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Résumé : Ce manuscrit porte sur certaines ex-
tensions a des séries temporelles prenant des va-
leurs entiéres du modeéle paramétrique périodique au-
torégressif établi pour des séries prenant des va-
leurs réelles. Les modéles que nous considérons
sont basés sur [l'utilisation de l'opérateur de Steu-
tel et Van Harn (1979) et généralisent le proces-
sus autorégressif stationnaire a valeurs entiéres
(INAR) introduit par Al-Osh & Alzaid (1987) a des
séries de comptage périodiqguement corrélées. Ces
généralisations incluent lintroduction d’un opérateur
périodique, la prise en compte d'une structure
d’autocorrélation plus complexe dont l'ordre est
supérieur a un, I'apparition d’'innovations de variances
périodiques mais aussi a inflation de zéro par rap-
port a une loi discréte donnée dans la famille des
distributions exponentielles, ainsi que l'utilisation de
covariables explicatives. Ces extensions enrichissent
considérablement le domaine d’applicabilité des
modeles de type INAR. Sur le plan théorique, nous
établissons des propriétés mathématiques de nos
modéles telles que I'existence, I'unicité, la stationna-
rité périodique de solutions aux équations définissant
les modeles. Nous proposons trois méthodes d’es-
timation des paramétres des modeéles dont une
méthode des moments basée sur des équations
du type Yule-Walker, une méthode des moindres
carrés conditionnels, et une méthode du quasi
maximum de vraisemblance (QML) basée sur la
maximisation d’'une vraisemblance gaussienne. Nous
établissons la consistance et la normalité asympto-
tique de ces procédures d’estimation. Des simula-
tions de type Monte Carlo illustrent leur comporte-
ment pour différentes tailles finies d’échantillon. Les
modeles sont ensuite ajustés a des données réelles
et utilisés a des fins de prédiction. La premiere
extension du modéle INAR que nous proposons
consiste a introduire deux opérateurs de Steutel
et Van Harn périodiques, 'un modélisant les auto-

corrélations partielles d’ordre un sur chaque période
et l'autre captant la saisonnalité périodique des
données. Grace a une représentation vectorielle du
processus, nous établissons les conditions I'existence
et d’unicité d’'une solution périodiquement corrélées
aux équations définissant le modéle. Dans le cas
ou les innovations suivent des lois de Poisson, nous
étudions la loi marginale du processus. Nous ajustons
ce modele a des données de comptage journaliéres
du nombre de personnes ayant recu des antibiotiques
pour le traitement de maladies respiratoires dans la
région de Vitéria au Brésil. Comme les affections res-
piratoires sont fortement corrélées au niveau de pol-
lution atmosphérique et aux conditions climatiques, la
structure de corrélation des nombres quotidiens de
personnes recevant des antibiotiques montre, entre
autres caractéristigues, une périodicité et un ca-
ractére saisonnier hebdomadaire. Nous étendons en-
suite ce modéle a des données présentant des au-
tocorrélations partielles périodiques d’ordre supérieur
a un. Nous étudions les propriétés statistiques du
modele, telles que la moyenne, la variance, les dis-
tributions marginales et jointes. Nous ajustons ce
modele au nombre quotidien de personnes recevant
du service d’'urgence de I'hépital public de Vitdria un
traitement pour I'asthme. Enfin, notre derniére ex-
tension porte sur lintroduction d’innovations suivant
une loi de Poisson a inflation de zéro dont les pa-
rametres varient périodiquement, et sur I'ajout de co-
variables expliquant le logarithme de l'intensité de la
loi de Poisson. Nous établissons certaines propriétés
statistigues du modéle et nous mettons en oeuvre la
méthode du QML pour estimer ses paramétres. Enfin,
nous appliquons cette modélisation a des données
journalieres du nombre de personnes qui se sont ren-
dues dans le service d’'urgence d’un hopital pour des
problemes respiratoires, et nous utilisons comme co-
variable la concentration de polluant dans la méme
zone géographique.
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Abstract : This manuscript deals with some exten-
sions to time series taking integer values of the auto-
regressive periodic parametric model established for
series taking real values. The models we consider are
based on the use of the operator of Steutel and Van
Harn (1979) and generalize the stationary integer au-
toregressive process (INAR) introduced by Al-Osh &
Alzaid (1987) to periodically correlated counting se-
ries. These generalizations include the introduction of
a periodic operator, the taking into account of a more
complex autocorrelation structure whose order is hi-
gher than one, the appearance of innovations of per-
iodic variances but also at zero inflation by relation
to a discrete law given in the family of exponential
distributions, as well as the use of explanatory cova-
riates. These extensions greatly enrich the applicabi-
lity domain of INAR type models. On the theoretical
level, we establish mathematical properties of our mo-
dels such as the existence, the uniqueness, the per-
iodic stationarity of solutions to the equations defining
the models. We propose three methods for estimating
model parameters, including a method of moments
based on Yule-Walker equations (YW), a conditional
least squares method, and a quasi-maximum likeli-
hood method (QML) based on the maximization of
a Gaussian likelihood. We establish the consistency
and asymptotic normality of these estimation proce-
dures. Monte Carlo simulations illustrate their beha-
vior for different finite sample sizes. The models are
then adjusted to real data and used for prediction pur-
poses. The first extension of the INAR model that we
propose consists of introducing two periodic operators
of Steutel and Van Harn, one modeling the partial au-
tocorrelations of order one on each period and the

other capturing the periodic seasonality of the data.
Through a vector representation of the process, we
establish the conditions of existence and uniqueness
of a solution periodically correlated to the equations
defining the model. In the case where the innovations
follow Poisson’s laws, we study the marginal law of
the process. As an example of real-world application,
we are adjusting this model to daily count data on
the number of people who received antibiotics for the
treatment of respiratory diseases in the Vitéria region
in Brazil. Because respiratory conditions are strongly
correlated with air pollution and weather, the corre-
lation pattern of the daily numbers of people recei-
ving antibiotics shows, among other characteristics,
weekly periodicity and seasonality. We then extend
this model to data with periodic partial autocorrela-
tions of order higher than one. We study the statistical
properties of the model, such as mean, variance, mar-
ginal and joined distributions. We are adjusting this
model to the daily number of people receiving emer-
gency service from the public hospital of the munici-
pality of Vitéria for treatment of asthma. Finally, our
last extension deals with the introduction of innova-
tions according to a Poisson law with zero inflation
whose parameters vary periodically, and on the ad-
dition of covariates explaining the logarithm of the in-
tensity of the Poisson’s law. We establish some sta-
tistical properties of the model, and we use the QML
method to estimate its parameters. Finally, we apply
this modeling to daily data of the number of people
who have visited a hospital’s emergency department
for respiratory problems, and we use the concentra-
tion of a pollutant in the same geographical area as a
covariate.
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Resumo : Este manuscrito trata de algumas ex-
tensOes para séries temporais de valores inteiros do
modelo paramétrico periédico autorregressivo esta-
belecido para séries temporais de valores reais. Os
modelos considerados baseiam-se no uso do ope-
rador de Steutel e Van Harn (1979) e generalizam
0 processo autorregressivo de numeros inteiros es-
tacionarios (INAR) introduzidos por Al-Osh & Al-
zaid (1987) para séries de contagem periodicamente
correlacionadas. Essas generalizacdes incluem a
introducao de um operador periddico, a consideracao
de uma estrutura de autocorrelacdo mais complexa,
cuja ordem é maior do que um, o aparecimento
de inovagdes de variancias periodicas, e também a
inflacdo zero em relagdo a uma lei discreta dada
na familia de distribuicbes exponenciais, bem como
o uso de covariaveis explicativas. Essas extensoes
enriguecem muito o dominio de aplicabilidade dos
modelos do tipo INAR. No nivel teérico, estabelece-
mos propriedades matematicas de nossos modelos
como a existéncia, a unicidade, e a estacionariedade
periddica de solucoes para as equacgoes que defi-
nem os modelos. Propomos trés métodos para es-
timar parametros de modelos, incluindo um método
de momentos baseado nas equacgdes de Yule-Walker,
um método de minimos quadrados condicionais e um
método de quasi-maxima verossimilhanca (QML) ba-
seado na maximizacdo de uma probabilidade Gaus-
siana. Estabelecemos a consisténcia e a normalidade
assintética desses procedimentos de estimativa. As
simulagées de Monte Carlo ilustram seus comporta-
mentos para diferentes tamanhos de amostras finitas.
Os modelos sao entao ajustados para dados reais e
usados para fins de previsdo. A primeira extensao do
modelo INAR que propomos consiste na introdugao
de dois operadores periodicos de Steutel e Van
Harn, o primeiro atua modelando as autocorrelagbes
parciais de ordem um em cada periodo e o ou-

tro capturando a sazonalidade periddica dos da-
dos. Através de uma representacio vetorial do pro-
cesso, estabelecemos as condigdes existéncia e uni-
cidade de uma solucdo periodicamente correlacio-
nada as equagdes que definem o modelo. No caso
em que as inovagdes seguem as leis de Poisson,
estudamos a lei marginal do processo. Como um
exemplo de aplicagdo no mundo real, estamos ajus-
tando este modelo aos dados diarios de contagem
do numero de pessoas que receberam antibioticos
para o tratamento de doencas respiratérias na regiao
de Vitoria, Brasil. Como as condigbes respiratérias
estao fortemente correlacionadas com a poluigao do
ar e o clima, o padrao de correlagdo dos numeros
diarios de pessoas que recebem antibidticos mos-
tra, entre outras caracteristicas, a periodicidade se-
manal e a sazonalidade. Em seguida, estendemos
esse modelo para dados com autocorrelagdes par-
ciais periodicas de ordem maior que um. Estudamos
as propriedades estatisticas do modelo, como média,
variancia, distribuicdes marginais e conjuntas. Ajus-
tamos esse modelo ao numero diario de pessoas
com problema respiratorio que receberam atendi-
mento de emergéncia no pronto-atendimento da rede
publica do municipio de Vitéria. Finalmente, nossa
Ultima extensdo trata da introducdo de inovacdes
de acordo com uma lei de Poisson com inflacdo
zero cujos parametros variam periodicamente, e da
adicao de covariaveis explicando o logaritmo da in-
tensidade da lei de Poisson. Estabelecemos algu-
mas propriedades estatisticas do modelo e usamos
0 método QML para estimar seus parametros. Por
fim, aplicamos essa modelagem aos dados diarios
sobre 0 nimero de pessoas que visitaram o depar-
tamento de emergéncia de um hospital por proble-
mas respiratérios e usamos como covariavel a série
concentragdes diarias de um poluente medido na
mesma area geografica.
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Chapter 1

Introduction

1 General introduction

A stochastic process is a family of random variables defined on a same probability space.
The realizations of a stochastic process are functions of time, which represents the sample-
path of the process, i.e., the values which are actually observed. A time series is a sequence
of observations of the same random variable at different times, typically with constant period
between observations. The time series is frequently used to refer both the data and the process
of which it is a realization (Brockwell & Davis (2013)).

The realizations of a stochastic process can be uniformly varying, trending, noisy, integer-
valued, or a mixture between these patterns. The count time series represents a specific
sequence of counts, a number of times that one event occurs, for example, the daily number
of persons that use some special public transport or the monthly number of motor vehicle
accidents in a given region.

Statistical models are mathematical structures that seek ways to describe the generating pro-
cess of stochastic series. Some interesting features of the time series to be investigated directly
influence the shape of the model to be applied: the type of data and its probability distribution,
stationarity, seasonality, structure of autoregressive autocorrelation, as well as external factors
such as the use of covariates (exogenous variables) time-dependent or mathematical functions
of these values.

The models proposed in this thesis were inspired by analysis of a group of real data sets re-
lated to health problems, and the daily mean concentration of some air pollutants. In fact, our
first inspiration was raised after the data mining of the series of the daily nhumber of people
who got antibiotics for the treatment of respiratory infection from the public health system in the
city of Vitoria-ES, Brazil. This data set presents some characteristics that are easily observed
in a certain group of real data; however, it becomes differentiated due to having all the char-
acteristics present in a single time series. This is an integer-valued time series, periodically
autocorrelated, with serial and seasonal dependence on its autoregressive structure.



The periodicity in this data set was expected. In the literature, several papers give scientific
evidence that the effect of pollutants on the respiratory system determines a higher frequency
of infections, compromises pulmonary function and increases the risk of developing allergic
diseases (Baldacci et al. (2015)). The series related to health problems, especially related
to respiratory diseases, are strongly correlated with air pollution levels and climatic conditions
(Oudin et al. (2017), Caillaud et al. (2018)). The correlation structure of the daily number series
of people receiving antibiotics shows, among other phenomena, periodicity and seasonality,
which are often observed in series of daily average concentrations of atmospheric pollutants
(Hies et al. (2000)).

The remaining health data sets are referring to the daily number of visits of people affected
by respiratory diseases (asthma and rhinitis) to the public health hospital emergency service
and the time series of counts referring to the daily number of people who got medicine based
on salbutamol sulphate for the treatment of respiratory problems also from the public health
hospital emergency service in the city of Vitéria-ES, Brazil. These time series also present
periodic autocorrelation characteristics. Besides that, they present an autoregressive structure
with order larger than one and, for the time series of daily number of visits, it also presents a
large number of zeros.

On the modeling of count time series, the Integer-valued Autoregressive model (INAR), intro-
duced by Al-Osh & Alzaid (1987), appears as an alternative to the Poisson’s models family. A
special advantage of INAR models over the Poisson model is the close similarity to the contin-
uous data modeling with the Box and Jenkins Autoregressive (AR) models. INAR model has
the same additive structure of AR models instead of the multiplicative structure presented in
Poisson models. This additive characteristic and the discreteness of the modeled process is

”_»

proportioned by the Thinning Operator "o”.

The identification of periodically correlated process patterns, here simply treated as periodicity,
is the subject of research and application in many areas of science, as discussed by Gardner
et al. (2006). According to the author, many processes identified in nature arise from periodic
phenomena. Although these processes are not necessarily periodic time-dependent functions,
they generates random data whose statistical characteristics vary periodically with time. These
processes are called cyclostationary.

The occurrence of PC processes is corroborated by real applications in many practical situa-
tions, see e.g. Sarnaglia et al. (2010), Basawa & Lund (2001) among others.

Even though many studies in the literature focus on periodically correlated processes, the vast
majority are dedicated to the analysis and the applications for continuous data, with application
of the PARMA model. Very little attention has been paid to the analysis of periodically corre-
lated count series, excepting, for example, Monteiro et al. (2010), who introduced the periodic
integer-valued autoregressive model of order 1, for Poisson distributed data, called PINAR(1)s.
The periodic structure of the series was also studied by Morina et al. (2011), which presented a
model based on two-order integer-valued autoregressive time series to analyze the number of
hospital emergency service arrivals caused by diseases that present seasonal behavior. They



presented a variation of the INAR(1) and INAR(2) models, where the coefficients involved in
the thinning operation are fixed parameters belonging to (0;1), and the mean of the innova-
tions, n:(\:), follow several Poisson distributed random variable with different means, such that
At = \ers, Where S represents the period of the periodic process observed in X;.

Models that take into account the seasonal autocorrelation structure for INAR can be seen in
the first-order seasonal structure introduced by Bourguignon et al. (2016) or on its extension,
the subset INAR(p) process, which account both the first-order serial and seasonal correla-
tions. The class of subset INAR models is investigated in the forthcoming paper Bondon et al.
(2018).

Count time series presenting a large frequency of zeros are easily encountered in several ar-
eas of science. For example, in biomedical and public health domains, some types of rare
diseases with low infection rates can be related to the daily number of hospital admittance’s of
affected patients. Usually in this type of series the large number of zeros, called zeros infla-
tion, contrasts with high values, which can lead to bad statistical inference and offer spurious
relations. Dealing with this kind of data, Yang et al. (2013) extended the classical Zero Inflated
Poisson (ZIP) introduced by Lambert (1992) to accommodates count data series with an ex-
cess of zeros, autoregressive (AR) autocorrelation and time-dependent covariates regression
framework.

The main contribution of this thesis is to propose extensions of periodic counting models to
accommodate non-negative integer-valued time series data, which have periodic serial and
seasonal autocorrelation characteristics, propose models to count time series periodically au-
tocorrelated with autoregressive order larger than 1, and propose a model to count time series
periodically autocorrelated with a large number of zeros. These contributions are presented in
four papers, which are shown in the third, fourth and fifth chapters of this thesis.

In the first paper we present an innovative model for counting time series which presents peri-
odic and seasonal autoregressive structure. The stationary condition of the process described
by the model is discussed, and then we present the mean of the process and its probabil-
ity distribution function. We present a likelihood-type method to estimate the parameters of the
model, which are evaluated through a simulation study. An application to real data is conducted
in order to demonstrate its usefulness.

The model introduced in the first paper is rigorously studied in the second paper. A compre-
hensive mathematical study of existence, uniqueness and stationary conditions is presented.
Statistical properties of the model such as mean, variance, marginal and joint distributions are
discussed. We present the probability distribution function of the process for sequences with in-
novations Poisson and Geometric distributed. A section is devoted to presenting some methods
of estimation of the parameters, and their performances are investigated through a simulation
study. The consistency and asymptotically normality of the estimators are proved. The model
is applied to a real data, and a forecasting procedure is presented.

In the third paper, we present a model to periodically autocorrelated count time series with sea-
sonal period S and autoregressive structure of order p. We discuss the properties of this model



based on time series with Poisson distributed innovations. In the fourth, we extend this model to
periodically autocorrelated count time series with seasonal period S and autoregressive struc-
ture of order p, which present a large number of zeros. In this last paper, the use of covariates
is proposed to study the relationship between health data and air pollution data.

This thesis is structured as follows: This introduction, the research objectives, the study region
and the real data used in the applications of the proposed models are in Chapter 1. Chapter 2
is intended to review the literature regarding some statistical models and concepts that were
essential for the development of the thesis. As mentioned before, Chapters 3, 4 and 5 refer
to the original contributions and results of this thesis, described in the form of four articles.
Next, the general conclusions and final comments are presented in Chapter 6, followed by the
references used in this research. Lastly, Appendix A is devoted to the co-authoring papers, that
served as background for dealing with the real data used in this thesis.

2 Goal and specific objectives

The Air-quality area derives interesting and challenging problems from the different point of
views from the quality of life (health etc) and the science and technology, especially, in the
probability and statistic fields. In this context, this research shows the praxis between these
areas with special attention in proposing statistical models to explain the dynamic of count time
series and to provide accurate forecasts with application in series observed in the health cen-
ters and from the Automatic Air-Quality Monitoring Network in the Great Vitoria Region, ES,
Brazil. Based on this direction, the main goal of this thesis is to propose extensions of the
periodic integer autoregressive models for counting time series with serial and seasonal peri-
odic autocorrelation structure, with innovations that follow the exponential family of probability
distributions such as the Poisson, Geometric and Zero-Inflated Poisson. In the periodic model
with zero-inflated data, the covariate concentrations of the pollutant Particulate Matter (PMy()
is considered as an explanatory variable. The model and estimation properties are derived and
simulations are carried out to show the method estimation performances. The usefulness of
the proposed models in real applications is also part of the present thesis. The data sets con-
sidered are; the daily number of people who got medicines (antibiotics, salbutamol sulphate
based medications) for the treatment of respiratory infections from the public health system,
the daily number of visits of people affected by respiratory diseases (asthma and rhinitis) to the
public health emergency service and the pollutant concentration (PMy).

Specific objectives

e To propose the PINAR(1, 1s) model for count time series that presents both serial and
seasonal periodic autocorrelation structures and to derive the model and estimation prop-
erties.



¢ To fit the PINAR(1, 15) model to a real data set (health data) to describe the dynamic of
the data and to compute accurate forecasts.

e To extend PINAR(1,1g) model to the PINAR(p)s model and its model and estimation
properties.

e To fit the PINAR(p)s model to a real data set (health data).

e To extend PINAR(p)s model to the regression ZIP-PINAR(p)s model with the use of ex-
planatory covariates.

e To apply the regression ZIP-PINAR(p)s model to evaluate and describe the relationship
between the response variable (health data) and the explanatory covariates (air pollutant
concentration data).

3 Region of study

Vitoria is the capital of the state of Espirito Santo, and with the municipalities of Cariacica,
Fundao, Guarapari, Serra, Viana, and Vila Velha it integrates a geographic area of urbanization
and high industrial development, denominated Region of Greater Vitoria (RGV) (Figure 1.1). It
is located on the coast, at 12 meters of altitude. The climate is tropical humid, with average tem-
perature varying from 24.4°C to 34.4°C. The RGV has 55% to 65% of the potentially polluting
industrial activities installed in Espirito Santo, such as: Steel, Pelletizing, Quarry, Cement, Food
industry, Asphalt Plant, among others (IEMA (2015)). The municipality of Vitéria concentrates
activities with high polluting potential within the urban network and, in recent years, there has
been a significant increase in the number of motor vehicles. According to the Brazilian Institute
of Geography and Statistics (IBGE), the municipality has a population of 327 801 inhabitants
distributed in an area of 98 194 Kms (IBGE (2010)).

The monitoring of air quality in the RGV is carried out by the State Institute of Environment
(IEMA), which has an Automatic Air Quality Monitoring Network (RAMQAr). In the municipality
of Vitéria, 3 monitoring stations are located (Enseada do Sua, Downtown Vitéria and Jardim
Camburi), see Figure 1.2. We are specifically interested in the Enseada do Sua station, be-
cause it is located at a strategic point of Greater Victoria and covers a large area. In addition,
it is directly influenced by the industrial emissions and by the mobile sources that converge to
that area. (IEMA (2015)).

The study area will be the area covered by the Health Unit of Praia do Sua, composed of the
neighborhoods of the Enseada do Sua, Praia do Sua, Bento Ferreira, Santa Helena and llha do
Boi. The criteria used for the selection of the area were that these sites are less than 2 km from
the air quality monitoring station of Enseada do Sua Station and this station is the only one in
the municipality that measures all pollutants monitored by RAMQA, including PMy - particles
with a diameter of less than 10 mm (IEMA (2013)).
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Figure 1.1: Location of the Metropolitan area of Region of Greater Vitoria.
4 Health and pollution variables

The models introduced in this thesis were applied to four real count time series related to
health data. The first set, used in the application of the PINAR(1,1s) model, is related to
the daily number of people who received antibiotics from the public health care system in the
hospital emergency service of the Praia do Sua, at the region of Vitoria, Brazil. The observed
series corresponds to the period of May 26, 2013, to September 07, 2015, resulting in 834 daily
observations.

The second real data set was used in the application of the PINAR(p)s model, and is the time
series of counts referring to the daily number of people who got medicine based on salbutamol
sulphate for the treatment of respiratory problems from the public health care system in the
hospital emergency service of the region of Vitéria-ES, Brazil. The series covers from January
03, 2013 to July 18, 2017, resulting in 1659 daily observations. Both of these data sets were ob-
tained from the Drug Dispensing Data Registration Network of the municipal health secretariat
of Vitoria.
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Figure 1.2: Location of the monitoring stations of Vitoria.

The third set is about the time series of counts referring to the daily number of visits of children
with respiratory problems (International Classification of Diseases ICD-10) in the emergency
service of the public health care system of the region of Vitéria-ES. This data was used as
a second application of the PINAR(1,1s) model. The period of the study covers from June
26, 2013 to April 7, 2016, resulting in 1022 daily observations. The last data set, used on
the application of Regression ZIP-PINAR(p)s model, is the time series of counts referring to
the daily number of hospital emergency service visits of people with respiratory airway dis-
eases, classified according to International Classification of Diseases (ICD-10, j31 and j45).
The data selected were the people of any age group who visited the hospital emergency ser-
vice in Vitoria-ES city , specifically those living in the neighborhoods of Praia do Sua, Enseada
do Sua, Bento Ferreira and llha do Boi. These data sets were obtained from the network
records system Welfare (Bem-Estar Network) of the municipality.

For the application to the real data set of the Regression ZIP-PINAR(p)s model, the use of the
daily average of concentration levels of Particulate Matter (PM;,) was proposed as covariate
of the modeling of the health data. These measures were obtained from the IEMA, with data
collected in Enseada do Sua Station, Vitéria-ES, Brazil, belonging to the Automatic Network
of Air Quality Monitoring (RAMQAr). The data collection comprised a 24-hour period, which
began in the first half hour of the day. The average of 24 hours was considered.



Chapter 2

Overview of some models and
properties

The development of the models presented in this thesis, were based on the study of some
known models of the literature. In what follows, we present some of these models.

1 The integer autoregressive models (INAR)

1.1 Introduction

A time series is a set of data evolving randomly over time, in which the order of the data is
fundamental. When a time series of counting is observed, one of the main purposes is to find
a model that conforms to it as faithfully as possible, and is able to describe the dynamics of the
information observed.

Time series of non-negative integer values, also referred to as count series, are naturally
present in our daily lives, usually associated with counting processes in a given time interval.
As examples of the application of these models, we have some phenomena, such as the daily
number of visits to hospital emergency service by people with a certain illness, the monthly
number of work accidents in a certain company or country, the weekly number of defects in the
products from an assembly line of an industry, the daily number of medicines dispensed to the
patients of an hospital emergency service due to a specific disease, among other several exam-
ples of counting of cases that occur during a certain period of time. Given the frequent presence
of these phenomena, the interest and the need to study modeling methods for these time series
of counting have arisen and such methods are now an emerging field of science.

There are several classes of models proposed in the literature for the analysis of a time series,
In the general class of linear models, the Box-Jenkins autoregressive linear models are widely
used to model stationary dependent time series under the Gaussianity hypothesis. However,
this assumption is inadequate for modeling non-negative integer-valued processes, called the



counting processes.

The count time series analog of an autoregression is the integer-valued autoregressive INAR
class of models. The INAR models, initially introduced by the INAR(1) model in Al-Osh &
Alzaid (1987), appears as an alternative to the well-known Poisson model family for modeling
count time series, see, e.g., Fokianos et al. (2009). These models are based on the thinning
operator, see Steutel & Van Harn (1979). In what follows, the thinning operator will be defined
based on the Binomial distribution (for alternative thinning concepts see, for example, Weil3
(2008)).

1.2 The binomial thinning operator

The binomial thinning operator ao for a random variable (r.v.) Y is defined as

Y
aoY = Z UZ(OZ)
=1

where Yis a Z -valued r.v,, a € [0, 1] and {U;(«) }scz is a sequence of independent identically
distributed (i.i.d.) r.v.’'s which are Bernoulli distributed with parameter «. It is assumed that the
sequence {U;(a)}iez, is mutually independent of Y. Note that the empty sum is set to O if
Y = 0. The sequence {U;(a)}cz, is called a counting sequence. Remark that the probability
of success in the thinning is P(U;(«) = 1) = aand, conditionallyon Y, aoY ~ Bin(Y, ).

The special assignment of this operator is to "replace” the usual scalar multiplication, making
it possible for the result of the binomial thinning operator between a real o € [0, 1] and a non-
negative integer value to still be a non-negative integer value. We present here some properties
of thinning based count time series models (da Silva & Oliveira (2004)). Let X and Y be non-
negative integer-valued random variables. Then for any «, 5 € [0, 1], we have that
(i) 0o X =0
(i 1o X =X
(ili) ao(BoX) 4 (ap) o X where < stands for equal in distribution.
E(ao X) = aE(X)
V) E(co X)? = o®E(X?) + a(1 — a)E(X)
) E(ao X)3 = a®E(X3) +3a2(1 — @)E(X?) + a(1 — a)(1 — 2a)E(X)
(vii) E(X(a0Y)) = aE(XY)
(viii) E(X(aoY)?) = a®?E(XY?) + a(l — a)E(XY)
(ix) if X and Y are independent, then E((awo X)(BoY)) = afE(X)E(Y)

(X) E((a 0 X)(BoY)) = aBfE(XY) if the counting series of a0 X and 3 o Y are independent,
and independent of X and Y.
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(xi) E((ao X)2(BoY)) = a?BE(X2Y) + a(l — a)BE(XY) if the counting series of a o X and
B oY are independent, and independent of X and Y.

(xii) E(XY (B0 Z)) = BE(XYZ)

(xiii) E(X(BoY)(yoZ) = ByE(XY Z) if the counting series of oY and o Z are independent,
and independent of X, Y and Z.

(xiv) E((aoc X)(BoY)(yo Z)) = aByE(XY Z) if the counting series of v o X, foY and yo Z
are independent, and independent of X, Y and Z.

(xv) Var(ao X) = a? Var(X) + a(l — a)E(X).
(xvi) Cov(awo X, X) = aVar(X).
(xvii) Cov(ao X,30Y) = afCov(X,Y)
Proofs.

The proof of properties (i), (ii) and (iii) follow from the definition; properties (iv), (v), (ix) and (x)
are from Al-Osh & Alzaid (1987), Du & Li (1991) and Franke & Seligmann (1993); properties
(vi), (vii), (viii), (xi), (xii) follow from the definition of o and the conditional expectation.

(xv) From the Kéenig formula

Var(a o X) = E[(a 0 X)?] — [E(ao X)]?
= 02E[(X2) + a(l — a)E(X) — [aE(X))?
= o’ Var(X) + a(1 — a)E(X)

(xvi) Cov(ao X, X) = E[(cv0 X)X)] — [E(x 0 X)E(X), where

()or

(xviii) Cov(ao X,80Y) =E[(a0 X)(BoY)] —E(aeo X)E(BoY).

X

XY E(YX)

=1

E[(co X)X] =E {E —E

X
E[szj)

For more details on thinning based count time series models see, e.g., Scotto et al. (2015) in
the univariate and Latour (1997) in the multivariate case, respectively.

1.3 The INAR(1) model

The model for non-negative integer-valued time series with autoregressive order equal to 1, the
INAR(1) model, was introduced by Al-Osh & Alzaid (1987). This model is a widely used tool for
the modeling of counting processes. {Y;}:cz is an INAR(1) process if it satisfies the following
stochastic recursion

Y =aoY; g+ ¢y, (2.1)

11



where a € [0,1] is the autoregressive coefficient and {e;}:cz is a sequence of Z.-valued
i.i.d.r.v’s, with finite mean E(s;) = A and finite variance Var(e;) = o > 0. As pointed out by
Al-Osh & Alzaid (1987) and Du & Li (1991), if 0 < a < 1, then (2.1) has a unique second-order
stationary solution Y; and ¢, is independent of Y;_; and a0 Y;_;.

As can be seen, for each time ¢, Y; in (2.1) has two random components; the immigration of the
immediate past Y;_; with survival probability o and the elements which entered in the system
in the interval (t-1, t], which define the innovation term ¢, for all ¢t € Z.

If0 < a<1,wehave:

() E[Yi] = 125 and E[Y?] = 94?4 X0

(i) Forall h € Z,
h1
¥(h) = Cov(Yi_p, ¥;) = Cov(Yi_p, o 0 Yi_p) + Cov(Vip, Y o oep_j)
=0
1o
=a Var(Y;_p) + Z ol Cov(Yi_p,e0—5) = a~(0).
=0

(iii) The representation for the marginal distribution of the INAR(1) model expressed in terms
of the innovation sequence is given by Y; 4 E;‘;O adoegyj.

Proof: (i) follows from the definition, (ii) and (iii) are due to Al-Osh & Alzaid (1987, egns. (3.3)
and (2.2)), respectively.

Since the counting r.v. and the immigration process involved in (2.1) are mutually independent,
the conditional probability distribution of the INAR(1) process is given by

PYi=wlYs=ys, s=1,....,t = 1) =PV, =w|Yic1 =y—1) =Plaoy—1+e.=wy). (2.2)

Poisson INAR(1)

In (2.1), let ¢; be a Poisson distributed r.v., e; ~ Poi()), then {Y;},cz is called a Poisson INAR(1)
process. Al-Osh & Alzaid (1987) have shown that ¥; ~ Poi(\/(1 — «)) for all ¢ € Z when
Yy ~ Poi(A/(1 — «)). Based on (2.2), the conditional probability distribution of the INAR(1)
process {Y;}icz is given by

PWielyi—1) = P(Y: = ye|Yi—1 = 1) = [Bin(ys—1, ) * Poi(A)] =

Yt—1/\Yt t—1
Z (yt'—1>(a>i(1_a>yt—1ieXp(_)\))\y7 (2.3)

= i (ye —9)!

where * denotes convolution and a A b = min{a, b}.

12



Estimation methods and asymptotic properties

As pointed out by Al-Osh & Alzaid (1987), the estimation of the parameters of the INAR(1)
process is more complicated than that of the AR(1) process because the conditional distribution
of Y3, given Y;_4, is the convolution of the distribution of £; and a binomial with scale o and index
Yi—1. In what follows, we assume that ; ~ Poi()).

Yule-Walker (YW) estimators

The estimates of o and )\ are obtained by replacing x and ~(h) with the sample mean 3 and
sample autocovariance function, respectively, into the well known YW equations, obtained by
multiplying (2.1) by Y;_;, i = 0, 1, and taking expectations of both sides, which leads to

aYw 2 =W — )
>t (g —7)? ’
n

)\YW :n—l Z(yt _ aYWyt_l)’
t=1

where

y=n"! Zyk

k=1

Conditional least squares (CLS) estimators

The CLS estimators 9SS, n € N, of & = (a,A)T are obtained by minimizing the expres-
sion .
Qn(9) = (Vi — E(Yy|Yi-1))% (2.4)
t=1

with respect to 9. From the derivatives of (2.4) with respect to « and A, we obtain

acLs _ 2= Yebe—1 = oy Ye) Qo Y1) /7
Dt Vi — (i ye-1)?/n

n
)\CLS —n! Z(yt o aCLSyt_1>_
t=1

One can see that the real-valued penalty function Q,,(-) satisfies the assumptions of Theorem
3.1 in Klimko & Nelson (1978). The CLS estimator 9€LS = (€L, \CLS) of the parameter vector
9 is strongly consistent. In addition, if E(|e;|>) < oo, which is verified for Poisson distribution,
then by Theorem 3.2 of Klimko & Nelson (1978), (a°LS, XCLS) are asymptotically normally dis-
tributed as

n1 295 — 94) 25 N0, VWYV L,
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as n — oo, where 9y = (g, A\o) denotes the ‘true’ value of the parameters, and the matrices V'
and W of dimension 2 x 2 with elements defined by

g ((ECGIYi 1) OE(ViIYi 1)
W 00, v,

and

W;;=E <(Yt - E(Y;’Y;il)ﬂaE(YHYZ—l) 8E(Ytyt_1)> |

09; 09;
where i,j = 1,2, and (Y; — E(Y;|Y:—1) and E(Y;|Y;—1) are evaluated over 9.

Conditional maximum likelihood (CML) estimators

Based on the probability function defined in (2.3), the conditional likelihood function of the
PINAR(1) model (conditioned on the first observation, which presents negligible influence when
the sample size is large) can be written as

n

Lo (9) = [ [ p(welyi—)-
t=1
The conditional log-likelihood function I,,(9) = log L, (9) = >}, log p(y¢|y+—1) is maximized in
order to obtain the CML estimator 9™ of the parameter vector o.

After a large set of simulation experiments using these three estimation methods, the conclu-
sion stated by Al-Osh & Alzaid (1987) is that the CML estimators are the best, followed by the
CLS and the YW estimators, respectively. Regarding the bias and MSE, in the CML estimates,
when compared to the other two methods, it is worth the extra calculations.

1.4 The INAR(p) model

The INAR(p) model, introduced independently by Alzaid & Al-Osh (1990) and Du & Li (1991), is
an extension of the INAR(1) model that accounts the p-th order autoregressive structure. The
two different approaches imply different second-order structure for the processes: the Du & Li
(1991) formulation implies that the autocorrelation function of the process is the same as that
of an AR(p) model, whereas the Alzaid & Al-Osh (1990) formulation gives an autocorrelation
function of an ARMA(p,p — 1) process. Here, based on the approach of Du & Li (1991), the
model and some of its statistical properties will be discussed.

A Z.-valued process {Y; }:cz is said to be an INAR(p) process if it satisfies the following equa-
tion
p
Y, = Zai oYii+er, (2.5)
=1
where «a; € [0,1] for all ¢ and {e;}.ez is a sequence of Z,-valued i.i.d.r.v.s, with finite mean
E(e;) = X and finite variance Var(e;) = o2 > 0. Moreover, all counting r.v.s are mutually
independent and are independent of the sequence {&;}icz.
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In the following, we present the conditions on «4,...,«, obtained by Du & Li (1991) which
guarantee the existence of a unique second-order stationary solution Y; to (2.5). For this, we
introduce the matricial Steuel and Van Harn operator.

Let Ao = (a;j0), 1 < i,5 < p, be a p x p matricial binomial thinning operator, also called the
matricial Steuel and Van Harn operator, where q; ; € [0, 1] for all 1 <, j < p. The action of Ao
ony = (vy,...,Y,) is

p
E ayjoY;
i=1

AoY = : . (2.6)
P
Z ap,j oY
j=1

The operator a; jo, 1 < 4,5 < p, is based on a sequence {U;(a;;)}icz. of iid.rv's with a
Bernoulli distribution. Based on Lemma 2.1 in Latour (1997), E(AoY) = AE(Y), where A =
(aij), 1 <14, <p.

The matrix A related to model (2.5) is defined by

_0410 Q20 (30 -+ Qp_10 apo_
lo 0o Qo --- 0o 0o
Ao= |00 1lo 0o --- Qo Oo | . (2.7)
0o 0o Qo --- lo 0o
Let Y; = (Y3, Yi1,...,Yipt1)" and e; = (g4,0,...,0)". The state-space representation of

(2.5) is

}/1.5 :AOYI;—I + &4,
Y; =BY;,

where Ao is defined by (2.7) and B = (1,0,...,0).

Let p(A) be the spectral radius of matrix A, i.e., the maximum eigenvalue in modulus of A. Du
& Li (1991) have shown that p(A) < 1 is a necessary and sufficient condition for the existence
of a unique second-order stationary solution Y; to (2.5). Moreover, this solution is causal in
the sense that ¢, is independent of the past of Y;, i.e. the o-algebra generated by the random
variables Y;_;, for h > 0.

2 Periodically autocorrelated series

In this section, the time index ¢ is written as ¢ = kS + v, where v = 1,...,5 and k € Z, when
emphasis on seasonality S is important. For example, in the case of daily data and weekly
seasonality, S = 7, v is the day of the week and % is the index of the week.
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Let {V;}, t € Z, be a integer-valued stochastic process satisfying E(Y;?) < oo for all t € Z.
Denote the mean function n(t) = E(Y}:), and the covariance function

7k,u<h) - COV(YkS+1/7 YkSJerh)y h € Z.

The process {Y; }.cz is said to be PC with period S, S € N, ifforv =1,...,Sandall k € Z,
(i) p(kS+v)=puw;
(”) 'Yk,l/(h) = ’Yu(h)'

That is, if mean and covariances do not depend on k. This definition implies that the mean and
covariance are periodic functions with period S. If S = 1, {Y;}+cz is weakly stationary in the
usual sense.

Vecchia (1985) introduced the periodic autoregressive moving average (PARMA) model for
real-valued time series. This model provides some tools for modeling series with properties
that vary periodically within some basic time unit. A multivariate representation of the PARMA
model was used to derive parameter space restrictions and difference equations for the periodic
autocorrelations. The PARMA model was applied to model hydrologic time series.

Lund & Basawa (2000) explored the recursive prediction and likelihood evaluation techniques
for PARMA models. Basawa & Lund (2001) studied the asymptotic properties of parameter
estimates for causal and invertible PARMA models.

The models for counting time series, which contributed with the development of this thesis are
briefly presented below.

2.1 The PINAR(1)s model

The integer-valued autoregressive process with periodic structure, PINAR(1)s model was intro-
duced by Monteiro et al. (2010) by extending the conventional periodic autoregressive model.
{Y; ez is said to be a PINAR(1)s process with seasonal period S € N, if it satisfies the recur-
sive equation

Yi=¢roYi1+ ey,

where ¢, = o, t = kS + v, k € Zand v = 1,...,5. The innovation process {e;}icz is a
sequence of Z, -valued r.v’s such that for each v € {1, ..., S}, the sequence {exs+., } ez CON-
sists of independent Poisson-distributed r.v.’s with mean \,, x5+, ~ Poi(\,). The stationarity
and ergodicity of the process are established. The moments-based (Yule-Walker), conditional
least squares-type and conditional maximum likelihood parameters estimation methods are
presented and the asymptotic distribution of the estimators is discussed. Their performances
are compared through a simulation study. The paper does not present any application of the
model to a real data set.
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2.2 AnINAR(2)s model

Morifia et al. (2011) presented an integer-valued autoregressive time series model of order 2
to analyze the number of hospital emergency service arrivals caused by diseases that present
seasonal behavior. We also introduce a method to describe this seasonality, on the basis of
Poisson innovations with monthly means. Their model is given by

Yi=p1oYi1+proYi_o+mn,

where the coefficients p; and p, involved in the thinning operations are fixed parameters in ]0; 1],
ne ~ Poi(A¢) with \y = Ay g and S € N is the period of the periodic process {Y;}. This model is
a particular case of the first model proposed in this thesis. The maximum likelihood parameter
estimation method is discussed, and some methods for forecasting, on the basis of long-time
means, and short-time and long-time prediction regions are presented. The proposed model
was applied to model the number of hospital admissions per week caused by influenza.

2.3 The MGINAR(1)s model

Latour (1997) introduces the multivariate GINAR(p), (MGINAR(1)) process. The matricial rep-
resentation of the MGINAR(1) is based on the Steuel and van Harn matricial operator defined
in (2.6), and some rules for the computation of the expected value of basic expressions involv-
ing this operator are presented at Section 2 of this paper. Lemma 2.1 of Latour (1997) presents
basic properties of the matricial operators, some of then are given below. Let Ao and Mo be
p x p-matricial generalized Steuel and van Harn operators. Consider that A = («a; ;),1 <i,5 <p
and B = (8;;), 1 <i,j < p denotes the mean and variance, respectively, of the operator Ao,
and M is the mean of the operator Mo. Let X and Y be non-negative integer-valued random
p-vectors. Then

(i) E[AoX] = AE[X];
(i) E[AoX(AoX)T] = diag(B)E[X] + AE[XX"]AT ;
(iii) E[(AoX)TAoX] =1TBEX] + trace(AE[XXT]AT);

(iv) if the counting series involved in Ao are independent of the counting series involved in Mo,
then E[AoX(M o Y)T] = AEXYT|M T ;

Proof. (i) The ith element of A o X being Eﬁ.’:l a;; o X;, the result follows by talking the expec-
tation.

(ii) In a similar way, the element (i, j) of Ao X(AoX)" is Y0 _, 37 | a;x o Xgaj; o X;. Taking
the expectation gives

k=11=1

- S BikEXe] + 30 3P i g EXG X)), i =4,
Z Z Elaik o Xpajy 0o X = ) < Y
=1 2oi—1 ik EXE X ], i # .
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So, E[A o X(A o X)T] = diag(B)E[X]) + AE[XX]AT.

(iii) Since E[A o X)" A o X] = trace[E[A o X(A o X)"]], using (ii) one sees that this expression is
equal to

1" BE[X] + trace(AE[XXT]AT) .
(iv) The fourth assertion is proved in a similar way.

Based on an extension of Theorem 2.1 of Du & Li (1991), Latour (1997) presents a criterion
for the existence of a stationary and causal multivariate integer-valued autoregressive process,
MGINAR(p). The autocovariance function of this process is proved to be identical to the auto-
covariance function of a standard Gaussian multivariate AR(p).

3 The zero inflated Poisson (ZIP) model

Count time series presenting a large frequency of zeros are easily encountered in several ar-
eas of science. For example, in biomedical and public health domains, some types of rare
diseases with low infection rates can be related to the daily number of hospital admittance’s of
affected patients. Usually in this type of series the large number of zeros, called zeros infla-
tion, contrasts with high values, which can lead to bad statistical inference and offers spurious
relations. Dealing with this kind of data, Yang et al. (2013) extended the classical Zero Inflated
Poisson (ZIP) introduced by Lambert (1992) to accommodate count data series with an ex-
cess of zeros, autoregressive (AR) autocorrelation and time-dependent covariates regression
framework. According to Dietz & Bohning (1997), one can see a ZIP distribution as a mixed
distribution of a Poisson (\) and a degenerate component with all its mass at zero. Thus, it
is verified that ZIP is based on two distribution parameters: X referring to the Poisson part of
the distribution and p referring to the inflation parameter of zeros. To clarify, consider the count
time series of random variables ¢, ¢t € Z, that follows the ZIP distribution with non-negative
real parameters p and \, £, ~ ZIP(p, ). The probability mass function (p.m.f.) of ¢; is given by
P., (et =m) = pl—o + (1 — p) exp(=A)A"/m!, m € Z4, where I,,,—o = 1,if m =0 or I,,—o =0,
if m # 0. The parameters p and A connect the variable ¢; to the vectors of covariates X and
Z of the model through equations log(\) = X "3 and log[p/(1 — p)] = Z "+, where 3 and ~
represent the vectors of coefficients.

4 INAR(1) process with zero inflated Poisson innovations

Jazi et al. (2012) introduced an INAR(1) process with zero inflated Poisson innovations (de-
noted by ZINAR(1)). The motivation for such a process comes from its potential in the modeling
and analysis of non-negative integer values time series with excess of zeros. The ZINAR(1)
could also be useful in other cases when the innovation process indicates over-dispersion of
any value, not only zeros. Some mathematical and structural properties of the corresponding
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marginal distribution of the process, such as the mean, variance, autocovariance and con-
ditional maximum likelihood functions are derived. The ZINAR(1) model is an INAR(1) pro-
cess

Yi=aoYi 1 +e,

where o € [0,1] and &; ~ ZIP(p, \). The marginal distributed r.v. Y; of the ZINAR(1) process
can be represented as an infinite sum of ZIP r.v/s with the same p but geometrically decaying
X’s. It follows that for small A and p the marginal distribution will itself approximate a ZIP.

The ZINAR(1) model well fitted a real data given by the numbers of submissions to animal
health laboratories, monthly 2003-2009, from a region in New Zealand.
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Chapter 3

The periodic INAR(1,1g) model

In this Chapter, we present the Periodic INAR(1, 15) model, which is introduced in the first paper
A periodic and seasonal statistical model for dispensed medications in respiratory diseases”
and studied in the second paper "The PINAR(1, 1) model”. These papers are presented be-
low.

A A periodic and seasonal statistical model for dispensed medi-
cations in respiratory diseases

The first original contribution of this thesis is the introduction of a new class of models for
counting time series which presents periodic and seasonal autoregressive structure. We dis-
cuss some statistical properties of the proposed model. We presented a likelihood-type method
to estimate the parameters of the model. We found that our estimator is consistent and asymp-
totic normal distributed. A simulation study evaluates the performance of the estimator for small
sample size. Finally, the proposed model was applied to model the daily number of antibiotics
dispensed for the treatment of respiratory diseases.

This paper will be submitted to publication to the Journal of the Royal Statistical Society, Series
C (Applied Statistics).
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A periodic and seasonal statistical model for
dispensed medications in respiratory
diseases

Abstract

We introduce a new class of models for non-negative integer-valued time series with a periodic
and seasonal autoregressive structure. Some properties of the model are discussed and the
quasi-maximum likelihood method is used to estimate the parameters. The consistency and
asymptotic normality of the estimator are also discussed. The performance of the estimator is
investigated for small sample size and the empirical results indicate that the method gives ac-
curate estimates. We analyze an application to model the daily number of antibiotic dispensing
for the treatment of respiratory diseases.

Keywords: Count time series, INAR model, periodic stationarity, seasonality, quasi-maximum
likelihood estimation.

A .1 Introduction

The study of medicine dispensing has become an important research topic since it can be very
useful for public health issues such as to control and detect epidemic diseases, to promote
public health education campaign, to reduce cost, to improve the quality of care, to propose
intervention strategies, among others. See, for example, Organization et al. (1993). The papers
McDowell et al. (2018), Caillaud et al. (2018), Oudin et al. (2017), Youngster et al. (2017),
Holstiege & Garbe (2013) are some recent publications related to this theme.

The model proposed in this paper is mainly motivated by the analysis of the count time series
of the daily number of people who received antibiotics for the treatment of respiratory diseases
from the public health care system in the emergency service of the region of Vitéria-ES (Brazil).
Since the respiratory disease is strongly correlated to the air pollution levels and weather condi-
tions, the correlation structure of the daily number of people who received antibiotics presents,
among other phenomena, the periodicity and seasonality.

A count time series may be represented by the INteger-valued AutoRegressive (INAR) class of
models which was initially introduced by Al-Osh & Alzaid (1987), that is, the INAR(1) process.
These models are based on the thinning operator which is usually represented by "o”, see
Steutel & Van Harn (1979).

Let Y be a non negative integer-valued random variable (r.v.) and « € [0,1]. The binomial
thinning operator o is defined as
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Y
0o =3 Uia). 3.1)
=1

where {U;(a)}ien is @ sequence of independent identically distributed (i.i.d.) r.v.s which are
Bernoulli distributed with parameter «. It is assumed that the sequence {U;(«)};cn is mutually
independent of Y. Note that the empty sum is set to 0 if Y = 0. The sequence {U;(a)}ien IS
called a counting process. Observe that the probability of success in the thinning is P(U;(«) =
1) = a and, conditionally on Y, a o Y ~ Bin(Y, «). For more details on thinning based count
time series models see, e.g., Scotto et al. (2015) in the univariate and Latour (1997) in the
multivariate case, respectively.

An extension of the INAR(1) model that takes into account the p-th order autoregressive struc-
ture is the INAR(p), introduced by Alzaid & Al-Osh (1990) and, independently by Du & Li (1991).
The authors in Alzaid & Al-Osh (1990) introduced a model for count time series that has a cor-
relation structure similar to the correlation structure of a conventional ARMA(p, p— 1) for contin-
uous data. Du & Li (1991) suggested a model based on a process with a correlation structure
identical to the correlation structure of a standard AR(p).

In Du & Li (1991), despite its flexibility in dealing with higher order autoregressive processes,
the INAR(p) model does not account for the periodic phenomenon, which is a quite common
time series characteristic in many areas of application, specially, in the air quality and health
area.

Stochastic processes with periodically varying mean, variance and covariance were introduced
by Gladyshev (1961) and are usually called periodically correlated processes (PC).

The occurrence of PC processes in time series is corroborated by real applications in many
practical situations, see, e.g., Gardner et al. (2006). Basawa & Lund (2001) studied the asymp-
totic properties of parameter estimates for specific periodic autoregressive moving-average
(PARMA) models among others. Recently, Sarnaglia et al. (2010) and Solci et al. (2018) pre-
sented robust estimation methods for periodic autoregressive (PAR) models applied to air pol-
lution data.

Even though there are in the literature many studies that focus on periodically correlated pro-
cesses, the vast majority is dedicated to the analysis and applications for discrete time pro-
cesses with continuous marginal distributions (see Priestley (1981), Definition 3.2), for example,
the PARMA model. However, not much attention has been paid to the analysis of periodically
correlated count time series, that is, discrete parameter processes with discrete marginal dis-
tributions. See, for example, the ones discussed in Monteiro et al. (2010) and Morina et al.
(2011).

In the first example, Monteiro et al. (2010) introduced the Periodic INAR(1) (PINAR(1)) model
and addressed some statistical properties of the parameter estimators together with some fi-
nite sample size investigation. However, the paper does not explore the model in a practical
problem. In the second example, Morifia et al. (2011) presents a model based on two-order
integer-valued autoregressive time series to analyze the number of hospital emergency service
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arrivals caused by diseases that present seasonal behavior.

The first-order seasonal structure INAR was introduced by Bourguignon et al. (2016) and the
class of subset INAR models is investigated in the forthcoming paper Bondon et al. (2018).

In the remainder of this paper, let N, Z, Z,, R and R, denote the set of positive integers,
integers, non-negative integers, real and non-negative numbers, respectively and I denotes
identity matrix.

In the organization of the paper, Section 2 introduces the proposed model, presents the mean
and the autocorrelation of the process and some probabilistic properties of the model. Section
3 discusses the estimation method of the parameters, namely the quasi-maximum likelihood
framework. Section 4 presents the simulation and its results, real data application is presented
in Section 5, conclusions and final comments are presented in the last section.

A .2 The periodic INAR(1, 15) (PINAR(1,15)) model

Let {Y:}:ez be a stochastic count process with seasonal characteristics of period S, S € N,
defined on a probability space (£, .4, P), which depends on an unknown parameter 3S x 1-
vector ¥ = (ay,fB1, M1, ..,as,8s,As) " lying in an open set © of Euclidean 3S—space. M '
means transpose of a matrix M. Let E(-) and E(:|-) denote the expectation and conditional
expectation, respectively, under P and the true vector parameter value . In addition, let
{Fit}=0,1,... denote the sequence of sub-sigma fields with F;, ¢ > 1, generated by an arbitrary
subset of Y7, ...,Y; and Fy = {0,Q} is the trivial sigma field. The time index ¢t may be written,
by Euclidean division, as ¢t = kS + v, where v = 1,...,5 and k € Z. For example, in the
case of daily data studied here, S = 7, v and k represent the day of the week and the week,
respectively.

Definition 1. {Y;}.cz is said to be a periodic non-negative integer-valued process of autore-
gressive order 2 with seasonal period S, forsome S € {2,3, ...}, and is denoted by PINAR(1, 15),
if it satisfies the following stochastic recursion

YkS+V =0y o YkS+1/fl + B, 0 YkS+VfS + €kS+vs (32)

where k € Z,and v = 1,...,S, oy, 5, € [0,1] are the autoregressive coefficients during the
season v. The immigration process {e;}:cz is a periodic sequence of Z,-valued r.v.s such
that for each v, the sequence {eys:, }rez consists of i.i.d.r.v’s with finite mean E(eis4,) = Ay,
M\, € Ry, and finite variance Var(egsy,) = o2 > 0 for all k € Z. In addition, it is assumed that ¢,
is independent of Y;_1, a, o Y;_1, Y;_g and 8, o Y;_g and all counting processes are mutually
independent.

As can be seen, for each seasonal period v, the r.v. Y, in (3.2), has three random components;
the immigration of the immediate past Y;_; with survival probability «,,, the immigration att — .S
with probability 3, and the elements which entered in the system in the interval (t-1, t], which
define the innovation term ¢,. Moreover, the autoregressive parameters «,,, 5, and immigration
means \,, v = 1....,S, change periodically according to the seasonal period S. Note that
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the above model becomes an extension of the models introduced in Morina et al. (2011) and
Monteiro et al. (2010). For example, in the model by Morifia et al. (2011), the autoregressive
coefficients are fixed in time and only the immigration mean varies within a period. On the
other hand, the PINAR(1, 15) model, in addition to the periodic mean value, the autoregressive
coefficients also vary periodically. In this context, the PINAR(1, 15) model (3.2) also accommo-
dates the periodicity in the autoregressive coefficients, that is, it can be considered as a kind of
cyclostationary models introduced in Gladyshev (1961) for standard linear time series.

The mean of the process Yis1,, k € Z, in (3.2), is given by

M(kS + V) = E(YkSJru) = aVE(Yk:SJrufl) + BVE(YkS+VfS) + E(EkSJru)v
p(v) = app(v = 1) + Byp(v) + Av. (3.3)

In the above equation, E(«w oY) = aE(Y’). For more details of the thinning operator properties
see, for example, Lemma 1 in da Silva & Oliveira (2004). It is worth noting that, the mean of
arrivals at season v, u(t), corresponds to the proportion «, of the mean arrivals at ¢ — 1 plus
the proportion 3, of the mean arrivals at time ¢ — S and the mean )\, of the arrivals at ¢ .

The analysis of the existence and uniqueness of a periodically stationary and causal PINAR(1, 1¢)
process, defined in (3.2), can be obtained analogously as the standard periodically ARMA pro-
cesses introduced by Basawa & Lund (2001). In addition, these properties are well established
for multivariate according to integer-valued autoregressive process Latour (1997), which were
the basis for the model properties discussed in Monteiro et al. (2010) and and the PINAR(p)
process in Filho et al. (n.d.). Following the same lines of the matrix representation properties
of the PARMA process in Basawa & Lund (2001), some properties of the model (3.2) are now
discussed.

Define the matrices A = (a;;) and B = (b;;) of dimension S x S as

1 ifi=j B ifi=j
aij =<4 —o; ifi=j+1, bij=<a; ifi=1,7=2, (3.4)
0 otherwise, 0 otherwise.
Let Y = (Yisit,--.,Yrsis) and ex = (exsit1,---,€xs45) » k € Z, and consider the non-

negative integer stochastic processes {Yi}rez and {ey}rez with finite mean, that is, E[e] =
A= (A,...,As)". Then, by (3.2) and the properties of matricial thinning operator presented
by Latour (1997) in Lemma 2.1, one can easily see that the following stochastic equation
holds

AoY,=DBoYj_1+ey, (3.5)

where the matrices A and B are defined by (3.4).

Suppose that the process {Y%}rcz has a constant mean vector . Then, E[A o Y}] is

Ap = Bu+ A (3.6)
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Note that A is a lower triangular non-singular matrix and its inverse A=! = (a;jl) is given
by

1 if i = 7,
a;jl _ HZ:jJrl o ifi> g, (3.7)
0 ifi < 7.

Thus A~! and B are non-negative matrices, hence A~!B and A~!\ are also non-negative ma-
trix and vector, respectively. By multiplying A~! in both sides of (3.6), it can be seen that

pw=A"'Bpu+AX (3.8)

or
(I-A'Byu=A"1x (3.9)

From Theorem 2.1 in Seneta (2006), since A~'B is a Perron-Frobenius matrix, a necessary
and sufficient condition for a solution of u (1 > 0,# 0), where 0 is a S-dimensional vector of
zeros, to (3.9) to exist for any A* = A~'X (A\* > 0, # 0) is that the spectral radius p(A~'B) < 1,
which is the maximum eigenvalue in modulus of the matrix A~ B . Note that, since S > 2, from
the Perron-Frobenius Theorem in Horn & Johnson (2012) page 534, p(A~'B) > 0. Therefore,
0<p(A71B) <1.

Based on Graybill (1983), page 100, if || < 1 for every characteristic root ¢ of A=! B and none
of the sums of absolute values of row or column elements exceed unity, then > 72, (A~ B)’
converges to (I — A='B)~!. This condition assures the invertibility of (I — A~'B) and the
positivity of its inverse. For the expected value of model 3.5, this condition may be stated as
the roots of the determinant equation det(zIs — A='B) = 0, for all complex z, are all less
than 1 in absolute value, which is also equivalent to the roots of the characteristic polynomial
P(2) =I5, (1 — B;2) — 2 15—, o, for all complex z, lie outside the complex unit circle.

In this context, model PINAR(1, 1s) in (3.5) will be completely specified, if the
det(2I — A™'B) # 0,

z € C, i.e., the characteristic roots will be inside the unit circle, and, then, the process in 3.5
will be strictly and second order periodic stationary process ( Brockwell & Davis (2013), Latour
(1997)). In addition, if all the eigenvalues of A~!'B are inside the unit circle, I — A~'B is non-
singular and u = (I — A~'B)~'X* is the unique solution to (3.6). Some examples are now
given.

Example 1. Consider the case when 5; = 0 for all j = 1,...,S5. Then the PINAR(1,1s)
model is reduced to a PINAR(1)s model introduced in Monteiro et al. (2010). The characteristic
polynomial of this model is simplified to P(z) = 1 — szzl a; and a necessary and sufficient
condition for the periodically stationarity of the process {Y;} is Hle a; < 1. Note that Hle a;
is the spectral radius of the matrix A defined on page 1531 in Monteiro et al. (2010).
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Example 2. Consider the case S = 2, i.e., the PINAR(1, 2) model. Then

1 0], Alzll 0], B:[ﬂl 0‘1]. (3.10)
— Q9 1 a9 1

0 B2
The characteristic polynomial is given by P(z) = (1 — £12)(1 — f22) — a1aez. By solving the
characteristic equation, it can be seen that 8+ 5. — 5152+ a1a2 < 1is a necessary and sufficient
stationarity condition. Note that this condition can be rewritten as ajas < (1 — 81)(1 — B2).

A=

The marginal distribution of {Y;}+cz process defined in 3.2 is given by

o

P(Yistv=m)= > pu(mlb1,ba) P(Yissp—1 = b1, Yisiv-g = ba), (3.11)
b1,b2=0

wherem € Z,t =kS+v > Sandv =1,...,5and p,(m|by,b2) = P(Y; = m|Y;_1 = b1,Y;_g5 =
by) for each v.

Given starting values Y1, ..., Ys, by the definition of the conditional probability and the S-step
Markov property of the PINAR(1, 15) process, the conditional joint probability is given by

PYe=yt,....Yst1 = yst1[Ys =ys,....,. Y1 =11) =
PYi=yi,- - Yi=y) PYia=y-1,....Y1=uy)
P(Yi1=yi-1,...,.Yi=vy1) P¥s=ys,...,Y1=u1) ’
=PYi=w|Yi1=yt-1,..., Y1 =y1)X
P(

(3.12)

thl = Yt—1,-- 'aYS+1 - yS+1|YS =Ys,.. '5Y1 = yl)v
:pl/(yt’yt—la Z/t—s)P(Yt—l =Yt—1,--- 7YS+1 - yS+1|YS =Ys,... 7Yl = y1)7

wheret = kS +v,t > Sand y1,...,y € Z,. Thus, by induction, if T = nS where n € N, the
conditional probability can be calculated as

PYr=yr,....Ys41 =yst1|Ys = ys,.... Y1 =y1) =
S n—1

T IT 2o (uksoltns o1, yrsso—s), (3.13)
v=1k=1

where y1,...,yr € Z..

Now, let the innovation process in (3.2) be an i.i.d. Poisson process with unconditional mean
E(eks+r) = Avy A € Ry, When S = 1, the model (3.2) becomes a variable with Poisson
marginal distribution. See, for example, Bu et al. (2008).

When S > 1, it can be shown that the unconditional mean and variance of Y; are generally
not equal so that the marginal stationary distribution of Y; is no longer Poisson even though
the innovations are. However, an approximation to a Poisson distribution can be achieved if
ay.B, =~ 0 and Y; becomes large due to the well-known Law of Small Numbers. See, also,
Chen & Liu (1997).
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In the case that the immigration 5., follows a Poisson distribution, the conditional probability
pu(-|-,+) in 3.13 becomes

o (Yelye—1,Ye—s) = [Bin(yi—1, ) * Bin(ys—s, B) * Poi(A,)](ye), (3.14)
= Z <yt_1>agl(1 _ ay)ytfl_cl <yt_5> 552(1 _ ﬁy)ytfs—cz )"gt_CI_Q e—>\1/’
c1 ca2 (yr —ca —c1)!
(c1,e2)€T

where x denotes the convolution, and the index set J is defined by J = {(c1,¢2) € Z2|c; <
Yi—1,02 < Yi—s, c1+ca <y }. Note that the definition of .7 depends on the values v, yi—1, yi—s.

Quasi-maximum likelihood (QML)

Before, lets establish the format of the vector of parameters 9, = (o, 8,,\) ", o, B, € (0;1)
and 0 < X\, < oo, forv = 1,...,8 (S is fixed), and let 9 = (9,...,9L)" represent the
3S-dimensional unknown parameter vector of the PINAR(1, 15) model defined by (3.2). The
parameter vector is assumed to be lying in the open set © = ([0, 1] x [0,1] x (0,00))°, which
contains the true parameter vector, denoted by 9o = ((¥))7,..., (¥%)")T. We assumed that
here Y1, ...,Yr has n complete periods of observations, that is, consider a sample Y3,...,Yp
of size T = nS from {Y;}, the PINAR(1, 15) process. Our QML estimation approach is based
on Taniguchi & Kakizawa (2000). Let the likelihood type penalty function of the PINAR(1, 1g)
model, conditioned on the first S observations, be

n—1 S
=) log{fs, (t,t = 1)} + (Yo — my, (t,t — 1))*f, (¢, ¢ — 1)],
k=1v=1
where
fo, (bt —1) =E[{Y; —my, (t,t — 1)}?*|Fi—1]
and

my, (t,t —1) = E(YVes4u| Frstv—1) = 0w Yrsiv—1 + BuYrstv—s + Ao (3.15)

The likelihood function L, (9) = 25, 1,,,(¥,)), where

n—1
ln,u(ﬁu) = Z[log{fﬁu(t)t =D+ (Ve —my, (t,t — 1)) fﬂ (t,t —1)] Z¢t

k=1

is minimized in order to obtain the QML-estimator IME of the parameter vector 9.
The function fy (t,t — 1) is given by

fﬁ,, (t7t - 1) - au(l - au)Yt—l + Bu(l - 51/)3/275 + A1/7 (316)

for Poisson distributed innovations. The function [,, ,,(99,) can be obtained directly by replacing
the results of (3.16) and (3.15) in (3.16). 9™ = (WA™)T,..., (0F¢")T)T is a sequence of
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estimators, such that 58ML — 99 almost surely as n — oo, is the solution of

g Ln(®) =0, (3.17)

which attains a relative minimum of the likelihood function L, (¥).

The minimization of L, () can be done separately by minimizing the partial log-likelihood
I (9,) for each season v € {1,...,S}. Similarly, one can solve the likelihood equation (3.17)
by solving the partial likelihood equations

0
871%[”’”(191/) —0, V—l,...,S,
separately.
Define I'F, the matrix of dimension 3 x 3 for each season v € {1,...,S5} as
IF, =U;'WVy, Ut (3.18)
where
Vo, = E4 -2 60(0,) -0 60(0,) (3.19)
Yy, — 8'19,/ t v 8’[9I t v .
and
82
=ES ——=d() ¢ 2
Us, = €{ g 10} (3.20)

Note that 55-¢:(0,) = (52 6:(9.), 55 ¢+(9.), 55 6+(9,)) is a 3-dimensional row vector. Then,
the matrix I F' of the PINAR(1, 1) process is defined as the block diagonal matrix

IF = diag{IF,...,IFs)}. (3.21)

The following theorem on the asymptotic normality of the QML-estimator 9ML is given be-
low.
Theorem 1. Assume that {Y;} in (3.5), that is, the a PINAR(1,1s) process, is a strictly sta-
tionary ergodic process with E ||e;||® < co (E|le/||® < oo in model (3.2)), and my, (t,t — 1) and
fs, (t,t — 1) are almost surely three times continuously differentiable in the open set © contain-
ing the true parameter value ¥9,. Then, the QML estimators ML are asymptotically normal
distributed as

n12(ME _ 90) 25 N(0, IF), (3.22)

asn — oo, where IF is the matrix of dimension 35S x 35 defined by (3.21).

The proof follows a straight generalization of the Theorem 3.2.26 in Taniguchi & Kakizawa
(2000). The calculations are omitted here but available from authors upon request.
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A .3 Monte Carlo simulations

In this section, the performance of the QML method to estimate the parameters of 3.2 is
evaluated through simulations of time series with finite sample sizes 7. {¢;};—1,..r are gen-
erated from a periodic sequence of Poisson distributed r.v.s such that for each v, the mean
E(eks+y) = A\, v = 1,..., 5. The parameters of the models are displayed in tables, as well
as the sample sizes, and the period for each model was fixed for S = 4,7. The results (the
empirical bias and mean square error (MSE)) correspond to the mean of 1000 replications. All
simulations were carried out using the R software.

Tables 3.1 and 3.2 display the results for S = 4 and S = 7, respectively. As was expected, in
general, the performance of QML estimator presents estimates quite accurate even for a small
sample size. By increasing n, the quantities bias and MSE of the estimates decrease, which
corroborates the theoretical results described previously. Since the parameters «,, and g3, for
each v, correspond to the coefficients of linear relation between the variable Y; at time ¢t — 1
and ¢t — S, respectively, their estimates perform nearly identical, that is, they present similar
MSE. On the other hand, although the estimates of A, also present accurate results, these are
not precisely in terms of MSE as the ones of o, and 3,. This fact may be mainly due to the
minimization algorithm to estimate A,, which is not linearly related to the observations Y;. In
practice, however, it may not be a big concern. Other parameter values were also considered in
the simulation study and, in general, the conclusions were quite similar to those reported here.
These results are available upon request.

A .4 Real data application

The time series of counts refers to the daily number of people who got antibiotics for the treat-
ment of respiratory problems from the public health care system in the emergency service of
the region of Vitéria-ES, Brazil. This real data set was obtained from the network records sys-
tem welfare of the municipality and corresponds to the period of May 26, 2013 to September
07, 2015, resulting in 834 daily observations. The series is displayed in Figure 3.1 contains
persistence oscillation, that is, the mean changes periodically. This is clearly evidenced in the
plots of the sample autocorrelation function (ACF), as discussed below.

Figure 3.2 shows the sample periodic mean and variance of the series over seasons v =
1,...,7, with S = 7, the sample ACF and the periodogram of the series. The analysis of the
sample ACF suggests that this series has seasonal autocorrelation of period S = 7 which is
an expected results by the fact that the series corresponds to daily data. The periodogram
provides high peak at frequency 0.14, which corresponds to the period=1/0.14 = 7. The AR
order identification per season v = 1,...,7 is identified by finding the lowest lag for which the
sample Periodic Partial Autocorrelation (PePACF) function cuts off (McLeod (1994)). These are
displayed in Table 3.4.

Tables 3.3 and 3.4 present the sample Periodic Autocorrelation (PeACF) and PePACF functions.
In these tables, the values in bold are the sample ACFs that exceeded the confidence intervals
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Table 3.1: Results of the simulation to estimate the parameters of the PINAR(1,14) model
with sample size T=200, 800 and 2000 values. The real parameter values are: a =
{0.1,0.42,0.23,0.39}, B = {0.47,0.25,0.36,0.3} and A = {4,3,2,1}. Inside parenthesis is the
MSE of each estimator.

n=50, T=200 n=200, T=800 n=500, T=2000

BiasQML BiasQML BiasQML
a1 0.025 -0.002 -0.004
(0.018) (0.005) (0.003)
Qs 0.021 0.007 -0.004
(0.014) (0.004) (0.002)
Qs 0.009 0.002 0.001
(0.013) (0.003) (0.001)
oy 0.004 0.006 0.000
(0.010) (0.002) (0.001)
51 -0.028 -0.008 0.002
(0.015) (0.003) (0.001)
B -0.024 -0.007 -0.005
(0.017) (0.004) (0.002)
B3 -0.035 -0.006 -0.003
(0.017) (0.004) (0.002)
B4 -0.011 -0.005 -0.003
(0.015) (0.004) (0.002)
A1 0.081 0.085 -0.008
(1.324) (0.278) (0.151)
Ao 0.003 0.017 0.068
(1.427) (0.342) (0.157)
A3 0.11 0.005 0.015
(1.16) (0.208) (0.091)
A4 0.058 -0.02 0.01
(0.455) (0.096) (0.042)
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Table 3.2: Results of the simulation to estimate the parameters of the PINAR(1,17) model
with sample size T=350, 700 and 1400 values. The real parameter values are: a =
{031,0.35,0.29,0.29,0.37,0.29,0.28}, B8 = {0.27,0.25,0.26,0.39,0.27,0.22,0.33} and A =
{4.0,3.3,2.1,2.5,3.1,2.6,3.5}. Inside the parenthesis is the MSE of each estimate.

T=350 n=50 T=700n=100 T=1400, n=200

Pars Biasgur, Biasgur, Biasgnr

aq 0.017 0.005 0.003
(0.021) (0.009) (0.002)

as 0.013 0.011 0.004
(0.017) (0.007) (0.001)

s 0.003 0.006 0.000
(0.011) (0.006) (0.001)

ay 0.005 0.007 0.003
(0.019) (0.009) (0.001)

as 0.012 -0.001 0.002
(0.016) (0.007) (0.002)

ag 0.004 0.002 0.001
(0.013) (0.006) (0.001)

ar 0.012 0.010 0.004
(0.019) (0.010) (0.002)

51 -0.032 -0.010 -0.003
(0.019) (0.008) (0.001)

B2 -0.017 -0.014 -0.006
(0.016) (0.009) (0.002)

53 -0.038 -0.009 0.001
(0.018) (0.008) (0.002)

B -0.028 -0.012 -0.006
(0.018) (0.007) (0.001)

Bs -0.034 -0.008 -0.001
(0.018) (0.008) (0.002)

Bs -0.016 -0.010 0.000
(0.016) (0.009) (0.002)

B -0.019 -0.011 0.003
(0.017) (0.008) (0.001)

A1 0.139 0.052 0.002
(2.096) (0.920) (0.166)

Ao 0.036 0.014 0.016
(1.997) (0.849) (0.177)

A3 0.188 0.012 0.013
(1.194) (0.581) (0.096)

A\ 0.170 0.046 0.024
(1.110) (0.522) (0.090)

A5 0.177 0.083 -0.024
(1.269) (0.662) (0.120)

A6 0.069 0.044 -0.001
(1.048) (0.594) (0.108)

A7 0.047 0.045 -0.046
(1.431) (0.639) (0.121)
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Figure 3.1: Daily number of people who received antibiotics for the treatment of respiratory

problems from the public health care system in the emergency service of the region of Vitoria-
ES.
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Figure 3.2: The periodic mean and periodic variance over the seasons v = 1,...,7, the ACF

and the periodogram of {Y;}.

given below. The approximate limits of the confidence intervals used in ACF and PACF tables
were constructed for a significance level of 0.5%. This preliminary model identification step
reinforce that a periodic INAR model could be adequate to capture the dynamic of the series.

Based on the previous and above discussion, the PINAR(1, 17) model was used to fit the data.
The estimates of the parameters are displayed in Table 3.5. The standard errors (the values
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Table 3.3: Periodic ACF of the real data set.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1| 0.01 0.26 0.18 0.24 0.28 0.11 0.15 0.02 0.07 0.29
v=2| 038 -0.12 0.14 0.23 0.18 0.19 0.29 0.13 -0.11 0.04
v= 0.33 0.34 -0.02 0.10 0.23 0.39 042 0.18 0.37 0.03

=4 0.27 0.05 0.17 0.10 0.16 0.33 0.29 0.23 0.14 0.14
v=5| 018 0.36 0.23 0.31 0.01 0.18 0.29 0.22 0.25 0.11
v = 0.25 0.16 0.20 0.14 0.16 0.17 0.18 0.30 0.23 0.13
v=7| 0.20 0.10 -0.03 -0.05 -0.18 0.08 0.30 0.10 -0.07 0.16

Table 3.4: Periodic PACF of the real data set.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1| 0.01 0.26 0.12 0.20 0.18 0.00 0.03 -0.02 -0.01 0.16
V= 0.38 -0.14 0.08 0.18 0.07 0.01 o0.22 -0.06 -0.08 -0.02
v = 0.33 0.24 0.00 -0.00 0.15 0.32 0.29 0.01 0.26 0.04

=4 0.27 -0.04 0.10 0.10 0.11 0.27 0.18 0.03 0.09 -0.07
v=>5| 0.18 0.33 0.13 0.18 0.01 0.10 o0.17 0.04 0.02 -0.02
v = 0.25 0.12 0.10 0.06 0.08 o0.18 0.08 0.18 0.13 -0.05
v=T7| 0.20 005 -0.07 -0.11 —-0.21 0.08 0.26 0.03 -0.13 0.21

in parenthesis) were calculated using the inverse of the corresponding Hessian matrix. The
strategy of model adequacy is based on the values of the ACF and PACF of the residuals,
which were computed using

Tt =Yt — Yi =Y — QY1 — Bu?ﬁ—? - Xu, (3.23)
wheret =7k +v,fromt > 7, k=2,...,nandv=1,...,7.
Tables 3.6 and 3.7 display the values of PeACF and PePACF functions for the residuals, respec-
tively. From these tables the expressive periodic correlations at lags 1 and 7 were removed and

no systematic patterns is clearly observed. The fitted model seems to well capture the main dy-
namics of the data. Therefore, the estimated model can be useful in providing reliable forecast.

Table 3.5: Application of PINAR(1, 17) model to the real data. The parameters were estimated
by QML method. Inside parenthesis are the standard errors of the estimates.

Fitted model v=1 v=2 v=3 v=4 v=5 v=6 v=7

PINAR(1, 17)-Poisson Innovation:

a 0.095(0.039) 0.012(0.074) 0.209(0.045) 0.211(0.061) 0.133(0.060) 0.083(0.056) 0.126(0.045)
B, 0.192(0.047) 0.108(0.054) 0.217(0.055) 0.280(0.056) 0.150(0.061) 0.169(0.053) 0.097(0.051)
A 3.031(0.360) 8.209(0.654) 3.364(0.551) 4.361(0.562) 6.182(0.616) 6.739(0.640) 5.649(0.562)
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Table 3.6: Periodic ACF of residuals after fitting the PINAR(1, 17) model with Poisson distri-
bution of innovations to the real data. The parameters were estimated by QML estimation
method.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1|-0.02 0.11 -0.11 -0.02 -0.16 0.02 -0.06 0.06 -0.20 0.15
v=2|-0.04 021 004 0.13 0.13 0.04 -0.04 0.02 -0.05 0.21
v=3| 0.00 -0.09 -0.00 0.15 0.06 -0.03 0.01 0.01 -0.08 0.01
v=4|-0.07/ 013 001 -005 0.01 026 0.05 -0.13 0.26 0.05
v=>5|-0.02 -010 0.05 0.08 0.04 027 -0.06 0.07 0.11 0.04
v=61|-0.09 023 0.08 027 -0.04 0.11 -0.07 0.11 0.08 0.03
v="T7|-0.07 005 009 0.04 003 0.16 -0.07 0.21 0.13 0.02

Table 3.7: Periodic PACF of residuals after fitting PINAR(1, 17) model with Poisson distributed
innovations to the real data set. Parameters estimates by QML estimation method.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1]-0.02 011 -0.10 -0.04 -0.19 -0.00 -0.06 0.05 -0.13 0.14
v=21]-0.04 021 006 013 0.10 0.05 -0.08 -0.02 -0.03 0.15
v=3| 0.00 -0.09 -0.00 0.17 0.07 -0.07 -0.02 -0.04 -0.04 -0.01
v=41|-0.07 013 0.01 -0.08 0.00 025 0.04 -0.10 0.27 0.05
v=5]-0.02 -0.10 0.05 0.07 0.03 028 -0.03 -0.01 0.09 -0.04
v=61|-0.09 023 0.09 026 -0.02 0.08 -0.07 0.01 0.06 0.07
v=7]-0.07 004 011 006 0.04 0.16 -0.07 0.17 0.17 -0.01

A .5 Discussion

The PINAR(1, 15) model with application in the health area was introduced in this paper. The
main properties of this model are presented, such as the mean, matricial representation and
transition probabilities function. The Conditional Maximum Likelihood method for estimating the
parameters of the model was proposed and a simulation study was carried out to investigate its
finite sample properties. The QML method presented a good performance in simulations.

The time series of counts of the daily number of people who received antibiotics for the treat-
ment of respiratory problems from the public health care system in the emergency service of
the region of Vitéria-ES (Brazil) was used to illustrate the usefulness of the proposed model.
This data set presents periodic, seasonal and serial correlation structure. The PINAR(1, 17)
model, under Poisson innovations (Poisson-PINAR(1, 17) model), was fitted to this real data
set.

Based on residual analysis, the Poisson-PINAR(1, 17) model was able to capture the main
dynamic the real data series, that is, periodicity in the data of dispensation of antibiotics for the
treatment of respiratory infections.

Respiratory infections are among the leading causes of emergency service visits and the dis-
pensation of antibiotics to treat these conditions can be used as an indicator of the effects of
air pollution on human health for Europe et al. (2013). The first study on the relationship be-
tween drug dispensing and air pollution was conducted in France, published in 1998, and since
then several authors have attempted to establish the relationship between dispensing drugs for

34



diseases and air pollution Zeghnoun et al. (1999).

Studies that evaluate the dispensation of medicines for the treatment of respiratory diseases
are relevant from different points of view. According to the World Health Organization, drug
use studies serve important purposes, such as: describing current treatment patterns; com-
paring the performance of individual facilities; observation of variations in therapeutic profiles
over time; periodic monitoring and supervision of specific drug use behaviors; evaluation of the
effects of educational activities; informational and regulatory measures; estimation of the most
prevalent clinical conditions in the population, among others Zeghnoun et al. (1999), Organiza-
tion et al. (1993).

Concerning the medicines used to treat respiratory diseases, the study of the dispensation of
antibiotics is relevant because they are only dispensed with a medical prescription for a certain
period, which provides more precise data. In fact, the drugs used in these situations, such as
drugs used to treat asthma attacks (one of the diseases also influenced by the levels of air
pollutants) come in multi-dose devices and are used on demand at times of crisis Zeghnoun
et al. (1999).

In view of the increase in the use of public health services in the last decade, with a consequent
increase in the consumption of medicines, good management is essential to meet the needs of
the population Viacava et al. (2018), Gadelha et al. (2016).

Thus, the analysis of the behavior of drug consumption by a historical time series makes it pos-
sible to estimate the needs of the municipality and to identify potential risk factors associated
with drug consumption. Therefore, the construction of models that allow the study of the trend
of the use of drugs over time for subsequent correlation with socioeconomic and environmental
data becomes relevant. These models can also serve as a tool to plan with greater precision
and to avoid disorders caused by the lack or excess of medicines We used data from dispens-
ing only patients treated in the public service, those who acquired antibiotics for respiratory
diseases in private pharmacies were not considered. However, considering that the majority
of the population of the municipality is public health system dependent, the sample studied is
representative of the majority of residents in the municipality Viacava et al. (2018).

The model PINAR(1, 15) can be very useful to make reliable predictions or forecast in the sense,
for example, to better supply medications for the population in case of any emergency or not,
and to determine the behavior of drug dispensing over time and its relation to local risk factors
responsible for the worsening or triggering of diseases. In the future, it would be desirable to
consider procedures which produce coherent (integer) forecasting.
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B The PINAR(1,15) model

In this section we present a rigorous and comprehensive mathematical study of existence,
uniqueness and stationary conditions of PINAR(1,1s) model. We introduce a new class of
models based on count time series with Poisson and Geometric innovations which have a pe-
riodic and seasonal second-order autoregressive structure. Statistical properties of the model,
such as mean, variance, marginal and joint distributions, are discussed. We discussed the
Moments-based (Yule-Walker equations), the conditional least squares and quasi-maximum
likelihood method of estimation of the parameters. Their performances are investigated through
Monte Carlo simulations, and we present a proof of consistency and asymptotically normality of
the estimators. The usefulness of the PINAR(1, 15) model is verified in an application to a real
data referring to the daily number of visits of children with respiratory problems (International
Classification of Diseases ICD-10) to the emergency service of the public health care system
of the region of Vitéria-ES. A section is focused on the forecast purposes.

This paper will be submitted to publication to the Journal of Time Series Analysis.
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The PINAR(1,1s) model

Abstract

This paper introduces a new class of models based on count time series with Poisson and Geo-
metric immigrations which has a periodic and seasonal second-order autoregressive structure.
Statistical properties of the model such as mean, variance, marginal and joint distributions are
discussed. Moments-based, conditional least squares and quasi-maximum likelihood methods
of estimation of the parameters are proposed, and their performances are investigated through
Monte Carlo simulations. A real data application illustrates the use of the methodology in a
practical situation, and a section is devoted to forecasting methods.

Keywords: INAR models, Binomial thinning, periodic stationarity, moment-based estimator,
conditional least squares, quasi-maximum likelihood, asymptotic distribution.

B .1 Introduction

We are interested in count time series that presents at the same time periodic and seasonal
serial correlation structures of the autoregressive (AR) type. The count time series analog of
the standard AR model is the integer-valued AR (INAR) process. This model appears as an
alternative to the well-known Poisson model family for modeling count time series, see, e.g.,
Fokianos et al. (2009). McKenzie (1985) and Al-Osh & Alzaid (1987) introduced independently
the first-order INAR (INAR(1)) model. The pth-order (INAR(p)) extension of this process pro-
posed by Alzaid & Al-Osh (1990) has a correlation structure similar to the correlation structure
of an autoregressive moving average (ARMA) process with orders (p,p — 1) (ARMA(p,p — 1)),
while the INAR(p) model proposed by Du & Li (1991) has the same correlation structure as an
AR model with order p (AR(p)).

Models that take into account the seasonal autocorrelation structure for INAR can be seen in
the first-order seasonal structure introduced by Bourguignon et al. (2016) or on its extension,
the subset INAR(p) process, which account both the first-order serial and seasonal correla-
tions. The class of subset INAR models is investigated in the forthcoming paper Bondon et al.
(2018).

These models cannot reproduce periodic correlations which are often present in many fields
such as medicine, hydrology, climatology, air pollution, among others. Gladyshev (1961) in-
troduced processes with periodically varying means and covariances that are denominated
periodically correlated (PC) processes. For recent reviews on PC processes, see e.g. Gard-
ner et al. (2006) and Hurd & Miamee (2007). A natural way to build models for PC processes
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is to allow the parameters of stationary models to vary periodically with time. Thus, the pe-
riodic ARMA (PARMA) model extends the ARMA model to PC processes. Basawa & Lund
(2001) investigated the asymptotic properties of weighted least squares parameter estimates
for PARMA models, and Sarnaglia et al. (2010) proposed robust parameter estimates for PAR
models. Although the literature is abundant about PC processes, its vast majority is dedicated
to the analysis and the applications of PARMA models for continuous-valued data. Very little
attention has been paid to modeling PC count data. To the best knowledge of the authors,
only Monteiro et al. (2010) and Morifa et al. (2011) have proposed periodic models for cor-
related series of counts. Monteiro et al. (2010) have introduced periodicity with period 7" in
the INAR(1) model, resulting in the PINAR(1)r model. Morifia et al. (2011) have considered
a classical INAR(2) model where the innovation process follows a Poisson distribution whose
intensity is a periodic function with period 7.

The class of INAR models are based on the thinning operator, see Steutel & Van Harn (1979).
In what follows, the thinning operator will be defined based on the Binomial distribution (for
alternative thinning concepts see, for example, Weif3 (2008)).

The binomial thinning operator «o for a random variable (r.v.) Y is defined as

Y
aoY =) Uia), (3.24)
=1

where Y is a Z-valued r.v,, a € [0,1] and {U;(a) };cz. is a sequence of independent identically
distributed (i.i.d.) r.v.’'s which are Bernoulli distributed with parameter «. It is assumed that the
sequence {U;(a)}icz, is mutually independent of Y. Note that the empty sum is set to 0 if
Y = 0. The sequence {U;(a)}icz, is called a counting sequence. Remark that the probability
of success in the thinning is P(U;(a) = 1) = « and, conditionally on Y, a o Y ~ Bin(Y, «). For
more details on thinning based count time series models see, e.g., Scotto et al. (2015) in the
univariate and Latour (1997) in the multivariate case, respectively.

In the remainder of this paper, let N, Z, Z., R, R, and C denote the set of positive integers, in-
tegers, non-negative integers, real numbers, non-negative real numbers and complex numbers,
respectively.

Let {Y;}:cz be a stochastic process with seasonal characteristics of period S, S € N, de-
fined on a probability space (12, .4, P), whose depends on an unknown parameter vector ¥ =
(9,...,9,)" lying in a some open set © of Euclidean p—space. M means transpose of
a matrix M. Let E(-) and E(-|-) be denoted as expectation and conditional expectation, re-
spectively, under P and the true parameter value as ¥y = ((¥9)",...,(¢¥9)")". In addition, let
{Fit}=0,,.. denote a sequence of sub-sigma fields with 7, ¢ > 1, generated by an arbitrary
subset of Y1, ...,Y; and Fy = {0, Q} is the trivial sigma field.

Denote by I; the d x d identity matrix. If it is clear from the context, then the subscript d will be
omitted. Bin(n, a) denotes a binomial distribution with parameters » € N and « € [0, 1]; Poi())
denotes a Poisson distribution with mean parameter A € Ry; Geo(p) denotes a Geometric
distribution over Z. with parameter p € (0,1] and mean (1 — p)/p. Random variables are all

38



defined on a common probability space (£2,.4, P). In addition, 0 is a S-dimensional column
vector of zeros and, for a non-negative S x S matrix M = m;j,i,j = 1,...,5,,i.e., mi; >0
for all 4, j, consider the notation M > 0, where 0 is a square S-dimensional matrix of zeros. If
m;; > 0 for all ¢, 7, then M > 0. These definition and notation should be extended naturally to
column vectors.

The organization of the paper is as follows. Section 2 introduces the proposed model, presents
the mean and the autocorrelation of the process and some probabilistic properties of the model.
Section 3 discusses the estimation methods of the parameters, namely the conditional least
squares, the Yule-Walker (moment-based) estimator, and the quasi-maximum likelihood frame-
work. Section 4 presents the simulation and its results. A real data application is presented in
Section 5. Section 6 focuses on forecasting purposes. Conclusions and final comments are
presented in the last section. In the appendix we present some proofs.

B.2 The PINAR(L, 15) model

In the following, the time index ¢ is written as ¢t = kS + v, wherev = 1,...,5 and k € Z, when
emphasis on seasonality S is important. For example, in the case of daily data and weekly
seasonality, S = 7, v is the day of the week and k is the index of the week.

Let {Y;}, t € Z, be a integer-valued stochastic process satisfying E(Y;?) < oo for all t € Z.
Denote the mean and autocovariance functions of (Y;) by p; = E(Y;) and (k) = Cov(Yz, Yi—p),
respectively. (Y;) is said to be PC with period S if, for every pair (¢, h) € Z2,

pirs = pe and  yeys(h) = v (h), (3.25)

and there are no smaller values of S for which (3.25) is satisfied. This definition implies that p
and ~.(h) are periodic functions in ¢t and need to be known only fort =1,...,S. If S =1, (X})
is weakly stationary in the usual sense.

{Y};} is said to be a periodic integer-valued process with period S € N, S > 1, and autoregres-
sive orders (1,1g), and is denoted by PINAR(1, 1), if it satisfies the difference equation

Yis+r = o 0 Yisiv—1+ By 0 Yisiv—5 + Ekstv, (3.26)

where «,, 5, € (0,1) are the thinning coefficients during the season v. The random variables
(RVs) {e;} are non-negative and mutually independent, have finite second order moments, and
for each v, the RVs {ekrs1., } ez have the same distribution and we denote E(¢;s4,,) = A, and
Var(egsiy,) = 02 > 0.

In addition, it is assumed that ¢; is independent of Y; 1, a,, o Y; 1, Y;_g and 8, o Y;_g and all
counting processes are mutually independent.

As can be seen, for each seasonal period v, Y; in (3.26) has three random components; the
immigration of the immediate past Y;_; with survival probability «,,, the immigration at ¢ — .S with
probability 5, and the elements which entered in the system in the interval (t-1, t], which define
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the innovation term ¢, for all t € Z, where t = kS + v, k € Zand v = 1,...,S. Moreover, the
autoregressive parameters «,,, 8, and immigration means \,, v = 1...., S, change periodically
according to the seasonal period S. Note that the above model becomes an extension of mod-
els introduced in Morina et al. (2011) in which the autoregressive coefficients are fixed in time
and only the immigration mean varies within a period. Contrarily, in our proposed model, in ad-
dition to the periodic mean value, the autoregressive coefficients also vary periodically. In this
context, the PINAR(1, 1s) model (3.26) also accommodates the periodicity in the autoregres-
sive coefficients, that is, it can be considered as a kind of cyclostationary models introduced in
Gladyshev (1961) for standard linear time series.

The unconditional mean of the process {Y;}, in (3.26) is given by

E(YkSJru) - auE(YkSJrufl) + 5VE(YkS+VfS) + E(EkSJru)u Uy = Qplby—1 + 51/”11 + )‘V'

In the above equation, E(a oY) = aE(Y"). For more details of the thinning operator properties
see, for example, Lemma 1 in da Silva & Oliveira (2004). It is worth to note that, the mean of
arrivals at season v, u,,, corresponds to the proportion «,, of the mean arrivals at ¢t — 1 plus the
proportion 5, of the mean arrivals at time ¢ — S and the mean of the new events A,.

Equivalently to the PINAR(1)s model in Monteiro et al. (2010), the analysis of the existence and
uniqueness of a periodically stationary and causal PINAR(1, 1) process, defined in (3.26), can
be obtained analogously as the multivariate integer-valued autoregressive process introduced
by Latour (1997). The PINAR(1,1g) model can be algebraically rewritten as follows. Firstly,
consider the following definitions (see Definition 2.1 in Latour (1997)).

Definition 2. Let Ao = (a;,0), 1 <i,v < S, be a S x S matricial binomial thinning operator,
also called the matricial Steuel and Van Harn operator, where a;, € [0,1] forall 1 < i,v < S.
The action of AconY = (Y1,...,Ys) ", denotedby Ao Y, is

S
Z a1,p © Y,
}/1 v=1

AoY = Ao : = : . (3.27)

Y 5
Z as.y © Y,
v=1

According to 3.24, the operator a;,0, 1 < i,v < S, is based on a sequence {U;(a;,)}iez, Of
independent identically Bernoulli distributed random variables. Based on Lemma 2.1 in Latour
(1997), E(AoY) = A*E(Y), where A* = (a;,), 1 <i,v < S.

Definition 3. Let Y}, ¢ € Z, be a non-negative integer-valued random variable and Z; = aoY; +
BoY,=(a®p)oY,where0 < a,p < 1. Z is the process satisfying

Yi Yi
Zi=(a®p)oYi=aoY,+BoYi=>Y U,(a)+ Y U,(B), (3.28)
l1:1 l2=1

where the counting processes {U;, (a)}i,ez, and {U,(8)},ez, are sequences of i.i.d. rv’s
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which are Bernoulli distributed with parameter o and g, respectively. It is assumed that the
sequence {U;(.) };ez, are mutually independent and independent of the process Y;. For a given
Y; =y and a # S, Z; is Poisson-Binomial distributed and p' = (p1, ..., py,, Pye+1,-- -, P2y,)'5 IS
the vector of parameters, where p; = ... = py; = a and py,y1 = ... = pay, = 8. However, for
large Y; and o and g small, but not necessary equals, the distribution of Z; is well approximated
by a Poisson distribution due to the well-known law of small numbers (see Chen & Liu (1997)).
Lemma 1. Let F; denotes the sub-sigma fields generated by {Y1,...,Y;}. The conditional ex-
pected value and variance of Z;, defined in 3.28, are given by

E(Zt’]:tfl) = (Oé + B)th and
Var(Zi| Fi—1) = (a1 —a) + 5(1 = §))Yi, (3.29)
respectively. Equivalently, E(Z;) = (« + B)E(Y:) and Var(Z;) = (a(1 — ) + B(1 — B))E(Y) +
(a + B)? Var(Y,).

Now, let Ao and Bo be a S x S independent operators and Yy, = (Yisi1,...,Yis4s) s €k =
(€kS41s---,€kS+S) » k € Z, where Yisy1 and ;5.1 are defined in model (3.26).

By rearranging the simple iteration of Eq. (3.26), the following stochastic equation is ob-
tained
Yi=A0Y, 1+ (g, (3.30)

k € Z, where { = B o g and the operators Ao and Bo are defined by

Bro 0o 0o e 0o 0o 10
a0 P20 0o e 0o 0o Qo010
A azag310 a0 B30 e 0o 0o Q3010
o=
125 aiBio Hfz_gl aifeo 15t aiBso -+ ag_ 18520 Bs—10 125 o
[T, cibio TIEgaiBee 10, cifso - asas—18s—20 asBs—io ([[5; ai ® Bs)o]
(3.31)
and ) -
1o 0o 0o cee 0o 0o Qo
Q90 lo 0o cee 0o 0o 0o
Q3090 Q30 lo e 0o 0o 0o
Bo = . . . . . A I (3.32)
[ aio [15 a0 IS aio -+ asio 1o 0o
_Hf:z ;0 Hf:?) ;0 Hf:4 a0 -+ asas_1f30 ago 1o

with o;’s and g;’s, i =1, ..., .5, defined in (3.26).

Note that {¢x }rez is @ sequence of i.i.d. Z%-valued random vectors independent of the ma-
tricial thinning operator Ao, with finite mean and variance given by ps = E(¢x) = E(B o
er) = B*E(ex) = B*(M,...,As)" and Var(¢x) = B*Y¢, (B*)', respectively, where ., =
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diag(o1,...,09), for all k € Z. In addition, using Lemma 1, the matrix A*, is given by

51 0 0 e 0 0 aq
a1 B2 0 i 0 0 (Yo%)
s a3 a3 B3 e 0 0 g0
H,S:}l a; B Hf;?,l a; 32 st:—41 aiff3 - as_18s-2 Bs-1 H;‘S:ll a;
[Toeibt TgaiBe TI0,cifs - asas—1Bs—2 asBs—1 ([I5; @i + Bs).

(3.33)
Thus, (3.26) is well defined by (3.30) and this is called the matricial representation of the
PINAR(1, 15) model defined in (3.26). The next step is to show that there exist a unique sta-
tionary non-negative integer-valued solution of Y; to 3.30.

Let uy = E(Yz) = (p1,...,) ", for all k € Z and taking expectation on both sides of (3.30)
leads to

py = A*py + p, (3.34)
(I =A%) py = pe, (3.35)

where [ is an S x S identity matrix. A* is a non-negative matrix and therefore, A* satisfies
(I + A*)5~1 > 0. According to Theorem 6.2.23 in Horn & Johnson (2012), A* is an irreducible
matrix. Based on Theorem 2.1 in Seneta (2006), a necessary and sufficient condition for a solu-
tion py (py > 0,# 0, i.e., ) to the equations (zI — A*)py = p¢ to exist for any pe (pe > 0,# 0)
is that z > p(A*) where p(A*) is the spectral radius, which is the maximum eigenvalue in mod-
ulus of the matrix A*. In this case, there is only one solution, which is strictly positive and given
by py = (zI — A*)"*p,. From (3.35), z = 1. Therefore, p(A*) < 1 and py = (I — A*) 1y,
is the unique and strictly positive solution for (3.35). Since S > 1 and based on the Perron-
Frobenius Theorem 8.4.4 in Horn & Johnson (2012) page 534, p(A*) is a positive value, that
is, p(A*) > 0. In addition, since 0 < p(A*) < 1 and based on item (1) of Corollary 5.6.10.1
in Graybill (1983), (I — A*)~1 is the limit of "2, (A*). Item (2) in this corollary ensures that
(I — A*)~1is a non-singular non-negative matrix.

Proposition 1. The matrix A* in (3.33) is a primitive matrix.

Proof. As referenced above, the matrix A*, in (3.33), is a non-negative and irreducible matrix.
In addition, A* is also an aperiodic matrix (see Frank Ayres (1967), pag 11), that is, there is not
a positive integer k such that (A4*)*~1 = A*. Since A* satisfies the conditions of Theorem 1.4
in Seneta (2006), then A* is primitive. O

The model PINAR(1, 1s) in (3.30) will be completely specified, if the det(zI — A*) #0, z € C,
i.e., the characteristic roots will be inside of unit circle, and, therefore, the process in 3.30 will
be stationary (Brockwell & Davis (2013), Latour (1997)). The following Lemma is the bridge to
establish the model properties of the PINAR process defined in (3.30).
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Lemma 2. Let the matrix A* be defined by (3.33). Then, the following statements are equiva-
lent:

(i) p(A%) <1,

(ii) the roots of the determinant equation det(zI — A*) = 0, for all complex z, are all less than
1 in absolute value;

(iii) the roots of the characteristic polynomial

S—1 S S—1 S—1 S—1
P(Z>:H(Z—5u Z—Haz Bs) — HO@ H Z[(z—ﬂn) H apl+
v=1 i=1 v=1 m=1 n=1 p>1,p#n
S—1 S—1 S—1 S—1 S—1
Z[(Z_/Bq) Z Z_Ba H ab +Zac H Z_Bc)a
q=1 a=q+1 b>1,b#a c=1 d>1,d#c

for all complex z, lie inside of the complex unit circle.

Proof. of Lemma 2. A* is an S x S non-negative primitive matrix ( Proposition 1) and p(A*) > 0
. (i —ii). p(4*) < 1. From item (c) of Theorem 1.1 in Seneta (2006), p(A*) > |z|; for any
eigenvalue z # p(A*). Since z represents the roots of the characteristic polynomial P(z) =
det(zI — A*) = 0, and p(A*) < 1, then |z| < 1. (is — i). |z| < 1 where z represents the roots
of the characteristic polynomial P(z) = det(zI — A*) = 0. This directly implies that p(A*) < 1.
The proof of item iii is the simple Laplace formula applied on P(z) = det(zI — A*) = 0. O

Proposition 2. The PINAR(1, 15) model, defined in (3.26), is periodically second-order station-
ary process.

Proof. Based on Lemma 2, all the eigenvalues of A* are inside the complex unit circle, then
(I — A*) is a non-singular matrix and py = (I — A*)~!u., which is finite. Based on these and
the assumptions of the model in (3.26), the PINAR(1, 15) model satisfies the conditions 3.1 in
Latour (1997). Then, second moment is also finite (see Lemma 3.2 in Latour (1997)). Besides,
under conditions of Lemma 2, it follows from Proposition 3.1 in Latour (1997) that there exist
an almost surely unique non-negative integer-valued stationary process satisfying (3.30), and,
consequently, the model (3.26) is periodically second-order stationary. O

Following the same lines of Proposition 4.1 in Latour (1997), the model in (3.30) can also be
seen as just a standard vector AR(1) process and it is formalized below.

Proposition 3. Let {Y;}.cz be the second order stationary process defined in (3.30). Then,
{Y} }+ez can be seen as an Vector AR(1) model with covariance matrix

) {A*m)T +diag(Apy) + Var(¢e), ifh =0 (3.36)

(A*)'T(0), ith>1.

The representation diag{v} denotes a diagonal matrix with vector v in its diagonal. The matrix
A is the variance matrix of the operator Ao defined in (3.31).
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The marginal distribution of the PC process {Y;}:cz att = kS + v is given by

P(Yisiy=c¢) = Z pu(c|m,n)P(Yisyv—1 = m, Y_1)54, = 1), (3.37)
m,n=0
wherec € Zy, ke Z,v=1,...,5 and p,(c|by,b2) = P(Y; = c|Yi_1 = b1, Y:_g = by) for each v.
Given starting values Y7, ..., Ys of {Y; }+cz, the conditional joint probability is given by

P()/;f :yt7"‘7YS+l :ys-f—l’YS :y57"'7Y1 :yl) - (3 38)

o (Ytlye—1, Y1—s) P(Yie1 = Y1, -, Ysr1 = yst1|Ys = ys, ..., Y1 = m1),
where y1,...,y: € Z+. Thus, by induction, if " = nS where n € N, it can be calculated as

S n—1
P(Yr=yr,....Yom1 =yst1lYs =ys,.... Vi =w1) = [ [] pvWescvlvesco—1, vesv—s).

v=1 k=1
(3.39)
where y1,...,yr € Z..

PINAR(1, 1) with Poisson immigration

Let the innovation process in (3.26) be an i.i.d Poisson process with unconditional mean E(exs,) =
Av € Ry, When S = 1, the model (3.26) becomes Poisson. Additionally, when S > 1 it can be
shown that the unconditional mean and variance of {Y;}.cz are generally not equal so that the
marginal stationary distribution of {Y; }.cz is no longer Poisson even though the innovations are
(Bu et al. (2008)). However, due to the well-known Law of Small Numbers, an approximation

to a Poisson distribution can be achieved if .5, ~ 0 and when {Y; },cz becomes large. See,
also, Chen & Liu (1997). Under some conditions, the following theorem establishes the distri-
bution of model (3.26).

Lemma 3. Let {U;(«)}icz, be a sequence of independent identically Bernoulli distributed vari-
able with P(U;(a0) = 1) = 1 — P(U;(or) = 0) = «. It is also assumed that the sequence
{Ui() }iez. is mutually independent of the random variable Y which follows a Poisson distri-
bution with parameter 6 > 0. If

Y
My =aoY = ZUZ'(Oé),
i=1

then My ~ Poi(af).

See the proof in the Appendix.

Theorem 2. Let {c;}icz, t = kS +v, forallk € Z andv = 1,...,S, be a periodic sequence
of independent Poisson distributed r.v.’s of period S, i.e., x5+, ~ Poi(\,), A\, € Ry. Let the
starting values (Y, )1<,<s follow periodic independent Poisson processes with mean E(Y,) =
Wy, I.€., Y, ~ Poi(u,). Then, the process {Y }.cz in (3.26) has the following distributions:

44



1. For1 <t <2S—1,{Y:}:wz is a periodic Poisson process with periodic mean p,,.
2. Fort > 2S:
(a) {Y,}iez follows a Poisson-Binomial process with periodic mean .

(b) if a;B; =~ 0, for alli = 1,...,S, then the marginal distribution of a PINAR(1, 1s)
process {Y, }1cz defined in (3.26) is a periodic Poisson process with periodic means
fyy 1€, Yisi, ~ Poi(py,).

The proof is in the Appendix.

Remark 1. The assumption «;3; ~ 0 in 2.b is the necessary condition to guarantee that the
periodic process {Y:}:>25 becomes a periodic Poisson process (see more details in the proof
of Theorem 2). In fact, based on Definition 3, for ¢t > 25, {Y;} is a periodic Poisson-Binomial
process (2.a). For example, for ¢ = 25, given the initial values {Y, }1<,<g, Yas can be written
recursively as Yog = (]_[f:1 a; ® Bs)oYs+asBs—10Ys_1+ ...+ ea5 (s more details in the
proof of Theorem 2). Note that, in ([]:_, a; @ fs) o Y5 the quantities J[5_, c; o Ys and 8s o Ys
depend on Ys. Then the marginal distribution of Y55 has a recursive equation which presents
a sum that violates the independence assumption among the variables of the sum of Poisson
distributed variables. Therefore, the assumption «;3; = 0 preserves that the recursive formula
of (Y;)¢>25 has variables Y, and ¢, (1 < y,1l < t), forall ¢, related to unique thinning operators,
respectively.

Remark 2. Although the assumption «;5; =~ 0, for all i = 1,...,.S, seems to be too restrictive,
the empirical results in Section B .4 show that the parameters estimation methods present good
results even for a;5; # 0, as can be seen in Tables 3.8 and 3.9.

The periodic Markov-kernel of PINAR(1, 15) model with Poisson immigration is given by the
following way. For all t = kS + v, where k € Zand v = 1,...,S, if y1, -1, y:—s denote the
values of the process {Y;}.cz attime ¢,t — 1,¢t — S, then

Po(Welyi—1,Yi—s) = [Bin(ys—1, @) * Bin(yi—s, B,) * Poi(\)](yt) (3.40)
Yyt—m—n
= 2 (yl) oy (1= ay)= <y) B By e
m n (yr —m —n)!
(m,n)eg

where x denotes convolution and the index set J is defined by 7 = {(m,n) € Z%|m < y_1,n <
yi—s,m +n <y} (Note that the definition of 7 depends on the values y;, y:—1, y1—s)-

PINAR(1, 15) with Geometric immigration

Let {e;};~s follow a periodic sequence having Geometric distribution with parameter (1+X,)~ !,
0< X\ <oo,v=1,...,8, i 511 ~ Geo((1 + \,)" ) forallk € Zandv = 1,...,S. Then

E(eks+v) = Ao

The periodic Markov-kernel of PINAR(1, 15) model with Geometric immigration is given by the
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following way. Forallt = kS +v,where k€ Z,v=1,...,S, if y¢+, y1_1, y:—s denote the values of
the process {Y;}icz attime ¢, ¢t — 1,¢t — S, then

Po(ely—1, Y1—s) = [Bin(yr—1, o) * Bin(y—s, By) * Geo((1 4+ Av) )] (e) (3.41)
Ye=1\ meq _ ye—1—m [ Yt=s\ pnoq Yt—s—N Ay
Z ( m )au (1 O‘V) ( n )@/(1 51’) (1+)\V)yt—m—n+1’
(m,n)eg

where x denotes convolution and the index set 7 is defined by 7 = {(m,n) € Zi]m <y_1,n <
Yi—s,m+n <y}

The probability distribution of {Y;}:cz when {&,}~ s follow a periodic sequence having Geomet-
ric distribution is not discussed here. The use of such innovation distribution to estimate the
parameter of the PINAR(1, 15) model will be considered in the simulation study.

B .3 Parameter estimation methods

In this section, the estimation methods moment-based or Yule-Walker (YW), quasi-maximum
likelihood (QML) and conditional least squares (CLS) are discussed for the proposed model in
(3.26) under a general immigration distribution. As examples, the properties of these estimators
are also discussed under Poisson innovation marginal distribution, i.e., exs+, ~ Poi()\,) for all
keZandve{l,..., S}

Let 9, = (a,B,, ), @, B, € (0;1) and 0 < A\, < oo, for v = 1,...,5 (S is fixed),
and let 9 = (¥],...,95)7 represent the 3S-dimensional unknown parameter vector of the
PINAR(1, 15) model defined by (3.26). The parameter vector is assumed to be lying in the
open set © = ([0,1] x [0,1] x (0,00))*, which contains the true parameter vector, denoted by
Fo = (W T,...,(¥%)7)T. Now, without lost of generality, It is assumed here that Y3,...,Yr
has n complete periods of observations, that is, consider a sample Yi,...,Yr of size T = nS
from {Y; }.ez, the PINAR(1, 15) process in model (3.26), where n € N.

Conditional least squares estimation (CLS)

The CLS-estimators 9SS, n € N, of 9 are obtained by minimizing the expression

S S n—1
) =D Qu(W) =YY (Vistv — EVisiolFrsiv1)), (3.42)
v=1 v=1 k=1
where, by (3.26),
E(Yist+u| Frs+v—1) = avYisqv—1 + BuYrstv—s + v, (3.43)

t > S (see, Eq. 3.2.58 in Taniguchi & Kakizawa (2000)).

To find the CLS estimators of 1 is equivalent to find the solution of
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0

%Qn(ﬁ) =0. (3.44)

Qn(.) in (3.44) attains a relative minimum at 5§LS. The parameter estimators can be computed
numerically by separating the parameters according to the seasons. Using the properties of
differential calculus, to minimize 3.42 is equivalent to minimize individually each @, (9,) for
eachv =1,...,5 as follows

0 0

an(ﬁ) = Wyl)Qn(ﬂl) +...+

0
an(ﬂs)- (3.45)

Define the random vectors U; = (Y;,Y;_s41,1)7,t > S, andintroduce, forallv = 1,..., S,
YS-H/ U;‘r+y_1 YS+V—1 Y, 1
Z, = : ) C,= : = : : - (3.46)
Yv(nfl)SJru U(—TFL—I)S—H/—l }/(”*1)S+V*1 Yp(”*l)S*S+V 1

Z, is a (n — 1)-dimensional random vector and C,, is a random matrix of dimension (n — 1) x 3.
By (3.42), (3.43) and (3.45),

n—1

Qn,('ﬁu) = Z(Yks+u - aVYkZS+V—1 - /BZ/Y]CS-H/—S - )\u)2 = ||Zl/ - Cl/’ﬂl/H2a (347)
k=1

for each v = 1,...,5. Thus, the CLS-estimator ¥$S of the parameter vector 9, can be ex-
pressed as
-1
9CLS — (CVT CV> clz,. (3.48)

for each seasonv =1,...,5 (see, Theorem 7.2.2, in Bickel & Doksum (1977)).

One can see that the real-valued penalty function Q,, () is twice continuously differentiable with
respect to ¥ in some neighborhood of ¥ (see, Taniguchi & Kakizawa (2000), page 96).

Following Taniguchi & Kakizawa (2000), page 99, let the matrices V, and R,, v =1,...,S and
t = kS + v, of dimension 3 x 3 defined as

'Yz/—l(o) Ww(S—=1) 0 Hy—1

Vo=E(UUL) = [w(S -1 2w 0|+ | m |[mer w1, (349)
0 0 0 1

where, for v =1, up = pns and

R, =E[U (Y= U020 (3.50)

The block diagonal matrices V' and R of dimension 35 x 35 are given by

V = diag{Vi,...,Vs} and R =diag{R,,...,Rs}, (3.51)
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respectively.

The above results are the basis of the following theorem which shows that the CLS-estimator
YOLS — ((YELS)T . (9SS)T)T of the parameter vector 9 is consistent.

Theorem 3. Assume that{Y,} in (3.30), thatis, the a PINAR(1, 15) process, is a strictly station-
ary ergodic process with E ||¢i||* < oo ( E|lex]|* < oo in model (3.26)) and E(Yis-v|Fissv—1)
is almost surely three times continuously differentiable in the open set © containing the true
parameter value ¥y. Then, for the CLS-estimators 955, n € N,

n' 29 — 94) 25 N(0, VIRV, (3.52)

asn — oo, where the matrices V- and R of dimension 3S x 3S are defined in (3.51).
The proof is in the Appendix.

Note that V'RV ! is a 35 x 3.5 block diagonal matrix diag(V; 'RV, 1,..., V5 RsVg ') where
V, 1R,V 1 is the corresponding 3 x 3 covariance matrix of 9SS, From this on can see that
39}5 and f@gy_LS are asymptotically independent for v; # v, 1 <,1;,v; < S . This an equivalent
conclusion of the theorem discussed in Shao & Ni (2004) for PAR processes (see, also, Basawa
& Lund (2001)). In addition, the condition E ||¢|* < o is imposed so that the Assumption B4
in Theorem 3.2.24 in Taniguchi & Kakizawa (2000) may be used (see, also, Assumption 3.4 in
Klimko & Nelson (1978), page 635).

Remark 3. The Assumption E ||¢x|* < oo is necessary to guarantee the Condition C4 in the
proof of Theorem 3 and it is not difficult to be achieved in practical problems. For example, if ¢,
follows a Poisson or Geometric distribution. These probability distributions are widely used in
practical situations of modeling counting time series. For instance, let G, () be the moment-
generating function of e, ~ Poi(\,), t = kS + v, 0 < A, < co. Then,

Ge,(r) = E(e"°) = (e =),

For n € N, the n-th moment about 0 of the distribution of £; can be calculated through the n-th
derivative of G¢,(r), evaluated at » = 0, given by d%GEt (r). The sixth moment of ¢, is equal
to XS + 155 + 6502 4+ 90A3 + 31\2 + )\, and, because 0 < )\, < oo, forallv = 1,..., S, the
sixth moment is finite. Similarly, the sixth moment of e;5,, ~ Geo((1 + \,)~!), given by the
convergent series > >, r%(1—p)"~1, is also finite, where p = (14+),) "t and 0 < (1+X,) ! < 1.
These ensure that the fourth moment of the Poisson and Geometric distributions are finite. This
remark is also valid for Theorem 4.

The above theorem leads directly to the following Corollary.
Corollary 1. Let {ers+. }kez be a sequence of periodic i.i.d Poisson distributed variables with
finite mean E(ers1.) = A, Ay € Ry in model (3.26). Then, for the CLS-estimators 9SLS =
(éu, B )T, n €N,

n1 29S8 — 9y) 25 (0, VIRV Y, (3.53)

asn — oo, where the matrices V- and R of dimension 3S x 3S are defined in (3.51).
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Similar result of Corollary 1 can be derived when the process {c;s.. rez has Geometric distri-
bution.

Moment-based estimators (Yule-Walker)

The first and second-order moments of the second-order stationary process {Y}}rcz can be
estimated as follows (see Section 11.2 in Brockwell & Davis (2013)). The unbiased estimate of
uy = E(Y3) = (p1,...,m,)", is given by the vector of sample means

fiy =Y, =n"' Y Y, (3.54)

where Vi = (Yis41,-- -, Yists) -

A natural estimate of the variance-covariance matrix of {Y;}, I'(h), is given by
T —n—lz Yo — Yu)(Yi — Y 121@ WYy (3.55)

foro<h<n-—1,whereY, =Y, - Y, k=1,....n

For the periodic mean u,, v =1,..., S, the estimator is
n
ﬁn,u = Yng/ = nil Z YkS—‘rllv (356)

for all seasons v = 1,...,S. For the periodic covariance functions +,, the sample estimator is
given by

n—1

Ynp(h) = n~t Z ?kS—s-u—hf/kS-&-u, (3.57)
k=[(h—v)/S]

where 0 < h < nS — v and Yisiy = Yisiy —Y ... Note that [z] denotes the upper integer part
ofxr € R.

In the sequel, it is omitted the index n of sample size in the estimators, i.e., simply 1z, and 7,,
v=1,...,5.

Using the general Yule-Walker equations derived for the periodic ACFs v, v = 1,..., S, of the
PC process {Y;} (as can be seen in McLeod (1994)), the estimators of o, 8., A, are

qYW _ W) (0) = A (S — 1)7,(9)

Y F-1(0)7,(0) =72_1(S = 1) ~
FYW _’Yu( JAv=1(5S = 1) = 3,-1(0)7,.(5)
Y F2_1(s — 1)3,(0) = 3,-1(0)7,(0) ’
AW =(1- 87" ay Vi

(3.58)

and
oy — Hy—1-
From Section 4.4 in Reinsel (2003), since the PINAR(1, 1) process can be seen as a VAR(1)
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process (Proposition 3), the CLS and YW estimators of ¢ are asymptotically equivalent, i.e.,
these estimators are equivalent for large n (see, discussion in Du & Li (1991), Section 4). There-
fore, from Theorem 3, the large sample distribution of the YW-estimator 9YW is asymptotically

normal. In addition, as can be seen in Du & Li (1991), page 133, the 9YW = (0YW)T,..., (95W))T

is strongly consistent.

Quasi-maximum likelihood (QML)

The approach of QML is based on Taniguchi & Kakizawa (2000), Section 3, page 101. Let the
likelihood type penalty function of the PINAR(1, 15) model, conditioned on the first S observa-
tions, be

fo, (t,t —1) = E[{Y; —my, (t,t — D)}*|F 1],

where my, (t,t — 1) is defined in (3.74). Define

3
I

1S
S o fo, (1.t — 1)} + (Vi — ma, (6 — 1)2f5 (1,8 — 1)].

1v=1

i

The likelihood function L,,(9) = Zle lny(9,), where

n—1 n—1
o (0) = S llog{fo, (1,8 — 1)} + (Ve — m, (6.6 = DL (11— D], lan(9) = 3 649
k=1 k=1

is minimized in order to obtain the QML-estimator 9&™"

Corollary 2. The function fy,(t,t — 1) is given by

of the parameter vector 9.

fﬁy (t7t - 1) = Oé,,(l - Oél,)Y;g,1 + Bu(l - ﬂl/)}/t—s + A, (359)
in the case of Poisson innovations, and by
fﬂy (t,t - 1) = au(l - O[I/)}/;f—l + ﬁl/(]- - BV)Y;‘fS + >\l/(1 + >\I/)7 (3.60)

in the case of Geometric innovations.

The function i, ,(¢,), for Poisson or and Geometric innovations, can be obtained directly by
replacing the results of (3.59), (3.60), respectively, and (3.74) in (3.59). From the strictly
stationarity of {Y;} it follows that E|[|]|® < oo (Remark 3) implies E||Y;||® < oo, then one
can prove that the real-valued penalty function L, () satisfies the assumptions of Theorem
3.2.26 in Taniguchi & Kakizawa (2000). Thus, there exists a sequence of estimators IML =
(@A™, (02" T)T such that 932" — 9, almost surely as n — oo, and for any ¢ > 0,
there exists an event E with P(E) > 1 — e and an ny € N such that on E, for n > ny, ML g
the solution of

g Ln(9) =0, (3.61)



which attains a relative minimum of the likelihood function L,,(¥9).

The minimization of L,(¢) can be done separately by minimizing the partial log-likelihood
I (9,) for each season v € {1,...,S}. Similarly, one can solve the likelihood equation (3.61)
by solving the partial likelihood equations

0

ail%lrhy(”&y) = 07 UV = 17 .. .,S7

separately.

Define I F, the matrix of dimension 3 x 3 for each season v € {1,...,S5} as

IF, =U,'Vy, Uy, (3.62)
where
Vo, =4 -2 6,0, pu0) (3.63)
¥, — 8191, t\Vv 819; t\Vv ) .
and
82
U, = €{ g5 5 0 | (3.64)

Note that 55-¢:(9,) = (52-6:(9.), 35-¢:(9.), 55 6+(9,)) is a 3-dimensional row vector. Then,
the matrix I F of the PINAR(1, 1) process is defined as the block diagonal matrix

IF = diag{IF,...,IFs)}. (3.65)

The following theorem on the asymptotic normality of the QML-estimator 9L is given be-
low.
Theorem 4. Assume that {Y;} in (3.30), that is, the a PINAR(1, 1s) process, is a strictly sta-
tionary ergodic process with E ||Cx||® < oo (E ||e:]|® < oo in model (3.26)), and my, (t,t — 1) and
f9,(t,t — 1) are almost surely three times continuously differentiable in the open set © contain-
ing the true parameter value ¥9,. Then, the QML estimators 93" are asymptotically normal
distributed as

n'2(OMME — 9,) 25 N(0,TF), (3.66)

asn — oo, where IF is the matrix of dimension 35S x 35 defined by (3.65).

The proof is in the Appendix.

B .4 Monte Carlo simulations
In this section, it is evaluated the empirical behavior of the estimation methods YW, CLS and

QML for the parameters in the model (3.26) with S = 4,7 when the innovations {¢;} are a
periodic sequence of Poisson or Geometric distribution. The results are shown in Tables 3.8,

51



3.9 and 3.10 in which the true parameters and the sample sizes are displayed. To obtain the
QML estimates, the initial choice was the values given by the YW estimator, as recommended
in the literature. Note that, in order to verify the model property discussed in Remarks 1 and 2,
it was considered the parameters « and 3 such that o, 8, # 0 and o, 8, ~ 0 and the results are
displayed in Tables 3.8 and 3.9, respectively.

The empirical quantities, the bias and the mean square error ( the values are in parenthe-
sis), correspond to the mean of over 1000 replications. All simulation studies were performed
using the statistical software R (R Development Core Team, 2009). To compute the QML
method, the general non-linear optimization procedure was implemented using the augmented
Lagrange multiplier method with numerical derivatives available in the solnp function of the
Rsolnp package.

The results are shown in Tables 3.8, 3.9 and 3.10.

As previously mentioned, Table 3.8 display the parameter estimates when «, 3, # 0 and it
can be seen that all methods performed well in which the QML is more accurate for T=200.
In general, for moderate sample sizes, the QML and CLS are more accurate. However, as
increasing 7" all estimators perform similarly, which corroborates the theoretical results, except
for the parameter A, in which the QM L maintains its superiority in presenting smaller mse.
Note that, independently of the sample size and method used, the estimates of )\, are always
larger than the estimates of the parameters o, and 3,. This fact may be mainly due to the
minimization algorithm to estimate \,, which is not linearly related to the observations Y;. In
practice, however, it may not be a big concern. Other parameter values were also considered in
the simulation study and, in general, the conclusions were quite similar to those reported here.
These results are available upon request.

An interesting feature is observed when «, 3, =~ 0 as displayed in Table 3.9. In this context,
the performance of the estimation methods are similar to the previous table, that is, QML
and CLS methods presented, in general, more accurate estimates. However, although the
estimates of ), are less accurate than the other parameters, their MSE values are much
more precise than the ones in Table 3.8 and this can be justified by the assumed property
that a5, ~ 0, that is, the process follows an Poisson distribution as pointed out in Re-
marks 1 and 2. To end this, in Table 3.10 a more complex model is considered, that is,
now S = 7. A set of Monte Carlo simulations with 400 independent replications for se-
ries with a sample size of T=1001 values, i.e, n=143 values per season. True parameters
given by a = {031,0.35,0.29,0.29,0.37,0.29,0.28}, 8 = {0.27,0.25,0.26,0.39,0.27,0.22, 0.33}
and A = {4.0,3.3,2.1,2.5,3.1,2.6, 3.5}, for the Poisson innovations simulated series and a =
{0.41,0.35,0.59,0.19, 0.37,0.29, 0.22}, 3 = {0.27,0.20,0.16,0.39,0.21,0.52,0.33} and A = {0.50,
0.40,0.80,0.30, 0.70, 0.54,0.60}, (A), = (1 + \,)~ !, for Geometric. Inside parenthesis are the
MSE of each estimate above.

The performance of methods are also investigated under Geometric distribution. However, the
method performance preserve similar behavior compared to the more simple model S = 4 in
Table 3.8.
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Table 3.8: Results of the simulation of a PINAR(1, 14) model with sample size of T=200, 800 and
2000 values. The true parameters given by a = {0.1,0.42,0.23,0.39}, 8 = {0.47,0.25,0.36,0.3}
and A = {4, 3,2, 1}. Inside parenthesis are the MSE of each estimate above.

n=50, T=200 n=200, T=800 n=500, T=2000

Biasgar, Biasyw Biascrs Biasgyr, Biasyw Biascrs Biasgar, Biasyw Biascrs

aq 0.025 -0.013 0.006 -0.002 -0.01 0.001 -0.004 -0.004  -0.002
(0.018) (0.031) (0.034) (0.005) (0.007) (0.006) (0.003) (0.003) (0.002)

s 0.021 0.022 0.055 0.007 0.002 0.009 -0.004 -0.003 0.005
(0.014) (0.021) (0.020) (0.004) (0.005) (0.004) (0.002) (0.002) (0.002)

Qs 0.009 0.001 -0.005 0.002 -0.001 0.000 0.001 -0.001 0.000
(0.013) (0.014) (0.023) (0.003) (0.003) (0.004) (0.001)  (0.001) (0.002)

ay 0.004 -0.001 0.036 0.006 0.001 0.004 0.000 0.000 0.006
(0.010) (0.013) (0.018) (0.002) (0.003) (0.004) (0.001) (0.001) (0.002)

51 -0.028 -0.062 0.000 -0.008 -0.017 -0.001 0.002 -0.004  -0.001
(0.015) (0.021) (0.013) (0.003) (0.005) (0.003) (0.001)  (0.002) (0.001)

B -0.024 -0.04 0.038 -0.007 -0.009 0.014 -0.005 -0.006 0.005
(0.017) (0.018) (0.020) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

B3 -0.035 -0.058 -0.005 -0.006 -0.017 0.003 -0.003 -0.007 0.001
(0.017)  (0.021) (0.013) (0.004) (0.005) (0.003) (0.002) (0.002) (0.001)

B4 -0.011 -0.024 0.044 -0.005 -0.012 0.008 -0.003 -0.005 0.002
(0.015) (0.017) (0.017) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

A1 0.081 0.548 -0.499 0.085 0.197 -0.087 -0.008 0.040 -0.034
(1.324) (2.312) (2.114) (0.278)  (0.448) (0.365) (0.151)  (0.215) (0.161)

Ao 0.003 0.017 -0.267 0.017 -0.045 -0.042 0.068 -0.049 -0.051
(1.427) (2.341) (2.518) (0.342) (0.512) (0.487) (0.157) (0.218) (0.188)

A3 0.11 0.885 -0.225 0.005 0.671 -0.074 0.015 0.617 -0.018
(1.16) (1.976) (1.708) (0.208) (0.663) (0.354) (0.091) (0.488) (0.133)

A4 0.058 0.644 -0.174 -0.02 0.569 -0.045 0.01 0.545 -0.015

(0.455)  (1.052) (0.754) (0.096)  (0.449) (0.168) (0.042)  (0.359) (0.066)
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Table 3.9: Results of the simulation of a PINAR(1, 14) model with sample size of T=200, 800 and
2000 values. The true parameters given by a = {0.0,0.42,0.0,0.39}, 3 = {0.47,0.0,0.36,0.0}
and A = {4, 3,2, 1}. Inside parenthesis are the MSE of each estimate above.

n=50, T=200 n=200, T=800 n=500, T=2000
Biasgar, Biasyw Biascrs Biasgyr, Biasyw Biascrs Biasgar, Biasyw Biascrs
aq 0.104 -0.001 0.021 0.047 -0.006 -0.003 0.029 -0.004 0.002
(0.032) (0.063) (0.063) (0.007) (0.016) (0.013) (0.003) (0.006) (0.006)
s -0.018 -0.017 0.049 -0.004 -0.001 0.010 -0.004 0.000 0.004
(0.010) (0.014) (0.020) (0.002) (0.003) (0.004) (0.001)  (0.001) (0.002)
Qs 0.048 0.002 -0.007 0.022 0.007 -0.004 0.013 0.001 -0.003
(0.006) (0.012) (0.016) (0.001)  (0.002) (0.004) (0.001)  (0.001) (0.002)
ay -0.008 -0.001 0.026 0.005 0.007 0.013 -0.001 -0.002 0.002
(0.008) (0.012) (0.018) (0.002) (0.004) (0.004) (0.001) (0.001) (0.002)
51 -0.010 -0.045 0.007 -0.004 -0.015 0.001 -0.005 -0.009 0.001
(0.013) (0.019) (0.009) (0.003) (0.004) (0.002) (0.001)  (0.002) (0.001)
B 0.042 -0.023 0.057 0.025 -0.006 0.009 0.017 -0.001 0.007
(0.006) (0.015) (0.021) (0.003) (0.005) (0.004) (0.001)  (0.002) (0.002)
B3 -0.008 -0.038 -0.004 -0.011 -0.017 -0.002 -0.001 -0.003 0.000
(0.016) (0.020) (0.016) (0.004) (0.005) (0.003) (0.001)  (0.002) (0.001)
B4 0.045 -0.017 0.026 0.022 -0.010 0.007 0.015 -0.005 0.001
(0.008) (0.017) (0.015) (0.002) (0.005) (0.004) (0.001) (0.002) (0.002)
A1 -0.107 0.385 -0.375 -0.053 0.147 -0.067 -0.016 0.084 -0.034
(1.051) (1.693) (1.491) (0.185)  (0.341) (0.298) (0.081) (0.160) (0.131)
Ao -0.123 0.844 -0.119 -0.114 0.630 -0.047 -0.073 0.589 0.019
(0.676) (1.634) (1.279) (0.179)  (0.647) (0.305) (0.088) (0.459) (0.129)
A3 -0.259 0.127 -0.231 -0.117 0.018 -0.018 -0.088 -0.002 -0.020
(0.363) (0.402) (0.624) (0.088) (0.075) (0.137) (0.036) (0.030) (0.056)
A4 -0.054 0.411 -0.030 -0.066 0.353 -0.013 -0.034 0.363 -0.005

(0.115)  (0.300)  (0.220) (0.030)  (0.162)  (0.046) (0.010)  (0.147) (0.015)
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Table 3.10: Results of the simulation of a PINAR(1, 17) model with sample size of T=1001
values, i.e, n=143 values per season.

Poisson Innovations Geometric Innovations

Pars BiasQML Biasyw Biascrs BiasQML Biasyw Biascrs
a -0.006 0.007 0.002 0.014 0.031 -0.001
(0.006) (0.007) (0.007) (0.005) (0.007) (0.009)

s 0.000 0.004 0.012 0.010 0.006 0.011
(0.004) (0.005) (0.006) (0.003) (0.005) (0.007)

a3 -0.004 -0.001 0.003 0.004 0.000 -0.005
(0.003) (0.004) (0.006) (0.000) (0.001) (0.010)

ay 0.000 0.001 0.016 0.022 0.034 0.013
(0.005) (0.006) (0.006) (0.005) (0.014) (0.006)

as -0.009 0.004 0.001 0.004 0.001 0.004
(0.005) (0.006) (0.005) (0.001)  (0.002) (0.003)

g 0.000 0.005 0.015 0.012 0.012 0.003
(0.004) (0.005) (0.006) (0.004) (0.005) (0.003)

ar 0.001 -0.001 -0.006 0.005 0.000 -0.008
(0.006) (0.008) (0.006) (0.002) (0.004) (0.017)

By 0.004 -0.007 0.015 -0.001 0.010 0.023
(0.005) (0.005) (0.006) (0.000) (0.006) (0.007)

B 0.000 -0.012 0.002 -0.012 -0.024 0.001
(0.006) (0.005) (0.006) (0.001)  (0.003) (0.002)

B3 0.013 -0.013 0.011 0.000 0.006 0.009
(0.005) (0.005) (0.006) (0.002) (0.003) (0.004)

By 0.008 -0.014 -0.005 0.004 -0.010 0.002
(0.003) (0.005) (0.005) (0.002) (0.004) (0.006)

35 0.013 -0.018 0.009 0.006 0.000 0.018
(0.005) (0.005) (0.006) (0.002) (0.004) (0.005)

B 0.008 -0.008 -0.002 -0.011 -0.029 -0.003
(0.006) (0.006) (0.007) (0.002) (0.005) (0.004)

Br 0.006 -0.014 0.008 -0.014 -0.017 0.010
(0.004) (0.006) (0.006) (0.006) (0.006) (0.007)

A 0.011 -0.012 -0.130 0.012 0.033 -0.005
(0.607) (0.754) (0.926) (0.001)  (0.006) (0.005)

Ao 0.016 0.149 -0.174 0.002 -0.002 -0.005
(0.533) (0.697) (0.784) (0.001)  (0.002) (0.004)

A3 -0.046 0.741 -0.104 0.012 0.017 -0.006
(0.325) (0.897) (0.514) (0.005) (0.006) (0.014)

A4 -0.052 -0.178 -0.070 0.010 0.011 0.002
(0.303) (0.580) (0.475) (0.000) (0.002) (0.002)

A5 -0.066 -0.190 -0.082 0.022 0.011 -0.009
(0.407) (0.670) (0.653) (0.005) (0.009) (0.016)

A6 -0.044 0.466 -0.017 -0.005 -0.014 0.005
(0.375) (0.619) (0.499) (0.001)  (0.005) (0.008)

A7 -0.047 -0.343 -0.053 0.010 0.009 -0.011

(0.373)  (0.938) (0.579) (0.002)  (0.007) (0.011)
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Table 3.11: Periodic ACF of the real data set.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1]| 012 -0.03 0.06 -0.11 -0.06 -0.03 0.27 0.06 0.01 -0.01
v=2| 025 007 -0.04 -0.11 0.03 -0.01 0.11 0.07 -0.09 0.06
v=3| 035 0.22 005 0.04 -0.07 0.12 0.17 o0.17 0.12 -0.04
v=4] 020 0.14 -0.09 0.038 -0.07 0.08 0.38 0.05 0.04 -0.01
v=5| 031 002 001 003 008 -—-0.26 0.32 0.07 -0.02 -0.01
v=61|-0.06 0.02 -0.10 0.01 -0.01 0.05 0.35 -0.02 -0.01 -0.08
v=7| 046 -0.12 -0.10 -0.13 -0.01 -0.03 0.06 0.17 -0.08 —-0.17

B .5 Real data application

This application is based on the time series of counts referring to the daily number of visits
of children with respiratory problems (International Classification of Diseases ICD-10) in the
emergency service of the public health care system of the region of Vitoria-ES. This data set
was obtained from the network records system Welfare (Rede Bem-Estar) of the municipality.
The period of the study corresponds to June 26, 2013 to April 7, 2016, resulting in 1022 daily
observations. Figure 3.3 displays the plot of the real data which clearly shows that the per-
sistence oscillation feature, that is, the mean changes periodically. This phenomenon is also
clearly evidenced in the plots of Figure 3.4. The series correspond to daily data, therefore, S=
7. All the data analysis procedure was carried out using the R software.

Number of attendance

T T T T T T
0 200 400 600 800 1000

Days

Figure 3.3: Daily number of visits of children with respiratory problems to emergency service
service of the public health care system of the region of Vitéria-ES.

Figure 3.4 shows the sample periodic mean (a), the variance (b), the sample ACF (c) and
the periodogram (d). These clearly display the cycle-periodicity of the data with period S=7.
For example, the periodogram has a high peak at the frequency f=0.14 which is related to the
period=1/0.14 = 7.

Tables 3.11 and 3.12 show the PeACF ad PePACF sample functions. The elements in bold
represent values that have exceeded the confidence interval. In addition, according to McLeod
(1994) one can identify the AR order for each season by finding the lowest lag for which the
sample PePACF cuts off. All these suggested the use of PINAR(1,17) to model the real data
set.
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Figure 3.4: The sample periodic mean and variance over the seasons v = 1,--- , 7, the sample
ACF and the periodogram of {Y;}.

Table 3.12: Periodic PACF of the real data set.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1}| 012 -0.10 0.07 -0.12 -0.03 -0.00 0.29 0.03 0.06 -0.06
v=2| 025 0.04 -0.06 -0.12 0.11 -0.02 0.13 -0.01 -0.10 0.13
v=3| 035 014 0.01 0.07 -0.05 0.16 0.18 0.09 0.01 -0.05
v=41] 020 0.07 -0.15 0.04 -0.12 0.13 0.35 -0.05 -0.04 0.07
v=5] 031 -0.04 -002 0.08 0.07 —-0.32 0.34 -0.11 -0.03 0.01
v=61|-0.06 0.04 -0.11 0.04 0.02 0.06 0.39 -0.05 -0.04 -0.02
v=7| 046 -0.11 -0.09 -0.08 0.02 -0.02 0.05 -0.04 -0.05 -0.14

The parameters were estimated using QML method with the innovations distributed as Poisson
and Geometric distributions. The results are displayed in Table 3.13. The standard errors
of the parameter estimates were calculated from the inverse of the corresponding Hessian
matrix. The adequacy of the adjusted model was evaluated by examining the residuals for serial
dependency. The estimated residuals {r;} after fitting the PINAR(1, 17) model were computed
as

Tt =Yt — Yt =Y — QY1 — Buytﬂ - Xu, (3.67)
where v = {t}7. The Akaike (AIC) (see Bozdogan (1987)) and the Bayesian information crite-
rion (BIC) (see Schwarz (1978)) were computed and the their values are also in the together
with the parameter estimates in Table 3.13.

The PINAR(1,17) model with Poisson innovations presented to be more accurate than the
Geometric models, i.e., both information criteria suggest that the Poisson-PINAR(1,17) has a
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Table 3.13: Application of PINAR(1, 17) model to the real data. The parameters were estimated
by QML method. Inside parenthesis are the standard errors of the estimates.

Fitted model v=1 v=2 v=3 v=4 v=5 v=6 v=7 AIC BIC
PINAR(1, 17)-Poisson Innovation:

, 0.173(0.093) 0.270(0.082) 0.217(0.044) 0.199(0.087) 0.318(0.089) 0.036(0.093) 0.323(0.052)

B 0.250(0.067) 0.160(0.093) 0.151(0.078) 0.327(0.069) 0.284(0.072) 0.332(0.069) 0.007(0.086) 7773.75 850.64
A 1.530(0.248) 1.848(0.353) 0.293(0.138) 0.774(0.137) 1.098(0.191) 1.987(0.341) 0.982(0.225)

PINAR(1, 17)- Geometric innovation:

a, 0.266(0.455) 0.393(0.026) 0.234(0.008) 0.260(0.307) 0.421(0.676) 0.236(0.070) 0.374(0.092)

By 0.347(0.185) 0.358(0.020) 0.166(0.120) 0.368(0.065) 0.352(0.335) 0.462(0.004) 0.115(0.702) 7800.20 877.10
(1+A,)7" 0.476(0.003) 0.514(0.003) 0.816(0.029) 0.608(0.009) 0.556(0.002) 0.466(0.006) 0.623(0.059)

Table 3.14: Periodic ACF of residuals after fitting the PINAR(1, 17) model with Poisson dis-
tribution of innovations to the real data. The parameters were estimated by QML estimation

method.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1| 0.04 -0.11 0.11 -0.09 -0.08 -0.11 0.04 0.03 0.03 -0.04
v=21|-0.03 0.06 -0.05 -0.17 0.02 -0.04 -0.03 -0.04 -0.17 0.03
v=3|-0.06 0.12 0.02 0.10 -0.05 0.05 0.01 0.05 0.09 0.00
v=41]-0.01 0.12 -0.11 0.12 -0.06 -0.02 0.06 -0.02 -0.04 0.04
v=5| 0.05 -0.01 -0.01 0.03 0.19 —0.18 0.06 -0.08 -0.04 -0.02
v=6|-0.01 0.07 -0.14 0.04 0.03 -0.14 0.03 -0.01 -0.03 -0.03
v=7| 0.06 -0.06 -0.05 -0.11 -0.01 -0.02 0.02 0.04 -0.00 —o0.18

better fit. This is corroborate with the residual PACFs displayed in Tables 3.14 and 3.15 for
the marginal Poisson and Geometric distributions, respectively. It is clear that the model with
Poisson distributed innovations was able to filter the autocorrelations of the data, especially at
the lags 1 and 7, while the Geometric innovation does not. Therefore, using PINAR(1, 17) with
Poisson innovations no systematic pattern is clearly observed in the residuals, that is, the fitted
model seems to well capture the main dynamics of the data, consequently, the estimated model
can be very useful in providing reliable forecast.

All these empirical analyses, i.e., the values for the periodic ACF of the residuals (Table 3.14
and 3.15) and the results in Table 3.13 support the fact that the proposed model with Poisson
distributed innovations is the best choice for modeling such data.
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Table 3.15: Periodic ACF of residuals after fitting the PINAR(1, 17) model with Geometric dis-
tribution of innovations to the real data. The parameters were estimated by QML estimation
method.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10
v=1|-0.02 -0.15 0.11 -0.08 -0.03 -0.09 -0.05 0.01 0.08 -0.06
V= -0.13 0.06 -0.04 —-o0.18 0.02 -0.038 —-0.18 -0.11 —0.20 0.00
V= -0.10 0.11  0.02 0.11  -0.05 0.05 -0.01 0.01 0.08 0.01
V= -0.07 0.12 -0.12 0.14 -0.05 -0.01 0.02 -0.03 -0.04 0.05
V= -0.03 -0.02 -0.01 0.02 0.26 —0.25 0.02 -0.13 -0.04 -0.02
V= -0.13 0.04 -0.15 0.06 0.06 —-0.18 -0.04 -0.05 -0.06 -0.01
V= 0.08 -0.05 -0.04 -0.10 -0.01 0.00 -0.10 -0.08 0.04 -0.17
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B .6 Forecasting

The forecasting procedures here discussed were initially proposed by Du & Li (1991) and Free-
land & McCabe (2004). The innovations are considered to have Poisson distribution. The
interest is to forecast Yy, T+ h=nS+v,n,h,S e Nandv =1,...,S, given Fr the known
information about {Y;} fort =1,...,T.

The first method is an extension of the approach presented in Section 5 of Du & Li (1991).
The minimum variance predictor Y (1) of Y741, h = 1, based on the conditional mean, is given
by

Yr(1) = EVra|Fr) = 0w Ynstw + B Ynsiv—s+1 + v

For h > 1, Y., can be calculated as
Yr(h) = E(Yrin|Fr) = E(ew o Yren—1|Fr) + E(By © Ynsiv—s+1|1Fr) + Avsn,
were E(a, o Yy, p,—1|Fr) can be obtained by
E(ow o Yrin—1|Fr) = E(E(ew o Yrin—1|Yrsn—1)Fr) = aE¥rin_1|Fr) = o, Yr(h — 1).

Similarly E(8, o Yns1v_s41|Fr) = B,Yr(h—S). If h— S <0, then Yr(h — S) = Y7 5. So, the
recursive formula of Y7, can be written as

Yr(h) = EVrgnl Fr) = ayYp(h — 1) + B Y (h = S) + At (3.68)

The expression above is the most common procedure to obtain forecasts in time series models
and, as pointed out by Du & Li (1991), offers minimum variance predictor and mean square
forecast error. Besides, the use of conditional expectations is more easily implemented and
less complicated than forecasting the distribution of Y, to calculate its conditional median.
However, the method in (3.68) does not produce integer-valued forecasts, usually signalized as
the great incoherence of the count data models context. The following forecasting procedure is
an approach based on extension of the method present in Morifia et al. (2011), which is based
on the Section 4 in Freeland & McCabe (2004).

Given Y, ..., Yr, the distribution of Y., h € N, is based on (3.26). For h = 1, it is given by
(3.40). When h > 1, the distribution of Y7, can be written as a function of the S last known
values of the process {Y;};—1,. 7, i.e., Yi_g41,..., Yy, for T = nS, n,S € N. For example,
based on the properties of binomial thinning operator and the definition 3, for h = 2, Yy, is
given by

Yrio = oo oyr + Po o yr—s42 + 2f1 0 Yr—s41 + 2 0 741 + £742.

Note that (az o er41) ~ Poi(agA;), see Lemma 3. Then ag o epqq + ery2 ~ Poi(Ary2), where
Ari2 = asAi + Ao. The distribution of Y7, 5 can be obtained analogously to (3.40), and is given
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by

pr(Yrio|Yr = yr, Yr_s41 = yr—s+1, Yr—s+42 = yr—s+42) =

[Bin(yr, aza1) * Bin(yr—s12, B2) * Bin(yr—s11, a2f1) * Poi(Ari2)](Yr42)

- - - -5
= X (") tasan 1= ey (M) g gy (5 gy
(m,n,r)eT
Yrio—m—n—r
1— YT—S4+1—T T42 —AT1o

where * denotes convolution and the index set 7 is defined by J = {(m,n,r) € Z3|m <
yr,n < yr—s+2,7 < yr—s+1,m+n+r < yryo}. Analogously, the distribution of Y-, for any h
can be obtained. The approximated prediction regions with size 1 —c can be calculated for each
Y., by replacing the estimates of the parameters in the recursive equations of the distribution
of Yy 5. The lower limit b, and upper limit b, can be obtained by

bl b2
ZPT(YT+h =ilYr,...,Yr_541) = ¢/2, ZPT(YTJrh =iYr,...,Yr_s41) = 1—c  (3.69)
=0 i—by

The approximated median for each Y., is the value M such that

M

ZPT(YTJrh = i|YT, ey YT—S+1) ~ 0.5. (370)
1=0

Figure 3.5 shows the prediction of the last week of the real data. The asymptotic stability of
the model enables to obtain a prediction for any day, without using the last observations. For a
certain confidence level, the results presented at Figure 3.5 show accuracy, since, in one week
ahead prediction, only one predicted value is outside the prediction region.

B .7 Conclusions

The PINAR(1, 15) model and its main properties were introduced in this paper. Three methods
for estimating the parameters of the model, namely YW, CLS and QML, were proposed. The
asymptotic properties of the estimators were fully provided. A simulation study was carried out
to investigate their finite sample performances for standard sample sizes. The results corrob-
orated the asymptotic theory. The QML outperformed the CLS and YW methods for a small
sample size (n = 50). However, they becomes very competitive for n > 200. To illustrate the
usefulness of the proposed model, it was analyzed the time series of counts of the daily number
of visits of children with respiratory problems (International Classification of Diseases ICD-10)
in the emergency service of the public health care system of the region of Vitéria-ES. This data
set displays seasonal and periodic serial correlation structures. The real data set was fitted
using the PINAR(1, 17) model under Poisson (Poisson-PINAR(1, 17) model) and Geometric in-
novations. The adequacy of the fitted models were compared using goodness-of-fit statistics
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Figure 3.5: Prediction

AIC and BIC among other residual analyses. The two methods displayed good fit. However, the
Poisson-PINAR(1, 17) presented to be more accurate. In this context, the Poisson-PINAR(1, 17)
is the best choice to model this data set.

Appendix

Proof of (3.38). Apply the definition of conditional probability and then the S-step Markov
property:

PYi=y,... Ysp1 =ys1[Ys =ys,... . Vi =y1) =
PWVi=y,...Yi=y1)) PYio1i=y-1,....Y1=u1)

PYioi=y-1,....Y1=y1) PYs=ys,....Y1=y1)

=P(Y: =w|Yi-1 = yt-1,..., Y1 =41)X
P(

}/;f—l - yt—lv"‘7YS+1 - yS+1|YS - y57"'7Y1 - Z/l) -
:plj(yt|yt—17yt—s)P(Yt—l =Yt—1,--- )YS+1 - yS+1|YS =Ys,... 7Yi = yl)v

wheret =kS+v,v=1,...,Sand yi,...,y € Z,. O
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Proof. of Lemma 3
Let My be a positive discrete random variable such as

Y

My =aoY = ZUZ(Q),
=1

where Ui(a), o and Y are defined in Lemma 3. Let ¢,/(Z) be the characteristic function of
My . Then,

¢M(Z) — E(eLZMy) — E[eLZ(ZZY:I Ul(a)))} — H E[eLZ(Ul(a)))] — [E(eLZUl(a))]Y'

Then,
én(Z) = E([E(e TNV ]y),

Since E(et4V1(®)) =P(U; = 1)e?! 4+ P(U; = 0)et?0 =1 — o + ae'Z, then
o (Z) = E[(1 — a + ae?)Y].
Let1 — a+ aet? = e | then:
61(Z) = E[(e)Y] = gy (H) = /H71) = o0,

since Y ~ Poi(#). Based on Lemma 2.15 in Van der Vaart (2000), My ~ Poi(a#).

Proof. of Theorem 2

In (3.30), for k£ = 1, (3.30) becomes Y; = A o Yy + {1 where Y, = ¢¢ (see, Latour (1997) Eq.
3.2). The matricial equation of Y1 = (Ys41....,Yas) ' results to the system

)
Ysp1=a10Ys+B1oY) +eg541

Ysio=asa10Ys+ froYo+agfioY) +azoesys +e542

(3.71)
Yas—1 =17 ;o Ys+ Bs—10Vs_1+... +e51
| Yaos = (T12., @i ® Bs) o Vs + agBs—10Ys_q + ... + ag,
where, by Definition 3,
s s
([Tei®8s)oYs = (JPaioYs + Bs o Vs. (3.72)

i=1 i=1
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For t > 25, the general form of Y; is algebraically written as

1@—( II ehe J[ «®®=*pe.. 0 H )Bs @ H

i=S+1 i=25+1 i=28+1 i=35+1
t
H 04@)515269---)05/3%-(1—[04 52691_[@ (B2) @Ha )B233 @ . ->0Y5—1
1=35+1 =25 1=35 1=3S
t
+-~-+<H a(i)= g @ H i)(B1)* ® H (1)B1P2 @ .. >0Y1+
i=S+1 1=25+2 1=2542

t
(H ) & H (1)B1 ® H (i)B2 @ .. >O€s+1+...—|—a(t)ost_1+5t, (3.73)

=542 1=25+2 1=25+2

where a(t) = oy, fort =kS+v, ke Z,v=1,...,.5eN,0(i=2)=0ifi=xrand 0(i = z) =1
if i # x. (1) From Theorem 2, the starting values Y1,...,Ys follow a Poisson distribution with
mean p, ((3.25)), v = 1,...,5,i.e., Y, ~ Poi(u,) and exs4+, ~ P(A,). From the assumptions
of the model in (3.26), ¢; is independent of Y; 1, o, o Y; 1, Y;_s and 3, o Y;_g and all counting
processes are mutually independent, then, foreach v = 1,...,s — 1, Ys,, corresponds to a
sum of independent Poisson distributed variables. Therefore, based on Lemma 3, Ys,, is also
a Poisson distributed variable with mean p, and, foreach v = 1,...,s — 1, u, is obtained by
computing the expected value of Ys, in (3.71) using the property given in Lemma 1.

Let t > 25. (2a) in (3.71), Y; also involves the expansion of (Hz Lo @ Bg) in which the
coefficients of Y}, and ¢, (I1,l2 < t) may depend on the pair (a;,5;), 1 < i < S. Using
definition 3, (T[>, cu @ Bs) o Y is a Poisson-Binomial distributed variable. Therefore, {V;},cz
follows a periodic Poisson-Binomial process with periodic mean p,. (2b) Under the assumption
a;f8; =~ 0, the assumptions in Lemma 3 are satisfied and, therefore, for all {Y;}:cz, its recursive
equation presents a sum of independent Poisson distributed random variables with periodic
mean . O

Proof. of Theorem 3.

This proof follows the lines in Theorem 3.2.24 in Taniguchi & Kakizawa (2000). Assume that
{Y% }rez, satisfies the conditions in Lemma 2, i.e., {Y% }xez is a strictly stationary and ergodic
process with E||Y;||? < co. (Lemma 3.3 in Latour (1997)).

Suppose that observations (Y1, Y>,...,Y,) are available.

By Theorem 1.3.3 in Taniguchi & Kakizawa (2000), the ergodicity of the process {Y% }xez im-
plies the ergodicity of the process {Yisy.}rez, for v = 1,...,S5. Since the first, second and
third derivatives of E(Yisi.|Frsiv—1) €xist, it follows from (3.26) that it is easy evaluate the
derivatives of the function my, (¢t,t — 1), for t = kS + v, given by

my, (t,t — 1) = E(Vistu| Frstv—1) = 0 Yistv—1 + BuYestv—s + Au. (3.74)
fork=1,...,n—1. Observe that my, (t,t —1) = Utilﬂy, where U;_1 is defined in (3.46). Note
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that my, (t,¢ — 1) is almost sure three times differentiable in the open set © which contains 9.

Let9, = (a,, B, \,) " and (9,); is the i-th element of the vector (9,,), i.e., (¥,)1 = au, (9,,)2 = B,
and (v,)s = \,. To prove the Theorem 3, it has to be proved the following conditions:

2
(C1). For1 <i,1 <3, E{) (gu) maygo (¢, — 1)‘ } < oo and E{‘éwu)??mmﬂg(t,t— 1)‘ } < 0.

(C2). The functions ﬁmﬁg (t,t —1),7 =1,2,3, are linearly independent in the sense that if
a1(v),az(v), az(v) are arbitrary real numbers such that

{2

then a;(v) = 0,a2(v) =0,and a3(v) =0,forv =1,...,S.

Za, m,go(t t—1)

(C3). For 9 € ©, there exists functions G}, (Yosv: - - -, Yistv—1) and H%g,, (Yostuv, - -, Yesto),

keZ,foreachv =1,...,5, such that

0 2 .
_ - < ©j -
'8(%)]- mo (6= Vg o,y B )‘ GRs i1 (3.75)
with E(ngl‘-s—u—l) < oo and
R 0(0,):0(9,);000,), " kS :

with E(H}%, ) < oo for i, j,1 = 1,2, 3.

(C4).

R,=E 6?9 mugo (t,t — Dy — muygo (t, ¢ — 1) H{Y: — mygo (£, — 1)}£mﬁg(t,t —1)| < 0.

Proof of the above conditions:

(C1)

Fort = kS + v, the derivative 6(3 &y-my, (t,t — 1) is given by

o fori=1: a(gu)mﬁu (t,t —1) = Yisqv_1;

o fori=2: 9B, )M§V(t t— 1) = Yks+y,g;

65



o fori=3: %mﬂu(t,t -1)=1;

e forany j,1=1,2,3: Wgwu)imm(t,t 1) =0.
Then
0 2 9 o 2 )
E mmﬂv(t’t 1| p=E{Yisy, 1} <oo, E mmm(tat 1| ¢ =E{Y5, s} <oo,
and

1

02 2
E{‘ngy(t,t— 1) } =0.

Therefore the conditions in C1 are satisfied for the process defined in (3.26).

E {‘8(§V)mﬁy(t,t— 1)

Forany j,1=1,2,3,

(C2).

|

if and only if a1(v) = az(v) = az(v) = 0 since 0 < E(Y;)? < oo, for all t € Z. Hence the
conditions in C2 are satisfied.

3 d
; ai(y)mm% (t,t—1)

(2

2
} = af(V)E(Yis1, 1) + a3 (VE(Yise,_g) + a3(v)+

a1(v)az(V)E(Yistv—1Yisv—s) + a1(v)as(v)E(Yis4+v—1) + a2(v)as(v)E(Yis4+v—5) = 0,

(C3).
Since 9, = (a,, 3., \,) ", it can be seen that
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30y, e (Bt — U =0 and e, Y8000,

mgy(t,t — 1) =0,

forany i,j,1=1,2,3.

Then, it is clear that any non-negative function Gls.,,,_,, with E(Gjls,,,_,) < oo satisfies (3.75)
and any non-negative function H,’CJSZJFV, with E(H,’CJSZJFV) < oo, satisfies (3.76). For example,
szé+y = H]?Sl’+y = (/y O YkS+V_1 —+ 511 o YkS+V_S —+ Ek‘S-H/ and E(G;g]é+y) = E(Hlijsl«+y) = oyly—1 =+
5VIU’I/—S + )\u-

Thus C3 is satisfied.

(C4).

Note that R,, in (3.77), may be re-written as
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R, =E Ui (v - UL 0,020, (3.77)

where t = kS + v, see also (3.50). The expansion of E [U,_1(Y; — U,"19,0)?U," ;] generates a
3 x 3 matrix R, with the forth moment E(s} ;) (the highest order) located in the diagonal, that
is, in the elements (R, )11 and (R, )22. By assumption of the Theorem 3, the elements of R,
are finite and, consequently, R, is finite for all » = 1,...,S. Then conditions in C1, C2, C3 and
C4 are satisfied and the Theorem 3 is proved. O

Proof. of Theorem 4.

This proof follows the same lines as in Theorem 3.2.26 in Taniguchi & Kakizawa (2000). As-
sume that {Y}}xez satisfies the conditions in Lemma 2, i.e., {Yx}rez is a strictly stationary
(Lemma 3.3 in Latour (1997)). In addition, it is assumed that E ||e;]|° < co (Remark 3) which
implies E ||V;]|® < co. Let (Y1, Y5,...,Y;) a set of available observations. The ergodicity is also
guaranteed using the same arguments in Latour (1997) page 243 according to Definition 1.3.2
in Taniguchi & Kakizawa (2000).

By Theorem 1.3.3 in Taniguchi & Kakizawa (2000), the ergodicity of the process { Y} }rez implies
the ergodicity of the process {Yisy trez, for v =1,...,S. The function my,(¢t,t — 1), defined
in (3.74), is almost sure three times differentiable in the open set © which contains ¢,. For
t = kS + v, define ¢.(¥,) as

d)t(7911) = [log{fﬁy (tv t— 1)} + (Y;f —my, (t7 t— 1))2f19_y1<t7 t— 1)]7 (378)

where fy, (t,t—1) is defined in Corollary 2. fy, (t,t—1) is almost sure three times differentiable in
the open set © which contains 9¥¢. Assume that ¢.(v),) is almost sure three times differentiable
in the open set ©. The Theorem 4 is proved if the following conditions are satisfied:

E 0 190 2 d E 62 6‘0 2
'3(%%@( V)| (<o an 'W@( D] ¢ < oo,

where (14,); is the i-th element of the vector (¢,), i.e., (¥,)1 = au, (V)2 = B, and (V,)3 = A,.

C1. For1 <4,1 <3,

C2. The functions

foo(t,t—1)71/2 mgo (t,t — 1),

()i

fori =1,2,3, are linearly independent.

C3. For 9 € ©, there exists a function H%,, (Yos4v, . .-, Yis), k € Z, foreach v = 1,..., S,

such that
63
8(19V)i8(791/)ja(791/)l

¢t(ﬂy) S H]i‘g_l,_y?

with E(H}%, ) < oo for i, j,1 = 1,2, 3.
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C4.
0 0
V=E { a7 M@(ﬂ%) awy)mt(ﬂﬁ)} < 0. (3.79)

Proof of the above conditions for the PINAR(1, 15) model.
C1: Let gy, (t,t —1) =Y, —my,(t,t — 1). Consider the followings derivatives

) 1 B 29, (tt—1) O

m(bt(ﬂy) fﬂy(t t— 1) 8( ) fﬁ'/(t t= 1) fﬂu(t,t _ 1) 8(19V)i919u(t7t - 1)_
g5, tt—=1) 9
2 =1 oo,y (3.80)
and
o —1 0 1 52
o000, " = 7= B = Vg =0 e

0 (g, tt=1)\ 0 299, (t,t — 1) 0
ottt =)+ 2555 (BT gy oot 0+ B e -

o [g5,tt=1)\ a @ (t,t—1) 5?2
- A(9,); ( > fo,(tt—1) — fo,(t,t—1), (3.81)

fgl, (tv l— 1) 8(§V)j fgl, <t7t - 1) a(ﬂV)la(ﬂV)J

where i,j = 1,2,3, and (¥,); is the i-th element of the vector (9,), i.e., (¥,)1 = ap, (¥,)2 = Bo
and (J,)3 = A,.

From above calculations, the following inequality can be obtained

: {\mgy)i@w

forany i,j5 = 1,2,3, where ¢; and ¢, are positive constants. Therefore the conditions in C1 are
satisfied for the process defined in (3.26).
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500,):0,); " )

}§01E(Y6)<oo and E{'

} < e E(Y) < o0,

C2: Similarly to condition 2 in Theorem 2, the functions fyo(t,t — 1)~/ (19 g (6t — 1),
i = 1,2,3, are linearly independent in the sense that if a;(v), a2(v),as(v) are arbitrary real

numbers such that
2
{ } 82

then a;(v) = 0,a2(v) = 0, and az(v) = 0, for v = 1,...,S. The conditional variance of Y;,
fs,(t,t — 1), is a finite number, since V[Y;] = E[Y;?] — E[Y;]? and, by assumption, E[Y}?] < oc.
Let fy,(t,t — 1) = oy2(v). As shown in Theorem 2, %mﬁg (t,t —1) = (Yi—1,Y:—s, 1), then Eq.
(3.82) implies

0
Z ai(v f190 - 1) 12 a(0,); mygo (t,t—1)

ay (v) as(v) F

oy?*(v) oy?*(v)
which together with (3.26) results a;(v) = 0,a2(v) = 0 and a3(v) = 0, forv = 1,...,S. Hence
C2 is satisfied.

E(Yisqv—1) + (Yistv—s) + Tt
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C3: The proof of this conditions follows the same line of C3 in Theorem 3.

C4: From (3.80) and condition C1, ﬁqﬁt(ﬁy) exists and is finite for all i = 1, 2, 3. The element
of the i-th row and j-th column of the matrix V', in (3.79), is given by

0 0

¢t(79u)
Forall i, j = 1,2, 3, there exists a defined positive constant ¢; ; such that E[(V); ;] < ¢; ; E[Y}f] <

oo. Then the matrix V' exists and is also finite. Hence C4 is satisfied.

O]
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Chapter 4

The S-periodic integer autoregressive
model of order p (PINAR(p)g)

A natural extension of the Periodic Integer-valued autoregressive model to periodically auto-
correlated count time series with seasonal period S and autoregressive structure of order p is
introduced in this paper. We present some statistical properties of the model and three pa-
rameter estimation methods. A simulation study is presented to investigate the performance
of the estimators for some finite sample sizes. We show that the estimators are asymptotically
Normal distributed with rate of convergence of n'/2, where n is the sample size of each season.
A section of application to real data series is included, referring to the daily number of people
who got medicine based on salbutamol sulphate for the treatment of respiratory problems from
the public health care system in the hospital emergency service of the region of Vitoria-ES,
Brazil.

This paper will be submitted to publication to the Journal of Multivariate Analysis.
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The S-Periodic Integer Autoregressive model
of order p (PINAR(p)s)

Abstract

This paper introduces a new class of models for S-periodically autocorrelated count time series,
which has autoregressive structure of order p. This model is an extension of the PINAR(1)g
model. Statistical properties of the model such as mean, variance, marginal and joint distribu-
tions are discussed. Moments-based, conditional least squares and quasi-maximum likelihood
estimation methods of the parameters are studied and their performances are investigated
through Monte Carlo simulations. Under some assumptions, the estimators are asymptotically
Normal distributed with rate of convergence of n'/2, where n is the sample size of each sea-
son. The performance of the estimator was investigated for small sample size and the empirical
results indicated that the method presented accurate estimates. The model well adjusted the
series daily number of medicine dispensing for the treatment of respiratory disease.

Keywords: INAR, Periodic Stationarity, PINAR, Moment-based estimators, Conditional Least
Squares, Conditional Maximum Likelihood Estimation.

1 Introduction

The integer autoregressive (INAR) models, initially introduced by the INAR(1) model in Al-
Osh & Alzaid (1987), appears as an alternative to the well-known Poisson model family for
modeling count time series, see, e.g., Fokianos et al. (2009). These models are based on the
thinning operator, see Steutel & Van Harn (1979). In this article, the thinning operator is based
on Bernoulli distribution, called binomial thinning operator. The binomial thinning operator o
applied on a random variable (r.v.) Y is defined as

Y
aoY =) Uia), (4.1)
i=1

where Yis a Z -valued r.v,, a € [0, 1] and {U;(«) }scz, is a sequence of independent identically
distributed (i.i.d.) r.v.s which are Bernoulli distributed with parameter . We assume that the
sequence {U;(a)}iez, is mutually independent of Y. Note that the empty sum is set to O if
Y = 0. The sequence {U;(a)}icz, is called a counting sequence. Observe that the probability
of success in the thinning is P(U;(a) = 1) = « and, conditionally on Y, a o Y ~ Bin(Y, ).
Further details about thinning based count time series models are given by Scotto et al. (2015)
for the univariate and Latour (1997) in the multivariate case, respectively.
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An extension of the INAR(1) model that account the p-th order autoregressive structure is the
INAR(p), introduced by Alzaid & Al-Osh (1990) and, independently by Du & Li (1991). A discrete
time non-negative integer-valued stochastic process {Y; }.cz, is said to be an INAR(p) process
if it satisfies the following equation,

m:alon—1+"'+apon—p+6tv

where 0 < o; < 1fori =1,...,p—1and 0 < o, < 1, {e;} is a sequence of independent
and identically distributed (IID) non-negative integer-valued random variables with finite mean
and variance. Alzaid & Al-Osh (1990) presented a model for count time series that has a
correlation structure similar to the correlation structure of a conventional ARMA(p,p — 1) for
continuous data. We introduce a model based on an extension of the INAR(p) presented by
Du & Li (1991), which model is based on a process with a correlation structure identical to the
correlation structure of a standard AR(p).

In spite of its flexibility in dealing with higher order autoregressive processes, the INAR(p)
model do not account the periodic phenomenon which is quite common in many area of appli-
cation. Time series with periodically varying mean, variance and covariance, were introduced
by Gladyshev (1961) and are usually called periodically correlated processes (PC). The oc-
currence of PC processes in time series is corroborated by real applications in many practical
situations, see, e.g., Gardner et al. (2006). Basawa & Lund (2001) studied the asymptotic prop-
erties of parameter estimates for specifics periodic autoregressive moving-average (PARMA)
models among others, and, recently, Sarnaglia et al. (2010) and Solci et al. (2018) presented
robust estimation methods for periodic autoregressive processes (PAR) with application in air
pollution data. Even though there are in the literature many studies that focus on periodically
correlated processes, the vast majority are dedicated to the analysis and the applications for
discrete parameter processes (see Priestley (1981), Definition 3.2), with the application of the
PARMA model. However, not much attention has been paid to the analysis of periodically cor-
related count series, for example, Monteiro et al. (2010) and Morina et al. (2011). In the former
paper, the authors introduced the PINAR(1) model and addressed some statistical properties of
the parameter estimators together with some empirical investigation. However, the paper does
explore the model in a practical problem. The later paper presents a model based on two-order
integer-valued autoregressive time series to analyze the number of hospital emergency service
arrivals caused by diseases that present seasonal behavior. The first-order seasonal structure
INAR was introduced by Bourguignon et al. (2016) and the class of subset INAR models will
be investigated in the forthcoming paper Bondon et al. (2018). The PINAR(1,1g) model is a
particular case of the PINAR(p)s,

In the remainder of this paper, let N, Z, Z,, R, R, and C denote the set of positive integers,
integers, non-negative integers, real numbers, non-negative real numbers and complex num-
bers, respectively. The integer part of x € R is denoted by |z] and the modulus of n € N with
respectto S € Z, is defined as n MOD S = n — S|n/S|. Let {n}s = S, if n MOD S = 0 and
{n}s = n MOD S, otherwise. Clearly, {n}s € {1,...,S5} forall n € N. Let {e;},—1,. 4 be the
standard basis in R?, i.e., (e;), =d; foralli,v =1,... dwhere § denotes the Kronecker delta.
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Foralld e Nlet1; = (1,...,1)" € N and let us denote by I, the d x d identity matrix. If it is
clear from the context, then we omit the subscript d. Bin(n,«) denotes a binomial distribution
with parameters n € N and a € (0, 1); Poi()\) denotes a Poisson distribution with mean param-
eter A € Ry; Geo(q) denotes a Geometric distribution over Z.. with parameter ¢ € (0,1) and
mean (1 — q)/q. Let E(-) and E(:|-) represent the expectation and the conditional expectation,
respectively. Random variables are all defined on a common probability space (2, A, P).

The organization of the paper is as follows. Section 2 introduces the proposed model, presents
the mean and the autocorrelation of the process and some probabilistic properties of the model.
Section 3 discuss estimation methods of the parameters, namely the Yule-Walker (moment-
based) estimator, the conditional least squares and the quasi-maximum likelihood framework
and an alternative estimation procedure. Section 4 presents the simulation and its results,
real data application is presented in the Section 5, finally conclusions and final comments are
presented at the last section. The appendix shows some proofs and equations mentioned in
this article.

2 The PINAR(p)s model

Let {Yi}iez, Vi € Z4, be a stochastic process with seasonal characteristics of period S, S € N.
The time index ¢ may be written as the Euclidean division between t and S, i.e., as t = kS + v,
where k € Zand v = 1,...,5. For example, in the case of monthly data, S = 12, v and k
represent the month of the year and the year, respectively, or in the case of daily data, S = 7,
v and k represent the day of the week and the week, respectively.

Define the mean function, n(t) = E(Y;) for all t € Z, and the covariance function, the scalar
Vew,V=1,...,5and k € Z,on Z as
’Ww,(h) = COV(Yk5+V, YkS+V—h)7 h e Z. (42)

Definition 4. The stochastic process {Yis+. }kez,=1.... 5 iS said to be a periodically correlated
process (PC) of period S, S € N, if, forv =1,...,5 and all integers k,

() E(Yisy,) < oo

(i) p(kS+v) =

(i) Ye(h) = 7 (h).

That is, if mean and variance are finite and if they do not depend on k.

Remark 4. Note that, if {Y;}:cz is a periodically correlated process then its mean and covari-
ance are periodic functions with period S. If S = 1, then {Y;} represents a homogeneous
stochastic process and the condition of periodic stationarity is equivalent to the non-periodic
ones.
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Definition 5. A Z_ -valued process {Y; }:cz is said to be a periodic non-negative integer-valued
autoregression (PINAR) with seasonal period S, for some S € {2,3,...}, and is denoted by
PINAR(p)s, where p = max(p) and p'is the 1 x S vector of autoregressive orders of {Y;}, if it
satisfies the following stochastic recursion

Yiiks = > i(V) oY itks + Evrks, (4.3)

where k € Z and t = kS + v. In this paper p < S. Because of the similarity of INAR models
to the standard autoregressive (AR) model for continuous data, the «;(v), i = 1,...,p,, v =
1,2,....,Sand p, = 1,...,5, are called autoregressive coefficients. The vector of AR orders
p has the form (p1,p2,...,ps)ixs, S € N, where p, represents the AR order of the v—th
season. For each season v = 1,2,..., .5, the set of autoregressive coefficients has the form
{aa(v),...,0p,(v)} C [0;1]P». The immigration process {e;}:cz is a periodic sequence of Z., -
valued r.v’s such that for each v € {1,...,S} the sequence {erst. }rez consists of i.i.d.r.vs.
Therv's Y,...,Ys are known as the starting values for the recursion (4.3). Finally, in (4.3), we
assume that all counting random variables are mutually independent and they are independent
of the sequence {et}cz.

It is assumed that the immigration process and starting values have finite second moments,
i.e., the mean function n and the variance of {Y;}.cz exist and are finite. Moreover, let \, =
E(erstv), 02 = Var(epgy,) forallk € Zandv =1,...,S.

As can be seen that in the seasonal period v, Y; in (4.3) has p, + 1 random components; the
immigration part of the past Y;_;, t = v+ kS andi = 1,...,p,, with survival probability a;(v)
and the elements which entered in the system in the interval (-1, t], which define the innovation
term ¢, for all ¢ € Z. Moreover, the autoregressive parameters «;(v) and immigration means
v, v =1...., 5, change periodically according to the seasonal period S.

It is worth to remark that INAR(p), PINAR(1,15) and PINAR(1)s are particular cases of the
model in 4.3.

The mean of the process {Y;}:cz, in (4.3) is given by

w(kS +v) = Zaz (kS +v —1i) + A\, (4.4)

Following the same lines of PAR model in Basawa & Lund (2001), the PINAR(p)s model can
be algebraically rewritten as follows. Initially, consider the following definitions.

Definition 6. Let Ao = (a;(r)o);,, 1 <i,v < S, be a S xS matricial binomial thinning operator,
also called the matricial Steuel and Van Harn operator, where a;(v) € [0,1] forall 1 <i,v < S.
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The action of AconY = (Y1,...,Ys)', denotedby Ao Y, is

S
a1(v)oY,
AoY =Ao : = : . (4.5)
Y. S
> Z ag(v)oY,
v=1

In the above definition, the operators a;(v)o, 1 < i,v < S, are supposed to be mutually
independent, see Definition 2.1 in Latour (1997). Based on Lemma 2.1 in Latour (1997),
E(AoY) = AE(Y), where A = (a;(v));, for 1 < i,v < S. Ais the mean of the operator
Ao.

Now, let Yi = (Yisi1,---»Yrsts) s €k = (€kSt1s---»Eks+s) s k € Z, where Yisy1 and g1
are defined in Definition 5. Then, by (4.3), for k € Z, one can see that the following stochastic
equation holds

AoY,=BoY,_1+e¢y, (4.6)

where Ao and Bo are S x S independent matricial binomial thinning operators, defined by

1, if i = j
(Ao)ij =10, ifi<j and (Bo)i; = agti—j(i)o, (4.7)
—a;—j(i)o, ifi>j
with the convention a,,(n) = 0 if m > p,.

Following, are established conditions for the periodically distribution of the process {Y} }rcz in
(4.3).

Suppose that the process {Y}}rcz has a constant mean vector p. By definition of {e;}, the
mean vector E[{e;x}] = XA = (\1,...,)\s) " is finite and do not depend on k. Then, E[A o Y]
is

Ap = Bp+ A (4.8)

Note that A is a lower triangular non-singular matrix and its inverse has only non-negative
elements. Thus A~! and B are non-negative matrices, hence A~'B and A~ are also non-
negative matrix and vector, respectively. By multiplying A~! in both sides of (4.8), it can be
seen that

p=A"1Bu+ A\ (4.9)

or
(I-—A'Byu=A"1x (4.10)

Consider the following lemma.
Lemma 4. Let the mean matrices A and B of the two operators Ao and Bo, respectively,
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defined by (4.7). Then, the following statements are equivalent:
(i) p(A7'B) < 1;

(ii) the roots of the determinant equation det(zIs — A~ B) = 0, for all complex z, are all less
than 1 in absolute value;

(iii) the roots of the matricial autoregressive polynomial P(z) = A — zB, for all complex z, lie
outside of the complex unit circle;

Proof. (i) < (ii) Since the complex eigenvalues of A~!B can be derived as the solutions to
the characteristic equation det(zIs — A~ B) = 0 the equivalence is clear. (ii) < (iii) follows
from the identity

det(zIg — A7'B) = det(zA™1 (A — 27'B)) = 2% det(A — z7'B))

with z # 0 and we used that det(A) = 1. O

Theorem 5. Let {Y;}:cz be a PINAR(p)s process defined by (4.3) and let the matrices A and
B be defined by (4.7). If one of the statements of Lemma 4 holds for matrices A and B, then
there exists a second order periodically stationary solution to {Y; }1cz.

Proof. By Theorem 6.2.24 in Horn & Johnson (2012), the strict positivity of «o’s implies that
A~'B is irreducible in the sense of Definitions 6.2.21 and 6.2.22 of Horn & Johnson (2012).
From Theorem 2.1 in Seneta (2006) and since A~! B is a Perron-Frobenius matrix, a necessary
and sufficient condition for a solution of p (1 > 0,# 0), where 0 is a S-dimensional vector of
zeros, to (4.10) to exist for any A* = A~ (A* > 0, # 0) is that the spectral radius p(A~'B) < 1,
which is the maximum eigenvalue in modulus of the matrix A=! B . Note that, since S > 2, from
the Perron-Frobenius Theorem in Horn & Johnson (2012) page 534, p(A~'B) > 0. Therefore,
0<p(A71B) < 1.

Based on Graybill (1983), page 100, if |¢| < 1 for every characteristic root v of A~'B and
none of sums of absolute values of row or column elements exceed unity, then >, (A~ B)!
converges to (I — A~'B)~1. This condition assures the invertibility of (I — A~1B) and the
positivity of its inverse. In this context, model PINAR(p)s in (4.6) will be completely specified,
if the det(2I — A™'B) # 0, z € C, i.e., the characteristic roots will be inside of unit circle, and,
therefore, the process in 4.6 will be second order periodic stationary process ( Brockwell &
Davis (2013)). In addition, if all the eigenvalues of A~!B are inside the unit circle, I — A~'B is
non-singular and p = (I — A~*B)~!A* has unique solution. O

Conversely, if a process {Y:}:cz which satisfies a proper PINAR(p)s model (its parameters
a;(v),\, 1 <i < pandv = 1,...,S5, are strictly positive) is a second order periodically
stationary process, then all of the statements of Lemma 4 are true. Some examples are now
given.

Example 3. Consider the case when «;(v) = O foralli # 1 and v = 1,...,S. Then the
PINAR(p)s model is reduced to a PINAR(1)s model. The characteristic polynomial of this
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model is simplified to P(z) = 1 — zHS,loq( ) and a necessary and sufficient condition of
asymptotic stability in the mean is H _, a1(v) < 1. (Note that H _; o, is the spectral radius of
the matrix A defined on page 1531 in Monteiro et al. (2010))

Example 4. Consider the case S = 3, the PINAR(2); model, with p'= (1, 2,2). Then

1 0 0 1 0 0 0 0 ay(l)

A= |-o(2) 1 o, Al= a1(2) 1 0/, B=1{0 0 a2
—042(3) —Ozl(S) 1 a2(3)+a1(3)a1(2) a1(3) 1 0 0 0
(4.11)

The characteristic polynomial is given by P(z 1) = 1—[ay(1)a1(2)a1(3)+aq(1)as(3)+a1(3)az(1)]z7L.

By solving the characteristic equation, one can see that 1/(a1(1)a1(2)a1(3) + a1(1)az(3) +
a1(3)az(1)) > 1is a necessary and sufficient condition for the second order periodically station-
arity. (Note that this condition can be rewritten as a; (1)1 (2)a1(3)+ai1(1)az(3)4+a1(3) (1) < 1)

A PINAR(p)s process defined by (4.3) has a PAR representation similarly to the AR repre-
sentation of the INAR models. Namely, let define the random variables X; = ¥; — E(Y;) and
M, =Y, — E(Y{|F:—1), where F; denotes the o-algebra generated by the random variables until
time ¢, for all t € Z and Fy = {0, Q2}. Clearly, by (4.3), it can be seen that

Pv

E(YVorks| Forhs—1) = D ai(v)Yirhs—i + A (4.12)
=1

and thus
Pv

Myiks = (i(v) o Yiyns—i — ai(V)Yiiks—i) + (Eviks — Av), (4.13)
=1

where k € Zandv = 1,...,S. Since the counting r.v.’s involved into the model and the immigra-
tions are mutually independent, { M.}z is a sequence of martingale differences with respect
to the filtration {F;}:cz. Moreover, forallk € Zandv =1,...,S,

Pv

E(MPsy | Frssv—1) = > ai(v)(1 = 0i(v))Yosns—i + oo (4.14)
=1

Hence, {M,}:cz is a heteroscedastic white noise process. The process {X,};cz satisfies a
periodic autoregressive (PAR) model defined by

Xosks = 3 (V) Xygns—i + Myyrs, (4.15)
where k € Zandv = 1,...,S, with autoregressive parameters «;(v),i = 1,...,py, and {M,}1ez
is a periodic innovation process with zero mean and variance E( M,fsw Zal )1 -

(V)i +olforallk e Zandv =1,...,S, where g = ps and pu_q = ji5—q, for a=1,...,85.
Let X, = (st+1, ce ,XkS+S)T, ke Z,and M, = (Mk5+1, e ,Mk5+s)T, k € Z, and consider
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the R¥-valued stochastic processes { X} }rez and { M }rcz. Then, we have the S-variate VAR
representation of the PAR process { X}z as

k € Z, and the matrices A and B are defined in (4.7). The covariance matrix of the random
vector M, is diagonal and since {Y;}.cz is periodically stationary, then this covariance matrix
does not depend on k and can be written in the following form. Define the S-dimensional
vectors a; = (a(1), ..., i(S)T, i = (WS—is S—it1s- s Sy 115y hs—im1) 5 & = 1,..., 5,
where pp = ps and p_, = pus—q, fora =1,..., .S, with the convention a,,(n) = 0 if m > p,, and
o?=(0?,...,0%)". Then, the common covariance matrix Xps of My, k € Z, is given by

p

Yp = diag (Zal ® (1 — Oéi) @/ji —|—0’2> .
=1

where diag{v} denotes a diagonal matrix with vector v in its diagonal, p = max(p) and © is the

element wise (Hadamard) product. Consider «;(v) =0fori > p,, v =1,...,S.

Itis noted that, X, = Y}, — E(Yk) and M, = (B oY,_1— BYk_l) — (AO Y. — AYk) + (Ek — A) for
all k € Z. Thus, the autoregressive representation of the matricial INAR model (4.6) coincides
with the vector autoregressive model (4.16).

Remark 5. The state vector Y, in (4.6) is the state-space representation of the process in (4.3),
which form is usual in the theory of real valued periodic processes, see, e.g., Franses & Paap
(2004). The matricial polynomial P in Lemma 4 can be interpreted as the formal characteristic
polynomial to the state-space representation (4.6). Moreover, P is the matricial autoregressive
polynomial of the VAR process { X} }rcz which satisfies (4.16), see (3.12) in Franses & Paap
(2004). The determinant equation in (i7) of Lemma 4 is also well-known in the field of real-
valued PC processes, see, e.g., Vecchia (1985, eqgn. (4)), Ula & Smadi (1997, egn. (12)) and
Franses & Paap (2004, eqn. (3.26)).

The first and second order moments of the Zi—valued stationary process (4.6) can be described
following the lines in Section 2.1.4 in Litkepohl (2005). Plainly, E(Y%) = p for all k € Z. Define
the S x S-dimensional covariance matrices I'(k,¢) = Cov(Yy, Yy) for all k,¢ € Z. We have
[(k,¢) = T'(¢, k)" for all k,¢ € Z. Clearly, (I'(k,¢));, = Cov(Yisii,Yessy) for all k,¢ € Z
and i,v = 1,...,5 and I'(k,¢) = E(X;X,) for all k,¢ € Z. Moreover, let ¥ = T'(k,k), i.e.,
Y = Var(Y}) = Var(Xy), for all k € Z. It can be seen, by recursion (4.16), that X is the unique
solution to the matrix equation

ASAT = BEBT + 2. (4.17)

The covariance matrix I'(k, £) depends only on k£ — ¢. Thus,it can be defined that the covariance
matrix function I'(k), h € Z, of the second order stationary process {Y}}rcz can be written
as

(h) =

{F(k+h, k)= (A"'B)"% if b >0, w1s)

D(k,k—h) =% ((A*lB)T>_h if h <0,
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where k € Z is arbitrary. Clearly, T'(h) = T'(—~h) T for all h € Z. The covariance kernel R of a PC
process {Y; }:cz can be extended onto Z2. Moreover, by this extension, we have

(T(h))iy = R(hS +i,v)  forall heZ,,ive{l,... S} (4.19)

Now, let introduce the Yule-Walker equations of the second order stationary process {Y }rez
as
AT'(h) = BT'(h —1). (4.20)

By (4.17) we obtain the equation
AT(0) = BT'(—1) + Spr(A™H T, (4.21)

which can be considered as an extension of (4.20) for h = 0. Define the scalar functions ~,,
v=1,...,5,0nZas
Yw(h) = R(v + h,v), h e Z. (4.22)

If {Y:}:cz is a PC process of period S then the functions ~,, v = 1,...,S, determine the
covariance kernel R and thus the covariance matrix function I' of the state process {Y4 }xez.
Namely, if s= kS +iandt =¢S5+ v where k,/ € Z and i,v € {1,...,S}, then

R(s,t) = R(kS + 14,05 + v) = v ((k — 0)S +i — v). (4.23)

The functions v,,, v = 1,..., S, are called the periodic autocovariance functions (ACF) of the PC
process {Y;}:cz. The periodic autocovariance functions satisfy the symmetry property

it (—hS — 1 if 7 4+ <85,
o (hS i) = 4 ( i) i (4.24)
itw_s(=hS —i) ifitv>S

forallh e Zand i,v € {1,...,S}. Especially, in the case of h = 0 we have

i {%+y(z’) ifity<S$ 425)

Yitv—s(—i) ifi+v >S5,

for all i,v € {1,...,S}. The relation between the covariance matrix function I of the state

process {Y} }xez and the periodic autocovariance functions v, v = 1,..., .S, can be expressed
as
(F(h))l,u = 'YV(hS +i— V)a (426)
forallh € Zandi,v € {1,...,S}. Thus, the covariance matrix I'(h) can be written as
71 (hS) Yo (hS—1) -+ ys(hS—S+1)
hS +1 hS hS — S +2
r(h) = 71 ( . ) 72(. ) Ys( | ) (4.27)
1 (hS+5—1) 7(hS+5-2) - 7s(hS)
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By property (4.25), in case of h = 0, the covariance matrix > can also be expressed as

[ n0) ) u(S-2) m(S-1)]
71(1) %2(0) - (S—3) n(S-2)
2 =T(0) = (vinw(Ji = V)7 oy = : : : : , (4.28)
1M —=2) »(S-3) - 75-1(0)  ys-1(1)
M(S=1) %(5=2) - 7ys5-1(1) 75(0) |

where i A v = min{i, v}.

Now, let establish the marginal distribution of the PINAR(p)s process, {Y;}. Since the counting
r.v.s involved into the (4.3) and the immigration process are mutually independent, the process
{Yi}iez, fort = v+ kS, k € Z, is an in-homogeneous p-step Markov chain, i.e., for all ¢t > p,
with p = max(p), and y1, ...,y € Z., the conditional probability function is given by

PYi=w|Ys=ys, s=1,...,t=1) =PYVi = w|Yim1 = yi—1,. ... Yiep, = Yt—p,)

(4.29)
=P(aa(v)oyr—1+ ...+ ap, (V) o yi—p, + ¢t = Y1)

Denote the periodic Markov kernel of the PC process {Y;} as

py(mlma,...,my,) = Plai(v)omi + ...+ o, (V) omy, + €, =m), m,mi, ..., My, € L.
(4.30)

The marginal distribution of the PC process {Y;} is given by

P(YICS-H/ = m) = Z pll(m|mla s 7mpy)P(YkS+V_1 =my,... 7YkS+V—pV = mpv)a
mi,...,mp, =0

(4.31)

wherel € Z,forallk e Zandv =1,...,S.
Given starting values Y1, ..., Ys, by the definition of the conditional probability and the p-step

Markov property of the PINAR(p)s process, it can be seen that

PYi=yt,.. . Ysy1 = ys+1lYs = ys, ..., Y1 =y1) =
pl/(yt‘y5'7 see 7yt—py)P(Y;t—1 =Yt—1y--- 7YS+1 == yS-l—l’YS =Ys,... 7Y1 == y1)7

(4.32)
where v = {t}s and yi,...,y: € Z4. Thus, by induction, if T' = nS where n € N, we have
S n—1
P(Yr=yr,....Yo1 =ysr1l¥s =vs,.... Vi =) = [[ [] pvwescolvesso—1, - Urstv—p.);
v=1 k=1
(4.33)

where y1,...,yr € Z..
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2.1 PINAR(p)s model with Poisson immigration

Let {exs+.} be a periodic sequence, where ey5, ~ Poi(\,), fork € Zand v € {1,...,S}. The
periodic Markov-kernel of PINAR(p)s model with Poisson immigration, Poisson-PINAR(p)gs, is
given by the following equation:

Po(YelYio1 = vi—1,- - Yiep, = Yt—p,) = [Bin(yi—1, 1 (v)) * ... x Bin(ys—p, , ap, (v)) * Poi(\y)](k)
yt—z/\(yti1)<

Yt—1/\Yt Y . .
= > ("M@ aepe Y

11=0 i2=0

) (a0 (1~ o)

19

2.

yt—pu/\(yt—(i1+i2+‘..+ipu_1))<
ip,, =0

y) (a, ()" (1 =, ()= 717 exp(= )

)\gt_(i1+i2+---+ipy)

(yt - (Zl + 12 + + 7:pll))!’

where * denotes convolution and i A v = min{i, v}.

3 Parameter estimation methods

In this section, the standard estimation methods such as moment-based or Yule-Walker (YW),
conditional least squares (CLS) and quasi-maximum likelihood (QML) estimators are discussed
for the proposed model. The closed forms of Yule-Walker and CLS estimators are derived
for the PINAR(p)s model (4.3) under general immigration distribution. Moreover, the QML
estimator is discussed when the immigration follows Poisson distribution, i.e., exs4, ~ Poi(),)
forall k € Zand v € {1,...,5}. The asymptotic properties of these estimators are also
investigated.

Let ¥, = (e}, \), where o, = (a1(v),...,a,, ()T, a,, € (0;1) and ), € R, for all seasons
v=1,...,5and let ¥ = (¢4,...,95) represent the p*-dimensional, where p* = p; + ... +
ps + S, unknown parameter vector of the PINAR(p)s model defined by (4.3). In this paper,
all the parameter vectors are column vector. The parameter vector is assumed to be lying
in the open set O. Its true value is denoted by ;. Consider a sample Yi,...,Yr of size
T = nS where n € N for the PINAR(p)s process {Y;}. The notation used assumes n complete
periods of observations. This implies that a sample Yp,...,Y,_; of size n is given for the
state process {Y3}. In this section, it is supposed that {Y}} is a strictly stationary ergodic
process. By (4.3) and (4.33) we may conjecture that all estimators of the parameter 9, will
depend on the sequence of data {Yys4v, - -, Yistv—p, to=1,...n—1, respectively, for each season
vell,...,S}
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3.1 Moment-based estimation (Yule-Walker)

The first and second order moments of the periodically stationary process {Y;} can be esti-
mated, following Vecchia (1985), page 724, as follows. For the periodic means u,, v =1,...,5,
we have the estimators

n—1

,an,y = n_l Z YkS—i—m (434)
k=0

for all seasons v = 1,...,S. For the periodic covariance functions ~,, v = 1,..., S, we have

the estimator
n—[(h+v)/S]

Anw(h) =n~t Z Vis+hiv ViStos (4.35)
k=0

where 0 < h < nS —vand Yisy = Yesiy — Y k=0,...,n—landv =1,..., 5, are the
periodically mean standardized observations. (Note that [x] denotes the upper integer part of
z € R.) Clearly, Y35, = (Yi_1), forallk = 1,...,nand v = 1,...,5. The estimators fi,,
and¥,,,v=1,...,5, are the same as for real-valued PC processes, see, e.g., Vecchia (1985,
eqgn. (10)). The estimators 7,,,, v = 1,...,5, are called the sample periodic autocovariance
functions (ACF) of the integer-valued PC process {Y;}. In the sequel, if it is clear from the
context, we omit the index n of sample size in the estimators and, e.g., we write simply 7, and
Y, v=1,...,8.

For each season v € {1,...,S} the parameter vector ¢, can be estimated through the Yule-
Walker equations, as can be seen below, by replacing the means p,’s and the autocovariance
functions v,’s by the corresponding sample means ji,’s and sample autocovariance functions
~.’s, respectively. Multiplying (4.3) by Yis.,—i, 7 =0,1,...,p,, and taking expectations of both
leads to

Lyow =, (4.36)

where (T',)i, = y—i(v —i), fori,v = 1,...,p,, and v, = (7.(1),...,7(p,)) . From (4.4), the
following equation is obtained

Ao = ) = S @)l — ). (4.37)
=1

Applying these equations, it is possible to estimate the coefficients separately for each season.
Note that this involves an inversion of a p, x p,, positive definite matrix for each season v.

Since the PINAR(p)s model can be written as a PAR model, the asymptotic properties of the
Yule-Walker estimates of its parameters behave similarly as in the case of autoregressive model
discussed in (Brockwell & Davis 2013, chaps. 7& 8). The estimators i, and~,, v =1,..., .S,
are strongly consistent and asymptotically normal. Similarly, the Yule-Walker estimator 9YW =
@OYV, ..., 05W), where 9YW = (@YW (v),...,axV (v), \YW) for each v = 1,..., S, is strongly
consistent and we obtain the following theorem. Note that these results are analogous to those

derived for INAR(p) processes, see Theorem 3.1 and Section 4.1 in Du & Li (1991).
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3.2 Conditional least squares estimation

The CLS-estimators 9SS, n € N, of 9 are obtained by minimizing the expression

S S n-—1
1
= n,v u Py Y v — E(Yks o |F) v— 2. 4.38
VE1Q w(v) =5 ;1 1§=1 kv — EVesto | Frsiv—1)) (4.38)

The CLS-estimators 9SS, n € N, of 9 are obtained by minimizing the expression

S S n—1
= Z Qnu(V)) = Z (Vis+v — E(Yesto | Frstv-1))% (4.39)
v=1 k=1
where, by (4.3),
E(Yis ol Frssv) Zaz )Yistv—i + Av- (4.40)

Since, for v # v*, with v, v* =1,..., 5, Q. (¥,) and @, .~ (V) are uncorrelated, then minimiz-
ing @n("¥) means to minimize individually each @, ,(9,) for v = 1,...,S. Define the random
vectors Uy = (V3,Ys—1,...,Ysp,41,1) ", t > S, and introduce, forall v = 1,..., S,

YS+1/ U;+1/71 YS+Z/*1 YSJerZ o Ys+rv—p, 1
zZ,=| : |, C-= s = L ' '
YV(n—l)S—«—V U(;:,fl)s+y71 }/(n—l)S—&—y—l Yv(n—l)S—i—l/—Q T }/(n—l)S—i-y—py 1

(4.41)

Z, is a (n — 1)-dimensional random vector and C,, is a random matrix of dimension (n — 1) x
(py + 1). By (4.39) and (4.40),

n—1
Qn,y(ﬂz/) YkS+V Zaz YkS+V i )\1/)2 = ||Zl/ - Cz/l91/||2a (442)
k=1
for each v = 1,...,S. Thus, the CLS-estimator 9SS of the parameter ¥, can be expressed

as
1
9CLS — (CTC ) cl 2z, (4.43)

for each seasonv =1,...,5 (see, Theorem 7.2.2, in Bickel & Doksum (1977)).

One can see that the real-valued penalty function @,,(v) satisfies the assumptions of Theorem
3.2.24 in Taniguchi & Kakizawa (2000), see also Theorem 2.1 and Theorem 2.2 in Klimko &
Nelson (1978). Define the matrices V, and R,, v =1,...,Sand t = kS + v, of dimension 3 x 3
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as

V, = E (Ut,lUj_l) :

’YV*I(O) 71/71(1) 7V*1(2) T ’Yufl(pl/ - 1) 0
'Yu—l(l) 'VV—2(O) 'YV—2<1) T ’YV—2(pV - 2) 0
v, = : : : : | +EU-)E(Ui) T,
Yo—1(Py — 1) Y—2(pr —2) 71/—3<pl/ - 3) T Yv—pu (0)
0 0 0 0 0
(4.44)
where E (U;_1) = (pw—1, ftw—2,...,1) T and uo = pg, and
R, —E|U,_1(Y; - UtT_lﬁy)ZUtT_l] , (4.45)

Finally, define the block diagonal matrices V and W of dimension p* x p*, where p* = p1 +...+
ps+ S, as
V = diag{V4,...,Vs}, R = diag{Ry,...,Rs}. (4.46)

The CLS-estimator 918 = (915, ... JSLS) of the parameter vector 9 is strongly consistent
and the following theorem is obtained.

Theorem 6. Assume that {Y;}:cz in (4.6), that is, the a PINAR(p)s process, is a strictly sta-
tionary ergodic process with E||Y;||*> < oo and E(Yis1v|Frssw) is almost surely three times
continuously differentiable in the open set ©. Then for the CLS-estimators 9SS, n € N,

n1 29S8 — 9y) 25 N(0,V IRV Y, (4.47)

asn — oo, Where the matrices Vand R of dimension p* x p*, p* = p1+...+ps+ S, are defined
in (4.46).

Proof. This proof follows the lines in Theorem 3.2.24 in Taniguchi & Kakizawa (2000), in
straightforward generalization of the proof of Theorem 2 in PINAR(1, 15) paper. O

3.3 Quasi-maximum likelihood (QML)

We based our method on the approach of QML presented by Taniguchi & Kakizawa (2000),
Section 3, page 101. First, let define

fo, (t,t = 1) = E[{Yy — my, (t,t — 1)}*|Fima] |

where t = kS + v, and

Pv
ma, (t,t = 1) = EVisyu|Frssv-1) = EVisto [ Fosn) = 3 0i()Yasqw—i + Ay (4.48)
i=1
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fork =1,...,n — 1. The likelihood type penalty function of the PINAR(p)s model, conditioned
on the first S observations, is given by

3
|

1S
> llog{fy, (t.t = 1)} + (Vi — my, (£t — 1)) f 1 (¢, — 1)].

1v=1

e
Il

The likelihood function L, (9) = 25_, 1,,.,(9,), where

n—1 n—1
oo (8) = S llog{ o, (6. — D)} + (¥ = ma, (1t = D2 L5 (08— Dl (9) = 3 609
k=1 k=1

is minimized in order to obtain the QML-estimator 9" of the parameter vector 9.

Corollary 3. The function fy,(t,t — 1) is given by
t,t— 1 Z Oéz 1 - az ))Yk:S-i-V—i + Ay, (4.49)

in the case of Poisson innovations.

The function [,,,(,) can be obtained directly by replacing the results of (4.49) and (4.48) in
(4.49). From the second order stationarity of {Y;} it follows that E ||;||® < oo implies E ||Y;]|°
oo, then one can prove that the real-valued penalty function L, () satisfies the assumptions of
Theorem 3.2.26 in Taniguchi & Kakizawa (2000). Thus, there exists a sequence of estimators
I = (™7, (@F¢M)T)T such that 97" — 9o almost surely as n — oo, and for any
e > 0, there exists an event E with P(E) > 1 — e and an ny € N such that on E, for n > ny,
9ME is the solution of

—L,(9) =0, (4.50)

which attains a relative minimum of the likelihood function L, (¥).

The minimization of L, (1) can be done separately by minimizing the partial log-likelihood
I (9,) for each season v € {1,...,S}. Similarly, one can solve the likelihood equation (4.50)
by solving the partial likelihood equations

0
ai’ﬁyln’y(ﬂy) —0, I/—l,...,S,
separately.
Define I'F, the matrix of dimension (p, + 1) x (p, + 1) for each season v € {1,...,S} as
IF, = Uy "Wy, Uyt (4.51)
where 9
Vi, = E{ s on0) (0} (4.52)

85



and

82
Uy, =E {M@(ﬁu)} : (4.53)
Note that 55-¢:(d,) = (%(V)@w,,),...,W@(ﬁy),%@(w) is a (p, + 1)-dimensional
vector. Then, the matrix IF of the PINAR(p)s process is defined as the block diagonal ma-
trix
IF = diag{IFy,... ,IFs}. (4.54)

The following theorem on the asymptotic normality of the QML-estimator 9ML is given be-
low.
Theorem 7. Assume that {Y;}:cz in (4.6), that is, the a PINAR(p)s process, is a strictly sta-
tionary ergodic process with E ||ey,||® < oo ( E ||e/]|® < oo in model (4.3)), and my, (t,t — 1) and
fs,(t,t — 1) are almost surely three times continuously differentiable in the open set © contain-
ing the true parameter value 9. Then, the QML estimators 9™ are asymptotically normal
distributed as

a2 _ 9y 25 A(0, TF), (4.55)

asn — oo, where I'F' is the matrix of dimension p* x p*, p* = p1+...+ps+ S defined by (4.54).

Proof. This proof follows the lines in Theorem 3.2.26 in Taniguchi & Kakizawa (2000), in
straightforward generalization of the proof of Theorem 3 in PINAR(1, 15) paper. O

4 Monte Carlo simulations

In this section, we evaluate the behavior of the estimation methods discussed previously, that is,
YW, CLS, and QML. The simulated model is a Poisson-PINAR(3), model with "= (1,2, 1, 3),
S = 4, with sample size n = 50,200, 500 per season. Each model was simulated 500 times.
The sets of true parameters are given by o = {0.49,0.12,0.27,0.28,0.30,0.15,0.22} and A =
{1.50,2.50,5.25,2.80}. The results are shown in table 4.1, where the bias and MSE (mean
square error) are the mean of 500 estimates of each parameter. The initial values for the QML
were obtained by the YW estimator. The simulated series were generated in the statistical
software R (R Development Core Team, 2009). For the QML method, we applied a general
non-linear optimization procedure using augmented Lagrange multiplier method with numerical
derivatives as implemented in the solnp function of R.

In general, the results presented in tables suggest that the YW, CLS and QML estimators
have good finite sample properties. These results show that the YW and CLS methods were
outperformed by the QML procedure. When compared with the YW and CLS estimates, QML
estimates present smaller biases and MSE.
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Table 4.1: Poisson-PINAR(3)4 model with 5 = (1,2,1,3). 500 replications. The sets of true
parameters are given by alphas={0.49, 0.12, 0.27, 0.28, 0.30, 0.15, 0.22} and lambdas={1.50,
2.50, 5.25, 2.80}.

n=50
BiasQML MSEQML BiasYW MSEYW BiasCLS MSECLS
(1)  -0.004 0.011 0.005 0.010 0.007 0.010
(1)  -0.023 0.020 0.004 0.031 -0.011 0.031
(2) 0.011 0.021 -0.001 0.021 0.015 0.021
as(1) 0.003 0.031 0.011 0.031 -0.002 0.030
(1)
(2)
(3)

0.010 0.021 0.010 0.021 0.006 0.020
-0.021 0.023 0.006 0.032 0.002 0.030
-0.008 0.021 0.002 0.030 0.014 0.030
A1 0.023 0.260 -0.031 0.500 -0.039 0.431
A2 0.035 0.591 -0.007 0.820 -0.053 0.712
Az -0.046 0.721 -0.085 0.780 0.018 0.821
A4 0.097 1.000 -0.075 1.300 -0.119 1.601

n=200
BiasQML MSEQML BiasYW MSEYW BiasCLS MSECLS
(1) 0.001 0.000 0.004 0.000 0.002 0.000
(1) 0.001 0.010 0.004 0.010 0.005 0.010
(2) 0.002 0.000 0.000 0.010 -0.003 0.010
as(1) -0.003 0.010 -0.001 0.010 0.000 0.010
(1)
(2)
3)

-0.001 0.000 -0.002 0.001 0.005 0.010
0.003 0.011 0.004 0.010 0.002 0.010
0.006 0.010 0.006 0.011 0.004 0.010
A1 -0.003 0.050 -0.028 0.110 -0.017 0.100
A2 -0.017 0.130 -0.017 0.160 0.000 0.170
A3 0.005 0.151 -0.001 0.151 0.010 0.172
A -0.023 0.283 -0.024 0.350 -0.059 0.410

n=500
BiasQML MSEQML BiasYW MSEYW BiasCLS MSECLS
(1) 0.000 0.000 0.000 0.000 0.001 0.000
(1) -0.003 0.000 -0.001 0.000 0.001 0.000
(2) 0.000 0.000 0.002 0.000 -0.002 0.000
as(1) -0.001 0.000 0.002 0.000 0.000 0.000
(1)
(2)
(3)

-0.002 0.000 0.002 0.000 0.001 0.000
0.004 0.000 0.000 0.000 0.002 0.000
-0.002 0.000 0.004 0.000 0.003 0.000
A1 -0.001 0.020 -0.003 0.050 -0.001 0.040
A2 0.021 0.060 0.000 0.080 0.001 0.060
A3 0.000 0.060 0.000 0.070 0.002 0.070
A+ -0.004 0.110 -0.027 0.130 -0.033 0.130
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5 Real data application

5.1 The data

This application is based on the time series of counts referring to the daily number of people
who got medicine based on salbutamol sulphate for the treatment of respiratory problems from
the public health care system in the hospital emergency service of the region of Vitoria-ES,
Brazil. These data were obtained from the network records system Welfare of the municipal-
ity. The series corresponds from January 03, 2013 to July 18, 2017, resulting in 1659 daily
observations. Figure 4.1 displays the plot of the real data, from this it is observed a persis-
tence oscillation aspect, i.e., the mean changes periodically. This phenomenon is also clearly
evidenced in the plots of Figure 4.2. In addition, the series correspond to daily data, which
corroborates for S= 7 to be our choice for the period length.
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Figure 4.1: Daily number of people who received medicine based on salbutamol sulphate indi-
cated for the relief of bronchial spasm associated with asthma attacks, chronic bronchitis and
emphysema from the public health care system in the hospital emergency service of the region
of Vitoria-ES.
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5.2 Data analysis and discussion

Figure 4.2 shows the sample periodic mean and variance of the series varying over the sea-
sons j = 1,...,7 with S = 7. According to McLeod (1994) one can identify the AR order of
each season by finding the lowest lag for which the sample PePACF cuts off. Tables 4.2, 4.3,
4.5 and 4.6 were obtained through the R’s Pear package based on McLeod (1994). The ele-
ments in bold represent values that have exceeded the confidence interval. We analyze the
sample PePACF and PeACF of the real data in Tables 4.2 and 4.3, respectively, regarding to
a parsimonious choice of the AR orders of the model, and the use of the Poisson-PINAR(7);
model with p'= (1,4,4,1,3,7,6) is suggested as a candidate to fit the real data.

The parameters were estimated by quasi-maximum likelihood method and the results are dis-
played in Table 4.4. The estimated residuals ¢, after fitting the Poisson-PINAR(7)7 model were
defined by

Pv
e =Y — E oY — Ay,
=1

where v = {t}7.

Following Bu et al. (2008), one can assess the adequacy of the fitted model examining the
residuals for serial dependence. The sample PeACFs and PePACFs of residuals are shown
at the Tables 4.5 and 4.6. By the analysis of these tables and the ACF and PACF of the
residuals shown in Table 4.3, we conclude that the suggested model was able to filter the
expressive autocorrelations, especially in the lowers lags (up to lag 14), which indicate that the
residuals are not correlated and that there is no particular point causing a expressive impact in
the model.
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Figure 4.2: Plots of the means and variances of the seasons of the real data.

Table 4.2: Sample periodic ACF of the real data.

Sample periodic ACF of the real data

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13 h=14 h =15

v=1 016 0.14 020 0.07 0.12 0.6 0.05 0.12 0.13 047 0.08 0.11 0.05 0.12 -0.01
v=2 0.07 0.09 020 024 0.02 023 014 0.18 0.10 0.7 0.02 0.04 020 0.00 0.06
vr=3 019 0.14 024 027 0.4 -004 027 0.14 004 014 023 0.13 0.07 0.17 0.14
v=4 0.06 -0.05 0.05 0.02 0.06 0.06 006 0.07 -001 010 -002 -0.12 -0.04 0.07 0.08
v=5 0.06 016 027 0.09 0.10 0.12 0.14 0.07 020 0.08 0.15 0.10 0.18 0.13  0.05
vr=6 019 -0.03 028 0.22 0.15 0.14 030 0.09 -0.07 0.23 0.21 0.09 0.09 029 0.13
v=7/ 030 025 -008 023 0.14 020 0.14 0.17 0.17 -0.05 0.06 0.04 0.01 0.12  0.17
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Table 4.3: Sample periodic PACF of the real data.

Sample periodic PACF of the real data
h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13 h=14 h =15

v=1 0.16 0.09 0.16 0.07 005 0.10 0.00 0.08 0.04 009 008 0.00 -0.02 0.05 -0.08
v=2 0.07 008 0.18 0.20 0.02 0.6 003 013 0.02 007 -008 0.04 0.08 -0.09 -0.01
vr=3 0.19 013 021 0.18 002 -003 0.16 0.03 -006 005 010 0.05 0.10 0.03 0.06
v=4 0.06 -0.06 004 0.01 006 0.06 006 005 -005 010 -005 -0147 -0.07 0.06 0.08
v=5 0.06 0.16 025 0.05 005 0.02 0.04 0.07 0.1 000 008 003 010 0.07 0.02
v=6 0.19 -0.04 026 0.5 0.11 0.06 0.20 -0.04 -0.07 0.09 0.11 0.02 -0.02 0.15 0.05
v=7 030 021 -0.10 0.14 0.01 0.5 0.05 0.04 0.09 -0.06 -0.10 -0.09 -0.05 0.07 0.02

Table 4.4: The estimated parameters of a Poisson-PINAR(7)7 model with p' = (1,4,4,1,3,7,6)
using QML estimation. The standard error of is below each estimate, inside parenthesis. Val-
ues are rounded to three decimal places.

v=1 v=2 v=23 v=4 v=2>5 v==06 v=7
ap(v)  0.099 0.023 0.147 0.042 0.095 0.117 0.169
(0.046) (0.066) (0.060) (0.036) (0.072) (0.058) (0.081)

as(v) 0.000 0.092 0.097 0.000 0.169
(0.092) (0.064) (0.049) (0.916) (0.062)
as(v) 0.156  0.176 0.240 0.126  0.000
(0.061) (0.058) (0.063) (0.051) (1.111)
ay(v) 0.161 0.172 0.136  0.107
(0.058) (0.058) (0.079) (0.065)
as(v) 0.124  0.029
(0.059) (0.060)
ag(v) 0.019 0.184
(0.063) (0.123)
ar(v) 0.147
(0.059)

A 0.674 0573 0555 0.335 0575 0.335 0.469
(0.077) (0.099) (0.092) (0.054) (0.084) (0.218) (0.160)

Table 4.5: The sample PeACF of the residuals after fitting the Poisson-PINAR(7)7 model with
p=(1,4,4,1,3,7,6).

Periodic ACF of the residuals
h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13 h=14 h =15

v=1 -0.03 003 0.13 0.08 0.04 0.11 0.02 0.03 004 013 008 0.08 -0.01 0.13 -0.11
v=2 -0.01 -0.06 -0.07 0.00 0.01 0.12 0.08 013 0.083 009 -0.03 0.03 0.14 -0.06 0.02
v=3 0.00 0.01 -0.02 -0.01 0.00 -0.04 0.13 0.02 -0.06 0.03 0.09 0.03 0.08 0.07 0.07
v=4 -0.01 -0.09 0.04 -0.04 0.06 005 0.06 0.08 0.00 009 -0.02 -017 -0.08 0.06 0.06
v=5 0.00 -0.01 0.01 0.05 0.00 -0.02 0.04 0.06 008 -002 009 0.02 0.12 0.11 0.03
v=6 -0.02 -0.06 0.04 0.00 -0.02 -0.01 0.01 -0.07 -0.09 0.05 0.09 0.02 -0.06 013 0.05
v=7 004 002 -0.12 -0.01 -0.038 -0.038 0.05 0.07 0.11 -0.06 -0.09 -0.06 -0.07 0.07 0.07

Table 4.6: The sample PePACF of the residuals after fitting the Poisson-PINAR(7); model with
ﬁ: (1? 4? 47 17 37 77 6)

Periodic PACF of the residuals
h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13 h=14 h =15

v=1 -0.03 003 0.14 008 0.04 0.11 0.01 0.05 0.05 0.13 0.08 0.04 -0.02 0.09 -0.11
v=2 -0.01 -0.06 -0.07 0.00 0.00 0.12 0.03 0.13 0.04 0.10 -0.04 0.03 0.12 -0.07 0.03
v=3 0.00 0.01 -0.02 -0.01 0.00 -0.04 0.13 0.01 -0.06 0.03 0.10 0.05 0.11 0.05 0.09
v=4 -0.01 -0.09 0.04 -0.04 0.05 0.05 006 0.09 001 010 -001 -0.16 -0.11 0.05 0.05
v=5 0.00 -0.01 0.01 0.05 0.00 -0.02 0.04 006 009 -002 0.08 0.02 0.12 0.09 0.03
v=6 -0.02 -0.06 0.04 -0.01 -0.02 -0.02 0.01 -0.06 -0.09 0.05 0.08 0.04 -0.06 0.14 0.06
v=7 004 002 -0.11 -0.01 -0.04 -0.02 0.05 0.07 0.13 -0.04 -0.08 -0.07 -0.06 0.07 0.05
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Figure 4.3: The sample ACF and PACF of the real data and of the residuals after fitting Poisson-
PINAR(7)7 with p'= (1,4,4,1,3,7,6).

All these empirical analyses, i.e. the plots of PeACF and PePACF of the residuals, support the
fact that the Poisson-PINAR(1,4,4,1,3,7,6) seems to be well fitted to the real data.
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6 Conclusions

The PINAR(p)s model was introduced in this paper. The main properties of this model are
presented, such as the mean, autocorrelation function and transition probabilities. Several
methods for estimating the model parameters were considered and a simulation study was per-
formed to investigate the sample properties of YW, CLS and QML estimates. As expected the
QML procedure outperforms the YW and CLS procedures, and therefore, this is the preferred
method for model fitting.

To illustrate the proposed model, we considered a time series of counts on daily number of
people who received medicine for the treatment of respiratory problems from the public health
care system in the emergency service of the region of Vitéria-ES (Brazil). This medicine is
a medication used for opens up the airways in the lungs. It is mainly used to treat asthma
and chronic obstructive pulmonary disease. It is a medication only dispensed with a medical
prescription for a certain period, which provides more precise data. In fact, drugs used to treat
asthma attacks are used on demand at times of crisis Zeghnoun et al. (1999).

Based on residual analysis, the Poisson-PINAR(7); model was able to capture the main dy-
namic the real data series, that is, periodicity in the data.

The results presented in this paper will hopefully stimulate further research on this theme. For
future work, it would be desirable to consider procedures that produce coherent forecasting. In
addition, an extension of periodic models for integer-valued time series, taking into account dif-
ferent marginal distributions for innovations, such as Poisson inflated of zeros or negative bino-
mial. Additionally, to extend the PINAR(p)s model to incorporate explanatory covariates.

Appendix

Proof of (4.19). If h > 0 then we have
(I'(h))iw = (T'(h,0))i, = Cov(Yisyi, Yy) = R(hS + 1, v).
On the other hand, if » > 0 then we have

(T(=h))ip =T(~)wi = (T(h,0))v; = Cov(Ynsiv, Vi)
=R(hS + v,i) = R(i,hS + v) = R(—hS + i, ).

O
Proof of (4.21). Since A is non-singular we have that
AY =BYBT(AT) L+ 54T
Then the statement follows from the fact that T'(0) = S and T'(—-1) = £(A"'B) . O
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Proof of (4.24). By the definition of functions v,, v = 1,..., .S, we obtain
YWw(hS +i) =7 (hS+i+v,v)=W,hS +i+v) ="y (-hS —i+ (i+v),i+v).

Since v, (—hS —i+ (i+v),i+v) =vip(—hS —i) ifi+v < Sand v, (—hS —i+ (i+v),i+v) =
Y(—=hS—i+(i+v)—S,i+v—S) = vir,—s(—hS—1i) ifi+v > S we have the equation. [

Proof of (4.29). Apply the definition of conditional probability and the independence of the
thinning operators and immigration at time ¢ from the past of the process {Y;}:

PYi=wt,Yi1=y-1,..., Y1 =y1)
PYici =91, Y1 =11)
PO ci(v)oy—i+er =y, Yie1 = Yi—1,---, Y1 = 41)
P(Yie1 = yt—1,---, Y1 = 1)
PO ci(v) oy—i+ e = y)P(Yeer = %1, Y1 = 1)
a P(Yie1 =vt—1,.--, Y1 = 1)

Pv
=P (Z aj(V)oy—i+e = yt)
i=1

and similarly we have

PY: =wlYie1 =ye—1,.... Y1 =u1) =

Pv

PY:=wlYi-1 =vt-1,- -, Yip, = Yt—p,) = P(Z @i(V) o yt—i + &t = yt)
i=1

where v = {t}sand y1,...,y: € Z. O
Proof of (4.32). Apply the definition of conditional probability and then the S-step Markov
property:

PYi=w,....Ys01 =ys1|Ys =Ys, ..., Y1 =1y1) =
_ PYi=y,... Yi=y) PMiaa=y-1,....Y1=u1)
PYia=vyi-1,....Y1=uy1) PY¥s=ys,....Y1=1u1)
:P}/;f:ytnft—l:yt—lr'wyl:yl)x

(
PYi1=y-1,-.,Yst1 =yst|Ys =ys,....,.Y1=uy1) =
:pl/<yt‘yt—17"' 7yt—pu)P(th—1 =UYt—1,-- '7YS+1 = yS+1’YS =Ys,. .. 7}/1 - y1)7

where v = {t}sand y1,...,ys € Z. O
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Chapter 5

The regression ZIP-PINAR(p) ¢
model

An extension of the PINAR(p) s model for count time series with inflation of zeros is introduced
in this paper. The use of explanatory covariates is proposed in order to extend the applicabil-
ity of the model. Statistical properties such as conditional mean and variance, marginal and
joint probability distributions are presented. The quasi-maximum likelihood estimation of the
parameters of the model was considered. The finite sample behavior of the estimators will be
illustrated via computational simulations. The proposed methodology will be applied to model
the relation between the count time series of the number of visits to the hospital emergency
service for people with respiratory diseases (asthma and rhinitis) and the series of air pollutant
concentrations.

This paper will be submitted to publication to the Journal of Statistical Planning and Infer-
ence.

94



The Regression ZIP-PINAR(p)s model

Abstract

This paper introduces the PINAR(p)s model for periodic count time series with inflation of ze-
ros and covariates, denoted ZIP-PINAR(p)s model. The model properties such as stationarity
and ergodicity as well as the asymptotic properties of the conditional quasi-maximum likelihood
parameter estimators are fully established. Simulations were carried out in order to verify the
estimation method performance for finite sample sizes. The count time series of the number
of visits to the hospital emergency service for people with respiratory diseases (asthma and
rhinitis) was analyzed using the proposed model with the covariate air pollutant concentra-
tions.

Keywords: INAR, periodic stationarity, PINAR, zero inflated Poisson, quasi-maximum likeli-
hood.

1 Introduction

In the literature of time series, a series with a excessive number of zeros is usually defined as
time series with zero-inflation and this phenomenon is quite common in many area of applica-
tion. For example, in the biomedical and public health domains, some types of rare diseases
with low infection rates can lead to a count time series with a large number of zeros. Ignoring
zeros in the data may conduct to a wrong model choice and inference and a spurious associa-
tion between the count time series with covariates.

Yang et al. (2013) extended the classical regression based on the Zero Inflated Poisson (ZIP)
distribution, introduced by Lambert (1992), for counting time series with an excess of zeros,
autoregressive (AR) structure and time-dependent covariates regression framework. The ZIP
distribution can be seen as a mixed distribution of a Poisson with parameter A\, and a degenerate
component with all its mass at zero, parameter p, called the inflation parameter of zeros. The
regression ZIP is referred here as ZIP model.

To illustrate the mechanism of this model, consider the process {¢; }.cz of Z-valued indepen-
dent ZIP distributed random variables (r.v.s) ¢, with inflation of zeros parameter p € [0; 1] and
Poisson parameter A € R, ¢, ~ ZIP(p, A). The probability mass function (p.m.f.) of ¢; is given
by P., (et = m) = pliu—o + (1 — p) exp(=A\)A"/m!, m € Z,, where I,,,—o = 1, if m = 0 or
In—0 =0, if m # 0. The parameters p and X relate the variable ¢ to the vectors of covariates X
and Z through equations log(\) = X '3 and log[p/(1 — p)] = Z "+, where 3 and ~ represent
the vectors of coefficients of the model. X " is the transpose matrix of X.
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A simple model for a stationary sequence of integer-valued random variables with lag-one
dependence referred to as the integer-valued autoregressive of order one 1 (INAR1) model was
introduced by Al-Osh & Alzaid (1987). This model has a special advantage over the ZIP model
due its similarity to the Box and Jenkins ARMA models for continuous data. INAR model has
the same additive structure of ARMA models instead of the multiplicative structure presented in
ZIP. This additive characteristic and the discreteness of the modeled process are proportioned

by the Thinning Operator o. INAR model can be represented as the process Y; = aoY;_1 + &,
Yi1

where aoY; 1 = Z B;i(«). B;(«) represents a sequence of independent random variables
=1
(R.V.s) with Bernoulli distribution and probability of success P(B; (o) =1) =, 0 < a < 1. In

this case o is called binomial thinning operator. For the Poisson INAR model, ¢; ~ Poisson(\)
represents a sequence of independent R.V.s, assumed independent of Y;_; and aoY;_;.

A natural extension of Poisson INAR model to provide a consistent fit to count times series with
over-dispersion proportioned by the excess of zeros is the first-order integer valued AR pro-
cesses with zero inflated Poisson innovations (ZINAR) developed by Jazi et al. (2012). The ZI-
NAR model has similar equation of INAR models, in which the innovations ¢; ~ ZIP(p, A).

The inclusion of explanatory variables to extend the applicability of INAR models was briefly
introduced by Brannas (1993) and studied by Enciso-Mora et al. (2009). The former authors
introduced a model based on the INAR(p) model and developed an efficient Markov Chain
Monte Carlo algorithm which analyze both explanatory variable an model order selection. The
methodology was applied to the analysis of monthly polio incidences in the USA 1970-1983
and claims from the logging industry to the British Columbia Workers’ Compensation Board
1985-1994.

The models discussed in the previous paragraphs are based on the assumption of stationarity
in the mean and variance, that is, standard count time series models. However, it is quite
common in many area of application to have time series that varies periodically in the mean,
the variance and the autocovariance. This type of time series was introduced by Gladyshev
(1961) as Periodically Correlated process (PC).

There is a lot of research related to PC processes for continuous time series. For a review, from
theoretical and applied point of view, of the periodic autoregressive moving-average (PARMA)
models, one can mention Gardner et al. (2006), Sarnaglia et al. (2010), Basawa & Lund (2001)
among others. However, no much attention has been paid to the analysis of periodically corre-
lated count series. For example, Monteiro et al. (2010) introduced the periodic integer-valued
autoregressive model of order 1, with Poisson distributed data (PINAR). The stationarity and
ergodicity properties of the process were established following the same lines in Latour (1997).
The Yule-Walker based equations, least squares-type and quasi-maximum likelihood estima-
tors of the model parameters were the estimation methods discussed.

Filho et al. (n.d.) extended the PINAR(1)s model to the PINAR(p)s. Statistical properties of the
model such as mean, variance, marginal and joint distributions are presented in the paper. The
Moments-based, conditional least squares and quasi-maximum likelihood estimation methods
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of the parameters were considered. An application to medication dispensing is given to show
the usefulness of the proposed model.

Here, it is introduced an extension of PINAR(p)s model, denoted as ZIP-PINAR(p)s model,
which takes into account periodic cont time series with zero-inflates and covariates as explana-
tory variables of the model.

In the remainder of this paper, let N, Z, Z,, R and R, denote the set of positive integers,
integers, non-negative integers, real numbers, and non-negative real numbers, respectively.
Denote by I, the d x d identity matrix. If it is clear from the context, then we omit the subscript
d. Bin(n,a) denotes a binomial distribution with parameters n € N and « € [0, 1]; Poi(})
denotes a Poisson distribution with mean parameter A € R,. Let E(-) and E(-|-) represent the
expectation and the conditional expectation, respectively. Random variables are all defined on
a common probability space (w, .4, P) and F; denotes the o-algebra generated by the random
variables until time ¢, forall t € Z, ¢t > S and Fy = {0, w}.

The organization of the paper is as follows: Section 2 presents the PINAR(p)s model; Section
3 introduces the regression ZIP-PINAR(p)s model, and some of its statistical and probabilistic
properties; The transition probability function of the process established on the ZIP model is
introduced in Section 4; the Section 5 discusses the Quasi-Maximum Likelihood(QML) estima-
tion method of the parameters of the model; Section 6 presents a set of simulations; a real data
application is the motivation of the Section 7, and, finally, conclusions and final comments are
presented at the last section. Some proofs are in the Appendix.

2 The PINAR(p)s model

Let {Y:}1ez, Vi € Z4, be a stochastic process with seasonal characteristics of period S, S € N.
The time index ¢ may be written as the Euclidean division between t and S, i.e., ast = kS + v,
where k€ Zandv =1,...,S. For example, in the case of daily data, S = 7, v and k represent
the day of the week and the week, respectively.

Define the mean function, u(t) = E(Y;) for all t € Z, and the covariance function, the scalar
Yo, v=1,...,5and k € Z,on Z as

Yiew(h) = Cov(Yistv, Yistv—h), h € Z. (5.1)

The stochastic process {Yis.. trezp—1,..s, satisfying E(Y% +,) < o0, is said to be a periodically
correlated process (PC) of period S, S € N, if, forv =1,...,5 and all integers k,

(kS +v)=p, and ., (h) =7(h).

That is, if mean and variance are finite and if they do not depend on k. Note that, if {Y;}icz
is a periodically correlated process then its mean and covariance are periodic functions with
period S. If S = 1, then {Y};} represents a homogeneous stochastic process and the condition
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of periodic stationarity is equivalent to the non-periodic ones.

A Z,-valued process {Y;} is said to be a periodic non-negative integer-valued autoregression
(PINAR) with seasonal period S, for some S € {2,3,...}, and is denoted by PINAR(p)s, where
p = max(p) and p'is the 1 x S vector of autoregressive orders of {Y;}, if it satisfies the following
stochastic recursion

Pv
Yiks = D i(V) o Yo itks + Evrks, (5.2)
=1

where k € Z and t = v+ kS. In this paper assume that p < S. Because of the similarity of INAR
models to the standard autoregressive (AR) model for continuous data, the «;(v), i = 1,...,py,

v=12...,5and p, = 1,...,S5, are called autoregressive coefficients. The vector of AR
orders p'has the form (p1,p2, ..., ps)ixs, S € N, where p, represents the AR order of the v—th
season. For each season v = 1,2,...,5, the set of autoregressive coefficients has the form
{a1(v),..., 0, (v)} C [0;1]P». The immigration process {e;}:cz is a periodic sequence of Z_ -
valued r.vs such that for each v € {1,...,S5} the sequence {exs+, }rez consists of i.i.d.r.v’s.

Ther.v/s Yi,...,Ys are known as the starting values for the recursion (5.2). Finally, in (5.2), we
assume that all counting random variables are mutually independent and they are independent
of the sequence {&;}+cz.

It is assumed that the immigration process and starting values have finite second moments,
i.e., the mean function p and the variance of {Y;},cz exist and are finite. Moreover, let u.(v) =
E(ersiv), 02 = Var(epsy,) forallk € Zand v = 1,...,S. As can be seen that in the seasonal
period v, Y; in (5.2) has p, + 1 random components; the immigration part of the past Y;_;,
t=v+kSandi=1,...,p,, with survival probability a;(~) and the elements which entered
in the system in the interval (t-1, t], which define the innovation term ¢, for all ¢t € Z. More-
over, the autoregressive parameters «;(v) and immigration means p.(v), v = 1...., S, change
periodically according to the seasonal period S.

The mean of the process {Y;}cz, t > p, where p = max(p), in (5.2) is given by:

pv
p(kS +v) =Y oi(W)u(kS + v — i) + pe(v). (5.3)
=1

A PINAR(p)s model is called proper if its parameters «;(v), u-(v), 1 <i<pandv=1,...,5
are positive values. Consider that {Y;}:cz is a proper PINAR(p)s model and satisfies all of the
statements of Lemma 1 in PINAR(p)s paper. Then, from the Theorem 1 in PINAR(p)s paper,
the process {Y, }:cz is a second order periodically stationary process.

3 The regression ZIP-PINAR(p)s model

Let {e: }1ez, In (5.2), be a sequence of non-negative integer-valued R.V.s, where ¢, ~ ZIP(p,, \t),
witht =v+kS,SeN, keZ v=1..,5"for0<p, <1land X\ € Ry. The PINAR(p)s
model in (5.2) is extended to the Periodic INteger of AutoRegressive order (p) with Zero Inflated
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Poisson distributed innovations. Suppose that for each ¢ there are ¢ explanatory variables. Let
X+ i=1,...,q, denote the value of the i-th explanatory variable at time t. The ZIP-PINAR(p)s
model is introduced by the set of equations

pv
Yiiks = Y (V) 0 Yy itks + Eviks
i=1 (5.4)

log )\u+kS = X;r+k5_d/6u7

where «o;(v) € (0;1), v =1,...,Sand i = 1,...,p,. p, represents the AR order of the v-th
season of the period S e N. 8, = (81,4, ..., Bq,,,)T, geN,w=1,...,5,is a vector of parameters
related to X; 4 = (X1 ¢—a,.-- ,Xq,t,d)T, which is the vector of explanatory covariates at time
t —d. d € Z, is a predefined constant which represents a time delay in the relation that
expresses the influence of X;_ 4 on the parameter \;. For d = 0 this relation is parallel in
time.

One may say that write «;(¢) instead of «;(v) is more appropriate because this notation indi-
cates that for each time ¢ there is a sequence of variables {Y;}.cz, nevertheless the notation
a;(v) will be utilized due to its closer similarity to the standard AR model coefficients.

The conditional probability mass function (p.m.f.) of {e; }1ez, t = v + kS, is given by

)\m
P., (et = m|pyv, M) = pulm=o + (1 — pv) eXp(—)\t)ﬁ, m € Zy, (5.5)
where
1, ifm=0
I,—0 = . (5.6)
0, ifm=#0

As pointed by Enciso-Mora et al. (2009), a set of explanatory variables can be used to model
a linear trend or periodicity. Assume that the variables {X;}icq1,.. 4}tz are linearly indepen-
dents.

where px, () do not depend on the K value.

The conditional mean of {¢;}4cz, fort =kS+v, k€ Zandv =1,...,S, is given by

ME(V) = E(gt‘pmﬁuv Xt—d) = (1 - pu))\t = (1 - Pu) eXp(XtT—dﬁV)'
The conditional variance of ¢, is given by

02 (v) = VAR[etlpv, By, Xima] = ne(v) (1 + pue) = pe(v) (1 + py exp(X,L4B0)).

Now it is possible to obtain the marginal mean and variance of the process {y;}«cz in (5.4),
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conditioned to the known covariates X; 4 and parameters «;(v),p,,8,, i = 1,...,p,. For
t = kS + v, the mean and the variance are given by, respectively,

bv
py = E(YD) =D oi(0)pw—i + pe(v), (5.7)
i=1

and

7,(0) = Var(Y;) = ZV o2 (v — i) Var(Yi_s) + oy (v — i) (1 — (v — 9)) i + 02 (v). (5.8)

=1
4 The transition probability

The variable Y;, t = v + kS for t > p, is assumed to be generated according to (5.4). In the
same sense of Bu et al. (2008), we propose a recursive representation of the transition proba-
bility of the model. For the periodic autoregressive process of order p, where p = max{p,}5_;,
established on Y;, defined in (5.4), one can characterize this sequence, in terms of proba-
bility, as a state machine where each observation, from the (p + 1)—th, represents a state
partially dependent on the preceding states. The transition probability from a state where
Yip = Yt—p, Yiep+1 = Yt—p+1,---» Yi—1 = y—1 t0 state Y; = y;, in a single step, conditionally
at the v—th section of S, can be written considering y; as the convolution between a4 (v) o y;—1
and as(v) o ys—2 + ... + oy, (V) o yr—p, + €, Which are mutually independent, given the p past
observed lags. In turn, ag(v) o yr—2 + ... + o, (v) o y1—p, + & Can be seen as the convolution
between as(v) o yi—2 and az(v) o yp—3 + ... + oy, (V) © yr—p, + €+ leading us to a clear recursion.
Thus, for t = kS + v, the recursive form for the transition probability is given by

PYi=wYie1 =v—1, , Yipo+1 = Yt—pot1, Yip, = Yt—p,) = Pv(UkStv|UkStv—1, - - - » YkS+v—p,, )

min(yt—1,yt) (g2 % —i)
= 2 @@ A-a)r T Y () (1 - ax@))r
= i2=0
mMan(Ye—p,, ¥t —(i1+i2+...+ip, 1)
Z (Z:pu)(apu @) (1 = oy, W)= 7" {pully, (i) 4ig 4.4, )=0T
ip, =0

/\yt*(i1+iz+-..+ipu)
t

(yt — (il +190+ ...+ ipu))!

(1- p) exp(—Xo) Lo (59)

With \; = exp(X,” ;8,).
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5 The quasi-maximum likelihood (QML) method

In this section, the quasi-maximum likelihood (QML) estimation method is discussed for the
model in (5.4). The asymptotic properties of these estimators are also investigated.

Let ¥, = (a,,B),p,)", Wwhere o, = (a1 (v),..., 0, ()T, i(v) € (0;1), i = 1,...,p,,

c€[0;1]and B, = (Brwy - Bqn) s g €N, Biy €R, fori =1,...,qandv = 1,...,S. Let
9 = (V1,...,9g) represent the p*-dimensional, where p* = p; + ... + ps + S(¢ + 1), unknown
parameter vector of the ZIP-PINAR(p)s model defined by (5.4). In this paper, all the parameter
vectors are column vector. The parameter vector is assumed to be lying in the open set O. Its
true value is denoted by 9. Consider a sample y1,...,yr of size T = nS where n € N for the
ZIP-PINAR(p)s process {Y; }1cz. By (5.4) and (5.9) it is possible to conjecture that all estima-
tors of the parameter ¥, will depend on the sequence of data {yixs+v—p,s - - - YkS+v Fh=1,...n—1,
respectively, for each season v € {1,...,S}.

We present a likelihood type penalty function of the PINAR(p)s model, conditioned on the first
S observations, based on the approach of QML introduced by Taniguchi & Kakizawa (2000).
The function to be minimized is given by

n—1 S
= > log{fo, (t,t = 1)} + (Y2 —my, (t,t = 1)) f; H(t.t = 1),
k=1v=1
where
fo (bt =1) = E[{Y; —my, (t,t = 1)}?|Fra],
and

Pv
my, (t,t — 1) = E(Vigso| Frstv—1) = EVisiul Frsar) = > 0i(0)Yisyv—i + pe(v),  (5.10)
i=1
fork=1,...,n—1landt=kS +v.
The conditional likelihood function L, (9) = S>5_, 1, ,(9,), where

n—1

ln,u(ﬁu) = Z[IOg{fﬂy (t7t - 1)} =+ (Y% —my, (tv l— 1))2f19_yl (t7t In 1/ 1/ Z ¢t

k=1

is maximized in order to obtain the QML-estimator 9" of the parameter vector 9.

Corollary 4. The function fy,(t,t — 1) is given by
fo,(t,t—1) Z ai(V)(1 — a;(V)Yisqo_i + 02(v), (5.11)

in the case of ZIP distributed innovations.

The function 1, ,(9,) can be obtained directly by replacing the results of (5.11) and (5.10)
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n (5.11). From the second order periodic stationarity of {Y;}.cy it follows that E||e;||® < oo
implies E ||Y;]|® < oo, then one can prove that the real-valued penalty function L, () satisfies
the assumptions of Theorem 3.2.26 in Taniguchi & Kakizawa (2000). Thus, there exists a
sequence of estimators 9" = ()™ T, ..., (9F")T)T such that 93" — 9, almost surely

as n — oo, and for any € > 0, there exists an event E with P(E) > 1 — e and an ny € N such
that on E, for n > ng, 9 is the solution of

5 Ln(®) =0, (5.12)

which attains a relative minimum of the likelihood function L,,(19).

The minimization of L,(«¢) can be done separately by minimizing the partial log-likelihood
ln(9,) for each season v € {1,...,S}. Similarly, one can solve the likelihood equation (5.12)
by solving the partial likelihood equations

0
67’[91/[”7,/(291/) —0, I/—17...,;517
separately.

Define IF, the matrix of dimension (p, + ¢+ 1) x (p, + ¢ + 1) for each season v € {1,...,S}
as

IF, =U, 'V, Uy, (5.13)
where
Vo, = E{ o0 6i0) 5 61(00) (514
a0, ") gy # v '
and
82
s, = E{ gm0} (5.15)

Note that 55-¢¢ (V) = (557572 (00)s - 5wy @t (00): 350y 0 (00): - -+ gy St (D), g 0t (V0))
isa(p,+q+ 1)-d|men3|onal vector. Then, the matrix I F of the ZIP-PINAR( )s process is de-
fined as the p* x p* block diagonal matrix, p* = p; + ...+ ps + S(¢ + 1), given by

IF = diag{IFy, ..., IFs}. (5.16)

The following theorem on the asymptotic normality of the QML-estimator 9ML is given be-
low.

Theorem 8. Assume that {Y;}.cz in (5.4), that is, the a ZIP-PINAR(p)s process, is a second
order periodic stationary process withE ||||° < oo, andmy, (t,t—1) and fy (t,t—1) are almost
surely three times continuously differentiable in the open set © containing the true parameter
value ¥y. Then, the QML estimators IM are asymptotically normal distributed as

R 2L _90) 25 N(0, IF), (5.17)
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asn — oo, where I'F is the matrix of dimension p* x p*, p* =p1 + ...+ ps + S(q+ 1) defined
by (5.16).

Proof. This proof follows the lines in Theorem 3.2.26 in Taniguchi & Kakizawa (2000), in
straightforward generalization of the proof of Theorem 3 in PINAR(1, 15) paper. O

6 Monte Carlo simulations

This section is developed in order to evaluate the behavior of the QML estimation for different
sample sizes, this way illustrating the theoretical findings presented in this article. We present
two models: model 01, summarized in the Table 5.1, which displays the QML estimation results
of a Monte Carlo simulation for a ZIP-PINAR(1)7 with p = (1,1,1,1,1,1,1) and model 02,
summarized in table 5.2, which presents the QML estimation results of a Monte Carlo simulation
for a ZIP-PINAR(2); with p' = (1,2,1,1,1, 1, 2), both of then assessed for the lengths 140, 980
and 1960, multiples of S = 7, with 500 independent simulated series. For each simulation, the
time series was generated by

Pbv

Y, = ;oY +et
; (5.18)

lOg )‘t = BVXt—l)

where t = v + kS for v, k, S € Ny, v,t # 0. It is assumed that X; follows several Normal
distributions with different means and variance: ¢, and v,, respectively, such that ¢, = {,+s
and v, = v,4g, where (, and v,, for each v = 1,...,.S, were randomly obtained following
uniform distributions over the interval [1;2] and (0; 0.1], respectively.

The simulated series were generated in the statistical software R (R Development Core Team,
2009). For the QML method, we applied a general non-linear optimization procedure using
augmented Lagrange multiplier method with numerical derivatives as implemented in the solnp
function of R.

In general, the results presented in Tables 5.1 and 5.2 suggest that the QML estimators have
good finite sample properties. These results show that the estimates present smaller biases
and MSE when the sample size increases what is expected and agree with the asymptotic
properties of the estimators, i.e., consistency and unbiasedness. In addition, it is observed that
the number of estimates which tend to be biased to the left also reduces when the sample size
increases.

7 Real data application

This section is dedicated to the application of the model to a real data set referring to the
daily number of hospital emergency service visits for people with respiratory airway diseases,
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Table 5.1: Results of 500 simulated ZIP-PINAR(1); with p’= (1,1,1,1, 1,1, 1) processes, where
Mean and MSE represent the mean of the estimated parameters and the mean square errors
of the Real parameters, respectively. The quasi-maximum likelihood method of parameters
estimation was applied.

Real Mean Bias MSE Real Mean Bias MSE Real Mean Bias MSE

n=140 n=980 n=1960

(1) 0480 0480 0000 0,009 (1) 0480 0480 0,000 0,002 (1) 0480 0,480 0,000 0,001
(2) 0670 0663 0007 0024 «(2) 0670 0,668 0,002 0,004 ay(2) 0,670 0,671 -0,001 0,002
(3) 0240 0235 0,005 0,020 «(3) 0,240 0,238 0,002 0,004  «y(3) 0,240 0,237 0,003 0,002
aj(4) 0,400 0,395 0,005 0,028  ay(4) 0,400 0,401 -0,001 0,004  ay(4) 0,400 0,400 0,000 0,002
() () (®)
(6) (6) (6)
(7 (7 (7

0,750 0,748 0,002 0,022 % 0,750 0,750 0,000 0,002 o 0,750 0,750 0,000 0,001
0,860 0,853 0,007 0,007 ay 0,860 0,860 0,000 0,001 o 0,860 0,860 0,000 0,000
0,200 0,197 0,003 0,008 o 0,200 0,200 0,000 0,001 o 0,200 0,200 0,000 0,001
p1 0,810 0,790 0,020 0,022 p1 0810 0,805 0,005 0,003 p1 0,810 0,806 0,004 0,002

p2 0,310 0,307 0,003 0,034 p2 0,310 0,305 0,005 0,008 p2 0,310 0,307 0,003 0,004
p3 0,450 0,444 0,006 0,049 p3 0,450 0,447 0,003 0,007 p3 0,450 0,447 0,003 0,004
ps 0,550 0,530 0,020 0,029 ps 0,550 0,545 0,005 0,003 ps 0,550 0,549 0,001 0,002
ps 0,320 0,318 0,002 0,032 ps 0,320 0,312 0,008 0,008 ps 0,320 0,315 0,005 0,003
ps 0,440 0,420 0,020 0,026 ps 0,440 0,435 0,005 0,003 ps 0,440 0,437 0,003 0,002
pr 0,640 0,621 0,019 0,019 pr 0,640 0,636 0,004 0,004 pr 0,640 0,639 0,001 0,002
B 0,300 0,267 0,033 0,042 B 0,300 0,282 0,018 0,023 B 0,300 0,291 0,009 0,013
B2 0,150 0,161 -0,011 0,017 B2 0,150 0,149 0,001 0,006 B2 0,150 0,147 0,003 0,004
B3 0,250 0,274 -0,024 0,053 B3 0,250 0,243 0,007 0,005 ps 0,250 0,247 0,003 0,003
B4 0,500 0,479 0,021 0,049 B4+ 0,500 0,497 0,003 0,004 B4+ 0,500 0,498 0,002 0,004
Bs 0320 0,320 0,000 0,023 Bs 0320 0,318 0,002 0,017 s 0,320 0,315 0,005 0,003
Bs 0,440 0,423 0,017 0,032 Be 0,440 0,435 0,005 0,003 Be 0,440 0,440 0,000 0,003
Br 0,740 0,716 0,024 0,019 Bz 0,740 0,738 0,002 0,011 p7 0,740 0,738 0,002 0,002

Table 5.2: Simulation of ZIP-PINAR(2); with p'= (1,2,1, 1,1, 1, 2) process. 500 repetitions. The
quasi-maximum likelihood method of parameters estimation was applied.

Real Mean Bias MSE Real Mean Bias MSE Real Mean Bias MSE
n=140 n=980 n=1960

a1(1) 0,590 0,583 0,007 0,021 ai(1) 0,590 0,590 0,000 0,002 ai(1) 0,590 0,590 0,000 0,001
as(1l) 0,120 0,142 -0,022 0,025 as(1) 0,120 0,122 -0,002 0,005 as(1) 0,120 0,121 -0,001 0,002
as(2) 0,270 0,258 0,012 0,033 az(2) 0,270 0,268 0,002 0,005 az(2) 0,270 0,269 0,001 0,002
as(1) 0,680 0,661 0,019 0,030 az(l) 0,680 0,684 -0,004 0,003 as(l) 0,680 0,680 0,000 0,001
ay(1) 0,360 0,369 -0,009 0,062 as(1) 0,360 0,358 0,002 0,007 as(1) 0,360 0,362 -0,002 0,003
as(1) 0,190 0,194 -0,004 0,020 as(1) 0,190 0,189 0,001 0,002 as(1) 0,190 0,191 -0,001 0,002
ag(l) 0,250 0,257 -0,007 0,033 ag(l) 0,250 0,250 0,000 0,004 ag(l) 0,250 0,248 0,002 0,002
arz(1) 0,170 0,174 -0,004 0,027 az(1) 0,170 0,170 0,000 0,005 az(1) 0,170 0,167 0,003 0,002
a7(2) 0,390 0,381 0,009 0,033 az(2) 0,390 0,390 0,000 0,003 az(2) 0,390 0,389 0,001 0,001
12 0,710 0,678 0,032 0,028 p1 0,710 0,704 0,006 0,003 p1 0,710 0,709 0,001 0,001
p2 0,610 0,631 -0,021 0,071 p2 0,610 0,603 0,007 0,012 p2 0,610 0,602 0,008 0,007
ps 0,450 0,447 0,003 0,044 ps 0,450 0,449 0,001 0,006 p3 0,450 0,447 0,003 0,003
ps 0,250 0,247 0,003 0,021 ps 0,250 0,250 0,000 0,002 ps 0,250 0,249 0,001 0,002
ps 0,360 0,350 0,010 0,052 ps 0,360 0,357 0,003 0,007 ps 0,360 0,359 0,001 0,002
pe 0,290 0,290 0,000 0,043 pe 0,290 0,291 -0,001 0,009 pe 0,290 0,288 0,002 0,003
pr 0,520 0,545 -0,025 0,100 pr 0,520 0,524 -0,004 0,019 p7 0,520 0,513 0,007 0,012
B1 0,600 0,549 0,051 0,072 B 0,600 0,586 0,014 0,022 /1 0,600 0,596 0,004 0,002
B2 0,150 0,204 -0,054 0,063 B> 0,150 0,146 0,004 0,014 B> 0,150 0,147 0,003 0,000
Bs 0,250 0,278 -0,028 0,072 Bs 0,250 0,248 0,002 0,007 B3 0,250 0,250 0,000 0,003
B4+ 0,800 0,789 0,011 0,024 B4+ 0,800 0,799 0,001 0,001 B4+ 0,800 0,796 0,004 0,003
Bs 0,660 0,615 0,045 0,087 Bs 0,660 0,656 0,004 0,008 55 0,660 0,659 0,001 0,001
B¢ 0,530 0,518 0,012 0,075 B¢ 0,530 0,532 -0,002 0,011 B¢ 0,530 0,529 0,001 0,003
Bz 0,170 0,263 -0,093 0,107 Bz 0,170 0,187 -0,017 0,020 Bz 0,170 0,174 -0,004 0,015
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classified according to International Classification of Diseases (ICD-10, j31 and j45).

The data selected were the people of any age group who visited the hospital emergency service
in Vitéria-ES city, specifically those living in the neighborhoods of Praia do Sua, Enseada do
Sua, Bento Ferreira and Ilha do Boi. The choice of these neighborhoods was due to the close
proximity to the air quality monitoring station located at the Enseada do Sua. These data were
obtained from the network records system Welfare of the municipality. This network, the Health
Management System Welfare Network.

The Welfare Network computer system is implemented at the central level of the Secretary
(SEMUS) and in all the basic health units, in such as: reference centers, emergency services,
among others. The data records and information of the service network of the municipal health
system have digital certification in accordance with Municipal Decree 15.913, of February 13,
2014.

The period of study was from June 26, 2013 to April 7, 2016, resulting in 1022 daily observa-
tions. Figure 5.2 shows the line graphs, histogram, periodic mean and variance graphs from
the series of attendances for respiratory diseases. In this application, the daily values of the
concentrations of the pollution variable will be the covariate used in the modeling of the health
variable, which represents the main variable of the model.

As can be seen at the Figures 5.2(c) and 5.2(d), the mean and the variance, respectively, vary
over the seasons, this is a characteristic of periodically correlated time series. Information on
daily levels of atmospheric pollutant Particulate matter particles with a diameter of 10 microme-
ters or less (PM;y) was obtained from the State Institute of Environment and Water Resources
(IEMA), with data collected at the Sua Station, in Vitéria, belonging to the Automatic Air Quality
Monitoring Network (RAMQAYr).

The data collection comprised a period of 24 hours, which began in the first half hour of the
day. The mean of 24 hours for the pollutant PM;, was considered. Analyzing the graph of
Cross-correlation function, Figure 5.5, the value d = 0 is suggested, since the strong peak is
given for the lag 0. For the computational optimization procedure, we divided each value of X
by 100, in order to obtain a value between 0 and 1.
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Figure 5.1: Number of hospital visits to people with respiratory airway diseases of the region of
Vitéria, (ES, Brazil), from June 26,2013 to April 7, 2016, resulting in 1022 daily observations.
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ACF of TS referring to the daily number of visits
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Figure 5.2: ACF(a), histograms by seasons (b), the sample variances (c) and means (d) for

each season.
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Daily concentration of PM10
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Figure 5.3: Daily concentrations of the pollution covariate, 1022 observations.
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Figure 5.4: The sample variances and means of the seasons (left and right, respectively) of the
daily values of the concentrations of the pollution covariate variable.

Tables 5.3 and 5.4 show the PeACF and PePACF sample functions of the health data. The
elements in bold represent values that have exceeded the confidence interval. In addition,
according to McLeod (1994) one can identify the AR order for each season by finding the lowest
lag for which the sample PePACF cuts off. All these suggested the use of ZIP-PINAR(7); model
with 7= (3,4,4,2,7,6,6) to model the real data set.

The parameters were estimated using QML method with ZIP distributed innovations. The re-
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Figure 5.5: The sample cross correlation function between the daily number of visits to emer-
gency service and the values of the concentrations of PMyy.

Table 5.3: Sample PeACF function of the daily number of hospital visits to people with respira-
tory airway diseases (health data).

Sample PeACF function of the health data
Season h=1 h =2 h=3 h=4 h=5 h=6 h=7 h =8 h=9 h =10 h=11 h=12 h =13 h =14

0.03615743 0.23453908 0.17623970 0.15191931 0.11969754 0.14124429 0.07167236 0.126107594 0.045404826 0.05324367 0.070631229 0.13351077 0.09798248 0.07554284
0.02477357 0.03293201 0.08230342 0.25894745 0.17944770 0.08855555 0.08007309 0.178249162 0.109950767 0.05996379 0.167380529 0.14084816 0.06141951 0.17011477
0.02038011 0.28945655 0.14283592 0.13791804 0.16975064 0.16335145 0.06427256 0.249987471 -0.038438806 -0.04905219 0.035516699 0.02381582 -0.03205135 0.12310399
0.08793825 0.23601359 0.02380250 0.14362365 0.07198004 0.09602562 0.09819808 -0.116819686 0.057062353 0.15567545 0.074686223 0.11706798 0.22280860 0.16698385
0.15013911  0.17397431 0.22338219 0.15882988 0.06830728 0.11685891 0.31416136 -0.005926477 0.007155263 0.14918424 0.145326921 0.11242536 0.06747111 0.30106483
0.11152528 0.08277729 0.12372636 0.09062921 0.12911949 0.35621800 0.03101838 0.029310409 0.105633386 0.04696810 0.007433698 0.03582651 0.10881090 0.04249913
0.22769719 0.14163874 0.20608829 0.06239895 0.15333057 0.22069450 0.03942914 0.056054172 0.107844041 0.16080872 0.118217587 0.10267796 0.08652887 0.02233563

<
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NoaR WD
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sults are displayed in Table 5.5. As can be seen, the obtained estimates corroborate the results
of the graphical analysis presented in Figure 5.2(b), the estimated values for p3, p4 and ps are
more expressive. In relation to the estimates of 3, we are struck by the fact that pollutant lev-
els did not influence the number of visits on Sunday, Monday and Thursday, and the related
coefficient of Tuesday was the largest one.

The adequacy of the adjusted model was evaluated by examining the residuals for serial
dependency. The estimated residuals {r;} after fitting the ZIP-PINAR(7); model with p’ =
(3,4,4,2,7,6,6) model were computed as

Pv
re =y — Yi :yt—zai(l/) O Yy—itks + Av, (5.19)
i=1

where t = 7k + v.

The residual PACFs displayed in Table 5.6 show that the fitted model was able to filter the
autocorrelations of the data. So, using ZIP-PINAR(7)7 with o’ = (3,4,4,2,7,6,6) we do not
found clearly systematic pattern observed in the residuals, it means that the fitted model seems

Table 5.4: Sample PePACF function of the daily number of hospital visits to people with respi-
ratory airway diseases.

Sample PePACF function of the Health data
Season h=1 h=2 h=3 h =4 h=5 h =6 h=7 h=8 h=9 h =10 h=11 h=12 h =13 h =14

0.03615743 0.23256319 0.158722640 0.12612913 0.06492867 0.079628171 0.0190692956 0.0209107467 -0.002644775 -0.03361488 0.02400030 0.14727568 0.069057844 -0.012349114
0.02477357 0.03206707  0.073406103 0. 0. 0.036350531 -0.0007933577 0.1502159844  0.065909280 -0.02531138 0.06568170 0.11286327 0.070332383  0.105922946
0.02038011 0.28910042 0.138021901 0.04506810 0.10932210 0.095757407 0.0008223576 0.1750181010 -0.106652269 -0.13736176 0.04747391 -0.05280139 -0.079718617 0.109055669

0.08793825 0.23518116 -0.006555898 0.12945598 0.01799826 0.008571614 0.0225815584 -0.1625314828 -0.009289720 0.14782016 0.07072478 0.07794849 0.198648806 0.130563082
0.15013911  0.16324703 0.198352738 0.11461482 0.02833369 0.049192647 0.2350460795 -0.1180930425 -0.058935749 0.06771839 0.08922126 0.09442689 -0.013366452 0.204392203
0.11152528 0.06720933 0.102776274 0.05885116 0.09016581 0.341131358 -0.0989328623 -0.0892845392 0.009527345 0.02895840 -0.08180822 -0.07527491 0.114449871 0.006591626
0.22769719 0.12013006 0.178964881 0.00618928 0.08080766 0.194609296 -0.0651045775 -0.0009858756 0.034095234 0.11055805 0.10889168 0.06091423 0.007841388 -0.089447812

NoaAwN =

TTwoTRR
[
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Table 5.5: Estimated parameters of ZIP-PINAR(7)7 with p’= (3,4,4,2,7,6,6)

Estimated parameters
v=1 v=2 v=3 v=4 v=5 v=6 v=7

ai(v) 0.048 0.000 0.000 0.272 0.116 0.023 0.158
as(v) 0.332 0.000 0.147 0.360 0.097 0.000 0.071
as(v) 0.160 0.053 0.066 — 0.318 0.000 0.155
as(v) ~ 0.136 0.071 — 0.140 0.055 0.000
as(v) - - - — 0.045 0.109 0.139
ag(v) - - - — 0.108 0.301 0.165
ar(v) - - - — 0.284 - -
ro 0.000 0.144 0.839 0.042 0.762 0.000 0.400
beta 0.145 0.206 0.000 0.000 1 0.015 0.000

to well adjust the data and capture its main dynamics. This estimated model can be very useful
in providing reliable forecast.

All these empirical analyses, i.e., the values for the periodic ACF and PACF of the residuals
(Tables 5.6 and 5.7) and the sample ACF (Table 5.6) support the fact that the proposed model
with ZIP distributed innovations is a good choice for modeling such data.

ACF of TS related to the Residuals

ACF
0.6 0.8 1.0

0.4

0.2

0.0

Figure 5.6: The sample ACF of the residuals after fitted the ZIP-PINAR(7); model with
P = (3,4,4,2,7,6,6) to the daily number of visits to emergency service with the values of
the concentrations of PM; as covariates.

8 Conclusions

The ZIP-PINAR(p)s model and some of its main properties were introduced in this paper. The
quasi-maximum likelihood method for estimating the parameters of the model, namely QML,
was proposed. The asymptotic properties of the estimators were presented. A simulation study
was carried out to investigate their finite sample performances for standard sample sizes. The
results corroborated the asymptotic theory. The QML methods even for a small sample size
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Table 5.6: PeACF of residuals after fitted the ZIP-PINAR(7); model with = (3,4, 4,2,7,6,6) to

the series of the number of visits to emergency service.

PeACF of residuals

Season h =1 h =2 h=3 h =4 h =5 h =6 h =7 h =8 h =9 h =10 h =11 h =12 h =13 h=14

v=1 -0,13872 -0,14264 -0,10767 0,067104 0,069014 0,103165 -0,00765 -0,03151 -0,02032 -0,10681 0,002484 0,072219 -0,00405 -0,0721
v=2 -0,05459 -0,06207 -0,06802 -0,00629 0,12804 0,024868 0,005328 0,096429 0,003884 0,017753 -0,05418 0,09729 0,093409 0,135216
v=3 -0,10345 0,020297 -0,02546 -0,05584 0,033175 0,052987 0,006162 0,189072 -0,10731 -0,12561 0,032689 -0,02284 -0,1034 0,113723
v=4 -0,09099 -0,06911 -0,07765 0,079055 0,045033 -0,08591 0,062069 -0,21126 -0,03547 0,059288 0,003747 0,06726 0,195332 0,171328
v=5 -0,03818 0,073125 -0,13608 -0,04929 0,04889 -0,024 -0,02628 -0,22059 0,020241 0,051603 0,059536 -0,03556 -0,01482 0,05926
v =6 0,000795 -0,00361 -0,02095 -0,00833 0,021793 0,085469 -0,04997 -0,01727 0,047925 0,069993 -0,04227 -0,04529 0,071884 -0,06013
v=7 0,06592 -0,02829 0,020397 -0,05313 -0,05074 0,037545 -0,07353 -0,05516 -0,05037 0,056968 0,083343 0,008234 -0,0151 -0,05566

) . . T
Table 5.7: PePACF of the residuals after fitted the ZIP-PINAR(7); model with 5 =
(3,4,4,2,7,6,6) to the series of the number of visits to emergency service.
Sample periodic PACF of the residuals

Season h=1 h=2 h =3 h=4 h=5 h =6 h =7 h =8 h=9 h =10 h=11 h =12 h =13 h =14
v=1 -0,13872 -0,13509 -0,11341 0,066821 0,075625 0,097262 0,004862 -0,0234 -0,02853 -0,11995 -0,03287 0,121542 -0,02403 -0,09575
v=2 -0,06459 -0,07043 -0,07365 -0,01639 0,13501 0,039571 0,022706 0,113405 0,009563 0,022045 -0,0466 0,084773 0,156237 0,149119
v=3 -0,10345 0,014751 -0,03033 -0,06069 0,032407 0,06952 0,010327 0,2054 -0,07636 -0,13557 0,040595 -0,0399  -0,1099 0,153048
v=4 -0,09099 -0,07927 -0,08069 0,061655 0,020594 -0,09074 0,080279 -0,19156 -0,03544 0,060926 -0,00735 0,068651 0,214626 0,184618
v=5 -0,03818 0,069993 -0,13256 -0,06202 0,038086 -0,03948 -0,03972 -0,20753 0,00458 0,026771 0,064771 0,00769 0,006481 0,051483
v=6  0,000795 -0,00358 -0,02146 -0,01084 0,02134 0,088929 -0,05323 -0,0122 0,048017 0,077818 -0,02621 -0,05001 0,074446 -0,06989
v =7 0,06592 -0,02841 0,019618 -0,04841 -0,05871 0,033649 -0,08085 -0,05338 -0,04844 0,059947 0,091004 0,029828 -0,00597 -0,07398

(n = 50), showed good performance when analyzed the bias and the MSE for each estimate.
The usefulness of the proposed model was verified by an application to the time series of counts
of the daily number of visits of people with respiratory problems (International Classification of
Diseases ICD-10) in the hospital emergency service of the public health care system of the
region of Vitoria-ES. The ZIP-PINAR(7)7; model with 7 = (3,4,4,2,7,6,6) was fitted to the
real data. The adequacy of the fitted model was assessed through residual analyses. In this
context, the ZIP-PINAR(7); with o = (3,4,4,2,7,6,6) represents a good choice to model this

data set.
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Chapter 6

Conclusions and perspectives

In this work, we were interested in the extension of periodic models for counting time series.
The contributions of this thesis were presented in four articles.

First, we proposed the PINAR(1, 15) model, mainly motivated by the analysis of the time series
of the number of people who received antibiotics for the treatment of respiratory diseases. As
the respiratory disease is strongly correlated with air pollution levels and climatic conditions
(Oudin et al. (2017), Caillaud et al. (2018)), the correlation structure of the daily number series
of people who received antibiotics showed, among other phenomena, periodicity, and season-
ality, what is often observed in series of daily average concentrations of atmospheric pollutants
(Hies et al. (2000)). We briefly presented some properties of the PINAR(1, 15) model, such as
existence and unigueness, stationarity conditions, and the mean of the process. The quasi-
maximum likelihood method was used to estimate the parameters of the model. A section was
devoted to a simulation study. For different sample sizes, the performance of the estimator was
investigated, and the empirical results indicated that the method provided accurate estimates
regarding the bias and the mean square error of the estimates of the parameters. We obtained
a good fit with the application of the model to the real data.

Next, we studied the mathematical properties of the process described by the PINAR(1, 15)
model. We presented the scalar and matrix representation of the process and, with this, we
were able to demonstrate its conditions of existence, uniqueness, and stationarity. For Poisson
distributed innovations, we discussed the marginal distribution of the process and, under certain
conditions, we found that it is also Poisson distributed. The marginal and joint conditional
probability distributions of the process were presented for the cases of Poisson and Geometric
distributed innovations. To estimate the parameters of the model, we proposed the methods
of conditional least squares (CLS), moment-based method (Yule-Walker) and quasi-maximum
likelihood (QML). We demonstrated that the estimators were consistent and had asymptotic
normality. Then a comprehensive simulation study with finite samples was conducted, and
we were able to prove the consistency of our results. We presented a section for forecasting
purposes. Finally, an application on health data was conducted. The PINAR(1,1g) proved to
be very useful for making reliable forecasts.
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We then proposed the PINAR(p)s model for count time series with periodic autocorrelation
structure with order larger than or equal to 1. The statistical properties of the model, such as
mean, variance, marginal and joint distributions were also discussed. We proposed the CLS,
Yule-Walker and QML methods to estimate the model parameters. Under some hypotheses,
we showed that the estimators were consistent and had asymptotic normality. Their perfor-
mances were investigated through Monte Carlo simulations, whose empirical results indicated
that estimates were accurate. The model effectively adjusted the daily number of dispensing
medications for the treatment of respiratory disease (asthma).

Thus, a final aspect of this work was to focus on the extension of PINAR(p) s model with ZIP dis-
tributed innovations, and also on the use of explanatory covariates. Some statistical properties
and the probability of transition between the states of the process were calculated, and then the
QML method was proposed for the estimation of the parameters of the model. Finally, we ap-
plied the model to the series of health data with air pollutants as explanatory covariates.

This research together with the real data set used lead to several promising research lines that
can be pursued in the future, such as, in the time domain, to extend the PINAR(p)s model
by proposing new distributions of probability for the innovations; to explore the statistical and
mathematical properties of the ZIP-PINAR(p)s model and develop a general model that con-
siders the inflation or deflation of zeros or any other specific value; to investigate innovative and
coherent forecasting methods to periodically correlated integer-valued series; to fit the PINAR
model to incomplete time series, under the effect or not of aberrant observations, through the
development of imputation method to cyclostationary count time series with missing data and
the development of robust estimators for the parameters of the model, respectively; to propose
an extension of PINAR(p)s for multivariate and spacial-time count series modeling among oth-
ers. All these proposed models and their parameter estimation methods can be studied in the
frequency domain approach, which is also an interesting research line from the theoretical and
applied point of view.
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Appendix A

Co-authored papers

This Section presents additional papers that | have also worked on during my PhD studies. In
addition to my PhD supervisors, other collaborators in Brazil and elsewhere were involved in
these papers. My contributions in these works are mainly related to the simulation and applied
exercises. Apart from my contributions in the papers below, the experience that | acquired
greatly contributed to the development of my thesis because it allowed me to work with a
multidisciplinary team. In addition, this experience developed my skills in the analysis of real
data, which are also related to air quality control variables, observed in the Greater Vitoria
region.

These papers are listed below.
A.1 On generalized additive models with dependent time series covariates;

A.2 Management of air quality monitoring networks using robust principal component analy-
sis;

A.3 Parameters influencing population annoyance due to air pollution;
A.4 Deconstruction of annoyance due to air pollution by multiple correspondence analyses;

A.5 Spatial and temporal analysis of the effect of air pollution on children’s health.
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1 On generalized additive models with dependent time series co-
variates

Some properties of the GAM-PCA-VAR model are discussed theoretically and verified by sim-
ulation in this paper. A real data set is also analyzed with the aim to describe the association
between respiratory disease and air pollution concentrations. A hybrid called GAM-PCA-VAR
model composed by three statistical tools, the VAR model, PCA and the GAM, with Poisson
marginal distribution, was developed. A three-stage estimation method was proposed and
studied by simulation for some examples. A real data application was conducted to describe
the dependence between the number of hospital admissions for respiratory diseases and air
pollutant covariates.

This is a published book chapter of Time Series Analysis and Forecasting, Springer, DOI
10.1007/978-3-319-96944-2. ISBN 9783319969442 (on-line) and 9783319969435 (print).
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On generalized additive models with dependent
time series covariates
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Abstract. The generalized additive model (GAM) is a standard sta-
tistical methodology and is frequently used in various fields of applied
data analysis where the response variable is non-normal, e.g., integer
valued, and the explanatory variables are continuous, typically normally
distributed. Standard assumptions of this model, among others, are that
the explanatory variables are independent and identically distributed
vectors which are not multicollinear. To handle the multicollinearity and
serial dependence together a new hybrid model, called GAM-PCA-VAR
model, was proposed in [17] which is the combination of GAM with
the principal component analysis (PCA) and the vector autoregressive
(VAR) model. In this paper, some properties of the GAM-PCA-VAR
model are discussed theoretically and verified by simulation. A real data
set is also analysed with the aim to describe the association between
respiratory disease and air pollution concentrations.

Keywords: air pollution, generalized additive model, multicollinearity,
principal component analysis, time series, vector autoregressive model

1 Introduction

In the recent literature of time series, there has been an outstanding growth
in models proposed for data that do not satisfy the Gaussian assumption. This
is mainly the case when the response variable under study is a count series
or an integer valued series. Procedures developed to analyse this kind of data
comprises, for example, observation driven models, see [3] and [6], integer valued
autoregressive (INAR) processes, see [1] and [2], or non-Gaussian state space
models, see [8] and [10].

This paper is based on the talk “An application of the GAM-PCA-VAR model to
respiratory disease and air pollution data” given by the first author.



Particularly in health and environmental studies, where the response variable
is typically a count time series, the generalized additive model (GAM) has been
widely used to associate the dependent series, such as the number of respiratory
or cardiovascular diseases to some pollutant or climate variables, see, for exam-
ple, [5], [13], [14], [16], [17] and [18] among others. Therefore, in general, the
researches related to the study of the association between pollution and adverse
health effects usually consider only one pollutant. This simple model choice may
be due to the fact that the pollutants are linearly time correlated variables, see
the discussion and references in the recent paper [17].

Recently, it has become common practice to use principal component analysis
(PCA) in regression models to reduce the dimensionality of an independent set
of data, especially the pollutants, which in some instances can include a large
number of variables. The PCA is highly indicated to this purpose, as it can
handle the multicollinearity problem that can cause biased regression estimates,
see, for example, [21].

Nevertheless, use of PCA in the time series context can bring some mis-
specifications in the fit of the GAM model, as this technique requires that the
data should be independent. This problem arises due to the fact that the princi-
pal components are linear combinations of the variables. In this context, as the
covariates are time series, the autocorrelation present in the observations are
promptly transferred to the principal components, see [20].

One solution to this issue was recently proposed by [17], see, also, [18], who
introduced a model which combines GAM, PCA and the vector autoregressive
(VAR) process. The authors suggest to apply the VAR model to the covariates, in
order to eliminate the serial correlation and produce white noise processes, which
in turn will be used to build the principal components in the PCA. The new
variables obtained in the PCA are finally used as covariates in the GAM model,
originating the so called GAM-PCA-VAR model. In their work, the authors have
focused on presenting the model and showing its superiority compared to the
sole use of GAM or the GAM-PCA procedures, but have not deepened on the
theoretical properties of the model.

Thus, to cover this gap, this work aims to state and prove some properties
of the GAM-PCA-VAR model, as well as to perform some simulation study to
check the results for small samples.

The paper is organized as follows. Section 2 presents the main statistical
model, GAM-PCA-VAR, addressed here and its related models as GAM, PCA
and VAR, in some detail. In Section 3 the theoretical results are proved for the
main model. Section 4 discusses the simulation results and Section 5 is devoted
to the analysis of a real data set. Section 6 concludes the work.

2 The GAM-PCA-VAR model

The generalized additive model (GAM), see [11] and [19], with a Poisson marginal
distribution is typically used to relate a non-negative integer valued response
variable Y with a set of covariates or explanatory variables X1,...,X,. In GAM



the expected value ;= E(Y") of the response variable depends on the covariates
via the formula

9() = o + > £i(X0),

where g denotes the link function, Sy is the intercept parameter and f;’s are func-
tions with a specified parametric form, e.g., they are linear functions f;(x) = B;z,
Bi € R,i=1,...,p, or non-parametric, e.g., they are simple smoothing functions
like splines or moving averages. The unknown parameters Sy and f;, i =1,...,p
can be estimated by various algorithms, e.g., backfitting or restricted maximum
likelihood (REML) method. However, if the data observed for variables Y and
X;,i=1,...,p, form a time series the observations cannot be considered as a
result of independent experiments and the covariates present strong interdepen-
dence, e.g., multicollinearity or concurvity, the standard fitting methods result
in remarkable bias, see, e.g., [7] and [17].

Let {Y;} = {Y;}+ez be a count time series, i.e., it is composed of non-negative
integer valued random variables. We suppose that the explanatory variables form
a zero-mean stationary vector time series {X,;} = { X} }1ez of dimension p, i.e.,
X = (Xq¢, - 7Xpt)T where T denotes the transpose, with the covariance matrix
Yx = E(X;X/"). Let F; denote the o-algebra which contains the available
information up to time ¢ for all ¢ € Z from the point of view of the response
variable, e.g., X; is F;_i-measurable. The GAM-PCA-VAR model is introduced
in [17] as a probabilistic latent variable model. In this paper, we define this model
in a more general form as

Yy | Fe—1 ~ Poi(u), (1)
X, =90X, 1 +AZ; (2)

with link

9lpe) = Bo+ D > Fii(Zis—j) (3)

i=1 j=0

where Poi(-) denotes the Poisson distribution, the latent variables {Z;}, Z; =
(Zity- -y Zp) T, form a Gaussian vector white noise process of dimension p with
diagonal variance matrix A = diag{\i,..., A}, where Ay > Ao > ... >\, A s
an orthogonal matrix of dimension p X p, @ is a matrix of dimension p X p, g is a
known link function, 8y denotes the intercept, and f;;’s are unknown functions.
For a zero-mean Gaussian vector white noise process { Z; } with covariance matrix
X we shall use the notation {Z;} ~ GWN(X). See also [4, Definition 11.1.2].
Clearly, for all ¢, the univariate time series {Z;} ~ GWN();), and {Z;;} is
mutually independent from {Z};} for all j # i. We assume that all the eigenvalues
of @ are less than 1 in modulus which implies that equation (2) has a unique
stationary causal solution. In the case of a Poisson distributed response variable
the two widely used link functions are the identity link, g(z) = z, and the
canonical logarithmic link, g(z) = logz. The set (8o, {fi;}, A, A, P) forms the
parameters of the GAM-PCA-VAR model to be estimated. We remark that



in the case of canonical logarithmic link function no additional assumption is
needed for the parameters, while in the case of identity link function all the
parameters in equation (3), i.e., 8o and f;;’s, have to be non-negative. It should
be also emphasized that the underlying intensity process {u:} of {Y;} is also a
time series with a complex dependence structure, and pu; is F;_i-measurable for
all t € Z. One can see that the time series {X;} of covariates depends on {Z;}
by formula X; = Y727 ®*AZ,_y, for all ¢, see [4, Example 11.3.1].

The dependence of the response time series {Y;} from the explanatory vector
time series {X;} in the GAM-PCA-VAR model can be described by three trans-
formation steps. Clearly, by equation (2), the latent variable can be expressed
as Z, = ATU,, where U; := X, — $X,_; for all t. Thus, as the first step, the
intermediate vector times series {U;} is derived from filtering { X} by a VAR(1)
filter. One can see that {U;} ~ GWN(Xy) where Yy := AAAT. Then, as the
second step, the latent vector time series {Z;} as principal component (PC) vec-
tor is derived by principal component transformation of the intermediate vector
white noise {U;}. The transformation matrix of the PCA is given by the spectral
decomposition of Xyr. Finally, as the third step, the standard GAM with link
(3) is fitting for the response time series {Y;} using the latent vector time series
{Z,;}. The impact of the VAR(1) filter in the first step is to eliminate the serial
correlation present in the original covariates. On the other hand, the impact of
the PCA in the second step is to eliminate the correlation in the state space of
the original covariates. Hence, the result of these two consecutive transforma-
tions is the latent vector time series {Z;} whose components, Z;, i = 1,...,p,
t € Z, are independent Gaussian variables both in space and time. In the case
of logarithmic link function, large positive values in a coordinate of the latent
variable indicate locally high influence according to this latent factor. On the
contrary, large negative values indicate negligible influence on the response, see,
for example, [20]. The order of models in the acronym GAM-PCA-VAR corre-
sponds to these steps starting with the third one and finishing with the first
one.

The GAM-PCA-VAR model contains several submodels with particular de-
pendence structure. If @ = 0 then the VAR equation (2) is simplified to a prin-
cipal component transformation. In this case, we suppose that there is no serial
correlation and we only have to handle the correlation in the state space of co-
variates. We have two transformation steps: PCA and GAM. This kind of models
is called GAM-PCA model that is intensively studied nowadays, see, e.g., [15]
and [22]. Beside the full PCA when all PCs are involved into the GAM, we can
fit a restricted PCA model by defining f;; = 0 for all ¢ > r and j > 0 where
r < p. In this case, the first rth PCs are applied as covariates in the GAM step.
If the matrices in VAR(1) model (2) have the following block structures

_[@,0 4, 0
G LA

where the eigenvalues of the ¢ x ¢ matrix @, are less than one in modulus, A4, is
an orthogonal matrix of dimension ¢x ¢ (¢ < p), and f;1(2) = B;z with 8; € R for



i=1,...,7 (r <q), fi is a general smoothing function for i = ¢+1,...,p, fi; =
0 otherwise, then we obtain the model that was studied in [17] and applied in the
data analysis of Section 5. In this model it is supposed that the set of covariates
can be partitioned into two sets: (Xi,...,X,) are normal covariates, e.g., the
pollutant variables in the terminology of Section 5, while (Xg41,...,X,) are
so-called confounding variables as trend, seasonality, etc. The normal covariates
satisfy a ¢g-dimensional VAR(1) model, however, instead of the all coordinates
of the innovation, only its first rth PCs are involved into the GAM taking into
consideration that the covariates present strong inter-correlation. Finally, we
note that our model can be further generalized by replacing equation (2) by
the more general VARMA or VARIMA or their seasonal variants (SVARMA or
SVARIMA) models.

Since the latent variables {Z;} form a Gaussian vector time series, given a
sample (X1,Y1),..., (X, Ys), the log-likelihood can be expressed in an explicit
form, see [17] for a particular case. Because this log-likelihood is rather com-
plicated a three-stage estimation method is proposed. Firstly, VAR(1) model is
fitted to the original covariates by applying standard time series techniques.
Secondly, PCA is applied for the residuals defined by Z, = X, — $Xt,1,
t = 2,...,n, where ® denotes the estimated autoregressive coefficient matrix
in the fitted VAR(1) model. Thirdly, GAM model is fitted using the PCs. The
approach discussed above is similar to the principal component regression, see,
e.g., [12, Chapter 8|, and it can be considered as a three-stage non-linear re-
gression method.

The first two steps of the above proposed parameter estimation method for
GAM-PCA-VAR model can be interpreted as consecutive orthogonalizations,
firstly in time and then in the state space of covariates. In [17, Remark] we
argued that the order of VAR filter and PCA can not be interchanged because the
orthogonalization in the state space does not eliminate the serial correlation and,
as the necessary next step, the orthogonalization in time by VAR filter bring back
the inter-correlation between the covariates. In what follows, we demonstrate this
phenomena by giving a simple example. Let { X} be a zero-mean causal VAR(1)
process defined by

X =UX; 1+ Wy,

where {W;} is a zero-mean vector white noise process with variance matrix Xy .
Suppose that the variance matrix X'y of {X;} is diagonal, i.e., the coordinates
of {X;} can be interpreted as PCs after PCA. Then Xy is not necessarily
a diagonal matrix, which implies that a VAR(1) filter may result in an inter-
correlated white noise. Namely, consider the following parameters Sy = AAAT
and ¥ = ASAT, where A and S are diagonal matrices and A is an orthogonal
matrix. In other words, we suppose that the orthogonal matrix A in the spectral
decomposition of Xy, diagonalizes the autoregressive coefficient matrix as well.
Then, we have, by formula (11.1.13) in [4], that

. N i A . Ai
Ix =Y Woy@') =) ASASTAT = Adlag{l - Sg}AT.

§=0 j=0



Let 02 > max,{\;} arbitrary and define s; := /1 — \; /0?2 for all i. Clearly, ¥ is a
causal matrix since all its eigenvalues are less than 1 in modulus and Xx = 21,
i.e., the coordinates of {X;} are uncorrelated. However, the innovation variance
matrix Xy can be arbitrary proving that the application of VAR filter for a non-
intercorrelated vector time series can give inter-correlated vector white noise in
its coordinates.

Now, we present some particular examples of GAM-PCA-VAR models.

Ezample 1. One of the simplest GAM-PCA-VAR models is the model with di-
mension p = 1 and log-linear link function. In this case, there is only one covariate
{X:}, and the VAR equation (2) is an AR(1) model

X =Xy 1+ Zy, (4)

where |¢| < 1 which guarantees the existence of a unique stationary causal
solution, {Z;} ~ GWN(A), A > 0. We remark that A = 1 in equation (2) in
order for the model to be identifiable. The link is log-linear expressed as

log ps = Bo + P12 (5)

The parameter set of this model is (By, 31, A, ¢) with parameter space R? x R x
(=1, 1). In this model, there is no dimension reduction. Clearly, Z; = X; — X1,
thus the response depends on the covariate through the link

log ptx = 70 + 71Xt + 72 X1, (6)

where there is a one-to-one correspondence between the parameter sets (5o, 81, @)
and (y0,71,72) defined by the equations v = Bo, 71 = 51 and 2 = —¢
provided ¢ # 0. However, if we fit the standard GAM by using the link (6) with
covariates X; and X; 1 at time ¢, we take no count of the interdependence in
time series {X;} which can result in biased and inconsistent estimators of the
GAM parameters.

Ezample 2. Define a particular two-dimensional (p = 2) GAM-PCA-VAR model
with logarithmic link function in the following way. The two-dimensional covari-
ate vector process {X;}, X; = (X11, Xot) |, satisfies the VAR(1) model

X1t _ ¢1 0] [Xig—1) n cosp —sinp| |2y,

Xoy 0 @2 [Xow-1) sinp cosy | |Zot|’
where |¢1| < 1, |¢2| < 1 and {Z;;} ~ GWN();) with A; > 0, ¢ = 1,2, which are
independent from each other. Note that the set of two-dimensional orthogonal

matrices, A, can be parametrized by an angle parameter ¢ € [0, 27). We assume
that the link is

log pu = Bo + P1Z1s.
The parameter set of this model is (8o, 51, @, A1, A2, 1, P2) and the parameter
space is R? x [0,27) x R2 x (—1,1)%. Note that, in this model, there is a PCA
step as a dimension reduction since only the first coordinate {Z3,} of the vector



innovation is involved into the GAM as covariate. One can see that the response
depends on the covariates through the link

log piy = vo + 71 X1t + 72 X2t + 13 X10—1) + 72 X20-1);

where 70 = Bo, 11 = Bicosp, vo = Pising, 73 = —Prdr1cosy and vy =
—[B1¢2 sin . Thus, the intensity process {u:} depends on all coordinates of X
and X;_1. Clearly, there is a one-to-one correspondence between the two param-

eter sets (607ﬁ17§07¢1a¢2) and (70771772773774)'

Ezample 3. A seasonal one-dimensional GAM-PCA-VAR model with linear link
function can be defined in the following way. Suppose that the one-dimensional
covariate process {X,} satisfies the SAR,(1) model:

Xy = o Xy s + Zy,

where |¢| < 1, {Z;} ~ GWN(A) with A > 0 and s € Z denotes the seasonal
period. The link is linear and is given by

pe = Po+ Brf(Zy),

where f : R — Ry is a known function and fy,3; € Ry are parameters. The
parameter set of this model is (8o, 81, A, ¢) with parameter space R3 x (-1, 1).
The response variable depends on the original covariates through the link

pe = Po + Brf( Xy — 0 Xy_s).

If the function f is sufficiently smooth we have by approximation f(X;—¢X;_s) ~
f(Xe) — of' (X)X, and then

e =0 +y1f1(Xe) + v2 fo(Xe, Xe—s), (7)

where f1, fo are known functions and vy = By, 71 = $1 and v = —B1¢. Thus, the
response depends on the original covariate and its s-step lagged series through
the standard GAM. However, the covariates in equation (7) are clearly depen-
dent.

3 Theoretical results

In this section, we prove some theoretical results for particular classes of GAM-
PCA-VAR models. Consider the log-linear model defined by the link

p [oe]
log pur = fo + Z Z BiiZi(t—j), (8)
i=1 j=0

where B8o,8;; € R, 4 = 1,...,p, j € Zy. The first proposition is about the
existence of log-linear GAM-PCA-VAR models.



Proposition 1. Suppose that o := Y27 | \i Y72 3; is finite. Then the GAM-
PCA-VAR model with log-linear link (8) has solution {(Yi, X:)} which is a
strictly stationary process and E(Y;) = E(us) = exp(Bo + 02/2) for all t € Z.

Proof. By conditioning we have that

E(Y;) = E(E(Y; | Fi-1)) = E(ut) = E(exp(log p11)) = exp(Bo +02/2)  (9)

is finite since, by equation (8), logus ~ N(Bo,0?), ie., pus has a lognormal
distribution, and the moment generating function of & ~ N(By,0?) is given by
Me(t) := E(exp(t€)) = exp(Bot+ (ot)?/2). Thus, the non-negative integer valued
random variable Y; is finite with probability one for all ¢ € Z. The vector time
series {Z;} forms a Gaussian white noise. Hence it is strictly stationary process
with backshift operator B(Z;) = Z,_; for all t € Z. Since both stochastic
processes {Y;} and { X} depend on {Z;} through time-invariant functionals, we
have the strict stationarity of {(¥;, X;)} and B(X;) = X;_1, B(Y}) = Y;_; for
allt € Z. a

In the next proposition, we prove that all moments of the log-linear GAM-
PCA-VAR model are finite.

Proposition 2. Suppose that o2 defined in Proposition 1 is finite. Then all
moments of the stochastic process {(Y:, X¢)} are finite. In particular, we have,
forallt € Z,

Var(Y;) = exp(26o + 02)(exp(0?) — 1 + exp(—Bo — 0%/2)),
Var(u;) = exp(28y + 02)(exp(c?) — 1).
Proof. Let r € N. Define the rth factorial of a non-negative integer k as k"l :=

E(k—1)---(k—r+1) and let £ := 1. For the rth factorial moment of V; we
have by conditioning that

B =D KPP, = k) =B Y KIIP(Y = k| Fiy)
k=0 k=0

g k
:EZ (k/itr)!e_‘“ =E(py)

k=r

for all t € Z. Similarly to (9), we have that the factorial moments are finite, since

E(Y") = E(u)) = E(exp(rlog ) = exp{Bor + (or)%/2}. (10)

Since the higher order moments can be expressed by the factorial moment via
the formula

E(Y") =) S(r)EYD),
j=0
where S(r,j)’s denotes Stirling numbers of the second kind, the finiteness of
all higher order moments follows easily. Since {X;} is a Gaussian process all



its moments are finite. Finally, the existence of mixed moments follows by the
Cauchy-Schwarz inequality.
From Equation (10), we have

Var(u;) =E(u7) — E*(1e) = exp(260 + (20)/2) — exp(260 + 0°)
=exp(2fo + 0?)(exp(a?) — 1).

Finally, the formula for Var(Y;) can be derived by
Var(Y;) = E(Var(Y; | Fi—1)) + Var(E(Y; | Fio1)) = E(ue) + Var(ue). O

The existence of all moments for the log-linear GAM-PCA-VAR process is
to be compared with the same result for the integer valued GARCH, so-called
INGARCH, process, see [9, Proposition 6]. This implies that the log-linear GAM-
PCA-VAR process possesses second and higher order structures, e.g., the auto-
correlation function, the spectral density function, the cumulants and the higher
order spectra exist. Let py denotes the autocorrelation function of the time series

{vi}.

Proposition 3. For the auto- and cross-correlation functions of the GAM-
PCA-VAR process {(Yi, X¢)} with intensity process {u:}, we have py(h) =
ey p(h), pu(h) = cup(h) and py,(h) = cyp(h) where

P oo
p(h)i=exp | DN Bigampbiy | =1 heZ\{o},
=1 j=0

and the constants cy,c,,cy, are defined by

cy = (exp(0?)—=1+exp(—fo—02/2)) 7", ¢ = (exp(0®)=1)"",  cyu = /oy ey

Moreover, Cov(Yiyn, X¢) = Cov(pirn, Xt) = E(YeynXt) = E(uernXt) = C(h)
with

S0 PFAN o0 Bryk) if k>0,

Yo @ PANCBy) if h <0, (11)

C(h) := exp(Bo + 0%/2) x {

where X := (A1,...,0) ", By == (Bij,---,Bpj) s j € Zy, and o denotes the
entrywise (Hadamard) product.

Proof. Let h € N. One can see that for the intensity process we have psyp =

ugi) ugi) where

p h p
1 2
log 115y = fo + S Bin-iZiwr),  log iy = S Bigan Zigi-i)-

i=1 j=1 i=1 j=0



Clearly, ,ug,ll) is independent of F;_; and Y;, while ugi) is F;_1-measurable. Hence,

we have by conditioning that
E(YienYy) =E(ViE(Yign | Ferno1)) = E(uens) = E(ul)) niy Vo)
=E(uly) ) E(uy B(Y | Fim1)) = E(ui) VE(ugy 1) = Epesn )

since u; is independent of uth). This gives the result for h > 0. On the other
hand, for all A > 0, again by conditioning, E(Y;yput) = E(pesnpt). Thus

Cov(Yiqn, Y1) = Cov(pusn, ) = Cov(Yeyn, ), h € Z\{0}.

Since D ) )
E(pesnpte) = E(uly) 1) 1) = E(ul)VE(uly e)

similarly to equation (9) we have

=1

E(pesnine) =exp | 260 + = ZA Zﬁ +Z Biti4n) + Bij)?
7=0

P 00
=oxp [ Y N BigamBis | Elhesn)Em).
i=1 j=0

Thus, the first part of the proposition follows by Proposition 2.
Next we prove the formula (11) for the cross-correlations of response and
covariate variables. Clearly, by conditioning, E(Y;y1nX:) = E(ut+nXe) for all

h € Z. On the other hand, for all t € Z, h € Z,, we have X,y = X\ + XV
where

x\ Zqﬁh “AZipr, X =) 0MRAZ .
k=1 k=0
One can see that Xt(}ll) is independent of F;_1 and Y;, while Xt(Z) is Fi_1-
measurable. Thus, we have that
E(XpinYs) =E((X})) + X)) = E(X,)E(V:) + E(X [ E(Y: | Fioy))
—E(X[3))E(ue) + E(X[3 o) = E(Xnpie).
Hence E(YiyrnX:) = E(uernXy) for all h € Z and it is enough to compute the

Cross- correlation between {X;} and {y}. Let h > 0. For all ¢ € {1,...,p},
keZylet Ih = {1,...,p} x Z; \ ({,k + h) and define the random variables

log &1 := Bo + Z Bij Zi(t+n—j)s log nfyt = Be(k+h) Zo(i—)-
(4,5) €Lek

Then pgrp, = Efntt, where the factors in this decompostion are independent.
Since E(u1nXt) = > peo P*AE(ue+nZ;—1) and, using the fact that, for Z ~
N(0,)) and B € R, E(Zexp(BZ)) = BAexp(A3?/2), we have

E(uetnZei—)) = EERMER Zoi—1)) = EEIEMI Zor—k)) = E(tesn) Begern) Ae

we obtain the formula (11). The proof is similar for the case h < 0. a



Remark 1. 1t is easy to see that if §;; = Bf for all 7, j, then the function p is
given by p(h) = exp(3F_, MBI /(1= B2)) =1, h € Z. If B;’s are all positive then
p is positive everywhere and we have autocorrelation functions which are similar
to what is displayed in Figure 1. For the one-dimensional model in Example 1 we
have the cross-correlation function (CCF) C'(h) = exp(By + A\3?/2)\B1¢6~" for
h <0and C(h) =0 for h > 0. If $ > 0 then, according to positive or negative
(51, we obtain everywhere positive or negative CCFs. For example, see the CCFs
in Figure 2 between the response (Admissions) and pollutants CO, NOy that
are positive and the CCFs between the response (Admissions) and O3, SO2 that
are negative at every lag, respectively.

Consider another widely used link function, the linear one, and define the
linear GAM-PCA-VAR model by the link

P o)
pe=Bo+ Y Bijf(Ziu—p); (12)

i=1 j=0

where 8o, 8;; € Ry, i =1,...,p, j € Z, are parameters and f : R — Ry is a
known function, e.g., f(z) = exp(z). Let (x| A) denote the probability density
function of the normal distribution with mean 0 and variance A.

Proposition 4. Suppose that, for all i = 1,...,p, Z;C:o Bij < o0 and T; :=
7 f@)e(x | A)dz < oco. Then the GAM-PCA-VAR model with linear link
(12) has a strictly stationary solution {(Yy, Xt)}. Moreover, E(Y;) = E(u) =

Bo+ -y i Z]OO:O Bij-
Proof. The proof is similar to the proof of Proposition 1. O

Clearly, the assumptions of Proposition 4 do not necessarily garantee the
existence of higher order moments of linear GAM-PCA-VAR process. Indeed,
the rth order moment E(Y;") is finite if and only [~ f"(z)¢(z|A;)dz < oo for
all ¢ where r > 1.

4 Simulation study

In order to evaluate the effect on the parameter estimation of a GAM model in
the presence of temporal correlation in the covariate {X;}, a simulation study
was conducted. The data were generated according to the model discussed in
Example 1. Three estimation methods were considered: the standard GAM with
only one covariate where the estimated parameters were By and 81 (M1); the
standard GAM with two covariates, the original one and its 1-step lagged se-
ries, where the estimated parameters were 3y, 81, 82 and ¢ = —f35/51 (M2); the
full GAM-PCA-VAR model by the procedure described in Section 2 where all
parameters Sy, 81, ¢, A were estimated (M3).

For the model discussed in Example 1 the data were generated under Sy =
0.2, f1 = 1, A = 2 and three scenarios were considered as ¢ = —0.7,0.3,0.9 to



model strong negative, small positive and strong positive correlations, respec-
tively. In order to model the impact due to some unobservable variables, e.g.,
environmental ones in the context of the next section, independent A(0,0.1)
distributed random variables were added to the predictor of log u; for all t € Z.
The sample size n = 1000 and the number of Monte Carlo simulations was equal
to 100. The empirical values of mean, bias and mean square error (MSE) are
displayed in Table 1. All results were obtained by using R-code.

Table 1. Simulation results for model in Example 1

Estimation method ¢ Parameter Mean Bias MSE
M1: GAM with X, —0.7 60 =0.2 0.699 0.499 0.253

b61=1 0.507 -0.492 0.244
M2: GAM with X, X¢—1 Bo=0.2 0.204 0.004 0.001

B1=1 0.999 -0.001 0.0002
¢o=-07 -0.7 0 0.0001
M3: GAM-PCA-VAR Bo=0.2 0.205 0.005 0.001
f1=1 0.999 -0.001 0.0002
¢ =—0.7 -0.695 0.004 0.0005
A=2 2.003 0.003 0.008

M1: GAM with X, 0.3 Bo=0.2 0.302 0.102 0.012
B1=1 0.905 -0.095 0.009
M2: GAM with Xz, X¢—1 Bo=0.2 0.209 0.009 0.001

fr=1 0.998 -0.002 0.0002
¢ =023 0.3 0 0.0002
M3: GAM-PCA-VAR Bo=0.2 0.209 0.009 0.001
fr=1 0.999 -0.001 0.0002
¢ =03 0.306 0.006 0.0008
A=2 1.995 -0.005 0.009

ML: GAM with X; 0.9 Bo=0.2 1.002 0.802 0.651
Bi=1  0.191 -0.809 0.655

M2: GAM with X¢, X;1 Bo=02 02 0 0.001
B=1 1 0  0.0002
$=09 0899 -0.00l 0

M3: GAM-PCA-VAR Bo=0.2 0.203 0.003 0.001
Br=1 1 0 0.0002
$=09  0.899 -0.001 0.0001
A=2 2.007 0.007 0.0086

In the case of standard GAM estimation (M1) it can be seen that the es-
timate of 1 is heavily affected by the autocorrelation structure present in the
covariate, by presenting a negative bias which increases in absolute value as ||
increases. The estimated MSE also increases substantially with |¢|. On the other
hand, it can also be seen that the fitted standard GAM model tends to severely
overestimate [y. Contrarily, the estimation methods M2 and M3 work equally
well, the estimates of the parameters are very close to the true values with no-



ticeably small MSE. The undoubted advantage of method M3 against M2 is that
an AR(1) model is also fitted for the covariate where the innovation variance A
is estimated and which can be applied later in the prediction. In this procedure

firstly the covariate variable is predicted by equation (4) and then the response
variable is predicted by the GAM using the link (5).

5 Application to air pollution data

In this study, the number of hospital admissions (Admissions) for respiratory
diseases (RD) as response variable was obtained from the main childrens emer-
gency department in the Vitéria Metropolitan Area (called Hospital Infantil
Nossa Senhora da Gloria), ES, Brazil. The following atmospheric pollutants as
covariates were studied: particulate material (PM;g), sulphur dioxide (SO3), ni-
trogen dioxide (NO3), ozone (O3) and carbon monoxide (CO). For details, e.g.,
descriptive statistics and basic time series plots, see [17]. The data analysed in
this section can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

The graphs of the sampling functions of the autocorrelations and partial
autocorrelations in Figure 1 show that the series of the number of hospital ad-
missions for RD possesses seasonal behaviour, which was to be expected for
this phenomena. Another characteristic observed in the series was an apparently
weak stationarity. Similar graphs for the pollutant series can be found in [17].

P

Fig. 1. Sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the response variable.

Figure 2 shows the sample cross-correlation functions (CCF) between the
response and pollutant covariates. As we discussed in Remark 1 four CCF’s
among them present similar behaviour: the impact of pollutants CO and NOs is
positive while the impact of SO, and O3 are negative to the response variable
at every lag. This observation is consistent with the PCA result presented in
[17], see Table 5, where CO and NO; form a joint cluster for PC1. On the other
hand, all CCF’s possess seasonal behaviour as well.

Figure 3 shows the sample cross-correlation functions (CCF) between the
response variable and the first three PCs derived from applying PCA for the
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Fig. 2. Sample cross-correlation function (CCF) of the response and pollutant vari-
ables.

vector of pollutants. In Section 3.2 of [17], see Table 5 there, one can see that
the first three components correspond to 83.2% of the total variability. The
temporal behaviour of the PCs is also presented in the autocorrelation plots
of [17, Figure 4]. The autocorrelations and the cross-correlations displayed here
presented heavy seasonality as well. On the other hand, the shape of the CCF's
for the response and PCs can also be classifed into similar groups to the CCFs
in Figure 2. The CCF of PC1 is similar to the one of the PMyg. The CCF of
PC2 displays only negative correlations similar to SOs and Og, while the CCF
of PC3 (Figure 3) displays only positive correlations, see CO and NOs in Figure
2.

In order to filter the vigorous seasonality both in the response and pollu-
tant variables, seasonal ARMA filters with a 7-day period were applied. The
pollutant vector time series and the one-dimensional response time series were
filtered by SVAR7(1) and SARMA~(1,1) processes, respectively. The residuals
obtained by these filters indicate remaining significant correlations, see the CCF's
between these residuals in Figure 4. The significant cross-correlations and their
respective lags are presented in Table 2. Clearly, the correlations which belong
to the negative lags are spurious. However, the correlations which belong to the
positive lags measure the true impact of a covariate. For example, there are sig-



Fig. 3. Sample cross-correlation function (CCF) of the response and first three PCs.

nificant correlations at lag 2 for pollutants PMjg, NO2 and CO equally which
could mean that the influence of these pollutants to the response indicates 2
days delay. Contrarily, the influence of the pollutants SOy and Og presents far
delays.

Table 2. Significant cross-correlations and their respective lags between the response
and pollutants after the filtering

\ RD xS0, \ RDxNO
Lag | -19 -14 -6 12 23 [-12 2 4 14 22
Value|-0.063 -0.062 -0.042 -0.047 -0.051‘-0.044 -0.050 0.048 0.053 -0.044
| RDxPM10|  RDxCO | RDxOs
Lag [ 2 23 [-12 2 6 | 9 25
Value|-0.044 -0.043‘-0.053 -0.048 0.045‘0.054 -0.055

Figure 5 shows the sample CCF between the residuals of the response variable
and the first three PCs after the filtering. The significant cross-correlations and
its respective lags are presented in Table 3. It should be emphasized that there
are strong coincidences in the lags between Table 2 and 3. For example, the
lag 2 in PC1 corresponds to the pollutants PMjg, NOs and CO, the lag 6 in
PC1 corresponds to the pollutant CO, while lag 25 in PC1 corresponds to the
pollutant Os. The lag 12 in PC2 corresponds to the pollutant SO5. Finally, the
lag 14 corresponds to the pollutant NOy and the lag 23 to the pollutants SO2 and
NO;. These correspondences are compatible with the clustering derived in [17,
Table 7]. The fitted GAM-PCA-VAR model with its goodness-of-fit measures
are reported in [17] as well. We note that in this fitted model f;; = 0 was chosen
for all 7 > 0. In view of the above results the GAM-PCA-VAR model with link

p
log py = Bo + Z Z fii(Zig—5)

i=1j€e1;



Admissions & <o aami ssions & NO2

ACF
I I

F
0 0

M

IV A T/
I
|
b C

Admissions & SO2 Admissions & ©3

o
I

KF
o3

Q0 00 o

LT A T A 17}

06

Admissions & PM10
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variables after the filtering.

can also be a possible candidate, where Z; denotes the set of lags which belong
to the significant cross-correlation between the residuals of the response and the
ith PC. This model can be fitted by using the procedure described in Section 2.

il
Fig. 5. Sample cross-correlation function (CCF) between the response and PCs after
the filtering.




Table 3. Significant cross-correlations and their respective lags between the response
variable RD and PCs after the filtering

\ RDxPC1 \ RDxPC2 | RDxPC3
Lag | -4 -12 2 6 25| -5 -2 5 12 [ 1 14 23
Value|-0.051 -0.046 -0.057 0.046 0.043|-0.048 -0.046 0.048 -0.047|0.042 -0.078 -0.045

6 Conclusions

A hybrid called GAM-PCA-VAR model composed by three statistical tools, the
VAR model, PCA and the GAM, with Poisson marginal distribution, was devel-
oped in a more general framework than in [17]. A three-stage estimation method
was proposed and studied by simulation for some examples. Some theoretical
properties were also proved. The model was applied to describe the dependence
between the number of hospital admissions for respiratory diseases and air pol-
lutant covariates.

An extension of the proposed estimation method for the GAM-PCA-VAR
model by a variable selection procedure which ensures that only the significant
PCs with their respective lags are involved into the model will be pursed in
future works.
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2 Management of air quality monitoring networks using robust
principal component analysis

This article proposes a grouping methodology that applies robust PCA to identify air quality
monitoring stations which present similar behavior for any pollutant or meteorological measure.
To illustrate the usefulness of the proposed methodology, the robust PCA is applied to the
management of the automatic air quality monitoring network of the Greater Vitéria Region in
Brazil consists of 8 stations. It was found that four components could explain 84% of the total
variability and it is possible to create a group composed of at least two stations in each one
of the components. Therefore, the redundant stations can be installed in a new site in order
to expand the monitored area. This article proposed and applied a grouping methodology to
identify monitoring stations which present similar behavior for a given pollutant. As a case of
study, the AAQMN of GVR (Brazil) which monitors the PM;, pollutant was considered in order
to enable better management of the local monitoring network. The methodology proposed
consists of the application of robust principal component analysis and selecting the stations
which presented higher contributions to the selected PCs. Then, a decision rule is to be applied
to decide to keep the redundant station in the same place or to move it to a new area. In the
case study, it was found the occurrence of possible outliers observations during the descriptive
analysis of the the PM,, data which justified the comparison between the robust and standard
PCA. It was found that Ibes, Enseada do Suda,and Vitéria Centro presented similar behavior
and thus can be grouped. Also, that Jardim Camburi and Enseada do Suéa form another group.
Therefore, two stations, Ibes and Enseada do Sua, are the candidates to be moved to a new
site to enlarge the monitored area.

This paper was submitted to publication to the Environmental Monitoring and Assessment Jour-
nal.
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Abstract Air quality monitoring networks are essentials tools for monitoring air
pollutants and, therefore, are important to protect the public health and the en-
vironment from the adverse effects of air pollution. It is possible that two or more
stations monitor the same pollutant behavior. In this scenario, the equipment
must be reallocated in order to provide a better use of public resources and to
enlarge the monitored area. To identify which stations, the scientist may apply
the principal component analysis (PCA) as a grouping technique. PCA is a tool
comprehended by a set of linear combinations constructed to explain the variance-

covariance structure of the original data. It is well known that outliers affect the
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covariance structure of the dataset. Since the components are computed by us-
ing the covariance or the correlation matrix, the outliers also affect the properties
of the components. This article proposes a grouping methodology that applies
robust PCA to identify air quality monitoring stations which present similar be-
havior for any pollutant or meteorological measure. To illustrate the usefulness of
the proposed methodology, the robust PCA is applied to the management of the
automatic air quality monitoring network of the Greater Vitéria Region in Brazil
consists of 8 stations. It was found that four components could explain 84% of
the total variability and it is possible to create a group composed of at least two
stations in each one of the components. Therefore, the redundant stations can be

installed in a new site in order to expand the monitored area.

Keywords Air quality - Monitoring networks - Redundant stations - Robust

principal component analysis - Outliers

1 Introduction

The concern about air pollution problems has increased considerably in the last
50 years. Especially in developing countries, the air quality has been degraded as
a result of industrialization, population growth, high rates of urbanization, and
inadequate or nonexistent policies to control air pollution. The problems caused
by air pollution produce local, regional and global impacts. In this context, the
particulate matter (PM), especially the PM1o which has an aerodynamic diameter
less than 10 pum, is one of the most important pollutants with natural and anthro-
pogenic sources. Its adverse impacts on humans health may lead to an increment of

mortality rates, respiratory and cardiovascular problems for a shot and longterm
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exposure at high concentrations (Beelen et al. 2014; Cesaroni et al. 2014; Hoek
et al. 2013; Riickerl et al. 2011).

The main purpose of air quality management is to protect the public health
and the environment from the adverse effects of air pollution. An adequate control
of air quality involves a number of activities such as risk management, setting
standards for emissions and air quality, implementation of control measures and
risk communication (WHO 2005). The monitoring of air quality is essential for any
air pollution control policy. The realization of efficient management of air quality
is important for identifying and quantifying the pollutants found in a region and
their sources. This is accomplished by using stations to monitor different pollutants
according to the needs of the regions where the stations are installed.

In Brazil, although the limits for pollutants concentrations are clearly estab-
lished by the federal legislation CONAMA 003/90 (Conselho Nacional do Meio
Ambiente 1990), this decree does not contemplate guidelines on how to construct
or how to manage monitoring networks and, thus, entrusting this task to each
one of the 27 Federative Units. In this scenario, an actual overview of Brazil’s
air quality monitoring networks is given in a recent publication of the Brazilian
Ministry of the Environment. The publication highlights that only 12 out of 27
unity members have an operational air quality monitoring network.

It is desirable that only one monitoring station operates in an area character-
ized by a specific pattern of air pollution. Pires et al. (2008a) indicate the number
of stations that constitute a monitoring network must be optimized in order to
reduce costs and expenses. If there are stations with similar patterns of pollution
for a specific pollutant, the monitoring equipment could be properly relocated to

another area of interest.
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In this context, the principal component analysis has been successfully used in
air pollution area for managing a network of monitoring stations in several stud-
ies, for instance, Zhao et al. (2015) applied PCA to verify reduntant air quality
monitoring networks in Shanghai (China). Dominick et al. (2012) used PCA and
Cluster Analysis (CA) to check the pattern of behavior of the pollutants carbon
monoxide (CO), ozone (O3), particulate matter of diameter < 10um (PMig), sul-
fur dioxide (SOz2), nitric oxide (NO) and nitrogen dioxide (NO3) in five different
stations in Malaysia. Pires et al. (2009, 2008a,b) applied PCA to identify monitor-
ing sites with similar concentrations of pollutants for PMig, SO2, CO, NO2 and
O3 in the metropolitan area of Porto (Portugal). Lu et al. (2011) employed PCA
to the network management of the air quality in Hong Kong for the pollutants of
SO2, NO2 and Respirable Suspended Particulate (RSP). The authors found that
the monitoring stations located in nearby areas are characterized by the same spe-
cific air pollution characteristics and suggested that redundant equipment should
be transferred to other monitoring stations allowing for further enlargement of the
monitored area. Other studies include Lau et al. (2009) and Gramsch et al. (2006).

The application of PCA is not exclusive to the management of air quality
monitoring networks. Recently, Villas-Boas et al. (2017) used PCA and nonlinear
PCA to assess redundancy of the parameters and monitoring locations of Piabanha
water quality network in Brazil. Phung et al. (2015) applied PCA and other multi-
variate statistical tools to assess the river surface water quality and also redundant
monitoring stations in Can Tho City (Vietnam).

At this point, PCA is one of the main multivariate statistical techniques. The
goal of PCA is to explain the covariance structure of the data through auxiliary

variables called components. These components are constructed from linear com-
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binations of the original variables and are uncorrelated. Briefly, PCA calculates
the eigenvalues and eigenvectors of the covariance or correlation matrix. The main
application of PCA is to reduce the dimensionality of a correlated data matrix of
n dimension to a m dimension, where m < n. The reduction is performed so that
the new set of variables captures most of the variability contained in the original
data. A review of the fundamentals of PCA using R (R Core Team 2018) can be

found in Sergeant et al. (2016).

Besides the use for dimensionality reduction, the PCA technique can be used
for clustering of the variables of a data matrix. Cadima and Jolliffe (1995) discuss
the clustering of variables considering the eigenvectors of the PCA. The grouping of
variables consists of choosing variables that have similar values for its eigenvectors

in absolute value and are highly correlated to the principal component.

In the air pollution context, outliers may arise from different scenarios such
as human-made disasters and natural catastrophes, measurement errors due to
the failure of equipment or a sudden change in the atmosphere conditions, human
errors, among others. Another important situation is when the observed pollutant
is under control according to the legislation standards, but it may be considered

as an atypical observation in the statistical analysis.

Furthermore, the PCA is sensitive to outliers since the estimation of the mean
vector, the covariance matrix and the correlation matrix are directly influenced by
outliers. As a consequence, the estimation of the eigenvalues and eigenvectors of
the covariance or correlation matrix will be influenced by outliers present in the
data, see, e.g., Filzmoser (1999). It is worthwhile to mention that even a single

outlier may affect the classical statistics methods. Croux and Haesbroeck (2000)
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indicate that conclusions obtained from principal component analysis calculated
from a dataset with outliers may be misleading.

Under these circumstances, the common choice made by a wide range of sci-
entists and practitioners to mitigate this problem is to delete the observations
suspected to be outliers. As pointed out by Maronna et al. (2006, Chapter 1),
the removal of an outlier observation may lead to many issues since the deletion
is based on a subjective decision. A viable option to attenuate these problems is
to use robust statistical methods since these methods still work well even when
the presence of outliers is uncertain. Among the methods for robust estimation of
the covariance or correlation matrix with time-independent datasets, there is the
estimator proposed by Ma and Genton (2001). This estimator uses the so-called
Qn(.) estimator proposed by Rousseeuw and Croux (1993), which is independent
of the location measure of the dataset. In this paper, the central idea is to robus-
tify the estimation of the covariance matrix before calculating its eigenvalues and
eigenvectors in PCA.

As mentioned before, PCA based grouping technique is not a new tool for
the air pollution area literature, however, other works have not considered the
occurrence of outliers ( a common issue in air pollution datasets) nor presented a
clear methodology of how to perform the grouping through PCA and considered
only a subjective approach of it. Therefore, to fulfill this gap, this article proposes
a grouping methodology to identify air quality monitoring stations which present
similar behavior for any pollutant or meteorological measure. The methodology
proposed consists of the application of robust principal component analysis and
selecting the stations which presented higher correlations to the selected PCs.

Then, a decision rule is to be applied to decide to keep the redundant station
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in the same place or to move it to a new area. This proposed methodology is
also adequate when outliers are presented in the dataset. The PM;jo data of the
metropolitan area of the Greater Vitéria Region (GVR), Brazil, is analyzed as an
illustrative example.

The paper is structured as follows: Section 2 describes the data and the sta-
tistical model introducing the proposed estimation method and how to identify
monitoring stations which present similar behavior; Section 3 presents the data
analysis and its discussion comparing robust PCA to the standard one. Finally,

Section 4 presents the closing remarks.

2 Data and methods

2.1 Sampling stations in the Greater Vitoria Region

The Greater Vitoria Region is located on the southeast coast of Brazil (latitude 20°
198, longitude 40°20W) with a population of approximately 1.900.000 inhabitants.
The climate is tropical humid with average temperatures ranging from 24°C to
30°C. The region has many ports being an important cargo transport hub in Brazil.
Also, there are many industries presented in the region, such as steel plants, iron
ore pellet mill, stone quarrying, cement and food industry and asphalt plant.
The automatic air pollution monitoring network (AAQMN) of GVR is con-
sisted by eight monitoring stations distributed in the cities of this region as follows:
two stations in Serra (Laranjeiras and Carapina), three stations in Vitéria (Jardim
Camburi, Enseada do Sua and Vitéria Centro), two stations in Vila Velha (Vila
Velha Centro and Ibes) and one station in Cariacica (at the regional food distribu-

tion center, CEASA). The PMio, in pg/m?, is monitored in all stations. Figure 1
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presents the geographical location of each station. The PMjq series corresponds
to the daily average (over 24h period) observed at all stations from January 2005

to December 2009.

‘amnjeims

‘amylnu

Jltdrla Centro

‘ ariacica

Fig. 1 Geographical location of the stations.

2.2 Principal component analysis

Most of the practitioners employ the standard PCA which is based on the sample
covariance matrix and is summarized in the sequel. Let X 1,..., X, be a sample of
size n of an independent and identically distributed multivariate distribution with
dimension p, mean vector p, and covariance matrix Y. The method of moment

estimator (MME) of X is

Bu= LY (X - X - ) 1)
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where 1 = % 1 Xi. As stated by Jollife (2002), the big drawback of PCA
tool based on covariance matrices is the sensitivity of the PCs to the units of
measurement of the variables. Therefore, if large differences in the variances of
variables are found, the variables with large variances will tend to dominate the
first PCs. To avoid this problem, the use of PCA based on the correlation matrix
is suggested. To this end, the sample correlation matrix P can be obtained as
P = DX, D, where D = diag(1/v/&11,. . ., 1/\/6pp), where 64, for i =1,...,p,
is the sample covariance. It is straightforward to see that even one outlier will

affect the sample mean, and, thus, the whole covariance (or correlation matrix).

Now, consider the random vector X’ = [X1, Xo,...,X,] with sample covari-
ance matrix i’n and its associated sample eigenvalues 5\1 > 5\2 > ... > 5\p >0
with corresponding normed eigenvectors @’ = [a1, a2, - .., ap]. Let

Y, =a;X. (2)

Then, we have

Cov(Yi, Vi) = @ 3nar =0, i#ki k=12 ...,p,. (4)

If some \; are equal, the choice of the corresponding eigenvectors a; is not unique.

Associated with (2), it can be shown that
P A A A P
D Var(Xs) =AM+ de 4+ A = Var(Vy). (5)
i=1 i=1
Equation 5 states that the whole variability of X is retained by the principal
components Y. Therefore, if the main goal of the use of PCA is to reduce the

number of variables, the scientist may chose to retain only part of the total original

variability.
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2.2.1 Robust PCA

Outliers affect the estimation of the location (mean) and the scale (variance) of
random variables. To address this problem, Rousseeuw and Croux (1993) proposed
a robust estimator, @), for the dispersion of a dataset. Let X1,..., X, be n i.i.d.

copies of a random variable X, the estimator @, is the k-th order
Qn(z) = d {|Xi = X;[;4 < j}ry (6)

where 7,5 = 1,...,n, and d is a value for consistency of the estimator. The k-th
order statistic is the integer value k = [((5) +2)/4] + 1.
It is known that for any univariate second order random variables X and Y it

is possible to compute the covariance between them as follows

Cov(X,¥) = % (Var(X/a + Y/8) — Var(X/a — Y/5)), (7)

for any a, 8 € R, see, Huber (2004). In order to robustify (7), Ma and Genton

(2001) proposed to use the estimator @, instead of the sample variance obtaining

aQn(Xm:%{Qi (gﬂg)-% (g-%)] (8)

where o = Q,(X) and 8 = Qn(Y).
The correlation between the univariate second order random variables X and

Y can be estimated by

PQ. (X,Y) = E ) ) 9)

where X, Y, o and 8 are defined in (8).
Let X be a random vector of p > 2 variables. The robust sample covariance and

correlation matrix of the random vector X, namely, fJQn and PQH, respectively,
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are obtained by estimating every covariance or correlation pairs between X; and
X, 1,7 = 1,...,p. In this work, the robustified principal component analysis is
achieved by replacing the standard covariance (or correlation matrix) with 2Qn
and IA-"QWV.

It is worthwhile to mention that the robust estimation procedure discussed
above will provide similar results to the ones estimated using the standard sample
estimator when there are no outliers presented in the dataset. Therefore, its usage

is recommended.

2.2.2 PCA clustering and station selection

The PCA technique can also be used for clustering of the variables. A method
for clustering variable using PCA is discussed Cadima and Jolliffe (1995). The
grouping of variables consists of choosing variables that have similar values for its
eigenvectors in module and are highly correlated to the principal component. The
correlation between a retained PC group and the related full PC (containing all

the variability of ;) is given by

-

o= A2 @Y £ ak) 2, (10)

1&§
where ;\j is eigenvalue of j-th component, d? is the clustered vector of a;
containing k variables and 2;1 is a sub matrix of 2,1, which involves lines and
columns corresponding to the k grouped variables.
The main idea behind the method is to address the monitoring stations which
present similar behaviors for the PMio pollutant concentration (the method is

easily expanded to any other pollutant or meteorological parameter). Thus, a
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decision rule can be applied to decide to keep the redundant station in the same

place or to move it to a new area.

As a possible decision rule, Pires et al. (2009) suggested three criteria: (i) sites
should be representative monitoring the highest possible pollutant concentrations;
(ii) the number of pollutants being monitored at each site should be maximized,;

and (iii) the distribution should maximize distances between sites.

In this context, the following methodology for addressing monitoring stations

which present similar behavior for a given pollutant is proposed:

1. Perform a descriptive statistical analysis of the data to verify the occurrence
of possible outliers and to check for different scale of the measured variables;

2. Compute the robust PCA using the covariance or the correlation matrix;

3. Select a desirable number of PCs to be retained, e.g., 80% or more of the total
variability;

4. Arbitrarily choose a cutoff point for the absolute values of the eigenvectors;

5. Create a group of variables whose coefficient of eigenvectors are equal or greater
than the cutoff point in the component;

6. Compute using (10) the correlation between the selected variables in the PC
and the full component. If the chosen variables and the component are not
correlated, e.g., greater than 65%, verify the cutoff point and redo the steps
4-6;

7. Apply the decision criteria of Pires et al. (2009) to decide to keep or to move to

a new area the monitoring equipment of the pollutant considered in the study.
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3 Data analysis and discussion

In this study, the robust PCA was applied as a classification tool to group moni-
toring sites with redundant measurements of PM1g concentrations from January
1st of 2005 to December 31 of 2009 (n = 1826). All the plots and analysis were
performed using the computing environment R. SQn and PQn are available in the
package tsqn (Cotta et al. 2017). The dataset and the R codes are available upon

request.

Table 1 shows the descriptive statistics (i.e. the averages, standard deviations
and quantile values, among others) of the variables considered. The concentrations
of PMo pollutants exceeded hourly and annually the guidelines suggested by the

World Health Organization. It is observed a high range for all stations.

The boxplot of the data and the series of the PMjp are shown in Figures 2
and 3, respectively. From the boxplot and the plots of the series, one can observe
high levels of PM1g pollutant. Although the high levels of PMio are important
information that should be considered in the context of the air pollution and its
impact to human health, these observations can be identified, from a statistical
point of view, as being outliers. Therefore, the high levels of PMjo presented in

the series justify the use and comparison of the robust PCA.

Tables 2 and 3 show the correlations and the robust correlations (as in Sec-
tion 2.2) between the monitoring stations in the study. From both tables we observe
a strong correlations between the variables, e.g., 0.78 for Ibes and Enseada do Sua

stations.

The grouping of stations with redundant measurements for the PMg pollutant

was carried out following the methodology proposed in Section 2.2.2. That is,
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Boxplot of PM;o concentrations (pg/m3)
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Table 1 Descriptive statistics of PM1g data

Laranjeiras ~ Carapina Jardim Camburi Enseada do Sua  Vitéria Centro  Ibes  Vila Velha Centro  Cariacica

Mean 32.26 24.13 28.97 28.08 26.01 28.13 28.94 44.16
Std. Dev 11.29 7.67 8.01 8.29 7.37 9.20 11.33 13.12
Min. 6.08 5.75 8.67 7.50 5.62 7.00 5.92 8.92

25th perc. 24.50 19.33 23.64 22.71 21.46 22.01 21.51 36.14
50th perc. 31.27 23.00 28.33 27.00 25.25 27.29 27.21 43.33
75th perc. 38.07 27.71 33.46 32.46 29.78 32.91 33.92 50.79
Max. 86.46 88.25 78.08 74.58 70.42 88.12 94.75 106.30




Table 2 Correlation matrix (P) between the stations

Laranjeiras ~ Carapina  Jardim Camburi Enseada do Sua  Vitéria Centro  Ibes  Vila Velha Centro  Cariacica

Laranjeiras 1.00

Carapina 0.35 1.00

Jardim Camburi 0.52 0.55 1.00

Enseada do Sua 0.53 0.54 0.53 1.00

Vitéria Centro 0.45 0.63 0.59 0.67 1.00

Ibes 0.58 0.61 0.61 0.72 0.64 1.00

Vila Velha Centro 0.38 0.49 0.44 0.46 0.61 0.46 1.00

Cariacica 0.42 0.70 0.56 0.54 0.71 0.69 0.46 1.00




Table 3 Robust correlation matrix (IA’Q,L) between the stations

Laranjeiras ~ Carapina  Jardim Camburi  Enseada do Sua  Vitéria Centro  Ibes  Vila Velha Centro  Cariacica

Laranjeiras 1.00

Carapina 0.40 1.00

Jardim Camburi 0.59 0.57 1.00

Enseada do Sua 0.59 0.58 0.59 1.00

Vitéria Centro 0.45 0.65 0.61 0.71 1.00

Ibes 0.66 0.61 0.62 0.78 0.66 1.00

Vila Velha Centro 0.44 0.55 0.48 0.54 0.60 0.56 1.00

Cariacica 0.46 0.70 0.55 0.60 0.73 0.69 0.51 1.00
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stations having the same contribution in component will have similar values for

their eigenvectors and they will also be correlated to the component.

In the PCA tool, the estimates of the eigenvalues and theirs corresponding
eigenvectors using P and an are given in Table 4. For both estimators, four
components could explain approximately 85 % of the total variability of dataset
leading to a dimension reduction of the data. It is observed that PCA computed

by using PQH preserved a greater percentage of variability in the components.

For both PCAs, the cutoff point was selected to be 0.37 in absolute value which
leaded to the highest correlation values. In the standard PCA, this cutoff leaded
to a correlation between the selected PCs groups and the original PCs of 0.96,
0.88, 0.66 and 0.96, for the four PCs, respectively. In the case of robust PCA,
correlations of 0.96, 0.89, 0.66 and 0.95 were found. The values are close in both

standard and robust PCA.

Thus, for the method of moments estimator for the first component, it is pos-
sible to visualize the existence of a group of stations formed by Ibes, Vila Velha
Centro , and Cariacica. In the second component, the group is formed by Laran-
jeiras and Carapina. For the third component Vila Velha Centro forms a group.
Finally, the fourth component is the group formed by Jardim Camburi and En-

seada do Sua.

For the grouping through robust PCA, in the first component, Ibes, Enseada
do Sué, and Vitéria Centro can be grouped. For the second component, Laranjeiras
and Cariacica form a group. In the third component, Vila Velha Centro is the only
station in the group. For the fourth component, the group is formed by Enseada

do Sua and Jardim Camburi. Therefore, the proposed method allocated groups



Table 4 PCA results for PMjg of AAQMN of the GVR

Stations PCA - P PCA - Pg,
1 2 3 4 1 2 ‘ 3 ‘ 4
Laranjeiras -0.3002 | 0.7193 | -0.1756 | 0.1460 | -0.3123 | 0.6998 | 0.0533 | 0.0683
Carapina -0.3554 | -0.4004 | 0.2628 | 0.1750 | -0.3488 | -0.4144 | -0.1961 | 0.2701
Jardim Camburi | -0.3472 | 0.1700 | 0.0502 | 0.7019 | -0.3446 | 0.2356 | -0.2115 | 0.7037
Enscada do Sué | -0.3632 | 0.2163 | 0.0406 | -0.6118 | -0.3722 | 0.1519 | -0.0045 | -0.5144
Vitoria Centro | -0.3864 | -0.2265 | -0.1026 | -0.1629 | -0.3745 | -0.2867 | -0.0211 | -0.1276
Ibes -0.3869 | 0.1787 | 0.2359 | -0.2271 | -0.3863 | 0.1902 | -0.0881 | -0.3395
Vila Velha Centro | -0.3055 | -0.2942 | -0.8391 | 0.0141 | -0.3203 | -0.1838 | 0.8942 | 0.1475
Cariacica -0.3721 | -0.2766 | 0.3542 | 0.0507 | -0.3625 | -0.3283 | -0.3259 | -0.0962
Eigenvalue 4.8971 | 07744 | 0.6282 | 0.4973 5.146 0.7568 | 0.5334 | 0.4612
Proportion 61.22 9.68 7.85 6.22 64.25 9.46 6.67 5.77
Cumulative 61.22 70.90 78.75 84.97 64.25 73.71 80.38 86.14
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differently from P. However, base on boxplot (Figure 2) and descriptive statistics

(Table 1), the grouping based on PQn is suggested here.

In order to visually confirm the grouping results for both estimators, the av-
erage daily profiles of PMj¢ daily averages for the groups are shown in Figure 4.
It is seen that the grouping using IE’Qn is superior since for the first principal the

grouped stations have similar concentrations.

To end this analysis and continuing with the procedure of the methodology
discussed in Section 2.2.2, the stations of Ibes and Enseada do Sué are selected to
be moved to a new area to enlarge the total monitored area. It is highlighted that
although Cariacica has no important contribution to the robust cluster, it is the

only station located in Cariacica municipality and, therefore, must be kept.

4 Conclusions

This article proposed and applied a grouping methodology to identify monitoring
stations which present similar behavior for a given pollutant. As a case of study,
the AAQMN of GVR (Brazil) which monitors the PM1g pollutant was considered
in order to enable better management of the local monitoring network.

The methodology proposed consists by the application of robust principal com-
ponent analysis and selecting the stations which presented higher contributions to
the selected PCs. Then, a decision rule is to be applied to decide to keep the
redundant station in the same place or to move it to a new area.

In the case study, it was found the occurrence of possible outliers observations
during the descriptive analysis of the the PM1g data which justified the comparison

between the robust and standard PCA. It was found that Ibes, Enseada do Sua,
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and Vitoria Centro presented similar behavior and thus can be grouped. Also, that
Jardim Camburi and Enseada do Sua form another group. Therefore, two stations,
Ibes and Enseada do Su4, are the candidates to be moved to a new site to enlarge

the monitored area.
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3 Parameters influencing population annoyance due to air pollu-
tion

This paper investigates and quantifies annoyance caused by air pollution by means of surveys
carried out during the winter and summer in Vitéria, Espirito Santo, Brazil. Results show that
90% of the population reports nuisance by air pollution, from which 60% reported being “very”
and “extremely annoyed”. Most respondents perceive air quality as “important” or” very impor-
tant” and they also feel “exposed” or “very exposed” to risk from air pollution. The form of air
pollution that is mostly perceived by the respondents is dust, i.e., PM.

This paper will be submitted to Risk Analysis Journal.
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Abstract

Annoyance has been identified as a useful signal for potential health effects and loss
quality of life of pollution in a community. This study deals with the determinants of
perceived annoyance in the urban area of Vitoria (Brazil), whose inhabitants are
particularly exposed to industrial air pollutants, especially particulate matter (PM).
Questionnaire based surveys were conducted in winter and summer, totalling 2638
respondents. A logistic regression was used to identify the relationship between
annoyance and air pollution expressed by PM concentrations, and between annoyance
and qualitative questionnaire variables. Results show that 90% of the population
reports nuisance by air pollution. About 80% of respondents frequently perceived air
pollution by dust. People perceived particles (PM) more intensely during the summer,
in sunny days and during the daytime. “Perceived importance of air quality”,
“perceived assessment of air quality”, “perceived pollution by dust, the season”, and
“gender” are the variables most influencing the perceived annoyance. By exposure
response relationship when the concentration level of PM increases, the probability of
being annoyed also increases. These results can be useful for planning purposes, where
policy makers usually do not have access to detailed information, especially for micro-
management in a regional or city-planning level.

Keywords: perceived annoyance, air pollution perception, survey, air quality,

particulate matter, dust, exposure-response relationship.



1. Introduction

Air pollutants consist of substances present in the atmosphere that in a given
concentration promotes negative effects on human health, cause fauna, flora, and
materials degradation, and also promotes nuisance in local population to the point that
degrades public welfare [1]. Particulate matter (PM) originate from dust, soot,
combustion of waste, vehicular and industrial emissions represents a major health issue
in urban areas since inhalable particles can be a significant contributor to respiratory
and cardiovascular diseases, mortality [2—4] and environmental nuisance [5-10].
Annoyance induced by PM is related to its perception, producing physiological and
psychological negative effects [11], a state that has repercussions in terms of human
welfare and well-being and goes against the World Health Organization (WHO)
definition of health [12]. According to H. Orru et al. [13], annoyance has also been
identified as a useful signal for potential health effects of pollution in a community.
Annoyance caused by PM pollution qualifies as a public health problem, as it can be

seen an ambient stressor causing stress and diseases and affect the quality of life [14].

Previous studies have shown that there is a complex relationship between the annoyance
and perception of air pollution, health problems, concentration levels of air pollutants,
individual and location within the urban sprawl [7,9,15-18]. Differences in people’s
opinions about levels of annoyance were observed even when exposed to the same
levels of pollutants, showing that individual perceptions and attitudes towards the
exposure are strongly influenced by factors such as gender, age, education level, health
status and neighborhood characteristics. Although intricate, population surveys
exploring such attitudes taking in consideration sociodemographic factors and location
can help understanding and identifying respondents’ reaction to different levels of
annoyance when exposed to similar levels of environmental pollutants, e.g. [8,14—
17,19]. According to Eek et.al. [20], individuals who assign nuisance to given
environmental factors also report subjective health complaints, higher levels of stress,
strain, more dissatisfaction with their work situation, and lower personal social support,
compared with those who do not report annoyance. Therefore, it is important to
understand how people perceive air pollution daily and its impact on the quality of life

to reduce or minimize this inherent bias.



According to Holgate et al. [21], PM is usually classified as ultrafine particles (PMy ),
fine particles or breathable particles (PM,s) that usually lodge in the terminal
bronchiole, coarse particles (inhalable particles (PM;o) excluding breathable particles
(PM;5)) that penetrate the respiratory system, but are retained in the upper respiratory
system, and total suspended particles (TSP), usually larger particles that are in
suspension in the atmosphere, with a wide particle size range (typically between
0.005um and 100pm). All particles sediments and consequently cause annoyance, but
particles greater than 10um are subject to sedimentation in regions closer to the source,
while smaller ones tend to sediment in longer time and farther away from the emitting

sources [22].

The Metropolitan Region of Vitoria (MRV), state of Espirito Santo, Brazil is a densely
inhabited and industrialized urban agglomeration. Pelletizing and steel industries
together with the fleet of motor vehicles that has increased dramatically in recent years
in MRV [23] have added the hospitalization and emergency care of local population
connected to the effects of air pollution on health [24]. Recently, a survey found that
about 90% of this population feels very to extremely annoyed by settled particles (dust)
[14]. To deepen the previous results, here we use the MRV as proxy for identifying
variables related to perceived annoyance caused by air pollution. The hypothesis is that,
beyond the levels of pollutants, there are aspects of everyday life, which can explain
annoyance due to air pollution reported by inhabitants. The current study aims to
identify the parameters influencing annoyance and investigate the relationship between
annoyance and concentration levels of TSP and PM;, measured in MRV from 2011 to

2014.

2. Materials and methods

2.1. The MRV monitoring network
The Metropolitan Region of Vitoria is a highly industrialized urban area located in the
Southeast coast of Brazil with 1,500,000 inhabitants. The main air pollutants sources in
the region includes ports and steel, pellet making, quarry, cement, chemical,

pharmaceutical, food and asphalt industries, among others [23].

Hourly averaged concentration of inhalable particles (PM;o) and total suspended

particles (TSP) together with other air pollutants are automatically monitored by the



local environmental agency. The monitoring stations are positioned at strategic
locations, taking in consideration areas of higher population density. These are
Laranjeiras (M1), Carapina (M2), Jardim Camburi (M3), Enseada do Sua (M4), Vitoria
Centre (M5), Vila Velha (M6), Ibes (M7) and Cariacica (M8) shown in Figure 1 which
also presents the main highways (black lines) and industrial sources of particulate
matter (red square). However, PM;( and TSP concentration data were not analysed at
station M2 as its location (inside a cleared land surrounded by tall trees) interfere with
the monitored data and therefore is not representative of the sub-region. Figure 2 shows
the 24-hour averaged data of PM;y and TSP for the period of this study, from 2011 to
2014.

2.2. The surveys
The surveys consisted of 2638 in-person interviews from 2011 to 2014. The sample size
was calculated by simple random sampling with proportional allocation around the
coverage area of the eight air quality monitoring stations (called here as sub-regions)
[25]. The selection of households was made randomly [26], but considering the spatial
distribution of the sample in the sub-regions (in a radius of 1.5 km from each
monitoring station). The structured questionnaire was originally developed and validate
by [27] and consists of about 50 questions examining different variables (see
supplemental material): annoyance (Questions A5, A6, A8 and All), assessment and
importance of air quality (Questions Al to A4), air pollution perception due to dust
(Question A9 to A12), consequences of air pollution (Questions Bl to B8), perceived
emission sources (Questions C1 and C2), weather conditions (Questions D1 to D4),
health effects (Questions B9 to B11), knowledge of the work of the environmental
agency (Question E1), sociodemographic factors (gender, age, marital status, education
level, children at home — Questions F3 to F8) and concentration levels of particulate

matter (PM;o and TSP).

The questionnaire included different types of possibleanswers (see supplemental
material). For instance, there was an option of binary response (yes and no) to answer
the question “Do you feel annoyed by air pollution?”. And, also a Likert 5-options
categorical scale to answer the question “How annoyed do you feel?”, namely: not
annoyed, slightly annoyed, moderately annoyed, very annoyed and extremely annoyed

[28]. The answer “do not know/do not answer” (NK/NA) was also provided/mentioned.



The purpose of the study was revealed after all questions were answered. Interviewers
were trained on good survey practices. A pre-test pilot was carried out using 15
respondents in order to evaluate the questionnaire time (~25 minutes) and data analysis.
Finally, a total of five environmental surveys were conducted: two during Winter (July
2011 and July 2013) and three during Summer (January 2012, January 2013 and
November 2013).

2.3. Statistical analysis
A logistic regression [29] was chosen for statistical analysis, considering that the study
comprised a large number of qualitative variables. This tool is suitable for the analysis
of this type of data and also allows the estimation of the odds ratio (Equation 1) [30].
Here were selected as independent variables: sociodemographic factors, weather
conditions, assessment and importance of air quality, air pollution perception due to
dust, consequences of air pollution, health effects and knowledge of the work of the
environmental agency. Annoyance is the dependent variable, with probability of success
and failure. The odds ratio (OR) was used to determine whether a variable is
determinant for annoyance and to compare the magnitude of influence of the variables
of interest on the outcome variable (annoyance). For example, i) OR=1, indicates that
the variable does not affect odds of annoyance; ii)) OR>1 indicates that the variable is
associated with higher odds of annoyance; iii)) OR<1 indicates that the variable is
associated with lower odds of annoyance [31]. The daily average relationships between
PM,y and TSP concentrations and annoyance were calculated. “annoyance” was
dichotomized as 0 (not annoyed) and 1 (at least slightly annoyed) and used in a logistic
regression model. Equation 1 describes the estimated probability exposure—response
relationships (already described in [14]). PM;o and TSP were chosen as air pollutants

indicators as dust was identified in the survey as the main

To Equation 1

where P is the probability of perceived annoyance, B, and B, are the parameters
estimated from the logistic regression adjustment using the PM;o or TSP concentration

data and the levels attributed to perceived annoyance.

As shown in Machado et al. [14], the odds ratio can be written as



RR(x )~ &*F Equation 2

3. Results and discussion

3.1. Factors interfering with individual perceived annoyance

Knowledge of the work of the environmental agency
Health effects

Consequences of air pollution by dust

Air pollution perception due to dust

Assessment and importance of air quality
Perceived emission sources

Weather conditions

Sociodemographic factors

Perceived industrial risk verificar!!!! Na importance and assessment

Sociodemographic factors

The 2638 respondents consisted of 59% female and 41% male (Table 1). This
represents well the region since the percentage of women is higher than that of men,
according to 2010 census data [32]. Table 1 shows the profile of respondents for each
sub-region. Regarding gender, there are about 62% of women in the sub-regions M5,
M7 and M8 and on average 55% in the other areas. Regarding age, we can see that
between 81% (M4) and 93% (M2) of respondents are between 16 and 54 years old. 69%
(M3) and 91% (M2) of the respondents have a primary or secondary school diploma,
and the percentage of respondents with incomplete primary level studies is about 20%.
Most respondents are non-smokers, between 64% (M7) and 73% (M3). Regarding
marital status, about 50% of the respondents in all sub-regions are married and most of
the families have children living with them. The fact that there have been more female
than male respondents may be also partly attributed to the regional socio-economic
population profile. It is customary that women stay at home and look after the

household, which characterises a typical patriarchal society [33,34].

Weather conditions



Previous studies carried out in the region have shown two distinct periods of
predominant wind currents and precipitation levels, from September to March
precipitation is high and the prevailing wind direction is North/Northeast (Summer) and
from April to August precipitation levels are lower and the prevailing wind direction is
southern (Winter) [23,35]. The selected seasons for carrying out the survey considered
these weather conditions: Winter (July 2011 and July 2013) and three during Summer
(January 2012, January 2013 and November 2013). To assess this seasonality about
annoyance, the questionnaire listed the question "Today, how annoyed are you feeling
about air pollution?”. Figure 3 summarizes the overall results of annoyance according to
season (summer and winter). The results reveal that respondents’ opinion about
perceived annoyance do not show significant differences between the surveys conducted
in winter and summer, indicating that people are feeling annoyed by air pollution
independent of the season. A similar study conducted by Jacquemin et al. [8] showed

that seasonality was not highly correlated to perceived annoyance.

Meanwhile, there is a clear difference in particles deposition rate (dust) during these two
seasons as shown by [14]. Thus, a question on whether the respondents perceive the
changes on the amount of dust according to the time of the year showed that higher dust
perception is detected during the summer (52.5%), followed by winter (36%) (Table
S1). As mentioned earlier, summer is the season when the prevailing wind direction is
Northeast [23], which transports particles from the industrial sources located North of
MRV (Figure 1) directly into the well populated areas. The questionnaire results also
suggest that there is higher dust perception in sunny days during daytime (Table S1), in
fact suspended particulates in the atmosphere are more visible during sunny days and

daytime [36,37].

Perceived emission sources

Annoyance was more related to source proximity than seasonality. Machado et al. [14]
showed that more than 90% of respondents were at least slightly annoyed by dust,
especially at M1, M3 and M4 where industrial source proximity can play a role on
biasing residents’ opinion. A similar result was found by Stenlund et al. [16],

concluding that proximity to the industry affect air pollution perception.



Table S2 presents the main sources of particles reported by respondents, nonetheless,
other sources are also responsible sources of TSP and PM;, in the MRV. Respondents
identified sources of particles as industrial sources (39%), vehicular (37%) and
construction work (11%). Construction work and vehicles have become important
sources of particles due to population increasing and wealth improvement in the
Country during the period of this research (2011-13). Respondents closer to M3 and
M4, the regions closer to the main industrial sources, identified industry as the main
pollutant source. At M5, M7, M6 and M8, the respondents reported vehicular sources as
the main polluters (Table S2), in agreement with previous results on source

apportionment reported by [23].

Furthering industrial weight on population nuisance, the respondents were asked to
choose the main benefits and losses brought by local industries and 38% of the
respondents selected “all options” of benefits versus 28% “all options” of losses.
Despite being alert to air pollution and health deprivation issues, population still

considers higher the benefits of having the industrial park close to the city centre.

Assessment and importance of air quality

Table S3 shows that about 90% of respondents consider air quality “very” (38%) and
“extremely” (55%) important in all sub-regions of the MRV. More than 50% considered
air quality as "extremely important" and about 40% as "very important" showing the
awareness about air quality. Regarding the risk imposed by air pollution, about 80%
reported feeling at least slightly exposed, especially at M4 where 26% of the
respondents felt “extremely” exposed to risk. M4 is one of the prime areas of MRV,
situated at the seashore, overlooking the main industrial polluting sources (Figure 1).
Thus, plume visibility and air pollutant emissions are well present in residents’
moments of relaxation and fun, contributing to a higher perception of risk exposure.
This is corroborated by [16] and [38], who found that degrees of perceived annoyance

are positively associated with perceived air pollution and health risk.

Air pollution perception
Table S4 shows the different forms and frequency of perceived air pollution in different
aspects: dust (77%), visibility (smog) (32%) and damage to vegetation (31%). Dust is in

fact locally perceived by the population as an indicator of air quality. This is in



accordance with literature that shows that population nuisance is often associated with

dust and vehicles exhaust odour [9,39].

Consequences of air pollution

Table S5 summarizes the daily actions taken by the population to minimize
consequences of dust on their quality of life. Respondents considered “cleaning the
house to remove dust” as the main consequence of air pollution, answering “always”
(overall 88%) to the frequency that a given action had to be performed. Other
consequences include “keep the window closed to prevent the entry of dust” (43%),
“paint the house walls” (22%), “occurrence of health problems” (20%), and “avoid
frequenting public places” (9%). Reactions are similar if considering each individual
sub-region M1-8, however “cleaning” and “painting” the house are indicated mainly at
M3 and M4 — the monitoring stations closer to the main industrial source — while “keep

the windows closed” is a solution found mainly by M4, M7 and MS.

Health effects

“Health issues” are mainly pointed out at M3 (Table S5). These results confirm that the
presence of dust interferes with peoples everyday routine and consequently causes
nuisance and a deterioration of the quality of life, especially in close proximity to a
source [16]. It should be noted that, although health-related symptoms vary depending
on the type of pollutant, particulate material can cause respiratory diseases [40]. Eek
[20] showed that people, who have reported environmental annoyance of some sort,

also reported more health complaints and higher levels of stress.

For the respondents who reported having had at least rarely health problems caused by
dust (Table S5), it was asked what type of disease / symptom. Figure 4 shows the
percentage of main types of diseases/symptoms caused by air pollution (dust) reported
by respondents. There is a clear tendency of respondents reporting symptoms/problems
related to the respiratory system, as allergy, rhinitis, sinusitis, coughing, shortness of
breath, etc. [38] studied associations between perceived pollution and health risk among
communities in Kenya, and an important result found in their study was that cough/cold,
difficulties in breathing, headache and eye problems were the most common health

problems mentioned by respondents related to air pollution. This author found a similar



positive association among perceived levels of air pollution, annoyance caused by air

pollution ad perceived health risks.

Knowledge of the work of the environmental agency

Finally, Table S6 shows the degree to which respondents are well-informed about the
air quality monitoring data and the actions of the local environmental agency. It is
interesting to note that more than 60% of respondents have never had information about
air quality data and almost 80% does not know of any organization responsible for air
quality in the MRV. This result is too important to the government to improve the ways
to inform the community about air quality levels, about the limits stablished and about
the goals to the local sources. Egondi et al. [38] showed that information about air
pollution is an important tool to analyse people’s opinions about air pollution

perception.

3.2. Odds ratio of annoyance

To identify associations among “annoyance” and the variables selected in this work, a
univariate and a multivariate logistic regression analysis was applied inspired in works
developed by Oglesby et al. [17]. Rotko et al. [7] and recently [15,41] calculated odds
ratio to analyse annoyance. The independent variables selected were: socio
demographic factors (Questions F3 (gender), F6 (age), F1 (current occupation), F5
(children at home)), importance (Question A3) and assessment (Question A4) of air
quality, perceived industrial risk (Question A7), consequences of air pollution by dust
(Questions B1 to ), weather conditions (Question D2), health effects (Question B10),
perceived emission sources (Question XX), air pollution perception due to dust
(Question A9). Each selected variable was quantified (as Likert scale), evaluated and
added one by one while the dichotomized perceived annoyance was used as the
outcome dependent variable of the univariate regression model. Also, a multivariate
regression model (where the variables were added into the model at the same time) was
then applied to analyse the combined effect of all selected variables (it is important to

emphasize the variables are not correlated and there is no time correlation in those data).

In Table 2 is possible to compare the results of univariate and multivariate models. By
the odds ratio value in univariate model all variables are significant, but when we add

all variables together (multivariate model) the most significant variables were:



importance and assessment of air quality, air pollution perception due to dust and
weather conditions. Thus, the multivariate model that considered the combined effect of
all variables is possible to identify the variables that are not determinant to perceived

annoyance.

Previous studies that used a similar technique found perceived air pollution [7] and
perceived dust at work [17] as determinant variables of perceived annoyance. Regarding
occurrence of health problems the odds of annoyance was not significant, it was not
expected, for example, Orru et al [15] found that the odds of being annoyed
significantly increased when a person had some respiratory problems (allergies, asthma,
and cough). Regarding gender bias which was found significant in our study (Table 2 -
univariate logistic regression), it is worth noting that we find studies that defend that
females are more sensitive to air pollution than men [8,42] but also the contrary, where
no unfairness is observed [7,17]. Gustafson [43] has also connected this difference
between men and women due to their roles in society and the power relations that exist
between them. This bias is also present in our study, maybe due to the local culture,
where female social role is connected to raising children, keeping a clean and healthy

household environment for their families.

3.5. Exposure-response relationship (annoyance versus PM;, and TSP
concentrations)

To complete the possible determinants of perceived annoyance, we verified the
relationship between perceived annoyance and exposure to actual PM,, and TSP air
pollutants. For this, we limited evaluation questions to one: “How annoyed do you feel
by air pollution?”. Possible answers varied between “not annoyed” to “extremely
annoyed” (supplement questionnaire). Table 3 presents the descriptive statistical values
of 24 hour averaged PM,y and TSP (maximum, minimum, mean, standard deviation,
median and percentile 90. Mean TSP concentration levels are quite high when
compared to PMjy concentration in all air quality monitoring stations indicating that
there is a considerable amount of particles larger than 10 um (Table 3). Yet, PM; levels
surpass those recommended by WHO in most stations (50 pg/m?) [12]. The annoyance
score was calculated according to Vallack & Shillito [22] and it shows a clear

difference between sub-regions (Table 3).



Table 4 was then generated the parameters estimated by the logit regression model for

PM10 and TSP separated by each sub-region (from data shown in Table 3). In all sub-

regions, the odds ratio values (Exp(f?)) were approximately equal to 1.1, which means
that respondents who live in this regions have 1.1 times higher (10%) the odds of being
“annoyed” by a 10 nug/m? increase in the PM;o and TSP concentrations, thus there is no

difference between both pollutants.

Table 5 summarizes parameters estimated for PM;y and TSP exposure-response logistic
regressions for MRV (considering all sub-regions measurements in the same model).
The population estimated probability of being annoyed by dust given an average
residential TSP and PM; exposure of 30ug/m*® was calculated according to Eq. (1).
When the concentration level of TSP is equal to 30ug/m? there is a probability of 57%
of the respondents to be annoyed, while at the same 30pug/m*® of PM,( increases that
annoyance to 70% (Table 5). This is reasonable since TSP encompasses all PM grain
size, i.e. if we have a PM concentration of 30pg/m?, the corresponding TSP would be
higher, justifying the larger levels of annoyance. Amundsen et al. (2008), in a similar
study conducted in Norway, found that about 31% of respondents reported being
annoyed when exposed to 30pg/m* of PM,¢. This result shows that, when compared to
literature, Vitoria’s resident’s sensitivity regarding PM perception is above average.
This is possibly related to socioeconomic parameters and it reinforces the importance air
pollutant emissions control in the region, considering that annoyance is a public health

issue that affects the quality of life of citizens [12,14].

Exposure-response curves for TSP and PM;, are presented in Figures 5a and 5b
respectively. The curve is cumulative and indicates the probability of annoyance caused
by PM in the MRV. The bands in dotted lines indicate the 95% confidence intervals of
the curves. These are the confidence intervals for the relationships, since at each
exposure value there is quite large individual variation in the responses. Considering the
WHO guideline for PM (equal to 50pug/m?* 24-hour mean) about 90% of the population
living in the MRV perceive being “annoyed” by air pollution, and for the same
concentration of TSP about 73% of the population perceive being “annoyed” by air

pollution.



4. Conclusions

This paper investigates and quantifies annoyance caused by air pollution by means of
surveys carried out during the winter and summer in Vitoria, Espirito Santo, Brazil.
Results show that 90% of the population reports nuisance by air pollution, from which
60% reported being “very” and “extremely annoyed”. Most respondents perceive air
quality as "important" or" very important" and they also feel “exposed” or “very
exposed” to risk from air pollution. The form of air pollution that is mostly perceived by

the respondents is dust i.e. PM.

There is no significant difference between perceived levels of annoyance during the
Winter and Summer, however people perceived particles (PM) more intensely during
the summer, in sunny days and during the daytime. This is possibly due to the most
visible presence of dust during the daylight and the fact that dust and particulate matter
in general are affecting the quality of life of people more during the summertime, taking
also into account that the main beach of Vitoria is located near the main industrial area.
Further research could possibly examine perceived annoyance at different times of the
day, during the weekend and through surveys performed during different seasons (and

not only winter and summer).

Certain regions of the MRV reported higher levels of annoyance (M3 and M4), mostly
due to source proximity. Curative air pollution measures need to be applied by citizens,
such as “always” clean their houses and that there is a need to “sometimes” keep the
windows closed. It should be noted that the main health problems reported by people
are allergy, rhinitis and sinusitis, which are common symptoms of pollutants affecting
the respiratory system, such as particulate matter (Figure 4). These respondents can also
perceive higher levels (“very” and “extremely”) of annoyance from air pollution but, at
the same time, reported not to be aware about air quality monitoring in the MRV or
about institutions with environmental responsibility. This shows how important it is for
the environmental agency not only to monitor air quality and provide policy-makers
with the relevant information, but also to increase its visibility and the information
provided to the public on air quality monitoring and on the management of atmospheric

pollution.



Overall, univariate and multivariate regression models suggest that variables (common
in both analysis) influencing perceived annoyance caused by air pollution in the MRV
are the “perceived importance of air quality”, the “perceived assessment of air quality”,
the “perceived pollution by dust and the season (summer)”, while the univariate analysis
showed “gender (female)” was significant. Thus, it is possible to conclude that these
main variables play an important role in predicting the perceived annoyance caused by

air pollution and therefore in understanding the factors that affect perceived annoyance.

Finally, an exposure-response relationship between the levels of perceived annoyance
by air pollution and air pollution concentrations (PM;o and TSP) was estimated. The
exposure—response relationships for the MRV indicate that many people are annoyed at
exposure levels that commonly occur in industrialized cities (daily mean 24h
concentrations of PM and TSP for the last 30 days). This might be due to the industrial
park being included in the main residential area of the MRV, adding to impact of other
urban sources such as the port area and heavy traffic arteries. Therefore, these
relationships are useful for planning purposes, where policy makers usually do not have
access to detailed information on such determinant variables which are very useful
especially for micro-management in a regional or city-planning level. Such an
understanding can help policy makers to examine possible ways and measures to
address such parameters to reduce annoyance form air pollution in a more targeted

manner, in combination with the more general air pollution abatement measures.
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4 Deconstruction of annoyance due to air pollution by multiple
correspondence analyses

The aim of this study is to apply Multiple Correspondence Analysis (MCA) to investigate empir-
ically the relationship among variables that can be considered determinants for the perception
of annoyance caused by air pollution, and compare the results for two different samples, re-
lated to populations of Vitoria, Brazil, and Dunkirk, France. The results show that inhabitant of
Dunkirk perceived that the main sources of air pollution causing annoyance are related to indus-
try, while in Vitoria the construction work and vehicle sources were indicated as the sources of
air pollution, although both cities have similar industrial characteristics.For both cities,the MCA
analysis showed a positive progressive correspondence between the levels of perceived annoy-
ance and the variables’ categories: importance of air quality, perceived exposure to industrial
risk, assessment of air quality and perceived air pollution.

This paper was submitted to publication to Atmospheric Environment Journal.
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Abstract:

Annoyance caused by air pollution is an important public health issue since it can cause
stress and ill-health, affects quality of life and increases mortality. In this context, the
aim of this study is to apply Multiple Correspondence Analysis (MCA) to investigate
empirically the relationship among variables that can be considered determinants for the
perception of annoyance caused by air pollution. Face-to-face survey studies were
conducted in two industrialized urban areas (Vitoria- Brazil and Dunkirk- France),
because in these two regions the populations often report feeling annoyed by air
pollution. The results show that habitant of Dunkirk perceived that the main sources of
air pollution causing annoyance are related to industry, while in Vitoria the construction
work and vehicle sources wereindicated as the sources of air pollution, although both
cities have similar industrial characteristics.For both cities,the MCA analysis showed a
positive progressive correspondence between the levels of perceived annoyance and the
variables’ categories: importance of air quality, perceived exposure to industrial risk,
assessment of air quality and perceived air pollution. Finally, as an interesting
conclusion,variables such as gender, age, occupation, local of residence, source of air

1



pollution, occurrence of heath symptoms and meteorological conditions can influence
the elicited behaviour of individuals who have experienced annoyance due to air
pollution exposure. Thus, it plays an important role in the annoyance perceived by the
population, therefore affecting their quality of life.

Keywords:air pollution, perceivedannoyance, behaviour, multiple correspondence
analysis.

1. Introduction

There is evidencethat air pollutioncan cause varioushealth impacts, such ashospital
admissions, respiratory, cardiovascular, hypertension, cancer andmortality(WHO, 2005;
Lercheretal., 1995;Llopetal.,2008; Reisen at al.,2018). Recent estimates from the World
Health Organization (WHO) suggest that in 2012 approximately 7 million premature
deaths were linked to air pollution (WHO, 2014). Apart from the direct health effects
caused by exposure to pollutants, the perception of air pollution may cause annoyance
(Orru et al., 2018b).

The concept of annoyance is complex and it is an extremely subjective variable that can
be experienced as a perception, an emotion, an attitude or a mixture of these (Berglund,
Berglund &Lindvall, 1987).Lindvall and Radford (1973) defined annoyance as “a
feeling of displeasure associated with any agent or condition known or believed by
individuals or groups to adversely affect them” and annoyance may be associated with
other negative emotions (e.g., anger, disappointment, dissatisfaction, helplessness,
anxiety, agitation) and behavioural/social changes (e.g., interference with intended
activities) (Blanes-Vidal et al., 2012). Furthermore, WHO defines health as a “state of
complete physical, mental and social well-being and not merely the absence of disease
or infirmity”. Therefore, annoyance caused by air pollution can be considered as a
health problem and an ambient stressor that affects the quality of life.

Although there is alreadya significant number ofstudies linkingair pollution andhuman
health risks (e.g. Oglesby, et al., 2000;Klaboe et al., 2000; Llop et al., 2008, Stenlund et
al, 2009; Egondi et al., 2013), comparatively, there are few studies exploring perceived
annoyance caused by air pollution as a health risk in metropolitan/ industrialized
regions, specially, when it comes to different factors and variables affect the perception
of annoyance. According to Jacquemin et al, (2007) there are factors or groups of
qualitative variables, such as sociodemographic factors,health symptoms, location of
residence, perception of dust levels, that can be determinants of the perceived
annoyance.

One way tobetter understandthis relationshipamong qualitative variables isthrough the
analysis ofcorrespondence. Multiplecorrespondenceanalysisis amultivariate analysis
techniquefor categorical datathatallows to graphicallyassessthe differences, similarities
and relationshipsbetween variablesandtheir response categories (Benzécri et al.,
1973;Greenacre & Blasius, 2006).

The objective of the present work is to investigate the relationship among variables that
can be considered determinants the perception of annoyance caused by air pollution,
using a multivariate method, i.e. Multiple CorrespondenceAnalysis (MCA). Such a



technique considered more than two variables,has not been applied before in relation to
air pollution annoyance, and therefore, the analysisofcorrespondencethrough specific
conceptsand parameters presented here, can contributeto the disseminationof the
technique instudiesof exploring qualitative variables related to air pollution annoyance
and health risks.The MCAis developed and evaluated using datasetsfrom two
surveysconductedin different urbanandindustrialized regions, namely Dunkirk (France)
and Vitoria (Brazil) to allow comparison of the results and to enable further insight in
the parameters affecting perceived annoyance from air pollution.

2. Materials and methods

2.1. Characteristicsof the regions

The study was conducted in twodistinct urban industrialized regions: Dunkirk(France)
and Vitoria(Brazil), thus allowing comparison of the annoyance levels observed in two
cities with similar characteristics and providing further insight on the relationship
between annoyance and air pollution parameters. It should be noted that both cities are
in coast, port andindustrialareaswithpotential sources ofair pollutants (see Figure 1 and
Figure 2).

Despite thegeographic and socioeconomicdifferencesbetween theseregions, bothare
exposed to air pollution and their populations often report to local authorities that they
feel annoyed by air pollution. According to a report concerning the industrial risk
perception in Dunkirk (Calvo-Mendieta et al., 2008), air pollution is cited as the
firstenvironmental problemby its inhabitants, followed by water andsoil pollution. In
Vitoria, according to Souza (2011), more than 24%of the complaints to the
environmental agency refer to air pollution. Since 2009 the two cities signed an
international cooperation to develop a variety of events, organizing projects in the realm
of environment, culture, economy, port activities, urban development and universities
(Les ateliers, 2010).

2.1.1. Dunkirk

The metropolitan region of Dunkirk (MRD) has about 210,000 inhabitants and is
located on the northern coast of France in the region of Nord-Pas-de-Calais. The climate
in MRDregionis oceanic. Theflatnessclearly explainsthehigh levelof precipitation, but
with a distinctmaximumin the fall, typical of a coastal climate thatisstrongly influenced
by thewind: summer breezesometimescontributes to increasedsunshine, but there are
alsoepisodes of"squalls" accompanied bypenetratingwinterrains.Marinewinds from the
north-east sector arequite common. These conditionsarefavourable,in general, for the
quality of theairwhen the windsdispersepollutantstowards the sea.However,sea
breezesandnortherly winds, which is fortunately a rarer wind direction sector,often
result topollution episodes (PPA, 2002).

MRDis marked bythe presence of anindustrial portarea, which stretches for almost
20km,andincludesa high density ofindustrial facilities, most of which are largeemitters
of airpollutants. In recent years Dunkirk’s port expands (gaining market share with
global traffic superior to port’s neighbours) towards its hinterland with river and train
connections(AGUR-DUNKERQUE, 2015).

2.1.2. Vitoria



The metropolitan region of Vitoria (MRV) has about 1,500,000 inhabitants (IBGE,
2010) and is located on the south-eastern coast of Brazil (Figure 2). The topography
ischaracterizedbymountain rangesin thenorthand westernportions, plains andhighlandsin
the northern partandlowlandsin the southern part. The land useis also variable,
includinglarge areaswith vegetation coverand largepavedareasandsurroundingtowns.
The proximity tothe ocean andthe topographyare factorsthat controlthe weather
conditions, such as sea breezeand the formation ofrain. The climate in the MRV is
classified astropical hot and humid.Thisclimate typeis characterized bylong
summers(usuallyOctober to April) and hightemperatures, withmaximum temperatures
occurringusuallyin December and January. Winter isweak,withaverage temperatureof
the coldest monthabout 18°C, thecold sensationexistingoccasionally whenthere
isoccurrence ofcold fronts. The prevailing wind direction is north-easterly (IEMA,
2011b, IEMA, 2013) and it contributes tothe dispersionof pollutants
emittedfromindustrytowards the city.

MRYV comprises the third largest port system in Latin America and has many industrial
sites including a steel plant, an iron ore pellet mill, stone quarrying, cement, food,
pharmaceutical and chemical industries, an asphalt plant, etc. In recent years, the MRV
has experienced a process of economic growth and increased industrial production as
well as urban development(IJSN,2015).

2.2.The surveys

In MRD, the survey was conducted in 2008 with a representative sample of 518 people
(over 18 years old) interviewed using face-to-face questionnaires. For this survey, the
urban community was grouped into 10 sub-regions (that were determined according to
the density of the habitat but also of their more or less proximity to the industrial-port
area):  Bourbourg,BrayDunes/Leffrinckoucke, Téteghem, CoudekerqueBranche,
Gravelines, StPolsurMer, GrandSynthe, Petite-Synthe, Dunkirk and Malo/Rosendael.
The sample size was proportionally distributed according to: sex, geographic location
(near or far from industries/pot area), and socio-professional category.

InMRV the survey was conducted in 2011, the sample size was determined by using a
simple random sampling with proportional allocation method (Cochran, 1977) totaling
a representative sample of 515 individuals (over 16 years old), which were distributed
proportionally in the sub-regions around the eightair quality monitoring station
areas:Laranjeiras,Ibes, Jardim Camburi,Vitoria-Centre, Enseada do Sua, Cariacica
andVilaVelha-Centre. The eight stations in Vitoria were determine also according to the
population density and to the proximity to the main industrial sources, vehicular sources
and port area.

The questionnaire developed, validatedand applied in MRD survey in 2008. In 2011 it
wasadapted and appliedin the MRV. It was conducted a piloting questionnaire and a
pre-test to ensuring stability over time and internal consistency of the questions.

The questionary contained questions concerning socioeconomicanddemographic factors
suchas age, education level,occupation,daily habits, genderandlocation of residence.
The questions on annoyance was based on the scientific literature in relation to
categorical, qualitative and ordinal scales, such as in the studies by Passchier&Passchier
(2000),Klaeboe et al. (2000), Llop et al. (2008) and Atari et al. (2009). Thus, here to



measure the perceived annoyance was applied the qualitative answers were then
recorded in a categorical/ ordinal 4-point scale (1 for not annoyed; 2 for slightly
annoyed; and 3 for very annoyed and 4 for extremely annoyed). Table 1 presents the
questions from both surveys selected for this work, the variables from each question and
the factor groups of variables. All respondents replied the survey, but foreachquestion
was included the option of answers "not know" (NK), and in such cases, they are also
presented, so it is important to analyse.

2.3.Measured air quality levels

Recent studies have shown that fine particles (<2.5 pm, PM;5) and ultrafine particles
(0.1 pm, PMO.1) are associated with diseases in the lower respiratory system (Farfel et
al., 2005, Souza et al., 2017, Reisen et al, 2018). Regardless, inhalable particles (<10
um, PMj) still pose severe public health concerns, such upper respiratory system dis-
turbances and in some cases persistent nuisance (Vallack and Shillito, 1998). Thus,
when considering the objective to evaluating perceived annoyance, the behaviour
ofPM pollutant is presented in this study.

2.3.1. Dunkirk

The MRD comprises the third largest port in France and an industrialized city
containing steel, food, pharmaceutical and chemical industries, an oil refinery andalso a
nuclear power station for electricity production. These anthropogenic activities present
potential sources of particulate matter, which is the main cause of complaints by the
resident population in this region. Measurement of air pollutant concentrations have
been carried out by air quality monitoring stations distributed according to the French
national guidelines (ADEME, 2002), which implement European Union Directives
96/62/EC and 99/30/EC.

According to the protection planof the atmosphere (PPA, 2002) the inventory
ofemissions for MRD clearly showsthat theindustrialsector is thelargest emitterof
pollutants. For particulate matter (PM;y) the main sources in the region are
industries,incineration plants, collective and individualheating, road transport.In PPA
(2002) there are measures established for local industries,to prevent and reducethe
dispersion ofparticles,such as spraying wateron stock piles, wateringpaths andstorage
areas, changing the conditions ofdischarge.

Table 2 showsthe descriptive statistics of 24-hour-mean concentrations of PMj
measured in all the air quality stations during 2008 (Atmo Nord-Pas-de-Calais, 2009),
i.e. the year that the survey took place. Concentrations measured differ greatly among
the stations, for example at Fort Mardyck and St Pol Mer Nord presented the largest
maximum values and the largest variability (as the standard deviation and the range
values suggest) and in Malo-les-Bains and Petite-Synthe happen the opposite. In all
locations, 24-hour-mean concentrations of PM;, have maximum values higher than the
respective WHO annual air quality guideline for PM;o (WHO, 2005). Furthermore,
although the mean values are less than 50 pg/m?® in all stations, the other statistical
parameters (standard deviation, 90% and 95% percentile values, maximum) show the
occurrence of high concentration peaks during the period.
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2.3.2. Vitoria

The MRV comprises a large port system, heavy vehicular traffic and an industrial park
that includes steel production, pelletizing, quarry, cement and food industries, chemical
industries and an asphalt plant (IEMA, 2011a) that are potential sources of
particles. Tomonitor the air qualityin the MRV, eightair quality monitoringstations set in
different locations are managedby the local environmentalagency(IEMA). According to
the environmental agency (IEMA, 2011a), the majorcontributor sources of totalparticles
arevehicular emissions(emission ofparticles fromheavytrafficarteries) followed by
industrial emissions(mainly the pellets making and steelindustries).

Table 3 presentsthe descriptive statistics of 24-hour-mean concentrations of PMg
measuredduring 2011 at the eight air quality monitoring stations located in the Vitoria
region (IEMA, 2011b), except to Vila Velha-centro station, which in 2011 did not
register enough data (min70%) for analysis. The data show that the largest mean
concentration value as well as the largest variability (as suggested by the standard
deviation and the range) occurred at the Cariacica station. In all air quality stations, the
maximum value is higher than the WHO annual air quality guideline forPM,, (WHO,
2005). As in the case of Dunkirk, although the mean values are less than 50 pg/m? in all
stations, the other statistical parameters (standard deviation, 90% and 95% percentile
values, maximum) show the occurrence of high concentration peaks during this year.

Details about quantitative analysis between perceived annoyance and particulate matter
can be find in Machado (2018).

3. Multiple Correspondence Analysis (MCA)

Acoording to Le Roux & Rouanet (2010) the correspondence analysis was established
in 1963 in France(see, e.g., Benzécri, 1969) as a geometrical method,but only after 1980
was spread throughout the world by the books published in English, see,
e.g.,Grenacre(1984), Benzécri, (1992), Le Roux &Rouanet, (2004). MCA can be
viewed as an extension of simple correspondence analysis in that it is applicable to a
large set of categorical variables (Greenacre, 2007). MCA, as the counterpart of PCA
for categorical variables, became standard for the analysis of questionnaires (Le Roux
&Rouanet, 2010).

MCA is amultivariate data analysis technique for categorical data, used to detect and
represent data graphically (by the scatterplot) as a set of points with respect to two
perpendicular coordinate axis: the horizontal axis often referred to as the x-axis and the
vertical one as the y-axis. The objectiveof this techniqueis to analyse graphicallythe
relationshipsamongvariables, response categoriesand objectsby  reducing
thedimensionalityof the data set (Crivisqui, 1995; Lebart et al., 1984).

To apply MCA, data areinitially representedbya table ofrespondentsversusquestions:the
lines representthe respondentsparticipating in the surveyand the columns represent the
questions from the questionnaire, so eachfilledcellis the response category (answer)
chosen by each individualfor each question. The questions arecategorized
variableswithfinite number ofresponse categories, for example, tothe question"Do you
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feel annoyedbyair pollution?", the variable “annoyance” has the followingresponse
categories(with theirencodings): not annoyed (ANNOY-1); slightlyannoyed (ANNOY -
2); very annoyed (ANNOY-3); extremely annoyed (ANNOY-4) with also the
possibility of “not known/response” (NK)” (ANNOY-9/99). Each respondentcan
chooseone and only oneresponse categoryfor each variableorquestion. Thus, if the
individual of line lanswered "very annoyed" to the above question thevariablecellwas
filledwith the"ANNOY-4" category, and so on forallthe individualsfor each variable.

According to Le Roux &Rouanet (2010), interpretation of MCA outcome isbased on the
observationof the cloud ofpoints, whichis defined asa finiteset of pointsin a
geometricspace.The cloud of pointscanrepresent variables, response categoriesand
individuals, so in this work the cloud of points represent the response categories.

The great advantageof MCAisthe possibility toreduce themulti-dimensional spacein an
optimalsubspacethat allowsthe studythe scatterplot and the consequentanalysis and
interpretation  ofresults. The generatedgraphsallow tovisuallyassess whetherall
variablesof interesthaveassociationsamong them and allow knowinghow to givethese
associations.

The sizeof the scatterplot depends on the numberof information pieces in each rowor
column,minus one.If the number ofcolumns isrelatedto theKcategories ofresponses of
theQ variables, the maximum dimensionalityof the scatterplot of categories isgiven
byEq.01,

(Fy- D+ + (K, —1)+(Ky —1)=(Ky + -+ K, +~+Kg)+ (-1)Q =K - @ Eqo1

Thedimensionalityreductionis normallymade toR?, to facilitate interpretationof the cloud
ofpoints (scatterplot). Le RouxandRouanet(2010) define themiddle point of thecloud of

point in the following way: Let P beany pointin space and'[-"lrf k]‘ & =12, .., xythe points of
categoriesfor thescatterplot, so themidpointof the cloudpointisthe G point by the vector

PG a3 Eq.02,

— 1 E—
PG = EZP.-’W Eq.02

The point Gdoes not dependon the choiceof thepointP, i.e.,whatever thechosen pointP
is, point Gis always the same. Thus,thepoint Gis definedas the averageof thecoordinates
of all pointsgiven by Eq.03,

1
G = —Z_.'uf‘f Eq. 03
Tl

The distancebetween pointsdepends on the differentchoicesofresponse categoriesfor
each variable. Aslower the frequencies of the response categories are, as greaterthe

distance betweenindividuals become. Let ik be the number of subjectswho choseboth

-
categoriesk and k’, then the square of thedistancebetween “ and M¥ s given in
Eq.04,
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As more categories k' and k are chosenfor the sameindividuals, as shorterthe

¥
distancebetweenM ¥ andM ¥ is, and as closer two category points are, the stronger is the
association between them. As lower the frequency for the category £ is, the farther from

the centre the point M “ . The lessfrequent the category ofresponse is, the more it
contributes to the overallvarianceof the cloud of individual points. And the
lessfrequentthe standardof responsesof an individual is,the more it contributes to the
total variance(Le RouxandRouanet, 2010).

The first principalaxis of acloud of categoriescanbe defined as theline passing through
themidpointof the cloud.The secondmain axisisperpendicular to the firstone and is also
passing through the midpoint of thecloud of categories points. The same process is
followed to define thethird axis, the fourth axis, andso on. There are no set rules forthe
number ofaxis to beanalysed (Grenacre, 2006). In this study,it appears thatthe first
twoaxisholdthe highest percentageof the total variabilityof the data. Therefore,scatter
plotsof categories are formed from thefirst two axis.

Theresults of the MCAcanbe confusingdepending on thenumber ofvariables. Because
ofthis, the valuesof the contributionsgenerated from the application ofMCA
“collaborate”in the interpretationof the axis(LeRouxandRouanet, 2010). Therefore, in
the present work the contribution of each category as well as their sum are analysed to
identify the variable that most contributes to the interpretation of eachaxis.

To apply theMCA, itis possible to selectrows and columnsthat will generatethe active
pointsand the illustrative or supplementary points. The active pointsare responsible for
determiningthe orientationof the principal axis,providing the necessary information for
theconstruction of theoptimalcloud of categories points. However, it ispossible to
include moreinformation which isrepresented bysupplementary orillustrativepoints. The
supplementarypoints maybe plottedon the mapalong with the active points, and they are
useful in interpreting features discovered in the primary data, but do not contribute tothe
construction of theaxis (Grenacre, 2007).Thus,supplementarypointsare used to
representinformationabout the phenomenonunder studyandinvariableinformationover
time, such as sex, race, or information forinfrequentcategories.

According to Le Roux &Rouanet, (2010) the contribution ofa category pointto
constructanaxisdefinesthe importance of thispointfor this sameaxis.Through the
coefficientsof this contribution, itispossible to identifywhich categories(orpoints) should
be considered forthe interpretationof  eachprincipal  axis.  Therelative
contributionconstitutesthe axiscontributiontothe varianceof the individual point,so
thatthe qualityof representation ofa pointcorrespondsto the sumof thesquaredcosines of
axisland axis2.Thetestvalues assist the interpretation, but they don’t contribute to the
totalvariance and are interpretedto diagnosehow wellrepresentedthe
supplementarypoints(Greenacre, 2007).

4. RESULTS AND DISCUSSION
To generate each MCA stage,the active and supplementary variables weredefined, and

the number of factors was setto compose the factorial plans. This decision was based on



the analysis of the composition of the populations study. There are no set rules defining
how many factorial plans should be scanned in graphics (Le Roux &Rouanet, 2010). To
facilitate interpretation, the first two factorial plans (axis 1 and 2) was selected to
compose the correspondence graph (scatter plot). Table 1 presents the questions of
interest, the selected variables to represent these questions and the factors represented as
groups of variables/ questions. The sociodemographic andlocal variables are considered
to compare differences and similarities between the respondents' opinions in the two
study areas. It is important to note that in the first MCA (Figure 3) all active variables
selected are nominal and ordinal while the supplementary variables (local) are nominal.

Table 4 presents the results obtained wusing the MCA from a
matrixintersectionof1033individuals or respondents (rows) andtheir responsescategories
to the five questions(columns) of the questionnaire (factor group named as “air
pollution” in Table 1) from the surveys conducted in both study areas. Theresponse
options (categories), encoding, frequency and percentages, coordinatesof the twoaxis
(F1 and F2), contributionsin the constructionof the two axisand the squaredcosine
valuesare also presented in Table 4 for each active variable. The coordinates for the axis
F1 and F2 are the position of each category in the scatter plot (cloud of points). The
proportion of the variance of the cloud due to the point is called the contribution of the
point to the cloud. Thus, the sumof the category contributions for each variable in Table
4 shows that the activevariable““annoyance” contributes the most to thecloud and to
eachaxis  (annoyancecontributes27.9% to the axis Fland25.9%toF2).The
representation’squality is express by the value of squared cosines (how high is the
square cosine value higher is the quality of representation).

Figure 3 is the correspondence graph (scatterplot) with the coordinates of axis F1 and
F2 generated for the active variables shown in Table 4 (“air pollution”) and the
supplementary variables shown in Table 5 (“local”). The axis F1 and F2 explain about
71% of the variability from the database, considering all active variablessimultaneously,
which is considered as an excellent performance (Le Roux &Rouanet, 2010).

Analysing the direction from right toleft on the F1 axis there is aprogressive
tendencyfor increased levels of annoyance as indicated by the respective categories
(ANNOY1-not annoyed, ANNOY2- slightlyannoyed, ANNOY3-very annoyed and
ANNOY 4-extremely annoyed). Thesame progressive tendencycan beobserved forthe
variables: importance of air quality (IMP1-not important, IMP2- slightly important,
IMP3-very important, IMP4-extremelyimportant); industrial risk perception (RISK1-not
exposed, RISK2- slightly exposed, RISK3-very exposed, RISK4-extremelyexposed);
assessment of air quality (AIRQI1-excellent AIRQ2-good, AIRQ3-bad, and AIRQ4-
horrible); and air pollution perception (PPOL1-never, PPOL2-sometimes, PPOL3-often,
PPOLA4-always). Thus, the first axisF1 can be considered as defining (from the right to
the left) a scale of “perceived annoyance”, and the second axis F2 appears to oppose
moderate response categories (lower side) to both extremely positive and extremely
negative responses. The scatter plot can also be interpreted through the parabolic shape
of the cloud of points of the chart from the bottom up to the centre setting categories for
“slightly” and “very” levels, while the upper right corresponds to the “not” level and the
upper left to the categories represented by the level “extremely”. Such a pattern of
response suggests what is known in the literature as the “Guttman effect” (Greenacre &



Blasius, 2006)or“horseshoeeffect” (Van Rijckevorsel, 1987 in Greenacre & Blasius,
2006) due to itsparabolicshape or arch. This is a structured form of the distribution of
the categories of annoyance levels, which are arranged in a hierarchical way, from those
who do not report nuisance (upper right), to those who express moderate annoyance
(vertex of the parabolic) and arriving at extremely annoyed level (top left).

The joint progressionof annoyance levels and other active categories from right to left in
axisF1 indicates that an individual who reported being extremely annoyed due to air
pollution also thought that the air quality was extremely important, felt extremely
exposed to industrial risks, assessed air quality as horrible and always perceived air
pollution by dust/odour/air visibility. Thus, another possible pattern visible in Figure 3
is the "battery effect" it is often observed in survey analysis which the respondents
choose similar answers without necessarily considering the content of the questions.
However, we can’t affirm that it is a battery effect because these questions were not
presented in the same order to the Dunkirk inhabitants and the Vitoria inhabitants as
selected for this analysis. Furthermore, the response options presented for the question
concerning the assessment of air quality were ordered in such a way that they express
“opposed feelings” in relation to the response to other questions, causing
therespondentto give due regardbefore answering.

Table 5 presents the categories for the sub-regions/areas where the respondents live, the
code for each location, the frequencies and percentages of responses, the coordinates for
each response category and the test values for the axisF1 and F2 related to the
supplementary variables of the “Local” group. The test value is an indication of the
significance of the obtained results (5% p-value or 1.96p-valuein absolute
terms)(Crivisqui, 1995). The test value was calculated as the distancefrom each pointto
the originof the axis F1 and F2 (in Figure 2), in numbersof standard deviations.

It is important to observe thenegative test values, since the negative values in axisF1
correspond to the local variables or the area wherepeople have reported to be very
annoyed,whilepositive test values correspond tothe local wherepeople have
reportedlittle or noannoyed by air pollution. According to the correspondence graph in
Figure 2, the locations where respondents reported being very annoyed due to air
pollution correspond to the localities that have negative test values (on the left part of
the F1 axis): Grande Synthe (LOCAL-D7) because their location is at -2,699 standard
deviations from the mean point (origin) on axis F1; Petite-Synthe (LOCAL-DS8) test
value = -3,11; Jardim Camburi (LOCAL-V4) test value = -4,138 and Enseada do Sua
(LOCAL-V6) test value= -4,812.Thus, residents in this sub-regions/ area reported
intense levels of annoyance and reported being “very exposed” to industrial risk, often
assessed the air quality as “horrible” and perceived “high levels” of air pollution due to
dust/odour/opacity in their neighbourhoods. It is very interesting to note that a
comparison with the air quality results shown in Tables 2 and 3, suggests that, for both
urban regions, the areas where the inhabitants reported higher levels of annoyance do
not correspond with the areas where higher mean of particulate pollution were measured
by the network of monitoring stations.Maybe there is a gap between the measurement of
pollutants and the perception that does not correspond to the reality of measurements
and that is important to investigate the other pollutants behaviour.

Figure 4 shows the correspondence graph between the active variables in the “air
pollution” group and the supplementary variables in the “sociodemographic” group. In
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this  graph, the localvariableswere removedto facilitate  visualizationof
thecorrespondence withsociodemographicvariables: gender, age, occupation and level
of education. Visually the most supplementary variables are close to theoriginof the
graph.

Table 6 shows the results (frequency, coordinates and test value) for the correspondence
graph in Figure 3 by each response category of sociodemographic variables. For MRV,
it is possible to see that women reported being more annoyed than men, while in MRD
this same association was not significantly. Consequently, in MRV women felt more
exposed to industrial risk, assessed air quality as more important and perceived air
pollution by dust/odour/opacity more than men. According to Fisher et al. (1991), these
gender differences are noticeable especially in relation to environmental risks.
Explanations are linked to the social roles of women in society, roles that are most often
oriented towards health and children. Gustafson (1998) also discusses this difference
between men and women in relation to their roles in society and the power relations that
exist between them. For example, women are more sensitive to environmental risks
because they take care of their homes and children and clean the house normally more
frequently than men, especially in more conservative societies.

Regarding the correspondence graph (Figure 4), inMRDthere was no significant
correspondence visible between the age categories and the annoyance categories.
However, in MRV it is possible to visualise a progressive relation between age (AGE-
V1, AGE-V2, AGE-V3, and AGE-V4) and levels of annoyance. As age increased, the
levels of annoyance, importance of air quality, perceived exposure risk, assessment of
air quality, and perceived air pollution also increased. This association can be confirmed
considering the test values in Table 6. Respondents older than 34 years (AGE-V3,
AGE-V4) are associated to being very orextremely annoyed more than young
respondents (AGE-V1, AGE-V2). Normally, elderly people are more sensitive to health
problems since they belong to the more sensitive population sub-groups (it should be
noted that children do not participate in the survey and women responses were
discussed above) and experience the effects of air pollution more often, such as when
removing dust for house cleaning. Although this association is not so clear in MRD
compared to MRV, it should be noted that the results of Lercher et al.(1995) and
Klaeboe et al.(2000) suggest that older age is a determinant of perceived air pollution.

Regarding occupation, in MRDunemployed (OCCUP-D2) and student (OCCUP-D4)
are on the right side of the F1 axis, thus, they are associated to being slightly or not
annoyed by air pollution. While in MRVthe categories associated to being very and
extremely annoyed by air pollution are the retired group (OCCUP-V3) and the
unemployed (OCCUP-V2) on the left side of the F1 axis. This association is punctual
for the retired group (test value = -3,44) in MRV, and can be justified because generally
they are the group with older age that are also associate to being very and extremely
annoyed by air pollution.

Considering the corresponding graphand the test values for level of education categories
only in MRV, it is possible to see that the university group (EDUC-V4) are on the high
levels of annoyance side of the axis F1. Although, Klaeboe et al.(2000), suggested that
the education level was a determinant of perceived air pollution, in the present analysis
there was no correspondence found with annoyance and levels of education for both
surveys.
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Figure 5 is the correspondence graph between “Air pollution” and “Health” groups. The
supplementary variables selected were “health problems” and “health effects”. People
who report “no” (HEFE-1) occurrence of health problems caused by air pollution are
also the ones who are “less annoyed”. And people who answered “yes” (HEFE-2) to
occurrence of health problems are associated to “being very annoyed”.

In Table 7 thetestvalue = -5,113for the variable health problems caused by air pollution,
presented indicate the same association, people who answered “no”(HEFE-1) shown on
the right part of the graph, tend not to feel annoyed by air pollution, while those who
responded “yes”(HEFE-2) shown on the left sideof the graph, tend to report being
extremely annoyed by air pollution. For this group of people that responded “yes”, the
main problemsreported were eye irritation (HPROB-1)lung/respiratory (43%) but there
is no evident association. The test value= -2,85 for health effects, indicate that people
who reported being very/ extremelyannoyed by air pollution were associated to the ones
who reported allergies(HPROB-3). Although, previous epidemiological studies have
shown that certain levels of particulate matter concentrations and related pollutants can
cause such health effects and increase the number of hospitalizations for respiratory
problems (Pope III, 1991; Schwartz, 1991; Braga et al., 2001; Gargon et al., 2006; Llop
et al., 2008), in this analysis was no correspondence found with annoyance and health
effects.

To further explore these survey data, the MCA between the factors groups “Cause” and
“Local” was carried out and the active variables“source”, “meteo”, “season” and
“day/night” as well as the supplementary variables “Dunkirk” and “Vitoria” were
selected for analysis. Table 8 presents the summation of the coordinates, contribution
and squared cosine values for each response category. It can be observed thatthe
categories grouped under the “METEO” and “SEASON” contributesignificantly toF1
axis. And the categories “SOURCE” contribute significantly to F2 axis. The summation
of the contributions of the other response categories as well as the value of the squared
cosines for the F1 and F2 axiscan confirm such affirmations.

Figure 6 presents the correspondence graph between the factor groups “Cause” and
“Local”. Analysing the active variable “METEQO”, the respondents that answered “no”
to the question regarding the influence of meteorological conditions on the perception
of air pollution (METEQO-2) are located on the right part of the F1 axis, while the left
part of the F1 axis indicates the respondents who answered “yes” (METEO-1).
Analysing the active variable “SEASON,” the left part of the F2 axiscorresponds with
the yes (METEO-1)categoryit is possible to see a progressive tendency from spring
(SEASON-4), tosummer (SEASON-1), to autumn (SEASON-2), to winter (SEASON-
3). That is, the respondents reported “yes” to the question about the influence of
meteorological conditions on the perception of air pollution also perceived a progressive
effect of seasonality from spring and summer to autumn and winter. As shown in others
studies (e.g. Castanho&Artaxo, 2001; Albuquerque et. al., 2012) meteorological
conditions have a major influence on the suspended particle concentrations, which can
explain this association between seasons and perception of air pollution.
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Regarding the active variable “SOURCE”, it is possible to observe the response
category “source industry” (SOURCE-2) on the upper-right part of the graph and the
categories “building” (SOURCE-4), “suspension of soil” (SOURCE-3), and “vehicle”
(SOURCE-1) on the lower-middle of the graph with no association with the variable
“METEQ”. This clearly shows the important role of industry in relation to air pollution
in the two examined industrial urban areas, especially as this is perceived by the
population. The response categories “yes” (DN-2) and “no” (DN-1) for perceived air
pollution changes between day and night are close to the origin and arenon-significant.

For the “LOCAL” supplementary variable, the lower part of the graph and on the
middle and on left of the F1 axis corresponds to the areas in Vitoria showing that the
people perceived an influence of weather changes on the quantity of particles or dust
(corresponding to METEO-1). The upper part of the graph on the middle and right part
of the F1 axisshows that in Dunkirk, there is no perceived association between the
meteorological conditions and air pollution (corresponding to METEO-2). This result
may be related to the fact that people who live close to industries are already
accustomed to pollution and they do not feel the influence of weather changes on the
perceived air pollution. Furthermore, as Figure 1 indicates, in Dunkirk industrial
pollution sources are more interspersed within the urban area, while in Vitoria they are
more at the boundaries of the city (especially northwest, but also partly southeast) and
therefore the meteorological conditions — such as wind direction and wind speed — may
influence on perceived air pollution.

Regarding the categories “Source” associated with “Local” the results in Figure 5
suggests that, for Vitoria, the locations far from the main industrial areas, like Cariacica
(LOCAL-V7) and Vitoria-centro (LOCAL-VS5), were found to be associated with the
construction work/building source (SOURCE-4) and slightly with the vehicular source
(SOURCE-1) of air pollution. It should be noted that in these areas, and especially
Cariacica, high levels of particulate pollution were measured by the air quality
monitoring stations (Table 3) and according to IEMA (2011) the main source of
particulate matter in Cariacica is construction work. Currently, construction work in
Vitoria is developing rapidly in terms of housing construction and paving streets and
roads and the number of vehicles is also increasing, which can contribute to increasing
air pollution and dust that cause annoyance, especially since these locations are further
away from industrial sources. In Dunkirk, the locations close to the main industrial
areas, St. Pol Sur Mer (LOCAL-D6), Grande Synthe (LOCAL-D7) and Petite-Synthe
(LOCAL-DS8) were found to be associated with the “industry” source (SOURCE-2),
while the “construction work/building” and “vehicular” sources are not significant, as
are the “industrial” sources which are located next to residential areas and visible by the
main beaches. St. Pol Sur Mer is also the location in Dunkirk where the highest levels
of particulate pollution were measured (Table 2) and very close to the industry sources.

The above results may also partly be explained due to the size of the population in
Vitoria, which is larger than in Dunkirk,and the fact that public transport in Dunkirk is
well developed; therefore, thenumber of vehicles circulatingin Dunkirk is not as high as
in Vitoria. According to Rotkoet al.(2002) and Amundsen et al. (2008) heavy traffic is
related to annoyance caused by air pollution, so this result can explain why people
exposed to heavy traffic in Vitoria perceived vehicular sources more significant than
Dunkirk, especially in areas which are not as influenced by industrial sources. Also, as
noted above, currentlythe construction sectorin Vitoriaisdeveloping rapidlyboth interms
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ofhousing construction and pavingstreets and roads, which can generate dust that may
cause annoyance. As found by Nikolopoulou et al., (2011) the air quality is often
considered to be poor at construction sites, which are burdened with higher PM
concentrations.

Table 9 shows the coordinates and the test values for the “LOCAL” supplementary
categories. Regarding the test values, there is a strong association (not contribution)
with the variable that contributes to the F2 axis. The positive test values for the F2 axis
are the Dunkirk locations in the upper quadrants of Figure 6, mean the residents which
perceived urban air pollution from industries sources. The negative test values for the
F2 axis are the Vitoria locations in the lower quadrants, which perceived urban air
pollution from construction works and vehicular sources.

5. CONCLUSIONS

The purpose of this work was to explore relationship among variables that can influence
behaviour of people about perceived annoyance caused by air pollution applying
multiple correspondence analyses(MCA) technique. The data base is from a complex
survey about air pollution, environmental issues and quality of life, developed in two
metropolitan areas, Dunkirk (France) and Vitoria (Brazil), since people frequently
report feeling annoyed by air pollution in both regions.

The results analysis showed a progressive relationship between levels of annoyance and
the variables from “air pollution” factor group. Thus, as the levels of annoyance
increased, the levels of the other qualitative variables (importance of air quality,
perceived exposure to industrial risk, assessment of air quality, perceived air pollution)
also increased. It is possible to conclude that people who reported feeling annoyed by
air pollution also thought that air quality was very important, were very concerned
about exposure to industrial risks, and assessed air quality often as horrible and
frequently perceived air pollution by dust/odour/visibility. It is important to emphasize
that this result cannot be considered “battery effect” since these questions were not
applied in the sequence in which it was presents the results analysed.

In addition, the summary results of PM;, concentration measurements in the two
regions showed values above the guidelines established by the World Health
Organization, which can be an indicator of attention to the possibility of occurrence of
health problems, quality of life effects and complaints about perceived annoyance.
According to the correspondence graph, people who lives in areas close to industries,
for example Petite-Synthe and Grande Synthe (in Dunkirk) and Enseada do Sud and
Jardim Camburi(in Vitoria) have reported being very annoyed by air pollution (specially
dust). Although PM, measurements suggest that these are not the areas with the highest
levels. Thus, location and the proximity to industrial sources of air pollution play an
important role to explain people's behaviour.

This study has explored the association between respondents’ perceptions and
individual characteristics. With respect to gender and age were corresponded with
perceived annoyance in Vitoria while in Dunkirk there was a much looser
correspondence. In general, women were more annoyed than men, while people older
than 55 years reported feeling more annoyed than people in other age ranges. Thus, we
conclude that, for Vitoria, women are more annoyed than man and there is a progressive
relationship between age ranges and the variables: level of annoyance, importance of air
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quality, perceived exposure to industrial risk, assessment of air quality and perceived air
pollution by dust/odour/visibility.

Socio-economic variables have been shown to be associated with the perception of local
air quality, suggesting that these may be important factors in a study of perceived air
quality (Kohlhuber et al., 2006). In our study, the relationship between different forms
of occupation remains controversial. Was found that involvement of retired and
unemployed was associated with high levels of annoyance in Vitoria but, in Dunkirk
students and unemployed groups were associated with low or none level of annoyance.
Previous studies have associated higher levels of education to be associated with higher
annoyance level or poor air quality perceptions (Jacquemin et al., 2007; Kim et al,
2012). Though we did not find a significant association between levels of education and
levels of annoyance was found that university people were more concerned about air
pollution effects on quality of life than those with no or less than university level in
Vitoria and the association was not significant in Dunkirk. The importance of
socioeconomic factors in the context of air pollution research has been emphasized
because they represent underlying aspects that affect susceptibility, exposure, or disease
diagnosis and treatment (Bell et al. 2005). Therefore, there is need for careful choice
and interpretation of socioeconomic factors depending on the location, and can be partly
attributed to social/cultural difference and to the different weather conditions.

It was observed significant association between perceived health risks related to high
level of annoyance caused air pollution, importance of air quality, perceived exposure to
industrial risk, assessment of air quality and perceived air pollution by
dust/odour/visibility. Previous studies reported a significant association between
perceived air quality and self-reported health status (Kohlhuber et al., 2006; Llop et al,
2008). Though self-reported health and perceived health risk refers to different
concepts. Perceived occurrence of health problems related to annoyance caused by air
pollution was found to be associated with gender (feminine), age, level of education
(university groups) and the type of occupation (retired groups) though it varied by study
location. The difference between the two sites could be explained by the difference in
the age, occupation and education levels of the residents. There were more people older,
employed and with university level in Dunkirk as compared to Vitoria, while in Vitoria
there are more young people, students and with primary level of education as compared
to Dunkirk.

The main health effects reported are lung/respiratory, allergies and eye irritation, which
are common symptoms for many urban air pollutants such as PM and NOx (WHO,
2005). But, was found association only with allergies and high levels of annoyance. It
should be noted that the self-reported health status is often associated with perceived air
pollution more than with measured air pollution.

The results of the MCA for the active variable “CAUSE” showed that people perceived
that weather conditions and seasonal changes could affect perceived annoyance. This
perception was more evident for Vitoria, where heavy industries are at the boundaries of
the city and their effect is more influenced by the prevailing meteorological conditions,
such as the wind speed and especially direction. In Dunkirk, people identified industrial
sources as important cause of air pollution and did not perceive that air pollution
annoyance changes with differences in weather. Furthermore, in Vitoria, the influence
of building or construction and vehicular sources on the perception of air pollution was
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evident. Thus, considering the geographic location of these two regions, the weather
conditions could influence the perceived annoyance, and therefore the location can
justify this differences.

Although the spatial patterns of the results from PM;, concentration measurements in
the two cities do not coincide with the reported levels of perceived annoyance in each
sub-region, they could provide a better insight to the behaviour of respondents. For
example, there is an indication that sources related to construction works, for example,
influence more the perception of annoyance from air pollution than the absolute levels
of particulate matter measured in an area. Thus, respondents living in the areas with
higher air pollution levels appear to distinguish a more significant influence of
meteorology on air pollution, possibly since high levels of air pollution are associated to
specific meteorological conditions that lead to the accumulation of pollutants from
nearby sources in these areas. It is important to note that air pollution perceptions mark
differences in the two study areas which indicates that perceptions in general may
depend on an area's overall setting and availability of industries, other pollution sources
or daily activities.

The results of this study have shown that Multiple Correspondence Analysis is a very
useful tool in providing insight on environmental issues affecting the quality of life,
such as the factors affecting the levels of air pollution annoyance of populations living
in urban areas. Such tools can derive and synthesize important information from citizen
surveys which can complement air quality measurements, to define the best mix of
measures to address air quality issues. Such measures can include national or regional
emissions reduction policies to meet the air quality objectives in background locations,
as well as more site specific, short-term measures to address air pollution episodes in
“hot spot” locations. Such combination of measures is often necessary for the protection
of the public health and the improvement of the quality of life of citizens.

6. Acknowledgements
The authors would like to acknowledge the support of FAPES and CAPES (Brazilian

governmental agencies for technology development and scientific research). They
would also like to acknowledge COFECUB, IrénéeZwarterook and a research group
studying industrial risk and the urban environment in the TVES laboratory, Université
du Littoral Cote d’Opale - France.

7. References

Albuquerque T.T.A., Andrade M.F., Ynoue R.Y. (2012). Characterization of
atmospheric aerosols in the city of Sdo Paulo, Brazil: comparisons between polluted and
unpolluted periods. Environmental Monitoring and Assessment, 84(2), 969-984.

ADEME (2002). Classification et critéresd’implantation des stations de surveillance de
la qualité de Iair. Retrieved on 28 July 2013 from:
http://www.oramip.org/pdf/ademe_typologies.pdf

Amundsen A.H., Klaeboe R.,Fyhri A. (2008). Annoyance from vehicular air pollution:
Exposure—response relationships for Norway. Atmospheric Environment. 42, 679-688.

16



Atmo Nord-Pas-de-Calais (2009). Bilan 2008 des poussieressédimentables sur le
Dunkerquois. Rapport d’études 01 — 2009- LC. Available at: http://www.atmo-npdc.fr

Bell, M.L., O’Neill, M.S., Cifuentes, L.A.; Braga, A.L.F., Green, C.,Nweke, A.,Rogat,
J.,Sibold, K. Challenges and recommendations for the study of socioeconomic factors
and air pollution health effects. Environ. Sci. Policy 2005, 8, 525-533

Benzécri,J.P.(1969) Statistical analysis as a tool to make patterns emerge from data. In
S. Watanabe (ed.), Methodologies of patenrecognition.New York: Academic press.

Benzécri, J.P. (1973) L’ Analyse des Données. Vol. 2: L’ Analyse des Correspondances.
Paris: Dunod.

Benzécri, J.P. (1992) Correspondence analysis handbook. New York: Dekker.

Berglund, B., Berglund, U., Lindvall, T. (1987). A study of response criteria in
populations exposed to aircraft noise. Journal of Sound and Vibration, 41, 33-39.

Berglund, B., Berglund, U.,Lindvall, T. Measurement and control of annoyance. In
Environmental Annoyance:Characterization, Measurement and Control; Koelga, H.S.,
Ed.; Elsevier: Amsterdam, The Netherlands, 1987;pp. 29—44.

Blanes-Vidal V., Suh H., Nadimi E. S., Lofstrom P., Ellermann T., Andersen H. V.,
Schwartz J. (2012) Residential exposure to outdoor air pollution from livestock

operations and perceived annoyance among citizens. Environment International, 40, 44-
50.

Braga A.L.F.,Saldiva, P.H.N., Pereira, L.A.A., Menezes, J.J.C.,Concei¢do, G.M.S., Lin,
C.L.,Zanobetti, A.,Shwartz, J., Dockery, D.W. (2001). Health effects or air pollution
exposure on children and adolescents in Sao Paulo, Brasil. Pediatr. Pulmonol., 31, 106-
113, 2001.

Castanho, A.D. A., Artaxo, P. (2001). Wintertime and summertime Sao Paulo aerosol
source apportionment study. Atmospheric Environment, 35, 4889-4902.

Crivisqui, E. (1995). Apresentagdo da andlise fatorial de correspondéncia simples e
multiplas. Programme de Recherche et D'Enseignement en Statistique Appliquée.
PRESTA, Belgique: Université Libre de Bruxelles.

Egondi T., Kyobutungi C., Ng N., Muindi K., Oti S., Vijver S. V. De, Ettarh R.,
Rocklov J.(2013) Community perceptions of air pollution and related health risks in
Nairobi Slums. Int. J. Environ. Res. Public Health, 10, 4851-4868.

Fischer G.W., Morgan M.G., Fischoff B., Nair I, and Lave L.B. (1991), “What risk are
people concerned about?”, Risk Analysis, 11, 303-314.

Gargon G., Dagher Z., Zerimech F., Ledoux F., Courcot D., Aboukais A., Puskaric E.,
Shirali P. (2006) Dunkerque city air pollution particulate matter-induced cytotoxicity,

17



oxidative stress and inflammation in human epithelial lung cells (L132) in culture.
Toxicology in Vitro, 20, 519-528.

Grenacre, M. J. (1984) Theory and Applications of correspondence analysis. New York:
Academic press.

Greenacre, M. & Blasius, J. (2006). Multiple correspondence analysis and related
methods. Chapman & Hall/CRC Press, London.

Greenacre, M. (2007). Correspondence Analysis in Practice, Second Edition. London:
Chapman & Hall/CRC.

Gustafson E. (1998). Gender differences in risk perception: theoretical and
methodological perspectives, Risk Analysis, 18(6), 805-811.

IBGE (2010). Instituto Brasileiro de Geografia e Estatistica — Senso 2010— Retrieved on
10 July 2011 from:www.ibge.gov.br

IEMA (2011a). Plano de Controle de Poluicdo Veicular do Estado do Espirito
Santo.Instituto Estadual De Meio Ambiente, Vitoria, Espirito Santo, Brasil. Retrieved
on 12 July 2013 from: www.iema.gov.br

IEMA (2011b). Inventario de Emissdes Atmosféricas da Regido da Grande Vitdria.
Acordo de Cooperagdo Técnica IEMA-ECOSOFT. Instituto Estadual De Meio
Ambiente, Vitoria, Espirito Santo, Brasil. Retrieved on 11 July 2013 from:
www.iema.gov.br

IEMA (2013). Relatorio de Qualidade do Ar da Grande Vitoria 2013. Instituto Estadual
De Meio Ambiente, Vitoria, Espirito Santo, Brasil. Retrieved on 11 July 2014
from:www.iema.gov.br.

Jacquemin B., Sunyer J., Forsberg B., Gotschi T., Oglesby L., Ackermann-Liebrich U.,
De Marco R., Heinrich J., Jarvis D., Toren K., Kunzli N. 2007. Annoyance due to air
pollution in Europe. International Journal of Epidemiology, 36, 809—820.

Kohlhuber, M., Mielck, A., Weiland, S.K., Bolte, G. (2006). Social inequality in
perceived environmental exposures in relation to housing conditions in Germany.
Environ. Res., 101, 246-255.

Kim M., Yi O., Kim H. (2012). The role differences in individual and community
attributes in perceived air quality. Science of the Total Environment, 425, 20-26.

Kleboe, R., Kolbenstvedt, M., Clench-Aas, J., Bartonova, A. (2000). Oslo traffic study
part 1: an integrated approach to assess the combined effects of noise and air pollution

on annoyance. Atmospheric Environment, 34, 4727-4736.

Lebart L, Morineau A, Warwick K. (1984). Multivariate descriptive statistical analysis.
Chichester, UK: Wiley.

18



Lercher, P., Schmitzberger, R., Kofler, W. (1995). Perceived traffic air pollution,
associated behavior and health in an alpine area. Science of the Total Environment 169
(1-3), 71-74.

Le Roux, B., Rouanet, H. (2004). Geometric Data Analysis, From Correspondence
Analysis to Structured Data Analysis. Dordrecht. Kluwer Academic Publishers.

Le Roux, B.,Rouanet, H. (2010). Multiple Correspondence Analysis, SAGE, Series:
Quantitative Applications in the Social Sciences, CA:Thousand Oaks Paris.

Llop S., Ballester F., Estarlich M., Esplugues A., Fernandez-Patier R., Ramon R.,
Marco A., Aguirre A., Sunyer J., Iiiguez C., on behalf of INMA-Valencia cohort.
Ambient air pollution and annoyance responses from pregnant women. Atmospheric
Environment, 42, 2982-2992, 2008.

Nikolopoulou M., Kleissl J., Linden P.F., Lykoudis S. (2011). Pedestrians' perception of
environmental stimuli through field surveys: Focus on particulate pollution. Science of
the Total Environment, 409(13), 2493-202.

Pope C.A. IIL, (1991). Respiratory hospital admissions associated with PM10 pollution
in Utah, Salt Lake and Cache valleys. Arch. Environ. Health, 46, 90-97.

OglesbyL.,KunzliN.,Monn C., Schindler, C., Ackermann-Liebrich U.,LeuenbergerP.
Validity of annoyance scores for estimation of long term air pollution exposure in
epidemiologic studies: The swiss study on air pollution and lung diseases in
adults (SAPALDIA). Am. J. Epidemiol. 2000, 152, 75-83.

PPA (2002). Plan de protection de 1’atmosphére de I’aglomerationDunkerquoise.
Retrieved on 20 April 2013 2013 from: http://www.nord-pas-de-calais.developpement-
durable.gouv.fr/IMG/pdf/ppa-dunkerque.pdf

Rotko T., Oglesby L., Kunzli N., Carrer P., Nieuwenhuijsen M.J., Jantunen M. (2002).
Determinants of perceived air pollution annoyance and association between annoyance
scores and air pollution (PM2.5. NO2) concentrations in the European EXPOLIS study.
Atmospheric Environment, 36, 4593—-4602.

Souza, L. B (2011).Estudo de Correlagdo Entre a Percepcdo do Incomodo Causado
Pelas Particulas Sedimentadas e seus Niveis de Concentragdo na Atmosfera. Dissertacao
de Mestrado - Universidade Federal do Espirito Santo, Vitdria.

Stenlund T., Lidén E., Andersson K., Garvill J., Nordin S. Annoyance and health
symptoms and their influencing factors: A population-based air pollution intervention
study. Public Health, 123, 339-345, 2009.

Schwartz, J. (1991). Particulate air pollution and daily mortality in Detroit.
Environmental Research, 56(2), 204-213.

Vallack H. W., Shillito D. E. (1998) Suggested guidelines for deposited ambient dust.
Atmospheric Environment, 32(16), 2737-2744.

19



WHO (2005). WHO air quality guidelines global update 2005. Report on a WHO
Working Group. Bonn, Germany, 18-20 October 2005. Retrieved on 28 July 2014 from:
http://www.euro.who.int/Document/E87950.pdf.

WHO (2014). Burden of disease from the joint effects of Household and Ambient Air
Pollution for 2012. WHO: Geneva. Retrieved on 28 July 2014 from:
http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP AAP_BoD_2
4March2014.pdf?ua=1

20



5 Spatial and temporal analysis of the effect of air pollution on
children’s health

The main objective of this study is to investigate the short-term association between air pollution
and emergency care for respiratory diseases in children aged 0-6 years. The generalized ad-
ditive model (MAG) of Poisson regression was used, the dependent variable was daily number
of visits to the hospital emergency service of people with respiratory diseases.

The independent variables are the daily concentrations of the atmospheric pollutants (PMyy,
SO,, NO,, O3 and CO), temperature, humidity and precipitation. Table 1 shows the descriptive
statistics of the variables used. Through the daily mean concentrations, estimates were made
for all the RGV and "in-loco” analyses with the consideration of children resident around 2 km
of the 8 air quality monitoring stations (RAMQAr).

As results we find that the increase of 10 micro grams per m? in the concentration levels of
air pollutants increased the risk of emergency care due to respiratory disease. In the general
region (Table 2), for PMyy, the increase was 2.43%, 2.73% and 3.29% in the accumulations of
5, 6 and 7 days, respectively. For SO-, the increase was 4.47% on the day of exposure (lag
0), 5.26% two days after, 6.47%, 8.80%, 8.76% and 7.09% in the accumulated of 2, 3, 4 and 5
days, respectively. NO,, CO and Og, for the general region, did not cause statistical significant
increases. CO showed a significant association for children living close to two monitoring sta-
tions and Os in only one (Table 3). We conclude that even within the limits established by the
WHO, the pollutants PM;o, SO2, NO, and O3 are associated with a higher risk for respiratory
diseases in children from 0 to 6 years and some effects were only identified in the disaggre-
gated localities by region, that is , "In loco”, which allows to capture greater variability of the
data.

This paper was submitted to publication to the Journal Cadernos de Saude Publica.
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RESUMO

Objetivo:investigar a associagdo de curto prazo entre a poluigdo do ar e atendimentos em

emergéncia por doengas respiratorias, em criangas de 0 a 6 anos.

Métodos:estudo ecoldgico, espacial e temporal realizado na regido da Grande Vitoria (RGV), ES,
Brasil. Utilizou-se o modelo aditivo generalizado (MAG) de regressdo de Poisson, com a variavel
dependente o numero diario de atendimentos por doengas respiratérias e as variaveis
independentes, concentragdes diarias dos poluentes atmosféricos (MP1, SO,, NO;, O3 e CO),
temperatura, umidade e precipitacao pluviométrica. Por meio das médias diarias das concentracdes,
foram feitas estimativas para toda a RGV e analises “in loco” com a consideracdo de criangas

residentes no entorno de 2 km das 8 estagbes de monitoramento da qualidade do ar (RAMQAr).

Resultados: o incremento de 10 pug/m® nos niveis de concentracdo de cada um dos poluentes
atmosféricos aumentou o risco de atendimento em emergéncia por doenga respiratoria. Na regiao
geral, para o MP4, 0 aumento foi de 2,43%, 2,73% e 3,29% nos acumulados de 5, 6 e 7 dias,
respectivamente. Para o SO,, o acréscimo foi de 4,47% no dia da exposi¢ao (lag 0), 5,26% dois dias
apos, 6,47%, 8,80%, 8,76% e 7,09% nos acumulados de 2, 3, 4 e 5 dias, respectivamente. O NOo,

CO e 0 O3, para a regiao geral, ndo causaram aumentos significativos. O CO apresentou associagédo
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significativa para criangas residentes no entorno de duas estagdes e o O3 somente em uma.

Conclusdes: mesmo dentro dos limites estabelecidos pela OMS, os poluentes MP4g, SO,, NO;, e O3
estdo associados a maior risco para atendimento por doencgas respiratérias em criancas de 0 a 6
anos e alguns efeitos sé foram identificados nas localidades desagregadas por regido, isto €, "in

loco”, que possibilita captar maior variabilidade dos dados.

DESCRITORES: Crianca. Efeitos Adversos. Poluicdo do Ar. Doengas Respiratorias. Epidemiologia.

Estudo ecoldgico.

INTRODUGCAO

As doencas respiratérias representam a principal causa de morbimortalidade de criangcas em todo o
mundo’. Existem evidéncias de que os poluentes atmosféricos emitidos por industrias e veiculos
automotores, mesmo em concentragdes dentro dos limites estabelecidos pela Organizagao Mundial
de Saude (OMS), estao claramente envolvidos na génese de sintomas respiratorios, maior nimero
de hospitalizacdes e obitos'2.

As emissdes de material particulado (MP), 6xidos de nitrogénio (NOy), compostos orgéanicos volateis
(VOCs), dioxido de enxofre (SO,)e poluentes fotoquimicos como o ozénio (O3), aumentaramnas
ultimas décadas devido ao crescimento da frota de veiculos automotores e ao crescente processo
de industrializacdo® Estudos realizados em grandes centros urbanos, em diversos
paises,mostraram associacado significativaentre os niveis desses poluentes € o numero de
atendimentosem emergéncia ehospitalizacdes por causas respiratdrias>*+>¢78910.11.12.1314

Para detectar essa associagao € necessario empregar técnicas estatisticas que permitam isolar os
efeitos da poluigdo do ar, uma vez que a ocorréncia de doengas respiratérias esta relacionada a
diversos outros fatores como, temperatura e umidade. A dificuldade metodoldgica na analise de tais
fendmenos consiste em detectar variacbes na ocorréncia dos desfechos associados a eventos de
poluicdo do ar de baixa intensidade. Os avancos das técnicas estatisticas tém possibilitado analises
mais precisas desse tipo de associagdo. Particularmente, os modelos de séries temporais tém
desempenhado um papel importante como ferramenta de analise nesses estudos com a
consideragcdo de areas geograficas discriminadas, proximas de estagdes de monitoramento da
qualidade do ar.

O modelo aditivo generalizado (MAG)'® & amplamente utilizado como uma técnica flexivel e efetiva
para modelar por meio de regressao nao-linear, dados coletados em fungéo do tempo sobre efeitos
dos poluentes na saude. Esse modelo também €& uma alternativa para o ajuste de relagdes nao

lineares nao especificadas e mostra que essa classe de modelos constitui uma boa opg¢ao para
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representar tanto a sazonalidade quanto a relagcdo entre a variavel resposta e os fatores de
confusao®.

Em geral, estudos epidemiologicos de séries temporais utilizam uma uUnica estagdo de
monitoramento fixa ou a média das estac¢des para representar a exposicao de toda a populacao aos
poluentes. Essa abordagem nao reflete a verdadeira exposigédo das pessoas”. Uma alternativa para
uma exposi¢cao mais realista € considerar uma pequena area geografica proxima da estacao de
monitoramento’®.

Poucos estudos epidemioldgicos avaliaram a influéncia dos poluentes por area de abrangéncia das
estagcdes de monitoramento, embora existam algumas evidéncias de que a exposi¢ao de erro de
classificacdo em analise de series temporais tende para um viés as estimativas para baixo, e nesse
sentido, nao limita a importancia dos resultados para satde publica'.

Portanto, metodologias nas quais as areas de abrangéncia sejam melhor discriminadas
espacialmente tornam-se um fator importante para obter inferéncias mais precisas. Nesse contexto,
0 objetivo deste estudo foi avaliar, por meio do MAG, a relagao de curto prazo entre o numero de
atendimentos de emergéncia por problemas respiratorios, em criangas menores de seis anos, com
niveis de poluentes atmosféricos observados na Regido da Grande Vitéria (RGV), com a
consideragao de variaveis temporais medidas por localidade "in loco" (area em torno das redes de

monitoramento) e por média entre as esta¢cdes (média regional global).

METODOS

Area de Estudo

Estudo ecoldgico, espacial e temporal, realizado na Regido da Grande Vitéria (RGV) no periodo de
01 de janeiro de 2005 a 31 de dezembro de 2010. A RGV écomposta por 7 municipios (Vitoria, Vila
Velha, Cariacica, Serra, Viana, Guarapari e Fund&o), abrange uma area de 2.318.917 km?, com uma
de populacdo de aproximadamente 1,7 milhdes de habitantes, sendo um dos principais polos de
desenvolvimento urbano e industrial do Espirito Santo'. As principais atividades poluidoras da
regiao incluem as vias de trafego, industrias de diversos seguimentos (siderurgia, pelotizagao,
mineracgao, cimenteiras), portos, aeroportos, emissdes residenciais e comerciais?®.

Na RGV existem oito estagdes de monitoramento da qualidade do ar, que juntas compdem a Rede
Automatica de Monitoramento da Qualidade do Ar (RAMQAr), gerenciada pelo Instituto Estadual de
Meio Ambiente e Recursos Hidricos (IEMA). Para a analise espacial, foram consideradas oito
regides no entorno das estagdes da RAMQAr, dentro de um circulo com raio de aproximadamente 2

km. (Figura 1)



Desfecho de Saude

Foram levantados dados dos atendimentos diarios por doengas respiratorias de criangas de 0 a 6
anos, atendidas nos servigos de emergéncia de dois hospitais da RGV, um da rede publica e outro
da rede privada:Hospital Infantil Nossa Senhora da Gldria e Centro Integrado de Atengéo a Saude
da Unimed Vitdria, respectivamente. As doencasrespiratorias foram codificadas de acordo com a
10? revisdo da Classificagdo Internacional de Doencas (CID-10: J00-J99). Foram levantados os
dados dos atendimentos de criangas que residiam a uma distancia de até 2 km das estagdes da
RAMQAr. Os bairrosforam localizados no mapa de areas de influéncia de cada uma das estacgdes de

monitoramento e a partir dessa informagéao, agrupou-se os atendimentos por area de influéncia.
Poluentes Ambientais e Variaveis meteorolégicas

As concentragdes diarias de MP1p, SO,, NO,, O3 e CO e as variaveis meteorologicas temperatura
(°C), umidade relativa do ar (%) e precipitagao pluviométrica (mm) referentes ao periodo do estudo

foram fornecidas pelo IEMA?.
Dados Faltantes

As falhas no monitoramento dos poluentes na RAMQAr ocorridos durante o periodo estudado, tanto
em dias isolados como em dias consecutivos, causaram lacunas nos registros das concentragdes e
foram corrigidas pelo método de imputacdo seguindo metodologia descrita por Braga®'. Nesse
meétodo as estimativas obtidas sdo explicadas pela correlagéo espacial entre os diferentes niveis do
mesmo poluente nos diferentes monitores e pela autocorrelagdo dos niveis do poluente no mesmo

monitor, ao longo do tempo.
Analise estatistica

A estratégia de modelagem consistiu em definir um modelo central com todas asinformacdes
conhecidas (tendéncia, sazonalidade, dias da semana, feriados e as condigbes meteoroldgicas), a
fim de explicar a variabilidade do numero de atendimentos por doencas respiratérias, exceto a

concentragao dos poluentes.

A escolha das variaveis e covariaveis para compor o modelo foram baseadas em testes e

diagnosticos em cada etapa do processo de modelagem. Os diagndsticos foram baseados na

analise residual e no critério Akaike (AIC)".



Modelo Aditivo Generalizado - MAG

O numero diario de atendimentos médicos representa um processo de contagem e o modelo aditivo
generalizado (MAG), com distribuicdo marginal de Poisson, foi a ferramenta estatistica utilizada para

estimar a forma da curva da relagao entre desfecho de saude e polui¢gdo do ar> 1314,

Sejay.} = {¥;},.z, uma série de contagem, ou seja,» = {0.1.... 1. A distribuigdo condicional de ¥;, dado
o passado F,_, que contém toda informacgao disponivel até o momento -1, € denotada por:

_:.:{_j‘r e L'F'r_l::' = %,(1)
em que u., representa o valor esperado (média) de ¥.. Assim, dada uma amostra ¥,.....¥,, composta
de "n" variaveis aleatdrias mutuamente condicionalmente independentes, pertencentes a V.1, a

fungao de log-verossimilhanga condicional € dada por:

Tl

Tl
Wu) = Z lnu{j‘r 1 L'F'r_l::' o Z':Frlﬂ.“r — )
= (2)

=1 ’

onde o vetor i = (u,....u,) depende dos pardmetros e do processo {¥:). Seja ¥, = [%,,....%,] o vetor
de covariaveis de dimensao p no tempo ¢, onde T denota a transposta, que pode incluir valores
passados de ¥, e outras informagdes auxiliares, tais como poluentes e variaveis de confusao
(tendéncia, sazonalidade e variaveis meteoroldgicas, entre outros). Neste estudo, a sequéncia
X.....X,, denota as concentragdes dos poluentes MP1o, SO, NO>, O3 e CO, portanto g=5, enquanto
Xigene - Xyeindica as variaveis de confusao no tempo f, (p>q).

A relagao entre Y; e o vetor X; € dada por:
In(ue) = B]_0 8% + Ei .y i (Xj), com g<p, (3)

onde (B, £), com g = (£, ... B;)7€ 0 vetor dos coeficientes a serem estimados (Bj € o coeficiente

J-ésima covariavel) e 7} € a fungdo suavisadora para a j-ésima variavel de confusao. Além disso, B

indica o intercepto da curva e esta associado a X,;= 1 para todo t. Todo o processo de modelagem
foi realizado no software R (R Development Core Team, 2009) com o pacote ARES?.

O risco relativo (RR) é frequentemente utilizado em estudos epidemiolégicos para medir o impacto
das concentragdes de poluentes atmosféricos na saude da populacédo exposta e é definido como a
razao entre as probabilidades de que um evento ocorra apos certa exposi¢cao e a de o evento ocorrer
sem ter havido a exposic&o ao fator de risco®.

O RR de uma covariavel poluente X;,j = 1,...,q, € dado como sendo a variagéo relativa na contagem
esperada de eventos de doencgas respiratérias pela variagcao ¢ de unidade na covariavel enquanto
mantidas as outras covariaveis fixas. Mais precisamente, como definido em?*, férmula (8), o RR é

dado por:



E(Y|X;=8X,1#])

RE 1__{. = -
X f} E{_le;f =0X,i ¢j] (4)

Para a regressao de Poisson o RR ndo depende dos valores X;, i#j, das outras covariaveis e pode

Ser expresso como:
RRx(§) = exp(B; §) (5)

Para o modelo MAG com distribuicdo marginal de Poisson, o RR e o seu intervalo de confianga
aproximado (IC), a um nivel de significancia a, de uma covariavel X, j=1...q, € estimado da
seguinte forma:

Ry (@)x; = exp(B;8) @ 1C(RRy (&) = exp(B, £ £ ze,s(B)D),  (7)
B, € o coeficiente estimado associado ao poluente X; em estudo com erro padréo s(f,) e za;, € 0
quantil #/5 da distribuigdo normal padrdo. A um nivel de significancia a, a hipotese a ser testada ¢
definida como Hp: RRy; =1 contra Hy:RRy; =1, onde RRx; = RRy(1)ou seja, RR da variagéo da
unidade em X;. A rejeicdo de H, implica estatisticamente que o respectivo poluente tem um efeito
adverso significativo na saude.

Neste estudo, os célculos dos valores dos RR(x) correspondem ao aumento de k=1000 (pg/m3)

3)

nos

niveis de CO e de k=10 (ug/m*) para os demais poluentes. Os resultados s&o apresentados em
aumentos percentuais nos numeros de atendimentos médicos e sado calculados através da

expressao:
%RR(x)=(RR(x)—1)x100. (8)
Defasagem (lag)

O estudo investigou os efeitos respiratorios associados aos niveis de poluicdo no dia do atendimento
na emergéncia (lag0) e nos dias anteriores (lag1, lag2, lag3). O efeito acumulado foi avaliado com as
médias méveis de dois a oito dias (MA01, MAO2, MA03, MA04, MA05, MA06, MAQ7)%.

O projeto foi aprovado no Comité de Etica Profissional (CEP) do Centro de Ciéncia da Saude da

Universidade Federal do Espirito Santo, sob o numero 04/11 em 14 de Maio de 2011.



RESULTADOS (700 palavras)

No periodo estudado foram registrados 46.421 atendimentos por doengas respiratorias de criangas
de 0 a 6 anos, residentes nas areas de abrangéncia das oito estagdes de monitoramento da
RAMQAr. A média diaria de atendimentos na RGVfoi de 21,19 (DP= 9,90) evariou de 1,72 a 4,84
atendimentos/dia nas diferentes regides. O maior numero de atendimentos foi de criangas
residentes na regido da Enseada do Sua.

A temperatura média no periodo variou de 20,85 a 29,36°C, a quantidade de chuva variou de 0 mm
a 117,80 mm (média= 3,78 mm) e a umidade relativa do ar variou de 61,79% a 97,27% (média=
77,47%).

As concentragdes dos poluentes ndo apresentaram comportamento uniforme entre as diferentes
estacdes, o que pode ser justificado pelas atividades poluidoras especificas de cada regido. As
concentragdes médias registradas no periodo estdo destacadas naTabela 1.

As médias dos poluentes nas estagcdes da RAMQAr sdo baseados em dados "in loco" e séo, em
geral, bem proximas e diferenciadas de forma significativa da média geral. Essa evidéncia empirica

mostra que as médias locais E(x), (L=1,...,8), sdo diferentes da média regional E(u").Esse € um
resultado esperado, pois o processo néo € estacionario nos momentos, isto &, E(u’)# E(u), para

L=1,...,8. Esse resultado justifica o estudo proposto no sentido de comparar o desfecho de saude
com relagdo aos poluentes nas areas espacialmente discriminadas, ou seja, areas em torno das
RAMQAr com a regiéo geral (RGV).

A série de contagens diarias de atendimentos, na regido geral, foi suavizado por uma "spline" com
12 graus de liberdade, definida por meio do critério de modelagem AIC e da analise residual. O
ajuste ndo paramétrico evidenciou sazonalidade e uma tendéncia decrescente ao longo do tempo,
fatores de confusdo que foramincluidos no processo de modelagem. O periodo de outono (margo)
para o inverno (junho) evidenciou uma sazonalidade com aumento do numero de atendimentos por
causas respiratorias.

A anadlise do diagndstico do ajuste do modelo, descrito anteriormente, por meio dos resultados
obtidos da Regressao de Poisson para estimagao do efeito do MP, da média mével 7 dias para
RGV esta apresentada na Figura 2. Observou-se que ndo havia evidéncia empirica de mal ajuste do
modelo, isto é, os residuos ndo sao correlacionados e sdo aproximadamente normais. Também, o
periodograma comprova que os residuos apresentaram caracteristicas de um ruido branco, isto €,
os valores do periodo estao distribuidos de forma uniforme em fungao da frequéncia. Essas analises

graficas residuais fornecem o suporte necessario para o bom ajuste do modelo e,



consequentemente, realizar inferéncias. Assim, a qualidade do modelo ajustados & garantida pelas
propriedades empiricas mostradas pelos residuos.

Os riscos relativos (RR) e intervalos de confianga (IC) para cada modelo ajustado "in loco" e na
regido geral foram calculados para cada poluente. A Tabela 2 apresenta os riscos relativos

estimados para um aumento de 10 pg/m3

nos niveis de concentracdo de cada um dos poluentes
atmosféricos para a regiao geral. Ao analisar os padroes apresentados nessa tabela, os gradientes
evidenciaram claramente os efeitos significativos de MP4, nos atendimentos, para defasagens
cumulativas. Para o SO,, na defasagem simples foram significativos os valores dos RR para o lag0 e
o lag2. ONOg, o CO e o0 O3 ndo apresentaram significancia estatistica no RRpara a RGV.

Na Tabela3 é apresentado um resumo dos valores de RR dos efeitos de cada poluente cujos
célculos apresentaram significancia estatisticae os resultados em negrito apresentam maiores
magnitudes. E verificado que, para os poluentes MP1o e SO,, os valores estimados de RR foram
maiores quando calculados para cada estacdo separadamente do que os obtidos para toda a RGV,
isto €, modelo ajustado onde as covariaveis correspondem as médias das concentragdes. Como
visto anteriormente, os efeitos dos poluentes NO,, CO e O3 para a regido agregada, RGV, nao
apresentaram significancia estatistica no RR, o que pode ser considerado um resultado espurio pois
os efeitos desses poluentes, para as localidades desagregadas por regido, levaram a resultados de
RRs altamente significativos. Essa evidencia empirica também corrobora o estudo proposto neste
artigo o qual tem como objetivo comparar ajustes de modelos de regressao, por meio do RR, para
variaveis explicativas medidas "in loco" e com a utilizacdo das médias dessas variaveis (estudo

geral).

DISCUSSAO

Foi observado neste estudo o efeito direto da poluicdo atmosférica na saude de criancas da RGV,
por meio da estimativa do Risco Relativo em um MAG. As concentragcédo dos poluentes MP g, SO,
NO, e O3, mesmo dentro dos padrbées da legislagdo vigente e da OMS, mostraram associagao
significativa com o aumento do niumero de atendimentos em emergéncia por doengas respiratorias
em criangas de 0 a 6 anos.

O numero de atendimentos hospitalares foi maior entre os meses de margo a junho, outono e inicio
do inverno. Esse aumento esperado se deve a diferentes fatores, como as baixas temperaturas que

predispdem o agravamento de doengas respiratorias pré-existentes, maior incidéncia de doengas



respiratérias virais e aumento na concentragdo dos poluentes primarios determinada pela escassez

de chuvas e ocorréncia de inversao térmica.

Os poluentes que mostraram efeito mais consistente foram o MPo € 0 SO,.0 MP4y apresentou um
efeito bastante substancial sobre os atendimentos por doencas respiratérias em criangas em todas
as defasagens e em quase todas as regides analisadas, exceto na area de entorno da RAMQAr de
Vila Velha Ibes. Nas demais areas de entorno das estagdes de monitoramento e na estimativa para
a RGV, observou-se um padréo de efeito mais acumulado variando entre 2,62% e 12,08% (Tabelas2
e 3). Esses efeitos mostraram magnitudes variadas sendo que nas areas de abrangéncia de Jardim
Camburi e Carapina os efeitos estimados foram de maior magnitude em relagdo a outras areas
analisadas. Esse padrdao de efeito esta de acordo com o observado em outros estudos com
metodologia semelhante, como por exemplo em Itabira, Minas Gerais, onde os autores verificaram

3 no nivel de MP4o foi associadoa aumento nos atendimentos de

que o aumento de 10 pg/m
pronto-socorro por doengas respiratorias de 4% no dia e no dia seguinte, para criangas menores de
13 anos, e de 12%, nos trés dias subsequentes para os adolescentes entre 13 e 19 anos®.

As concentragdes de SO,, assim como observado para o MP4,, apresentaram associagdo com
aumento no numero de atendimentos por doencgas respiratérias na populagéo estudada. O RR na
area de abrangéncia das estacgdes de Jardim Camburi e Laranjeiras foram os mais elevados, o que
pode ser explicado pela proximidade dessa regido com o polo industrial siderurgico existente dentro
da malha urbana.

Os ajustes realizados no modelo, para cada uma das regides no entorno das estagdes de
monitoramento da RAMQAr, permitiu observar melhor o efeito de todos os poluentes sobre o numero
de atendimentos hospitalares por doencas respiratérias. Comparando as estimativas quando
simulamos para toda a RGV com as analises no entorno das estagées da RAMQAr, alguns efeitos sé
foram percebidos quando as andlises foram feitas nas localidades desagregadas por regiéo,
sinalizando um efeito de maior magnitude em relagédo a estimativa para toda a regido. A explicagéo
para isso é que a analise pela média de todas as estagdes tende a suavizar os dados e assim
diminuir a sua variabilidade, ocultando alguns efeitos. Assim, efeitos do NO,, do CO e do O3 sobre o
numero de atendimentos por doengas respiratorias foram identificados, especialmente na regido de
Jardim Cambuiri, Vila Velha e Laranjeiras.

Os efeitos observados para todos os poluentes na RGV estdo de acordo com estudos prévios
realizados na mesma regigo'>'*. Nascimento et al."(2017) encontraram associaco positiva entre a
concentragao de material particulado fino na atmosfera e o numero de atendimentos hospitalares por
doencas respiratérias agudas em criangas de até 12 anos no inverno e verao de 2013. Souza et

al.’}(2018) desenvolveram uma modelagem hibrida com trés ferramentas estatisticas, o modelo
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Vetorial Autorregressivo (VAR), a Analise de Componentes Principais (ACP) e o Modelo Aditivo
Generalizado (MAG), para relacionar os poluentes atmosféricos (MP1g, SO,, NO,, O3 e CO) com o
numero de criangas com até 6 anos de idade atendidas em emergéncias da regido devido a
problemas respiratorios no periodo de 2005 a 2010 e observaram relagao significativa entre os
niveis de concentragcdo dos poluentes e o numero de atendimentos hospitalares. Em Palermo,
Italia,foi observada associagdo entre numero de atendimentos por doengas respiratorias em
emergéncia e exposicdo aos poluentes MP1o (OR= 1,039, 1C95% 1,020-1.059), SO, (OR= 1,068,
IC95% 1,014-1,126), NO, (OR= 1,043, CI95% 1,021-1,065) e CO (OR= 1,128, CIl95%
1,074-1,184)%°.Samoli et al.’® na Grécia observaram que um incremento de 10 mg/m®de MP, e de
SO, estava associado com um aumento de 2,54% e 5,98% no numero de hospitalizagbes por
doencas respiratorias, respectivamente.

Apesar da associacao entre os diversos poluentes e o risco de atendimento em emergéncia por
doenca respiratéria em criangas, observou-se uma tendéncia decrescente dos niveis de poluentes
ao longo do tempo, o que pode ser explicado por maior controle local da polui¢do do ar nos ultimos
anos.

O maior numero de criangas com doengas respiratérias residentes na regido da Enseada do Sua
pode indicar maior exposigao das criangas nessa regiao. O poluente que mostrou-se com média
mais alta foi o SO,, entretanto, devido a falta de dados disponiveis, so foi calculado o RR para o MP+g
nessa regiao, o que é uma falha deste estudo.

Para pesquisas futuras, outros grupos suscetiveis devem ser investigados na mesma regiao para
que seja possivel elaborar um quadro completo dos efeitos agudos da poluicdo atmosférica na
saude da populagdo. Como metodologia alternativa, técnicas de bootstrap poderao ser utilizadas
com o objetivo de obter intervalos de mesma precisdo, mas com menor amplitude amostral. Outra
metodologia a ser considerada é a estimagao da variancia por meio de modelos heterocedasticos. O
modelos GLARMA?" e PINAR?®, modelos com maior complexidade estrutural, sdo ferramentas
estatisticas que podem ser abordadas no estudo proposto.

A consisténcia das associagdes e a magnitude dos efeitos observados nas regides analisadas,
mesmo em um ambiente com niveis de poluentes dentro dos padrbes estabelecidos pelas agéncias
regulatérias, se mostram extremamente relevantes em termos de saude publica. Os resultados
encontrados fornecem subsidios para a elaboracdo de medidas que visem a minimizar os riscos a
saude, contribuindo ainda com o planejamento de saude ambiental e urbana no aperfeicoamento de

politicas publicas.
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Os resultados apresentados sao baseados na dissertagdo de mestrado do primeiro autor sob a
orientacao de Reisen VA, no PPGEA, UFES, defendida no ano de 2012.
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Tabelas:

Tabela 1.Estatistica descritiva dos atendimentos por doengas respiratdrias, das médias diarias do PMyo (ug/m?), SO2(ug/m?*) e NO,(ug/m?), e das
médias moveis de 8 horas do O; (ug/m?) e CO (ug/m*), em cada RAMQAr, 2005-2010.

Ndmero de Atendimentos PM,, SO0, NO; O; co

RAMQAr — S
Média(total) Desvio(max) | Média Desvio | Média Desvio | Média Desvio | Média Desvio | Média Desvio

Laranjeiras | 2,05(4482) 1,83 (12,00) | 32,90 11,39 12,61 5,79 41,23 14,85 | 43,34 12,98 647,58 175,55

Carapina 2,31 (5072) 2,1(17,00) 23,02 7,96 - - - -
Jardim 26,95 8,06 14,15 7,49 42,07 12,76

Camburi | 2,24 (4899) 1,82 (12,00)

Enseada 2039 918 | 1632 791 | 4410 1429 | 3866 10,99 | 783,30 276,71
S. 4,84(10,6k) 2,86 (19,00)

V.Centro | 357658) 239 (1500) | 2609 723 | 1577 632 | 5578 1527 - - 1730,91 715,34
Ibes 172(3779)  148(9,00) | 2924 967 | 1073 620 | 3839 11,15 | 5448 1638 | 65724 267,07

VV Centro 2,25 (4924) 1,76 (12,00) 23,49 8,22 11,99 5,80 - - - - - -
Cariacica 2,28 (4994) 1,91 (13,00) 43,06 15,94 5,50 2,62 50,65 19,35 | 37,79 12,59 609,79 266,86
RGV 21,19(46,4K) 9,9 (64,00) 29,27 9,73 12,44 3,11 45,37 11,05 | 43,57 10,83 885,76 231,24

Em negrito estdo as concentracdes maximas para cada poluente.
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Tabela 2.Riscos Relativos para atendimentos por doengas respiratérias em criangas menores de 6 anos para um acréscimo de 10 pg/m3
de MP1o, SO2, NO2, O3z e CO na RGV, jan /2005 a dez/2010.

Exposicao PMy,
posi¢ %RR Inferior Superior p.valor
Dia corrente 0,99 -0,5 2,5 0,19

Defasagem de 1 dia | 0,04 -1,35 1,46 0,95
Defasagem de 2 dias | 0,81  -0,58 2,23 0,25
Defasagem de 3 dias | 1,1 -0,29 2,51 0,12
Acumulado de 2 dias | 0,69  -1,02 2,42 0,43
Acumulado de 3 dias | 1,13 -0,82 3,12 0,26
Acumulado de 4 dias | 1,77 -0,44 4,03 0,12
Acumulado de 5 dias | 2,43  -0,05 4,97 0,05*
Acumulado de 6 dias | 2,73 0 5,53 0,05%*
Acumulado de 7 dias | 3,29 0,31 6,36 0,03*
Acumulado de 8 dias | 2,5 -0,67 5,77 0,12

Exposicao S 02
posi¢ %RR Inferior Superior p.valor
Dia corrente 447 -0,01 9,14 0,05*

Defasagem de 1 dia 42 -0,2 8,79 0,06
Defasagem de 2 dias | 5,26 0,81 9,9 0,02*
Defasagem de 3 dias | 1,43  -2,89 5,94 0,52
Acumulado de 2 dias| 6,47 0,99 1226  0,02*
Acumulado de 3 dias| 8,8 2,55 15,44  0,01*
Acumulado de 4 dias | 8,76 1,93 16,05 0,01%*
Acumulado de 5dias| 7,09 -0,13 14,84  0,05*
Acumulado de 6 dias| 3,7 23,71 11,69 0,34
Acumulado de 7 dias | 2,23  -5,45 10,53 0,58

Acumulado de 8 dias 0 -7,85 8,52 1
Exposicao - NO2 -
%RR Inferior Superior p.valor
Dia corrente 0,25 -0,89 1,4 0,67

Defasagemde 1 dia | -0,9 -2,04 0,25 0,12
Defasagem de 2 dias | -0,45 -1,56 0,67 0,43
Defasagem de 3 dias |-0,16 -1,25 0,94 0,78
Acumulado de 2 dias | -0,5 -1,9 0,93 0,49
Acumulado de 3 dias | -0,77 -2,39 0,88 0,36
Acumulado de 4 dias | -0,82 -2,63 1,01 0,38
Acumulado de 5 dias | -0,91 -2,86 1,09 0,37
Acumulado de 6 dias | -0,91 -3,02 1,25 0,41
Acumulado de 7 dias |-0,37 -2,63 1,95 0,75
Acumulado de 8 dias | -0,31 -2,72 2,16 0,81
03
%RR Inferior Superior p.valor
Dia corrente 0,54 -0,54 1,62 0,33
Defasagem de 1 dia | 0,46  -0,59 1,52 0,39
Defasagem de 2 dias | 0,07  -0,97 1,13 0,89
Defasagem de 3 dias |-0,32 -1,36 0,73 0,55
Acumulado de 2 dias | 0,74  -0,55 2,05 0,26
Acumulado de 3 dias | 0,69 -0,78 2,19 0,36
Acumulado de 4 dias | 0,45 -1,2 2,12 0,6
Acumulado de 5 dias | 0,34 -1,46 2,17 0,71
Acumulado de 6 dias | 0,92 -1,04 2,91 0,36
Acumulado de 7 dias | 0,66 -1,42 2,78 0,54
Acumulado de 8 dias | 0,6 -1,6 2,86 0,6
cO
%RR Inferior Superior p.valor
Dia corrente 1,83 -3,25 7,17 0,49
Defasagem de 1 dia | -3,61 -8,21 1,23 0,14
Defasagem de 2 dias | 0,39  -4,37 5,39 0,87
Defasagem de 3 dias | 4,6 -0,26 9,7 0,06
Acumulado de 2 dias |-1,69 -7,76 4,76 0,6
Acumulado de 3 dias |-1,24  -8,3 6,37 0,74
Acumulado de 4 dias | 2,15 -5,97 10,98 0,61
Acumulado de 5 dias | 3,234 5,74 13,05 049
Acumulado de 6 dias | 2,53 -7,11 13,17 0,62
Acumulado de 7 dias | 4,89  -5,72 16,7 0,38

Exposicao

Exposicao




Acumulado de 8 dias | 5,83 -5,6 18,65 0,33

15



Tabela 3.Aumento percentual e intervalo de confianga de 95% dos atendimentos pediatricos de emergéncia por sintomas
respiratorios. RGV, 2005-2010.

Exposicao MP,,
RR (IC 95%) p-valor RAMOQAr
Acumulado de 5 dias 2,43 (-0,05; 4,97) 0,05 RGV
Acumulado de 6 dias 2,73 (-0,00; 5,53) 0,05 RGV
Acumulado de 7 dias 3,29 (0,31; 6,36) 0,03 RGV
Defasagem de 1 dia 4,49 (1,45; 7,62) 0 Laranjeiras
Acumulado de 2 dias 4,5 (1,04; 8,08) 0,01 Laranjeiras
Acumulado de 3 dias 5,17 (1,35;9,13) 0,01 Laranjeiras
Acumulado de 4 dias 4,66 (0,60; 8,89) 0,02 Laranjeiras
Defasagem de 1 dia 4,66 (0,48;9,02) 0,03 Carapina
Acumulado de 6 dias 8,36 (0,165 17,23) 0,05 Carapina
Acumulado de 7 dias 12,27 (3,15;22,19) 0,01 Carapina
Acumulado de 8 dias 11,5 (1,85;22,06) 0,02 Carapina
Acumulado de 6 dias 10,59 (1,79;20,16) 0,02 Jardim Camburi
Acumulado de 7 dias 12,08 (2,63;22,40) 0,01 Jardim Camburi
Acumulado de 8 dias 11,82 (1,87;22,73) 0,02 Jardim Camburi
Defasagem de 3 dias 2,41 (0,17;4,71) 0,03 Enseada do Sua
Dia corrente 4,08 (0,54; 7,76) 0,02 Vitoria Centro
Acumulado de 6 dias 6,58 (-0,03; 13,64) 0,05 Vitoria Centro
Acumulado de 7 dias 7,13 (0,01; 14,75) 0,05 Vitoria Centro
Acumulado de 7 dias 9,05 (1,54;17,12) 0,02 VV Centro
Acumulado de 8 dias 9,01 (1,19; 17,42) 0,02 VYV Centro
Defasagem de 3 dias 2,62 (0,58; 4,71) 0,01 Cariacica
Acumulado de 7 dias 4,53 (0,36; 8,88) 0,03 Cariacica
Acumulado de 8 dias 4,77 (0,40; 9,34) 0,03 Cariacica
Exposicio S0,
RR (IC 95%) p-valor RAMQAr
Dia corrente 4,47 (-0,01;9,14) 0,05 RGV
Defasagem de 2 dias 5,26 (0,81;9,90) 0,02 RGV
Acumulado de 2 dias 6,47 (0,99; 12,26) 0,02 RGV
Acumulado de 3 dias 8,8 (2,55;15,44) 0,01 RGV
Acumulado de 4 dias 8,76 (1,93; 16,05) 0,01 RGV
Acumulado de 5 dias 7,09 (0,13; 14,84) 0,05 RGV
Dia corrente 10,68 (1,09;21,17) 0,03 Laranjeiras
Defasagem de 2 dias 9,71 (1,68; 18,37) 0,02 Jardim Camburi
Acumulado de 7 dias 13,52 (-0,24; 29,18) 0,05 Jardim Camburi
Dia corrente 8,7 (1,12; 16,85) 0,02 VV Centro
Acumulado de 2 dias 11,31 (1,23; 22,40) 0,03 VV Centro
Defasagem de 3 dias 11,9 (0,04;25,17) 0,05 VV Centro
Defasagem de 2 dias 7,57 (1,17; 14,38) 0,02 Cariacica
E .~ NO,
Xposi¢ao RR (IC 95%) p-valor RAMQAT
Defasagem de 2 dias 3,85 (0,99; 6,80) 0,01 Jardim Camburi
Acumulado de 6 dias 3,56 (0,35; 6,88) 0,03 Vitoria Centro
Acumulado de 7 dias 3,88 (0,46; 7,42) 0,03 Vitoria Centro
Acumulado de 8 dias 4,32 (0,70; 8,06) 0,02 Vitoria Centro
Exposicao co
RR (IC 95%) p-valor RAMOQAr
Defasagem de 3 dias 1,78 (-0,02; 3,62) 0,05 Laranjeiras
Defasagem de 2 dias 2,24 (0,72; 3,79) 0 Ibes
Defasagem de 3 dias 1,97 (0,46; 3,51) 0,01 Ibes
Acumulado de 4 dias 3,01 (0,60; 5,48) 0,01 Ibes
Acumulado de 5 dias 2,96 (0,34; 5,65) 0,03 Ibes
Acumulado de 6 dias 2,99 (0,20; 5,86) 0,04 Ibes
Exposicao 03
RR (IC 95%) p-valor RAMOQAr
Dia corrente 3,23 0,17, 6,37) 0,04 Laranjeiras
Acumulado de 4 dias 4,13 (-0,08; 8,51) 0,05 Laranjeiras
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Figura 01. Area de abrangéncia do estudo.
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Figure 02. Diagndstico do Modelo Central para RGV, da esquerda para direita e de cima para baixo, seguem nessa
ordem: o grafico dos valores previstos, os residuos contra o tempo, a distancia de Cook, a fungao de correlagéo parcial,
o periodograma dos residuos e os quantis dos residuos contra quantis da distribuigdo normal.
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