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Abstract

Steady-State Visual Evoked Potentials (SSVEPs) arc brain responses that present the
same frequency (and/or harmonics) of the visual stimulation. Applications, such as Brain-
Computer Interfaces, can be derived of their properties. SSVEP response is often maximal
on the visual cortex area, consequently, most of the existing SSVEP-based BCIs use
electrodes located at occipital and parietal regions. However, these areas are generally
covered by hair, which cause complications in the electrode contact with the skin. On the
other hand, currently, researchers are looking at how to transfer BCIs from the lab to the
patient’s home. Recent studies have reported the use of below-the-hairline areas, such as
behind-the-ears (temporal area), with stimuli in low/medium frequency bands, to control
BCI systems, which suggests that measuring the EEG from hairless areas presents key
advantages for technology transfer. However, the visual stimuli in low/medium frequencies
used in these studies can produce visual fatigue and other problems to users. This thesis
presents studies about characterization of SSVEP response from below-the-hairline areas in
high-frequency, with the aim of developing a practical BCI without generating discomfort
to users. First, results of our research indicate that SSVEP response from hairless areas are
influenced by the reference electrode position, and that the best configuration to measure
this response is temporal-frontal montage (TP9-Fpz and TP10-Fpz). The second important
result found in our research was that chromatic and luminance stimuli elicit strong SSVEP
on the hairless areas, and that the SSVEP response is related to frequency and stimuli
color. Results indicate that green-red stimulus elicits the highest SSVEP response in
the medium-frequency range (15-25 Hz). On the other hand, green-blue stimulus elicits
the highest SSVEP at high-frequencies (30-40 Hz). In addiction, results show that a
combination of colors and luminance enhance the SSVEP detection accuracy. Another
important contribution of our research was the combination of high-frequency SSVEP
(from below-the-hairline areas) with eye focusing mechanism (Depth-of-Field) to command
a robot in a virtual environment. In online tests. the volunteers achieved an success rate of
96%. These findings contribute to state of the art, and the development of more practical
and comfortable BCls.

Key-words: BCI, SSVEP, EEG, Below-the-hairline areas.
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1 Introduction

A portion of the population is composed of people affected by severe health problems,
such as brain stem stroke, spinal cord injury, Amyotrophic Lateral Sclerosis (ALS) and
muscular dystrophies. Because of these problems, interfaces that use speech or limbs
movements become hard to be utilized. Biological signals are a key factor in development
of non-conventional channels of communication between humans and machines. The
development of several assistive technologies (AT) explores these novel interaction links
(NICOLAS-ALONSO; GOMEZ-GIL, 2012). In this scenario, Brain-Computer Interfaces
(BClIs) play an important role, as they allow extracting information from brain signals,
relating them with commands into an application (NICOLAS-ALONSO; GOMEZ-GIL,
2012). Electroencephalography has become the most widely used modality for signal
acquisition in BCIs due to its high temporal resolution, noninvasiveness, relatively low
cost, and high portability (RAMADAN; VASILAKOS, 2017).

The typical input patterns of BCIs are neurophysiological phenomena like Event-
Related Synchronization/Desynchronization (ERS/ERD), Slow Cortical Potentials (SCP),
P300 and Steady-State Visual Evoked Potentials (SSVEPs) (WOLPAW et al., 2002; HE
et al., 2013). Among these patterns, SSVEP presents advantages for the development of a
BCI, such as low portion of subjects unable to attain effective control (ALLISON et al.,
2010; VOLOSYAK et al., 2011; GUGER et al., 2012), high signal-to-noise ratio (SNR)
(BIN et al., 2009), and few or no training request (CHENG et al., 2002; BIN et al., 2009;
VIALATTE et al., 2010; RAMADAN; VASILAKOS, 2017). In SSVEP-based BClIs, their
command options can be codified into visual stimuli (Figure 1), in which each stimulus
oscillates at a specified frequency (CHUMERIN et al., 2013).

f,o2f af fe S

Figure 1 — Design and operation of a SSVEP-based BCI. 1) Subjects are asked to look at
a flickering stimulus. 2) Brain signals are recorded during the stimulation. 3)
the EEG signals are processed in order to extract representative features that
are translated into commands. Adapted from (CHUMERIN et al., 2013).
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Problem Statement

Users of conventional SSVEP-based BCIs are able to send commands to the
computer by redirecting their gazing to the target stimulus location (Figure 1) (BASTOS-
FILHO et al., 2014). However, paralyzed individuals who cannot control their muscular
movements will have difficulties using these conventional SSVEP-based BCIs. In order to
reduce the necessity of voluntary movements, some BCIs present two stimuli close to each
other or superimposed, such as proposed by (KELLY et al., 2005; ALLISON et al., 2008;
ZHANG et al., 2010; LESENFANTS et al., 2014; TELLO et al., 2016). However, stimuli
proximity increases the neural competition in the visual cortex (FUCHS et al., 2008),
implying a reduction of classification accuracy (NG; BRADLEY; CUNNINGTON, 2012;
ZHANG et al., 2019). For that reason, Cotrina et al. (2017) proposed a SSVEP-based BCI
composed of two stimuli presented together in the center of the subject’s visual field, but
in different longitudinal distance (called Depth-of-Field setup). This way, users were able
to select one of both stimuli by adjusting their eye focus (COTRINA et al., 2017). Table 1

presents a summary of some characteristics of the aforementioned works.

However, as SSVEP response is often maximal on the visual cortex (NORCIA et
al., 2015), all the aforementioned works acquired signals on the visual area. In fact, most of
the existing SSVEP-based BCIs use electrodes located at occipital and parietal positions
(ZHU et al., 2010). Nevertheless, a practical problem is that, generally this area is covered
by hair, which causes complications in the electrode contacts with the skin (WANG et
al., 2012; WEI et al., 2015; WANG et al., 2017). Moreover, BCI users with complete
quadriplegia or in advanced stages of amyotrophic lateral sclerosis (ALS), generally have
their head supported by a headrest (Figure 2), which makes it hard to acquire EEG signals

from that area.

Figure 2 — Illustrations of daily routine of some patients with severe motor disabilities.

Measuring electroencephalogram (EEG) from hairless positions presents advantages
to the user, and, recently, these kinds of BCI systems have been reported in the literature
(WANG et al., 2012; NORTON et al., 2015; WANG et al., 2017). However, all these studies
used stimuli in low and/or medium frequency bands, which prevent them to be practical
BCI, as, in addition to producing visual fatigue, these frequency bands may increase the

risk of photosensitive epileptic seizures and migraine headaches (ZHU et al., 2010).
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Table 1 — Summary of the characteristics of related studies.

Study Classes Visual Stimulator High-frequency  Hairless
Stimulus Device area
(KELLY et al., 2005) 2 Bilateral Squares ~ CRT monitor No No

with Letters

(ALLISON et al., 2008) 2 Overlapped Lines ~ CRT monitor No No
(ZHANG et al., 2010) 2 Overlapped Dots ~ LCD monitor No No
(LESENFANTS et al., 2014) 2 Interlaced Squares LED No No
(TELLO et al., 2016) 2 Rubin’s Face-Vase LED No No
(COTRINA et al., 2017) 2 Luminance LED No No

Scientific Issue

A possible solution for the aforementioned problems reduction is the use of vi-
sual stimuli in high-frequency band (> 30 Hz) (YIJUN et al., 2005; WON et al., 2015;
CHABUDA; DURKA; ZYGIEREWICZ, 2017) and measuring EEG at hairless areas. It
is worth mentioning that studies applying below-the-hairline areas and high-frequency
visual stimuli to implement a SSVEP-based BCI based on Depth-of-Field have not been
addressed yet, despite this configuration being safe, practical and comfortable for people

suffering from severe motor problems.

Objective

This thesis aims at developing a Brain-Computer Interface based on high-frequency
SSVEP from below-the-hairline areas and Depth-of-Field.

Specific Objectives

e Evaluation of literature on the performance of methods for high-frequency SSVEPs

detection.

e Analysis of the impact of reference electrode on SSVEP response from below-the-

hairline areas.

e Evaluation of the influence of chromatic stimuli on SSVEP response from below-the-

hairline and occipital areas.

e Study of the usage of eye focusing mechanism to modulate high-frequency SSVEP

response from below-the-hairline.

e Development and evaluation of the proposed SSVEP-based BCI.
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Contributions of this Thesis

New studies were conducted here in order to develop a reliable, accurate and
practical BCI that can provide people with severe motor disabilities with an alternative

communication way. The main contributions of this study include:

e Propose and demonstrate the feasibility of a novel BCI using high-frequency SSVEP

from below-the-hairline areas.

e Investigate the impact of the reference electrode on SSVEP response from below-

the-hairline areas.
o Investigate the relationship between SSVEP response and chromatic visual stimuli.

e Perform comprehensive analysis of signal processing methods for detection of high-

frequency SSVEPs from occipital and below-the-hairline areas.

Structure of the Thesis

e Chapter 2 presents a brief introduction about the fundamentals of BCIs and SSVEP

response.

e Chapter 3 presents the study about the influence of the reference electrode on SSVEP

response obtained from hairless and occipital areas.

e Chapter 4 presents the study about the influence of chromatic stimuli on SSVEP

obtained from hairless and occipital areas.
e Chapter 5 presents a comparison of methods for detection of high-frequency SSVEP.

e Chapter 6 presents the development and evaluation of the proposed high-frequency
SSVEP-based BCI.

e Chapter 7 presents the conclusions of this study and future works.
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2 Fundamentals

This chapter provides a brief introduction of the Brain, Vision and relevant concepts
of Electroencephalography technique, Transient and Steady-State Visual Evoked Potentials
and SSVEP-based BCIs.

2.1 Brain and Vision

2.1.1 Anatomy of Brain

The human brain is an important organ of the human body. The brain and the
Spinal Cord form the Central Nervous System (CNS). Together with the Peripheral
Nervous System, which connects the CNS to the limbs and organs, they form the Nervous
System, which has fundamental importance in the control of the body functions. All the
sensory information is received and processed by the Nervous System (GUYTON; HALL,
2006).

The brain is divided into two halves, the right and left cerebral hemispheres (Figure
3). They are connected to each other by the corpus callosum, a thick band consisting
of an estimated 300 million neuronal axons that connect the two hemispheres. The two
hemispheres communicate and cooperate with each other by means of constant information
exchange through this neural connection (GUYTON; HALL, 2006).

Left cerebral Right cerebral
hemisphere hemisphere

Longitudinal fissure

Figure 3 — Brain, superior and lateral view. Adapted from (SHERWOOD, 2015)

2.1.2 Cerebral Lobes

Distinct parts of the brain are specialized in different sensory and behavioral tasks,

and all the information processing is done completely and in parallel. The first pictures of
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the human brain during cognitive tasks were also snapped in the 1980s through use of

positron emission tomography (PET) scans (Figure 4).

MIN

Speaking Thinking

Figure 4 — PET scans of cerebral cortex during different tasks. Adapted from (SHER-
WOOD, 2015)

As depicted in Figure 5, the cerebral cortex can be divided into four main areas
(lobes): the frontal, temporal, parietal and occipital lobes (GUYTON; HALL, 2006;
KANDEL et al., 2013).

Parietal
Frontal

Occipital

Temporal

Figure 5 — Distribution of the cerebral cortex. Adapted from (KANDEL et al., 2013)

The temporal lobe receives and processes auditory information and this area is
related to the identification and naming of objects. The frontal lobe, which includes
the motor cortex and pre-motor cortex and the prefrontal cortex, is involved in action
and movement planning, as well as abstract thinking. The parietal lobe is the primary
somatosensory cortex and receives information on touch and pressure. The occipital lobe

receives and processes visual information.
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2.1.3 Eye

The eye is a complex optic system that contains about 125 million photoreceptors
specialized in turning light into electrical signals (GUYTON; HALL, 2006). A schematic

diagram of a horizontal, sectional view through a human eye is shown in Figure 6.

Sclera
4 Retina
Iris = il
Lens
Pupil / Fovea
Cornea j f?.‘lﬂﬂf
Ciliary body AT
Optic nerve

Figure 6 — Schematic diagram of the human eye. Adapted from (KANDEL et al., 2013)

The cornea and the sclera are the transparent membrane over the front of the
eye and the white membrane around the sides and back of the eyeball, respectively. The
iris, which is the colored part of the eye, controls the aperture of the pupil regulating
the amount of light entering the eye. The pupil is the aperture at the center of the iris,
through which light enters the eye. The crystalline lens of the eye or lens is a transparent
and flexible structure; by changing its curvature through the contraction or relaxation of
the intrinsic muscles of the eye, light coming from different sources is projected on the
back of the eye (GUYTON; HALL, 2006; KANDEL et al., 2013).

2.1.4 Photoreceptors

The photoreceptors are cells that transform the light energy into electrical signals
to CNS (SHERWOOD, 2015). Rods and cones are two types of photoreceptors in human
eyes. The fovea is eye region where the cones are concentrated. These receptors have high
acuity in bright light that makes the fovea essential for daytime vision. Rods are designed
to provide some vision in dim light. Figure 7 illustrates the relative distribution of the

cones and rods on the retina.

Three types of cones are in found human eyes (Figure 8). The first one responds by
the light of long wavelengths, arriving at a red color; this type is sometimes called L (Long).
The second type responds to the light of medium wavelength, reaching a maximum of a
green color, and is abbreviated M (Medium), to medium. The third type responds more
to the short wavelength of light, of a bluish color, and is designated S (Short). The three
types have peak wavelengths near 564-580 nanometers (nm), 534-545 nm and 420-440 nm,
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Rods

Optic disk

Cones
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Figure 7 — Relative distribution of the cones and rods on the retina. Adapted from (KAN-
DEL et al., 2013)

respectively. The difference between the signals received from the three cone types allows
the brain to perceive all possible colors making color vision possible (SHERWOOD, 2015).
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Figure 8 — Sensitivity of the three types of cones to different wavelengths. Adapted from
(SHERWOOD, 2015)

2.1.5 Visual Pathways

The visual pathway describes the anatomical pathway by which electrical signals
generated by the retina are sent to the brain (KANDEL et al., 2013). The visual pathway
includes the retina, optic nerve, the Lateral Geniculate Nucleus (LGN) and the visual

cortex (Figure 9).
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Figure 9 — Functional representation of visual pathways. Adapted from (KANDEL et al.,
2013)

The visual cortex in the right cerebral hemisphere receives its input from the left
half of the visual field, and the visual cortex in the left hemisphere receives its input from

the right half of the visual field (KANDEL et al., 2013; GUYTON; HALL, 2006)

2.1.6 Eyes Focusing Mechanism

The mechanism to adjust the focus of the eye that change the shape of the lens
is called accommodation (SHERWOOD, 2015). Depending on the distance of the object,
ciliary muscles attached to the lens, contract or relax, changing its curvature. Thus, a
sharp retinal image is produced. This mechanism for a near target occurs when the lens of
the eyes forms a more spherical shape to bring the object into the focus. On the other
hand, lens is elongated for focusing distant objects (Figure 10). Depth-of-field is the range
of distances near the point of focus where the eye imaged an object as sharp. Objects out
of the point of focus produce blurred appearance (PENTLAND, 1987).

yod

Far source Near source

Figure 10 — Mechanism of accommodation of the eyes. Adapted from (SHERWOOD, 2015).
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2.2 Electroencephalography

Electroencephalography is an electrophysiological monitoring method to record
electrical activity of the brain. The EEG signals consist of the summed electrical activities
of populations of neurons (Figure 11). The neurons are excitable cells with electrical
properties, and their activity produces electrical and magnetic fields that may be recorded
by means of electrodes at the scalp (MULERT; LEMIEUX, 2009).

Fz
C3
C4 gt
Cz
P3 bt
P4
Oz p

Figure 11 — Example of EEG signals of a group of channels.

The EEG recording system consists of electrodes, amplifiers, A/D converter, and
a recording device. The electrodes acquire the signal from the scalp, and the amplifiers
process the analog signal to enlarge the amplitude of the EEG signals so that the A/D
converter can digitize the signal more accurately. Finally, the recording device, which may
be a personal computer or similar, stores, and displays the data. The amplitude of this
electrical biosignal is in the order of microvolts (NICOLAS-ALONSO; GOMEZ-GIL, 2012;
PUCE; HAMALAINEN, 2017).

The EEG signal is typically measured as the potential difference over time between
signal or active electrode and reference electrode. An extra third electrode, known as the
ground electrode is used to measure the differential voltage between the active and the
reference electrodes. The minimal configuration for EEG measurement therefore consists of
one active, one reference and one ground electrode. Furthermore, electroencephalography
presents features like high temporal resolution, relative low cost, high portability, and few

risks to the users (NICOLAS-ALONSO; GOMEZ-GIL, 2012).

2.2.1 Standard System of Electrode Placement

The 10/20 system or International 10/20 system is an internationally recognized
method to describe the location of scalp electrodes. The system is based on the relationship
between the location of an electrode and the underlying area of the cerebral cortex. The
electrode locations are determined by dividing the perimeter into 10% and 20% intervals.

An extension to the 10/20 system is the 10/10 system, which is characterized by intervals



Chapter 2. Fundamentals 25

of 10%, providing a higher channel density (JURCAK; TSUZUKI; DAN, 2007). Figure 12

shows electrode positions according to the American Electroencephalographic Society.

Figure 12 — Location and nomenclature of the 10-20 and 10-10 system. The electrodes are
named by a capital letter corresponding to the initial of the brain lobe where
they are placed (F, C; P, O and T for Frontal, Central, Parietal, Occipital and
Temporal, respectively), followed by an even number for the right hemisphere
and an odd number for the left hemisphere. The letter A is used for electrodes
placed in the ear. For the electrodes placed in the frontal lobe, near the
nasion, the letter p is added (Fp = Frontal pole). For the electrodes in the
line connecting the nasion to the inion, the letter z is added. Adapted from
(GRAIMANN; ALLISON; PFURTSCHELLER, 2010a)

2.3 Transient and Steady-State Visual Evoked Potential

2.3.1 Transient Visual Evoked Potential

An evoked potential is the electrical response recorded from the human nervous
system following presentation of a stimulus. This response can be measured by an EEG
device (ODOM et al., 2004). Transient Visual Evoked Potentials (TVEP) refer to electrical
potentials initiated by brief visual stimuli, which are recorded from the scalp traditionally
overlying the visual cortex. These responses occur when a subject observes a visual stimulus,
such as a flash of light or a pattern on a monitor. TVEP are used primarily to measure
the functional integrity of the visual pathways from the retina via the optic nerves to the
visual cortex of the brain. Their waveforms are usually extracted from the EEG signals by
averaging. Such as shown in Figure 13, TVEP waveforms are represented using amplitude
and time (latency) measurements (ODOM et al., 2004).

TVEP are obtained when the stimulus rate is low and the response is recorded
over one single stimulus cycle. A typical TVEP waveform consists of N75, P100 and N135
peaks which are shown at about 75, 100, and 135 milliseconds after visual stimulation,
respectively. Any abnormality that affects the visual pathways or visual cortex in the brain

can affect the TVEP waveform.
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Figure 13 — A normal pattern TVEP measured in EEG. Adapted from (ODOM et al.,
2004).

2.3.2 Steady-State Visual Evoked Potential

Steady-State Visual Evoked Potential (SSVEP) is the elicited response in the
visual cortex by light stimuli flickering at a constant frequency (ZHU et al., 2010).
These potentials manifest as an oscillatory component in the EEG signal with the
same frequency (and/or its harmonics) of the visual stimulation (ZHU et al., 2010).
SSVEP can normally be evoked up to 90 Hz (HERRMANN, 2001), and three stimuli
bands can be identified: low (up to 12 Hz), medium (12-30 Hz), and high-frequency
(>30 Hz) (REGAN, 1989; ZHU ct al., 2010; RAMOS et al., 2011).

The steady-state potentials are distinguished from transient potentials by their
constituent discrete frequency components which remain relatively constant in amplitude
and phase over a long time period (REGAN, 1989; VIALATTE et al., 2010). Consequently,
the amplitude distribution of the spectral content of SSVEP, with characteristic SSVEP
peaks, remains stable over time (Figure 14). Because these characteristics are constant,

many applications can be derived from SSVEP properties.

2.3.3 SSVEP-based BCls

Such as aforementioned, Brain-Computer Interfaces (BCls) are systems that allow
the control of external devices using measured signals of brain activity (WOLPAW et al.,
2002). Because BCIs do not use neuromuscular commands as input, the advent of these
interfaces allows us to establish an alternative pathway of interaction with the world for
people with severe motor impairment (WOLPAW et al., 2002; GRAIMANN; ALLISON;
PFURTSCHELLER, 2010b).

On the other hand, SSVEP-based BCIs have attracted the interest of many re-
searchers in recent years due to outstanding accuracy, low portion of subjects unable to
attain effective control (ALLISON et al., 2010; VOLOSYAK et al., 2011; GUGER et al.,
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Figure 14 — Example of a TVEP and SSVEP response in time domain and frequency
domain. Adapted from (VIALATTE et al., 2010)

2012), higher information transfer rate (ITR) (BIN et al., 2009) and few or no training
requirement (CHENG et al., 2002; BIN et al., 2009; VIALATTE et al., 2010; RAMADAN;
VASILAKOS, 2017).

The system commands can be codified into visual stimuli with specified frequency
of oscillation (CHUMERIN et al., 2013). Thus, when a subject gazes at one of the stimulus,
an SSVEP is evoked in their brain (VIALATTE et al., 2010; NORCIA et al., 2015), which
can be detected in the EEG signal. These measurements can then be used as control
commands to the BCI with precision (ALLISON et al., 2010). Figure 15 presents a diagram
of an SSVEP-based BCI.

Three types of stimuli have mainly been used so far for BCIs (Figure 16): light
stimuli (blinking Light-Emitting Diodes-LEDs), simple graphics such as flickering squares
on an LCD computer screen and complex graphics flickers (e.g., alternatively reversing

checkerboards) (ZHU et al., 2010).

The traditional metrics for BCI evaluation are classification accuracy and Informa-
tion Transfer Rate (ITR) (VIALATTE et al., 2010):

e Accuracy is the percentage of correctly classified commands.

e ITR is a standard measure of the amount of information transferred per unit of time,
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Figure 15 — Diagram of the SSVEP-based BCI. (1) Subject gazes at Target A flickering at
frequency fa. (2) EEG signals are measured from the scalp and recorded on a
computer. (3) The data is processed, and features such as peaks at f4 and its
harmonics are extracted. (4) The features are classified and translated into
commands to the application.

a < N

Figure 16 — Types of Visual Stimulation: a) Light stimuli. b) Simple graphics stimuli. ¢)
Complex graphics stimuli.

which is defined by Equation 2.1:

ITR = s |loga(N) + ploga(p) + (1 — p)logs <;]—_p1>} , (2.1)

where N is number of commands, p is accuracy value and s commands performed per

minute.

2.3.4 Applications

Nowadays, due to its robustness and few or no calibration demand for BCI usage,
SSVEP responses are being widely applied in BCIs to develop assistive technology (AT),

with different categories (Figure 17), according to their applications:
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e Computer Interaction and Alternative Communication: (NAKANISHI et al., 2014;
WU et al., 2011; CHEN et al., 2015b; HWANG et al., 2012; VOLOSYAK et al., 2009;
DIEZ et al., 2011; WON et al., 2015; CHABUDA; DURKA; ZYGIEREWICZ, 2017;
YIN et al., 2014)

e Mobility: (KWAK; MULLER; LEE, 2015; XU et al., 2012; MULLER; BASTOS;
SARCINELLI, 2013; DIEZ et al., 2013; CAO et al., 2014)

e Entertainment: (LALOR et al., 2005; CHUMERIN et al., 2013; SHYU et al., 2010;
MARTISIUS; DAMASEVICIUS, 2016; LEGENY; VICIANA-ABAD; LECUYER,
2013; AKHTAR et al., 2014; CHEN et al., 2017)

e Neural Prosthetics and Rehabilitation Systems: (MULLER-PUTZ; PEFURTSCHELLER,
2008; ZHAO et al., 2016; PFURTSCHELLER et al., 2010; ORTNER et al., 2011;
SAKURADA et al., 2013; ZENG et al., 2017; XIE; MENG, 2017; SAVIC; KISIC;
POPOVIC, 2011)

e Ambient Assisted Living: (GAO et al., 2018; TELLO et al., 2015; PUNSAWAD:
WONGSAWAT, 2012; MORA; MUNARI; CIAMPOLINI, 2016)

opESUEONE0
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Figure 17 — Examples of assistive applications using SSVEP response: a) Alternative
Comunication (HWANG et al., 2012); b) Mobility (MULLER; BASTOS;
SARCINELLI, 2013); ¢) Neural Prosthetics (ORTNER et al., 2011); d) Enter-
tainment (LALOR et al., 2005).
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3 A study of SSVEP from below-the-hairline

areas

This chapter presents the evaluation of the montage of channels to measure SSVEP
from below-the-hairline areas when a subject is stimulated at low-, medium- and high-
frequency ranges. Twelve healthy subjects participated in this study. The elicited SSVEP

was evaluated in terms of amplitude and signal-to-noise ratio (SNR).

3.1 Introduction

Recent studies have proposed different approaches to Brain-Computer Interfaces
(BCI) based on Steady-State Visual Evoked Potentials (SSVEP). These approaches employ
EEG signals collected from easily accessible below-the-hairline areas'. For example, Norton
et al. (2015) detected SSVEPs with an electrode positioned behind-the-ear. Hsu et al. (HSU
et al., 2016) presented a binary SSVEP-based BCI system using an EEG electrode montage
placed on the frontal and temporal regions (Fpz-TP9) and employing medium-frequency
stimuli. Wang et al. (2017) detected SSVEP from behind-the-ears with the reference

electrode at the frontal region, at low- and medium-frequency range.

The reference electrode position and the stimulation frequency affect the SSVEP
measured on the scalp (occipital area) (VIALATTE et al., 2010). However, the influence
of these factors on SSVEP from below-the-hairline areas in the three frequency bands
was not addressed. Thus, this study aims to investigate how reference electrode and the
frequency bands (low, medium and high bands) affect the SSVEP measured on hairless
arcas. The objective of this study is to perform a comparison about SSVEP obtained from

hairless regions. The SSVEP is evaluated in terms of amplitude and SNR.

3.2 Materials and Methods

3.2.1 Participants

Twelve healthy subjects (ages 26.1 £+ 4.1; 6 F and 6 M) with normal or corrected
to normal vision participated in this study. The EEG recordings were conducted in a
laboratory with low background noise and dim luminance. The study was approved by

the Ethics Committee from the School of Exact, Physical and Natural Sciences from the

1 In studies related to the study of epileptic seizures, the use of below-the-hairline positions (frontal,

behind-the-ears) has then already been employed (BRIDGERS; EBERSOLE, 1988; YOUNG et al.,
2009; BUBRICK; BROMFIELD; DWORETZKY, 2010)
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National University of San Juan Argentina (act #7). Prior to participating in this study,
all volunteers read an information sheet and signed a consent form. The subjects did not

receive any financial compensation for their participation.

3.2.2 Data acquisition

The EEG signals were acquired with a Grass 15LT amplifier system, and digitized
with a NI-DAQ-Pad6015. The sampling frequency was set at 256 Hz for each channel. The
cut-off frequencies of the analog pass-band filter were set to 1 and 100 Hz. Additionally, a

notch filter for 50 Hz was applied to remove powerline interference.

To evaluate how the electrode montage affects the measurement of SSVEP, thirteen
channel configurations were evaluated, as shown in Table 2. The ground electrode (GND)
was placed at A2 (Figure 18).

(a) (b)

Figure 18 — Positions on the scalp where the electrodes were located: (a) top view and (b)
side view.

Table 2 — EEG analyzed channels.

Groups  Occipital Frontal Temporal Temporal-Frontal

Oz-Fpz  Fpz-LE  TPY9-LE TP9-Fpz
0z-TP9 FpzRE TP9-RE TP10-Fpz
Channels Oz-TP10 TP10-LE
Oz-LE TP10-RE
Oz-RE

3.2.3 Visual Stimulation and Acquisition Protocol

The visual stimulus was composed of a light-emitting diode (LED) that illuminates
a diffusion board of 4cm x 4cm. For this thesis, we analyzed the range of frequencies from
5 to 45 Hz (with steps of 5 Hz). The frequency of the LED was precisely controlled with
an FPGA Xilinx Spartan3E on a Nexys board (Digilent Inc.). Therefore, the stimuli range
covers the three SSVEP bands (low-, medium- and high-frequency).



Chapter 3. A study of SSVEP from below-the-hairline areas 32

Each subject sat in a chair at 60 cm from the stimulus. The experiment consisted
of five runs and each run was composed of trials, one per each stimulation frequency. The
stimulation frequencies were presented in random order to each volunteer. Each trial lasted
7 s, with a varying separation between trials from 2 s up to 4 s, to avoid expectation
effect. The trial begins with a beep (at t = 0 s) and 2 s later the stimulus is turned on.
The stimulus stays on until the end of the trial at t = 7 s. At this moment, a feedback
is presented to the volunteer, indicating whether the SSVEP was detected or not. The

volunteer could relax for 2-5 min before beginning the next run.

3.2.4 EEG Data Analyzing

First, the EEG was digitally filtered with a band-pass Butterworth filter, order
6, bandwidth 3-70Hz. An EEG segment of 5 s was extracted fromt =2 sand t = 7 s,

and the magnitude of the frequency components of the signal was calculated based on the
Discrete Fourier Transform (DFT) of the signal (ARFKEN; WEBER, 1999).

The SNR of the SSVEP at a single channel is defined as the ratio of signal magnitude
of the frequency f to the mean amplitude of the K neighboring frequencies (WANG et al.,
2006; WANG et al., 2017):

K x F(f)
SallF(f +nAf) + F(f =nAf)]
where F'(f) is the magnitude of signal of the frequency f, Af is the frequency resolution
(0.2 Hz in this study), and K was set to 8 (i.e., four frequencies on each side) (CHEN et
al., 2014).

SNR =

(3.1)

The one-way analysis of variance (ANOVA) was applied to the data. The statistical
tests were run for each stimulation frequency, and then we analyzed the behavior of the
SSVEP from every channel in each frequency. Following, the Tamhane T2 was used for

post hoc tests.

3.3 Results and Discussion

It is important to point out that the notch filter at 50Hz may affect the SSVEP at
45 Hz and, thus, they presented lower amplitudes. Moreover, the SSVEP measured at 5
Hz may be diminished by the high-pass filter response.

Figure 19 and 20 show the amplitude and SNR of the SSVEPs from all evaluated

channels.

Considering the occipital region, many studies were performed analyzing variations

of SSVEP amplitude in relation to stimulation frequencies. Pastor et al. showed that the
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Figure 19 — Amplitude of the SSVEPs from all evaluated channels.
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Figure 20 — SNR of the SSVEPs from all evaluated channels.

largest amplitude of response at the occipital area occurs at 15 Hz (PASTOR et al., 2003).
Wang et al. reported that SSVEP amplitudes exhibit three maxima centered on 15, 31
and 41 Hz (WANG et al., 2006). Jukiewicz et al (JUKIEWICZ; CYSEWSKA-SOBUSIAK,
2016) found that human brain response is the strongest when presented with stimuli

flashing with frequency of about 16 Hz.

In our research, the SSVEP on Oz electrode was acquired for comparison purposes.

The occipital group achieved higher SSVEP amplitudes than other groups, as expected.
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Furthermore, occipital group presented higher SNR, particularly up to 40 Hz (with p-value
< 0.05 for most frequencies). In agreement with the research previously mentioned, we
found stronger SSVEP around 15 Hz (Figure 20).

For hairless positions, the temporal group presented lower amplitude values than
occipital, frontal and temporal-frontal configurations. Among the temporal group, TP9-RE
channel showed higher SSVEP amplitudes than other channels between 5 Hz and 20 Hz
(Figure 19). TP10-LE channel is the second best channel (after TP9-RE) in the same
frequency range (5-20 Hz). Additionally, both channels showed similar values for other
stimulation frequencies. The highest SNR for the SSVEP on hairless areas was found in
the measurements obtained by TP9-Fpz and TP10-Fpz (Figure 20).

In summary, it was found that occipital positions present the best SNR. On the
other hand, the best channel to measure SSVEP from the non-hair positions (up to 40
Hz) are temporal-frontal positions (TP9-FPz and TP10-FPz). Our findings suggest that
the SNR of SSVEP can be improved using the temporal-frontal montage.



4 Evaluating of Chromatic and Luminance

Stimuli

This chapter presents a study of chromatic and luminance stimuli in low-, medium-,
and high-frequency stimulation to evoke steady-state visual evoked potential (SSVEP) in
below-the-hairline areas. Twelve healthy subjects participated in this study. The electroen-
cephalogram (EEG) was measured on occipital (Oz) and left and right temporal (TP9
and TP10) areas. The SSVEP was evaluated in terms of amplitude and signal-to-noise
ratio (SNR).

4.1 Introduction

Recent SSVEP-based BCI studies have employed EEG signals measured from below-
the-hairline areas (frontal and behind-the-ears areas) (NORTON et al., 2015; WANG et
al., 2017; HSU et al., 2016). However, these works used stimuli based only on luminance
modulation (on/off stimulus). On the other hand, visual stimuli that use colors (green-blue
or green-red) and luminance combination can increase the evoked response (TAKANO et al.,
2009; IKEGAMI et al., 2012; AMINAKA; MAKINO; RUTKOWSKI, 2014; SAKURADA et
al., 2015; CHEN et al., 2017). Moreover, it was found that color information is mediated by
specialized neurons that are clustered within the temporal areas (CONWAY; MOELLER,;
TSAQO, 2007). Besides, there are color-selective neurons in the inferotemporal cortex
(KOIDA; KOMATSU, 2007). The inferotemporal cortex receives projections from the
primary visual cortex (ventral pathways) (MISHKIN; UNGERLEIDER, 1982; GOODALE;
MILNER, 1992), which are both color-sense-associated and object recognition pathways

that detect colors.

Therefore, in this chapter, we present a comparative study of chromatic and
luminance stimuli flickering at low-, medium-, and high-frequencies to evoke SSVEP
responses in behind-the-ears areas. Basically, this study aims to answer three questions:
(1) What is the influence of chromatic and luminance stimuli on SSVEP from behind-
the-ears? (2) What is the best combination (green-blue or green-red')? (3) How is the
SSVEP response evoked by these stimuli in low-, medium-, and high-frequency bands?
Therefore, the results of the current work will help in the development of more accurate

and comfortable BCI systems.

1 We did not use the blue-red combination, as these colors are the worst case for photosensitive epilepsy, especially at 15

Hz (PARRA et al., 2007)
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4.2 Materials and Methods

4.2.1 Data Acquisition

Twelve healthy subjects (ages 26.1 £+ 4.1; 6 F and 6 M) with normal or corrected-
to-normal vision participated in this study. The EEG recordings were conducted in a
laboratory with low background noise and dim luminance. Previous to participation in this
study, all volunteers read an information sheet and provided written consent to participate.
Ethical approval was granted by the institutional ethics committee. The subjects did not

receive any financial reward for their participation.

The EEG was measured over occipital (Oz) and left and right temporal (TP9 and
TP10) arcas (Figure 21). The ground clectrode was placed at A2. The EEG signals were
acquired with a Grass 15LT amplifier system, and digitalized with a NI-DAQ-Pad6015
(sampling frequency: 256 Hz). The cut-off frequencies of the analogical pass-band filter
were set to 1 and 100 Hz. Additionally, a notch filter for 50 Hz line interference was applied.

(@) (b)

Figure 21 — Positions on the scalp where the electrodes were located. (a) Top view of
positions; (b) Side view of the positions. Oz: occipital area; TP9: left temporal
area; TP10: right temporal area; REF: reference electrode; GND: ground
electrode.

4.2.2 Visual Stimulation

The visual stimulation was performed by light-emitting diodes (LEDs) that illumi-
nated a diffusion board of 4 cm x 4 cm. The LEDs were red, blue, green, and white. Each
LED could flicker at different frequencies from 5 Hz to 65 Hz with an interval of 5 Hz.
Therefore, the stimulation range comprised the three SSVEP bands (low-, medium-, and
high-frequency). The frequency of the LEDs was precisely controlled with an Xilinx Spar-
tan3E field-programmable gate array (FPGA) on a Nexys board (Digilent Inc., Pullman,
USA). The 50 Hz frequency was not used as a stimulation frequency, because this is the

Argentinian power line frequency.
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The setup consisted of three different stimuli (Figure 22). The first stimulus was
white (W) LED for the luminance condition. The other two stimuli were green-red (G-R)
stimulus and green-blue (G-B) stimulus. Figure 22 shows the transition of the two states of
the visual stimuli. Each state remained activated for half of the period of the stimulation
frequency (f = 1/T, where T is the period). For the luminance stimulus (W), the two
states represented the light on and off. For the G-R and G-B stimulus, the two states were

green-red and green-blue, respectively.
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Figure 22 — Visual stimulation used for the experiments: (a) Luminance stimulus (white,
W); (b) green-red (G-R) stimulus; (c¢) green-blue (G-B) stimulus.

4.2.3 Experimental Protocol

Each subject sat in a chair at 60 cm from the stimulus. The experiment was divided
into five runs (Figure 23a). At ecach run, the three possible stimuli (G-R, G-B, and W)
were showed to the volunteer (Figure 23b). At each colored stimulus, the 12 frequencies
were presented. Thus, each stimulus comprised 12 trials, and each trial lasted 7 s (Figure
23c). Thus, 12 trials (one per frequency) of the same colored stimulus were presented to
the volunteer. Later, the process was repeated for the other two colored stimuli, which
comprised a run. Finally, the run was repeated five times. The stimulation frequencies
and the colored stimuli were randomly presented to each volunteer. In order to avoid
expectation effects, a variable separation time (2—4 s) between trials was used. The trial
began with a beep (at t = 0 s), and 2 s later the stimulus was turned on. The stimulus
stayed on until the end of the trial at t = 7 s. At this moment, a feedback was presented
to the volunteer indicating whether the SSVEP was detected or not. The volunteer could

relax for 2-5 min.

4.2.4 EEG Signal Processing

The EEG was preprocessed using a Butterworth filter, order 6, with cut-off fre-
quencies set at 3 and 70 Hz. Later, the EEG between t = 2 s and t = 7 s was extracted

for analyzing in the next step. Then, the magnitude of the frequency components of the
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Figure 23 — Protocol of the experiment: (a) experiment divided into five runs; (b) three
colored stimuli presented in random order to each volunteer; (c) 12 frequencies
randomly presented for each colored stimulus.

signal was calculated based on the Discrete Fourier Transform (DFT) of the signal. The

signal-to-noise ratio (SNR) measurement was computed based on Equation 3.1.

4.2.5 Statistical Evaluation

For the statistical analysis of the results, the Friedman test for simultaneous
comparison of more than two groups was used. Post-hoc pairwise comparisons using
Wilcoxon signed-rank test were also conducted, in which a level of p < 0.05 was selected

as the threshold for statistical significance.

4.3 Results

4.3.1 Amplitude

Figure 24 shows the average amplitudes of the elicited SSVEP of all volunteers
for the three visual stimuli. The frequencies marked with an asterisk show statistical

significance (p-value < 0.05) using the Friedman test.

At the occipital region, the G-R stimulus showed a higher response when compared
with the W stimulus in the medium-frequency range (15-25 Hz, with p-value < 0.05).
In contrast, in the high-frequency range (3040 Hz, p-value < 0.05) the G-B stimulus
presented a better response when compared with the W stimulus. In the 55-65 Hz interval,

the W stimulus achieved a better response than G-R and G-B stimuli.

In the temporal region (TP9 and TP10), a similar behavior was observed; i.e., in

the medium-frequency range, the G-R stimulus achieved higher amplitudes (TP9: 15 Hz,
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Figure 24 — Average of the steady-state visual evoked potential (SSVEP) amplitudes of all
volunteers for the Oz, TP9, and TP10 channels using three different stimuli.
The frequencies with statistical significance (p-value < 0.05) based on the
Friedman test are marked with an asterisk.

with p-value < 0.05; TP10: 15-25 Hz, with p-value < 0.05) than W and G-B stimuli. In
the high-frequency range, the G-B stimulus showed a better response (30-35 Hz, with
p-value < 0.05) than the other stimuli.

4.3.2 SNR

Figure 25 shows the average SNR of the SSVEP of all volunteers for the three

stimuli. The frequencies marked with an asterisk show statistical significance (p-value <
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Figure 25 — Average of the SSVEP SNR of all volunteers for the Oz, TP9, and TP10
channels using the three different stimulus configurations. The frequencies
with statistical significance (p-value < 0.05) based on the Friedman test are

marked with an asterisk.

At the occipital region, the G-R stimulus showed a higher response than the W

stimulus in the medium-frequency range (15-25 Hz). In the high-frequency range (3040
Hz), the G-B stimulus showed a better response (30-35 Hz, p-value < 0.05) than the W

stimulus. In the 55-65 Hz range, the luminance stimulus (W) presented a better response

than the G-R and G-B stimuli.

Again, a similar behavior was observed in the temporal region (TP9 and TP10);



Chapter 4. Ewvaluating of Chromatic and Luminance Stimuli 41

i.e., in the medium-frequency range, there was a higher response of the G-R stimulus (TP9:
15 Hz, with p-value < 0.05; TP10: 15-25 Hz, with p-value < 0.05) compared with the
luminance stimulus (W). In the high-frequency range the G-B stimulus showed a better

response (30-35 Hz, with p-value < 0.05) when compared with the W stimulus.

4.4 Discussion

The literature reports that the visual stimuli that combine colors and luminance
can increase the evoked response of P300 potentials (TAKANO et al., 2009; IKEGAMI
et al., 2012). Similarly, it was demonstrated that the combination of G-B and luminance
can evoke a better response in the SSVEP from the occipital region (BIEGER; MOLINA;
ZHU, 2010; AMINAKA; MAKINO; RUTKOWSKI, 2014; SAKURADA et al., 2015). In
other work (CHEN et al., 2017), G-R stimuli combined with luminance changes obtained
a better response at a modulated frequency of 15 Hz. These works measured the EEG on

occipital and parietal regions of the scalp.

Currently, the BCI community is looking at how to transfer these systems from
the lab to the patient’s home. Thus, more accurate and comfortable BCI systems must be
designed. This way, measuring the EEG from hairless positions presents advantages to the
user, and recently, these kinds of BCI systems have been reported in the literature (WANG
et al., 2015; NORTON et al., 2015; WANG et al., 2017). These studies demonstrated that
it is possible to develop a BCI based on EEG measured from hairless regions; however,
concerning the wide frequency range and types of stimulation (color and luminance), the

question about the best frequency and type of stimulation remains unclear.

In the current study, SSVEP from behind-the-ears areas (TP9 and TP10) was
elicited by three stimuli (G-B, G-R, and W) flickering at low-, medium-, and high-frequency.
The aim of this experiment was to analyze how these stimuli influence the SSVEP response
from the below-the-hairline areas. Higher amplitude (Figure 24) and SNR (Figure 25) of
the SSVEP were observed when stimuli that combined color and luminance (G-R and
G-B) were applied. Particularly, the best response in the medium-frequency band (15-25
Hz) was obtained with G-R stimulation. On the other hand, G-B stimulation showed
the best response in the high-frequency range (30-40 Hz). Therefore, a suitable color
and luminance stimulation allows the achievement of higher amplitudes and higher SNR
from behind-the-ears areas, and consequently, an accurate and comfortable BCI may be

designed.
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5 Comparison of Methods for High-
Frequency SSVEP-based BCI

Towards more practical systems, calibration-less methods have been used in SSVEP-
based BCls, which have gained attention from researchers, as the detection of the command
is performed without a calibration phase for the user. Thus, in the last years, new methods
have been developed to improve the SSVEP detection performance. The challenge with high-
frequency range is due to its lower signal magnitude, which can degrade the accuracy of the
BCI. Thus, this chapter presents a comparison of different techniques for detection of high-
frequency SSVEPs. For performance evaluation, classification accuracy and information

transfer rate (ITR) were used.

5.1 Introduction

Low- and medium-frequency visual stimuli evoke responses of high magnitude and
signal-to-noise ratio (SNR) (ZHU et al., 2010). Consequently, these frequency ranges are
most commonly used in SSVEP-based BCIs (VOLOSYAK et al., 2011). However, visual
stimulation in these frequency ranges can cause visual fatigue, headaches or photosensitive
epileptic seizures (ZHU et al., 2010). On the other hand, the risk of these problems can
be reduced using high-frequency visual stimuli. However, the amplitude of SSVEPs is
strongly reduced at high-frequency (VOLOSYAK et al., 2011). Thus, robust algorithms
are required for the recognition of high-frequency SSVEPs.

One the most traditional method applied for SSVEP detection is the Power Spectral
Density Analysis (PSDA)(WANG et al., 2006; WANG et al., 2008). The spectrum of the
EEG signal captured can be estimated using the Fast Fourier Transform (FFT) with low
computational cost. With advances in EEG signal processing research, other methods for
SSVEP detection were developed, such as Canonical Correlation Analysis (CCA) (LIN et
al., 2007).

Recently, other techniques, such as Filter Bank Canonical Correlation Analysis
(FBCCA) (CHEN et al., 2015a), Multivariate Synchronization Index (MSI) (ZHANG et
al., 2014) and Temporally Local Multivariate Synchronization Index (TMSI) (ZHANG et
al., 2016) were also developed to improve the SSVEP response detection. These techniques
are interesting because the detection of the command is performed without a calibration
phase for the user. Thus, the preparation time required for BCI use is reduced, allowing

the development of a more practical system.
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However, the performance of these techniques for detection of high-frequency
SSVEPs in the literature is still unclear. Thus, this evaluation aims to perform a comparison
of calibration-less methods for high-frequency SSVEP detection. In addition, medium-
frequency range is also analyzed. The classification accuracy and information transfer rate

(ITR) index are used for performance evaluation of the methods.

5.2 EEG Signals

Aiming to provide an overview of how the different SNR of SSVEP would impact
the design of a future BCI system, a simulated online analysis was performed. Hence, the
accuracy of the SSVEP detection and information transfer rate (ITR) (VIALATTE et al.,
2010) were used. The dataset used in this analysis was obtained from stimuli evaluation
experiment (Chapter 4). To emulate an online detection process, window lengths (WLs)
of 1, 2, 3 and 4 s were used. For this test, two frequencies were chosen in order to simulate
a binary BCI. Thus, 30 and 35 Hz were chosen for the high-frequency range, as these
frequencies presented the best SNR (Figure 25).

5.3 Methods

Researchers have developed various techniques of feature extraction and classi-
fication of SSVEPs, such as Power Spectral Density Analysis (PSDA) (WANG et al.,
2006), Canonical Correlation Analysis (CCA) (LIN et al., 2007), Filter Bank Canonical
Correlation Analysis (FBCCA) (CHEN et al., 2015a), Multivariate Synchronization In-
dex (MSI) (ZHANG et al., 2014), Temporally Local Multivariate Synchronization Index
(TMSI) (ZHANG et al., 2016) (Appendix A). The traditional metrics for BCI evaluation
are classification accuracy and Information Transfer Rate (ITR) were used (VIALATTE
et al., 2010).

5.4 Results and Discussion

Figures 26 and 27 present the average accuracy of the classification of all volunteers
for the three stimuli in high-frequency range for occipital and behind-the-ears channels

respectively.

Figures 28 and 29 present the average ITR of all volunteers for the three stimuli in

high-frequency range for occipital and behind-the-ears channels respectively.

The high-frequency band is known for its low-amplitude SSVEP, making difficult
to implement a BCI (VOLOSYAK et al., 2011). However, when using G-B stimuli, the

detection accuracy and I'TR were increased on both the occipital and temporal areas. The
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Figure 26 — Average accuracy of all volunteers for the three stimuli in high-frequency range
for occipital channel
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Figure 27 — Average accuracy of all volunteers for the three stimuli in high-frequency range
for behind-the-ears channels.

G-B stimulus presented the higher accuracy when compared with G-R and W stimuli
using PSDA (TP9/TP10: 75.5 +5.1%), CCA (TP9/TP10: 75.7 + 4.6%), MSI (TP9/TP10:
76.3 £ 4.8%), FBCCA (TP9/TP10: 77.2 £ 3.5%) and TMSI (TP9/TP10: 80.7 £ 4.2%).

In the current evaluation, it is shown that using G-B stimulus at high frequencies
allowed a satisfactory accuracy rate to be obtained in a hairless area (> 80%). Hence, the
development of more comfortable and practical BCIs are possible. In addition, a previous
work (PARRA et al., 2007) reports that the green-blue chromatic flicker is the safest

stimulus for human visual photosensitivity.
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Figure 28 — Average ITR of all volunteers for the three stimuli in high-frequency range for
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Figure 29 — Average ITR of all volunteers for the three stimuli in high-frequency range for

behind-the-ears channels.
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6 A Noninvasive High-Frequency SSVEP-
based BCl

This chapter presents the development of our Brain-Computer Interface, which is
able to modulate the high-frequency SSVEP amplitude from below-the-hairline areas by
adjusting the eyes focus. This BCI was validated through the control of a mobile robot in

an virtual reality environment.

6.1 Introduction

As previously described, one of the most common BCI paradigms is based on
SSVEP (ZHU et al., 2010; VIALATTE et al., 2010). The main advantage of this paradigm
is given by its robustness due to the high signal-to-noise ratio (SNR) response (ALLISON
et al., 2010; VIALATTE et al., 2010). In SSVEP-based BCls, each command can be
codified with a visual stimulus at a specific frequency (MIDDENDORF et al., 2000; XING
et al., 2018). Thus, BCI users are able to send commands to the computer by redirecting
their gazing to the target stimulus location (Figure 30) (BASTOS-FILHO et al., 2014).

f, []
f1D : sz le

SSVEP

‘\‘ Amplitude

Figure 30 — (a) Hlustration of Conventional SSVEP-based BCI; (b) Alternative SSVEP-
based BCI stimuli setup with Depth-of-Field.

However, paralyzed individuals who cannot control their muscular movements
will have difficulties using these conventional SSVEP-based BCIs. In order to reduce the
voluntary movements, alternative SSVEP-based BCIs using two stimuli superimposed
or close to each other have been proposed (KELLY et al., 2005; ALLISON et al., 2008;
ZHANG et al., 2010; LESENFANTS et al., 2014; TELLO et al., 2016). However, neural
competition in virtual cortex increases as the visual stimuli become close (FUCHS et al.,
2008), implying a classification accuracy reduction (NG; BRADLEY; CUNNINGTON,
2012; ZHANG et al., 2019). Thus, to obtain a better BCI performance, center-to-center
spatial distance between visual stimuli should be more than 6° (ZHANG et al., 2019).
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Cotrina et al. (2017) proposed a SSVEP-based BCI composed of two low-frequency
stimuli based on Depth-of-Field aiming at reducing the visual stimuli competition as well as
required movements. When human eye focuses on an object, the range of distance for which
objects produce acceptably sharp retinal image is known Depth-of-Field (PENTLAND,
1987), whereas objects positioned out of this range appear blurred. Thus, users were
able to select one of them by shifting their eye focus (COTRINA et al., 2017) (Figure
30). In that work, EEG signals were collected through electrodes placed on occipital and
parietal regions (hair-covered areas), which demanded a long preparation time to place the
electrodes and dirty the hair with gel( WANG et al., 2012). In addition, generally people
with severe motor disabilities need to stay with their heads supported by a headrest, which

makes it difficult to use kind of BCIs in everyday life.

Research works about below-the-hairline areas and high-frequency visual stimuli
for BCIs have been few explored in the literature, despite this configuration being secure,
practical and comfortable for people suffering severe motor disabilities. The reason is
because the amplitude of SSVEPs is quite reduced at high-frequency, making it difficult
to implement a BCI (VOLOSYAK et al., 2011).

Nevertheless, recently we have shown that chromatic and luminance stimuli al-
low the achievement of higher amplitudes and higher SNR from behind-the-ears areas.
Particularly, for high-frequency range (30-40 Hz), the best response was obtained in green-
blue stimulation (Chapter 4). Therefore, it is reasonable to believe that one could use
high-frequency SSVEPs from behind-the-ears to implement a SSVEP-based BCI based on
Depth-of-Field. Furthermore, to our best knowledge, no study has yet used high-frequency

SSVEPs from hairless areas to develop a online system, such as the proposed here.

Thus, this study aims to answer three main questions: (1) Can high-frequency
SSVEP measured from below-the-hairline areas be modulated by shifting eye focus? (2)
Can these potentials measured from hairless areas be suitable for BCI usage? (3) What
is the system performance for online mode? The article follows with an explanation of
the materials and methods used in the evaluation of the system. Lastly, some important

aspects of the results are shown and discussed.

6.2 Materials and Methods

6.2.1 Data acquisition

Four subjects (ages 24.0 + 4; 3 M; 1 F) were recruited to participate in this study.
The research was carried out in compliance with Helsinki declaration, and the experiments
were performed according to the rules of the ethics committee of UFES/Brazil, under
registration number CAAE: 64797816.7.0000.5542. All measurements were noninvasive
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and the subjects were free to withdraw at any time without any penalty.

For the BCI development, a clinical EEG signal recording equipment (BrainNet-36)
was used. We used EEG channels placed on TP9 and TP10 positions (behind-the-ears
areas), with the reference at the forehead (Fpz). The sampling frequency was 200 Hz, and

the ground electrode was placed on the left ear.

6.2.2 Virtual Environment

The Virtual Environment was created using the Unity Game Engine. The robot
and its movements were built in the open source software Blender 3D. Furthermore, the

textures were created using a free license software Gimp (Figure 31).

Figure 31 — a)Virtual environment and b) Virtual robot developed.

6.2.3 Stimulus Design

The visual stimulation was performed by two RGB LEDs, and each one illumi-
nated a diffusion board (Figure 32). The signals were generated with the microcontroller
ATMega2560 of 16MHz, present in the Arduino Mega 2560 development board, using
square waveforms at 31 and 32 Hz. For these experiments, we used the same stimulation
setup used in a our previous study. Thus, green-blue stimulus was selected, as this color
combination elicited SSVEP with the best SNR in the high-frequency range (Chapter 4).

Subject Visual Stimulator Monitor
31 Hz
32 Hz H P
i1
Lateral View Frontal View
a) b)

Figure 32 — Layout of the SSVEP-based BCI stimulation setup. a) Lateral View; b) Frontal
View.
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6.2.4 Signal Processing and Evaluation Protocol

The subjects sat on a comfortable chair 60 cm in front of the stimulation system.
The four participants were instructed to perform both offline and online BCI tasks, in

which the whole system was properly synchronized.

For the offline protocol, the subject had to focus at each stimulus (S; and Ss)
for 20 s, and both stimuli were activated. The EEG was preprocessed using a 6" order
Butterworth filter with cut-off frequencies set at 3 and 90 Hz. For each recorded channel,
the Discrete Fourier Transform (DFT) was applied to the 20-s-long EEG data to calculate
the amplitude spectrum F(f) at frequency f. The SNR of the SSVEP at a single channel
is defined as the ratio of F'(f) to the mean amplitude of the K neighboring frequencies
(WANG et al., 2017; WANG et al., 2006):

K x F(f)
SEEIF(f +nAf) + F(f —nAf)]

SNR = (6.1)
where Af is the frequency resolution (0.05 Hz in this study), and K/2 was set to
16 (i.c., % 0.8 Hz) (CHEN et al., 2014).

The online protocol was performed using a virtual environment (Figure 31) built to
simulate the use of the virtual robot (FLORIANO et al., 2016). For this evaluation, three
out of four subjects performed the route shown in Figure 33, by sending commands to the
virtual robot. The commands implemented in the system were defined as: i) move a meter
ahead, which corresponded to the focus on the S5 stimulus, and ii) rotate 30 degrees to

the right when the focus was on the S; stimulus (Figure 32).

Figure 33 — Task used for online evaluation.

The EEG was analyzed within a time 4 s window, slid in steps of 0.25 s, i.e.,
the EEG signal processing is performed four times by second. The Temporally Local
Multivariate Synchronization Index (TMSI) method (ZHANG et al., 2016) was performed
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every 0.25 s using the criterion of maximum value of synchronization index for SSVEP
target recognition. Then, in order to send a command, four consecutive targets are classified

as the same target, otherwise the acquisition of the signals is resumed. A similar strategy

was used in (WANG et al., 2018)

6.3 Results and Discussion

Figure 34 shows the SNR of the SSVEP response elicited by the visual stimuli. The
SSVEPs elicited by the visual stimulation setup were consistent and accurate. In both
situations (focus on S7/S5 stimulus), each spectrum response contains the peak in the
expected frequency. In both cases, the peak of the other frequency was absent in the EEG

signal spectrum even though both visual stimuli were activated.
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Figure 34 — Average of the SNR SSVEP captured of both EEG channels during the
offline protocol performed by all subjects (dark lines) together with SNR
corresponding to all trials (bright lines).

Figure 35 shows Synchronization indices calculated with TMSI method using four-
second sliding windows (steps of 0.25 s) for the two situations (focus on S;/Ss stimulus).
The results reveal that the behavior of the SSVEP amplitude was modulated according to
the eyes focusing mechanism. For both cases, it can be noticed throughout the trial that
the values of the synchronization indices related to the frequency of the focused stimulus

is higher than the other one and vice versa.

Figure 36 shows the bars representing the average value of the synchronization

indices at frequencies of focused /non-focused stimulus for each subject in the situations:
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Figure 35 — Synchronization indices of the TMSI method corresponding to the average
(dark lines) together with standard error (bright lines). a) The focus was on
the Sy stimulus. b) The focus was on the Sy stimulus.

a) focus on Sj, and b) Sy stimulus. The Wilcoxon signed-rank test was used to evaluate
the difference at a level of p < 0.05. Then, a statistical significant difference was indicated
by an asterisk. Thus, it was observed that the focused stimulus elicited distinguishable

SSVEP pattern, independent to non-focused stimulus also present in the field of view.

Figure 37 shows the accuracy rate and I'TR of the three subjects. Subject #4 was
not able to accomplish the online test. Notice in Figure 36 there was no difference between
indices. The subjects that were able to perform the proposed task in the protocol obtained
an average accuracy of 96% and ITR of 6.42 bits/min. Based on the results, the proposed
BCI is considered suitable to be used, for example, for alternative communication interface,
as a satisfactory classification accuracy was achieved. Notice that, according to (KUBLER;
BIRBAUMER, 2008), accuracy above 70% is considered acceptable to achieve effective

communication in a BCI with binary choice.

As a discussion, although conventional SSVEP-based BCls are becoming robust
systems, they are still not suitable for all patients, as reliable eye control movements are
required in these BCIs. Thus, gaze independent approaches based on the attention has been
proposed (KELLY et al., 2005; ZHANG et al., 2010; LESENFANTS et al., 2014; TELLO
et al., 2016). Nevertheless, independent approaches demand high mental concentration
(POSNER; PETERSEN, 1990). For that reason, Cotrina et al. proposed a setup based on
the Depth-of-Field phenomenon that becomes a complementary method to the attention
based SSVEP paradigm (COTRINA et al., 2017). Table 3 presents a summary of some

characteristics of previous related works, comparing them with our study.
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Figure 36 — Average of the synchronization indices of the TMSI method. a) The focus was
on the S; stimulus. b) The focus was on the Sy stimulus. The groups with
statistical significance (p-value < 0.05) based on the Wilcoxon signed-rank
test are marked with an asterisk.
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Figure 37 — Results of the online evaluation.

Through the obtained results in our study, it was observed that the high-frequency
SSVEP response from hairless regions can also be modulated by focusing mechanism of
the eyes. In online evaluation, this response was demonstrated to be suitable for use in a
BCI, reaching satisfactory performance using a calibration-less method (accuracy and ITR
of 96% and 6.42 bits/min, respectively). Additionally, this system uses comfortable stimuli

(high-frequency range), practical electrodes placement and does not require a calibration
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phase by users.

Table 3 — Summary of the characteristics of related studies.

Study Classes Visual Stimulator High-frequency  Hairless
Stimulus Device area
(KELLY et al., 2005) 2 Bilateral Squares CRT monitor No No

with Letters

(ALLISON et al., 2008) 2 Overlapped Lines CRT monitor No No
(ZHANG et al., 2010) 2 Overlapped Dots LCD monitor No No
(LESENFANTS et al., 2014) 2 Interlaced Squares LED No No
(TELLO et al., 2016) 2 Rubin’s Face-Vase LED No No
(COTRINA et al., 2017) 2 Luminance LED No No
This work 2 Chromatic-Luminance LED Yes Yes




7 Conclusions and Future Works

This thesis presented studies conducted to characterize the SSVEP response from
below-the-hairline areas with the aim of developing a practical BCI. Firstly, the results
demonstrated that the SSVEP response from hairless areas are influenced by the reference
electrode position, and that the best channel choices to measure the response were TP9-Fpz
and TP10-Fpz.

Regarding the study about chromatic and luminance visual stimuli, it was found
that stimuli based on a suitable color and luminance elicit strong SSVEP on the behind-the-
ears areas. Interestingly, it was found a different response of SSVEP related to frequency
and color of the stimuli. Thus, although green-red stimulus elicit the highest SSVEP in
the medium-frequency range (15-25 Hz), green-blue stimulus elicited the highest SSVEP
at high-frequencies (30-40 Hz). Moreover, the results of the simulated online analysis show
that a combination of colors and luminance also improve the SSVEP detection accuracy,

reaching rates higher than 80% for medium- and high-frequency stimulation.

Another study conducted was about the analysis of the influence of the shifting
the eye focus on the SSVEP amplitude in hairless areas. The results demonstrate that it
is possible to measure the modulation of the SSVEP amplitude from below-the-hairline
areas according to the eye focus, whose SSVEPs elicited by visual stimuli were consistent
and accurate. In fact, in both offline tasks (focus on stimulus S; and S5), each response
spectrum contained only the peak in the expected frequency. In addition, online results
indicated that the proposed BCI can be used for an alternative communication interface,
with an average accuracy of 96%. These findings allow the development of more comfortable

and practical BCIs with electrodes positioned on below-the-hairline areas.

Future Works

The following are suggestions for future works:

e It is essential a study for creation of a benchmark for a high-frequency SSVEP dataset.

This open dataset can be used to compare the performance of new algorithms.

e Development of a low cost wearable BCI system based on this thesis proposal (Figure
38).

e Assessment of the BCI in people with severe motor disabilities such as those in

advanced stages of amyotrophic lateral sclerosis and Guillain-Barré syndrome.
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Figure 38 — Design of a low cost wearable BCI system based on this thesis proposal.

Publications

Table 4 present an overview of works developed during the research conducted in
this PhD thesis:

Table 4 — Publications

Published Under Review

Journal Papers 2 (A1 and BI) 1 (A2)
Conference Papers 6 2
Book Chapters 2 -

Patents - 2
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APPENDIX A - Calibration-less methods
for SSVEP detection

A.1 Methods

A.1.1 Power Spectral Density Analysis (PSDA)

Power Spectral Density Analysis (PSDA) is a traditional method used for SSVEP
classification (LIU et al., 2013). Fast Fourier Transform (FFT) have been used to estimate
the power values at the frequencies of interest for SSVEP detection (WANG et al., 2006;
WANG et al., 2008). Thus, a large power amplitude is expected at frequency components
corresponding to the fundamental frequency of the stimulus and its harmonics, representing
the SSVEP. Furthermore, in PSDA method the SSVEP response can be enhanced for
detection by computing the the Equation A.1 based on the SNR as (WANG et al., 2006):

K x F(fi)
SaliE(fi 4 nAf) + F(f; = nAf)]
where f; is the frequency value, F'(f;) is the magnitude of the signal, Af is the frequency

SNR(f;) =

(A1)

resolution and K is the number of neighboring frequencies. The frequency with the largest
SNR(f;) is recognized as a BCI command.

A.1.2  Canonical Correlation Analysis (CCA)

CCA is a multi-dimensional statistical analysis technique that finds underlying
linear correlations between two sets of data. Given two multi-dimensional data sets X and
Y, the CCA finds the weight vectors Wz and Wy that maximize the correlation between
linear combinations x = XTWa and y = YZWy by solving the following optimization

problem:

EW; XY'W,]
(WIXXTW,JE(WIYYTW,)

max(p)wz7wy = \/E (AQ)

where E.] is the expected value.

This problem can be solved using the singular-value decomposition method to
diagonalize the covariance matrices as the maximum canonical correlation corresponds to

the square-root of the largest eigenvalue.
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In SSVEP detection, CCA is used to find linear correlations between multichannel
EEG data, X, and a set of reference signals Y. This reference set consists of sine and

cosine signals at the fundamental and harmonic frequencies of each stimulus.

The reference signal Yy, shown below, can be derived using Nj, harmonics, where f

is the fundamental frequency and ¢ is time.

sin(2m [t)
cos(2m ft)

sin(2w Ny ft)
cos(2m Ny, ft)

Assume there are K stimulus frequencies to be recognize. It is estimated the
canonical correlations indices p1, pa, ..., px for all of the stimulus frequencies. The stimulus
(f;) that presents the larger value of correlation (p;) is chosen as the output of the

classification.

A.1.3 Multivariate Synchronization Index (MSI)

Zhang et al. (2014) proposed a Multivariate synchronization index (MSI) for
frequency recognition. This method calculates the synchronization between multichannel

EEGs and the reference signals defined according to the stimulus frequency.

Consider a matrix X of size NxM as the EEG signals and a matrix Y of size
2NpxM as the reference signals, where N is the number of channels, M is the number of
samples and N}, is the number of harmonics of the reference signal. Assuming both the X
and Y have been normalized to have zero means and unit variances. Then the correlation

matrix C is

Cn C
O = 11 G2 (A.4)
Co Co
Where,
Cll = ﬁXXT 012 - ﬁXYT
(A.5)

Cyr = ;Y XT Copp=5YYT

The matrix C' includes the autocorrelation and cross-correlation of X and Y, since

autocorrelation influence the synchronization measure the following linear transforming is
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applied
U - 1 _(l) (A6)
O 022 2
Ivw P o)
R=UCU" = (A7)

MLl om L A

Let A1, Ag, ..., Ap be the eigenvalues of the matrix R, where P = N + 2N,,. Then

the normalized eigenvalues are given by

n_ N

= (A.8)
PORY
=1

Then the S-estimator which represents the synchronization of the signals is defined
by

P
S ArlogA}

= (A.9)

S=1
+ logP

and varies from 0 which means no correlation and 1 which means maximum
correlation. Assume there are K stimulus frequencies to be recognize. Through constructing
the reference signal set at each of the stimulus frequency, we estimate the synchronization
indices S, 9, ..., Sk for all of the stimulus frequencies. The criterion of maximum value of

synchronization indice is used for SSVEP target recognition.

A.1.4 Filter Bank Canonical Correlation Analysis (FBCCA)

Filter Bank Canonical Correlation Analysis (FBCCA) decomposes SSVEPs into
multiple sub-band components and then performs separate CCA’s on each of the sub-
band components (CHEN et al., 2015a). The correlation values between the sub-band
components and the reference signal X, corresponding to f; stimulation frequency are
estimated to form a correlation vector p, = [pi,...,pY|T, where N is the number of
correlation values. A weighted sum of squares of the correlation values corresponding to

all sub-band components is then calculated as the feature for SSVEP detection as follows:

P, =1+ Z:lw(n)(p’,j)Q (A.10)
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where N is the number of sub-bands and w(n) are the weights of the sub-band
components. The weights are set by the observation that the SNR of SSVEP harmonics

decreases as the response frequency increases:

w(n) =n""*+0.25,n € [1,N] (A.11)

The frequency of the reference signals having the maximum correlation is then

considered to be the target stimulus.

A.1.5 Temporally Local Multivariate Synchronization Index (TMSI)

The MSI is a potential method for frequency recognition, however, it is a time
dependent method, which is its inconvenience. This method can be improved by integrating
the temporal structure information of signals into the covariance matrix. Thus, the time-
dependant covariance modelling of the EEG signals can yield more robust features for
frequency recognition for SSVEP-based BCI system.

Considering W € RM*M  the weight matrix (or termed adjacency matrix), multi-

RN*M yegpectively. M is the number of recording

variate signals by Z = (21, 22, ..., 2 €
samples, and N are the number of variables or channels. As stated by Wang, 2010, the

temporally local covariance matrix is expressed as shown in Equation A.12:

— 1
C = m ZMZJ = 1MW1](ZZ — Zj)(Zi — Zj)T. (A12)
i=1

Equation A.13 can be written as:

C= % Yo M(ziz)" Y j=1MW; = > MY j = 1MW, ;%2 (A.13)
=1

i=1
Equation A.13 can be rewritten as:

_ 1 ™
C=—(2(D-W)2Z") =

1

1 /[ZLZT, (A.14)

where L is the Laplacian matrix and L = D — W - D is a diagonal matrix with the
diagonal elements being the row sums of W. Different ways can be followed to generate
the weight matrix W. Following the Tukeys tricube weighting function, Equation A.15 is

reached.

W, =K (j _ Z) . (A.15)

T
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Here 7 defines the temporally local range, and it features the manifold of the EEG
signals. An monotonously decreasing function is used to closed data point that have larger

weight between them and it is expressed in Equation A.16

K(v) = { (1= o]y, o] <1 (A16)

0, v] > 1.

Once C is generated, to calculate the synchronization index it was used the Equation
A.6 - A.9 to implement frequency recongition. Thus, the main operation for the TMSI is
to model the covariance matrix C' which could deliver more discriminative information

than its counterpart for the standard MSI.



