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iere, in 1931)



Abstract

Sensing technologies with optical fibers have been studied and applied since the 1970s in oil and gas,
industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves through fiber-optic
hydrophones (FOH) sensors can be one solution for continuous measurement of volumes inside produc-
tion tanks used by these industries. So, this work presents a FOH system composed of two optical fiber
coils made with commercial SMF (Single Mode Fiber), working in the sensor head of a Michelson's inter-
ferometer (MI), supported by an active stabilization mechanism that drives other optical coil wound
around a piezoelectric actuator (PZT) in the reference arm, to mitigate external mechanical and thermal
noises come from the environment. A graduated cylinder glass of 1000 mlis used as a test tank filled with
water, inside which the sensor head and an ultrasound source are placed at. As a means of detection,
amplitudes and phases are measured, and machine learning algorithms predict their respective liquid vol-
umes. The acoustic waves create patterns electronically detected with resolution of 1 ml, and sensitivity
of 349 mrad/ml and 70 mvolts/ml. The non-linear behavior of both measurands required the analysis of
classification, distance metrics and regression algorithms to define an adequate model. The results show
the system can decide liquid volumes with the accuracy of 99.4% using a k-NN (k Nearest Neighbors) clas-
sification with one neighbor and Manhattan's distance. Moreover, a gaussian process regression using ra-

tional quadratic metrics presented and RMSE (Root Mean Squared Error) of 0.211 ml.

Keywords: liquid-volume measurements; fiber-optic hydrophone; Michelson's interferometer; ultrasound

acoustics; active stabilization; machine learning.



Resumo

As tecnologias de sensoriamento por meio de fibras dpticas vém sendo estudadas e aplicadas desde a
década de 1970, nas areas de petrdleo e gas, industrial, médica, aeroespacial e civil. A deteccao de ondas
de ultrassom por meio de hidrofones 6pticos pode ser uma solugao para a medicao continua de volumes
de liquidos dentro de tanques de producao utilizados por essas industrias. Assim, este trabalho apresenta
um hidrofone 6ptico composto por duas bobinas feitas com fibra éptica comercial, instaladas no braco
sensor de um interferdometro de Michelson, apoiado por um mecanismo de estabilizagao ativa que aciona
outra bobina 6ptica enrolada ao redor de um atuador piezoelétrico situado no brago de referéncia do in-
terferdbmetro, para mitigar ruidos mecanicos e térmicos provenientes do ambiente externo. Uma proveta
cilindrica graduada com capacidade de 1000 ml é usada como tanque de teste contendo agua, dentro do
qual sao colocadas as bobinas do braco sensor e uma fonte de ultrassom. Como meio de deteccao, ampli-
tudes e fases sao medidas e algoritmos de aprendizado de maquina preveem os respectivos volumes de
liquido. As ondas acusticas criam padrdes estaciondrios dentro do tanque, que sao detectados eletronica-
mente com resolucao de 1 ml e sensibilidade de 349 mrad/ml e 70 mvolts/ml. O comportamento ndo linear
das medicdes foi analisado com diferentes algoritmos de classificacao, métricas de distancia e algoritmos
de regressao, para se definir um modelo. Os resultados mostram que o sistema pode decidir volumes de
liquidos com acuracia de 99,4% por meio da classificagdo k-NN (k-vizinhos mais préximos) usando-se ape-
nas um vizinho e distancia de Manhattan. Além disso, a regressao de processo gaussiano apresentou raiz

de erro quadratico médio de 0,211 ml.

Palavras-chave: medicao de volume de liquidos; hidrofone 6ptico; interferometro de Michelson; acistica

de ultrassom; estabilizacdo ativa; aprendizagem de maquina.
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1 INTRODUCTION

1.1 MOTIVATION

Alexander Graham Bell published the first scientific work associating acoustic waves and light
(BELL, 1880). Since then, tenths of years have passed, technologies have improved exponentially, and
nowadays optical fibers have been worldwide used in long distances for ultra-high bit rates in telecommu-
nication systems (FORESTIERI et al., 2021), but also for sensor applications (DIAZ, Camilo A. R. et al., 2019),
including sensing acoustic waves through light modulation (COLE, James H. et al., 2011), like somehow did

Bell, in 1880.

The use of optical fibers as acoustic sensors was first demonstrated in 1977 (BUCARO; DARDY;
CAROME, 1977a). Optical fibers sensors (OFSs) have been studied and applied for industries of petroleum
exploration, fuel storage and transportation, industrial manufacturing, military, chemical processing, med-
ical, aerospace, food, and civil engineering (CAMPANELLA et al., 2018; CULSHAW, 2017; YIN; RUFFIN; YU,
2008).

The oil and gas industries require control techniques for their vessels with the aim of increasing the
production rates, avoiding environmental contaminations, mitigating the human labor risks, and reducing
the costs of plant setup investments (CAPEX), operations, and maintenance (OPEX) (LEAL-JUNIOR et al.,
2018). A problem in these industries is the need of continuous monitoring of liquid volumes inside sepa-
ration vessels working under the presence of dynamic emulsion and foam layers, accumulation of un-
wanted solids, sand in the bottom and sludge on the walls, besides turbulences caused by fluids injec-
tions, corrosive substances, and explosive atmospheres (DA SILVA MARQUES et al., 2015; HJERTAKER,
2001).

Ultrasound-based sensors employ acoustic transmitters and receivers immersed in liquids to cal-
culate the acoustic impedance between adjacent layers of fluids (HJERTAKER; JOHANSEN; JACKSON,
2001). At reception, piezoelectric hydrophones can be constructed with polymers, like polyvinyledine flu-
oride (PVDF), that enable them to provide an output voltage that varies according with the acoustic pres-
sure incident on them (RUPITSCH, 2019). Besides the PVDF types, there are ultrasound sensors made with
optical fibers (BUICK et al., 2004; CHANG; ZHU; YANG, 2015; DE PAULA; COLE; BUCARO, 1983; FAN et al.,
2019; FAN; CHEN; BAO, 2020; MA et al., 2016; MENG et al., 2021; MORRIS et al., 2006; WURSTER,;
STAUDENRAUS; EISENMENGER, 1994; YANG, Y. et al., 2021).

Compared to other sensing technologies, optical fiber sensors (OFSs) offer advantages as they are
electrically (galvanic) isolated, immune to electromagnetic interferences (EMI), intrinsically safe, resistant

to chemical corrosion, workable at elevated temperatures, wide bandwidth, capable of multiplexing, min-

14



imally invasive, they have good accuracy and resolution, reduced sizes and weights, their interrogator sys-
tems can be installed far from the remote monitored points, and they do not require any electrical power
at the measuring points (DIAZ, Camilo Arturo Rodriguez et al., 2018; LEAL-JUNIOR et al., 2018; VORATHIN
et al., 2020). The OFSs are precise in measuring pressure, temperature, acoustic fields, strain, torsion, de-
formation, curvature, force, vibration, acceleration, rotation, humidity, viscosity and chemical parameters
(DIAZ, Camilo Arturo Rodriguez et al., 2019; WILD; HINCKLEY, 2008; YANG, F. et al., 2019; YIN; RUFFIN; YU,
2008).

In 1977, it was first demonstrated by (BUCARO; DARDY; CAROME, 1977a) the possibility of a direct
acousto-optic interaction between an ultrasound field and an optical fiber coil working as an acoustic sen-
sor. The acousto-optic effect is based on the physics principle that a propagating acoustic wave modifies
the refractive index of a fluid through pressures variations and densities (BUICK et al., 2004), as a function
of time and space. An experiment using a laser beam crossing a tank of water under ultrasonic waves
ranging from 0.1 Hz to 180 kHz and a pressure Ap = 18 kPa resulted in a change of § = 0.146 um in the
optical path length, showing an magnitude order of 10~®m (BUICK et al., 2004).

The authors of (BUCARO; DARDY; CAROME, 1977a) used 4 meters of a SMF optical fiber section
length to build a coil of 10 turns and 3.3 cm diameter, and submerged it into water so that its optical beam
was phase modulated by ultrasound waves ranging from 40 to 400 kHz. The optical fiber coil sensitivity
was characterized by the light phase shifts whose intensity depended upon the acoustic pressure incident
on the optical fiber length, with which a MI has been employed (COLE, J. H.; JOHNSON; BHUTA, 1977,
MASSEY, 1968; MOSS; MILLER; FORWARD, 1971).

Fiber-optic hydrophone (FOH) is an acoustic sensor that uses optical fibers as the sensing element,
which can be applied in fields such as oil and gas exploration, earthquakes inspection and underwater
objects detection (HU; LI; LIU, 2017; MENG et al., 2021). An usual scheme applied with FOH are those based
on optical interferometry, which offer greater sensitivities than the piezoelectric hydrophones, and they
pertain to the class of phase-modulated sensors (KROHN; MACDOUGALL; MENDEZ, 2014; LEE et al., 2012;
YIN; RUFFIN; YU, 2008). An FOH system measures the light phase changes induced by a particular meas-
urand (YIN; RUFFIN; YU, 2008), in which an ultrasound piezoelectric source (UT) works as a transmitter and
an optical fiber sensor works as the receiver (HJERTAKER; JOHANSEN; JACKSON, 2001; MERIBOUT;
NAAMANY; BUSAIDI, 2009).

Interferometric schemes can be mounted by using commercial available optical components (LIANG
et al., 2016). Four interferometers configurations are usually cited by the literature: Fabry-Perot, Mach-
Zehnder, Michelson's, and Sagnac, as they provide good sensitivities, accuracies, large dynamic ranges,
and may cover long distances of monitored points (LEE et al., 2012). The latter three types are also known

as two-beam interferometers (WATCHI et al., 2018).
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1.2 PROBLEM AND JUSTIFICATION

Publications about FOHs have demonstrated their work principles, showing them as an alternative
technology to replace the piezoelectric hydrophones (STAUDENRAUS; EISENMENGER, 1993). FOHs do not
need recalibration (SHEN et al., 2011) and present higher bandwidths than the conventional piezoelectric
hydrophones (SHAO et al., 2008). Interferometric techniques can be used to improve their sensitivities
(HU; LI, 2016), resolutions, bandwidths, dynamic ranges, signal to noises ratios (KIRKENDALL; DAN-
DRIDGE, 2004). A twisted pair made with single-mode fibers has been recently published as a high-sensi-
tivity broadband ultrasound sensor able to work from 20 kHz to 94.4 MHz (FAN et al., 2020). These publi-

cations are focused on the technology aspects of the FOH.

Other papers present applications and proof of concepts with the use of FOH sensors. As examples,
the largest array of FOHs in the world is composed by 16000 sensor elements, as a commercial solution
used undersea to permanent monitor oil reservoirs in the North Sea (MENG et al., 2021). A FOH is used to
precisely detect cavitation bubbles under high ultrasound emissions (KIMURA; TAKEUCHI; KOIKE, 2020).
Two line arrays each composed by 32 elements were deployed off the San Diego's cost for object recogni-
tion underseas (DAVIS et al., 2015). A FOH was used to measure the power of hyperthermia transducers
without being damaged (CHAN et al., 1989). And, a 50 MHz wideband FOH was developed to measure med-
ical ultrasound fields (MORRIS; BEARD; HURRELL, 2005).

To the best of our knowledge, it was challenging to find out published works describing laboratory
prototypes of a FOH system to measure liquid volumes and presenting results of accuracies and RMSE
derived from machine learning algorithms. There are publications describing the behavior of underwater
optical coils, but they do not present results of using these coils to measure liquid volumes (AL-NAAMANY;
MERIBOUT; AL BUSAIDI, 2007; BEARD; HURRELL; MILLS, 2000; CHANG; ZHU; YANG, 2015; MA et al., 2016;
WANG, M. et al., 2018; WANG, W. et al., 2020; WURSTER; STAUDENRAUS; EISENMENGER, 1994; YANG, Y.
et al., 2021). Ultrasound methods to determine multilayers of oil, emulsion, and water in oil tanks are
demonstrated in (AL-NAAMANY; MERIBOUT; AL BUSAIDI, 2007; FAISAL, BUKHARI; YANG, 2006;
HJERTAKER, 2001), and show the advantages of FOH, like contactless distance measurement, low cost,
high precision, simple setup, independence of intensity of dusty and smoky environment. However, there

were not results regarding to liquid volume measurements.

1.3 OBJECTIVES

Considering a FOH system as a new generation (MENG et al., 2021) and a primary application
(KIRKENDALL; DANDRIDGE, 2004) for underwater acoustic sensor, and underwater detection (YANG, Y. et

al., 2021), the objective of this work is to present a prototype composed by optical fiber coils in the Ml's
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sensor head, with an active stabilization mechanism driving other optical coil wound around a piezoelec-
tric actuator in the MI's reference arm, and a software application that uses amplitudes and phases of

detected acoustic signals to predict the liquid volumes by means of machine learning algorithms.
The specific objectives were defined as follows:

a) To propose an optical hydrophone model based on the interferometry technique, with which the

final sensor will be experimentally evaluated and proved suitable for detection of fluids.

b) To characterize the hydrophone in terms of its characteristics and acoustic performance, band-

width in hertz, and sensitivity.

c) To evaluate and present different machine learning algorithms, both classification and regression

types, and their results of accuracy and root mean squared error, respectively.

Although the isolated functions of the purposed system have been already studied and applied in
known applications, the novelty of this proposal is the fact of bringing together those functions, like: un-
derwater acoustic waves detection; optical coils as sensing elements; an optical interferometry scheme;
an electronic circuit for homodyne detection and active stabilization of noises; other optical coil wound
around a piezoelectric actuator; the use of electric phase differences between the acoustic signals inputted
and outputted by the sensor; and the definition, testing and comparison of several data models processed
by machine learning algorithms, offering new insights and results with high accuracies and low errors for

an application of liquid volume measurement.

1.4 DISSERTATION STRUCTURE

In section 1, this dissertation presents an introduction about fiber-optic sensors, hydrophones, and
related applications. Section 2 presents a theoretical background acoustics detection and section 3 de-
scribes the material and methods employed on the experiment setup. Then, section 4 presents the results

and discussions. Finally, section 5 ends the paper with conclusions and future works suggestions.
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2 THEORETICAL BACKGROUND

The Ml has been chosen to this work due to its simple configuration, the need of fewer fiber splices
and one beam splitter (KIRKENDALL; DANDRIDGE, 2004; LEE et al., 2012). Besides, it accepts flexible ge-
ometries and has lower component costs, compared to other schemes (WANG, C. C. et al., 1994; YIN;
RUFFIN; YU, 2008). These characteristics were taken into consideration to choose the Ml as the sensor

head of this work.

21 MICHELSON'S INTERFEROMETER

A MI, whose picture is adapted from (YIN; RUFFIN; YU, 2008) (p. 371), is presented in Figure 1, in
which a 3 dB beam splitter (BS) divides the power of an input coherent laser (KROHN; MACDOUGALL; MEN-
DEZ, 2014) between two arms defined as optical paths, which are ended by mirrors that reflect the optical
beams back. The optical paths can be a free-space air, or tubes with gases, or vacuum, or optical fibers.
The two optical beams are then reflected back by the Ml arms and optically recombined at the BS after
which a photodetector converts this combined optical signal to an electronic voltage value that represents

the phase changes differences among both interferometer arms.

Considering an MI fed with the power Py, the light wavelength in the medium 2, a wave number
k = 2m/A, and a lossless beam splitter with a division rate of 0.5, the relation between the output power
Pour and theinterferometer's optical path differences AL = Lg — Lg can be expressed by (WATCHI et al.,
2018):

P, 4mAL
POUT = % [1 + COS( T[}\ )] (1)

The first Ml arm is called the 'sensor head’ or 'wet arm’, it has a length Lg and is exposed to meas-
urands, like sound, pressure, temperature, strain, and mechanical vibrations. The other arm is known as
the 'reference arm' or 'dry arm’, it has a length Li and should be isolated from environment disturbances

(YIN; RUFFIN; YU, 2008).

A desired measurand induces changes on the sensor head that dynamically changes its physical
fiber length Lg, leading to a path difference AL among the two arms, that induces phase differences A¢
between their light beams, resulting in phase changes that are electronically expressed by a photodetector

(YIN; RUFFIN; YU, 2008).
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Figure 1. A FOH based on a Michelson's interferometer.

A linear polarization of a light beam in one MI arm can be expressed by (KROHN; MACDOUGALL;
MENDEZ, 2014):

E(zt) = Eq cos [wot - (2711) z], (2)

where E isthe electrical field of the optical electromagnetic wave, E, isits maximum amplitude, w, is

the optical wave frequency in radians per seconds, z is the longitudinal space point, and t is the time.
Equation (2) shows amplitudes that might be present on the transverse X oronthe y space coor-

dinates, propagating through the longitudinal Z coordinate. Considering the fiber physical length L, the

light speed in vacuum c¢,, the vacuum wavelength 1,, the fiber refraction index n, the wave group veloc-

ity v=cy/n, whatleadsto 1/A = n/A,, the electrical field can be expressed by:

21Tn

E = E, cos [u)ot — (—) L], 3)
Ao
and the Equation (4) shows the fixed phase angle ¢, (in radians) of the light beam. The term 'nL’ is
defined as the 'optical path length' (UDD; WILLIAM B. SPILLMAN, 2011).
2mnL

0 — }\0 ) (4)
and changesin L or n lead to the phase variations expressed by:
21
(|)0+Ac|)=}\—[n.L+n.AL+An.L], (5)
0

where A¢ are the incremental phase changes due to incremental length changes AL, which induce re-
fractive index variations An due to the optical fiber photo-elastic effect. Also, frequency variations (jitter)
from the laser source may also contribute to phase drifts, and the Equation (5) can be expressed as a sum
of derivatives of the terms involved in the phase drifts (UDD; WILLIAM B. SPILLMAN, 2011):
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d dL dn dk
dp _db, dn dk (6)
[0) L n k

Current optical detection systems estimate the average power per unit area and unit time as a meas-
ure of intensity or irradiance Iyyr, which is proportional to the squared amplitude of the electrical field

(REIDER, 2016):
2
Iout = Eo (7)

The summation of both arms light waves (E; = Eg + E;) results in an irradiance perceived by the

photodetector (KROHN; MACDOUGALL; MENDEZ, 2014), that can be expressed by:

lout = 2Eo°[1 + cos (Ad)], (8)

where Ad = ¢pg — dg is the phase difference of both light waves summation.

In another view, this phase difference can also be represented by A = ¢, — d,, in which ¢, is
the bias phase standing for the external disturbances with low frequency and slow drifts with time, affect-
ing both interferometer arms (sensor and reference). The second term dd¢,, represents the pure physical
measurand variations of interest whose value represents the interferometer's sensor arm (KIRKENDALL;

DANDRIDGE, 2004).

When the interferometer is forced to keep its bias phase ¢, around the (2n + 1) * /2 radians
points, it reaches a condition called quadrature state, in which it supplies a better response to the meas-
urand dd¢,,. The nature of sinusoidal waves at the quadrature point limits the two-beam interferometers
to work under the largest optical phase displacements of half a wavelength. And, when the bias phase ¢,
is located around zero or on multiple integers of +m radians, the resulting interferometric pattern jumps
between zero and maximum peak values, representing the worst sensitivity points, as the derivatives of
intensity to phase are zero at them (GRASSANI; GALLI; BAJONI, 2014; KIRKENDALL; DANDRIDGE, 2004;
KROHN; MACDOUGALL; MENDEZ, 2014; WATCHI et al., 2018).

Although A¢ may appear to be a stable measurand, the noises presenton ¢, can be so elevated
that the measurand d¢,; may become impossible to be read (KIRKENDALL; DANDRIDGE, 2004; KROHN;
MACDOUGALL; MENDEZ, 2014). More details about the MI working as an optical hydrophone for signal
intensity (irradiance) and phase (homodyne or heterodyne) measurands detection can be obtained from
other studies: (CHANG; ZHU; YANG, 2015, ELEZOV et al., 2018; GRASSANI; GALLI; BAJONI, 2014;
KIRKENDALL; DANDRIDGE, 2004; KROHN; MACDOUGALL; MENDEZ, 2014; LEE et al., 2012; MENG et al.,
2021; UDD; WILLIAM B. SPILLMAN, 2011; WILD; HINCKLEY, 2008; XIE; CHEN; REN, 2009; YANG, Y. et al.,
2021; YIN; RUFFIN; YU, 2008).
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2.2 MICHELSON'S INTERFEROMETER FOR ACOUSTIC WAVES DETECTION

Taking into consideration the equations and terms already presented, a Ml whose sensor arm is
composed by a single-mode optical fiber coil immersed in a liquid, within which propagates an acoustic
field of pressure P, and angular frequency w,, the interferometer's resulting light beam is expressed by

(BUCARO; DARDY; CAROME, 1977a):
E = Eg expi(wot) + Eg expi(wot + K, sin(w,t) + Ad), 9)

where K, isthe modulation index that defines the acoustic influence on the phase drifts, and A¢ is the
dynamic optical phase differences between both MI arms. For a uniform acoustic field, K, is expressed
below, and L. is the physical length of the optical fiber coil interacting with the acoustic wave (BUCARO;
DARDY; CAROME, 1977a):

2T On

a= Ea—Pa PanLC (10)

Bucaro et al (BUCARO; DARDY; CAROME, 1977a) also defines S; as constant that defines the de-
tector's sensitivity, which depends on the photodetector's gain G, quantum efficiency g, electron charge
e = 1.602 = 1079 [c], on the Planck's constant h = 6.626 = 1073* [m? kg/s], and on other terms already
presented, as expressed by:

_ 2mnGqe
47 Theok

(11)

Finally, itis shown by (BUCARO; DARDY; CAROME, 1977b, a) that small values of modulation index K, will

result in the following irradiance equation perceived by the Ml hydrophone:

K
lour = 4E¢%Sq |1 + cos(Ad) — fsin(Aq)) sin(w,t) 12)

2.3 ACTIVE STABILIZATION FOR HOMODYNE DETECTION

The phase instabilities inherent to optical interferometers represent a challenge that requires coun-
ter measures to mitigate the problem (WATCHI et al., 2018). In an ideal scenario, the MI works properly
when its arms are equal in length (balanced condition), and the reference arm is isolated from external
noises (CHANG; ZHU; YANG, 2015; ELEZOV et al., 2018; GRASSANI; GALLI; BAJONI, 2014; XIE; CHEN; REN,
2009). So, these noises on the Ml measurements are needed to be controlled by adjustment mechanisms
[6-8], like Pockels cell (PRESTON et al., 1999), rubbers and springs for anti-vibrations (MOSS; MILLER;
FORWARD, 1971), optical tables, hermetic boxes and thermal bath (ELEZQV et al., 2018), piezoelectric ac-
tuators (CHANG; ZHU; YANG, 2015; XIE; CHEN; REN, 2009), sensing information encoded in a carrier signal,
phase generated carrier, and active homodyne demodulation (KIRKENDALL; DANDRIDGE, 2004). Despite
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the fact the solutions aim to achieve the Ml's stabilization, not always they are continuously stable in time,
and, as reported by (MOSS; MILLER; FORWARD, 1971), sometimes actions of noise isolation 'are still an art

rather than a science'.
2.4 CONCEPTS OF MACHINE LEARNING

This section introduces basic concepts about machine learning and the respective algorithms used
in this work, without getting too deep in the theories of this wide thematic area. There is a plenty of books
and papers related to this knowledge which can be consulted by the reader for more details. The following
sections present some of these references used in this work, according to the context and defined appli-

cations.

From the seventieth decade and until now, the complexity of problems and volumes of data in-
creased in several knowledge areas, challenging the computing systems and their software to process and
create results with speed and reliability. In this context, techniques based on artificial intelligence started
to be applied by specialist and knowledge-based systems, to solve real world problems. The aim of turning
these systems more autonomous, independent of human interventions, and able to induce new hypothe-
ses and create new learning from past experiences, it all defines the concept of machine learning (KATTI
FACELI, ANA CAROLINA LORENA, JOAO GAMA, 2011), to which an intelligent behavior essentially depends
on learning abilities and algorithms that improve with experience (MITCHELL, 1997).

2.41 Machine Learning Applications

Nowadays, machine learning has been widely used in several knowledge and scientific areas, like
proving physics and mathematical theorems, universe events detection in astronomy, natural language
processing, genetic sequencing analyses in biology, robotics and optics in electronic engineering, driving
a car autonomously, playing chess like a Kasparov, diagnosing diseases, risks and futures predictions in
finances, human behaviors detection, computer security, software engineering, computer vision and im-
aging processing, among others (CEJA, 2022; RUSSEL; NOVIG, 2022). This dissertation uses machine learn-

ing to prove the results of the math and physics model inherent to an optical sensor system.

Machine learning methods rely on three building blocks: data, algorithms, and models; in that every
machine learning algorithm needs data to learn a model. The learning processes is known as the training
phase using a training dataset, so a learned model can be used further to predict results from an aleatory,
unknown, and new upcoming data of real-world applications, called production dataset, to be evaluated
and categorized. Since the performance of the trained model needs to be evaluated before putting the
algorithms into production, a test phase is performed with a test dataset, which is a set of data that have

never been used for training purposes before. Finally, when the test dataset proves the trained model has
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reached a minimum accuracy and performance, so the algorithm is ready to be used with production da-

taset to predict results from real-word applications (CEJA, 2022).

2.4.2 Objects and Features

In terms of data structure, a dataset is composed by rows and columns of data, like a two dimen-
sions matrix. In a simple view, a three dimensions data structure can also be represented as a two dimen-
sions matrix or data table, in which a new column of data is added do the table to represent the values of
third dimension. Indeed, a two-dimensional table represents a data structure of N dimensions, in which
each columnis a dimension or feature, and each row is an object. In literature, one object row of this table
can be also referred as a data point, an instance, a tuple, a sample, or an observation. A feature column
can also be referred as a variable, an attribute, a dimension, or a property. Each feature can be seen as an
orthogonal axe (dimension) among all other features, defining a space, and each object is a point in this

space.

2.43 Classification and Regression

Usually, one of the features represents a category or a numeric result that can be represented by all
other features of the table. When this feature is a discrete or nominal category, like a specific color name,
a fruit type, a disease name, or an animal species name, the categorization type of algorithms are used.
However, when this feature is a continuous numerical value, like the numerical result of the independent
variables of a polynomial equation of N-order composed by N dependent variables, or the liquid tempera-
ture inside an oil production vessel, or the future price of a stock exchange, the regression type algorithms

are used (CEJA, 2022; KATTI FACELI, ANA CAROLINA LORENA, JOAO GAMA, 2011; RUSSEL; NOVIG, 2022).

2.4.4 Supervised and Unsupervised Learning

Machine learning methods can be positioned among two extremes: supervised learning and unsu-
pervised learning. There are intermediate types among them that mix both supervised and unsupervised
characteristics. In supervised learning, both training and test datasets have predefined and known labels
or values registered in a specific feature of the table. In this case, the certainties of these labels or values
are 100% guaranteed, and all other features are just columns of data used to predict these labels (by cate-
gorization) or values (by regression). A production dataset does not have this predefined specific feature,
but a machine learning model is trained and used just to predict values for this feature, as a labeled cate-
gory or a regressed value. On the other hand, the unsupervised learning is an extreme case in which none
of the training or test datasets have a predefined label or known value to represent an object, and the

algorithm tries to automatically group different objects into meaningful clusters. Examples of clustering
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methods are k-means, k-medoids, and hierarchical clustering. Besides clustering methods, there are other

unsupervised ones, like association rules, word embeddings, and autoencoders (RUSSEL; NOVIG, 2022).

Examples of classification algorithms are Rocchio (Nearest Centroid), k-Nearest Neighbors (k-NN),
decision trees, and Random Forest. And examples of regression models are gaussian process regression,
linear regression, regression trees, and neural networks. There are cases in which the same algorithm can

be used for both classification and regression purposes (CEJA, 2022).

After data are collected in raw state, they need to be explored, cleaned, and pre-processed, before
submitted to a training and test phases of a machine learning algorithm. These steps involve actions of
summarizing data; removing noises, outliers, and missing values; treating class imbalances; and normali-
zation or standardization of features, scales, and ranges. When huge scales differences exist between two
features of the same dataset, like a feature values ranging from 0.1 to 10, and other from 500 to 1000, it
may severely affect the results of distance-based algorithms, like Rocchio and k-NN, and a normalization
or standardization operation is needed to be applied on the data, before using it for training, test or pre-

diction purposes (RUSSEL; NOVIG, 2022).

2.45 Standardizing or Normalizing Data

The normalizing operation scales a feature to a new range of values between 0 and 1, by using its
maximum and minimum observed values. A feature can also be scaled to a range of fixed values, when
there is previous and certain knowledge about the numerical nature of the feature. Supposing a vector of
values x, ranging from min(x) to max(x), a specificvalue x; canbe normalized to a new value %;, that
is, scaled to a new value between 0 and 1, through the following operation. In this case, min(x) and
max(x) can also be replaced by predefined known and fixe values, that can be assumed by an object,

although they are not present in the dataset (CEJA, 2022).

X; — min(x)

A

i

(13)

"~ max(x) — min(x)

The standardizing operation in equation below scales the values of a feature so that they assume a
new distribution with zero mean and variance one (Z-score), in which u isthe meanand o isthe stand-

ard deviation of all collected values for the feature x, registered in a dataset (CEJA, 2022):

(14)

The choice between normalization or standardization will depend on the nature of the variables and
on the preliminary analyses performed on the raw collected data, and the constraints and benefits of each

method can be searched on the literature.
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2.4.6 Distance Metrics used with Clustering

The hypothesis behind distance-based classifiers is that similar objects tend to stay closed to each
other in the same region of a multidimensional space, grouped within a cluster. In the same meaning, non-
similar objects would stay far from each other in this space. A cluster is an aggregation of objects in which
the distance between any two objects of the same cluster is less than the distance between any two objects
pertaining to different clusters, as seen in Figure 2. The main input to clustering algorithms, like Rocchio
and k-NN used in this work, is the distance between all objects from each other (KATTI FACELI, ANA CARO-
LINA LORENA, JOAO GAMA, 2011; MANNING; RAGHAVAN; SCHUTZE, 2008; XU et al., 2009).
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Figure 2. Examples of objects distributed in clusters on a two-dimensional space, in which four major clusters are seen
on a coarse level, and nine minor clusters can be seen in a finer distribution (XU et al., 2009).

Clustering algorithms distribute data objects into different clusters according to the algorithm's
technique itself and also according to the specific distance metrics used by the algorithm. The same algo-
rithm can use different distance metrics and the same distance metric can be used by different algorithms.
In this sense, this work has analyzed the results of two algorithms (Rocchio and k-NN) in which each one

has been tested with the five different distance metrics described in Table 1 (XU et al., 2009).

Despite the fact that all distance metrics can calculate distances for objects with any number of
features, as a matter of simplification, the formulae presented in the table below consider the distance
D(A,B) between two objects named A and B, of only two features each, named x and y. So, the val-

ues A,, Ay, B, and By are distinct numerical values for the features of both objects.
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Table 1. Equations of distance metrics among two objects in a two-dimensional space.

Distance Metrics Names Distance Equation

Euclidean Dgyc(A,B) = \/(AX - B+ (Ay — By)?
Manhattan Dman(A, B) = |A; — By + A, — By|
Mahalanobis Dyan(A,B) = (A—B)T+S™1 % (A —B)

(Ag *By) + (Ay * By)

JAXZ +A,% \/BXZ +B,?

Cosine Similarity Dsco(A, B) = cos(A,B) =

Cosine Distance Dpco(A,B) =1 — Dgco(A, B)

From the Table 1 above, the Euclidean is the most commonly used distance measured and it creates
hyperspherical clusters invariant to translations or rotations in the dimensional space. The Manhattan
distance is known as the 'city-block' distance and it requires the less computational efforts compared to
the other distance metrics, as it performs only addition and subtraction operations, while other distances
use potentiation, square-root and matricial operations. The Mahalanobis tends to form hyperellipsoidal
clusters, and the calculus of its distances involves matrix operations in which (4 — B)T is the transpose
operation of a vector containing the difference values of each feature, and S~ istheinverse of the within-
class covariance matrix. The Cosine Similarity is the normalized inner product of a pair of data objects as
if they were vectors in space, in which the more similar the two objects, the more parallel their vectors are,
and, therefore, the greater the cosine value of the angle among them. The Cosine Distance is the comple-

ment to one of the Cosine Similarity (XU et al., 2009).

Each clustering algorithm can always produce clusters for a given dataset, whether or not there
really exists particular structures in the data. Besides, different algorithms, and even the selection of dis-
tinctive features for the same algorithm, can result in different clusters formations for the same data.
Therefore, the effective evaluation of standards and criteria are critically important to provide confidence
for the clustering results, in that the assessments should have no preferences to any algorithm, and should
be able to provide meaningful insights in answering questions like how many clusters are hidden in the
data, whether the clusters are meaningful from a practical point of view, or why we choose one algorithm

instead of another (XU et al., 2009).
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2.47 Rocchio and k-NN algorithms

The Rocchio method is a way to classify a new object by calculating its distance to the center to all
different clusters present in the trained dataset, and label it with the closest cluster. The center of a cluster
represents the mean values of all features, of all objects, which compound the trained dataset, so that a
trained model is composed by n centroids (prototypes), where n is the number of different classes. This
classifier calculates the centroid of each labeled class and has no parameters to optimize. The boundary
between two classes in Rocchio classification is the set of points with equal distances from two or more
centroids. The complexity of this technique is independent of the number of training samples, being only
a function of the number of classes and number of attributes of the classification problem (CEJA, 2022;

MANNING; RAGHAVAN; SCHUTZE, 2008).

The k-NN (k-Nearest Neighbor) algorithm is a simple yet robust categorization approach, that works
surprisingly well on many problems, calculating the distances between one testing object to all labeled
objects present in a trained dataset, from which it chooses the most frequent class among the k-nearest
objects, and labels the tested object with that class (ALBALATE; MINKER, 2011; JAMES et al., 2021). The k-
NN does not perform any centroid calculation like does the Rocchio's. It memorizes all objects of the
trained dataset and then compares all of them with the new object being classified. For this reason, k-NN
is also known as a lazy learning or memory-based learning algorithm. Although it is usually desirable to
have as much training data as possible in the model, large training sets may cause severe efficiency prob-

lems in k-NN classification. (MANNING; RAGHAVAN; SCHUTZE, 2008).

A special case of k-NN is the 1-NN (only one nearest neighbor) version that defines the Voronoi tes-
sellation in that each trained object defines a Voronoi cell. A two-dimensional Voronoi tessellation divides
a plane into d convex polygons, in which d is the number of objects in the trained database. More dimen-
sions divide a space in hyper-polygons. As a demonstrating example, Figure 3 shows a two-dimension
plane with many objects classified and clustered in three classes: ‘X', ‘circle’, and 'diamond'. The new and
still unclassified object 'black star' will be classified as a 'circle’ when 1-NN is used, as it falls into the
Voronoi cell of a 'circle’ object. However, if 3-NN were used in this example, the new object would be clas-
sified as an 'x', as the most frequent class among the three nearest neighbors is the 'x', even though a
‘circle' object is still the closest one. And, finally, it would be classified as a 'circle’ by the 7-NN classifica-
tion. These examples show the importance of choosing the right value for 'k’ to which it is recommended
to always use small and odd values (KATTI FACELI, ANA CAROLINA LORENA, JOAO GAMA, 2011; MANNING;
RAGHAVAN; SCHUTZE, 2008).
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Figure 3. Voronoi tessellation and three classes where single lines are decision boundaries for 1-NN classification, and
double lines are boundaries for the three trained object classes (MANNING; RAGHAVAN; SCHUTZE, 2008).

2.4.8 Gaussian Process Regression

The Gaussian Processes models are popular in machine learning applications due to their high flex-
ibility. The Gaussian Process Regression (GPR) technique assumes that the dependent variable of a linear
regression assumes a gaussian distribution, so that, instead choosing a specific parametric distribution to
form the regression function, it is chosen the mean vector and the covariance matrix derived from the data

model attributes, to predict a fitting model (ROGERS; GIROLAMI, 2017).

A desired and continuous fitting function f(x) based on a training dataset is obtained so to make
predictions of new and unseen values for and inputted value of x. The central assumption made by GPR
is that a collection of continuous outputs for f(x) are sampledtoavector f,, and associated to a sampled
input vector x,, inwhich f, and x, are assumed to be jointly Gaussian distributed. Although there are
infinite values for x what would imply to an infinite-dimensional vector f,,, a key property of a multivar-
iate gaussian density is that any subset of the f,, elements also are multivariate gaussian with mean val-
ues and covariance matrix simply extracted from the training dataset. Therefore, it is not necessary to know
all possible values of x, but only the ones present in the training and test datasets, considering a popular
choice forthe mean functionas p(x,) = 0, and an RBF (radial basis function) stationary covariance matrix,

which performs very well in a wide range of applications (ROGERS; GIROLAMI, 2017).
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3 MATERIALS AND METHODS

This FOH system is based on physics principles of acoustic waves reflecting in liquids in that the

acoustic path is changed by changes on the volume of water (AL-NAAMANY; MERIBOUT; AL BUSAIDI, 2007).

3.1 EXPERIMENTAL SETUP

The experiment setup in Figure 4 shows a FOH system for liquid volume measurement, based on
the MI, with an electronic feedback (EF) loop circuit to compensate external noises from the sensor's meas-
urands. The system outputs a sinusoidal signal from which two values are extracted: amplitude and phase.
The phase is the difference between the acoustic field delivered to the UT, and the acoustic field detected
by two optical coils S1 and S2, placed at the sensor head. For each differential volume of water added to
or extracted from the tank, the length of the water (acoustic path) changes and the internal water surface
dislocates. Thus, a new profile of internal sound backscattering inside the tank creates an interferometric
and stationary pattern, in that the internal water interface works as a mirror to the acoustic waves. Then,
the optical coils capture the ultrasound intensities present in their fixed positions, modulating light beams
through their photo-elastic (acousto-optic) effects, creating an output signal from which the values of am-

plitudes and phases are extracted.
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Figure 4. Fiber-optic hydrophone (FOH) system setup. TNL Laser at 1550 nm; IS - optical isolator; C1 and C2 - optical
circulators; BS -beam splitter; PC1 and PC2 - polarization controllers; PD1, PD2 and PD3 - photodetectors; M1 and M2
- Faraday's mirrors; PZT - piezoelectric actuator wound by an optical fiber coil; S1 and S2 - optical fiber coil sensors;
UT - ultrasound transducer; EF - electronic feedback loop circuit; OP - oscilloscope; SG - signal generator; A - 3 dB
amplifier; Application is a software developed in Matlab; Liquid-volumes measurement tank.
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Figure 5 shows the laboratory arrangement including all hardware components used by the experi-

mental setup of the FOH system.
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Figure 5. Laboratory arrangement of hardware of the setup components.

It is not trivial to mathematically equate the components of this setup to reach an expression that
would infer the water's liquid volumes by using the system's output. This setup involves optical and acous-
tic phenomena taking place simultaneously, by an unbalanced MI composed by two optical coils in the
same sensor arm, with noises stabilized by an EF circuit driving a piezoelectric actuator in the reference

arm. The coils are not multiplexed.

3.2 HARDWARE COMPONENTS

The setup worked for seven days in an air-conditioned room and water's temperatures varying from
22°Cto 24 °C.The test tankis a graduated measuring cylinder glass of 1000 ml, with 10 ml grading divisions,
filled with water one milliliter at a time, with a syringe graduated at 1 ml, from 440 ml to 1000 ml (561
liquid-volume points). The measurements started at 440 ml due to setup arrangements and positioning of
the UT inside and in the bottom of the tank. The irradiating face of the UT was positioned at the 300 ml
volume due to its mechanical size. And the distance of 140 ml between the UT's face and first coil S1 was

due the near field of Fresnel's zone.

A coherent laser light source TN Laser (Teraxion Narrow Linewidth Laser) is tunned at 1550 nm, and
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its wavelength drift is negligible as it implements internal hardware for electronic current and temperature
stabilization. The TNL laser injects 12.5 dBm of light power in the system. The isolator IS (Thorlabs) protects
the laser source port against undesired returning power. After passing through circulator Cl1, polarization
controller PC1 and the 3 dB beam splitter BS, the light power is equally injected in both Ml arms, what are
ended by the Faraday-rotator mirrors M1 and M2. The MI's reference arm is composed by an optical coil of
11 meters (XIE; CHEN; REN, 2009) made with SMF fiber (Corning SMF-125/9, only with acrylate protection)
wound around a piezoelectric actuator PZT (Thorlabs APF705), responsible for the stabilization mecha-
nism, as seen in Figure 6 (a). As the PZT component was brand new and taken from the box to be used for

the first time, it was not characterized of calibrated.

The sensor arm's coils S1 and S2 are shown in Figure 6 (b) and (c), they are both identical and made
by the same fiber type, with an outer diameter of 2.4 ¢cm, and 25 fiber turns, resulting in 188.5 cm of total
fiber length per coil. The number of turns and diameter of the optical coil are defined by the total length of
fiber section L. intended to be exposed to the acoustic fields, as expressed in Equation (10). In total,
considering all fibers used, components connections, installation arrangements and coils, each Ml arm
achieved a length around 15 meters. Single mode fibers were used because the behavior and analysis of

multimode interferometers are difficult to control (ELEZOV et al., 2018).

Figure 6. (a) Fiber coil wound around the piezoelectric actuator responsible for the stabilization mechanism; (b) Water
tank showing the UT source at the bottom, and the optical fiber coil sensors S1and S2 above; (c) Top view of the optical
coil sensor S2 seen from the top of the water tank.

All optical components, as the isolator, circulators, beam splitter, faraday mirrors and PZT with its
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optical coil were installed inside boxes (non-hermetic) with the goal of mitigating external influences such
as temperature variations, random pressure fluctuations, sounds, air flows, or mechanical stress on fibers
and connectors. The optical components and photodetectors were mounted over an optical bread board
with rubber foot to mitigate mechanical vibrations, and vibrations on the table where the components are
settled. These disturbances are controlled as they can decrease the measurand accuracy (CHANG; ZHU;

YANG, 2015; ELEZOV et al., 2018; XIE; CHEN; REN, 2009).

Although the use of polarization controllers in this system is not a mandatory requisite, the PC1 was
placed at the Ml input to improve contrast (ELEZOV et al., 2018), and, following the same idea, the PC2 was
installed at the Ml output which delivers the sensor's measurand signal to the photodetector PD3. The two
circulators C1 and C2 provide the required optical paths (XIE; CHEN; REN, 2009) to photodetectors PD1,
PD2, and PD3 (Thorlabs PDA30B-EC). This optical arrangement with both circulators guarantees that the
inputted optical signals to PD1 and PD2 are 180° out of phase.

While both photodetectors PD1 and PD2 are only working for the stabilization mechanism, PD3 is
uniquely responsible to supply the sensor system's outputted signal. The EF circuit is fed by PD1 and PD2,
and its output drives the PZT, which stretches the optical coil of the Ml's reference arm, keeping the inter-
ferometer as much as working around the quadrature state, and providing a final sensing signal with less
interferences through PD3. The quadrature state stability can be experimentally expressed by the standard
deviations of the main sensor measurands, for a fixed liquid volume, while the system is working under

empirical external noises. These values are presented in the results section of this dissertation.

On the electronic side, the Signal Generator SG (BK Precision 4053) is set to provide a 100 kHz con-
tinuous sinusoidal wave (CW) on its both output channels, CH1 and CH2, with the same phases, but differ-
ent peak-to-peak voltages of 10 Vpp and 1.8 Vpp, respectively. During the preliminary tests, a range of UT
frequencies were evaluated from 50 kHz to 1 MHz, and an adequate response range of voltage and phase
variations occurred at 100 kHz. The lower UT (Precision Acoustics Unfocussed 1 MHz, 23 mm diameter and
75 mm focal distance) frequency was used to allow higher sound wavelengths in the water, supplying a

better response to the volume variations of 1 ml.

The SG-CH1 signal is amplified by the Juntek DPA-2698 (BW 10 MHz and 3 dB gain) amplifier (A),
which outputs a 20 Vpp sinusoidal CW signal of 5 W to the UT. The second port of signal generator SG-CH2
was connected to the CH1 input of the Oscilloscope OP (Tektronix Open Choice MDO 3012), to work as a
reference for the FOH system phase recovery. The UT is positioned in such a way that the ultrasound waves
are irradiated upwards through the liquid and their wavefronts are parallel to the plane of the optical coils

S1and S2. The FOH output is injected to the second oscilloscope port (OP-CH2).

Both OP ports (CH1 and CH2) were configured to supply AC coupling and BW of 20 MHz, making them

more adequate to the involved frequencies, and to cut DC power. The OP's Fourier Transform function
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allows seeing one channel in both time and frequency domains, simultaneously, and the signal amplitude

of 1.8 Vpp from SG-CH2 was chosen to help adjustments during the setup construction.

Last, the Matlab Application (MA) (THE MATH WORKS INC., 2021) reads the signals from both oscil-
loscope ports and extracts two measurands: amplitude in volts and phase in degrees. This phase value is
calculated by MA and stands for the difference between the original signal injected to the UT (interferom-
eter input) and the resulting signal delivered by PD3 (main MI output). This output is then digitalized by
the oscilloscope at a sample rate of 100 MS/s, the samples are read in vectors of ten thousand points of
double type variables, which are passed through a software band-pass filter, and then to a Fourier Trans-

formation, from which the values of amplitude and phase are registered in a database.
3.3 FRESNEL'S ACOUSTIC NEAR FIELD

A Fresnel's near field was kept free between the UT surface and the first coil S1. The acoustic's near
field is a Fresnel's space that should not be obstructed by any object so that the acoustic field (RUPITSCH,
1992) emitted by the UT is not destroyed or severely attenuated, what would compromise the acoustic
detections by the optical coils in the MI's sensor head. The calculation of this field considers the UT's
diameter (D = 23 mm), the ultrasound frequency (f = 100 kHz), and the wave speed in water (LUBBERS;
GRAAFF, 1998). As the lower temperature, the larger near field, the worst case of T = 22 °C was used to
calculate the water's sound speed s,,, (LUBBERS; GRAAFF, 1998) and the near field distance F,; (RU-
PITSCH, 1992), as follows:

Swa = 1404.3 + 4.7 x T — 0.04 = T? = 1488.34 [m/s] (15)

The near field for a cylindrical UT is expressed by:

(D)Z (23 * 10-3)2
5 S 1488.34
Fag =2 = 2 & Awa == =703+ Foe = 8.9 [mm] e

Awa Awa f 100 * 103

For the test tank of this experiment and A,,, = 14.9 [mm], the distance F,; = 8.9 [mm] is equiva-
lent to the volume range F, ¢ = 26.3 [ml]. Considering that the UT surface is placed at the volume of 300
ml, the nearfield for f= 100 kHz and T =22°Cis found in the range from 300 mlto 326.3 mland, therefore

no objects, not even an optical coil sensor, should be put in this region.

As higher ultrasound frequencies were also used during the preliminary tests, the free water volume
of 140 ml purposely left between the UT surface and the first S1 coil allows the use of a maximum frequency

of 520 kHz, without obstructing the near field.
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3.4 ELECTRONIC FEEDBACK LOOP CIRCUIT

In this work, an active and self-compensate mechanism for the Ml was adopted to control the envi-
ronment disturbances and offer a better stability to the measurand data produced perceived by the sensor
head. It was based in the work developed by (XIE; CHEN; REN, 2009) and (CHANG; ZHU; YANG, 2015), that
implemented the electronic feedback (EF) loop circuit scheme shown in Figure 7, whose hardware proto-

type is shown in Figure 8.
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Figure 7. Schematic of electronic feedback (EF) loop circuit for Michelson's stabilization.

Figure 8. Prototype of the electronic feedback (EF) loop circuit for Michelson's stabilization.

Although the EF loop was mounted on a noise-prone breadboard, it was not a problem for the FOH
prototype as that circuit is projected to work under low frequencies, around 25 Hz in maximum. The EF is
composed by four operational amplifiers chips (U1 to U4), a dual comparator chip U5, a dual flip-flop chip
U6 (CD4013BC), one four-electronic keys chip U7 (CD4016BCN), and other discrete components like resis-
tors (18 units), capacitors (2 units), and diodes (3 units). This EF circuit has two inputs whose signals are
received from the photodetectors PD1 and PD2, and one signal output, which drives the PZT. The output
values of PD1 and PD2 are matched through knobs of dB gains adjustments of the photodetector's hard-
ware (Thorlabs PDA30B-EC).

Some minor changes have been made to the original author's electronics and optical schemes pub-

lished by (XIE; CHEN; REN, 2009) to simplify the setup, but without affecting any original functionality of
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the circuit. Both input low pass filters were not electronically implemented as they were provided by the
oscilloscope input ports and by a software high-pass filter implemented in Matlab. Furthermore, the DC
power suppliers were simplified to use the values of +10 and -10 volts, cutting the need of +5/-5 and
+15/-15 VDC inputs. Finally, the four U7 electronic switches were connected in parallel to decrease their

internal resistance and allow a properly PZT operation.

The active stabilization's EF loop acts as an homodyne demodulator that nullifies as much as pos-
sible the output of the differential amplifier U3, locking the Ml operation around the vicinities of the quad-
rature point (KIRKENDALL; DANDRIDGE, 2004). The interferometric signals outputted by PD1and PD2 (elec-

tronic currents) are 180° out of phase and inputted to the EF circuit for differential detection.
Ippy = Io[1 + Kqcos (s + dq)], (17)
Ippz = Ip[1 + Kqcos (¢ps + g + M), (18)

where I, relates to the system input power, K, is related to the interferometric fringe visibility, ¢ is

the static differential phase, and ¢4 is the disturbances differential phase.

After PD1 output is inverted by Ul, and, together with PD2 output, both signals are differentially
combined by the converter U2, the following signal is seen on the U2 output, where K, if the conversion

gain of U2:
U2pyt = K3 * cos (¢s + dg) (19)

After U2qyr is integrated by U3, the new output signal is presented below, where K; is the conversion

gain of U3:
U3oyr = Kj * sin (¢s + g — 1/2) (20)

As the perfect quadrature point is defined by ¢, + ¢4 = /2, and the interferometer is forced to be kept

around the quadrature state, then U3,y will tend to zero, knowing that the differential phase will be:

Ap = ds+ g —1/2 ~ Ap=0 (21)

However, this absolute zero is not supported, and in the vicinities of the quadrature point, the differential
phase A¢ drifts assume small values, allowing the approximation below, considering that sin (A¢) =

Ad, for small values of the angle Ag:
U3pyt = K3 *sin (Ad) ~ U3gyr = K3 *Ad, (22)

This simplification represents a practical assumption when a sine or cosine math function falls in-
side a cosine or sine formula, like the term 'exp i(w,t + K, sin(w,t) + ¢,)' in Equation (9). This assumption
is considered valid for Ap « 1 and a value of A¢p < 0.1 radians is described as acceptable by (UDD;

WILLIAM B. SPILLMAN, 2011). In fact, it avoids the need of considering many terms of the Bessel's functions
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of the first kind, as the first two terms of their coefficients' family, J,(A¢) and ], (Ad), represent 98% of
the homodyne power spectrum energy (UDD; WILLIAM B. SPILLMAN, 2011).

Therefore, U3,yr is quasi-linear at the quadrature state (CHANG; ZHU; YANG, 2015). It is used as
the correction signal that drives the PZT making displacements and strain changes in the optical fiber coil

wound around it, keeping the interferometer working close to the quadrature state.

The EF circuit also tracks the external noise through an equivalent voltage in capacitor C1. The cir-
cuits U5.1 and U5.2 compare C1 with the reference voltage defined by the potentiometer POT (R18) and,
when they get equal, the EF switches the C1 voltage to zero, by an up pulse to flip-flop U6, that keeps the
four U7 switches closed and discharging by the time of t = R19 * C2 = 0.47 [ms]. The reference value of
+5 volts is selected with R18 (potentiometer), so that the limits of +5/-5 volts of accumulated phase drifts
errors are enough to protect the PZT and other electronic components, respecting their technical
datasheets (CHANG; ZHU; YANG, 2015). In general, the EF circuit can be regarded as a high-pass filter with
a cut off angular frequency fzr in Hertz, as expressed by (XIE; CHEN; REN, 2009):

K,K
for = 7 Re G @)

The voltage-phase coefficient K, [rad/V] for PZT actuator and its optical fiber coil, and the phase-
voltage coefficient Ky [V/rad] for photodetectors have been experimentally measured by driving the PZT
with a low frequency triangular wave (XIE; CHEN; REN, 2009), allowing the calculation of fzz [Hz], and are

presented further in the results section.

3.5 SENSITIVITY, RESOLUTION, BANDWIDTH AND OTHER TECHNICAL CHARACTERISTICS

The purposed setup is composed by different elements, both in optical and electric domains, each
with specific technical parameters of power, frequency, bandwidth, sensitivity, resolution, internal noise
sources, and others (KIRKENDALL; DANDRIDGE, 2004). The purposed FOH system's sensitivities, resolu-
tions and bandwidth are dependent on the setup's arrangement and on its components' intrinsic charac-
teristics, whose values are examinated in the results section, following collected data series and their de-

rivatives of phases and amplitudes.

Although it has not been the scope of this work to measure isolate parameters of the optical coils
built for the MI's sensor head, other studies have already demonstrated a sensitivity of -116 dB rerad/pPa
in the bandwidth of 10 Hz to 2 kHz, phase noise of -102 dB re rad/+v/Hz, and pressure noise of 14 dB re
pPa/vHz (MENG et al., 2021). Other study shows a sensitivity of -170 dB rerad/pPa, noise floor of 50 dB
re pPa/v/Hz below 1 kHz (KIRKENDALL; DANDRIDGE, 2004).

These parameters vary with the type and length of fibers exposed to the acoustic waves, coil sizes
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and their layout, number of fiber layers, acoustic wave frequency and direction, mechanical and elastoop-
tic properties of fibers, and other parameters (BUCARO; HICKMAN, 1979; JARZYNSKI; HUGHES, 1980;
MONSAY; GILBERT, 1981; WANG, C. C. et al., 1994).

3.6 DATA COLLECTION AND DATABASE STRUCTURE

The MA developed to this experiment is online connected to all setup equipment and took twenty
measurements of amplitude and phase per each milliliter of liquid-volume, counting a total of 11220 read-
ings (561 milliliter steps x 20 readings per milliliter) that were stored in a database. The system spends 3
(three) seconds to collect and process one reading, therefore, the twenty samples of a milliliter require a
minute to be processed. Values of amplitudes (volts) were rounded to 2 digits, and phases (degrees) were
rounded to zero digits, to the right of the decimal point, so to allow the system to calculate the modes

(most frequent values) of both measurands.

Each reading was registered as a tuple of data object (lines) having 64 columns of data (features).
Among these features, the tuple has the point values of amplitude and phase, besides their modes, means,
standard deviations, and outlier indicators. A tuple also carries features for both intermediate and final
values of modes and means. Twenty measures compose a group, and the intermediate values are calcu-
lated based on the measurements taken until the moment of a point collection. For example, the 12th meas-
urement of a group registers intermediate values of means and modes for the twelve measures taken until
that moment. The last measure of a group is calculated after removing the interquartile outliers. In this
work, these outliers are those values greater than 1.5 times the interquartile size, above the upper quartile
(75%) and below the lower quartile (25%), for a measurement group. The interquartile method is applicable
for both data normally distributed or not. The database also registers a boolean feature to show outliers
that were less than 10% or above 90% percentile ranges. This 10%-90% range has been empirically chosen
just to be different from the interquartile strategy, and, at the same time, to not be so aggressive with
outliers exclusions, as it keeps 80% of the data collected for a milliliter volume point. These two strategies

are referred in the text as 'interquartile’ and 'percentile’ outliers, respectively.

As the temperature changes the acoustic properties of the liquids, each object tuple also has a fea-
ture that registers the water's temperature, whose value is provided by an electronic sensor installed in-
side the test tank and connected to the MA. This feature was used by the machine learning algorithms with
the merely action of adding it, or not, among the features selected to compose a data model to be as-
sessed. Also, no phase or amplitude values from repetitive cycles of increasing and decreasing volumes

were registered in the database, despite the fact this repeatability was seen during the setup tests.

The entire process of collecting data took thirty-three hours distributed among six days, from which

six Excel files were exported each day by Matlab in '.xlsb' extension, with sizes ranging from 313 to 998
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kbytes. After grouping all Excel files and providing some initial data treatment, the final database of the
FOH system was exported as a Matlab file in .mat' extension, with 25 Mbytes of size. This file contains a

table of 11220 data tuples with 64 features each.

3.7 PHASE AND AMPLITUDE DATA SERIES ANALYSES

This work presents data series analyses of amplitudes and phases, including their derivatives in
relation to liquid-volumes. Standard deviations and small linear intervals of these series have been eval-
uated. All graphs show results before and after S2 coil is submerged. The data series include the mode
values of each measurand. First, the phase and amplitude are individually analyzed, and further both are
put together in a two-dimensional cartesian space. A specific phase analysis included three adjustment

actions, after which an unwrapped phase characterization has been obtained for the FOH system.

A limitation in the arctangent function executed by homodyne detectors, where sine and cosine
signals are converted to phase, is that the phase can change a maximum of m radians between samples.
So, changes greater than m represent an ambiguity as to whether the signal travelled a full clockwise or
counterclockwise lap around the four quadrants (WANG, L. et al., 2006). Therefore, an absolute change
higher than 180° between two adjacent milliliters may be a discontinuity caused by a new wrap cycle in
the domain of 360°, influenced not only by the intrinsic nature of the system but also by noises that are
still present in the measured data, despite the stabilization mechanism. Under this condition, predictive
algorithms could be used to improve upon the  limitation (KIRKENDALL; DANDRIDGE, 2004), as per-
formed by other publications about phase measurands from optical interferometers (HU; LI; LIU, 2017;

SATTAR et al., 2020; WANG, L. et al., 2006).

3.8 THREE ACTIONS OF PHASE SERIES ADJUSTMENTS

Taking into consideration the aspects of phase detection reported in the earlier topic, three actions

have been applied on the phase collected data of this work.

3.8.1 Action (a) - Fixing Phase Discontinuities with 360° Rotations

In action (a), all absolute variations above 180°, between two adjacent milliliters, were rotated by
360°. For example, if a liquid-volume point is -270° and the earlier point was +45°, then a 315° absolute
variation is detected and, therefore, the -270° point is changed to +90°, after a 360° rotation. If this new
value also causes new further absolute variations above 180°, the respective liquid volumes were rotated

as well.
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3.8.2 Action (b) - Unwrapping the Phase Series

In action (b), the phase data series is unwrapped in which the angles are rotated by +180° based on
the following thresholds' vector: [-180° -90° -60° -30°]. The minus signal of a threshold value works only
on the up-down variations, and the plus signal on the down-up variations. The algorithm runs on each
phase difference between two adjacent milliliters, and if it is higher than the threshold value and it is in
the signal direction of the threshold signal, the point and the remaining series are rotated by 180°. Up-
down movements are rotated by +180° and down-up by -180°. In the end, these rotations perform an un-
wrap operation in the whole phase series, respecting the arctangent function properties, as the earlier and
the updated angles still keep the same tangent values. Different values of this vector were assessed, and
it has been found that positive thresholds (high down-up movements) did not affect the unwrapping pro-

cess.

3.8.3 Action (c) - Excluding Phase Points with Deviations Above 60°

In action (c), as a strategy of phase noise treatment, a phase point was excluded when the standard

deviation in the measurements group of liquid-volumes was greater than 60° during the data collection.

3.9 FITTING MODEL FOR THE PHASE CHARACTERIZATION

After performing the three actions of phase adjustments, the best result was selected based on the
greater R? (R-Squared) and minor RMSE (root mean square error), according to the fitting model assessed
for the final series of unwrapped phase. Among the models evaluated, there were polynomials, exponen-

tials, Fourier series, gaussians, power series and sum of sines.

The RMSE and RMSE% are calculated by Equations (24) and (25) respectively, where Yr; and Yp;

are the truth and predicted values, respectively, of the it term in the phase series composed by N terms.

N
1
RMSE = NZ(YTi—Ypi)Z, (24)
i=1
15 Yy — Yo\ 2
RMSE% = —Z (u) £ 100%, (25)
N Yri

=1

3.10 TWO DISTANCE-BASED ALGORITHMS AND FIVE DISTANCE-METRICS

This work employed machine learning algorithms under supervised learning to predict liquid vol-
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umes from amplitudes and phases of acoustic waves. Two distance-based techniques were tested, Roc-
chio and k-NN (ROGERS; GIROLAMI, 2017), with five distance metrics: Euclidean, Mahalanobis, Cosine Dis-
tance, Cosine Similarity, and Manhattan. The Rocchio is a classifier based on the centroids calculated from
the training data, and defining which centroid is closer to a tested data point. The k-NN is based on the k-
nearest tested point neighbors to the training data points. Although both Rocchio and k-NN are similar for
being distance-based algorithms, they are slightly different in the way each one uses the training and the
test points. However, both employs the same math to calculate distances between two points in multidi-

mensional spaces.

In total, six scenarios have been evaluated, and each scenario is defined by a specific choice of
object tuples (lines) and attributes (features) from the 11220 x 64 matrix of collected data. A group of se-
lected tuples defines a dataset, and the group of selected attributes defines a data model. In this case, a
data model can include, per example, the water's temperature attribute, so to see the influence of this filed
in the results. Also, each scenario has its own criteria to separate the training from the testing datasets. As
an example, a training dataset can be composed only by the twentieth object tuple of the liquid-volume
points (mode centroids), and the testing dataset by the remaining objects. Or, yet the training can be com-
posed by a random choice of 75% of all tuples and the testing dataset includes the remaining 25%. In addi-
tion, other characteristics, like the distance metrics used and the 'k' number of neighbors in k-NN have

been assessed.

When the training dataset is composed by one tuple standing for the centroid of a milliliter, both
Rocchio and 1-NN reach the same accuracy. So, in these cases, the 3-NN is presented, while other cases
used 1-NN as it delivered better accuracies. For all scenarios evaluated, both training and testing datasets
were standardized to avoid distortions caused by the scales of the attributes. Each liquid-volume point
was defined as a class (label) with which new aleatory sample of phase and amplitude is processed to
obtain the respective liquid volume. The data is balanced as the classes have the same number of samples,

although it can vary a little with scenarios that applied outlier exclusions.

3.11 GAUSSIAN PROCESS REGRESSION

In addition to the use of clustering algorithms, this work also assessed machine learning regression
versions based on the same fitting models used to characterize the unwrapped phase data series. How-
ever, instead of testing only the mode values of amplitudes and phases, the regression models with ma-
chine learning were applied to all database points with the same random selection of 75%/25% to define
the training and the testing datasets, respectively. The best result in terms of R2 and RMSE was obtained
from the Gaussian Process Regression (GPR), whose values are presented in the result section of this pa-

per.
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4 RESULTS AND DISCUSSION

4.1 ELECTRONIC SIGNALS OUTPUTTED BY THE FOH SYSTEM

This results and discussion section starts with the presentation of an instant example of both elec-
tronic signals inputted and outputted from the FOH system, as they are originally shown on the oscillo-
scope screen, so to provide a view of the physical attributes that were extracted from these signals, ex-
plained by the balloons of Figure 9, and how the output signal becomes unstable and without quality,
when the active stabilization provided by the EF loop is deactivated, as shown in Figure 10.

FOM outputied signal
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Fiure 9. Oscilloscope screen of the FOH electronic signals with active stabilization (F loop is on).

Figure 10. Oscilloscope screen of the FOH electronic signals without active stabilization (EF loop is off).
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When the stabilization mechanism is off, the environment noise levels make the sensor system use-
less, as the measurand information is lost. It is demonstrated by Figure 10, as the energy outputted by PD3
is unstable and spread among other harmonics (see the high level of energy on the second harmonic of
200 kHz), the power histogram becomes undefined, and the system cannot provide a minimally stable
value for the amplitude and electronic phase measurands. On the other hand, as shown in Figure 9, when
the active stabilization is on, the amplitudes and electronic phases are more stable, can be measured, and

processed to be associated with their respective liquid volume.
4.2  SENSITIVITY, RESOLUTION, BANDWIDTH AND OTHER TECHNICAL CHARACTERISTICS

The FOH system has been designed to operate at the fixed acoustic frequency of 100 kHz with an
ultrasound transducer able to work at the maximum frequency of 1.5 MHz. The Figure 11 shows an experi-
mental result of a 6 dB bandwidth of 700 kHz, ranging from around 30 kHz to 730 kHz, inside which specific
frequencies of 80 kHz, 220 kHz, and 340 kHz have presented high peak values in the response curve. This
response has been computed under a fixed liquid volume, as different volumes present different voltage
amplitudes for a fixed frequency. The choose of FOH system's fixed operation frequency has considered
this experimental bandwidth, the Fresnel's zone restrictions, and the longest possible acoustic wavelength
in the water.
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Figure 11. Experimental FOH system's ultrasound frequency response curve.

The EF loop circuit cutoff bandwidth is calculated following (XIE; CHEN; REN, 2009), and Figure 12

31.5T
4.24

shows the oscilloscope graphical results used to obtain the sensitivity K, = = 23.34 [rad/V] and
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Kg = ;—?26 = 0.67 [V/rad], after driving the PZT with a 50 Hz and Vp, = 4.24 V triangular wave. The only re-

quirement to choose the triangular wave's frequency is to make it as small as possible in order to allow

counting the number of cycles in the resulting sinus modulated wave. Therefore, the experimental high

23.34%0.67

cutoff frequency of EF loop circuit resulted in fgz = TN

= 5.33 [Hz], what was enough to

mitigate most environmental noises. A replacement of capacitor C1 from 4.7 pF to 1 pF raises this value to

25.07 Hz, what is close to the value of 21.65 Hz experimentally found by (XIE; CHEN; REN, 2009).
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Figure 12. Coefficients K, (PZT with optical coil)and K, (photodiodes) experimentally obtained.
4.3 ORIGINAL AMPLITUDE AND PHASE DATA SERIES COLLECTED

The original collected values of amplitudes and phases per each liquid-volume point are plotted in
Figure 13. As a homodyne detector (phasemeter), each amplitude in volts stands for the optical phase dis-
placement between the signals from the MI's arms, related to a specific liquid-volume. And each phase
point is the electronic acoustic phase difference between the inputted and the outputted signals from the
FOH system. Phasemeters recover the phases from the four-quadrant arctangent, according to the ratio
between two quadrature signals (a sine and a cosine). The relation between the expected phase and the
phase effectively measured should be linear, but there are often distortions caused by spurious effects in
the optics or in the signal-processing, that result in the non-linearities and periodic errors (WATCHI et al.,

2018) seen in Figure 13.
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Figure 13. Original amplitude and phase mode values collected per milliliter.

Specific characteristics can be noted from the original collected data. Both amplitude and phase
series are non-linear with liquid volumes; they are not intrinsically correlated to each other; there are dif-
ferent peaks and valleys when only S1 is under water, then when both S1and S2 are submerged; below S2,
the phase varies around the limits of -45° to +45° degrees, covering a range of 90°, as limited by the quad-
rature ; above S2, the phase measurand shows maximum and minimum values that touch the limits of
-270° and +90°, covering a range of 360°; above S2, the amplitude window of peaks and valleys dislocates
down; both series present limited linearity intervals with liquid volumes, as seen in Figure 14; the ampli-
tude shows quadratic behaviors at volumes of 820, 890, 920, 940 and 970 ml; the phase measures show
discontinuity jumps near the volumes of 650, 690 to 710, 740, 860, 920, 940 and 990 ml; and, the first

measured phase at 440 ml presented a value smaller than -180°.

These results confirm non-linearities, differences of using one or two optical coils as sensing ele-
ments, attenuation of acoustic fields as the volume of water increases, and phase differences between the

optical signals in the Ml arms are not related to the phase differences between the acoustic signal inputted

and outputted from the system.

4.4 PHASE MEASURAND ANALYSIS

Three actions were applied on the phase collected data in order to: (a) fix the discontinuities; (b)

unwarp the data series; and (c) mitigate the noises.

In action (a), after all rotations, the new phase profile is shown in Figure 14, from which it is noted

the effect of dislocating the the whole data series from the limits of -270°/+90°, to a new range of

-180°/+180°.
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Figure 14. Phase measurand with corrections of discontinuity jumps > 180°.

For a comparison purpose with the original data presented before, Figure 15 shows the original am-

plitudes and the new phases series corrected with the 360° rotations.
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Figure 15. Original amplitudes and corrected phases.
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A derivative analysis of both amplitude and phase measurands are presented in Figure 16, with
common phase sensitivities reaching 20° degrees/ml (349 milliradian/ml) and amplitude in 70 mV/ml. The
dashed lines are the one standard deviations over means, of both measurands, separated by liquid-vol-
umes below and above S2 coil. Comparing the variations due to influence of S2 coil, the amplitude devia-

tion decreased from 44 mV to 31 mV, while the phase increased from 24° to 37°.

That is, the presence of S2 decreased the sensitivity of amplitude (homodyne detection related to
the optical phase differences between the signals inside the Ml arms) but increased the sensitivity of the
acoustic phases (related to the electrical phase differences between the signal inputted to the UT and the

measurand signal delivered by PD3). Based on that result, a future analysis would take S2 out of the system
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and verify if coil S1 alone would detect different series of amplitudes and phases, including their deriva-

tives as well.

Phase and Amplitude Derivatives to Liquid-Volume
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Figure 16. Derivatives of amplitudes and corrected phases.
Figure 17 shows plain linear intervals with numbers at the ends of straight lines being the first and
final liquid-volume of each interval. This figure also shows that the majority of phase points have their
mode values ('x") closed to their mean values' ('+') symbols, what is a characteristic of normal distributions,

although neither normal fitting test was performed over the data, as it was not a goal of this work.

Intervals with phase linearities

195 —
w 745 } 4.
1651 Liguid-volumes below S2 it s
I Phase corrected (mode values) +
135-| + Phase corrected (mean values) 707
Linear aproximations on small intervals of phase |# 8

105 918 T gg7

Phase [degrees]
|
P B~
[#)] %1 B
T
[=2]
-
=8 s
~
~
-
o+
=
(=
(=]
o :++-.H> o
o
[=:]
SRR
w0
=]
PTG
SHrpet
- w0
o
"6! ©o
© ‘HH—‘H' =
(=]

15 |-
_15 £
7
- 720 7 U
75 ¥ 893 ¥
879
—105 3 664 994
652 + F3 e
—135 T
+
—-165
_195443 1 i ] L 1 L L L 1 | L | 1 1 746 1 | 1 L 1 | | L | | | L |
Q o o o o o =) (== o o (=] o [e=] o (=] o o o [=] o o o (=] o o o o (=] o
< =] @Q o o <t (=] o] o o ot 1] 0 o o~ <t [{=] o] o o ey =] o0 o o = [{=] [s=] o
=t -3 g wn n w wn w o [{=} [(=] ©o [{=] ~ ~ ~ ~ ~ © «© © @ @ [>] (=7} [=>] [=}] [=2] (=]

Liquid-volume [milliliters]
Figure 17. Liquid-volume intervals with linearities with phase.

Figure 16 shows that after executing action (a), the phase derivatives series are mostly confined in
the limits of -20°/20°, with one standard deviation of 37°. So, a maximum admissible standard deviation
error of 60° for a point in the action (c) is a conservative value, although other values have been evaluated.
So, the action (c) caused the elimination of 4% of collected data and Figure 18 shows the resulting series

after each one of the three phase actions were executed. The bottom of Figure 18 also shows the room's
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and water's temperatures, both measured during the data collection days represented by small circles on

the graph.
Three Actions of Phase Series Treatament
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Figure 18. Three actions of phase series adjustments.
According to Figure 19, while the original phase derivatives reached a six-standard deviation of 290°,
the final adjusted phase series ended with a six-sigma deviation of 82°. This result was achieved after the
execution of the three sequenced steps of phase adjustments, whose algorithms improved upon the =

constraints of angles measurands (KIRKENDALL; DANDRIDGE, 2004).

In fact, those steps have detected and cleaned phase jumpers between adjacent milliliters, with
absolute values higher than 180°, and unwrapped the phase series after removing phase points with devi-

ations equal or greater than 60°, from the original data.

The derivative analysis shows the improvements achieved by these purposed phase adjustments
algorithms, which had the goal of finding a final phase characterization for the FOH system. Those actions
have been based on parameters that can be previously configured, allowing the MA to apply them as long

as new data are online collected.
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Figure 19. Derivative analyses of phase signals before and after corrections
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Finally, Figure 20 shows the phase characterization after fitting the unwrapped phase with a sum of

sines of nine terms, resulting in the R2 of 0.9994, and the RMSE% of 4.15%. The model was configured to

run with least absolute residual method and non-linear least squares.
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Figure 20. Hydrophone system's unwrapped phase characterization.
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The sum of sines fitting function is expressed by:

9
Ly = z a; * sin(b; * AQg + ¢;), (26)
i=1
where L., isthe predicted liquid-volume in milliliters and A@ is the angle detected and processed by
the FOH system's application, after the three actions of phase treatments are applied. The coefficients a;,

b; and ¢; of the adjusted function are listed in Table 2.

Table 2. Coefficients of sum of sines fitting function.

i a; b, G

1 2419 0.7729 0.7455
2 1087 1.66 -2.039
3 288.9 3.401 0.8193
4 102.6 5.768 -0.8964
5 29.65 9.122 -2.307
6 5518 18.81 -1.821
7 5517 18.81 1.317
8 -4.334 13.82 9.008
9 13.23 45.2 -0.7065

4.5 AMPLITUDE MEASURAND ANALYSIS

The amplitude and its derivatives series have already been presented in the earlier section, to allow
their comparison with the phase series. So, a next analysis is to show the presence of linear intervals, as
shown in Figure 21. This figure also shows that most amplitude points have mode values quasi-equal to

mean values, what is also a characteristic of normal distributions.
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Figure 21. Liquid-volumes with linear intervals on the amplitude series.
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Figure 22 shows the derivatives of amplitude to liquid-volumes, with limited ranges of linear behav-

ior.

Amplitude Derivatives Analysis
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Figure 22. Liquid-volumes with linear intervals on the derivative of amplitude series.
The amplitude analysis shows that the collected data is non-linear, and it is not obvious to derive a
math function standing for a system that could fit to this data behavior. In this sense, next section presents

an analysis using both phase and amplitude mode points.

4.6 PHASE AND AMPLITUDE DATA SERIES ANALYSIS (MODE VALUES)

This topic evaluates both amplitude and phase as coordinates of a two-dimensional cartesian
space. Figure 23 uses the corrected phases previously presented in Figure 14, and Figure 24 use the un-
wrapped phases presented in Figure 20. Both graphs have the phase measurand in the 'x' axis, and the
amplitude measurand in the 'y' axis, with point coordinates defined by their mode values. The integer
numbers plotted over the sequenced points are the respective liquid-volumes in milliliters. Considering
the substantial number of measured points, not all values were plotted to preserve an adequate graphical

visualization by the reader.

Figure 23 shows points standing for a linear sequence of liquid volumes, but evolute as curves of
amplitude and phase coordinates, making clockwise turns, as long as the liquid volume increases linearly,
forming drawing patterns like 'snail paths' that are overlapped by other paths, showing a non-linear be-
havior of the FOH system. This pattern also shows spaces with a high concentration of liquid-volume points
and empty spaces in the vicinities. There is also a difference in space points occupations when Sl is sub-
merged, (liquid volumes below S2), then when both S1 and S2 are under water. In fact, the unwrapped

phases are seen only with measurements above S2.
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Figure 23. The 2-D grade of amplitudes and corrected phases (only action 'a' applied).
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Figure 24. The 2-D grade of amplitudes and unwrapped phases (after action 'c' is applied).



4.7 ROCCHIO AND K-NN WITH DIFFERENT DISTANCE METRICS

This topic presents six scenarios of data analyses. Scenarios one to four used the phase adjusted to
the range of -180°/+180°. Scenario five used the unwrapped phase and scenario six used the original phase

collected, without any phase adjustments.

Figure 25 shows the results of first scenario that evaluated the mode values of phase and amplitude
regarded to a liquid volume point. The mode values were used as the training dataset, and they were eval-
uated against themselves as testing data. In this scenario, an accuracy of 100% was expected, but the ac-
curacy of 96.8% shows that 3.2% of the centroids are overlapped, that is, although they stand for different
liquid volumes, they have the same coordinates of amplitude and phase. This result corroborates the be-
havior of Figure 23 in which the 'snail paths' overlap each other more than one time. This also shows that
Rocchio is not applicable if data is composed by centroids of mode values. Additionally, k-NN can be seen
as useless with an accuracy of 31.2%. The small circles in the graphs supply a visual notion of the wrong

classified points.

This first Rocchio's result shows a trade-off decision in which the need of rounding numbers to allow
the use of mode values has a collateral effect of increasing the probability of centroids overlapping. So,
the number of digits to the right of the decimal points is an input parameter to the system. The fewer digits,
the higher probability of overlapping. Based on this first scenario results, new data models and new selec-
tions of training and testing data were defined to improve the analyses.
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Figure 25. Rocchio and k-NN accuracies with centroids of mode values.

A second scenario used the same data model of the first one, but with modes replaced by means,

and Figure 26 shows accuracy of 100% for Rocchio and 29.8% for 3-NN.
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2) Rocchio | Euclidean | Accuracy 100.0% | 561 tested samples

Test data
+  Training data

(2) 3-NN | Euclidean | Accuracy = 29.8% | 561 tested samples
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Figure 26. Rocchio and k-NN accuracies with centroids of mean values.
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If both modes and means are used in the data model as a third scenario, the Rocchio and 3-NN
accuracies are 100% and 31.4% respectively. A partial conclusion here is that both training and testing da-
tasets, besides the data models, are still needed to be improved. Figure 27 shows a fourth scenario in
which the training data are the centroids of modes and means, of phase and amplitude, and the testing
data are all the remaining points collected by the experiment setup, excluding the centroids and the inter-

quartile outliers.
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Figure 27. Rocchio and k-NN accuracies with complete datasets and excluding outliers.

The fourth scenario is more data intensive than the third's, as it used more tuples as testing data,
resultingin an accuracy of 57.8% for Rocchio and 25.0% for 3-NN. Additionally, the 5-NN's accuracy is 15.8%.
In this sense, it is possible to note that training datasets composed only by the centroids are poor data

models as their low distances and overlapping points are not adequate to distance-based algorithms.

Therefore, a fifth scenario has been defined, in which the data model was improved and had its
attributes composed by point values, means and modes (intermediate and finals), for both amplitude and
phase, complemented by the water temperature. The fifth scenario considered the unwrapped and char-

acterized phase data presented in Figure 20.
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The choice of object tuples (lines) was aleatory to define the training and the testing datasets with
the respective proportion of 75%/25%. Initially, no outliers have been excluded. The k-NN was defined to
one nearest neighborhood (1-NN) as it presented better results than when using three or more neighbors

for all distance metrics.

As a result, for Euclidean distance, 1-NN reached an accuracy of 91.6% and other k-NN with three or
more neighbors presented lower accuracies (3-NN=87.9%; 5-NN=85.3%; 9-NN=80.2%; 15-NN=71.6%; and
20-NN=64.0%), reinforcing that 1-NN is always better.

Figure 28 shows the resulting accuracies for different distance metrics used with Rocchio and k-NN,
in that the 1-NN with Manhattan distance reached the accuracy value of 97.0%. The 'Cosine Similarity' met-

rics resulted in accuracies of 0% (zero) for both algorithms and for all scenarios evaluated so far.
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Figure 28. Fifth scenario. This figure has ten graphs distributed in two columns and five lines. Graphs on the left column
are of Rocchio and on the right are of 1-NN. Each line stands for a different distance metrics. Each graph title has the
name of distance used, the resulting accuracy and number of tested samples.

These distance-based analyses could have been stopped with the fifth scenario, as an accuracy

above 95% has been found. However, perceiving the result of Manhattan's distance metrics in the fifth
scenario, a sixth and last scenario was purposed with the goal of testing new attribute models and data

sources only using that metrics. The data sources differentiate from each other according to the three
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actions of phase adjustments previously presented. A phase series can be (i) the original; (ii) the adjusted

to -180°/+180°; (iii) the unwrapped; and (iv) the unwrapped with exclusions of deviations above 60°.

After tests, the best accuracy found for the sixth scenario occurred when the data model attributes
and data tuples selection were performed the same way of the fifth scenario, but the phases were the
original ones collected from the experiment, without any adjustment actions. A fine tuning in the data
model was also applied, in which different combinations of the interquartile and percentiles were evalu-
ated using the features of outliers indicators originally registered by the FOH's MA application. As they are
four variables, sixteen combinations of two outliers and two measurands were evaluated, and their results
are presented in Table 3. When an outlier exclusion is applied, it is shown by an 'x' in the table. Figure 29

shows the best graphic results derived from theses analyses.

Table 3. Sixth scenario results for Rocchio and 1-NN with Manhattan and outlier selections.

Amplitude Phase Manhattan
Test Quartile  Percentile  Quartile  Percentile = Samples Rocchio 1-NN
1 X X X X 1799 96.1% 99.1%
2 X X X 2170 97.3% 99.4%
3 X X X 1801 96.3% 98.7%
4 X X 2226 96.0% 99.3%
5 X X 2120 96.9% 99.1%
6 X 2551 96.7% 99.0%
7 X X 2122 96.3% 99.2%
8 X 2622 95.9% 99.2%
9 X X 1811 96.3% 99.0%
10 X 2186 96.1% 98.9%
11 X X 1814 95.9% 99.0%
12 X 2244 96.1% 98.8%
13 X 2240 96.1% 98.8%
14 2697 95.9% 98.5%
15 X 2244 95.8% 98.6%
16 2805 92.3% 98.0%
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Figure 29. Rocchio and 1-NN accuracies with Manhattan distances over original data collected.

Although Test 2 of Table 3 presented the greatest accuracy of 99.4% among other 16 tests, Figure 29
shows that Test 1 also has a high accuracy of 99.1% but a cleaner graph, in which the distances between
the correct and the wrong predicted liquid volumes are shorter. This result shows that the simultaneous
application of both outliers exclusion strategies on Test 1, interquartile and percentile, on both amplitude
and phase series, it has eliminated more noisy values then did the Test 2. Therefore, although Test1(99.1%)
has a slightly lower accuracy than Test 2 (99.4%), the Test 1is preferable as a model, as it has classification

errors with smaller deviations around the right liquid-volumes.

The use of distance-based machine learning algorithms was prominent to this work as the results
achieved the accuracy of 99.4% for 1-NN and 97.3% for Rocchio, with both using the Manhattan's distance
metrics. Values of 3-NN=99.1% and 5-NN=98.5% were calculated, proving that one neighborhood models
have better accuracies. The accuracies for Euclidean distance in sixth scenario were 88.5% for Rocchio and

98.0% for 1-NN.

The Manhattan's metrics represents the distance between two points measured along axes at right

angles of 90° degrees, following a grid approach instead of the straight-lines of Euclidean's distance
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(SINGH, 2019). When comparing a measured and a reference signal, similarity methods based on Manhat-
tan metrics can be used to minimize the distances between those signals (HARTOG, 2016; WANG, F. et al.,
2015). Besides the better accuracies, the Manhattan's metrics is preferable then Euclidean in terms of re-
source consumption, as Euclidean requires squared-root operations, and Manhattan needs only the abso-

lute value of a subtraction (SAINI et al., 2018).
4.8 GAUSSIAN PROCESS REGRESSION

A Gaussian Process Regression (GPR) algorithm was configured with the method of rational quad-
ratic type, and the resulting R2 of 1.00 and the RMSE of 0.21164 are shown in Figure 30. An error of 0.2 over
supervised data collected with the steps of 1.0 ml shows a great fit of the GPR over the nature of physics

involved in this experiment.

Training Results Fiber Optic Hydrophone - Matlab's Rational Quadratic GPR Fiber Optic Hydrophone - Matiab’s Rational Quadratic GPR
RMSE (Validation) 021164 1000 T 1000
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Figure 30. Gaussian process regression (rational quadratic) for the FOH system.

Samples

Therefore, ending the results and discussion, different machine learning algorithms have been eval-
uated, in which two were of classification and one was of regression type. A model fit to the unwrapped
phase was also shown. The classification algorithms were assessed considering five different distance

metrics.
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A summary and results of machine learning scenarios assessed are presented in Table 4.

Table 4. Summary of the six scenarios evaluated using distance-based machine learning algorithms.

Interquartile + Percentiles

Scenar- Training Model / Distance Algorithm  Algorithm
. Phase Series Tested Samples / Features . Rocchio K-NN
ios . . Metrics
Outliers Exclusions Accuracy Accuracy
. : . Only Mode Centroids
y Adiusted by Action@@): oo o lec ) 3 features Euclidean  96.8%  31.2% (3-NN)
-180°/+180
None
. . ) Only Mean Centroids
2 Adjusted E)y Act|?n(a). 561 samples / 3 features Euclidean 100% 29.8% (3-NN)
-180°/+180
None
. . ~ Modes + Means Centroids
3 Adjusted E)y Actlgn(a). 561 samples / 5 features Euclidean 100% 31.4% (3-NN)
-180°/+180
None
. . Modes + Means Centroids
Adjusted by Action(a): . 0 25.0% (3-NN)
4 ~180°/+180° 9682 samples / 5.features Euclidean 57.8% 15.8% (5-NN)
Interquartile
Euclidean 71.4% 91'536 (I-NN)
Adjusted by the Complete Dataset 87.9% (3-NN)
5 Three Actions: TR|TS = 75%|25% (random) ~ Mahalanobis  74.8% 89.3% (1-NN)
Unwrapped ’ 2439 samples / 12 features Cosine Distance 54.6% 87.1% (1-NN)
PP None Cosine Similarity  0.0%  0.0% (1-NN)
Manhattan 88.7%  97.0% (1-NN)
.. Complete Dataset
Very Original Data  ororlnco
6 Collected TRITS = 75%[25% (random) Manhattan 97.3% 99.4%
. 2170 samples / 12 features
(No adjustments)

After all analyses, the best results are presented in Table 5.

Table 5. Results of machine learning algorithms used for the liquid volume predictions.

Machine Learning Algorithms Distance/Type Metrics Value
k-NN 1 Manhattan 99.4%
Rocchio Manhattan 97.3%
k-NN 1 Euclidean 93.1%
Classification Rocchio Euclidean Accuracy 51%
k-NN 1 Mahalanobis 90.6%
Rocchio Mahalanobis 76.1%
k-NN 1 Cosine Distance 90.9%
Rocchio Cosine Distance 64.6%
. . RMSE% 4.15%
Sum of Sines Nine terms
Gaussian Process Rational Quadratic R2 10000
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5 CONCLUSIONS AND FUTURE WORKS

In this work, a fiber-optic hydrophone (FOH) based on the Michelson's interferometer (MI) is actively
stabilized by an electronic feedback (EF) loop circuit to mitigate mechanical and thermal noises coming
from the external environment. The FOH system is employed as a hardware and software application to
perform liquid-volume measurements of a graduated cylinder glass of 1000 ml, filled with water, whose
testing volumes ranged from 440 ml to 1000 ml. This range limitation is due to setup arrangements and
positioning of the ultrasound source inside the cylinder. The sensing elements are composed by two opti-
cal fiber coils placed at the sensor head and a third optical fiber coil is placed at the MI's reference arm.
The coils are made with readily available and common SMF fiber. The reference coil is wound around a
piezoelectric actuator to stabilize the system at the quadrature point of /2, and the two sensor coils are
submerged into water to detect acoustic wave oscillations related to liquid volume variations, supplying
distinct values of amplitudes (volts) and phases (degrees) as output measurands. Finally, due to the non-
linear behavior of theses measurands, machine learning algorithms have been employed under supervised

learning to predict the liquid-volumes.

51 CONTRIBUTIONS

The main contribution of this work is the accuracy of 99.4% achieved what is a prominent result in
liquid volume predictions for a system that employs acoustics detection through optical fiber sensors.
Also, an RMSE of 0.21164 ml shows the feasibility of the FOH system. For the test tank used, the value of
0.21164 ml is equivalent to 0.0714 mm of error in the height of the water. Other result was the characteri-
zation of the unwrapped phase measurand, in which a sum of sines fitting function reached an R2 of 0.9994

and an RMSE% of 4.15%.

Other contribution from this work is a practical demonstration of the homodyne demodulation ap-
proach working with an active stabilization mechanism over a Michelson's interferometer, as
(KIRKENDALL; DANDRIDGE, 2004) mentions that it is a challenge to stabilize such system for sensing ap-
plications, and it is useful for laboratory analysis. The advantages and drawbacks of quadrature stabiliza-
tion methods are related to the resolution of the interferometer, which is the smallest physical quantity
that a sensor can measure, defined by the noise of the measurand. Multiple reflections in optical arms
improve the resolution of a homodyne interferometer but can induce phase jumps and loss of laser coher-
ence. Therefore, a compromise must be found between the increase in resolution and the loss of coher-

ence (WATCHI et al., 2018).
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5.2 LIMITATIONS

As a limitation, this first version of the FOH system was used to measured only one type of liquid
(water), although the two optical coils in MI's sensor head were intentionally constructed to find different
fluids around them (e.g., water and oil), what will be done in future tests. Other limitation is the medium
time of 3 (three) seconds to collect and process one data sample. As a milliliter requires twenty samples,

the FOH system lasts a minute to predict a liquid volume.

5.3 PUBLICATION

This work resulted in the following paper publication:

e Duque, W.S.; Rodriguez Diaz, C.A.; Leal-Junior, A.G.; Frizera, A. Fiber-Optic Hydrophone Based on
Michelson's Interferometer with Active Stabilization for Liquid Volume Measurement. Sensors

2022, 22, 4404. https://doi.org/10.3390/522124404.

54 FUTURE WORKS

As suggestions for future works, this system can be improved to detect different fluids and mul-
tifluid interfaces. It might be worth it to also verify the results after some little hardware arrangements, as
taking out the polarization controllers, in order to look for opportunities of optimizing the system's com-
ponents. Second, the stabilized FOH can also be used, with few adaptations, to perform ultrasound piezo-
electric transducer calibrations (CHANG; ZHU; YANG, 2015; PRESTON et al., 1999). Third, the FBG structure
proposed by (DIAZ, Camilo Arturo Rodriguez et al., 2018; LEAL-JUNIOR et al., 2019) could include an optical
coil inside or wound around the polymer diaphragm structure as an additional sensor to read information
about mechanic vibration patterns of fluids in production vessels. Finally, a LSTM (Long short-term
memory) could be used as a prediction model as the recursive behavior of that neural network would be
capable of detecting a sequence of points in the 'snail paths' shown in the two-dimensional plane of modal

amplitude and phase patterns previously demonstrated in Figure 23.
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