defined by the Lagrangian (2.2), from which one obtains

Q(φ)µ = ∂ lnm(φ)
∂φ

ρc∂µφ .

We shall limit our study to m(φ) = m0e
√

2/3κβ,2 then:

φ̈+ 3Hφ̇+ dV

dφ
=
√

2
3κβρc , (2.3)

ρ̇c + 3Hρc = −
√

2
3κβρcφ̇ . (2.4)

Now, before discussing background dynamics, we have to clarify some things about the

interaction.

The interaction between DE-DM transfers energy from one component to the other,

through the coupling Q ≡ Q(φ)0 =
√

2
3κβρcφ̇. The sign of Q defines the direction of energy

transfer. That is, if Q > 0 the energy of DM will be transferred to DE, while if Q < 0 the

opposite happens. On the other hand, the strength of the coupling is determined by β. It

can be shown that background dynamics is insensitive to the sign of β [117, 103], then,

following the convention adopted in the literature [104, 105, 106], we consider β > 0. Also,

it is useful to define Q ≡
√

2
3κβ. Current constraints on β are β . 0.06 [118].

2 The numerical factor
√

2/3 arises in order to simply computations, as we will see shortly.
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Figure 6 – Top panel: Background dynamics for α = 0.1. Solid lines represent the case
with weak coupling β = 0.05, while dashed lines the case with strong coupling
β = 0.25. Bottom panel: Background dynamics for α = 0.08. Solid lines
represent the case with weak coupling β = 0.05, while dashed lines the one
with strong coupling β = 0.25. In both cases a vertical line is placed at zeq. See
the text for more details.

As the coupling is only between DE-DM, the others components are conserved and

they evolve as showed in equations (1.41) and (1.44). Now, we can write the Friedmann

equation:

H2 = 8πG
3 (ρr + ρb + ρc + ρφ) , (2.5)

where, as usual, we have defined ρφ = φ̇/2 + V (the pressure is defined as pφ = φ̇/2− V ).

As it is not possible to get an analytical solution of (2.3), we have to solve it numerically.
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For that, we use the dimensionless variables

x1 ≡
κφ̇√
6H

, x2 ≡
κ
√
V√

3H
, xr ≡

κ
√
ρr√

3H
, xb ≡

κ
√
ρb√

3H
, (2.6)

where Ωφ = x2
1 + x2

2, Ω{r,b} = x2
{r,b} and due to the assumed flatness of the universe

Ωc = 1− x2
1 − x2

2 − x2
r − x2

b . These definitions stem from the study of dynamical systems

applied to cosmology [103, 119, 120]. Thus, the complete set of equations for the background

dynamics is

dx1

dN
= x1

2
(
3x2

1 − 3x2
2 + x2

r − 3
)
−
√

3
2

1
κV

dV

dφ
x2

2 +
√

3
2
Q
κ

(
1− x2

1 − x2
2 − x2

r − x2
b

)
,

dx2

dN
= x2

2
(
3x2

1 − 3x2
2 + x2

r + 3
)

+
√

3
2

1
κV

dV

dφ
x1x2 ,

dxb
dN

= xb
2
(
3x2

1 − 3x2
2 + x2

r

)
,

dxr
dN

= xr
2
(
3x2

1 − 3x2
2 + x2

r − 1
)
,

dH

dN
= −H2

(
3x2

1 − 3x2
2 + x2

r + 3
)
,

where we have put explicitly the term
√

3Q2/2κ2 in order to justify the factor
√

2/3 in Q.

One can note that in order to solve the background dynamics it is necessary to set the

potential V (φ). We choose the potential V (φ) = V0e
−
√

2/3καφ, where the numerical factor√
2/3 arises for the same reason as in Q. Therefore, we have

dx1

dN
= x1

2
(
3x2

1 − 3x2
2 + x2

r − 3
)

+ αx2
2 + β

(
1− x2

1 − x2
2 − x2

r − x2
b

)
, (2.7)

dx2

dN
= x2

2
(
3x2

1 − 3x2
2 + x2

r + 3
)
− αx1x2 , (2.8)

dxb
dN

= xb
2
(
3x2

1 − 3x2
2 + x2

r

)
, (2.9)

dxr
dN

= xr
2
(
3x2

1 − 3x2
2 + x2

r − 1
)
, (2.10)

dH

dN
= −H2

(
3x2

1 − 3x2
2 + x2

r + 3
)
. (2.11)

These equations are presented for instance in [107].

In order to illustrate the effect of coupling, we solve the background dynamics for

four cases, gives by (α, β) = {(0.1, 0.05), (0.1, 0.25), (0.08, 0.05), (0.08, 0.25)}; see Figure

6. Note that the coupling mainly changes the evolution at redshifts z > 10 and always

leads to an accelerated expansion. On the other hand, Figure 7 shows how the Hubble rate

and deceleration parameter in the CQ model with α = 0.08 evolve. We have to highlight

that the accelerated expansion of the universe occurs later in CQ models (z ∼ 0.652
to β = 0.05) as compared with the ΛCDM model (z ∼ 0.643). Initial conditions are

given at z = 0 by {x1(0), x2(0), xb(0), xr(0), H(0)} = {0,
√

ΩΛ0,
√

Ωb0,
√

Ωr0, H0}, where
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ΩΛ0 = 0.691, Ωb0 = 0.0486, Ωb0 = 5.389× 10−5 and H0 = 69.278km s−1Mpc−1, according

to Planck 2015 [6]. The study of the critical points is useful in order to understand the

landscape of possible solutions, see [103, 119, 120].
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Figure 7 – Left panel: Hubble rate as function of redshift for the CQ model, with α = 0.08.
Right panel: Deceleration parameter as a function of z for the same CQ model.
The vertical and horizontal dashed lines indicate when the deceleration becomes
negative, in this case at z ∼ 0.652 for β = 0.25 and z ∼ 0.652 for β = 0.05. In
both cases solid lines correspond to weak coupling β = 0.05 and dashed lines
to strong coupling β = 0.25.

2.1.2 Evolution of perturbations

To track the evolution of perturbations we should compute the same equations that

were obtained in Section 1.3.5. That is, we should recalculate the set of equations (1.79)-

(1.83) for the CQ model. To this end, we must use (1.53), where δGµν does not change

with respect to the standard case. However, δTµν will be different. Both the introduction

of the coupling and the dynamical nature of dark energy (in general δφ 6= 0) shall change

the perturbed equations.

The set of equations that will describe the evolution of perturbation, at sub-horizon

scales, are:

k2Φ = 3
2H

2 (δcΩc + δbΩb) , (2.12)

k2ϕ = H2βΩcδc , (2.13)

δ′b = −θb , (2.14)

θ′b = −
(
Hθb + k2Φ

)
, (2.15)

δ′c = −θc , (2.16)

θ′c = −
[
(1− 2βx)Hθc + k2Φ + 2k2βϕ

]
, (2.17)

where we have defined ϕ = κδφ/
√

6. Detailed computations of these equations can be

found in [103, 107, 108, 121]. The effects of the coupling and of the scalar field are easy to
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distinguish. First, equations related to δ′i are unchanged by Q and φ and hence coincide

with ΛCDM case. This will allow us to use (1.97) even for coupling models. Similar is

the case of θ′b: if we compare it to θ′m in equation (1.85), derived in the ΛCDM context,

we shall note that they are similar. Here, one can wonder why k2Φ does not have a

direct contribution from ϕ, i.e. why the Poisson equation (2.12) does not have a term

that depends on δϕ (which is different from zero). The answer is given by the equation

(2.13). First, we can define λ ≡ H/k and note that ϕ ∼ λ. When it is inserted in the

Poisson equation, which states that Φ ∼ λ, the scalar field contributes as O(λ2). Then, at

sub-horizon scales, i.e. λ� 1, its contribution is totally negligible.3 Finally, (2.17) shows

explicitly the contribution of Q.

By combining (2.12)-(2.17) we obtain:

δ′′b +Hδ′b −
3
2H

2 (δcΩc + δbΩb) = 0 , (2.18)

δ′′c + (1− 2βx)Hδ′c −
3
2H

2
[(

1 + 4
3β

2
)
δcΩc + δbΩb

]
= 0 , (2.19)

which reduces to (1.3.5) (with c2
s = 0) if β = 0. We assumed a bias b between baryons

and dark matter, δb = bδc, so that the growth rate of both is the same, i.e. (1.94) is still

valid for both δc and δb. Note that if Ωb � Ωc, baryons will follow asymptotically the

evolution of DM, as the latter dominates. Similar to the ΛCDM case, there is not an

analytic solution for f(z). Furthermore, one cannot use the simple parametrization Ωm(z)γ .
A suitable parametrization is the one provided by [106]:

f(z) ≈ Ωγ̃
m

(
1 + 2.4γ̃β Ωc

Ωm

)
, (2.20)

where γ̃ = 0.56, and we have used a tilde in order to distinguish γ̃ form the value in the

ΛCDM context, γ ≈ 0.55.

2.2 ΛCDM EXTENSIONS

The tension in H0 (to be discussed in Chapter 3) could be a hint for physics

beyond the ΛCDM model. Then, considering CQ cosmologies could help to understood

this problem. However, picking up just a model from a wide variety of dark energy models,

offered in the literature, could be fruitless. Therefore, we will also investigate parametric

ΛCDM extensions. To assess the usefulness of a non-standard dark energy we use two

parameters wde and γ. Thus, we will discuss in the next sections the three parametrizations:

γCDM, γwCDM and γaCDM.

3 Although, at sub-horizon scales, δϕ does not contribute to δT in the Poisson equation, the scalar field
is always present in the background dynamics, that is, in general HΛCDM 6= HCQ.
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2.2.1 γCDM parametrization

A dark energy that is different from Λ does not only change the background evolution

but also alters the evolution of perturbations and, consequently, structure formation. As

we pointed out before, a useful way to characterize the growth of perturbations, at least for

matter, is the use of the growth rate f(z). For some dark energy models it is possible to use

f(z) ≈ Ω(z)γm, but with γ 6= 0.55. For instance, in Dvali-Gabadadze-Porrati braneworld

theory the cosmic growth index is γDGP ≈ 0.68 [122].4

The γCDM parametrization will be used to investigate models for which pertur-

bations are different but the background evolves as in the standard ΛCDM model. More

specifically, we will add γ to the set of 6 standard parameters of ΛCDM.
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Figure 8 – Cosmic growth index γ as a function of wde, see equation (2.24), for different
values of Ωm.

2.2.2 γwCDM parametrization

Now, we turn back to equation (1.95). Considering the case in which baryons and

dark matter are not interacting, we can cast (2.9) as:

dxm
dN

= 3
2xm

(
x2

1 − x2
2
)
,

dΩm

dN
= 3Ωm

(
x2

1 − x2
2
)
,

dΩm

dN
= 3wdeΩm (1− Ωm) , (2.21)

4 Strictly speaking, DGP model is not a model of dark energy but rather a gravity model beyond to
General Relativity [123, 124].
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where we have used the fact that Ωm = x2
m and x2

1 − x2
2 = wdeΩde. Equation (2.21) allows

us to recast equation (1.95) as [125]:

3wdeΩm (1− Ωm) df

dΩm

+ f 2 + 1
2 [1− 3wde (1− Ωm)] f − 3

2Ωm = 0 . (2.22)

Finally, using the ansatz f = Ωγ
m we obtain

3wdeΩm (1− Ωm) ln Ωm
dγ

dΩm

− 3wde
(
γ − 1

2

)
Ωm + Ωγ

m−
3
2Ω1−γ

m + 3wdeγ−
3
2wde + 1

2 = 0 .

(2.23)

Under the condition |dγ/dΩm| � 1/ (1− Ωm), the cosmic growth index will be

γ = 3 (1− wde)
5− 6wde

+ 3
2

(1− wde) (2− 3wde)
(5− 6wde)3 (1− Ωm) +O

(
(1− Ωm)2) , (2.24)

as was showed for the first time in [125]. If one considers a matter-dominated epoch

Ωm ≈ 1, and states that wde = wΛ = −1, we shall get γ ≈ 0.55—the cosmic growth index

of ΛCDM case. Even if the conditions to get γ ≈ 0.55 seem strict, the parametrization

Ωm(z)0.55 works well for the ΛCDM model for a wide range of redshifts. Figure 8 shows

the cosmic growth index as a function of wde when different values of Ωm are considered.

The three cases illustrated in Figure 8 are very similar. Figure 9 shows the relative error

between the cases Ωm = 1 and Ωm = 0.7. It is easy to note that the error is always less

than 1%.5

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

0.65

0.70

0.75

0.80

0.85

0.90

wde

e
r
r
o
r
%

Figure 9 – Relative difference in γ when using (2.24) with Ωm = 1 and Ωm = 0.7.

Despite that (2.24) offers a relation γ −wde, this could not be valid for dark energy

models different from Λ, see [126] for some examples. For the same reason Figure 8 cannot

5 To generate theses plots, we have used (2.24) neglecting terms of order O
(

(1− Ωm)2
)

.
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be extrapolated to phantom dark energy, i.e. when wde < −1. However, this relationship

suggests that a non-standard dark energy model could have both a γ 6= 0.55 and wde 6= −1.

Then, we shall use the γwCDM parametrization, adding wde to the set of free parameters.

2.2.3 γaCDM parametrization

The previous discussion also suggests that γ could evolve with time, due its

dependence on wde. Thus, a useful extension to the previous parameterizations is to

consider a dynamical cosmic growth index γ = γ(a). One can find in the literature a wealth

of dark energy models that can be parametrized by a growth index that evolves with time,

for instance see [127, 128, 129, 130]. We will use the following simple parametrization [128]

in order to study the effect of a dynamical γ

γ(a) = γ0 + γ1 (1− a) . (2.25)
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3 The tension onH0 and the effect of cosmic
variance

Observations have been crucial for the evolution of modern cosmology. The fact that

by observing the sky we can infer constraints on cosmological parameters, such as vacuum

energy or the number of neutrino species, is impressive and, at some level, unexpected.

At the heart of modern cosmology there are observations, such as CMB, BAO and RSD,

and a large effort to obtain more accurate data is undertaken by several international

collaborations such as Euclid [88], J-PAS [131] or DES [132]. However, a great amount

of data does not only mean a huge opportunity to improve our knowledge about the

universe, or physics in general, but also a wealth of information that has to be processed

and studied. Thus, in an era where cosmological measurements are characterized by their

great precision, it is fundamental to understand where errors come from and how could

they affect a measurement. In the particular case of this work, it is necessary to understand

what causes the tension on H0.
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Figure 10 – Gaussian distributions for both measurements of the Hubble constant, HPl
0

(CMB) and HR16
0 (SNe Ia). The discordance between them is evident.

The values provided by [2] and [1] are the most important current measurements

of H0. While observations of SNe Ia at local scales provided H0 = 73.24 ± 1.74 km s−1

Mpc−1 (HR16
0 ), the analysis of fluctuations of the temperature of photons released at the

last scattering constrains the Hubble constant to H0 = 66.93± 0.62 km s−1 Mpc−1 (HPl
0 ).

It is easy to note that there is a large discordance among these values, see Figure 10.
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Nevertheless, claiming that there is a tension using only a graphical method could be

non-objective and so it is better to have a quantitative description of this discordance or

tension. Before discussing the problem quantitatively, we will argue why it is qualitatively

important to understand what generates this discordance or tension. It is important to

mention that the tension between global and local values of H0 has been unveiled by the

increasing precision on measurements of H0, as showed in Figure 11.

Figure 11 – A historical review of H0 values and their error bars for different experiments.
Note that the large increase in precession has unveiled the tension between
local and global measurements. This figure is from [5].

The CMB allows us to constrain cosmological parameters with large precision.

However, to that end, it is necessary to use a fiducial model, in this case ΛCDM. Then,

when we proclaim that the CMB provided a Hubble constant equal to HPl
0 , we actually

mean that the analysis of fluctuations of the temperature of primordial photons, under the

assumption that we live in a ΛCDM universe, gives HPl
0 . In other words, the CMB results

are model dependent and a re-analysis of CMB data for a model beyond ΛCDM could

lead to a value different from HPl
0 . Opposite is the case of HR16

0 . It is obtained in a model-

independent way, through the use of standard candles, SNe Ia and Chepheids, and geometric

distances at z � 1. However, despite the fact that the value of HR16
0 is model-independent

it could be biased by unknown systematics on the cosmic distance ladder. Thus, the tension

between global (coming from CMB) and local (coming from SNe Ia) determinations could

be tackled from both sides, that is, considering physics beyond ΛCDM, which could provide

a Hubble constant higher than HPl
0 [18, 19, 20, 21, 22, 23, 24, 25], and biases on the cosmic

ladder distances used to determinate HR16
0 [26, 27, 28, 29, 30, 31, 32, 33, 34].
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As we have pointed out in the previous paragraph, considering a model different

from ΛCDM could give us a higher Hubble constant in agreement with HR16
0 and hence

alleviate the tension. However, this way to alleviate the tension could lead to a poor

description of the universe at early time, which is well constrained by the CMB [133].

Here, we will tackle the tension problem in a safer way by considering also the presence

of a systematic error on the determination of the local expansion rate. Specifically, we

shall study the effect of the cosmic variance in the measurements of the local Hubble

constant, considering a non-standard dark energy component instead of the common Λ.

This non-standard dark energy shall be represented by the CQ model and the γCDM and

γwCDM and γaCDM parameterizations. We have to mention that the cosmic variance has

already been considered in order to alleviate the tension in the ΛCDM context. The effect

produced by cosmic variance, due to local structures, has been showed to be insufficient to

explain the whole tension [33, 34].

It is worth to point out that the ΛCDM model suffers from tensions on other

cosmological parameters. For example, the value of the amplitude of the power spectrum

at 8 Mpc, σ8, provided by the South Pole Telescope is 2.6σ lower than the value predicted

by Planck [134, 135].1

In this chapter, first, we shall discuss how local cosmic flows generate a deviation

of H loc
0 regarding the global value H0. Then, we will obtain its cosmic variance and so

quantify the impact on local measurements. Finally, we will study the contribution of

CQ model, γCDM and γwCDM parametrizations to cosmic variance. For that, we will

compute the error budget due to cosmic variance by fixing the background cosmology to

the ΛCDM fiducial, see Table 1 (we also fix H0 = HPl
0 ). Obviously, fixing the background

to the ΛCDM fiducial could bias our results. However this first study will be important in

order to understand the results provided by the statistic inference of Chapter 5.

3.1 TENSIONS, DISCORDANCES OR INCONSISTENCIES

Before arguing about cosmic variance and its effect on H loc
0 , we have to quantify

the tension. There is neither a standard process nor estimator to determine the tension

among two or more experiments. However, tension or inconsistencies can be identified,

for instance, by graphics such as Figure 10. Using only a graphic method to quantity an

inconsistency could be a non-objective method, and so, it is fundamental to adopt an

estimator that quantifies the tension in order to avoid non-objective results. At this point,

it seems intuitive that an estimator of tension, discordance or inconsistency should take

into account the mode the value that maximizes the PDF, and a measure of the dispersion

1 It has also been reported a 2.1σ discordance between Kilo Degree Survey and Planck determinations

of the cosmological parameter S8 ≡ σ8 (Ωm/0.3)1/2
[35]. Note that discordances in σ8 and S8 are often

addressed as the same problem.
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of the PDF, such as the variance. Several estimators have been proposed in the literature,

such as the tension [17] or the index of inconsistency [136].2 Here, we will use the simple

estimator

TH0 = |H0 −HR16
0 |√

σ2
H0 + σ2

loc

, (3.1)

employed in [35] to calculated the σ8 tension. Note that in (3.1), H0 and σH0 are the mean

and the variance of the H0 probability distribution function, respectively. We will return

later to the quantity σloc.

The current tension between HPl
0 and HR16

0 can be computed using this estimator.

If we assume that the local error is only given by [1], that is σloc = σR16, we obtain a

tension of about 3.4σ in concordance with [1, 17]. In order to know how serious is the

mismatch between the global and local determinations of H0 one can use Jeffrey’s scale.

Here, as (3.1) is a particular case of the index of inconsistency defined in [136], we use the

interpretation showed in Table III of [136]. According that, there is a moderate tension

(or inconsistency) between HPl
0 and HR16

0 .

3.2 LINEAR PERTURBATION THEORY AND PECULIAR

VELOCITIES

3.2.1 Cosmic variance

At local scales there are important spatial fluctuations of the expansion rate, which

are produced by the density fluctuations. In other words, peculiar velocities are generated

by the local distribution of matter and its gravitational potential. This field of velocities

generates a deviation with respect to the global H0. To illustrate that, consider an observer

at ~ri that measures the expansion rate H loc
0 using N objects, each one located at ~rj , where

j = 1, 2, 3, ...N . The observer will notice, on average, H loc
0 (~ri) = H0 + H0δH, where the

fluctuation is:

δH(~ri) = H loc
0 (~ri)−H0

H0
,

where H0 is the global value of the Hubble constant. The measurement obtained by the

observer at ~ri depends on the position H loc
0 = H loc

0 (~ri), as the distribution of matter

δ = δ(~ri). Deviations of the Hubble constant, as we have already mentioned, are known

as peculiar velocities, which are produced by local structures. We will consider that each

object has a peculiar velocity ~vj , then, the observer will only be able to measure the radial

component of ~vj, as velocities are measured by redshift (Doppler effect). That is, the

contribution from ~vj to H0(~ri) shall be parallel to the line of sight (~rj − ~ri), see Figure 12.

2 Although throughout this work we have used “tension” to call the difference between HR16
0 and HPl

0 , it
is important to say that we do not refer to the estimator proposed in [17] but rather to an inconsistency
or discordance, in general.
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Thus, the deviation is given by:

δH (~ri) = 1
N

∑
j 6=i

~vj ·
(~rj − ~ri)
|~rj − ~ri|2

. (3.2)

Now, we consider the continuous case. The deviation δH for a sphere of radius R, centered

around x, is given by

δHR (~x) =
∫
d3y

~v(y)
H0
· (~y − ~x)
|~y − ~x|2

W (~y − ~x) , (3.3)

where W (~y − ~x) is the top-hat window function with radius R:

W (~y − ~x) =
{

(4πR3/3)−1
, |~y − ~x| ≤ R

0 , |~y − ~x| > R .
(3.4)

O

rj

vj
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ri
r( )j ri

rj ri
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Figure 12 – The observer is located at ~ri. (S)he measures the velocity of a star at ~rj,
which has the peculiar velocity ~vj. The velocity measured by the observer
is always parallel to the line of sight ~rj − ~ri and it will composed by both
the recession velocity H0|~rj − ~ri| and the contribution of the peculiar velocity
~vj · (~rj − ~ri) /|~rj − ~ri|.

Using linear theory, we have derived an expression for the peculiar velocity (1.97)

in Fourier space. Evaluating it today H0 = H0, we have

~̃v = iH0f δ̃m
~k

k2 ,

and, going back to real space, we have

~v(y) = iH0f

(2π)3

∫
d3kei

~k·~y δ̃
~k

k2 . (3.5)
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Replacing (3.5) in (3.3), we get

δHR (~x) = if

(2π)3

∫
d3y

∫
d3kδ̃m

~k

k2 ·
(~y − ~x)
|~y − ~x|2

W (~y − ~x) ei~k·~y ,

defining ~ξ = ~y − ~x, then

δHR (~x) = if

(2π)3

∫
d3k

V
δ̃me

i~k·~xIξ , (3.6)

where V ≡ 4πR3/3. Also, we have defined

Iξ ≡
∫
d3~ξ

~k

k2

~ξ

ξ2 e
i~k·~ξ .

Computing the integral we get

Iξ = 1
k2

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ R

0
dξkξ cos θeikξ cos θ ,

Iξ = 2π
ik3

∫ π

0
dθ sin θ

(
kξeikR cos θ + iee

ikR cos θ

cos θ

)R

0

,

Iξ = 2π
ik3

∫ π

0
dθkR sin θ

(
eikR cos θ + iee

ikR cos θ

kr cos θ

)
.

Then, doing the change of variable ζ = kR cos θ, we can rewrite the last integral as

Iξ = 2π
ik3

(∫ +kR

−kR
dζeiζ +

∫ +kR

−kR
dζ
eiζ

ζ

)
,

Iξ = 4π
ik3

[
sin (kR)−

∫ kR

0
dζ

sin ζ
ζ

]
. (3.7)

We can put (3.7) in (3.6) to get the deviation of the local Hubble constant [137, 138]

δHR (~x) = f(z)
(2π)3

∫
d3kδ̃mL(kR)ei~k·~x , (3.8)

where we have defined

L(x) ≡ 3
x3

(
sin x−

∫ x

0
dy

sin y
y

)
. (3.9)

The deviation (3.8) is caused by peculiar velocities, and, consequently by the local matter

distribution. It is easy to note that the Hubble constant is overestimated if the observer

lives in an overdensity (δm > 0), and underestimated if the observer lives in a underdensity

(δm < 0).

We can average this deviation over positions, we will find 〈δHR〉 = 0, this is due

to the fact that
〈
δ̃m
〉

= 0, where 〈 〉 represents the average over the position ~x. It means,

contributions to peculiar velocities are, on average, null. However, this result is not true if
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we calculate the variance, which is defined as σ2(δH) = 〈δH2
R〉 − 〈δHR〉2, where, of course,

the last term is zero. Thus,〈
δH2

R

〉
= f 2(z)

(2π)6

∫
d3~kδ̃mL(kR)

∫
d3~k′δ̃∗mL(k′R)

∫
d3~xe(~k′−~k)·~x ,

and by definition of Dirac delta δ(~k′ − ~k) ≡ (2π)−3 ∫ d3~xe(~k′−~k)·~x, it is

〈
δH2

R

〉
= f 2(z)

2π2R2

∫ ∞
0

dkP (k) [(kR)L (kR)]2 , (3.10)

where P (k) = |δ̃m|2 is the power spectrum. The cosmic variance 〈δH2
R〉, unlike the average,

is different from zero. In order to illustrate the cosmic variance we plot the deviation of

H loc
0 /H0 at 1, 2 and 3 standard deviations σ(δH), see Figure 13. Note that at z = 0.01

the deviation is about 1% as stated in [1]. Although one could say that this deviation is

negligible, the error caused by 〈δH2
R〉 could be non-negligible as we will see in the next

section. The approach above is not the only way to compute the variance of local H0, see,

for example, the non-linear velocity power spectra derived from N-body simulations [32].
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Figure 13 – Deviation of H loc
0 /H0 as a function of scales (or redshift). One can note that, as

expected, the variance decreases at higher redshifts, at which the contribution
of peculiar velocities become less important.

We defined the power spectrum as:

P (k) = 2π2

k3 As

(
ck

H0

)3+ns
T 2(k, z)D

2(z)
D2(0) , (3.11)

where As is the amplitude of the power spectrum, T (k, z) the transfer function and D(z)
the growth function. The shape of the power spectrum is determined by the transfer
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function. An analytic expression for the transfer function is only available for special

cases – for example, when neglecting baryons and neutrino anisotropic stress. In the more

general case, one can use numerical codes, such as CLASS [139], to solve the equations of

perturbations and obtain T (k, z). For the sake of simplicity, we adopt the transfer function

obtained in [140]. It is worth to mention that we have also used the nonlinear HaloFit

power spectrum [141] in order to compute (3.10). However, we have found that the linear

and nonlinear power spectra give indistinguishable results. Therefore, in order to reduce

computation time, we have used the simpler linear power spectrum.

3.2.2 Relative systematic error σδH

The cosmic variance 〈δH2
R〉 was computed under the assumption that sources

are distributed uniformly in W (~y − ~x). In order to obtain the real variance relative to

a particular survey we should use the actual distribution in (3.3). However, in general,

the distribution of sources is more complicated than a simple top-hat window function

and then we would not be able to get an analytical expression for the cosmic variance.

Instead, we would have to get it numerically, which could be computationally expensive.

In order to avoid that, we follow the method adopted in [33]. Neglecting anisotropies in

the supernova distribution, the error generated by cosmic variance in local measurements

can be estimated using:

σδH =
[∫ zmax

zmin

dzWSN(z)
〈
δH2〉] 1

2

(3.12)

where WSN(z) is the redshift distribution of the SNe Ia used in [1]. It means that we average

the cosmic variance according to the distributions of sources. We have to mention that

(3.12) is a relative error and, in order to obtain an absolute error, it has to be multiplied

by H0. Now, we return to the discussion of σ2
loc, which was included at the beginning of

this chapter. We use σ2
loc to represent the error at local scales. Then, it will be composed

by both σ2
R16 and σ2

δH , unless stated otherwise. Thereby, we define

σ2
loc ≡ σ2

R16 +H2
0σ

2
δH . (3.13)

The tension defined in (3.1) uses this definition. We can calculate the relative error

generated by cosmic variance in the ΛCDM fiducial, it is σδH = 0.0298, and the absolute

error, H0σδH = 1.99 km s−1 Mpc−1. Note that if H0σδH and σR16 are of the same order,

then the total local error is σloc ≈ 1.41 σR16. When this σloc is used to recompute the

tension between HR16
0 and HPl

0 one finds that the tension reduces to T = 2.4σ.
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Figure 14 – Deviation of H loc
0 /H0 as a function of scales in the CQ model, with α = 0.08,

for weak (β = 0.05) and strong (β = 0.25) coupling.

3.3 THE LOCAL DETERMINATION OF H0 AND A NON-

STANDARD DARK ENERGY

3.3.1 Cosmic variance in Coupled Quintessence
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Figure 15 – Systematic error produced by cosmic variance in the CQ context, with α = 0.08,
as function of β.

We have discussed how coupling changes the perturbed Einstein equations and

therefore the evolution of perturbations. In this case, we need to use (2.20) instead of Ωγ
m.

Taking this into account, we computed the deviation of H loc
0 with respect to the global

H0 for the CQ model with α = 0.08 in the presence of a weak and strong coupling, see
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Figure 16. Weak coupling and ΛCDM are indistinguishable, instead a strong coupling

provides a higher deviation of the local Hubble constant. Besides, Figure 15 shows how

the systematic error due to cosmic variance evolves according to the coupling strength

β. One can see that stronger couplings provide higher errors. This first analysis of CQ

model shows that β has a non-negligible effect on cosmic variance and its systematic error

is comparable to σR16. However, current constraints on β are β . 0.06 [118] so that the

strong coupling case seems to be disfavored by observations.

3.3.2 Cosmic variance in γCDM

Now, we investigate the effect of γ on cosmic variance 〈δH2〉 and, consequently,

the error σδH . From Figure 16 we can see how different values of the cosmic growth index

change the deviation of H loc
0 /H0. For instance, γ = 0.35 provided a higher deviation than

the standard γ = 0.55. According to f(z) = Ωγ
m, we expect that γ < 0.55 produces a

universe in which δm grows faster than in ΛCDM, and so, there are more large structures.

Consequently, the effects of peculiar velocities in the local measure of the Hubble constant

are boosted. Once cosmic variance is computed we are able to calculate the systematic

error. Figure 18 shows the corresponding σδH as function of γ. As expected, lower values of

γ predict a higher error than ΛCDM. Thus, this analysis shows that a dark energy model

that predicts a γ < 0.55 could help to face the tension.
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Figure 16 – Deviation of H loc
0 /H0 as a function of scales for different values of γ.
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Figure 17 – Deviation of H loc
0 /H0 as a function of scales for different values of wde.

3.3.3 Cosmic variance in γwCDM

Here, we explore how wde contributes to cosmic variance. For that, we computed

(3.8) and (3.12) for three cases: wde = {−0.8,−1,−1.2}. The corresponding deviations at

1, 2 and 3 standard deviations are showed in Figure 17. Lower values of wde lead to a higher

variance, however, this increase seems virtually negligible with respect to the standard

case wde = −1. It means that wde is less important for σδH as compared with γ and β.

That is due to the fact that, unlike CQ and γCDM, the parameter of EoS does not change

directly f(z) but rather it changes, principally, the background evolution. Nevertheless, as

we have discussed before, although the deviation seems negligible, the systematic error

could be not. We show the relative error σδH for the three cases here considered. Note

from Figure 18 that a 4wde = 0.2 represents a change ∼ 5% in the relative error σδH for

any value of γ.

Although the EoS parameter seems to have a negligible contribution to cosmic

variance, it is important to mention that the tension not only can be alleviated by a huge

σδH but also by a higher H0. In this sense, it is worth pointing out that wde is strongly

correlated to H0 [134] and any change in wde implies a change in global H0. In conclusion,

we must not underestimate the γwCDM parametrization.
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Figure 18 – Systematic error produced by cosmic variance as a function of γ and for differ-
ent values of wde. Note, that here we have used the common parametrization
for the growth rate f(z).
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4 Bayesian statistics and observational cos-
mology

4.1 BAYESIAN STATISTICS

The current status of cosmology has been reached thanks to observations. We are

able to test our cosmological models through astrophysical or cosmological observations.

Nevertheless, cosmology is distinguished from other areas of physics when we talk about

observations or experiments–the universe is unique and we are not able to “produce” a

universe in the lab, much less control the conditions under which it is created. This fact

puts cosmology in a special place regarding other fields of physics, for instance, consider

the case of high energy physics where it is possible to reproduce experiments at certain

conditions (as in the case of the Higgs boson [142]). Then, data analysis in cosmology has

to be performed using a framework that helps to overcome this issue. Such framework is

Bayesian statistics.

Figure 19 – Cartoon illustrating one of the differences between Bayesian and frequen-
tist inference: inclusion of prior. This cartoon is from <https://twitter.com/
RevBayes>.

Bayesian inference is largely used in cosmology.1 It is based on Bayes’ theorem,

which states

p (A|B) = p (A) p (B|A)
p (B) , (4.1)

1 See [143, 144] for a review of Bayesian statistics in cosmology.

https://twitter.com/RevBayes
https://twitter.com/RevBayes


Chapter 4. Bayesian statistics and observational cosmology 67

where p(A) is the probability of a preposition A and | represents conditional probability.

Despite that (4.1) is a cornerstone in the formulation of Bayes statistics, it is also used

– with a different interpretation – in the frequentists framework. Frequentists use Bayes’

theorem only to compute conditional probabilities, for instance, which is the probability

that the total of two dice will be less than ten given that the first die is a four. Bayesian

will use it in a more sophisticated form, to perform statistical inference. Considering A = θ

and B = D, one has

p (θ|D) = p (θ) p (D|θ)
p (D) ,

where θ represents the parameters of a theory and D the data sets. Note that it was

implicitly assumed that the parameters θ are random variables and so follow the same

mathematical rules of D. This assumption is only valid within the Bayesian framework, so

that, it can be considered as the first difference with respect to the framework adopted by

frequentists. The status of θ as a random variable explains why in cosmology results of

inference are probabilitu distribution functions, see for example Figure 10. Another feature

of Bayesian statistics regards the function p (D|θ), which we will consider as a function of

parameters θ instead of data D. Then, finally, we shall arrive to

P (θ|D) = p (θ)L (θ)
p (D) , (4.2)

where P (θ|D), p (θ) and L (θ) are named posterior, prior and likelihood, respectively. To

finalize this very brief discussion of Bayesian statistics, we will describe each term in (4.2).

• Prior p(θ): it is our a priori information of a parameter, provided either by theoretical

definitions or observations. The prior is often pointed out as the main difference

between Bayesian and frequentist inferences and one can demonstrate that the

inclusion of a prior can has a large impact on inference [143, 144]. A cartoon about

prior is showed in Figure 19.

• Likelihood L (θ): it represents the probability of having data given the parameters θ.

The likelihood becomes a function of θ once the data is fixed. The construction of

L (θ) within the frequentist framework is more complicated than within the Bayesian

approach, due to the fact that a frequentist cannot see θ as a random variable.

• Posterior P (θ|D): it is a probability distribution function, the final outcome of

Bayesian inference. In particular cases the posterior may coincide with the (unnor-

malized) likelihood.

It is worth to stress that Bayes’ theorem (4.2) will also set forth something that we could

call the “Bayesian cycle”. The prior represents our current state of knowledge and the

posterior will be the improvement of this knowledge thanks to the new data, represented
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by the likelihood. As we improve our knowledge, we will “recycle” our results and renew

the Bayesian cycle, that is, today’s posterior will be tomorrow’s prior.

4.1.1 The χ2 function and likelihood

In this work, we adopt flat priors over to cosmological parameters. Then, we will only

have to deal with the likelihood. To perform Bayesian inference we will use the minimum

χ2 method. First, we will assume a Gaussian likelihood (unnormalized) distribution given

by:

L (θ) ≡ e−χ
2/2 , (4.3)

where also χ = χ (θ). According to the discussion about L(θ), its definition should include

data. Consequently, χ should include data as well. Thus, we shall define χ2 variable as

χ2 (θ) =
N∑
i=1

(
yi − y(xi|θ)

σi

)2

, (4.4)

where yi is a data point, σi its error, y(xi|θ) the theoretical prediction for the parameters

θ of our theory.2 The χ2 function quantifies, roughly speaking, about how many standard

deviations our theory deviates from the observations. Therefore, the minimum χ2 method

finds which values of parameters θ minimize the numbers of standard deviations between

theory and observation. Suppose that θ = θ̂ gives the minimum χ2
min, in technical jargon

the values θ̂ are dubbed best fit values. As χ2(θ̂) = χ2
min we shall have

L(θ̂) = e−χ
2
min/2 = Lmax .

Note that θ corresponds, in general, to a set of parameters, that is θ = {θ1, θ2, θ3, ..., θK}
and the minimum chi square method will provide a set of best-fit values θ̂ = {θ̂1, θ̂2, θ̂3, ..., θ̂K}.
The number K of parameters θi will be defined both by our interest and the nature of

data. An issue arises when our interest is only in a few parameters, suppose {θ1, θ2}, and

theoretical predictions request more parameters, for instance {θ1, θ2, θ3, θ4}. Obviously,

we might perform the inference for whole set {θ1, θ2, θ3, θ4} and only pay attention to

the parameters of interest. However, a multidimensional space is difficult to grasp, and it

would be useful to focus just on the parameters of interest. One could fix θ3, θ4. However,

choose a particular value for θ3 or θ4 could be arbitrary and could remove the effect of

possible degeneracies. The way out to this issue is to “marginalize” the posterior. It means,

if we are only interested on θ1, θ2, we shall consider the marginal distribution:

L′(θ1, θ2) ≡
∫
dθ3

∫
dθ4 L(θ) ,

2 This is the most simple definition of the χ2 function, in which correlations between parameters have
been neglected. When there are correlations, we will replace the errors σi by the covariance matrix.
See, for further information, [143, 144].
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where L′(θ1, θ2) is the marginalized likelihood. The definition of marginalization is a

consequence of the product rule. Once again, frequentists are not able to perform a

marginalization over the parameters of a theory.

4.1.2 Model selection criteria

Bayesian inference produces the posterior for each model that will be analyzed.

In particular one will obtain the best fit parameters θ̂ and the corresponding χ2
min. Most

of the time, we need to conclude which model can be proclaimed as the most successful

according to the data, i.e. we need to have a model selection criteria. Intuitively, one

might think that the model with the smallest χ2
min is the best, but this approach is not

competently right.

If we compare models with the same quantity of free parameters θ, using χ2
min

could be enough to perform model selection. However, the case is quite different for models

with a different number of free parameters. Furthermore, χ2
min only probes a small region

of the posterior distribution and more information is, in principle, available. A formal

way to carry out model selection is through the use of Bayes’ factor. Roughly speaking,

Bayes’ factor is the ratio between P (Mi|D) and P (Mj|D), where Mi represents a model

in particular.3 Despite that Bayes’ factor might be the most natural way to do model

selection, it is computationally expensive and highly dependent on the choice of the prior.

To escape from the limitations of χ2
min and from the excessive complications of

Bayes’ factor, we shall use methods that approximate Bayes’ factor. First of them, the

Akaike information criterion (AIC) [36]

AIC ≡ −2 lnLmax + 2k ,

and also the Bayesian information criterion (BIC) [37]

BIC ≡ −2 lnLmax + k lnN .

Because of the gaussianity of the likelihood, we shall get:

AIC = χ2
min + 2k , (4.5)

BIC = χ2
min + k lnN , (4.6)

where N is the total number of data points and K the number of free parameters.

Both AIC and BIC are extension of χ2
min, which approximate Bayes’ factor. Unlike

the simple χ2
min, AIC and BIC shall penalize models with more free parameters.

3 Note that here the parameter θ is understood as describing the set of available models.
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4.2 COSMOLOGICAL DATA

Here we show the cosmological sets used to constrain the cosmological parameters

and test the power of the cosmic variance. In order to reach accurate results and elim-

inate degeneracies between cosmological parameters, we include data sets coming from

experiments of different nature, such as CMB, BAO, SNe Ia, RSD and local H0.

4.2.1 Cosmic microwave background
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Figure 20 – The temperature power spectrum of the CMB. Blue dots are data while the
red line is a theoretical prediction according to the ΛCDM model. This figure
is from [6].

The study of the cosmic microwave background provides, perhaps, one of the most

important observations in cosmology. CMB data have a great precision and are largely

sensitive to cosmology. The main result of CMB observations is the temperature power

spectrum of Figure 20. Theoretical predictions of the temperature power spectrum are

obtained through solutions of the relativistic Boltzmann and perturbed Einstein equations

[69]. As these equations do not have analytic solutions, one has to use numerical methods

in order to obtain the theoretical temperature power spectrum. There are some codes

that provide these solutions, for instance, CMBFAST [145], CAMB [146], CLASS [139]

and others. These codes are usually valid for the ΛCDM model and extending them to

models beyond ΛCDM, such as coupling models, is complicated. Then, for the sake of
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simplicity, instead of considering the whole temperature power spectrum, we shall focus

on the position of the first peak.

Then parameters that characterize the position of first peak of CMB power spectrum

are the shift parameter R and the angular scales of the sound horizon at last scattering lA.

One can show that these parameters contain a great part of information provided by the

whole CMB power spectrum, see for instance [147, 148]. They are defined as [149]

lA = πr(z∗)
rs(z∗)

, (4.7)

R =
√

Ωm0H2
0

c
r(z∗) , (4.8)

where r(z) = (1 + z)dA(z) is the comoving distance and z∗ is the redshift decoupling. Note

that the sound horizon rs(z) can be approximated to [150]:

rs(z) = 2
3keq

√
6
Req

ln
(√

1 +R +
√
R +Req

1 +
√
Req

)
, (4.9)

with R = 3Ωb/4Ωγ and Req = R(zeq). Also, for z∗ we adopted the best fit showed in [150].

We will use CMB data coming from Planck [151], which provided R = 1.7488±
0.0074 and lA = 301.76± 0.14. This data is correlated, the inverse of the covariance matrix

is

Cov−1
CMB = 103

(
25.779 −0.7358

0.072

)
.

We have only showed the upper diagonal part because the matrix is symmetric. In

order to improve our analysis, we will also include the amplitude of the power spectrum

ln [1010As] = 3.089± 0.036, coming from [6]. Once the CMB data is fixed, we are able to

defined the χ2
CMB function:

χ2
CMB = (dCMB − µCMB) .Cov−1

CMB. (dCMB − µCMB)T +
(

3.089− ln [1010As]
0.036

)2

, (4.10)

where the vector dCMB = {1.7488, 301.76} corresponds to the data and µCMB = {R, lA}
to the theoretical predictions defined before.

4.2.2 Baryonic acoustic oscillations

The expansion of the universe tells us that at very early times the universe was

filled by a hot plasma. Before recombination and decoupling, this plasma was mostly

composed of baryons and photons, which were tight coupled by Thomson scattering. They

were in equilibrium and oscillating, as sound modes, due to the competition between the

pressure of the photons and the gravity force of baryons. Theses oscillations are dubbed as

baryon acoustic oscillations and are characterized by the speed of sound c2
s = 1/3 (1 +R).
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Figure 21 – Correlation function of baryons measured from a sample of 46,748 luminous
red galaxies from Sloan Digital Sky Survey. BAO show up as a peak in the
correlation function, here it is located at 100h−1 Mpc. The different lines
represent different cosmology. This figure corresponds to first observation of
the BAO peak and it is from [7].

Once Thomson scattering falls below the Hubble rate, photons decouple from baryons

and free stream. These photons, that were released during the last scattering, form the

very well known CMB, while BAO signatures are impressed on the power spectrum and

correlation function of baryons.

The BAO scale size is similar to the sound horizon, rs(zd), that is, (4.9) is evaluated

at the redshift of drag epoch zd [152]. These BAO scales can be determined from the

correlation function or power spectrum of matter see, for instance, Figure 21. As rs(zd)
is the same at different redshifts, BAO oscillations are effectively standard rulers. BAO

measurements determinate dA(z) and H(z) with large precision. Indeed, one can obtain

characteristic scales both along, rs||, and transverse, rs⊥, to the line-of-sight which shall be

related to dA(z) and H(z) [153]:

rs|| =
4z
H(z) , (4.11)

rs⊥ = 4θ(1 + z)dA(z) . (4.12)
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An advantage of the use of BAO as standard rulers is that BAO is based on the theory

of linear perturbation, which is very well known and understood. It means, BAO do not

need taking into account assumptions on astrophysical processes that could be not well

understood. Using equations (4.11) and (4.12), one can get Dv(z) (see Appendix B), which

represents an isotropic measurement of the BAO signature.

We shall use data sets from six different surveys: 6dFGS, SDSS-LRG, BOSS-

MGS, BOSS-LOWZ, WiggleZ, BOSS-CMASS, BOSS-DR12. For the sake of simplicity,

we separate the data sets in two groups, organized in Table 2 and Table 3. There is a

difference in format between these data sets.

Survey z dz(z) σ
6dFGS [154] 0.106 0.336 0.015

SDSS-LRG [155] 0.35 0.1126 0.0022

Table 2 – BAO data sets in old format.

Survey z α∗(z) (Mpc) σ rfids (Mpc)
BOSS-MGS [156] 0.15 664 25 148.69

BOSS-LOWZ [157] 0.32 1264 25 149.28
WiggleZ [158] 0.44 1716 83 148.6

0.6 2221 101 148.6
0.73 2516 86 148.6

BOSS-CMASS [157] 0.57 2056 20 149.28
BOSS-DR12 [152] 0.38 1477 16 147.78

0.51 1877 19 147.78
0.61 2140 22 147.78

Table 3 – BAO data sets in new format.

Parameters showed in the tables are defined as:

dz(z) = rs(zd)
Dv(z) , (4.13)

α∗(z) = Dv(z)
rs(zd)

rfids . (4.14)

We build two χ2 functions considering that there are two formats for BAO data sets. Thus,

we shall get

χ2
BAO1 = (diz − dz(zi))

2

σ2
i

, (4.15)

χ2
BAO2 = (α∗i − α∗(zi)) .Cov−1

BAO. (α∗i − α∗(zi))
T , (4.16)

where diz, σi and zi to χ2
BAO1 are showed in the Table 2, while α∗i and zi belonging to χ2

BAO2

are showed in Table 3. The covariance matrix Cov−1
BAO is built using the errors σi showed
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in Table 3 and considering that the WiggleZ data is correlated. The covariance matrix for

the WiggleZ data is

CovWiggleZ = 103

 6.889 −8.961 21.277
10.201 −13.918

7.396

 . (4.17)

Note that in both case, (4.15) and (4.16), it is necessary to use the drag redshift zd. Here,

we use the best fit from [159] for zd.

4.2.3 Type Ia Supernovae

Observations of Type Ia Supernovae led to the discovery of the accelerated expansion

of the universe [160, 161]. Nowadays, they are an useful tool for studying the background

dynamic. Type Ia Supernovae, which arise from the thermonuclear explosions of white

dwarfs, are standard candles that allow us to measure the luminosity distance. Type Ia

Supernova surveys provide the magnitude associated to the luminosity distance dL of each

supernova, where the magnitude is defined according to

m(z) = 5 log10
dL(z)
10 pc

, (4.18)

and if one assumes flatness, i.e. Ωk = 0, the luminosity distance would be (see Appendix B

for further information)

dL(z) = (1 + z)
∫ z

0

dz̃

H(z̃) . (4.19)

Now, we define the χ2 function as:

χ
′2
SNe =

∑
i

[mi −m(zi) + ξ]2
σ2
i

, (4.20)

where the index i labels the data point and the parameter ξ is an unknown offset sum of

the supernova absolute magnitude and other possible systematics. We marginalized the

likelihood L′SNe = exp(−χ′2
SNe/2) over ξ, this drives to the marginalized χ2 function:

χ2
SNe = S2 −

S2
1
S0

, (4.21)

where we neglected a cosmology-independent normalizing constant. The quantities Sn are

defined as:

Sn ≡
∑
i

[mi −m(zi)]n

σ2
i

. (4.22)

It is worth to stress that ξ is degenerate with log10H0, then a marginalization over ξ

can be thought as effectively marginalizing also over the Hubble constant. We have to

mention that we will use SNe Ia data coming from JLA in its binned version [83] (including

correlations).
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4.2.4 Redshift space distortions

In order to be able to constrain the growth index γ, we will use redshift space

distortion data which often are presented as measurements of fσ8(z), which are obtained

from the matter power spectrum in the redshift space. Due to the peculiar velocities the

power spectrum in redshift space (Ps) is distorted with respect to the power spectrum in

real space (P ) [162], that is:

Ps(~k) = P (k)
[
1 + βµ2

k

]2
(4.23)

where β = f/b and b is a parameter known as bias4. Then, RSD allow us to constrain f(z),
and so γ for the common parametrization Ωγ

m, if a value of b is assumed. As fixing the bias

could bias the results, it is more useful to measure parameters or combinations of them

that do not depend on the bias b. Such combination is given by fσ8(z) = f(z)σ8(z), where

σ8(z) ≡ σ8D(z) and σ8 is the variance of the matter distribution at 8h−1 Mpc. We will use

the “Gold” RSD data from [8] (see the Table 4), which represent robust and independent

fσ8(z) measurements. Figure 22 shows the “Gold” RSD data set and the function fσ8(z)
for the fiducial ΛCDM.
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Figure 22 – Compilation of fσ8(z) data from [8]. Note that current RSD data is quite
imprecise as it is showed by the error bars. A dashed red line corresponds to a
theoretical prediction of fiducial ΛCDM model.

Thus, we build the χ′2RSD function as:

χ′2RSD = (fσi8 − fσ8(zi)).Cov−1
RSD.(fσi8 − fσ8(zi))T , (4.24)

4 The bias parameter comes from the assumption that the distribution of galaxies is linearly proportional
to the total matter distribution, b ≡ δg/δ. For large red galaxies, it is expected a bias value in the
range 0.7 < (1− b) < 1 [163].



Chapter 4. Bayesian statistics and observational cosmology 76

where fσ8(zi) is the theoretical prediction for each measured redshift, fσi8 represents the

data listed in Table 4 and Cov−1
RSD is the inverse of the covariance matrix. Likewise to the

BAO case, reference [8] shows that only the WiggleZ data is correlated:

CovWiggleZ = 10−3

 6.4 2.57 2.54
3.969 2.54

5.184

 . (4.25)

In order to adopt a more conservative position (the data was analyzed assuming the ΛCDM

model), we marginalize L′RSD = exp(−χ′2
RSD/2) over σ8, so that

χ2
RSD = Sdd −

S2
dt

Stt
, (4.26)

where quantities Sdd, Sdt and Stt were defined as:

Sdd ≡ fσi8.Cov−1
RSD.fσ

i
8
T
,

Sdt ≡ fσi8.Cov−1
RSD.fσ8(zi)T ,

Stt = fσ8(zi).Cov−1
RSD.fσ8(zi)T .

We have to stress that the analysis of non-marginalized “Gold” data sets points towards a

higher-than-standard value of γ, that is γ ≈ 0.725 [164]. Then, in order to confirm this

result we will consider the special case of non-marginalized RSD data, where we also take

away H loc
0 from the likelihood. Results are showed in the Appendix C.

Survey z fσ8 σ
6dFGS+SnIa 0.02 0.428 0.0465
SnIa+IRAS 0.02 0.398 0.065

2MASS 0.02 0.314 0.048
SDSS-veloc 0.10 0.370 0.130
SDSS-MGS 0.15 0.490 0.145

2dFGRS 0.17 0.510 0.060
GAMA 0.18 0.360 0.090

0.38 0.440 0.060
SDSS-LRG 0.25 0.3512 0.0583

0.37 0.4602 0.0378
BOSS-LOWZ 0.32 0.384 0.095
SDSS-CMASS 0.59 0.488 0.060

WiggleZ 0.44 0.413 0.080
0.60 0.390 0.063
0.73 0.437 0.072

Vipers PDR-2 0.60 0.550 0.120
0.86 0.400 0.110

Fast-Sound 1.40 0.482 0.116

Table 4 – “Gold” RSD data set from [8]
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4.2.5 Local H0

The determination of HR16
0 follows the same method stated in [165]. We can

summarize this method in three steps. First, one measures distances of Cepheids in the

Milky Way by parallax. The latter allows us to calibrate the Cepheids’ brightness in

order to use them as standard candles. Then, these Cepheids allow us to determine the

distance to nearby galaxies where Supernovae and other Cepheids are identified. These

are then used to calibrate the true brightness of Supernovae, which are standard candles.

Finally, the complete Hubble diagram is obtained using the distance modulus of farthest

Supernovae.

Figure 23 – This picture is from <https://www.nasa.gov/image-feature/goddard/2016/
three-steps-to-measuring-the-hubble-constant>

The SNe recession velocities are determined via the redshift, using a Taylor expan-

sion that takes into account the current value of the deceleration parameter q0 and the

jerk parameter, j(z) ≡ (...a/a)(ȧ/a)−3, today j0 = j(0) [166]. The recession velocities and

the measured distances allow us to get the Hubble constant H0, basically by Hubble law.

The three steps used in this method are illustrated in Figure 23.

Riess et al.[1] performed a measurement of H0 through the method described

before. Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST)

they obtained HR16
0 . In order to build the χ2

H0
function, we shall use Hobs

0 = HR16
0 =

73.24 km s−1Mpc−1 and σobs = σR16 = 1.74 km s−1Mpc−1. So, we defined the χ2
H0

function

https://www.nasa.gov/image-feature/goddard/2016/three-steps-to-measuring-the-hubble-constant
https://www.nasa.gov/image-feature/goddard/2016/three-steps-to-measuring-the-hubble-constant
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as:

χ2
H0 = (H0 −Hobs

0 )2

σ2
loc

. (4.27)

Note that before we have defined σ2
loc as (3.13). Nevertheless, in order to identify the

effect of the cosmic variance in statistical inference, we will use two cases for σloc in the

χ2
H0

definition. First, we shall perform an analysis with σloc = σR16. Later, we will use

σloc =
√
σ2
R16 +H2

0σ
2
δH .

4.3 FULL LIKELIHOOD

We shall use Bayesian inference to get cosmological constraints, with and without

cosmic variance and its effects. To that end, we will perform the joint analysis of the data

showed before, i.e. the joint analysis of CMB, BAO, SNe Ia, RSD and local H0 data sets.

Thus, the total χ2, necessary to build the full likelihood L = e−χ
2/2, is defined by:

χ2
tot = χ2

CMB + χ2
BAO + χ2

SNe + χ2
RSD + χ2

H0 . (4.28)

It is worth to mention that the total data set has 67 data points. On the others hand,

eventually we will carry out the Bayesian inference taking out the RSD data. This shall

be discussed later.
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5 Bayesian inference: results

In this chapter we show the results of Bayesian inference. We have performed

the analysis using a Mathematica code named mBayes [167]. Also, as we have already

mentioned, most of the results and discussion here showed are presented in [38].

First, we will show results corresponding to the analysis with the full likelihood of

(4.28). However, we have also performed the analysis of the full likelihood without RSD

data, in order to distinguish cosmic variance effects from RSD data. In both cases, we

will present best fit parameters and plots of the posterior distributions. Then, we will

show and discuss the value reached of the tension and the model selection criteria for each

cosmological context as well as the respective error budget by cosmic variance.

Model Free parameters
ΛCDM H0,Ωm0, As
γCDM H0,Ωm0, As, γ
γwCDM H0,Ωm0, As, wde
γaCDM H0,Ωm0, As, γ0, γ1
CQ08 H0,Ωm0, As, β

CQ08+wde H0,Ωm0, As, β, wde
CQ10 H0,Ωm0, As, β

CQ10+wde H0,Ωm0, As, β, wde

Table 5 – Free parameters for each cosmological model. See the text for more details.

In order to shed light on the results, we define the relative4AIC and4BIC criteria,

which are

4AIC = AICΛCDM − AICi , (5.1)

4BIC = BICΛCDM − BICi , (5.2)

where the subscript i represents a particular parametrization or model. Thus, a negative

value of 4AIC or 4BIC means a preference to ΛCDM and the opposite case a preference

to the particular parametrization. The value that 4AIC or 4BIC takes will be interpreted

according to Jeffrey’s scale [168]. Thus, according to this scale 4X < 1 is inconclusive, 1 <
4X < 2.5 is moderate, 2.5 < 4X < 5 is strong and 5 < 4X is highly significant evidence

(where X represents AIC or BIC).

We use the CQ model and the γCDM, γwCDM, γaCDM parameterizations, besides

ΛCDM. To perform statistic inference we should use the free parameters of each model,

for instance, as we have indicated in Section 1.3, the ΛCDM model has six free parameters.

Nevertheless, using the whole free parameter space might be computationally expensive.
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We will study only the parameters that could have an important impact on the cosmic

variance, fixing the other ones to the ΛCDM fiducial value showed in Table 1. We show

each model or parametrization and its free parameters in Table 5. Note that the CQ model

has two more parameters than ΛCDM, α and β. In this case, as often done in the literature

[19, 105, 106], we fix the value of the slope of the potential α. To avoid biased results that

could be generated by this choice, we adopt two values α = 0.08 (represented by CQ08)

and α = 0.1 (represented by CQ10).

5.1 RESULTS FOR THE FULL LIKELIHOOD

5.1.1 Best fit parameters and posteriors

χ2
H0

with σ2
loc = σ2

R16

Model σ8 γ0 γ1 H0 Ωm0 wde log 1010As β
ΛCDM 0.842 - - 66.42 0.326 - 3.093 -
CQ08 0.831 - - 66.27 0.324 - 3.090 0.0124
CQ08+wde 0.833 - - 66.28 0.324 -1. 3.094 0.0212
CQ10 0.831 - - 66.27 0.324 - 3.090 0.
CQ10+wde 0.832 - - 66.28 0.324 -1. 3.094 0.0106
γCDM 0.792 0.714 - 66.42 0.326 - 3.086 -
γwCDM 0.86 0.64 - 70.46 0.307 -1.146 3.084 -
γaCDM 0.86 0.747 0.587 66.55 0.325 - 3.087 -

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model σ8 γ0 γ1 H0 Ωm0 wde log 1010As β
ΛCDM 0.841 - - 66.12 0.329 - 3.084 -
CQ08 0.834 - - 65.72 0.327 - 3.09 0.0497
CQ08+wde 0.837 - - 65.61 0.326 -1. 3.094 0.0635
CQ10 0.833 - - 65.72 0.327 - 3.09 0.0434
CQ10+wde 0.839 - - 65.61 0.329 -0.998 3.094 0.0529
γCDM 0.814 0.633 - 66.32 0.326 - 3.086 -
γwCDM 0.852 0.637 - 69.2 0.314 -1.112 3.084 -
γaCDM 0.852 0.661 0.202 66.37 0.325 - 3.082 -

Table 6 – Best fit parameters obtained by the full likelihood analysis for all parametrizations
and models here considered. Note that we show the two cases of χ2

H0
used in

analysis. See the text for further information.

The minimum χ2 gives the best fit parameters, see Table 6. Also, we display the

σ8 value for each case. One can easily note the effect of the cosmic variance over the

best fit values. For instance, when σδH is included in the definition of χ2
H0

, the value of γ

decreases for all the models, meaning that the use of cosmic variance implies a universe

with more structures. That also can be observed in σ8, where it increases for almost all
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models. Similar behavior can be observed in H0. The inclusion of cosmic variance produces

a lower values of H0, even lower than HPl
0 . One can wonder why cosmic variance leads to

lower values of H0, when the usual solution to the tension is to shift H0 to higher values

[18, 19, 20, 21, 22, 23, 24, 25]. The answer is due to the high correlation with Ωm0. As

we have pointed out before, the introduction of the cosmic variance in the analysis yields

more structures in the universe and consequently more matter, that yields an increase of

Ωm0. Typical contour plots and PDFs are showed in Figure 25-32, where one can easily

identify the effect of the cosmic variance on cosmological constraints and also note the

correlation between H0-Ωm0. On the other hand, it is important to note the effect of the

cosmic variance on coupled models, especially on the parameter β. The inclusion in the

error budget of the cosmic variance, σδH , leads to an increased coupling β.

ΛCDM

CQ08

CQ08+wde

CQ10

CQ10+wde

γCDM
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Figure 24 – Top: Functions f(z) and fσ8(z) predicted for the different cosmologies when
the best fit provided by χ2

H0
without σδH is used. Bottom: Functions f(z)

and fσ8(z) predicted for the different cosmologies when the best fit provided
by χ2

H0
with σδH is used. Note that inclusion of the cosmic variance an its

error budget changes the functions. See the text for further information.

Before computing the tension (3.1) for each model, we have to estimate the mean

and variance of the H0 distribution. For that, we use the PDF(H0) provided by Bayesian

inference both when it is and it is not considered the effect of the cosmic variance. Results

are showed in Table 7. Similar to the best fit of H0 the inclusion of σδH shifts H0 to lower

values. Instead, the variance increases when cosmic variance is included, thus widening its
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posterior.

χ2
H0

with σ2
loc = σ2

R16

Model Mean H0 Variance H0
ΛCDM 66.5006 0.267491
CQ08 66.0016 0.340444
CQ08+wde 65.8316 0.401472
CQ10 65.9442 0.332064
CQ10+wde 65.8172 0.394371
γCDM 66.4468 0.268314
γwCDM 70.365 1.79934
γaCDM 66.4636 0.273785

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model Mean H0 Variance H0
ΛCDM 66.1793 0.273612
CQ08 65.5447 0.402547
CQ08+wde 65.2818 0.481509
CQ10 65.4985 0.390103
CQ10+wde 65.2715 0.475404
γCDM 66.1741 0.27261
γwCDM 69.3095 2.2582
γaCDM 66.1801 0.285065

Table 7 – Mean and variance of H0, computed from the posterior obtained via Bayesian
inference. Note that we show the two cases of χ2

H0
used in the analysis. See the

text for further information.

In order to illustrate how different are the models here considered, we plot f(z)
and fσ8(z) for each model using the best fits showed in Table 6. Thus, Figure 24 shows

both f(z) and fσ8(z) for the different models and for the two sets of best fit parameters.

The most remarkable feature is how the best fit provided by the analysis with cosmic

variance put all functions, both f(z) and fσ8(z), closer.

5.1.2 Error budget σδH and tension

Using the values showed in Tables 6-7 we can compute all the quantities of our

interest, such as: the relative error σδH , the tension T , the minimum χ2
min and the relative

criteria 4AIC and 4BIC. Theses quantities are the main results of this work and they

are showed in Table 8. Before examining the values of the tension T , we will discuss the

agreement of models with the data, i.e. the χ2
min for each model.

From Table 8 one can note that the analysis considering cosmic variance, i.e.

σ2
loc = σ2

R16 +H2
0σ

2
δH , produces a decrease in the minimum χ2. For example, the inclusion
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of the cosmic variance in the statistical inference produces a 4χ2
min ≈ 8.5 for the ΛCDM

model and a 4χ2
min ≈ 9.3 for the CQ08, with respect to the analysis without cosmic

variance. Indeed, the χ2
H0

would decrease after the inclusion of the systematic error σδH ;

consequently, the total χ2 minimum also will decrease. Roughly speaking, the inclusion of

the cosmic variance in the statistical inference improved the agreement of the models with

the current data. The lowest values of χ2
min are given by the γwCDM parametrization,

which features χ2
min = 71.71 and χ2

min = 69.68 for the analysis without and with cosmic

variance effects, respectively. We can see from Table 6 that cosmological constraints for

the γwCDM extension predict a phantom dark energy, wde < −1, with a cosmic growth

index γ ≈ 0.64, for the two cases of the χ2
H0

analysis.

χ2
H0

with σ2
loc = σ2

R16

Model σδH T χ2
min ∆AIC ∆BIC

ΛCDM 0.0297 2.56 83.82 - -
CQ08 0.0290 2.80 83.56 -1.74 -3.95
CQ08+wde 0.0291 2.86 83.60 -3.78 -8.19
CQ10 0.0290 2.82 83.56 -1.74 -3.95
CQ10+wde 0.0291 2.87 83.60 -3.78 -8.19
γCDM 0.0234 2.91 82.01 -0.19 -2.40
γwCDM 0.0268 1.12 71.71 8.11 3.70
γaCDM 0.0207 3.05 82.13 -2.31 -6.72

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model σδH T χ2
min ∆AIC ∆BIC

ΛCDM 0.0297 2.69 75.28 - -
CQ08 0.0293 2.97 74.29 -1.01 -3.21
CQ08+wde 0.0295 3.07 74.35 -3.07 -7.48
CQ10 0.0292 2.99 74.29 -1.01 -3.21
CQ10+wde 0.0295 3.07 74.35 -3.07 -7.48
γCDM 0.0262 2.87 74.96 -1.68 -3.88
γwCDM 0.0269 1.54 69.68 1.60 -2.81
γaCDM 0.0245 2.97 75.89 -4.61 -9.02

Table 8 – Main results of the Bayesian inference with the full likelihood and, therefore, of
this work. See the text for further information.

We have already discussed that it is not appropriate to perform model selection

using the simple χ2
min. Then we use the AIC and BIC criteria. In particular, in order to

shed light on the results, we define the relative values with respect to the ΛCDM, see

equations (5.1) and (5.2). Thus, from Table 8 it is easy to note that only the γwCDM

parametrization is preferred by the data with respect to the standard ΛCDM model: most

of the relative criteria values are positive. According to Jeffreys’s scale, the result of the

analysis with σ2
loc = σ2

R16 shows a (4BIC) moderate and (4AIC) strong evidence for the
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γwCDM model. While, for the results coming from σ2
loc = σ2

R16 + σ2
δHH

2
0 one has a weak

(4AIC) evidence for γwCDM and a (4BIC) weak evidence for ΛCDM. Note that values

of relative criteria do not reach neither very strong nor decisive evidence values.

χ2
H0

with σ2
loc = σ2

R16

Model Error σδHH0 Ratio σR16/(σδHH0)
ΛCDM 1.97523 0.880911
CQ08 1.91649 0.907909
CQ08+wde 1.91512 0.908557
CQ10 1.91375 0.909208
CQ10+wde 1.91206 0.910016
γCDM 1.55619 1.11811
γwCDM 1.8864 0.92239
γaCDM 1.37935 1.26146

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model Error σδHH0 Ratio σR16/(σδHH0)
ΛCDM 1.96556 0.885243
CQ08 1.92176 0.905419
CQ08+wde 1.92566 0.903587
CQ10 1.91558 0.908341
CQ10+wde 1.92813 0.902428
γCDM 1.73813 1.00108
γwCDM 1.86409 0.933434
γaCDM 1.62117 1.0733

Table 9 – Comparison between the absolute error budget due to cosmic variance σδHH0 and
the error on local measurements σR16 from the analysis with the full likelihood.
Note that for all cosmological models σδH and σR16 are of the same order.

Now, we must discuss σδH and T . First, the highest value of the systematic error

σδH is reached in the ΛCDM, which is σδH = 0.0297 for both the cases of χ2
H0

. Only the

CQ models seem to produce a relative systematic error comparable to the one produced by

ΛCDM. This fact also can be noted from Table 9, where we show the absolute systematic

error σδHH0. However, though the value of systematic error, either relative σδH or absolute

σδHH0, has an important contribution to the tension T , its value is not fully decisive

regarding the tension problem. It means, the model with the highest value of σδH is

not necessarily the model that provides the lowest tension. This latter can be easily

noted from Table 8, where one can see that, for the two cases of χ2
H0

, only γwCDM

produces a lower tension than ΛCDM. The γwCDM context produces the lowest tension

for the analysis without cosmic variance. This is because, besides its cosmic variance

contribution, it predicts a higher value of the Hubble constant H0 = 70.37 km s−1 Mpc−1.

Nevertheless, the mean of PDF(H0) is not the only important contribution. Also, the large
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standard deviation σH0 ≈ 1.34 km s−1 Mpc−1 is important. Similar is the case of γwCDM

for which the analysis takes into account the systematic effect due to cosmic variance,

where H0 = 69.31 km s−1 Mpc−1 and σH0 ≈ 1.50 km s−1 Mpc−1. As we have mentioned,

alleviating the tension by shifting directly the Hubble constant has been largely considered

in the literature [18, 21, 22, 23, 24, 25], nevertheless accommodating H0 to a higher value

modifies the early universe, which is very well constrained by the CMB [133]. Note that in

all cases here presented there is remnant tension, even in the case of the γwCDM context.

It is worth to mention that, as showed in Table 9, the absolute systematic error

produced by cosmic variance, σδHH0, is always comparable to the error from local determi-

nations, σR16. It means that σδH and σR16 are always of the same order. Therefore, though

the tension cannot be alleviated by cosmic variance, the effects of the cosmic variance are

non-negligible if one compares them with σR16. For example, for CQ08 + wde when cosmic

variance is introduced in analysis, we have σδH ≈ 1.1σR16, therefore, the total error on

local determinations is σloc = 1.45 σR16.

5.2 RESULTS WITHOUT RSD DATA

We have showed and discussed in Chapter 3 that all non-standard dark energy

models here considered are able to provide a systematic σδH higher than the one in ΛCDM.

However, as showed in Table 8, the systematic belonging to ΛCDM is always higher than

the systematic in the non-standard dark energy context; this is due to RSD data. In

Table 6 one can see that the cosmic growth index is always greater than the standard

value 0.55, that is γ > 0.55. This could be a genuine effect or also signal the presence of

systematics in the still very imprecise RSD measurements. Indeed, as we can note from

Figure 22, or also from the right-hand side of Figure 24, the RSD data has very large error

bars. Thus, in order to distinguish the effect of the cosmic variance from RSD data, we

remove the RSD data from the full likelihood and re-do the analysis. Obviously, without

RSD data there is not a direct way to constraint γ. Therefore it is difficult to constrain

models with many parameters and here we only use the ΛCDM model and its extension

γCDM. For γ we will adopt a flat prior 0 ≤ γ ≤ 2.5.

5.2.1 Best fit parameters and posteriors

Table 10 shows the best fit parameters and σ8 for this case. Similar to the results

of the analysis with the full likelihood, the inclusion of σδH leads to lower values of H0 and

higher values of Ωm0. Typical contour plots and PDFs are showed in Figures 33-34, where

one can appreciate that the inclusion of the cosmic variance effects allow us to constrain,

at least weakly, the cosmic growth index γ. The mean and variance of the PDF(H0) are

showed in Table 11. Similar to the best fit H0 the inclusion of σδH shifts H0 to lower values,
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χ2
H0

with σ2
loc = σ2

R16

Model σ8 γ H0 Ωm0 log 1010As
ΛCDM 0.838 - 66.67 0.323 3.086
γCDM 1.06 0. 66.7 0.323 3.086

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model σ8 γ H0 Ωm0 log 1010As
ΛCDM 0.839 - 66.42 0.326 3.085
γCDM 1.059 0. 66.08 0.329 3.086

Table 10 – Best fit parameters obtained with the analysis without RSD data for ΛCDM
and γCDM. Note that we show the two cases of χ2

H0
. See the text for further

information.

while it increases the variance.

χ2
H0

with σ2
loc = σ2

R16

Model Mean H0 Variance H0
ΛCDM 66.5032 0.269139
γCDM 66.4522 0.269981

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model Mean H0 Variance H0
ΛCDM 66.1797 0.274736
γCDM 66.0374 0.279834

Table 11 – Mean and variance of H0, computed from PDF(H0) provided by cosmological
constraints without RSD data. Note that we show the two cases of χ2

H0
. See

the text for further information.

5.2.2 Error budget σδH and tension

As it is showed in Table 10, the lack of RSD data in the statistical inference leads

to the constraint γ = 0, even when one takes into account the error budget produced by

cosmic variance in order to define the function χ2
H0

.1 Then, the systematic provided by

γCDM is quite higher (∼ 0.066) than the one produced in ΛCDM (∼ 0.029), see Table 12.

Also, one can note from Table 12 that, despite the fact that γCDM predicts a high σδH ,

this latter is not enough to explain the whole tension. That is, even for a cosmology with

enough structures to generate γ = 0, and a background dynamics equal to the ΛCDM

background, there is a residual tension. Finally, due to the poor (or null) power to constrain

1 The cosmic variance always prefers the lowest possible value of γ. This because the deviation δHR,
and consequently σδH , is inversely proportional to γ, see Figure 16.
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γ, the γCDM extension always offers a lower χ2
min than ΛCDM. That also occurs for the

model selection criteria AIC and BIC.

χ2
H0

with σ2
loc = σ2

R16

Model σH T χ2
min ∆AIC ∆BIC

ΛCDM 0.0295 2.57 84.15 - -
γCDM 0.0667 1.43 70.90 11.25 9.04

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model σH T χ2
min ∆AIC ∆BIC

ΛCDM 0.0296 2.69 75.87 - -
γCDM 0.0662 1.53 57.50 16.37 14.16

Table 12 – Main results of Bayesian inference without RSD data. See the text for further
information.

Table 13 shows the absolute systematic error, σδHH0, generated by the cosmic

variance. Also, we show the ratio between σδHH0 and σR16. Obviously, the higher values

σδH obtained for the γCDM parametrization lead to an increase in σloc. For instance, for the

case where σR16/(σδHH0) ≈ 0.39 (or the equivalent σδHH0 ≈ 2.5σR16) one can demonstrate

that the total error on the local measurements of H0 is given by σloc ≈ 1.87 σR16.

χ2
H0

with σ2
loc = σ2

R16

Model Error σδHH0 Ratio σR16/(σδHH0)
ΛCDM 1.9623 0.886716
γCDM 4.43312 0.3925

χ2
H0

with σ2
loc = σ2

R16 +H2
0σ

2
δH

Model Error σδHH0 Ratio σR16/(σδHH0)
ΛCDM 1.9595 0.887981
γCDM 4.37337 0.397862

Table 13 – Comparison between the absolute error budget due to cosmic variance σδHH0
and the error on local measurements σR16 from the analysis without RSD data.
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Figure 25 – Cosmological constraints, with the full likelihood, for the ΛCDM model, where
the contours are 68.3%, 95.4% and 99.7% confidence levels. One can note that
the inclusion of the cosmic variance into the analysis (dashed black contours)
shifts the usual constraints (blue contours). Higher values of Ωm0 and lower
values of H0 are preferred if the cosmic variance is included. Note the high
correlation between Ωm0 −H0.
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Figure 26 – Cosmological constraints, with the full likelihood, for the CQ08 model, where
the contours are 68.3%, 95.4% and 99.7% confidence levels. One can note that
the inclusion of the cosmic variance into the analysis (dashed black contours)
shifts the usual constraint (blue contours). Higher values of Ωm0, lower values
of H0 and non-null couplings β are preferred if the cosmic variance is included.
Note the high correlation between Ωm0 −H0.
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Figure 27 – Cosmological constraints, with the full likelihood, for the CQ08 + wde model,
where the contours are 68.3%, 95.4% and 99.7% confidence levels. One can
note that the inclusion of the cosmic variance into the analysis (dashed black
contours) shifts the usual constraint (blue contours). Higher values of Ωm0,
lower values of H0 and non-null couplings β are preferred if the cosmic variance
is included. Also, the cosmic variance extends the confidence levels for wde.
Note the high correlation between Ωm0 −H0.
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Figure 28 – Cosmological constraints, with full the likelihood, for the CQ10 model, where
the contours are 68.3%, 95.4% and 99.7% confidence levels. One can note that
the inclusion of the cosmic variance into the analysis (dashed black contours)
shifts the usual constraint (blue contours). Higher values of Ωm0, lower values
of H0 and non-null couplings β are preferred if the cosmic variance is included.
Note the high correlation between Ωm0 −H0.
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Figure 29 – Cosmological constraints, with full the likelihood, for the CQ10 + wde model,
where the contours are 68.3%, 95.4% and 99.7% confidence levels. One can
note that the inclusion of the cosmic variance into the analysis (dashed black
contours) shifts the usual constraint (blue contours). Higher values of Ωm0,
lower values of H0 and non-null couplings β are preferred if the cosmic variance
is included. Also, the cosmic variance extents the confidence levels for wde.
Note the high correlation between Ωm0 −H0.
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Figure 30 – Cosmological constraints, with the full likelihood, for the γCDM extension,
where the contours are 68.3%, 95.4% and 99.7% confidence levels. One can
note that the inclusion of the cosmic variance into analysis (dashed black
contours) shifts the usual constraint (blue contours). Higher values of Ωm0
and lower values of H0 and γ are preferred if the cosmic variance is included.
Note the high correlation between Ωm0 −H0.
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Figure 31 – Cosmological constraint, with the full likelihood, to the γwCDM extension,
where the contours are 68.3%, 95.4% and 99.7% confidence levels. One can
note that the inclusion of the cosmic variance into the analysis (dashed black
contours) shifts the usual constraint (blue contours). Lower values of H0 and
higher values of Ωm0 and wde are preferred if the cosmic variance is included.
Here, the cosmic variance does not change markedly constraint on γ. Note the
high correlation between Ωm0 −H0.
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Figure 32 – Cosmological constraints, with the full likelihood, for the γaCDM extension,
where the contours are 68.3%, 95.4% and 99.7% confidence levels. One can
note that the inclusion of the cosmic variance into the analysis (dashed black
contours) shifts the usual constraint (blue contours). Higher values of Ωm0 and
lower values of H0, γ0 and γ1 are preferred if the cosmic variance is included.
Note the high correlation between Ωm0 −H0.
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Figure 33 – Cosmological constraints, without RSD data, to the ΛCDM model, where the
contours are 68.3%, 95.4% and 99.7% confidence levels. One can note that
the inclusion of the cosmic variance into the analysis (dashed black contours)
shifts the usual constraint (blue contours). Higher values of Ωm0 and lower
values of H0 are preferred if the cosmic variance is included. Note the high
correlation between Ωm0 −H0.
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Figure 34 – Cosmological constraints, without RSD data, for the γCDM extension, where
the contours are 68.3%, 95.4% and 99.7% confidence levels. One can note that
the inclusion of the cosmic variance into the analysis (dashed black contours)
shifts the usual constraint (blue contours). Higher values of Ωm0 and lower
values of H0 are preferred if the cosmic variance is included. Also, the cosmic
variance is able to constraint, weakly, the cosmic growth index γ. Note the
high correlation between Ωm0 −H0.
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6 Conclusions

We have investigated if a non-standard dark energy model is able to alleviate

the current tension through the cosmic variance on local determinations of H0 and its

budget error. For that, we have used the CQ model and the γCDM, γwCDM and γaCDM

extensions. Also, we have studied the impact of cosmic variance in the analysis of the

current cosmological data. For that, we have used Bayesian inference and data coming

from CMB, BAO, SNe Ia, RSD and local H0. It is worth to stress, that, we have also

performed cosmological constraints without RSD data in order to distinguish between

effects of RSD data and the systematic error σδH produced by the cosmic variance.

First, we have found that, for all the models and cases here considerated, the

absolute systematic error σδHH0, induced by local structures and peculiar velocities, is

always comparable to σR16 and, in most cases, σδHH0 ≈ σR16 . Consequently, given the

definition of the total local error, σ2
loc ≡ σ2

R16 + σ2
δHH

2
0 , one obtains that the total local

error is σloc ≈ 1.4σR16. So, the effect of cosmic variance, in these cases, is non-negligible.

In addition, we have observed that there is an important decrease in the χ2
min when

the cosmic variance is considered. All cosmological models improve their concordance with

the cosmological data if one takes into account the systematic error σδH . The lowest values

of χ2
min, for the full likelihood analysis, are achieved by a cosmology with a phantom dark

energy wde < −1 and a growth cosmic index γ ≈ 0.64. Using AIC and BIC criteria, we

have found that cosmological data show a strong and moderate evidence for γwCDM when

the cosmic variance is neglected in χ2
H0

. Also, when the definition of χ2
H0

includes the error

σδH , the data provides a weak evidence for both ΛCDM and γwCDM through BIC and

AIC, respectively.

Besides that, our results show that the tension between HPl
0 and HR16

0 is partially

cured by the cosmic variance. It means, there exists a residual tension. The better scenario

is provided by a γwCDM cosmology where the tension is T = 1.12σ. This remnant

tension could be produced by a simple statistical fluke or by systematics in the cosmic

distance ladder used to measure H0 locally or another unknowns systematics either in

local and global measurements. On the other hand, we also have performed the analysis

for ΛCDM and γCDM without the RSD noting that the cosmic variance always prefers

the lowest allowed value for γ. In this case γCDM produces a higher σδHH0 that leads to

σloc ≈ 1.87σR16. Even in this case, there exists a remnant tension, about T = 1.52σ, that

cannot be ascribed to cosmic variance.

Therefore, we conclude that although the whole tension cannot be explained by

cosmic variance, even if RSD data is discounted, the systematic error σδH induced by
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the cosmic variance is always comparable to σR16, and so, it should be considered in the

results of local determinations of H0. This is also because considering the error budget σδH

improved the concordance of the model with the cosmological data. Finally, we report that

the current cosmological data gives evidence for the γwCDM cosmology, where constraints

suggest a phantom dark energy wde < −1 and a growth index γ ≈ 0.64. This cosmological

scenario also seems to be able to explain the actual tension.
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70, and 71.

7 EISENSTEIN, D. J. et al. Detection of the Baryon Acoustic Peak in the Large-Scale
Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J., v. 633, p. 560–574,
2005. Citado 2 vezes nas páginas 7 and 72.
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páginas 14, 55, 81, and 85.

25 HUANG, Q.-G.; WANG, K. How the dark energy can reconcile Planck with local
determination of the Hubble constant. Eur. Phys. J., C76, n. 9, p. 506, 2016. Citado 4
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15, 56, and 57.

36 Akaike, H. A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control, v. 19, p. 716–723, 1974. Citado 2 vezes nas páginas 15 and 69.

37 SCHWARZ, G. Estimating the Dimension of a Model. Annals Statist., v. 6, p.
461–464, 1978. Citado 2 vezes nas páginas 15 and 69.
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<https://books.google.com.br/books?id=XLbvAAAAMAAJ>. Citado 5 vezes nas
páginas 17, 22, 25, 112, and 113.

42 WHITTAKER, E. A History of the Theories of Aether and Electricity
from the Age of Descartes to the Close of the Nineteenth Century. Longmans,
Green and Company, 1910. (Dublin University Press series). Dispońıvel em:
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páginas 45, 46, 50, and 80.

107 BALDI, M. Time dependent couplings in the dark sector: from background evolution
to nonlinear structure formation. Mon. Not. Roy. Astron. Soc., v. 411, p. 1077, 2011.
Citado 3 vezes nas páginas 45, 48, and 49.
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APPENDIX A – Maximally symmetric
space

In order to solve the Einstein equations, it is necessary to specify the matter content

of the universe via Tµν . Yet, solutions to the field equations, or at least some features of them,

can be obtained without solving directly the Einstein equations. For that, it is necessary

to identify some geometrical features of our pseudo-Riemannian manifold, for instance

symmetries. Here, we use the cosmological principal and its geometrical consequences in

order to obtain some characteristics of the solution of the Einstein equations.

A symmetry is defined when the metric gµν is form-invariant under coordinate

transformations x→ x′, that is

g′µν(y) = gµν(y) , (A.1)

for any y, where g′µν(x′) and gµν(x) are the metric tensor according to the coordinate

systems x′ and x, respectively. The set of transformation that leaves form-invariant the

metric is dubbed isometries. It is often assumed an infinitesimal transformation, given by

x′µ = xµ + εξµ(x), (A.2)

with |ε| � 1. If one uses this infinitesimal transformation in the law of transformation of

tensor and demands (A.1), obtains:

∇σξρ +∇ρξσ = 0 , (A.3)

where ξµ is named Killing vector.

An n-dimensional space that has the maximum number of Killing vectors, that is

n(n+1)/2 vectors, is called maximally symmetric space. It is obvious that we are interested

in four-dimensional spaces, which are maximally symmetric if they have 10 Killing vectors.

Also, it can be demonstrated that for a maximally symmetric n-dimensional space, with

n ≥ 3, the curvature tensor is defined by:

Rλρσν = K {gσρgλν − gνρgλσ} , (A.4)

and the Ricci tensor

Rσρ = −(N − 1)Kgσρ , (A.5)

where the constant K is defined as K ≡ −Rµ
µ/N(N − 1) [41].

One can think of an extension of these properties to spaces that are not maximally

symmetric but rather have a maximally symmetric sub-space. Indeed, results shown before
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can be used for such cases. Then, we focus our attention on the restrictions that symmetries

set on the metric. For example, consider an n-dimensional space with an m-dimensional

maximally symmetric sub-space. It is always possible to choose a coordinate system, with

coordinates v and u for the (n − m)-dimensional sub-space and maximally symmetric

space, respectively, where the world lines are defined according to [41]:

ds2 = gabdv
advb + f(v)ḡijduiduj , (A.6)

where the indexes a, b = 1, 2, ..(N −M) e i, j = 1, 2, ..M . It is interesting to consider a

four-dimensional space, that is n = 4, with a three-dimensional maximally symmetric

subspace, i.e. m = 3. Then, as it is always possible to introduce locally Euclid coordinates,

the line element (A.6) becomes:

ds2 = h(t)dt2 + f(t)
[
dx2 + k(~x · d~x)

1− kx2

]
, (A.7)

where the function f(t) is always positive and k is a constant whose value is associated to

the sign of the curvature constant of the maximally symmetric sub-space. That is:

k =


+1 se a constante de curvatura K > 0 ,
0 se a constante de curvatura K = 0 ,
−1 se a constante de curvatura K < 0 .

(A.8)
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APPENDIX B – Cosmological distances

There are two ways to measure distances in cosmology: considering or not the

expansion of the universe. Distances that are measured not considering the expansion are

dubbed comoving distances, which, obviously, do not depend on time. As we will see later,

all distance are built from comoving distance. The FLRW metric (1.23) allows us to define

the comoving distance. Under assumption of dΩ = 0, it is defined by:

dc =
∫ r

0

dr′√
1− kr′2

.

We can recast this latter integral as

dc = 1
H0

∫ χ

0

dχ′√
1− Ωk0χ2

,

where we have defined the quantities Ωk0 ≡ −kd2
H , χ ≡ r/dH and dH ≡ 1/H0. Then, it is

straightforward to demonstrate that

dc =


dH√
Ωk0

sinh[
√

Ωk0
r
dH

] for Ωk0 > 0 ,
r Ωk0 = 0 ,
dH√
|Ωk0|

sin[
√
|Ωk0| rdH ] for Ωk0 < 0 .

(B.1)

As it has been mentioned before, in the present work we consider Ωk0 = 0, and so,

the comoving distance is dc = r. Note that the distance of the radial coordinate, r, will be

obtained from the geodesic equations (or simply by the line element). Thus, for a photon,

which follows null geodesics (that is ds2 = 0), we have

r =
∫ t0

t

dt′

d(t′) = dH

∫ z

0

dz′

E(z′) ,

where E(z) is the normalized Hubble rate defined in Subsection 1.3.4. As all data sets

here used are obtained via the observations of photons, the comoving distance is:

dc =
∫ z

0

dz′

H(z′) . (B.2)

Analogously, we define the comoving distance travelled by a sound wave of speed cs as:

rs =
∫ z

0

csdz

H(z) . (B.3)

Also, we can define another distances that are related to dc. For instance, we can define the

proper distance, which, unlike the comoving distance, does take into account the expansion

of the universe. It is given by:

dp = adc = (1 + z)−1dc . (B.4)
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and is often called physical distance.

The use of standard candles force us to define a distance related to the intrinsic

luminosity, L, and flux, F , of a source. This distance, dubbed luminosity distance, is

defined so as to satisfy the relationship dL ≡
√
L/4πF . Then, it is

dL = (1 + z)dc . (B.5)

Similar is the case of the angular diameter distance. The presence of standard rulers in

the universe leads us to define a distance that relates the object’s physical transverse size

and its angular sizes, which is known as the angular diameter distance. It is defined as:

dA = (1 + z)−1dc . (B.6)

Finally, it is also useful to define the volume averaged distance Dv, which is

Dv =
[
dH(1 + z)2z

d 2
A

E

]1/3

. (B.7)

When cosmological data is used it could be problematic to keep c = 1. So, to

reinsert the speed of light into the definitions of cosmological distances it is only necessary

to perform dH = 1/H0 → dH = c/H0.
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APPENDIX C – RSD data not
marginalized over σ8

Here we consider the non-marginalized RSD data in order to confirm results from

[164]. For that, we also remove the H locl
0 from the full likelihood. Thus, we obtain the

cosmological constraints under the assumption that σ8 = 0.815. From Figure 35 one can

0.2 0.4 0.6 0.8 1.0 1.2

0.4 0.6 0.8 1.0

0.64

0.65

0.66

0.67

H
0

0.64 0.65 0.66 0.67

0.4 0.6 0.8 1.0

0.31

0.32

0.33

0.34

0.35

Ω
m

0

0.64 0.65 0.66 0.67

0.31

0.32

0.33

0.34

0.35

0.31 0.32 0.33 0.34 0.35

0.4 0.6 0.8 1.0

3.00

3.05

3.10

3.15

3.20

γ0

L
o

g
[A

s
]

0.64 0.65 0.66 0.67

3.00

3.05

3.10

3.15

3.20

H0

0.31 0.32 0.33 0.34 0.35

3.00

3.05

3.10

3.15

3.20

Ωm0

3.00 3.05 3.10 3.15 3.20

Log[As]

Figure 35 – Cosmological constraints, with non-marginalized RSD data and without the
local determination of H0, where the contours are 68.3%, 95.4% and 99.7%
confidence levels. Note that in the absence of cosmic variance (red contours)
γ = 0.55 is ruled out at about 99.7% confidence level. The best fit of the
cosmic growth index is γ = 0.699.

note that the cosmic index growth rate γ = 0.55, predicted by ΛCDM, is excluded at

about 99.7% confidence level and γ = 0.699 is quite higher, in concordance with γ = 0.725
from [164]. When the systematic error, due to the cosmic variance, is considered the values
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of the best fit remain practically invariant but the error on γ increases dramatically and

so allowing for the value predicted by ΛCDM, γ = 0.55.
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