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Resumo

Nessa dissertação nós estudamos uma generalização das equações BPS proposta re-
centemente, que pode ser aplicada a teorias com multipletos de campos escalares. Fazemos
uma revisão geral do formalismo das equações BPS generalizadas e como este permite a
construção de novos modelos a partir de álgebras de Lie, os modelos FKZ. Descrevemos
os modelos baseados nas álgebras g2 e su(4) e apresentamos algumas soluções estáticas
construídas a partir das equações BPS. Além disso, também apresentamos os resultados
de algumas simulações feitas para o espalhamento de sólitons no modelo FKZ baseado na
álgebra su(2).

Palavras-chave: sólitons topológicos, equações BPS, simulação númerica.
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Abstract

In this dissertation we study a generalization of the BPS equations, which can be
applied in theories with multiplets of scalar fields. We give a overview of the generalized
BPS formalism and how it can be applied to the construction of new models from Lie algebras,
the FKZ models. We describe the models based on algebras g2 and su(4), and present some
static solutions obtained from the BPS equations. Moreover, we also present the results of
some simulations for soliton scattering processes in the FKZ model based on algebra su(2).

Keywords: topological solitons, BPS equations, numerical simulation
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Chapter 1

Introduction

In this dissertation we intend to present some aspects of the general study of topological
solitons. Solitons arise in non-linear theories as localized configurations that are very stable.
In some special kinds of theories, the so called integrable models [1, 2], the existence of an
infinity of dynamically conserved quantities guarantees the stability of the configuration.
Topological solitons can appear in theories which, in general, do not possess this infinity of
conserved charges. They are stabilized by the topology of the configuration.

The general treatment of quantum field theory is to quantize the perturbations around
a vaccum configuration of a given model and study the interaction of the particles that arise
from this perturbation. It happens that some theories with non-trivial vacuum structure,
possess non-trivial classical solutions called topological solitons [3,4] that interpolate distinct
vacua. These solutions are localized and stable, thus the indiscriminate use of the word
soliton in its broad sense. When we put two or more of these objects close to one another
they even interact and have extremally complex scattering processes. And all of this is
accomplished without the need of an extra particle carrying the interaction, like in usual
quantum field theories.

The topological aspects of these solutions allow us to categorize and divide them
in disjunct classes according to their topological characteristics. Topology, then, forbids
configurations from one class to evolve dynamically into configurations of another. So if the
solutions of a theory tend to minimize some functional, in our case, the energy functional,
this means that, within a given class, the solutions with minimal energy are very stable, since
they cannot decay into others dynamically.

Moreover, in some special theories, the energy has a lower bound – the Bogomolny
bound – that is proportional to the number of solitons in a given configuration. The config-
urations that saturate this bound satisfy a simpler first order differential equation – the BPS
equation –, which implies the usual second order Euler-Lagrange equations. This result is
well known for theories with a single scalar field in (1 + 1)-d. Recently [5], though, this result
was generalized for theories with a multiplet of fields. The formalism of generalized BPS
equations, additionally, allows for the construction of a infinity of new models, each with
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1. Introduction 2

their own pair of BPS equations and Bogomolny bounds. In [5] it was presented a group
theoretical approach for the construction of a class of theories, the FKZ models.

Our main goals with this work is the review of the formalism of the generalized BPS
equations, construction of the FKZ models based on algebras g2 and su(4) and numerical
simulation of scattering processes in the simpler su(2) FKZ models. In chapter 2 we will
present – rather concisely – some ideas essential to later understand of the text. This
includes some notions of topology, a derivation of Derrick’s theorem for scalar theories and
the introduction of the concept of BPS equations and Bogomolny bounds for theories with a
single scalar field. In chapter 3 we will present a generalization of the idea of BPS equations
for theories with multiplets of scalar fields and apply this formalism in the construction of
the FKZ models. Chapter 4 will be regarding the numerical aspects of our work. We will
present some simple numerical methods to integrate the BPS equations and to, later, simulate
the scattering of solitons. Will also be presented here the results of some of the simulations
we did with topological solitons of the su(2) FKZ models.



Chapter 2

Mathematical background

This chapter is intended as a brief review of key concepts that will play a central role
throughout this text. We begin by introducing some topological notions and how these
abstract ideas are related to field theory. Then we take a look at Derrick’s theorem and how
it justifies our choice to work in one spatial dimension. Finally, we introduce the concept of
BPS equations and Bogomolny bounds in the context of scalar field theories and present two
canonical examples, namely the φ4 and the sine-Gordon models.

2.1 Topology notions

The basic structure in topology [3, 6, 7] is the idea of topological spaces, which serves
as a foundation for the entire field.

Definition 2.1. A topological space is a set X together with a collection S of subsets of X,
called the open sets of X, satisfying

(i) the empty set and X itself are open,

(ii) given any number of open sets Uα ⊆ X, their union
⋃
α Uα is open,

(iii) given any finite number of open sets Uα ⊆ X, their intersection
⋂
α Uα is open.

The collection of open sets of X is called the topology of X. Other important concepts
are those of continuous maps and homeomorphisms between topological spaces.

Definition 2.2. A map f : X→ Y between topological spaces is called a continuous map if,
given any open set U ⊆ Y, the inverse image f−1

{U} ⊆ X is open.

Definition 2.3. A map f : X → Y is called a homeomorphism if it is both continuous and
has a continuous inverse.

If there is such a homeomorphism between X and Y, we say that X is homeomorphic
to Y. Moreover, the homeomorphisms between topological spaces define an equivalence
relation:

3



2. Mathematical background 4

(i) X is clearly homeomorphic to itself as we can always define an identity map id : X→ X
by id(x) = x (reflexive)

(ii) Since f has a continuous inverse, we have that if X is homeomorphic to Y, Y is also
homeomorphic to X (symmetric)

(iii) If X is homeomorphic to Y and Y is homeomorphic to Z, it can be shown by composition
of maps that X is homeomorphic to Z (transitive)

That is, we can divide a collection of topological spaces into disjoint equivalence classes.
Being in the same equivalence class of X, which we write [X], means that any space X̃ ∈ [X]
can be continuously deformed into X and, in that respect, we can categorize which spaces
are topologicaly equivalent and which are not. Moreover, a central subject of topology is the
study of properties of a given space that do not change when we deform it, the topological
invariants.

Somewhat more important for our specific needs is the idea of homotopy.

Definition 2.4. Given two continuous maps f : X → Y and g : X → Y, f is said to be
homotopic to g if there is a continuous map ψ : X × [0, 1]→ Y satisfying

ψ(x, 0) = f (x) (2.1)

ψ(x, 1) = g(x) (2.2)

The fact that f is continuous means that, as the parameter t changes from 0 to 1, f is
continuously deformed into g, and vice versa, since we also look at variations from 1 to 0, thus
being homotopic is a symmetric relation. In fact, it is easy to show reflexivity and transitivity
of the relation. Hence, homotopy lets us separate the space of continuous maps from X to
Y, which we write C(X,Y), in equivalence classes known as the homotopy classes. Because
homeomorphisms are continuous maps, the homotopy classes remain unchanged when we
look at spaces homeomorphic to both X or Y, i.e., homotopy is a topological invariant of the
pair of spaces. One interesting thing we can do next is to fix the domain space X to be a
specific one, usualy the n-sphere Sn. This way we can study the homotopy classes of C(Sn,Y)
and how they change as we choose different target spaces Y. In fact, the set of homotopy
classes of C(Sn,Y), denoted πn(Y), has a group structure and is called the n-th homotopy
group of Y.

The most important homotopy group for our study is actualy the simpler one, π0(Y),
which is the group of homotopy classes of maps from the 0-sphere to space Y 1. Another
important example is the first homotopy group π1(Y), also called the fundamental group of
Y. A map from the circle S1 defines a closed path on target space Y, which we call a loop,
so the elements of the fundamental group are the equivalence classes of loops that can be
continuously deformed into each other. Intuitively, one can think that for a path to not be

1The 0-sphere is defined here as the closure of a closed interval [a, b] ⊂ R, i.e., the set of any two non-coincident
points: {a, b} ⊂ R, such that a , b.
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able to be deformed into another there should be something in space Y standing in its way,
like a hole, for example. And is exactly this type of information about the shape of Y that the
homotopy groups give. The subject of topology is a vast one and the above only scratches
its surface, but it should give us enough tools to understand the topological character of the
solutions we want to study.

2.2 Topological considerations in field theories

Our main goal is to study relativistic scalar theories defined on (d + 1) flat spacetime.
As we will see, the topological information contained in these fields lie on the values they
assume at spatial infinity [3] and, as time evolution can be thought of as a continuous
variation of the fields, it should not change their topological character. At this stage, it is
enough, then, to consider only static configurations. Further, it is always possible, after
solving the equations in the reference frame where the solutions are static, to make a Lorentz
boost and get a dynamic solution.

Let us consider a multiplet of n real scalar fields defined on d-dimensional euclidean
space

φ : Rd
→ Rn. (2.3)

The static energy functional is given by

E =

∫
ddx

[1
2
∂iφ

a∂iφ
a + U(φ)

]
(2.4)

where U, the potential, is a non-negative function of the fields. Since both the kinetic and
potential terms are non-negative by definition, the energy functional is also non-negative.
The physical field configurations we are interested in have finite energy and are defined
as those which make the functional stationary against small variations, which is analogous
to saying that the physical field configurations are solutions of the following set of second
order equations

∂i∂iφ
a
−
∂U
∂φa = 0 (2.5)

that also have finite energy.
As the potential is a non-negative function, it will have global minima. We can always

take these minima to be Umin = 0 by addition of a suitable constant. Let us define then the
vacuum manifoldV as the set of points of field space that make the potential null, i.e.

V = {φ0; U(φ0) = 0} (2.6)

In particular, a vacuum configuration is one for which φ(x) = φ0 ∀ x and φ0 ∈ V. The
physical requirement that the energy should be finite imposes that the energy density must
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be localized, otherwise the integral would not converge. Rigorously, this means that the
energy density ε

ε =
1
2
∂iφ

a∂iφ
a + U(φ) (2.7)

should be such that ε → 0 as r → ∞, where r is the distance from the origin of space
coordinates. As both kinetic and potential terms are non-negative, this implies they both
tend to zero as well, which imposes boundary conditions on the possible field configurations:

φ→ φ0 ; φ0 ∈ V (2.8)

∂iφ→ 0 (2.9)

as r → ∞. The boundary condition for the field, φ∞, may be thought of as a mapping from
the (d − 1)-sphere at spatial infinity to the vacuum manifold, i.e.,

φ∞ : Sd−1
∞ →V (2.10)

where Sd−1
∞ ⊂ Rd denotes the sphere with radius r→ ∞. Moreover, even if two field config-

urations φ and φ̃ have different asymptotic data φ∞ and φ̃∞, they still can be continuously
deformed into one another if φ∞ and φ̃∞ are homotopic. Which means that the topological
character of a given field configuration φ lies entirely in the homotopy class of its asymptotic
data [φ∞] ∈ πd−1(V).

The important thing to notice is that if a configuration is in a specific homotopy
class [φ∞], it cannot be taken into another by continuous deformations. In paricular, time
evolution under a differential equation is a continuous deformation of the field. So if a theory
has non-trivial homotopy group πd−1(V) and a particular configuration φ is in a different
homotopy class [φ∞] than the homotopy class of a vaccum configuration [φ∞0 ], then the
configuration φ cannot decay in a vacuum configuration by continuous time evolution. This
gives a topological stability to non-trivial solutions.

In the next section we will be given arguments that show the theories we are mainly
interested in can only occur in d = 1 spatial dimension. So we will only have to deal with
the simplest type of homotopy group, π0(V), which consists of the pairs {φ−, φ+}, where
φ± = limx→±∞ φ. The configurations belonging to the non-trivial homotopy classes, i.e.,
those that are not in the vaccum class2, are called topological solitons. The terminology
soliton is an alusion to the finite energy solutions of integrable models, although some might
find the use of the same terminology to be bit of a stretch. Moreover, in the case of integrable
models, these non-trivial solutions are stabilized locally by an infinity of conserved charges.
Here, they will be stable due to topology, since it prevents these objects to decay in a vaccum
configuration by time evolution.

2This is regarding 1-soliton solutions. It is possible to have multi-soliton solutions in the same class of the
vaccum. Although in this case there is no topological constraint to avoid these configurations to decay in a
vacuum.
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2.3 Derrick’s theorem

Derrick’s theorem [3, 4] is actually a statement on the non-existence of static field con-
figurations with finite energy for theories defined on larger numbers of spatial dimensions.
To prove it we use the fact that a physical field configuration should make the energy func-
tional stationary against small variations. One such variation is a rescale of space coordinates
x 7→ λx. This defines a family of fields3

φ(λ, x) ≡ φ(λx) (2.11)

and the energy functional becomes a function of the parameter λ

E(λ) = E[φ(λ, x)]. (2.12)

If φ(1, x) = φ(x) is a solution of the field equations, this means that λ = 1 should be a
stationary point of the energy, i.e.,

dE
dλ

∣∣∣∣∣
λ=1

= 0 (2.13)

So, for the one-parameter family of fields, the energy functional becomes rewritten in terms
of the rescaled coordinate y = λx, with ddx = λ−dddy

∂/∂xi = λ∂/∂yi,
(2.14)

as

E(λ) =

∫
ddy λ−d

[
λ2 1

2
∂iφ

a(y)∂iφ
a(y) + U(φ(y))

]
(2.15)

= λ2−dT + λ−dV (2.16)

where T =
∫

ddx 1
2∂iφa∂iφa and V =

∫
ddy U are the kinetic and potential energies, respec-

tively. Because λ = 1 is a stationary point, we have

dE
dλ

= (2 − λ)λ1−dT − dλ−1−dV

⇒
dE
dλ

∣∣∣∣∣
λ=1

= (2 − d)T − dV = 0. (2.17)

Since T,V ≥ 0, the equality leads to an absurd for d > 2, proving that we cannot have static
solutions with finite energy in these types of theories. For d = 2, equation (2.17) implies that
V = 0, i.e., we can have static solutions here provided that the potential is null. For d = 1, we
can have static solutions and (2.17) implies the virial theorem T = V.

3Which are here resctricted to be scalar fields, but the general argument remains the same for other types of
fields.
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Derrick’s theorem, then, only allows for the existence of scalar theories with finite
energy non-trivial solutions for d = 1 and d = 2. The case d = 2 comes with the extra
condition that the potential term should be null, nevertheless this is exactly the case for
theories like the non-linear sigma model, which has lump solutions. Moreover, there are
other ways to avoid the results of this theorem as well and have stable static solutions in
higher dimensions. If we add a gauge field in the mix, for example, we can have vortices
in d = 2 and monopoles in d = 3. Or if we consider theories with higher order derivatives
(or higher powers of these), we have baby-skyrmions and skyrmions in d = 2 and d = 3,
respectively [3, 4]. But since our interest is to study scalar theories with energy functional
of the type (2.4), we do not have much choice other than consider models defined on one
spatial dimension.

2.4 BPS equations and the Bogomolny bound

In general, the theories we are used to deal with have solutions which satisfy sets of
second order differential equations. However it was shown independently by Bogomolny [8]
and by Prasad and Sommerfield [9] that some theories, or certain limits of these theories,
have solutions that satisfy a simpler set of first order equations, the BPS equations. Further,
it is possible to show that the energy satisfies an inequality, the Bogomolny bound, and
is bounded by values that depend on the topological sector the solutions are in, with the
minimal value being reached for solutions of the BPS equations.

Let us construct this inequality for the simple case of a single scalar field theory which
is defined by the Lagrangian density

L =
1
2
∂µφ∂

µφ −U(φ). (2.18)

As a consequence of the stationary action principle, any solution to this theory has to satisfy
the Euler-Lagrange equation

∂µ∂
µφ +

dU
dφ

= 0. (2.19)

The static energy functional of this theory is given by

E =

∫
∞

−∞

dx

1
2

(
dφ
dx

)2

+ U(φ)

 . (2.20)

Now, this functional can be rewritten as

E =
1
2

∫
∞

−∞

dx

(dφ
dx
∓

√

2U
)2

± 2
dφ
dx

√

2U

 (2.21)
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and noticing that the first term is non-negative, the following relation holds true:

E ≥ ±
∫
∞

−∞

dx
dφ
dx

√

2U

≥

∣∣∣∣∣∫ ∞

−∞

dx
dφ
dx

√

2U
∣∣∣∣∣

⇒ E ≥

∣∣∣∣∣∣
∫ φ+

φ−

dφ
√

2U

∣∣∣∣∣∣ (2.22)

where φ± = limx→±∞ φ(x).
Equation (2.22) gives the so called Bogomolny bound. Equality in (2.21) holds when

the field satisfies

dφ
dx

= ±
√

2U, (2.23)

a simpler first order equation, known as the BPS equation. If we take a spatial derivative of
(2.23), then

d
dx

(
dφ
dx
∓

√

2U
)

=
d2φ

dx2 ∓
1
√

2U

dU
dx

(2.24)

=
d2φ

dx2 ∓
1
√

2U

dφ
dx

dU
dφ

,
dφ
dx

= ±
√

2U (2.25)

=
d2φ

dx2 −
dU
dφ

= 0, (2.26)

and we see that a static configuration that is a solution to the first order BPS equations is
also a solution to the second order E-L equation (2.19). In order to accentuate the topological
character of the Bogomolny bound, we can define the prepotential W to be a function
satisfying

dW
dφ
≡

√

2U (2.27)

Substituting this definition into (2.22)

E ≥

∣∣∣∣∣∣
∫ φ+

φ−

dφ
dW
dφ

∣∣∣∣∣∣
≥

∣∣∣W(φ+) −W(φ−)
∣∣∣ . (2.28)

That is, the bound on the energy only depends on the boundary conditions of the field.
Now we present two well known examples of theories described by a single real scalar field,
known as the φ4 and sine-Gordon models.
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2.4.1 The φ4 model

The φ4 model [3, 4] is defined by the Lagrangian density

L =
1
2
∂µφ∂

µφ −
1
4

(
φ2
− 1

)2
(2.29)

thus its static energy is

E =

∫
∞

−∞

dx

1
2

(
dφ
dx

)2

+
1
4

(
φ2
− 1

)2
 , (2.30)

which gives us the static field equation

d2φ

dx2 − φ
(
φ2
− 1

)
= 0. (2.31)

The potential U = 1
4 (φ2

− 1)2 is shown in figure 2.1. It is zero for φ = ±1, thus the vacuum
manifold is simply

V = {−1, 1} � Z2. (2.32)

This theory, then, has non-trivial homotopy group π0(V)

Figure 2.1: Potential U(φ) of the φ4 model

π0(V) = {{−1,−1}, {−1, 1}, {1,−1}, {1, 1}} (2.33)

which allows for the existence of topological solitons.
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The topological degree N defined by

N ≡
1
2

∫
∞

−∞

dx
dφ
dx

(2.34)

=
1
2

∫ φ+

φ−

dφ (2.35)

=
φ+ − φ−

2
(2.36)

summarizes all of the topological data of a given configuration, thus it should be invariant
under time evolution. Its possible values are N ∈ {−1, 0, 1}, with N = 0 being the degree of
solutions in the homotopy classes of the vacua configurations [{−1,−1}] and [{−1,−1}], i.e.,
solutions that can eventually decay in a vacuum configuration under time evolution. The
cases N = 1 and N = −1 are the degrees of solutions in the classes [{−1, 1}] and [{1,−1}], re-
spectively. In these cases the field cannot decay into a vaccum configuration. The Bogomolny
bound (2.22) for this theory is

E ≥

∣∣∣∣∣∣
∫ φ+

φ−

dφ
√

2U

∣∣∣∣∣∣ (2.37)

≥

∣∣∣∣∣∣∣
∫ φ+

φ−

dφ

√
1
2

(φ2 − 1)2

∣∣∣∣∣∣∣ (2.38)

≥
1
√

2

∣∣∣∣∣∣
∫ φ+

φ−

dφ |φ2
− 1|

∣∣∣∣∣∣ . (2.39)

Since the integration stays in the range |φ| ≤ 1, the subtraction inside the inner modulus will
always be negative

E ≥
1
√

2

∣∣∣∣∣∣
∫ φ+

φ−

dφ
(
1 − φ2

)∣∣∣∣∣∣ (2.40)

≥
1
√

2

∣∣∣∣∣∣∣
[
φ −

φ3

3

]φ+

φ−

∣∣∣∣∣∣∣ (2.41)

and because for the possible boundary conditions φ3
±

= φ± we have

E ≥
1
√

2

∣∣∣∣∣∣∣
[
2φ
3

]φ+

φ−

∣∣∣∣∣∣∣ (2.42)

≥

√
2

3

∣∣∣∣(φ+ − φ−
)∣∣∣∣ , (2.43)

the Bogomolny bound for the φ4 model is then finally defined by

E ≥
2
√

2
3
|N|. (2.44)



2. Mathematical background 12

The equality in the above relation holds for the solutions of the BPS equations (2.23) which
in this case read

dφ
dx

= ±
1
√

2

(
1 − φ2

)
. (2.45)

These equations can be easily integrated if one considers the substitution

φ = tanh(ψ), (2.46)

for which it becomes, using that 1 − φ2 = sech2 ψ and dφ
dx = sech2 ψ

dψ
dx ,

dψ
dx

= ±
1
√

2
(2.47)

which has solution

ψ = ±
x − x0
√

2
(2.48)

where x0 is an integration constant. Further, plugging this result back into the definition of
φ in terms of ψ, the solution of the BPS equation is finally given4:

φ = ± tanh
(

x − x0
√

2

)
. (2.49)

Expressions (2.49) give the kink (positive sign) and antikink (negative sign) solutions
of the φ4 model, with topological degrees N = 1 and N = −1, respectively. In figures 2.2a
and 2.2b we have the kink and antikink solutions plotted, as well as their energy densities.
Notice that the energy density is localized, which guarantees finite energy. Being solutions
of the BPS equations, they saturate the Bogomolny bound and both have static energy

E =
2
√

2
3
. (2.50)

2.4.2 The sine-Gordon model

The sine-Gordon model [3, 4] is defined by the Lagrangian density

L =
1
2
∂µφ∂

µφ −
(
1 − cosφ

)
(2.51)

4Where we have used the fact that the tanh is an odd function.
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(a) The kink solution and its energy density. (b) The anti-kink solution and its energy density

Figure 2.2: The kink and anti-kink are solutions of the φ4 model characterised by their
topological degree of +1 and −1 respectively. These are localised finite energy solutions.

and have static energy

E =

∫
∞

−∞

dx

1
2

(
dφ
dx

)2

+
(
1 − cosφ

) . (2.52)

The static E-L equation reads

d2φ

dx2 − sinφ = 0. (2.53)

The potential U(φ) = 1 − cosφ is shown in figure 2.3. The vaccum manifold is composed by
the points of field space for which cosφ = 1, i.e.,

V = {2πn; n ∈ Z} � Z (2.54)

Since we have the symmetry φ 7→ φ + 2π, we can take φ− = 0 wihout loss of generality.

Figure 2.3: Potential U(φ) of the sine-Gordon model
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Thus, the homotopy group of this theory is

π0(V) = {{0, 2πn}; n ∈ Z} � Z. (2.55)

The topological degree of possible solutions is therefore

N =
1

2π

∫ φ+

φ−

dφ =
1

2π

∫ 2πn

0
dφ = n (2.56)

and the Bogomolny bound (2.22) is given by

E ≥

∣∣∣∣∣∣
∫ 2πN

0
dφ

√
2(1 − cosφ)

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
∫ 2πN

0
dφ

∣∣∣∣∣sin
φ

2

∣∣∣∣∣
∣∣∣∣∣∣ (2.57)

= 2|N|

∣∣∣∣∣∣
∫ 2π

0
dφ

∣∣∣∣∣sin
φ

2

∣∣∣∣∣
∣∣∣∣∣∣ (2.58)

= 2|N|

∣∣∣∣∣∣∣
[
−2 cos

φ

2

]2π

0

∣∣∣∣∣∣∣ , (2.59)

where we have used the fact that | sin(φ/2)| is periodic and that sin(φ/2) is always positive
in the range [0, 2π]. Thus,

E ≥ 8|N|. (2.60)

The equality will hold for the solutions of the BPS equation

dφ
dx

= ±2 sin
φ

2
. (2.61)

The integration of that equation can be easily done using the substitution ψ = log
(
tan φ

4

)
,

dψ
dx = 1

2 sin φ
2

dφ
dx , which results in the simple equation

dψ
dx

= ±1 (2.62)

for which the solution is
⇒ ψ = ±(x − x0),

where x0 is an integration constant. Inverting this relation, φ = 4 arctan(eψ), the solution of
the sine-Gordon equation reads

φ = 4 arctan
(
e±(x−x0)

)
. (2.63)

For the positive sign, this gives a kink interpolating 0 and 2π, and the negative sign gives
a antikink interpolating 2π and 0. Using the symmetry φ 7→ φ + 2π, we can get a kink of
antikink interpolating any two consecutive vacua. In figures 2.4a and 2.4b we have the plots



2. Mathematical background 15

(a) The kink solution and its energy density. (b) The anti-kink solution and its energy density

Figure 2.4: The kink and anti-kink are solutions of the sine-Gordon model characterised by
their topological degree of +1 and−1 respectively. These are localised finite energy solutions.

of the solution (2.63).
Solutions which interpolate non-consecutive vacua are not BPS states, i.e., do not satisfy

the BPS equations. These solutions will satisfy a strict Bogomolny bound

E > 8|N|. (2.64)

In particular, it is possible to construct these solutions analytically, due to the fact that the
sine-Gordon model is integrable [1,2], that is, besides topology, it has an infinity of conserved
charges that stabilize its configurations. The solutions interpolating non-consecutive vacua
are called multi-soliton solutions, as they can be seen as a sum of individual solitons when this
objects are asymptotically apart. Moreover these configurations are usually time dependent
solutions that describe the movement of the individual solitons and their scattering. The
strict Bogomolny bound that they satisfy accounts, then, for the energies of the individual
solitons and their interaction. The models we will study here do not seem, in general, to be
integrable, yet it is possible to study the scattering of the configurations numerically, as we
will show in chapter 4.



Chapter 3

Generalized BPS equations and FKZ
models

In the last chapter we presented a fairly general way to determine the BPS equations
and the Bogomolny bound of theories with a single scalar field. Now we take a look at a
generalization [5] of the method which allows us to define those same concepts for theories
of multiplets of scalar fields.

3.1 Generalized BPS equations

Let us have a multiplet of n scalar fields φa defined on one spatial dimension

φ : R→ Rn. (3.1)

Consider a generic static energy functional of the form

E ≡
1
2

∫
∞

−∞

dx
[
A2
α + Ã2

α

]
(3.2)

where A and Ã are functions of only the fields φa and their spatial derivatives φ′a, and α

stands for any indices there might have. A static solution, then, should be a stationary point
of this functional with respect to a variation throught δφa

δE =

∫
dx

[
Aα

(
∂Aα

∂φa
δφa +

∂Aα

∂φ′a
δφ′a

)
+ A↔ Ã

]
=

∫
dx

[
Aα
∂Aα

∂φa
δφa −

d
dx

(
Aα
∂Aα

∂φ′a

)
δφa +

d
dx

(
Aα
∂Aα

∂φ′a
δφa

)
+ A↔ Ã

]
=

∫
dx

[
Aα
∂Aα

∂φa
−

d
dx

(
Aα
∂Aα

∂φ′a

)
+ A↔ Ã

]
δφa (3.3)

(3.4)

16
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where A ↔ Ã means we repeat the terms but exchange A and Ã, and where we have used
the fact that δφa = 0 at x = ±∞ in order to make the terms with total derivatives in the
integration to vanish. If the first order variation of E with respect to φ is supposed to leave
E stationary, i.e., δE = 0, then φ should satisfy the second order equations

d
dx

Aα
∂Aα

∂φ′a
+ Ãα

∂Ãα

∂φ′a

 − Aα
∂Aα

∂φa
− Ãα

∂Ãα

∂φa
= 0 (3.5)

which we indentify as the Euler-Lagrange equations for this theory. We also consider a
quantity that we call the topological charge Q defined as the functional

Q ≡
∫
∞

−∞

dx AαÃα (3.6)

which must be left stationary1 against variations of φ

δQ =

∫
dx

[
δAαÃα + A↔ Ã

]
=

∫
dx

[(
∂Aα

∂φa
δφa +

∂Aα

∂φ′a
δφ′a

)
Ãα + A↔ Ã

]
=

∫
dx

[
∂Aα

∂φa
Ãαδφa −

d
dx

(
∂Aα

∂φ′a
Ãα

)
δφa +

d
dx

(
∂Aα

∂φ′a
Ãαδφa

)
+ A↔ Ã

]
=

∫
dx

[
∂Aα

∂φa
Ãα −

d
dx

(
∂Aα

∂φ′a
Ãα

)
+ A↔ Ã

]
δφa (3.7)

(3.8)

where we have used the fact that δφa = 0 at x = ±∞. Stationarity condition implies that φ
should satisfy

d
dx

(
∂Aα

∂φ′a
Ãα + Aα

∂Ãα

∂φ′a

)
−
∂Aα

∂φa
Ãα − Aα

∂Ãα

∂φa
= 0 (3.9)

Further, if we impose the set of first order equations

Aα = ±Ãα (3.10)

then we see that equations (3.5) and (3.9) become equivalent. Moreover, the energy functional
can be written as

E =
1
2

∫
dx

[
Aα ∓ Ãα

]2
±

∫
dx AαÃα (3.11)

1This condition is crucial if Q is to have the meaning of a topological degree: it must depend only on the
data at the boundary, being unchanged under deformations of the field which preserve that data.
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and because the first term is non-negative and noticing that the second one is exactly our
definition of topological charge, we find

E ≥ |Q|. (3.12)

We identify equation (3.12) as the generalized version of the Bogomolny bound. Since the
equality holds for solutions of (3.10), we indentify these as the generalized BPS equations.

3.1.1 Generalized BPS equations for multiplets of scalar fields

In order to fit this formalism in the description of scalar theories, we define the objetcs
A and Ã to be

Aα ≡ kab
dφb

dx

Ãα ≡
∂W
∂φb

k−1
ba (3.13)

where W is a function of the fields and is called the prepotential, and k is an invertible matrix.
So far, being invertible is the only restriction we have to make about the matrix k. Further,
its entries could depend on φ, φ′ or even other fields and their derivatives. For the sake of
simplicity we consider, from now on, that it depends only on the fields φ alone. Thus, for
these theories we have the BPS equations (3.10)

kab
dφb

dx
= ±

∂W
∂φb

k−1
ba

∴ ηab
dφb

dx
= ±

∂W
∂φa

(3.14)

where η ≡ kTk is an invertible symmetric matrix. Multiplying the inverse of η gives us the
BPS equations

dφa

dx
= ±η−1

ab
∂W
∂φb

. (3.15)

We can write the energy functional for such a theory as

E =
1
2

∫
dx

[
kcakcb

dφa

dx
dφb

dx
+
∂W
∂φa

∂W
∂φb

k−1
ac k−1

bc

]
=

1
2

∫
dx

[
ηab

dφa

dx
dφb

dx
+ η−1

ab
∂W
∂φa

∂W
∂φb

]
=

∫
dx

[
1
2
ηab

dφa

dx
dφb

dx
+ U

]
(3.16)
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where we have defined the potential

U ≡
1
2
η−1

ab
∂W
∂φa

∂W
∂φb

. (3.17)

Since we want the energy to be bounded from below, it suffices to impose that η is a positive
definite matrix and that U is a non-negative function. It is easy to note that the extrema of
W, that is, the points φ0 such that

∂W
∂φa

∣∣∣∣∣∣
φ=φ0

= 0 (3.18)

are vacua of these theories, i.e, the values of φ for which U(φ) = 0. In fact, it can be shown [5]
that those are the only vacua of these theories. That is, the minima U(φ) are always critical
points of the prepotential W(φ).

We see that the topological charge of these theories will be of the form

Q =

∫
dx kab

dφb

dx
∂W
∂φc

k−1
ca

=

∫
dx

dφa

dx
∂W
∂φa

=

∫
γ

dφ · ∇φW (3.19)

which is a line integral of the gradient – with respect to the fields – of W over the path γ in
field space. By the fundamental theorem of calculus, this integral is simply the function W
evaluated at the endpoints of the path, φ±, that is,

Q = W(φ+) −W(φ−). (3.20)

This result accentuates the topological character of this quantity and justifies its name.

3.1.2 Geometrical aspects of the BPS equations

One interesting aspect of this constructions is the geometrical interpretation we can
give to the BPS equations. We can see a static field configuration as a path φ(x) in field space
parametrized by the coordinate x. Then we have that va ≡

dφa
dx is a vector – the velocity, if

you will – tangent to the path at each point. The BPS equations (3.15) can be rewritten as

v = ±∇ηW, (3.21)

where we call (∇ηW)a ≡ η−1
ab

∂W
∂φb

the η-gradient of W. Equation (3.21) tell us that the vector
tangent to the path of a BPS state is equal, at each point, to the η-gradient of the prepotential
W. That is, each solution to the BPS equations is given by a path following the η-gradient
lines of W.
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We have that the paths of BPS states never intersect each other, since this would mean
that the η-gradient of W is multivalued. The η-gradient lines can at most meet tangentially
or converge to points where ∇ηW = 0, i.e., the vacua of the potential U are sources or sinks
of η-gradient lines. Since our finite energy BPS states start and finish at vacua points, this
means that the paths they describe in field space connect a source to a sink of η-gradient
lines. This fact implies that the prepotential W varies monotonically across the path of a
given configuration. We will observe both of these behaviors explicitly in a later section
when we construct BPS states for the FKZ models.

3.1.3 Lagrangian formalism

Furthermore, in order to study the dynamical aspects of these theories, we would like
to have a Lagrangian representation of them. A Lagrangian that defines a theory with static
energy functional of the form (3.16) is

L =
1
2
ηab∂µφa∂

µφb −U(φ) (3.22)

giving the E-L equations

ηab

[
∂µ∂

µφb + Γbcd∂µφc∂
µφd

]
+
∂U
∂φa

= 0 (3.23)

where

Γbcd ≡
1
2
η−1

be

[
∂ηec

∂φd
+
∂ηed

∂φc
−
∂ηcd

∂φe

]
. (3.24)

The formalism we just introduced is quite general and, in particular, the loose re-
quirements over the matrix η allow us to try and fit in it a whole range of existing models.
Moreover, it is also possible to construct theories from the ground up, by definition of a
proper prepotential, and these theories come automatically equipped with the respective
BPS equations and Bogomolny bounds. In the next section we use this second approach and
take a look at a class of models proposed in [5], which we will call FKZ models, where a
group theoretical approach is used in the construction of the theories.

3.2 The FKZ models

Consider a Lie algebra [10] g of rank r and its simple roots αa, a = 1, . . . , r. The field
ϕ = (φ1, . . . , φr) will take values in root space:

ϕ ≡
r∑

a=1

φa
2 αa

‖αa‖
2 . (3.25)
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In order to define the prepotential W, we need to choose a representationR of gwith weights
µk. And so, we take the prepotential to be of the form

W ≡
∑
µk∈R

Cµk eiµk·ϕ. (3.26)

We would like the prepotential to be real, that is,

W = W∗

⇒

∑
µk∈R

Cµk eiµk·ϕ =
∑
µk∈R

C∗µk
e−iµk·ϕ. (3.27)

If we stick with representations satisfying

µk ∈ R ⇔ −µk ∈ R (3.28)

we can write

W =
∑

µk∈R
(+)

(
Cµk eiµk·ϕ + C−µk ei(−µk)·ϕ

)
(3.29)

whereR(+) stands for the fact that we only consider one weight µk out of each pair (µk,−µk) ∈
R

2. And so the reality condition becomes∑
µk∈R

(+)

(
Cµk eiµk·ϕ + C−µk e−iµk·ϕ

)
=

∑
µk∈R

(+)

(
C∗µk

e−iµk·ϕ + C∗−µk
eiµk·ϕ

)
⇒

∑
µk∈R

(+)

[(
Cµk − C∗−µk

)
eiµk·ϕ +

(
C−µk − C∗µk

)
e−iµk·ϕ

]
= 0, (3.30)

which implies that the coefficients have to satisfy

Cµk = C∗−µk
. (3.31)

If we define Cµk ≡
1
2

(
γµk − iδµk

)
, such that γ, δ ∈ R and

γµk = γ−µk , δµk = −δ−µk (3.32)

2Notice that if the representation has weights with value zero that would only add a constant in the
prepotential and since we are only interested in derivatives – or differences – of the prepotential, we can always
ignore additive constants.
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then we can write

W =
∑

µk∈R
(+)

[1
2

(
γµk − iδµk

)
eiµk·ϕ +

1
2

(
γ−µk − iδ−µk

)
e−iµk·ϕ

]
=

∑
µk∈R

(+)

[
γµk

(
eiµk·ϕ + e−iµk·ϕ

2

)
+ δµk

(
eiµk·ϕ − e−iµk·ϕ

2i

)]
∴ W =

∑
µk∈R

(+)

[
γµk cos(µk · ϕ) + δµk sin(µk · ϕ)

]
. (3.33)

Equation (3.33) gives the general form of the prepotential for the FKZ models, as presented
in [5]. These theories can become fairly complicated very fast, so we allow ourselves a
bit of simplification and consider only models for which δµk = 0, i.e., we only consider
prepotentials of the form

W =
∑

µk∈R
(+)

γµk cos(µk · ϕ). (3.34)

Even with this restriction the models that emerge are very rich, as we will see. The potential
(3.17) for these theories will have the general form

U(φ) =
1
2
η−1

ab
∂W
∂φa

∂W
∂φb

, (3.35)

where

∂W
∂φa

= −2
µk · αa

‖αa‖
2

∑
µk∈R

(+)

γµk sin

2
∑

b

φb
µk · αb

‖αb‖
2

 . (3.36)

Further, the vacua will satisfy equation (3.18), that in this case reads

µk · αa

‖αa‖
2

∑
µk∈R

(+)

γµk sin

2
∑

b

φb
µk · αb

‖αb‖
2

 = 0. (3.37)

The vacuum manifold structure will be, in general, very complex and depend heavily on the
values of the constants γk. In particular, the points

φa = naπ, (3.38)

for na ∈ Z, will always be in the vacuum set since we have from Lie algebra theory that the
weights µk always satisfy 2µk·αa

‖αa‖
2 = mka, where mka ∈ Z, so that

sin

2π
∑

a
mkana

 = 0, (3.39)

as the sum of integers is an integer. Other types of vacua, that rely on further properties of
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Lie algebra theory are discussed in [5]. Here we will use a brute force approach to determine
the other vacua points and solve equations (3.37) for each model independently.

In [5] the authors present models based on the algebras su(2), su(3) and so(5). Here we
present again the case su(2), a theory with one field, for which we will in chapter 4 solve the
time-dependent equation numerically and simulate the scattering of kinks. We also discuss
the cases for the algebraas g2 and su(4), theories with two and three fields, respectively, and
some of their static solutions. These last two cases were not explored in [5].

3.2.1 The FKZ models for the algebra su(2)

The algebra su(2) has rank r = 1, thus it has only one simple root that we can normalize
to be α = 1. As root space is one-dimensional in this case, we have a single field

ϕ = 2φ. (3.40)

Besides that, the matrix η is just a number and we can make it equal to unit without loss of
generality. In order to construct the prepotential we need a representation.

3.2.2 The doublet representation of su(2)

Let’s begin with the simplest non-trivial representation, namely the doublet ( j = 1
2 )

representation. The weights are

µ1 =
1
2

, µ2 = −
1
2

= −µ1 (3.41)

and the representation fulfills the requirement (3.28) for reality 3. The prepotential (3.34) for
this representation is given by

W = γ1 cos(µ1 · ϕ) = γ1 cosφ. (3.42)

In particular, for γ1 = 1, we have

dW
dφ

= − sinφ (3.43)

which gives the BPS equations (3.15)

dφ
dx

= ± sinφ. (3.44)

This equation is equivalent to the one we got for the sine-Gordon model (2.61), only rescaled
φSG = 2φsu(2). This shows that the sine-Gordon model is a particular case of this general
class of theories.

3In fact, every irreducible representation of su(2) will fulfill it, as the weights of representation j are µ =
− j,− j + 1, . . . , j − 1, j.



3. Generalized BPS equations and FKZ models 24

3.2.3 The triplet representation of su(2)

For the triplet ( j = 1) representation we have the weights

µ1 = 1 , µ2 = 0 , µ3 = −1 = −µ1 (3.45)

which also satisfy (3.28). The prepotential then is

W = γ1 cos(2φ) + γ2 ⇒
dW
dφ

= −2γ1 sin(2φ) (3.46)

That too gives a BPS equation which is equivalent to sine-Gordon 4.

3.2.4 The irreducible representations of su(2)

Up until now we only got sine-Gordon-type theories with this approach. Nevertheless,
things start to look more interesting for larger irreducible representations, i.e., j > 1. For the
(2 j + 1) dimensional representation, we have the weights

µk = j + 1 − k ; k ∈ {1, . . . , 2 j + 1}. (3.47)

For the cases where j is a half-integer we have no zero weights and the prepotential is

W =

j+ 1
2∑

k=1

γk cos(2µkφ)

=

j+ 1
2∑

k=1

γk cos(2( j + 1 − k)φ). (3.48)

For the cases where j is an integer we have a zero weight when k = j + 1 in (3.47) and the
prepotential will be

W = γ j+1 +

j∑
k=1

γk cos(2µkφ)

= γ j+1 +

j∑
k=1

γk cos(2( j + 1 − k)φ). (3.49)

These give the general form of the prepotential for the irreducible representations of su(2).

3.2.5 The 2 ⊕ 3 representation of su(2)

We made no restrictions concerning the irreducibility of the chosen representation, so
a reducible representation should work just as fine as a irreducible one. Consider, e.g., the

4Up to constants that can be absorbed through a rescale of spacetime coordinates xµ or of the field φ
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representation 2 ⊕ 3, the direct sum of the doublet and triplet representations. The weights
in this representation are

µ1 = 1 , µ2 =
1
2

, µ3 = 0 , µ4 = −
1
2

= −µ2 , µ5 = −1 = −µ1 (3.50)

and the prepotential,

W = γ1 cosφ + γ2 cos(2φ). (3.51)

Taking the derivative of W we get

dW
dφ

= −γ1 sinφ − 2γ2 sin(2φ)

= −γ1 sinφ − 4γ2 sinφ cosφ

= −γ1 sinφ
(

1 + b cosφ
)

(3.52)

where b ≡ 4γ2
γ1

. So the BPS equations are

dφ
dx

= ±γ1 sinφ
(
1 + b cosφ

)
. (3.53)

We can rescale the coordinates xµ 7→ xµ
γ1

and find

dφ
dx

= ± sinφ
(
1 + b cosφ

)
(3.54)

Using

dW
dφ

= sinφ
(
1 + b cosφ

)
(3.55)

we find the potential (3.17) for this theory

U =
1
2

(
dW
dφ

)2

=
1
2

sin2 φ
(
1 + b cosφ

)2
. (3.56)

The vacuum set consists of the points in field space for which

dW
dφ

= sinφ
(
1 + b cosφ

)
= 0 (3.57)

that is, each point φ such that

(i) sinφ = 0 or (ii) cosφ = −
1
b
. (3.58)

If |b| < 1, equation (ii) has no solution and the only vacua are the solutions of (i), φ = πn,
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n ∈ Z. For |b| ≥ 1, besides these, we also have the solutions of (ii), φ = 2πm ± arccos(−1/b),
m ∈ Z 5. Summarizing, the vacuum setV for this theory will be

V = {πn; n ∈ Z}, if |b| ≤ 1 (3.59)

V = {πn; n ∈ Z} ∪ {2πm ± arccos
(
−

1
b

)
; m ∈ Z}, if |b| > 1 (3.60)

It can be seen in figure 3.1 that the region around vacuum φ = π flattens as |b| approaches

Figure 3.1: Potential U(φ) of the su(2) models for b = 0, b = 0.9 and b = 2

1. When |b| = 1, we have two degenerate vacua points in φ = π and these points separate
for |b| > 1, which leads to the appearence of a third vacuum between φ = 0 and φ = π. Some
numerically calculated BPS states are show in figure 3.2. The numerical procedure to obtain
such solutions is presented in chapter 4. Notice that for |b| = 2 the solution reaches vacua
that do not exist for |b| < 1.

Figure 3.2: Solution of the su(2) model for |b| = 0, |b| = 0.9 and |b| = 2

5Note that solutions of both (i) and (ii) coincide when |b| = 1.
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3.2.6 The FKZ models for the algebra g2

The algebra g2 is of rank r = 2, thus we will have two fields φ1 and φ2

ϕ = φ1
2α1

‖α1‖
2 + φ2

2α2

‖α2‖
2 . (3.61)

The Cartan matrix of this algebra is given by

K =

 2 −1
−3 2

 . (3.62)

We choose a normalization such that ‖α1‖
2 = 1 and ‖α2‖

2 = 3, where we have used the fact
that the norms of the simple roots satisfy

‖αa‖
2

‖αb‖
2 =

Kab

Kba
, (3.63)

We define η to be

η =

 4 −2λ
−2λ 4/3

 (3.64)

Thus its inverse will be

η−1 =
1

8 − 6λ2

 2 3λ
3λ 6

 (3.65)

where we have introduced a parameter λ in a such way that ηab|λ=1 = 2Kab/ ‖αa‖
2. In order

for η to be positive definite – and consequently also invertible –, its eigenvalues have to
satisfy

ω = 4 ±
√

4 + 9λ2 ≥ 0, (3.66)

which lead us to restrict the parameter λ to values

|λ| <
2
√

3
. (3.67)

The last step in the construction of the model is to choose a representation for this
algebra. A good starting point is to consider the fundamental representations, i.e., repre-
sentations for which the highest weight is a fundamental one. For an algebra of rank r, the
fundamental weights are given by

λa =

r∑
b=1

K−1
ab αb (3.68)
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where K−1 is the inverse of the Cartan matrix. So, in the case of g2, we have the two
fundamental weights

λ1 = 2α1 + α2 and λ2 = 3α1 + 2α2. (3.69)

The first fundamental representation, i.e., the representation with highest weight λ1, has the
following weights

µ1 = λ1 = 2α1 + α2

µ2 = λ1 − α1 = α1 + α2

µ3 = λ1 − α1 − α2 = α1

µ4 = λ1 − 2α1 − α2 = 0 (3.70)

µ5 = λ1 − 3α1 − α2 = −α1 = −µ3

µ6 = λ1 − 3α1 − 2α2 = −α1 − α2 = −µ2

µ7 = λ1 − 4α1 − 2α2 = −2α1 − α2 = −µ1

and already satisfies the requirement (3.28) for the reality of the prepotential W.
In order to calculate the internal products µk · ϕ, which are passed as arguments for

the cosines in the prepotential, it is important to remember some relations between simple
roots, fundamental weights and the Cartan matrix. The Cartan matrix is constructed from
the simple roots as

2αa · αb

‖αb‖
2 = Kab. (3.71)

The simple roots and the fundamental weights satisfy the orthogonality condition

2λa · αb

‖αb‖
2 = δab. (3.72)

Therefore, we have

µ1 · ϕ =
∑

a
φa

2λ1 · αa

‖αa‖
2 =

∑
a
φaδ1a = φ1

µ2 · ϕ =
∑

a
φa

2(λ1 − α1) · αa

‖αa‖
2 = φ1 − K11φ1 − K12φ2 = −φ1 + φ2 (3.73)

µ3 · ϕ =
∑

a
φa

2(λ1 − α1 − α2) · αa

‖αa‖
2 = φ1 − K11φ1 − K12φ2 − K21φ1 − K12φ2 = 2φ1 − φ2

which gives the prepotential

W = γ1 cosφ1 + γ2 cos(φ1 − φ2) + γ3 cos(2φ1 − φ2) (3.74)
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The components of its gradient in field space will be

∂W
∂φ1

= −γ1 sinφ1 − γ2 sin(φ1 − φ2) − 2γ3 sin(2φ1 − φ2)

∂W
∂φ2

= γ2 sin(φ1 − φ2) + γ3 sin(2φ1 − φ2). (3.75)

Thus, the potential (3.17) for these theories will be

U(φ) =
1

8 − 6λ2

(∂W
∂φ1

)2

+ 3λ
∂W
∂φ1

∂W
∂φ2

+ 3
(
∂W
∂φ2

)2 (3.76)

The vacua are given by the critical points of the prepotential, as in equation (3.18), that is,
the points φ0 = (φ1, φ2) which satisfy

γ1 sinφ1 + γ2 sin(φ1 − φ2) + 2γ3 sin(2φ1 − φ2) = 0

γ2 sin(φ1 − φ2) + γ3 sin(2φ1 − φ2) = 0. (3.77)

The set of vacua points will depend on the choice of the parameters γi. For the particular
choice γi = 1, for example, the vacua are

φ0 =


(n1π,n2π)

( 2π
3 + 2πn1, 2πn2)

( 4π
3 + 2πn1, 2πn2)

(3.78)

where n1,n2 ∈ Z. Note that the vacuum set does not depend on the values of the parameter
λ, even though it appears explicitly in the expression for the potential (3.76). Plots for this
potential, with the choice γi = 1, are given in figure 3.3.

(a) The potential with λ = 0. (b) The potential with λ = 1

Figure 3.3: Plot of the potential U(φ) with parameters γi = 1 and (a) λ = 0 and (b) λ = 1.
White dots give the vacua points. Their position is independent of λ
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Thus, the BPS equations read

dφ1

dx
= ±

(
η−1

11
∂W
∂φ1

+ η−1
12
∂W
∂φ2

)
= ±

1
8 − 6λ2

(
2
∂W
∂φ1

+ 3λ
∂W
∂φ2

)
∴

dφ1

dx
= ±

1
8 − 6λ2

[
−2γ1 sinφ1 + (3λ − 2)γ2 sin(φ1 − φ2)+

+(3λ − 4)γ3 sin(2φ1 − φ2)
]

(3.79)

and

dφ2

dx
= ±

(
η−1

21
∂W
∂φ1

+ η−1
22
∂W
∂φ2

)
= ±

1
8 − 6λ2

(
3λ
∂W
∂φ1

+ 6
∂W
∂φ2

)
∴

dφ2

dx
= ±

1
8 − 6λ2

[
−3λγ1 sinφ1 + (6 − 3λ)γ2 sin(φ1 − φ2)+

+(6 − 6λ)γ3 sin(2φ1 − φ2)
]
. (3.80)

These equations must be solved numerically and some results are presented in the next
section. The method used in these calculations will be explored in chapter 4. Summarizing,
it consists in choosing an initial point in field space φ(0) = (φ1(0), φ2(0)) and let it evolve
from there in both directions, x→ ±∞, following the η-gradient lines of the prepotential W.
As long as we do not choose a vacuum point, the flow of the η-gradient is uniquely defined
and we should get a non-trivial configuration connecting two vacua.

3.2.7 Numerical support

All the simulations presented here were obtained for the particular choices γi = 1
and λ = 1. The potential U(φ) for this model is shown in figure 3.3b. Different values for
these parameters were also considered in other simulations, however, we observed that the
general properties of the solutions did not differ too much from model to model.

In figure 3.4 we have particular configurations obtained for close initial conditions
φ(0). The configuration in figure 3.4a was initialized at the point φ(0) = (5, 7). Here we can
already oberve a severe difference from the models with a single field: while for φ1 we have
a usual kink profile, for φ2 we have a single bump. If analysing the two profiles indepen-
dently, one could have the false impression that φ2 is topologically trivial. Nevertheless it is
important to reinforce the idea that the two fields must not be taken separately, as they are
just components of the fundamental fieldϕ. Moreover, note that the configuration as a whole
interpolates between vacua (4π/3, 2π) and (2π, 2π), i.e., the configuration has indeed non-
trivial topological data. In figure 3.4b the configuration was initialized at φ(0) = (5, 8) and
as a result we obtained kink profiles for both φ1 and φ2. This time the solution interpolates
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between vacua (4π/3, 2π) and (2π, 4π).

(a) The fields φ1 and φ2 have different values at
x = −∞ and go to the same vacuum at x = +∞.

(b) Both fields behave essentially like kinks, inter-
polating different vacua.

Figure 3.4: Two numerically calculated BPS states of the model with λ = 1 and γi = 1.

In figure 3.5 we have the η-gradient lines of the prepotential W plotted over the
potential U, in colors. The white dashed lines indicate the paths described the solutions in
figure 3.4. Notice that the paths follow the η-gradient flow, as it was discussed in section
3.1.2. Here we can understand why the configurations in 3.4 go to different vacua. At the
point φ = (5, 7) the η-gradient flow connects the vacua (4π/3, 2π) and (4π/3, 2π), which lie
on the same horizontal line φ2 = 2π. So, from this point of view, it is expected for the profile
of φ2 to have a bump, since it will have to return to the same value of the φ2 coordinate at
x = ∞.

(a) A solution interpolating the vacua ( 4π
3 , 2π) and

(2π, 2π).
(b) A solution interpolating the vacua ( 4π

3 , 2π) and
(2π, 4π).

Figure 3.5: The ∇ηW lines are plotted as black arrows over the potential U, in colors. The
paths described by the solutions in figure 3.4 are plotted as white dashed lines.

An even more dramatic change in profiles was obtained for initial condition φ(0) =
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(7π/6, 2π), in figure 3.6a, and φ(0) = (7π/6, 2π + 10−3), in figure 3.6b. In this case, even a
slight change of order 10−3 in the initial conditions was enough to completely change the
configurations and the vacua they interpolate. In figure 3.6a while φ1 has a kink profile,
φ2 remain constant and the configurations interpolates points (4π/3, 2π) and (π, 2π). In
figure 3.6b we have basically two kink profiles interpolating (4π/3, 2π) and (2π, 4π), with
the exception that φ1 presents a little bump before tunneling to the other vacuum.

(a) A solution interpolating the vacua ( 4π
3 , 2π) and

(π, 2π).
(b) A solution interpolating the vacua ( 4π

3 , 2π) and
(2π, 4π).

Figure 3.6: BPS states constructed using slightly different initial conditions. A small change
of order 10−3 in the value of φ2 implies a dramatic change in the resulting configurations.

In figures 3.7 we have plotted the paths described by the configurations in 3.6. Notice
that between vacua ( 4π

3 , 2π) and (π, 2π) there is exactly one η-gradient line connecting the
two. Any variation, no matter how small, in vertical axis φ2 would take us to a region where
the η-gradient flows opposite to vacuum (π, 2π). This exactly what was observed in the case
for figures 3.6b and 3.7b.

Moreover, notice that both solutions 3.5b and 3.7b are BPS states which interpolates
vacua (4φ/3, 2π) and (2π, 4π). This means both have the same topological charge (3.20) and
energy, given by the Bogomolny bound (3.12), namely, E = |Q| = 9/2. There are in fact
an infinity of paths connecting these two vacua following the η-gradient flow, all of them
described by BPS states with exactly the same energy and topological data. In principle,
then, we do not have any topological arguments forbidding transition from one of these
configurations to another, or energetic arguments demonstrating a preference for a specific
one. We were not yet able to study perturbations around these solutions, though it is in our
plans as a continuation for this work.
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(a) A configuration interpolating the vacua
( 4π

3 , 2π) and (π, 2π).
(b) A slight change in the initial condition for φ2
changes the configuration completely, which now
interpolates ( 4π

3 , 2π) and (2π, 4π)

Figure 3.7: The paths decribed by the solution given in figure 3.6.

3.2.8 The FKZ models for the algebra su(4)

The algebra su(4) is of rank r = 3, thus the field space will be three-dimensional and
the field is a scalar triplet:

ϕ = φ1
2α1

‖α1‖
2 + φ2

2α2

‖α2‖
2 + φ3

2α3

‖α3‖
2 . (3.81)

The Cartan matrix of the algebra su(4) is

K =


2 −1 0
−1 2 −1
0 −1 2

 . (3.82)

In constructing the FKZ potential for this algebra we choose the matrix η to be

η =


2 −λ 0
−λ 2 −λ

0 −λ 2

 , (3.83)

such that ηab|λ=1 = Kab/ ‖αa‖
2. Its inverse reads

η−1 =
1

8 − 4λ2


4 − λ2 2λ λ2

2λ 4 2λ
λ2 2λ 4 − λ2

 . (3.84)
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The parameter λ should be kept in the interval

|λ| <
√

2 (3.85)

to ensure that η is positive definite and invertible.
The fundamental weights of su(4) are given by

λ1 =
1
4

(3α1 + 2α2 + α3)

λ2 =
1
2

(α1 + 2α2 + α3) (3.86)

λ3 =
1
4

(α1 + 2α2 + 3α3) .

The weights of the first fundamental representation are given by

µ1 = λ1 =
1
4

(3α1 + 2α2 + α3)

µ2 = λ1 − α1 =
1
4

(−α1 + 2α2 + α3)

µ3 = λ1 − α1 − α2 =
1
4

(−α1 − 2α2 + α3) (3.87)

µ4 = λ1 − α1 − α2 − α3 = −
1
4

(α1 + 2α2 + 3α3)

those of the second fundamental representation are

µ̃1 = λ2 =
1
2

(α1 + 2α2 + α3)

µ̃2 = λ2 − α2 =
1
2

(α1 + α3)

µ̃3 = λ2 − α1 − α2 =
1
2

(−α1 + α3) (3.88)

µ̃4 = λ2 − α2 − α3 =
1
2

(α1 − α3) = −µ̃3

µ̃5 = λ2 − α1 − α2 − α3 = −
1
2

(α1 + α3) = −µ̃2

and, finaly, the weights of the third fundamental representation are

µ̄1 = λ3 =
1
4

(α1 + 2α2 + 3α3) = −µ4

µ̄2 = λ3 − α3 =
1
4

(α1 + 2α2 − α3) = −µ3

µ̄3 = λ3 − α3 − α2 =
1
4

(α1 − 2α2 − α3) = −µ2 (3.89)

µ̄4 = λ3 − α3 − α2 − α1 = −
1
4

(3α1 + 2α2 + α3) = −µ1.

None of the fundamental representations alone satisfy the requirement for reality of the
prepotential, but we notice that a direct sum of the first and third, 4 ⊕ 4̄, does. As we only
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need one of each pair of weights in order to construct the prepotential, let us use the weights
of representation 4 and calculate the internal products with the field ϕ:

µ1 · ϕ =

3∑
a=1

φa
2λ1 · αa

‖αa‖
2 =

3∑
a=1

φaδ1a = φ1

µ2 · ϕ =

3∑
a=1

φa
2(λ1 − α1) · αa

‖αa‖
2 = φ1 − K11φ1 − K12φ2 − K13φ3 = φ2 − φ1

µ3 · ϕ =

3∑
a=1

φa
2(λ1 − α1 − α2) · αa

‖αa‖
2 = φ2 − φ1 − K21φ1 − K22φ2 − K23φ3 = φ3 − φ2 (3.90)

µ4 · ϕ =

3∑
a=1

φa
2(λ1 − α1 − α2 − α3) · αa

‖αa‖
2 = φ3 − φ2 − K31φ1 − K32φ2 − K33φ3 = −φ3.

Then, the prepotential for the su(4) FKZ model for the representation 4 ⊕ 4̄ is given by

W = γ1 cosφ1 + γ2 cos(φ1 − φ2) + γ3 cos(φ2 − φ3) + γ4 cosφ3. (3.91)

And the components of the gradient of the prepotential in the field space are

∂W
∂φ1

= −γ1 sinφ1 − γ2 sin(φ1 − φ2)

∂W
∂φ2

= γ2 sin(φ1 − φ2) − γ3 sin(φ2 − φ3) (3.92)

∂W
∂φ3

= γ3 sin(φ2 − φ3) − γ4 sinφ3.

The potential for this model is given by

U(φ) =
1

16 − 8λ2

(4 − λ2)
(
∂W
∂φ1

)2

+ 4
(
∂W
∂φ2

)2

+ (4 − λ2)
(
∂W
∂φ3

)2

+

+4λ
∂W
∂φ1

∂W
∂φ2

+ 4λ
∂W
∂φ2

∂W
∂φ3

+ 2λ2 ∂W
∂φ3

∂W
∂φ1

]
(3.93)

The vacuum set is given by the collection of points that make (3.93) vanish. In particular,
these points are the solutions for the system of equations

∂W
∂φa

= 0, (3.94)

where the derivatives are given in (3.92). Unlike the cases for algebras su(2) and g2, where
the vacuum set was a discrete set, here it appears to have both discrete and continuous
components. As in every FZK model, the points φa = naπ, na ∈ Z, form always a discrete
component of the vacuum set. Nonetheless, for the particular choice γi = 1, notice that the
lines φ = (φ3 − π, π + 2πn, φ3), where n ∈ Z and for each φ3 ∈ R, also satisfy the set of
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equations (3.94). This means that the vacuum set has at least some continuous components.
Moreover, because of the symmetry φ1 ↔ φ3 in the prepotential (3.91), we also have that the
lines φ = (φ1, π + 2πn, φ1 − π) also are in the vacuum set.

Although a thorough analysis of the vacuum set would be fundamental to the complete
description of the theory and its possible solutions, here our numerical approach is in fact
independent of the previous knowledge of the complete set. This is due to the fact that the
starting point for the numerical integration does not need to be a vacuum point, in fact we
could use random values for the initial condition φ(0), see chapter 4. Further, as will be
seen below, all of our numerical experiments gave solutions interpolating the usual φa = naπ

vacua.
The BPS equations read

dφ1

dx
= ±

(
η−1

11
∂W
∂φ1

+ η−1
12
∂W
∂φ2

+ η−1
13
∂W
∂φ3

)
= ±

1
8 − 4λ2

(
(4 − λ2)

∂W
∂φ1

+ 2λ
∂W
∂φ2

+ λ2 ∂W
∂φ3

)
= ±

1
8 − 4λ2

[
(λ2
− 4)γ1 sinφ1 + (λ2 + 2λ − 4)γ2 sin(φ1 − φ2)+

+ (λ2
− 2λ)γ3 sin(φ2 − φ3) − λ2γ4 sinφ3

]
(3.95)

dφ2

dx
= ±

(
η−1

21
∂W
∂φ1

+ η−1
22
∂W
∂φ2

+ η−1
23
∂W
∂φ3

)
= ±

1
8 − 4λ2

[
− 2λγ1 sinφ1 + (4 − 2λ)γ2 sin(φ1 − φ2)+

+ (2λ − 4)γ3 sin(φ2 − φ3) − 2λγ4 sinφ3

]
(3.96)

dφ3

dx
= ±

(
η−1

31
∂W
∂φ1

+ η−1
32
∂W
∂φ2

+ η−1
33
∂W
∂φ3

)
= ±

1
8 − 4λ2

[
− λ2γ1 sinφ1 + (2λ − λ2)γ2 sin(φ1 − φ2)+

+ (4 − 2λ − λ2)γ3 sin(φ2 − φ3) + (λ2
− 4)γ4 sinφ3

]
. (3.97)

This equations were solved numerically and we present some results in the next section.

3.2.9 Numerical support

For this model we did not have the aid of plotting theη-gradient lines of the prepotential
in order to check the results obtained. We, then, resorted to another result presented in section
3.1.2 claimming that the prepotential W calculated over a path φ described by a BPS state
should be monotonic in x.
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In figure 3.8a we have a configuration obtained for the choice of parameters γi = 1
and λ = 0, the initial condition was φ(0) = (3π/4, π, 3π/4). Note that we can exchange
φ1 ↔ φ3, as it was expected by the symmetry of the prepotential W. The prepotential in 3.8b
is indeed monotonic when evaluated at the path φ(x) and resembles a kink. In figure 3.8c
we manage to break the symmetry of exchange φ1 ↔ φ3 by choosing different parameters
γi. The configuration still interpolates the same vacua as 3.8a.

(a) A configuration interpolating vacua (π, 0, π)
and (0, 0, 0).

(b) The prepotential for the configuration in (a).

(c) A configuration interpolating vacua (π, 0, π)
and (0, 0, 0).

(d) The prepotential for the configuration in (c).

Figure 3.8: BPS states for the choices (a) γi = 1 and λ = 0, and (c) γi = i and λ = 0. The two
simulations were started with the same initial conditions, but the choice of γi in (c) broke the
symmetry φ1 ↔ φ3.

In figure 3.9a we choose as initial condition the point φ(0) = (8 − π, π, 8), which lies
in the line of vacua (φ3 − π, π, φ3). The configuration indeed stayed at the same point as it
was expected, confirming the fact that each point in this line is a vacuum. For figure 3.9c
we initiated the numerical integration at the point φ(0) = (8 − π, π, 8.1), slightly apart from
the line. This was sufficient to completely change the resulting configuration. The solution
now interpolates the vacua (π, 0, 3π) and (2π, 2π, 4π). The prepotential in 3.9d is indeed
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monotonic, but this time it resembles a 2-kink configuration.

(a) A vacuum configuration. (b) The prepotential corresponding to (a) is con-
stant.

(c) A configuration interpolating vacua (π, 0, 3π)
and (2π, 2π, 4π).

(d) The prepotential for the configuration on (c).

Figure 3.9: Numerical test around the vacua lineφ = (φ3−π, π, φ3). In (a) the initial condition
was a point of the line. In (b) we started at a point slightly apart from it.

Moreover, we did not observe in any of our numerical experiments a configuration
interpolating vacua different from the integer multiples of π. A possible explanation for
this would be that the η-gradient of W is parallel to the lines φ = (φ3 − π, π, φ3) at their
neighborhoods. This way, if no point in these lines is a source or sink of gradient lines, we
indeed should not expect a non-trivial configuration to reach them. We are still working on
this hypothesis, as we are in the analysis of perturbations around the static solutions for this
model.



Chapter 4

Numerical methods in field theories

In this chapter we discuss numerical techniques [11] for solving first and second order
differential equations. We used this techniques in the numerical simulations of the static
configurations for the FKZ models in the last chapter. We will also present how to use them
in the simulation of scattering processes of multi-soliton solutions of the su(2) FKZ model.

4.1 Static equations

The static configurations we are interested in are solutions of the BPS equations, which
are first order equations of the form 1

dφa

dx
= η−1

ab
∂W
∂φb
≡ Fa(φ, x) (4.1)

We discretize the parameter x into a vector of N components, (x(i)), using an equally spaced
grid with step size h. The fields themselves become vectors

φa(i) ≡ φa(x(i)). (4.2)

In order to compute the solutions of equations (4.1) we will use a simple Euler scheme. We
discretize the derivative using a forward difference

dy
dx

(i) =
y(i + 1) − y(i)

h
(4.3)

and the equations become a recurrence relations

φa(i + 1) = φa(i) + hFa(i) (4.4)

where Fa(i) ≡ Fa(φ(x(i)), x(i)). Given the initial conditions φa(0), we use (4.4) to calculate
φa(1), use φa(1) to calculate φa(2), so on and so forth. So, iteratively, we can calculate the

1We chose the positive sign just as an example, all the results hold for the equations with negative sign as
well.
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fields at each point x(i) – by using a for loop, for example.
Notice, though, that if we give as initial conditions values which are vacua of the

potential, that is,

Fa(0) = 0 (4.5)

then we would get φa(i) = φa(i) and the recurrence relation would become φa(i) = φa(0), i.e.,
we would get a vacuum configuration as a solution. Therefore, we would like that at least
some of the fields would not start at vacuum points. One thing we can do is to start the fields
at values near the vacua φa(0) = φ(vac)

a + ε, this way Fa(0) would be slightly different from
zero, which should be enough to generate a non-trivial solution. This method, nonetheless,
has at least two setbacks. The first one is that it is not guaranteed it will give you a non-trivial
solution. Sometimes, the fields simply evolve back to the vacua they are close to. The second
one is that you cannot predict where your configuration will be centered. One way to avoid
those problems is to begin the integration at another point that is not i = 0. We can, e.g., start
the integration at i = N/2 and choose for initial conditions φa(N/2) points that are halfway
between two vacua. Thereafter, we iterate the equation forward until i = N−1 and backward
until i = 0, that is, we use the recurrence relations

φa(i + 1) = φa(i) + hFa(i); i = N/2, · · · ,N − 1 (4.6)

φa(i − 1) = φa(i) − hFa(i); i = N/2, · · · , 0 (4.7)

where we used a backward difference

dy
dx

(i) =
y(i) − y(i − 1)

h
(4.8)

in equation (4.1) in order to determine the backward recurrence relation. With this approach,
we manage to avoid the configurations from staying in the vacua, since they are far from
them, and can choose roughly where the configuration will be centered by the choice of the
initial index i.

After the computation, when we have our configuration φa(i), one thing we might
want to do is calculate some physical quantities, such as the energy density of the solution.
The static energy, which is given by

ε =
1
2
η−1

ab
dφa

dx
dφb

dx
+ U(φ) (4.9)

can also discretized

ε(i) =
1
2
η−1

ab

(
φa(i + 1) − φa(i − 1)

2h

) (
φb(i + 1) − φb(i − 1)

2h

)
+ U(φ(i)) (4.10)



4. Numerical methods in field theories 41

where we used a central difference

dy
dx

(i) =
y(i + 1) − y(i − 1)

2h
(4.11)

in order to reduce the numerical error in the caculation of the derivative. When using this,
we have to take particular care about the boundaries of our interval. Notice that, when
trying to use equation (4.10) to calculate the energy at indices i = 0 or i = N − 1, we would
need the values φa(−1) and φa(N), which are not defined. At the boundaries, then, we need
to use a forward (backward) difference when discretizing derivatives at i = 0 (i = N − 1).
We can use this approach to compute any quantities we are interested in that depend on the
fields or their derivatives – always taking care at the boundaries.

The total static energy

E =

∫
∞

−∞

dx ε (4.12)

can also be calculated. Since we are studying configurations with localized energy density,
the integral can be truncated at the boundaries. A simple way to integrate numericaly – and
the one we used here – is

E =

N−1∑
i=0

hε(i). (4.13)

One other thing we can do is the construction of multi-soliton configurations. This
kind of solution, which asymptotically consist of well separated “single”-solitons, will be
used in the next section as initial conditions to the simulation of the scattering processes.
For simplicity, consider a theory of a single field φ and three consecutive vacua points
(φ0,1, φ0,2, φ0,3). The configuration we want to build will interpolate φ0,1 and φ0,2 and then
φ0,2 and φ0,3. If φ0,1 , φ0,3 then the configuration is called a kink-kink or 2-kink. Another
interesting case arises when φ0,1 = φ0,3, that is, the configuration starts at φ0,1, goes to φ0,2

and returns toφ0,1. This is what is called a kink-antikink configuration. Notice that it belongs
to the same homotopy class as the vacuum configuration [{φ0,1, φ0,1}], i.e., topology do not
forbid it to decay in a vaccum configuration under time evolution, and that is exactly what
we will observe in the scattering of a kink-antikink system where these objects move towards
each other with low relative speed.

The procedure to construct this type os configuration is as follows. We start by solving
the system (4.6) for the first solution φ1, which intorpolates φ0,1 and φ0,2. We want it to be
in the first half of the interval, so we choose i = N/4 as the starting index, and as initial
condition we choose halfway between the vacua, that is,

φ1

(N
4

)
=
φ0,2 − φ0,1

2
. (4.14)

The second soliton φ2 will be centered at the second half of the interval and will interpolate
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φ0,2 and φ0,3, i.e., the initial value will be

φ2

(3N
4

)
=
φ0,3 − φ0,2

2
. (4.15)

Having integrated (4.6) for both φ1 and φ2, we have two 1-soliton solutions. In order
to obtain a superposition of both, we simply sum them. This sum will be shifted by a factor
φ0,2, as can be seen in the limits

φ(−∞) = φ1(−∞) + φ2(−∞) = φ0,1 + φ0,2 (4.16)

and

φ(∞) = φ1(∞) + φ2(∞) = φ0,2 + φ0,3, (4.17)

so we correct it by subtracting this same factor. Thus the initial multi-soliton configuration
can be achieved by

φ = φ1 + φ2 − φ0,2. (4.18)

As an example, let us consider the sine-Gordon model. Let φ1 be a kink centered at −x0 that
interpolates 0 and 2π

φ1 = 4 arctan(ex+x0) (4.19)

and φ2, a kink solution centered at x0 interpolating 2π and 4π

φ2 = 4 arctan(ex−x0) + 2π. (4.20)

A 2-kink solution can be constructed by taking

φ = φ1 + φ2 − 2π = 4 arctan(ex+x0) + 4 arctan(ex−x0) (4.21)

if the distance 2x0 between the centre of these kinks is large enough. The process of construc-
tion of this configuration is shown in figure (4.1). The equations we are interested in are not
linear, and therefore the sum of solutions is not, in general, a solution. But, numericaly, we
do not need it to be an exact solution; it can be almost a solution, that is, a solution up to a
target numerical accuracy.

If we have a differential equation

D(φ) = 0 (4.22)
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Figure 4.1: Numerical construction of a 2-kink configuration of the sine-Gordon model. The
top plot is a kink cetered at x = −25. The middle one is a kink centered at x = 25. And the
bottom plot is the sum of the two configurations above.

whereD is a differential operator, we can define a variable

eq(x) ≡ D(φ(x)) (4.23)

that takes the value of the differential operatorD applied at a configurationφ(x) at each point
x. If φ is a solution to (4.22), eq would vanish at each x. Numerically, then, we could use eq
to test how accurately a given configuration satisfies a certain differential equation. In the
case of the sine-Gordon model, for example, we can define eq to be the static Euler-Lagrange
equation of the model

eq =
d2φ

dx2 − sin(φ) (4.24)

and test it for the configuration (4.21). Figure (4.2) shows the result of this calculation. As it
can be seen, the accuracy is up to order 10−5 when using a step h = 0.005, which is a good
approximation. And it can be made even smaller, by change of the step size h. As a rule of
thumb, we can sum the 1-soliton solutions to get a multi-soliton system when the individual
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Figure 4.2: Numerical test of the satisfiability of the sine-Gordon static equation by a 2-kink
configuration

ones are considerably separated.
Here the interpretation of a static configuration being the trajectory of a particle

parametrized by x comes in handy. The particle starts at x = −∞ in vaccum φ0,1 and
somewhere along the way, say around x = −x0, it tunnels to φ0,2, where it would arrive
only in x = ∞. But if x0 � 0, this means that at x = 0 it would be very close to φ0,2. For
our purposes, that could be close enough so that we consider that it in fact arrived there.
From vacua φ0,2 at x = 0 the particle goes on its path until around x = x0, when it tunnels to
vacuum φ0,3. This way we can see that it is possible to construct an approximate solution by
summing two solutions in the limit that they are far apart.

4.2 Dynamical equations

The full equations of motion of the theories we are interested in solving are non-linear
wave equations of general form

∂ttφ − ∂xxφ = F(φ, ∂φ, t, x) (4.25)

where ∂φ denotes any first derivative terms F might contain. We can transform this second
order equation into a set of first order equations (on the time parameter) by defining

∂tπ = ∂xxφ + F

∂tφ = π. (4.26)

We, then, discretize the parameters (time and space coordinates) into vectors of components
t(i) and x( j) and step sizes ∆t and ∆x, respectivelly. The fields φ(t, x) and π(t, x) become
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matrices

φ(i, j) ≡ φ(t(i), x( j))

π(i, j) ≡ π(t(i), x( j)) (4.27)

and equations (4.25) become a system of recurrence relations, when discretized

π(i + 1, j) = π(i, j) + ∆t
(
φ(i, j + 1) − 2φ(i, j) + φ(i, j − 1)

∆x
+ F(i)

)
φ(i + 1, j) = φ(i, j) + ∆t π(i, j), (4.28)

where we have used a forward difference (4.3) in order to discretize the first derivatives in
time and a central difference

d2y
dx2 (i) =

y(i + 1) − 2y(i) + y(i − 1)
h

(4.29)

in the second order space derivative.
Given the initial values φ(0, j) and π(0, j), i.e., the first lines of the field matrices, we

can use the recurrence relations (4.28) to iteratively integrate the equations of motion. Here
we also have to be careful about the spatial boundaries when discretizing the derivatives
that appear in the r.h.s. of (4.28), so that we do not try to use indices that are not available.
For second derivatives, the forward difference is given by

d2y
dx

(i) =
y(i + 2) − 2y(i + 1) + y(i)

h
(4.30)

and the backward difference is

d2y
dx

(i) =
y(i − 2) − 2y(i − 1) + y(i)

h
. (4.31)

When we have analytic static solutions for the fieldφ(x) we can always make a Lorentz
boost x 7→ γ(x − vt) in order to obtain a moving configuration. In the case of multi-soliton
solutions we boost the single soliton solutions φ1 and φ2, and choose opposite speeds for
each, since we want to study their scattering. Then we can construct the system configuration
as in

φ(t, x) = φ1(γ(x + x0 − vt)) + φ2(γ(x − x0 + vt)) − φ0,2 (4.32)

where we have chosen φ1 to be centered at −x0 and moving to the right with speed v, and φ2

to be centered at x0 and moving to the left with speed v 2. We can, then, take the partial time
derivative of (4.32) to determine π(t, x) and, with this and (4.32), it is possible to calculate the

2Notice, though, that (4.32) is not a solution – or even an approximate solution – to the field equations for
every t. This equation is only to be used in the construction of the initial data for the simulation
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initial data φ(0, j) and π(0, j). This is all information needed to perform the computation of
(4.28).

A slight setback arises when we are dealing with theories which do not have analytical
static solutions. Fortunatelly, this is not too difficult to overcome. If the theory has BPS
equations we can use the methods decribed in the last section to construct a initial field
configurarion. If not, there are other methods that can be used, e.g., the relaxation or the
shooting methods – these will not be presented here, though, but literature is vast on the
subject [11].

The aforementioned setback concerns the Lorentz boost and later computation of the
field π, since we have no means to do so in the usual sense as in the analytic case. These two
problems are solved at once with one simple trick. Supose we have a static configuration
φ(x′) relative to reference frame S′. A Lorentz boost is then a change of coordinate system
from S′ to S by x′ = γ(x − vt). The time derivative in S can be performed implicitly

∂tφ(x′) =
∂x′

∂t
dφ
dx′

(4.33)

= −vγ
dφ
dx′

(4.34)

and the information about the speed at which the configuration is moving is already encoded
in this calculation. Now, having a static configuration – even a numericaly calculated one
– we have the means to boost it and simulate scattering processes. A important remark is
that when we calculate the initial configuration, we are in the static reference frame with
coordinate x′. In order to do the simulation, we should rescale the coordinate according to
the Lorentz transformation x = x′/γ and also the grid step ∆x = ∆x′/γ.

In order to build these moving solutions we have two obvious approaches: we can
boost the separate solitons φ1 and φ2 and then sum them and their derivatives πi, or we
can boost the full configuration φ altogether. Nonetheless, in order to do so, we have to be
careful to boost each half independenty. That is, for i = 0 until i = N/2, we use equation
(4.33) with speed v in order to boost the leftmost soliton; and for i = N/2 until i = N − 1 we
use (4.33) with opposite sign speed −v, so that the rightmost soliton moves in the opposite
direction.

The two approaches give basically the same result, so it is merely a matter of taste
which one to use. In the simulations presented in the next section, we have used the second
one, particularly.

4.3 Simulation of soliton scattering in a su(2) FKZ model

In section 3.2.1 we presented the su(2) FKZ models, constructed following the gener-
alized BPS formalism. We have then simulated several scattering processes of the solutions
found in the specific model constructed from the 2⊕ 3 representation. The dynamical Euler-
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Lagrange equation for this model is

∂ttφ − ∂xxφ + Vφ = 0 (4.35)

where

Vφ ≡
dV
dφ

= −b sin3 φ
(
1 + b cosφ

)
+

1
2

sin(2φ)
(
1 + b cosφ

)2
. (4.36)

So the system of first order equations we have to solve is

∂tπ = ∂xxφ − Vφ

∂tφ = π (4.37)

which after discretized reads

π(i + 1, j) = π(i, j) + ∆t
(
∂xxφ(i, j) − Vφ(i, j)

)
φ(i + 1, j) = φ(i, j) + ∆t π(i, j). (4.38)

We simulated the scattering of kink-kink and kink-antikink systems for several values
of the parameter b and speed v. The initial configuration was always constructed having the
1-soliton solutions equally apart from the origin of x′ and boosted inwards with speeds of
equal modulus v. The grid steps were constant and, for the results presented here, we used
∆x′ = 0.005 for the calculation of the initial configuration; ∆x = ∆x′/γ and ∆t = ∆x/2 were
used in the computation of the scattering processes. We present some results that summarize
the general properties of these processes in figures 4.3 through 4.5.

In figure 4.3 we have scatterings of low initial speed v = 0.1 for values of the parameter
b = 0.0, b = 0.1 and b = 2.0. It can be seen that in the case b = 0.0, no bound state was formed.
This is due to the fact that, for this value of b, the theory is equivalent to a sine-Gordon
model, which is integrable. In integrable theories, a infinite number of conserved charges
stabilizes the configuration and preserve the individual structure of the solitons. As it can be
observed in figures 4.3c and 4.3e, this was not the case for b > 0, where we had the formation
of bound states. This confirms that this model is not integrable for |b| > 0. Moreover, as
kink-antikink configurations are in the same homotopy class of the vacuum, they can decay
dynamically. This is exactly what we observe here, as these systems tend to emit radiation
and dissipate slowly after forming a bound state.
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(a) Kink-antikink scattering for b = 0.0 and v =
0.1.

(b) Initial profile for scattering in (a).

(c) Kink-antikink scattering for b = 0.1 and v =
0.1.

(d) Initial profile for scattering in (c).

(e) Kink-antikink scattering for b = 2.0 and v =
0.1.

(f) Initial profile for scattering in (e).

Figure 4.3: Simulation of scattering of kink-antikink systems of the su(2) FKZ model.
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In figure 4.4 we present the scattering of kink-antikink systems for b = 0.1 and b = 2.0
at a slightly greater initial speed v = 0.2. Here we did not see the formation of bound states.
The existence of a critical speed above which we do not observe bound states is expected,
even in non-integrable theories. However, we were surprised by the fact that these models
presented such a low critical speed. In the φ4 model [12], for example, the critical speed is
about v = 0.4.

(a) Kink-antikink scattering for b = 0.1 and v =
0.2.

(b) Initial profile for scattering in (a).

(c) Kink-antikink scattering for b = 2.0 and v =
0.2.

(d) Initial profile for scattering in (c).

Figure 4.4: Simulation of scattering of kink-antikink systems of the su(2) FKZ model.



4. Numerical methods in field theories 50

In figure 4.5 we have the only kink-kink scatterings we will present. As 2-kink config-
urations are in homotopy classes different from the vacuum, topology prevents them from
decaying. So in these cases we cannot have the formation of a bound state and the scattering
processes can at most be inelastic for non-integrable theories, where we have emission of a
bit of radiation. Figure 4.5a shows the scattering of the integrable case b = 0. Notice that the
solitons do not touch each other, being repelled before it happens. In figure 4.5c we have
a very interesting case for b = 2.0. Because the vacua are not equally spaced |b| > 1, we
have the existence of kinks with different sizes, which confers them different energies. So
the scattering is not symmetric and we have that the “big” kink is a bit slowed down, but
not completely reflected; while the “little” kink accelerates considerably after the collision.

(a) Kink-kink scattering for b = 0.0 and v = 0.1. (b) Initial profile for scattering in (a).

(c) Kink-kink scattering for b = 2.0 and v = 0.1. (d) Initial profile for scattering in (c).

Figure 4.5: Simulation of scattering of kink-kink systems of the su(2) FKZ model.

A minimal amount of radiation was observed after the collision in each simulation
with b > 0, when compared with other non-integrable theories, such as the φ4 model [12].
This could be a hint that these models present some quasi-integrable [13] character. Further,
it is necessary to determine the precise critical speed for the cases b > 0 and to test for the
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existence of “bounce windows”3. We are currently working on both of these last tasks.

3Specific speeds below the critical for which we do not observe the formation of a bound state.



Chapter 5

Concluding remarks

The main purpose of this dissertation was twofold: i) the application of the generalized
BPS formalism in the construction of the g2 and su(4) FKZ models; and ii) the simulation of
2-soliton configurations in a su(2) FKZ model.

In chapter 2 we reviewed some concepts that are essential to the general study of
topological solitons. In particular, we reviewed basic definitions of topology, aimming in
the understanding of homotopy groups and how we can use them to classify our solutions.
Then we presented a derivation of Derrick’s theorem for scalar fields, justifying our choice
to work in (1 + 1)-dimensional spacetime. Finally, we presented a general approach for the
construction of the BPS equations for a single scalar field and gave two canonical examples,
namely, the φ4 and sine-Gordon models.

Chapter 3 dealt with the generalization of the BPS equations for a multiplet of fields.
We reviewed the original construction of the equations from the topological charge and
energy functionals and how we could use it to define new theories from Lie algebras, the
FKZ models. In particular, we reviwed the models based on algebra su(2) and successfully
constructed models based on algebras g2 and su(4), cases that were not considered in the
original paper [5]. A thorough description of the vacuum structure of the su(4) is still needed.
Further, the stability analysis for the static solutions of both g2 and su(4) models is pending
and we are currently working on this project.

In chapter 4 we reviewed some numerical methods for the construction of static con-
figurations from the BPS equations and further simulation of the dynamics of this objects,
when forced to scatter. We, then, presented some scattering processes of a su(2) FKZ model.
The simulations revealed that this model is indeed non-integrable. Nonetheless, the minimal
amount of radiation emitted in the interactions were not expected, which could indicate a
quasi-integrable aspect of the model. Moreover, we are currently working on the precise
determination of the critical speeds and testing for the existence of bounce windows in this
model.
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