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Resumo
A transformação industrial digital tem alavancado o conceito de Gêmeos Digitais e
Sistemas Ciberfísicos no contexto da Indústria 4.0. Enquanto os sistemas ciberfísicos são
sistemas multidimensionais e complexos que integram computação, comunicação e controle
de sistemas físicos dinâmicos, os gêmeos digitais estão relacionados a modelos de alta
fidelidade de elementos físicos em um espaço virtual. Seu objetivo é simular o mundo
físico e prover feedbacks quase em tempo real para cenários hipotéticos a fim de auxiliar
na tomada de decisões operacionais. Vasos separadores são elementos-chave no processo
de separação água-óleo na indústria de óleo e gás. Basicamente, são vasos pressurizados
que podem estar sujeitos a falhas estruturais como fadiga se não forem monitorados,
mantidos e operados de modo adequado. O sensoriamento convencional unicamente não
pode atender às diversas necessidades dos gêmeos digitais, e a visão computacional vem
em mãos para fornecer uma maneira moderna de estimar múltiplos parâmetros. Assim,
este trabalho tem como objetivo propor um modelo de arquitetura para um gêmeo digital
de um vaso separador experimental englobando técnicas modernas de sensoriamento e
processamento de dados. O vaso separador experimental é um protótipo multimaterial
construído com aço carbono e policarbonato monitorado por uma técnica de medição de
perfil de densidade sem contato que baseia-se em abordagens de visão computacional e
regressão não-linear. Esta informação é consumida pelos modelos digitais estruturais do
gêmeo digital, que são customizados para este vaso separador experimental. Dessa forma,
os modelos digitais permitem um sensoriamento aprimorado extrapolando dados de poucos
sensores, para compor um conjunto de informações ricas a serem fornecidas aos operadores.
Isso desencadeia cenários hipotéticos a serem testados rapidamente além da inferência de
indicadores de manutenção. Com o intuito de ilustrar essas funcionalidades, um cenário
pressurizado é considerado para o vaso separador experimental originalmente projetado
para operação a 1 atm. As contribuições do trabalho são apresentadas por meio de uma
simples abordagem de predição de falhas estruturais sob cargas estáticas e dinâmicas
como também por meio da rastreabilidade de pontos críticos. Também, é proposto um
novo método para estimar interfaces de nível em líquidos multifásicos utilizando técnicas
de clustering. Portanto, conclui-se que, durante a operação, os gêmeos digitais possuem
potencial para agregar novas dimensões de observabilidade ao controle de processo de
vasos separadores.

Palavras-chave: gêmeos digitais; sistemas ciberfísicos; Indústria 4.0; vasos separadores;
clustering; visão computacional; observabilidade.



Abstract
Digital industrial transformation has leveraged the concept of Digital Twins (DTs) and
Cyber-Physical Systems (CPSs) in the Industry 4.0 context. While CPS are multididimen-
sional and complex systems that integrate computation, communication and control of
dynamic physical systems, DTs are related to high-fidelity models of physical elements
in a virtual space. Its goal is to simulate the physical world and provide near real-time
feedbacks to "what if" scenarios in order to assist operational decision-making. Separator
vessels are key elements in water-oil separation process in oil & gas industry. Basically,
they are pressurized vessels that can be subjected to structural failures like fatigue if not
adequately monitored, maintained and operated. Conventional sensing alone cannot match
the diverse needs of DTs, and computer vision and machine learning come in hand to
provide a modern way to estimate multiple parameters. Thus, this work aims at proposing
an architectural model to an experimental separator vessel DT encompassing modern
sensing and data processing techniques. The experimental separator vessel is a multi-
material prototype built with carbon steel and polycarbonate monitored by a non-contact
sensing technique for density profiling based on computer vision technique and non-linear
regression approaches. This information is consumed by the DT’s structural digital models,
which are custom built for this experimental separator vessel. This way, digital models
enable an improved sensing, i.e., extrapolating data from few sensors, to compose a rich
information set to be provided to operators. This unleashes "what if" scenarios to be
quickly tested and maintenance indicators to be inferred. In order to illustrate these
functionalities, a pressurized scenario is considered for this experimental separator vessel
originally designed for 1 atm operation. The work contributions are presented through a
simple structural failure prediction approach under static and dynamic loads as well as
through critical points traceability. Also, it is proposed a new method for estimate level
interfaces in multiphase liquids by using clustering techniques. Thus, it is concluded that,
at operation time, DTs has the potential of aggregating to separator vessel process control
new dimensions of observability.

Key-words: Digital Twins; Cyber-Physical Systems; Industry 4.0; separator vessels;
clustering; computer vision; observability.
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1 Introduction

This dissertation brings an early effort of digital twins (DTs) implementation
by proposing an architectural model for the digitization of an experimental separator
vessel. This is intended to augment the observability of this equipment by providing extra
knowledge by using a data processing pipeline that begins from sensors and could end as
a feedback for the gas-oil-water separation process control. This chapter will present the
context in which DTs are inserted as well as its concept, the introduction to the separator
vessel as the object of study, the motivations behind this work and the established objectives
to towards the experimental separator vessel digitization.

1.1 Background

1.1.1 The Industry 4.0

The integration between manufacturing operations systems and information and
communication technologies (ICT), e.g., Internet of Things (IoT) - also known as Cyber-
Physical Systems (CPS) - describes the new model of manufacturing organization and
digital industrial transformation called Industry 4.0 (JESCHKE et al., 2017; WANG;
TöRNGREN; ONORI, 2015). This new industrial stage is changing competition rules, the
structure of manufacturing and also redirecting the customers’ demands (GILCHRIST,
2016; BARTODZIEJ, 2017). Such transformation are motivated by the adoption of IoT
concepts and digitization of factories (Dregger et al., 2016; LASI et al., 2014; WANG;
TöRNGREN; ONORI, 2015). From the market perspective, digital technologies allow
companies to offer new digital solutions for customers, such as internet-based services em-
bedded in products (AYALA et al., 2017; COREYNEN; MATTHYSSENS; Van Bockhaven,
2017). On the other hand, from the operational context, digital technologies such as CPS,
are proposed to reduce set-up and processing times, labor and material costs, resulting in
a improved productivity of production process (BRETTEL et al., 2014; JESCHKE et al.,
2017).

Regarding the industrial revolutions chronology, some scholars and practitioners
have considered four main industry changes, while the Industry 4.0 is the last one and
the current industry transformation (QIN; LIU; GROSVENOR, 2016). Starting in the
period between 1760 and 1840, the first industry revolution was characterized by the steam
machine creation (DALENOGARE et al., 2018). In the end of XIX century, the utilization
of electricity in industrial processes delimited second industry revolution (DALENOGARE
et al., 2018). After, during the 1960 decade, the third revolution was marked by the ICT
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and industrial automation advent (DALENOGARE et al., 2018). Finally, in the recent
time, the fourth industrial revolution, or Industry 4.0, emerged from several developed
countries and it was consolidated in a German public-private initiative to build smart
factories by the integration of physical objects with digital technologies (BRETTEL et
al., 2014; Hermann; Pentek; Otto, 2016). The broad change in the manufacturing systems
connectivity due to the integration of ICT, IoT and machines in CPS is the fundamental
element that describes this contemporary industrial stage (KAGERMANN, 2015). The way
how platforms are coming to be connected to each other expresses the new industrial age
called Industry 4.0 (LASI et al., 2014; REISCHAUER, 2018), as it considers integration
of several different dimensions of business, with a main concern on manufacturing issues,
based on advance manufacturing technologies (Saldivar et al., 2015; FATORACHIAN;
KAZEMI, 2018). In this sense, Industry 4.0 can be comprehended as an outcome of the
increasing digitization of companies, in particular concerning to manufacturing methods.
(KAGERMANN, 2015; SCHUMACHER; EROL; SIHN, 2016).

The essence of Industry 4.0 concepts resides in allowing organizations to provide
more agile production processes and to analyze massive volumes of data in real time, thus
enhancing the strategic and operational decision-making (KAGERMANN, 2015; PORTER;
SIMONS; HARRIS, 2014). This new industrial stage can be achieved thanks to the use of
ICTs in industrial environments (KAGERMANN, 2015) and the cheapening of sensors,
which increases their installation in physical objects (BRETTEL et al., 2014; PORTER;
SIMONS; HARRIS, 2014; Bangemann et al., 2016). These advances paved the way for
the development of embedded and connected systems (Jazdi, 2014; KAGERMANN, 2015;
BRETTEL et al., 2014) that seek to monitor and control equipment, conveyors, and
products through a feedback loop that gathers a large amount of data (big data) and
updates virtual models with information from physical processes (WANG; TöRNGREN;
ONORI, 2015; WANG et al., 2016; GILCHRIST, 2016). Thus, various developments
have evolved and have been implemented in production processes since the development
of digital manufacturing in the 1980s, including the following technologies: computer-
aided design and manufacturing for development projects based on computerized systems;
integrated engineering systems for information exchange in product development and
manufacturing; digital automation with sensors for monitoring through data gathering;
flexible manufacturing lines to promote Reconfigurable Manufacturing Systems (RMS) and
to enable integration and rearrangement between product and the industrial environment
in a cost-effective way; Manufacturing Execution Systems (MES) and Supervisory Control
and Data Acquisition (SCADA) for the monitoring of shop floor and remote control of
production with real time data collection; simulations and analysis of virtual models for
engineering projects and commissioning model-based systems; big data collection and
analysis for applications in predictive analytics; digital product-service systems for the
incorporation of digital services in products; additive manufacturing for modular manufac-
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turing systems; cloud computing for on-demand manufacturing facilities (DALENOGARE
et al., 2018; KAGERMANN, 2015; WANG et al., 2016; YU; XU; LU, 2015).

These innovations endorse three key benefits of Industry 4.0: vertical integration,
horizontal integration, and end-to-end engineering (KAGERMANN, 2015; WANG; TöRN-
GREN; ONORI, 2015). The integration of ICT systems in various hierarchical layers of
an organization, reflecting the association between the manufacturing and management
levels of a factory, is referred to as vertical integration (KAGERMANN, 2015). Horizontal
integration, on the other hand, entails cooperation between businesses, as well as the shar-
ing of resources and real time information exchange (BRETTEL et al., 2014). End-to-end
engineering is the integration of engineering in a product’s supply chain, from development
and production to after-sales (KAGERMANN, 2015; BRETTEL et al., 2014; GILCHRIST,
2016).

1.1.2 Cyber-physical Systems and Digital Twins

Smart manufacturing refers to a future state of production, in which real time
transmission and analysis of data from around the product life cycle, together with model-
based simulation and optimization, generate intelligence to provide positive effects on
all facets of manufacturing. In this context, knowledge-based intelligent manufacturing
is giving way to data-driven and knowledge-enabled smart manufacturing (ZHONG et
al., 2017). CPS convergence is both a requirement and a central component of smart
manufacturing (TAO et al., 2018b; O’DONOVAN et al., 2015). CPS and DTs have gotten
a lot of recognition from academia, business, and government as the desired methods of
such convergence (TAO et al., 2019a). Despite both CPS and DTs are used to describe
cyber-physical integration, their definitions are not the same. CPS are multidimensional
and complex structures that bridge the gap between the cyber and physical worlds. CPS
provides real-time sensing, information feedback, dynamic control, and other services
through the convergence and coordination of computation, networking, and control (HU
et al., 2012; Liu et al., 2017). DTs, in turn, creates high-fidelity simulated representations
of physical structures in virtual space to simulate their behaviors in the real world and
provide feedback (GRIEVES, 2014). A DT is a bi-directional dynamic mapping process
that breaks down obstacles in the product life cycle and provide a full digital footprint
of products (TAO et al., 2018a). Sensors strategically located in an equipment or even
in a manufacturing process produce signals that enable the DT to collect operational
and environmental data from the real-world process (PARROTT; WARSHAW, 2017).
Therefore, DTs allow companies to predict and promptly detect physical issues more
accurately, optimize manufacturing processes, and enhance products (TAO et al., 2019a).

In summary, CPS are characterized as the combination of computational and
physical processes (La; Kim, 2010), whereas DT refers to the idea of using a digital copy



Chapter 1. Introduction 20

of physical systems to perform real time optimization (SöDERBERG et al., 2017). Both
CPS and DTs have two components: the physical part and the cyber/digital part. The
physical part senses and collects data, and executes decisions from the cyber/digital part,
while the cyber/digital part analyzes and processes data, and then makes decisions. Each
part can influence and affect each other through this intensive connection (LEE, 2006).

The purpose of DTs consists of providing a concise physical and functional de-
scription of a component, product, or system (SöDERBERG et al., 2017). The main step
is to create high-fidelity virtual models in order to realistically replicate the geometries,
physical properties, behaviors and rules pertaining to the physical world. (Tao; Zhang,
2017). This is possible thanks to the sensing data collected from the physical element in
order to continuously create status snapshots that feeds the virtual entity. These computer
models are not only geometrically and structurally compatible with the physical elements,
but they can also simulate their spatio-temporal status, actions and features (SCHLEICH
et al., 2017; DEBROY et al., 2017). The virtual models and physical entities tend to have
a similar appearance, like twins, and equivalent behaviors, such as a mirror reflection.
Furthermore, models in the digital space may use feedback to directly optimize operations
and modify physical process (Vachálek et al., 2017). Through the bi-directional mapping,
the physical and virtual entities co-evolve (GLAESSGEN; STARGEL, 2012). A general
architecture model of DTs based on this conception is shown in Figure 1.1.1. Essentially,
DTs have two components: the physical and digital spaces. The physical space senses
and collects data, and executes decisions from the digital space, while the digital space
analyzes and processes data, and then makes decisions. Each part can influence and affect
each other through this intensive connection (LEE, 2006).

Virtual SpacePhysical Space

Physical elements
Components

Materials
Equipments

Sensors

Systems
Control

Management
Decision-making

Virtual entity
Geometric model
Material model
Structural model
Rule model
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Feedback
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Figure 1.1.1 – General DT architecture model.
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At the time in which the DT term was coined by Michael Grieves in a 2003
presentation on product life cycle management (PLM) at the University of Michigan
(GRIEVES, 2014), almost no relevant studies or applications were available, due to
the limitations and immaturity of the technology (GRIEVES, 2014). In order to solve
increasingly complex engineering system problems, the National Aeronautics and Space
Administration (NASA) and the US Air Force have used DTs in their health maintenance
and for predicting the remaining useful life of aerospace vehicles (NEGRI; FUMAGALLI;
MACCHI, 2017; GLAESSGEN; STARGEL, 2012). Recently, developments in new ICT are
helping DTs to extend. DTs have become a common research subject since they provide
a new way to synchronize physical actions with the virtual space. DTs have been used
in a variety of industrial segments for product design (TAO et al., 2019b), production
line design (ZHANG et al., 2017), DT shop floors (Tao; Zhang, 2017), production process
optimization (UHLEMANN; LEHMANN; STEINHILPER, 2017), and prognosis and health
management (TAO et al., 2018). DT industrial proceedings can also be used in a variety of
major companies, including General Electric, Siemens, PTC, Dassault Systems, and Tesla
(SCHLEICH et al., 2017), which use DTs to improve product performance, manufacturing
flexibility and competitiveness (SCHLEICH et al., 2017).

Since companies can more reliably anticipate and diagnose physical problems
with the aid of DTs, as stated before, the product reliability can be supported by this
technology. The term reliability can be considered in a probabilistic or in a deterministic
approach (MODARRES; KAMINSKIY; KRIVTSOV, 2017). The ability of an element,
i.e., a product or a system, to perform under designated operating conditions for a
specified duration of time or number of cycles is the most commonly agreed concept
of reliability (MODARRES; KAMINSKIY; KRIVTSOV, 2017). An element’s ability
can be defined either probabilistically or deterministically (MODARRES; KAMINSKIY;
KRIVTSOV, 2017). The deterministic approach is concerned with determining how and
why an object fails, as well as how it can be configured and evaluated to prevent those
failures from occurrence or recurrence (MODARRES; KAMINSKIY; KRIVTSOV, 2017).
This includes deterministic analysis and study of field failure reports, understanding the
physics of failure, the role and degree of testing and inspection, performing redesign
(MODARRES; KAMINSKIY; KRIVTSOV, 2017). In this work, the methodology is based
on the deterministic approach.

One of the most important maintenance techniques today is the advent of tech-
nologies to effectively verify the state of an equipment, which contributes to improvements
in predictive models (Hoffmann Souza et al., 2020). Detecting device faults or risks when
they emerge, and recommending repairs to minimize the risk of failure, is an relevant
addition to productive processes (KIANGALA; WANG, 2018; Terrissa et al., 2016). To
keep up with the progression of technology embedded in products and manufacturing
equipment, maintenance strategies associated with reliability must evolve on a daily basis
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(SONY; NAIK, 2020). Quality in manufacturing, when paired with emerging technology,
is a necessity for successfully delivering reliable products, and diligent product reliability
assurance is often a crucial routine task for production. In this scenario, Industry 4.0
establishes a desirable environment for the development of reliability models (HE et al.,
2019; LI et al., 2019), as well as a background provided by technologies such as DTs, where
the manufacturing system can be simulated and, thus, the equipment health monitored
(CHENG et al., 2018; ROSEN et al., 2015).

1.1.3 Separator Vessels in Oil & Gas Industry

In oil & gas industry, one of the many production facility’s roles is to separate the
well stream into three components, generally referred to as phases (oil, gas, and water),
in order to process these phases into some marketable product or dispose them in a
environmentally acceptable manner (STEWART; ARNOLD, 2011). In mechanical devices
called separators, gas is flashed from the liquid components, whereas the free water is
separated from the oil (STEWART; ARNOLD, 2011). Separators are pressure vessels
that may be installed either in an onshore processing station or on an offshore platform
(PETROWIKI, 2021). Depending on the vessel configuration, they can be divided into
horizontal, vertical or even spherical, as well as in terms of fluids to be separated, they may
be classified as gas/liquid two-phase separators or oil/gas/water three-phase separators
(PETROWIKI, 2021). Figure 1.1.2 illustrates a schematic of the horizontal three-phase
separator vessel.

Figure 1.1.2 – Schematic of a horizontal three-phase separator vessel with interface level
control and weir (STEWART; ARNOLD, 2011).
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Throughout the separation process in separator vessels, the exhaust valves must
be properly controlled in order to maintain liquid and pressure levels in accordance
with the pre-established setpoints. To monitor fluid levels, profiling instruments are often
employed, which measures the vertical density distribution inside the equipment. Depending
on the type of the profiler, measurement principles may include inductive, electrical
conductivity, radioactive, and electromagnetic approach (SULZER, 2021; ROCSOLE, 2021;
TRACERCO, 2019; BERTHOLD, 2021). Figure 1.1.3 shows a nucleonic density profiler,
whose measurement principle consists in the emission and detection of low intensity gamma
rays.

Figure 1.1.3 – Nucleonic density profiler (TRACERCO, 2019).

Separator vessels operate over a wide range of pressures and temperatures and are
exposed to a wide variety of operating environments (ASM, 2002). Therefore, this equipment
can be affected by several failures mechanisms (e.g., corrosion, creep, fatigue, cracking,
brittle and ductile fractures) caused by defective design, fabrication, and inspection,
especially for shell components (ASM, 2002). Operating pressure is an important design
consideration because pressure combined with structural constraints determines the stresses
in pressure boundaries both at stead state operating conditions and during transient state
(ASM, 2002). Verifying whether failures occurred as a result of, or during, abnormal
circumstances is an important aspect of the analysis (ASM, 2002). The service life of
pressure boundaries is profoundly influenced by cyclic operation and designers are not
always able to predict the equipment operational regime imposed by the owner and
operators (ASM, 2002). Fatigue fractures are caused by cyclic stressing, which progressively
propagates cracks until the part can no longer support the applied load (ASM, 2002).
Pressure vessels are subject to high static stresses arising from the pressure of contained
liquids or gases (ASM, 2002).
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1.2 Motivations for Augmented Observability
Efficient operation of the separation process is of crucial relevance in the production

of crude oil. Crude oil is combined with water, gas, and sediment at the wellhead and must
be separated from these components before it can be sold (CHARLTON; LEES, 2002). In
order to separate each component from crude oil mixture, the liquid and interface levels
must be properly measured to provide feedback to the level control system. Nowadays, there
are several instruments of density profile applied to this specific field. Generally, they are
classified as nucleonic (TRACERCO, 2019) and non-nucleonic (ROCSOLE, 2021) profilers.
Although they are already consolidated in the oil & gas industry, there are drawbacks
due to the high cost of acquisition and maintainability, their installation intrusive aspect,
and risks concerned to the radiation for nucleonic profilers. Therefore, it is necessary to
explore an alternative approach that provides, at the same time, low cost of acquisition
and maintainability, non-contact measurement and the absence of required specialized
licensing and further safety precautions.

Throughout manufacturing history there have been serious incidents related to
pressure vessel failures. On June 11, 2008, in the city of Houston, Texas, USA, a heat
exchanger ruptured at a Goodyear facility due to ammonia over-pressurization (CSB, 2008).
On February 4, 2010, in the city of Anacorte, Washington, USA, there was an explosion
in an almost forty years old heat exchanger at the Tesoro refinery. There were damages
in the heat exchanger due to a mechanism known as high temperature hydrogen attack
(HTHA), which severely cracked and weakened carbon steel tubing leading to a rupture
(CSB, 2010b; CSB, 2010a). On April 3, 2017, in St. Louis, Missouri, USA, a rupture of a
pressure vessel caused by corrosion occurred at the Loy Lange Box Company (CSB, 2017;
CLANCY, 2019). There was a sudden mechanical integrity failure of the equipment. This
rupture separated the bottom of the tank from the rest of the pressure vessel, creating
conditions for a steam explosion and launching the vessel through the building about 520
feet before landing in a neighbor company’s site.

These incidents may be avoided by doing deeply structural analysis through
simulations during the equipment design stage. However, the physical agents and parameters
considered at design stage are not guaranteed that will remain the same at the time of
operation, since the product would be subjected to diversified working conditions in an
industrial plant. In addition, liquid levels in separator vessels must be monitored to ensure
optimal performance and to prevent inadvertent discharges of oil in water. This monitoring
comes to reduce costs and contribute to the protection of the environment (Holstad et al.,
2005).

Thus, there is a need to augment the observability of separator vessels, in the
context of petrochemical processes, intending to conduct simulations techniques from
design to operational stage. The term observability comes from control system theory, and
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it refers to how well a system’s internal state can be predicted from its output (MADAN,
1984). In parallel, observability in DT context refers to the ability to monitor and predict
the equipment state through the aggregation between sensors data and digital models.
Thus, this work presents a way to offer optimization for operation and extra information
for gas-oil-water separation process control.

1.3 Objectives
This work proposes an architecture model that serves as a guidance tool to imple-

ment an experimental separator vessel DT in order to analyze and predict its structural
state and life in operational scenarios. Those structural states will be obtained from a
novel methodology consisting in density profile estimate and modeling using computer
vision and non-linear regression. This methodology also comes as an alternative method to
automatically identify interface levels of oil-water mixture through clustering algorithms.
This architecture follows a data driven structure in which sensor data collected from the
equipment is transformed across a pipeline. It is thought to be integrated in real processes
in order to augment the equipment’s observability in terms of visibility, predictability
and traceability. It is intended to conduct the simulations from the design stage to the
operational stage in order to optimize predictions by analyzing real processes data.

Moreover, the specific objectives of this work can be detailed listed as:

• To perform a literature study regarding structural mechanics to understand failures
under static and dynamic loads applied to ductile materials;

• To implement a density and pressure profiling method using a simple computer
vision technique and non-linear regression;

• To perform an exploratory study regarding clustering algorithms applied to automatic
identification of interface levels present in three-phase liquids containing oil, gas and
water;

• To design a DT architecture model of an experimental separator vessel including the
proposed profiling and clustering methodologies;

• To validate the proposed architecture using experimental data by simulating opera-
tional loading scenarios in order to predict safety factors and fatigue life under static
and dynamic loads.
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1.4 Dissertation Overview
In this work, the density profiling modeling and interface level identification methods

are validated using density measurement data collected from a real separation process by a
nucleonic profiler. Then, the density and pressure profiles, estimated by a computer vision
approach, will feed digital models of an experimental separator vessel. The density profile
is analytically modeled in order to make possible the aggregation between equipment’s
structural model and sensor measurements. Since the DT architecture knowledge will
cover a full density profile, a clustering algorithm will be used to separate each phase into
distinct clusters to provide automatic identification of liquid level interfaces. Finally, the
experimental separator vessel behavior are simulated under dynamic and static loading
operations, observing what-if scenarios and forward-looking predictive analysis. Figure
1.4.1 depicts the methodology overview that will be presented throughout this work.

Experimental data 
(computer vision profiler)

Density profile modeling

Separation process data 
(density profiler)

Clustering density profile 

Pressure profile

Digital models

Operational scenarios (what-if)

Predictions and insights (forward-looking)

Figure 1.4.1 – Methodology overview for the case study.

This text is organized in five chapters. Chapter 2 refers to the theoretical review
where will be explored physical concepts such as mechanics of materials, hydrostatic
pressure distribution and failure theories. Also, some clustering techniques will be presented.
In Chapter 3, the density profiling and interfaces identification methods will be detailed.
The DT architecture model of an experimental separator vessel will be proposed in Chapter
4. Finally, the conclusions and contributions from this work are presented in Chapter 5 as
well as additional developments and increments as future work.
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2 Foundations on Mechanics of Materials
and Clustering Analysis

This chapter explores the fundamentals of mechanics of materials and clustering
analysis. The DT architecture model will employ mechanical analysis of the experimental
separator vessel by using its structural model loaded by pressure profiles. Therefore, its
important to comprehend the concepts behind mechanical challenges. Also, clustering tech-
niques will be presented, since they are related to the proposed interface level identification
approach.

2.1 Mechanics of Materials
Separator vessels are subjected to pressure loads during its operation. Thus, in

order to comprehend the effects of stress and strain in such equipment’s material due to
load application and so to implement its DT, it is necessary to know the fundamental
concepts behind structural mechanics analysis.

The effects of stress and pressure in a rigid body is studied in material mechanics,
which is a branch of mechanics (HIBBELER, 2018). Strain is a measure of the body’s
deformation, while stress is related to the strength of the material from which it is produced.
Since many of the formulas and construction rules quoted in engineering codes are founded
on the principles of this topic, a detailed knowledge of the basics is critical for the design
of any machine or structure (HIBBELER, 2018).

2.1.1 Internal Resultant Loadings

Statics is mainly used in material mechanics to assess the resulting loadings that
work inside a body. The method of sections is used to do this. Consider the body depicted in
Figure 2.1.1 (a), which is maintained in equilibrium by four external forces. It is necessary
to move an imaginary segment or break through the area where the internal loadings are
acting in order to obtain the internal loadings working on that region within the body
(HIBBELER, 2018). After that, the two body parts are splitted, and a free-body diagram
of one of them is formed. As this is achieved, an internal force distribution will work on the
section’s exposed portion, as seen in Figure 2.1.1 (b). These forces are simply the results
of the top portion of the body’s substance working on the bottom section (HIBBELER,
2018).

The resultant force and moment, FR and MRO
, are calculated by applying the
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Figure 2.1.1 – Internal loads in free body diagrams: (a) full body, (b) sectioned body, (c)
resultant force and moment (HIBBELER, 2018).

equations of equilibrium to the section, as shown in Figure 2.1.1 (c), despite the fact that
the precise distribution of this internal loading may unknown. These loadings operate at
point O. In this case, however, the centroid of the sectioned region is often chosen as this
point.

2.1.2 Stress

To define stress, firstly, the sectioned area is divided into small sections, ∆A, as
shown in Figure 2.1.2 (a). As ∆A becomes infinitesimal, it is considered that the material
is continuous, meaning that it’s made up of a continuous or consistent distribution of
matter with no voids. Also, the material must be cohesive, ensuring that no fractures,
cracks, or separations exist within it. Figure 2.1.2 (a) depicts a finite but very small
force ∆F acting on ∆A. This force, like all the others, has a specific direction, so it is
replaced with its three components, namely ∆Fx, ∆Fy, and ∆Fz. The force ∆F and its
components approaches to zero, as well as ∆A does; nevertheless, the quotient of force and
area approaches to a finite limit. The strength of the internal force acting on a particular
plane, i.e., area, passing through a point is defined by this quotient, which is called stress
(HIBBELER, 2018).

2.1.2.1 Normal Stress

The magnitude of the force ∆Fz acting normal to ∆A is referred to as the normal
stress, σ, as defined by Equation 2.1:

σz = lim
∆A→0

∆Fz
∆A (2.1)

If the normal force or stress pulls on ∆A, as shown in Figure 2.1.2 (a), it is tensile
stress, whereas if it pushes on ∆A it is compressive stress.
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Figure 2.1.2 – Stress definition: (a) resultant force acting on small area, (b) stresses acting
on a volume, (c) stresses acting on a volume (HIBBELER, 2018).

2.1.2.2 Shear Stress

The intensity of force acting tangent to ∆A, as shown in Figure 2.1.2 (b), is called
the shear stress τ , as defined by Equation 2.2:

τyx = lim
∆A→0

∆Fx
∆A

τyz = lim
∆A→0

∆Fz
∆A

(2.2)

where the subscript notation z specifies the orientation of the area ∆A, and x and y

indicate the axes along which each shear stress acts.

2.1.2.3 General State of Stress

If the body is further separated by planes parallel to the x–z plane, as seen in
Figure 2.1.2 (b), and the plane y–z, as seen in Figure 2.1.2 (c), one can then extract a cubic
volume of material which reflects the state of stress that acts in the body at a selected
point. Then, three components on each side of the element, as depicted in Figure 2.1.3
(b), define this state of stress (HIBBELER, 2018).

In the International System of Units (SI), the stress is computed or measured in
Pascal (Pa).
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Figure 2.1.3 – General state of stress (HIBBELER, 2018).

2.1.3 Principal Stresses

The normal and shear components of stress acting on an infinitesimal element make
up the terms of a tensor, as described by Equation 2.3:

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.3)

where the notation for each stress component contains three elements, a magnitude (either
σ or τ), the direction of a normal to the reference surface (first subscript), and a direction
of action (second subscript) (NORTON, 2011).

There will be a continuous distribution of the stress field at any point evaluated for
any combination of applied stresses (NORTON, 2011). Any coordinate system chosen will
cause the normal and shear stresses at the point to change with direction. Shear-stress
components will still be zero on certain planes. Principal stresses are the normal stresses
acting on these planes. The principal planes are the planes on which these major stresses
act. The main axes are the directions of the surface normals to the principal planes, and
the principal normal stresses are the normal stresses acting in those directions (NORTON,
2011). There will also be a second set of mutually perpendicular axes where shear stresses
will be greatest. The principal shear stresses work on a set of planes that are at a 45º
angle to the principal normal stresses planes (NORTON, 2011).

The expression relating the applied stresses to the principal stresses is described
by Equation 2.4: 

σx − σ τxy τxz

τyx σy − σ τyz

τzx τzy σz − σ

 =


nx

ny

nz

 =


0
0
0

 (2.4)

where σ is the principal stress magnitude and nx, ny, and nz are the direction cosines of
the unit vector n, which is normal to the principal plane. The determinant of the coefficient



Chapter 2. Foundations on Mechanics of Materials and Clustering Analysis 31

matrix must be zero for the solution of Equation 2.4 to exist. Expanding this determinant
and set it to zero, Equation 2.5 is obtained:

σ3 − C2σ
2 − C1σ − C0 = 0 (2.5)

where
C2 = σx + σy + σz,
C1 = τ 2

xy + τ 2
yz + τ 2

zx − σxσy − σyσz − σzσx and
C0 = σxσyσz + 2τxyτyzτzx − σxτ 2

yz − σyτ 2
zx − σzτ 2

xy.

The three roots of this cubic polynomial are the three principal (normal) stresses
σ1, σ2, and σ3. This polynomial’s roots are always real and are normally arranged in the
order σ1 > σ2 > σ3. By substituting each root of Equation 2.5 into Equation 2.4 and
solving for nx, ny, and nz for each of the three principal stresses, the directions of the
principal stress vectors can be determined. The three principal stresses have mutually
orthogonal directions.

The values of the principal normal stresses can be used to calculate the principal
shear stresses, as expressed by Equation 2.6.

τ13 = |σ1 − σ3|
2

τ21 = |σ2 − σ1|
2

τ32 = |σ3 − σ2|
2

(2.6)

The planes of the principal shear stresses are 45º from the planes of the principal
regular stresses, and they are also mutually orthogonal.

2.1.4 Strain

When a force is applied to a body, the body’s form and size can be changed.
These modifications are known as deformation and can be extremely apparent or almost
unnoticeable. Body shape can also occur as the body’s temperature is altered. The concept
of strain is developed around the deformation of a body by changes in its dimensions
(HIBBELER, 2018).

2.1.4.1 Normal Strain

The normal strain is defined by the change of body’s length related to the its initial
length, due to to an applied load. Figure 2.1.4 depicts the deformation of body in response
to an axial load.
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Figure 2.1.4 – Deformation of a body due to an axial load (HIBBELER, 2018).

If the initial length is getting smaller and smaller and approaches to zero, the
normal strain in an arbitrary body’s point is expressed by Equation 2.7:

ε = lim
∆s→0

∆s′ −∆s
∆s (2.7)

where ε is the normal strain, ∆s′ is the length after deformation and ∆s is the initial
length.

2.1.4.2 Shear Strain

Besides the elongation or contraction deformations described by normal strains,
there are also angular deformations described by the shear strains (HIBBELER, 2018).
Shear strain is defined as the change in angular orientation related to the perpendicular
referential, i.e., π

2 due to an applied tangent load in the body’s surface, as depicted in
Figure 2.1.5.

Figure 2.1.5 – Deformation of a body due to a tangential load (HIBBELER, 2018).

If the added load allows the body to deform as seen, the shear strain at the point
can be described by Equation 2.8:

γ = π

2 − θ (2.8)

where ε is the normal strain, ∆s′ is the length after deformation and ∆s is the initial
length. where γ is the shear strain and θ is the angular change. It is worth noting that the
strain is a dimensionless quantity.
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2.1.5 Mechanical Properties of Materials

The strength of a material is determined by its ability to withstand a load without
deforming or failing. This resilience is built into the material and must be determined by
trial and error (HIBBELER, 2018). The strain or stress test is one of the most critical
experiments to perform in this respect. The mechanical properties of materials, e.g., metals,
ceramics, polymers, and composites, are characterized by the relationship between average
normal stress and average normal strain after performing this test (HIBBELER, 2018).

Since the stress and strain data from the test are known, the effects can be drawn in
a curve called the stress-strain diagram, as illustrated in Figure 2.1.6. This graph refers to a
material specimen of any dimension (HIBBELER, 2018). Stress-strain diagrams vary a lot,
and different tensile tests on the same material will produce different results depending on
the temperature of the specimen and the loading speed (BEER et al., 2020). On the other
hand, it can be used to differentiate between ductile and brittle materials by identifying
certain common characteristics. The ability to subject to significant plastic deformation
under tensile stress, before rupture, characterizes ductile materials, i.e., structural steel
and several alloys of other materials. The length of the specimen increases linearly with
the load and at a very slow rate as it is subjected to a rising elongation load.

Figure 2.1.6 – Stress-strain diagram of low-carbon steel (BEER et al., 2020).

As a result, the stress-strain diagram’s initial section is a straight line that corre-
sponds to the material’s linear response up to elastic limit. The specimen, on the other
hand, undergoes a major deformation with a comparatively slight rise in the applied load
until a critical value, i.e., tensile yield strength σY or Sy, of the stress is achieved. Slippage
over oblique surfaces causes this deformation due mainly to shearing stresses. Owing to
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local instability, after a full load has been achieved, the diameter of a part of the specimen
tends to decrease. Necking is the term for this condition (BEER et al., 2020). Lower
loads are necessary for the specimen to elongate further after necking has began, before it
eventually ruptures. This means that shear is the primary cause of ductile material loss.
The elongation of a ductile specimen, after it has ruptured, can be 200 times greater than
its deformation at yield, as seen in Figure 2.1.6. The ultimate strength is defined as the
stress σU or Sut corresponding to the full load applied. The rupture stress, σB, corresponds
to the breaking strength (BEER et al., 2020).

2.2 Hydrostatic Pressure Distribution
Pressure in a fluid at rest does not change in the horizontal direction (A.; CIMBALA,

2020). This can be demonstrated by considering a thin horizontal layer of fluid and doing
a force balance in every horizontal direction. In a gravity field, however, this is not the
case in the vertical direction. Since more fluid rests on deeper layers, pressure rises with
depth, and the impact of this extra weight on a deeper layer is compensated by a rise in
pressure. This situation is illustrated in Figure 2.2.1.

Figure 2.2.1 – Pressure profile of a fluid at rest (A.; CIMBALA, 2020).

Considering the density of fluid ρ to be constant, the pressure change with height
is described in Equation 2.9:

∆P = ∆P2 −∆P1 = −ρg∆ = −γs∆z (2.9)

where γs is the specific weight of the fluid. As a result, the pressure difference between two
points of a constant density fluid is equal to the vertical distance ∆z between the points
and the fluid density. It is worth noting that the negative symbol denotes that pressure in
a static fluid increases linearly with depth.
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One can observe from Equation 2.9, that the difference of pressure with height
for gases is negligible for small to moderate distances, due to their low density. Since
the weight of the gas is too small to make a significant difference, the pressure in a tank
containing a gas, for example, should be considered uniform. In addition, the pressure in
an room filled space can be approximated by a constant (A.; CIMBALA, 2020). Since
liquids are practically incompressible, the difference in density with depth is negligible.
When the height difference is not very large, this is also true for gases. The difference in
density of liquids or gases with temperature, on the other hand, can be substantial and
should be taken into account where high precision is needed. Also, because of the enormous
volume of liquid weight above, the difference in density of a liquid at great depths can be
significant (A.; CIMBALA, 2020).

A relationship of pressure variation with elevation can be obtained by dividing the
Equation 2.9 by ∆z for liquids whose density varies dramatically at the elevation, and by
taking the limit as ∆z → 0. This results in Equation 2.10:

dP
dz = −ρg (2.10)

where dP is negative when dz is positive since pressure decreases in an upward direction.
The pressure difference between any two points 1 and 2 can be computed by the integration
when the change of density with elevation is known, as expressed by Equation 2.11:

∆P = P2 − P1 = −
∫ 2

1
ρg dz (2.11)

As predicted, this relation reduces to Equation 2.9 for constant density and constant
gravitational acceleration. At rest, the pressure in a fluid is regardless of the shape or
cross section of the container. It varies with vertical distance but is constant in all other
directions (A.; CIMBALA, 2020).

2.3 Theories of Failure
Research in failures of parts has occupied scientists and engineers for centuries

(NORTON, 2011). Whenever the stresses exceeds its strength, the part tends to fail. The
failure may be caused by three types of stresses, i.e., tensile, compressive and shear. To
determine which stress could be the failure agent, it is necessary to comprehend the material
in question and its relative strengths in compression, tension, and shear. Furthermore,
the loading nature, i.e., static or dynamic, and the presence or absence of cracks in the
material are relevant to be known.

Generally, ductile, isotropic materials are limited by their shears strength in static
tensile loading whereas brittle materials are restricted by their tensile strengths (though
there are exceptions to this rule when ductile materials can behave as if brittle) (NORTON,
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2011). This means that, for the two types of materials ductile and brittle, there are different
failure theories.

Above all, the failure term must be precisely described. If a component yields and
distorts to the point that it no longer functions properly, it can fail (NORTON, 2011).
A component can also fail by fracturing and separating. Either of these conditions are
failures, but the processes, i.e., failures mechanisms, that cause them can be very different
(NORTON, 2011). Only ductile materials may have the ability to yield significantly before
fracturing. Brittle materials may fracture without significantly changing their form.

The nature of the loading, whether static or dynamic, is another important factor in
failure. Static loads are added gradually and effectively remain stable over time. Dynamic
loads are either added unexpectedly (impact loads) or vary over time (fatigue loads), or
both. The difference between ductile and brittle materials’ failure behavior blurs under
dynamic loading, and ductile materials fail in a "brittle" manner (NORTON, 2011). Due to
the major variations in failure mechanisms under static and dynamic loading, they must
be treated separately.

2.3.1 Static Failure Theory

While ductile materials can fracture if statically stressed above their ultimate
tensile strength, equipment parts fail when they yield under static loading (NORTON,
2011). A ductile material’s yield strength is significantly less than its ultimate strength.

2.3.2 Distortion-Energy Theory

The relative slipping of the material’s atoms within their lattice arrangement can
be understood as the microscopic yielding process (NORTON, 2011). Shear stress causes
this slipping, which is followed by a distortion of the part’s form. The amount of energy
accumulated in the component as a result of the distortion indicates the extent of the
shear stress (NORTON, 2011).

When materials are hydrostatically loaded to generate uniform stresses in all
directions, massive quantities of strain energy can be stored without failure occurrence
(NORTON, 2011). Several studies have demonstrated that materials can be hydrostatically
stressed to levels above their ultimate strengths in compression without failing because
the specimen’s volume is reduced without altering its shape (NORTON, 2011). Thus, the
distortion tends to be the major responsible for tensile failure.

The total strain energy in a loaded element can be divided into two categories:
hydrostatic loading, which changes the volume, and distortion, which changes the form
(NORTON, 2011). The distortion-energy element will give us a measure of the shear stress
present if we separate the two components.
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When there are mixed tensile and shear stresses acting on the same point, it is
convenient to describe an effective stress that can be used to reflect the stresses combination.
For ductile materials, the distortion-energy solution is a safe way to go. The von Mises
effective stress is described as a uniaxial tensile stress that produces the same amount of
distortion energy as the actual combination of applied stresses (NORTON, 2011). This
method allows handle cases of combined, multiaxial tension and shear stresses as if they
were due to pure tensile loading. The effective stress of von Mises for the three-dimensional
case is described by Equation 2.12:

σ̄ =
√
σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ2σ3 − σ1σ3 (2.12)

Through the failure criterion considered for the distortion-energy theory, the yield
strength Sy is the failure stress of interest (NORTON, 2011). It is convenient to use a
safety factor N , as expressed by Equation 2.13, for design purposes, so that the stress
condition remains in safe levels.

N = Sy
σ̄

(2.13)

The smallest value of N for any component is of greatest concern since it estimates
the most likely mode of failure. As N is reduced to 1, the stress in the component equals
the material’s strength, i.e., the added pressure equals the load that fails it, and failure
happens. As a result, it is desirable N to be always greater than 1 (NORTON, 2011).

2.3.3 Dynamic Failure Theory

Machine components, vehicles and buildings are often subjected to repeated loads,
and the resultant cyclical stresses can cause damages to the material concerned (DOWLING;
PRASAD; NARAYANASAMY, 2013). Also at stresses below a given material’s ultimate
strength, this microscopic damage can accumulate over time and build into a crack or
other macroscopic damage that contributes to component failure. Fatigue is the term
used to describe the mechanism of damage and degradation caused by cyclic loading. The
concept was coined because it seemed to early researchers that cyclic stresses induced an
incremental, but not immediately apparent, transition in the material’s ability to withstand
stress.

Some practical applications, and also many fatigue tests on materials, involve
cycling between constant maximum and minimum stress levels. This is known as continuous
amplitude stressing, as seen in Figure 2.3.1 (a), (b), and (c).

The stress range, ∆σ, is defined as the difference between the maximum and
minimum values, σmax and σmin, respectively (DOWLING; PRASAD; NARAYANASAMY,
2013). The mean stress, σm, is calculated by averaging the maximum and minimum values,
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Figure 2.3.1 – Constant amplitude cycling and the associated nomenclature: (a) completely
reversed stressing, (b) nonzero mean stress, and (c) zero-to-tension stressing
(DOWLING; PRASAD; NARAYANASAMY, 2013).

as expressed by Equation 2.14:

σm = σmax + σmin
2 (2.14)

The mean stress can be zero, as seen in Figure 2.3.1 (a), but it is often not, as
seen in Figure 2.3.1 (b) (DOWLING; PRASAD; NARAYANASAMY, 2013). The stress
amplitude, σa, which is the difference across the mean, is half of the range, as expressed
by Equation 2.15:

σa = ∆σ
2 = σmax − σmin

2 (2.15)

The stress amplitude has the same meaning of the alternating stress term. Since
σmax > σmin, where tension is considered to be positive, the signs of σa and ∆σ are always
positive.

2.3.4 Stress Versus Life (S-N) Curve

If there is a sufficiently extreme cyclic stress on a test specimen of a substance or
component engineering, a fatigue crack or other harm develops, leading to a complete
failure of the member. The number of cycles to failure would be lower if the test is repeated
at a higher stress frequency (DOWLING; PRASAD; NARAYANASAMY, 2013).

The outcomes of these measurements from a variety of stress levels can be drawn
to a stress-life curve, also known as the S-N diagram, as shown in Figure 2.3.2. The fatigue
strength, Sf or σF , is the ordinate of the S-N diagram, and it must always be followed by
a description of the number of cycles, Nf , to which it is referred.
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Figure 2.3.2 – Stress versus life (S-N) diagram plotted from the results of completely
reversed axial fatigue tests. Material: UNS G41300 steel. (BUDYNAS;
NISBETT; SHIGLEY, 2016).

If it is shown that the S-N data approximates to a straight line in a log-linear plot,
a mathematical description of the curve can be given by Equation 2.16:

σa = σ′f (2Nf )b (2.16)

where σ′f is the fatigue strength coefficient and b is known as the fatigue strength exponent
or Basquin exponent (SURESH, 1991).

In the case of steels, a knee appears in the graph, and beyond this knee failure will
not occur, no matter how great the number of cycles (BUDYNAS; NISBETT; SHIGLEY,
2016). The strength corresponding to the knee is called the endurance limit Se, or the
fatigue limit (BUDYNAS; NISBETT; SHIGLEY, 2016). The S-N diagram is commonly
obtained by completely reversed stress cycles, in which the stress level alternates between
equal magnitudes of tension and compression (BUDYNAS; NISBETT; SHIGLEY, 2016).

The term fatigue strength refers to the value of a stress amplitude from an S-N
curve at a specific life of interest. Hence, the fatigue strength at 105 cycles is simply the
stress magnitude associated with Nf = 105 (DOWLING; PRASAD; NARAYANASAMY,
2013). High-cycle fatigue and low-cycle fatigue are two other concepts associated with
S-N curves. The former describes conditions with a long fatigue life in which the stress
level is low enough that the yielding effects do not control the behavior. The life at where
high-cycle fatigue begins varies depending on the material, but it is usually in the range
between 102 to 104 cycles (DOWLING; PRASAD; NARAYANASAMY, 2013).
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2.3.5 Life Estimates with Mean Stress

Since the S-N curve for completely reversed loading is known and tests at σm = 0
are employed to obtain the constants σ′f and b, the stress amplitude σa corresponds
to the special case denoted as completely reversed stress, σar (DOWLING; PRASAD;
NARAYANASAMY, 2013). This is directly expressed by Equation 2.14. Considering that
the relation between σar and σa is defined by Equation 2.17:

σar = σa
1− σm

σ′
f

(2.17)

then it can be combined with Equation 2.14 in order to yield a more general stress-life
equation that applies for nonzero mean stress, as expressed by Equation 2.18:

σa = (σ′f − σm)(2Nf )b (2.18)

2.3.6 One Approach to Multiaxial Fatigue

In engineering components, cyclic loadings that cause complex states of stress
are common. Examples include biaxial stresses due to cyclic strain in tubes or pipes,
combined bending and torsion of the shafts and sheets or plates about more than a
single axis (DOWLING; PRASAD; NARAYANASAMY, 2013). Steady applied loads
that cause mean stresses may also be combined with such cyclic loads (DOWLING;
PRASAD; NARAYANASAMY, 2013). An additional complexity is that cyclical load
sources may differentiate between phases, frequencies or both (DOWLING; PRASAD;
NARAYANASAMY, 2013). In a thin-walled tube under cyclic pressure, for example, if
a constant bending stress is applied, there will be several stress amplitudes and mean
stresses in two directions (DOWLING; PRASAD; NARAYANASAMY, 2013). The axial
and hoop directions are the directions of principal stress and remain so as the pressure
fluctuates.

The approach to multiaxial fatigue takes into account the simple situation where
all cyclic loads are reversed and have the same frequency and are either in phase or 180°
out of phase (DOWLING; PRASAD; NARAYANASAMY, 2013). Additionally, assume
that no steady (non-cyclical) load is present at this time. In this case, it is reasonable
to suppose that fatigue life is dominated by the cyclic amplitude of the octahedral shear
stress, for ductile engineering metals (DOWLING; PRASAD; NARAYANASAMY, 2013).
In order to calculate the effective stress amplitude, the amplitudes of the main stresses
σ1a, σ2a, and σ3a can then be employed to compute an effective stress amplitude using a
relationship similar to that employed for the octahedral shear yield criterion, as expressed
by Equation 2.19:

σ̄a = 1√
2

√
(σ1a − σ2a)2 + (σ2a − σ3a)2 + (σ3a − σ1a)2 (2.19)
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The life can then be calculated by entering an S-N curve for fully reversed uniaxial
stress with the aid of σ̄a. It’s worth noting that the most typical S-N curves come
from bending or axial tests, which do entail a uniaxial state of stress and can hence
be directly used with σ̄a values (DOWLING; PRASAD; NARAYANASAMY, 2013). If
steady (noncyclic) loads are present, they change the effective stress amplitude σ̄a in a
similar way to how the mean stress effect under uniaxial loading (DOWLING; PRASAD;
NARAYANASAMY, 2013). One approach is to assume that the governing mean stress
variable is proportional to the hydrostatic stress’ steady value (DOWLING; PRASAD;
NARAYANASAMY, 2013). On this basis, an efficient mean stress can be determined from
the mean stresses in the three principal directions, as expressed by Equation 2.20:

σ̄m = σ1m + σ2m + σ3m (2.20)

The quantities σ̄a and σ̄m can be combined into an equivalent completely reversed
uniaxial stress by generalizing Equation 2.15 (DOWLING; PRASAD; NARAYANASAMY,
2013).

2.4 Clustering
Clustering is one of the most widely used unsupervised machine learning technique

for exploratory data analysis (HENNIG et al., 2016). Intuitively, clustering is the task
of grouping a set of objects so that similar ones are contained in the same set, whereas
different ones are dissociated in distinct sets (HENNIG et al., 2016). Formally, a set of
data, or dataset, X = {x1,x2, ...,xn}, that contains n samples, the task of clustering
consists in group those samples in "k" disjoint subsets of X, represented by C1, C2, ... , CK .
For instance, a clustering is the partition obtained from C = {C1, C2, ..., CK}. If a data
sample xi belongs to the cluster CK , then the label of xi is k. Thus, the labels vary from 1
to k, that is the number of clusters. Certainly, not every C is considered as reasonable
or useful clustering, and what can determine this classification depends on the particular
approach in which occurs the clustering analysis. It is relevant to consider that clustering
or data grouping can have different meanings because it depends on the context e analysis
area where it is applied. There are not a unique concept related to what cluster is, or what
should be the most reasonable grouping mode for a determined abstract dataset X. Hence,
the fundamentals of any rigorous clustering analysis is a clear and suitable definition of
what would be an appropriate grouping in a specific context (HENNIG et al., 2016).

2.4.1 Centroid-based Clustering

Supposing that there is a fixed number of known clusters k, the idea behind the
method k-means is finding k centroid objects in order to represent them in a optmized way,
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being this one of the most traditional approaches in clustering. From this perspective, the
clustering task is understood as an optimization problem. The objective function has the
pair of inputs (X, d), and the proposed solution for the clustering is C = {C1, C2, ..., CK}.
Given a specific objective function, determined by G, the algorithm’s goal consists in
finding, for a determined input (X, d), a clustering C that minimizes G((X, d), C). To
reach this goal, it is necessary to apply the appropriated search algorithm. Several objective
functions require the number of clusters, k, as a parameter. In practice, it is common
for the user to be in charge of deciding the most convenient k for the clustering problem
(HENNIG et al., 2016).

In k-means method, data is partitioned in disjoint sets C1, C2, ..., CK , where each
Ci is represented by one centroid µi. It is assumed that the input set X is joined in a
larger metric space (X ′, d), such that X ⊆ X ′, considering that the centroids belongs to
X ′. The objective function measures the square of distances between each point in X

and the centroid of its cluster (SHALEV-SHWARTZ, 2012). The centroid related to Ci is
defined by Equation 2.21:

µi(Ci) = argmin
µ∈X′

∑
x∈Ci

d(x, µ)2 (2.21)

Thus, the objective function can be described by Equation 2.22:

GK−means((X, d), (C1, C2, ..., Ck)) =
k∑
i=1

∑
x∈Ci

d(x, µ(Ci))2 (2.22)

Sometimes, the process to find an optimal solution is impracticable. As an alterna-
tive, the Algorithm 1 in Appendix A, that presents a iterative process, is commonly used
(HENNIG et al., 2016). In this case, the clustering solution is returned by a numerical
method and does not necessarily represents the result that minimizes the objective function.
In Algorithm 1 the distance function d(xi, cj) is the euclidean distance ||xi − cj||.

2.4.2 Hierarchical Agglomerative-based Clustering

The hierarchical agglomerative clustering begins with a single object that composes
its own cluster. thus there are n clusters for n objects initially. At each step, the most
similar pair of clusters are joined, resulting in a new clustering setting with a reduced
number of clusters. This process is repeated until the top level all objects are joined into
a single cluster. Similar agglomerative hierarchical approaches have different means of
computing the dissimilarity D for two clusters from the member object dissimilarities d
(HENNIG et al., 2016). The most known method is Single Leakage or Nearest Neighbor, as
expressed in Equation 2.23:

D(C1, C2) = min
x1∈C1,x2∈C2

d(x1,x2) (2.23)
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It is worth noting that this method is focused on dissimilarity data and is not linked
to probability models. By cutting the hierarchy at the required stage, it is possible to
obtain partitions into k clusters from hierarchies (HENNIG et al., 2016). The hierarchical
agglomerative clustering algorithm is described by Algorithm 2 in Appendix A (HENNIG
et al., 2016).

2.4.3 Spectral-based Clustering

The spectral clustering deals with similarity or dissimilarity data, by means of a
n× n square similarity matrix. However, this method is commonly used with other data
formats, after having obtained similarities from the original data. For example, a matrix of
objects and variables can be transformed in a square matrix of similarities between object
pairs. The advantage in using this method for data belonging to the euclidean space is
that the spectral clustering allows clusters have arbitrary formats (HENNIG et al., 2016).

The spectral clustering term is related to the family of techniques based on laplacian
matrix decomposition, that is derived from the similarity matrix. The k main eigenvectors
of laplacian matrix provide a mapping of objects in k dimensions. In order to obtain the
clusters, the resultant k dimensional vectors are grouped by standard methods, such as
k-means. The spectral clustering algorithm is described by Algorithm 3 in Appendix A
(HENNIG et al., 2016).

2.4.4 Density-based Clustering

Density-based clustering is a non parametric method in which clusters are called
high-density regions of the density. Density-based clustering approaches don’t include the
number of clusters as an input parameter, and they don’t make any predictions about
the underlying density or the variation between the clusters that might occur in the data
set. As a result, density-based clusters aren’t always groups of points with low pairwise
within-cluster dissimilarity as determined by the dissimilarity function, and therefore aren’t
always convex in form, but can be randomly formed in the data space. A density-based
cluster is a collection of data objects distributed around a contiguous area of high object
density in the data space (KRIEGEL et al., 2011).

An intuitive description of a cluster based on probability models is to presume
a non-parametric density model for the whole dataset and classify clusters either with
high-density regions or with density modes, assigning each observation to the density mode
that “attracts” it. Such approaches are much more flexible in terms of cluster shapes than
parametric model mixtures (although such flexibility is not always desirable, particularly
in applications in which large within-cluster distances should be avoided) (HENNIG et al.,
2016).
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
density-based clustering algorithm. It can detect clusters of various shapes and sizes
in a large volume of data that is noisy and contains outliers (KRIEGEL et al., 2011).
DBSCAN’s model employs a straightforward minimum density level estimate based on a
threshold for the number of neighbors, ν, within the radius, δ, with an arbitrary distance
measure. In other words, ν is also known as the minimum number of points in a dense
region, while δ can also be interpreted as the maximum distance between neighbors in a
single cluster. A core point is an object that has more than ν neighbors within this radius
(including the query point). DBSCAN intuition is to select regions that meet this minimum
density and are separated by areas of a lower density. DBSCAN does not perform density
computation between points for efficiency purposes. Instead, all neighbors within a core
point’s radius are considered members of the same cluster as the core point (called direct
density reachable). If any of these neighbors are a core point again, their neighborhoods are
transitively included (density reachable). Border points are non-core points in this group,
and all points inside the same set are density related. Points that can’t be reached by
density from any core point are called noise and don’t belong to any cluster (SCHUBERT
et al., 2017). The DBSCAN clustering algorithm is described by Algorithm 4 in Appendix
A (SCHUBERT et al., 2017).

2.5 Final Remarks
In this chapter, mechanics of materials foundations as well as clustering analysis

were presented. This explanations are relevant in order to comprehend the methodology
described in the following chapters. The centroid, agglomerative, spectral and density
based clustering algorithms will be analyzed as interface level identification techniques.
After, the operational scenarios simulation and the computation of structural life indicators
under dynamic and static loadings will require the comprehension about principal stresses,
hydrostatics and theory of failures.
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3 Density Profiling, Clustering Methods and
a Computer Vision based Profiler

This chapter will describe the methodology employed by the proposed DT architec-
ture model. Here, will be presented the validation and test of a density profiling approach
through non-linear regression as well as a non-parametric interface level identification
technique through clustering analysis. Additionally, a computer vision profiler system will
be demonstrated in order to estimate the density profile of the experimental separator
vessel.

3.1 Density Profiling Through Non-Linear Regression Modeling
Similarly to linear regression, the fundamental concept behind non-linear regression

is to link a variable, often called response or dependent variable, to another variable,
usually called explanatory, regressor, or independent variable (SMYTH, 2006; SEBER;
WILD, 2003). This independent variable is used to predict or explain the behavior of the
dependent one. The assumption that the prediction equation depends non-linearly on one
or more uncertain parameters characterizes nonlinear regression (SMYTH, 2006). While
linear regression is regularly utilized for building a pure experimental model, non-linear
regression normally emerges when there are physical reasons behind accepting that the
connection between the dependent and independent variables follows a specific functional
structure (SMYTH, 2006).

Sometimes, the resolution of data read by sensors is not enough to feed mathematical
or digital models in DTs. Thus, instead of increasing the number of sensors, the resolution
problem can be solved by interpolating the gaps between each data point. Besides the
linear approach, it is possible to adapt more sophisticated non-linear regression models to
predict unknown variables where sensors can not reach in the physical space. In this work’s
case study, the structural model of the experimental separator vessel should be fed by a
load pressure profile with a spatial resolution in the the order of millimeters. Though, to
physically reach such resolution is very costly or even not realizable. Analytical regression
models comes as an alternative in order to predict measurements of high resolution sensing
systems. Therefore, this work presents a novel approach about modeling separator vessel
density profile data.
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3.1.1 Crude Oil Density Profile Experimental Data

Separator vessels present a density distribution along its height when filled with
crude oil mixture. Figure 3.1.1 shows that the density profile can be measured by an
instrument called density profiler. The density profiler consists in a set of density sensors
distributed along a rod, by which density measurements are acquired at several height
levels.

Oil Emulsion Water

Density

Figure 3.1.1 – Multiphase level measurement system and its resulting density profile
(BERTHOLD, 2021).

Through a non-linear regression method, as introduced above, it is intended to
build an analytical model of the density profile measured from a real separator vessel, as
depicted in Figure 1.1.2. For this, density profile data provided by the Petróleo Brasileiro
S.A. company (Petrobras) was used (CENPES, 2019). This data set contains density
readings measured by a nucleonic density profiler with 96 data points. This instrument
comprises a vertical array of small, gamma ray emitting radioactive sources from which
radiation is monitored by a vertical array of detectors. The density profile readings will
be presented horizontally for consistency with the methodology of this dissertation. This
configuration will come in handy for the nonlinear regression curve fitting that will be
discussed later in this section. Figure 3.1.2 (a), (b), (c), and (d) show four density profile
samples collected from the data set. Each sample was measured in different instants from
the production separator vessel.
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Figure 3.1.2 – Density profile samples measured from the production separator vessel: (a)
sample #1, (b) sample #2, (c) sample #3, and (d) sample #4.

It is worth mentioning that these density profiles belong to a multi-phase mixture
with gas, foam, oil, emulsion and water layers. Also, the horizontal axis contains a
normalized level range, since the real level data was not provided with the density
profile dataset. In this scale, zero corresponds to the maximum measurable level, while
one corresponds to the minimum measurable level of the separator vessel. Thus, this
configuration of normalized level scale is adopted as a standard approach for the density
profile horizontal axis in this dissertation.

3.1.1.1 Crude Oil Emulsion

Emulsion can be characterized as a system, whereby one immiscible fluid phase
is scattered as globules (dispersed stage) in the second phase of immiscible fluid (contin-
uous stage) (LIM et al., 2015). There are three kinds of emulsions: water-in-oil (W/O)
emulsion, oil-in-water (O/W) emulsion and multiple emulsion. W/O emulsion is formed
when the water globules are dispersed throughout the oil continuous phase. O/W emulsion
is formed when the oil globules are dispersed all through the water continuous phase.
Multiple emulsion is a complex emulsion system, whereby W/O or O/W emulsions are
dispersed throughout another immiscible phase (BARKAT et al., 2011). Multiple emul-
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sion includes water-in-oil-in-water (W/O/W) emulsion and oil-in-water-in-oil (O/W/O)
emulsion (WONG; LIM; DOL, 2015). The O/W and W/O emulsion types can be easily
found in petroleum industry (SCHRAMM, 1992).

In oil production industries, although crude oil and water are initially present in
two separated phases, the turbulence, the mixing, as well as agitation through downhole
wellbore, surface chokes, valves, pumps and pipes will develop emulsion formation (FINGAS;
FIELDHOUSE, 2003). Emulsions which can be particularly troublesome in the operation
of separators vessels. Over a period of time an accumulation of emulsified materials and/or
impurities may form at the interface of the water and oil phases. This accumulation will
not only have a adverse effect on liquid level control, but it will also reduce the efficient
oil or water retention time in the separator, lowering the water–oil separation quality
(STEWART; ARNOLD, 2011). Chemicals and/or heat are often used to alleviate this
issue.

3.1.1.2 Crude Oil Foam

The appearance of impurities other than water, which are impossible to extract
until the stream meets the separator, is the main source of foam in crude oil. CO2 is one
impurity that nearly always results in foam. Foam can also be caused by completion and
workover fluids that are incompatible with the wellbore fluids (STEWART; ARNOLD,
2011). Foaming issues can reduce crude oil production and even trigger unplanned process
shutdowns, depending on the quality of the crude oil and the form of separation scheme
used (POINDEXTER et al., 2002). Foam isn’t an issue in a separator if the internal
architecture allows enough time or sufficient coalescing surface for the foam to break
(STEWART; ARNOLD, 2011).

Due to the increased residence time for foam breaking, crude oil foaming has a
negative effect on separator capacity. Another drawback being the inaccuracy of level
measurement (CHEN et al., 2018). Foaming can allow liquid to leak into the gas line,
contaminating solvents and causing harm to scrubbers and compressors (POINDEXTER
et al., 2002). Foaming may also trigger unwanted gas carry-over in the oil line, resulting
in dangerous degassing and pump harm. Foam inhibition provides better control of the
crude oil separation process (CHEN et al., 2018).

3.1.2 Regression Modeling Hypothesis

Observing the regions of foam and emulsion with its adjacent single-phase layers,
in Figure 3.1.2 (a), (b), (c), and (d), one can see that they are similar to a step function.
However, the step function does not represents the density changes accurately, since their
transitions are not abrupt. Thus, a better alternative would be modeling such changes
by s-shaped or sigmoid curves. Specifically, sigmoid or s-shaped functions are monotonic
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increasing and bounded on their definition domain, assuming values between zero and
one (ILIEV; KYURKCHIEV; MARKOV, 2017). The growth pattern of such functions
could represent gradual changes in density in function of level. The s-shaped curve can be
interpreted as two portions bounded by its mid point where occurs the reversion of each
continuous phases, for the emulsion, or the predominance of gas or liquid, for the foam
layer. This analogy is demonstrated by Figure 3.1.3.

Phase A
Fluid B in Fluid A 
continuous phase

Phase reversion
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Level

Phase B

Fluid A

Fluid B

Fluid A in Fluid B 
continuous phase

Curve midpoint

Figure 3.1.3 – Principle of interface modeling through s-shaped curve.

In order to validate this hypothesis, non-linear regression models were built for
each interface layer using the main functions of sigmoid curves family: logistic, hyperbolic
tangent, inverse tangent, and algebraic form. The logistic function is expressed by Equation
3.1:

f(x) = a

1 + e−b(x+c) + d (3.1)

where a is the curve’s maximum value or scale magnitude, b is the growth rate or steepness
of the curve, and (c, d) pair is the coordinate of the sigmoid’s midpoint related to the
curve’s translational state.

The hyperbolic tangent function is expressed by Equation 3.2:

f(x) = a

(
eb(x+c) − e−b(x+c)

eb(x+c) + e−b(x+c) + d

)
(3.2)

where a is the curve’s maximum value or scale magnitude, b is the growth rate or steepness
of the curve, and (c, d) pair is the coordinate of the sigmoid’s midpoint related to the
curve’s translational state.

The inverse tangent function is expressed by Equation 3.3:

f(x) = a arctan (b(x+ c)) + d (3.3)

where a is the curve’s maximum value or scale magnitude, b is the growth rate or steepness
of the curve, and (c, d) pair is the coordinate of the sigmoid’s midpoint related to the
curve’s translational state.
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The sigmoid’s algebraic form function is expressed by Equation 3.4:

f(x) = a
−b(x+ c)√

1 +−b(x+ c)
2 + d (3.4)

where a is the curve’s maximum value or scale magnitude, b is the growth rate or steepness
of the curve, and (c, d) pair is the coordinate of the sigmoid’s midpoint related to the
curve’s translational state. It is worth mentioning that the parameters from each function
ware estimated by calling curve fitting methods from the Python library Scipy (VIRTANEN
et al., 2020).

3.1.3 Validation of Non-linear Models

The non-linear regression models for the foam and emulsion layers from each density
profile sample showed by Figure 3.1.2 (a), (b), (c), and (d) are depicted in Figure 3.1.4.
Generally, the eight non-linear regression models returned a average root mean square
error (RMSE) of 4.443 · 10-2 and a mean coefficient of determination (R2) of 0.987.
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Figure 3.1.4 – Non-linear regression models subplots. The ordinate axis is normalized
density and the abscissa axis is normalized level.
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Observing Figure 3.1.5, it is evident that the logistic and hyperbolic tangent curve
fittings presented the same and the lowest average RMSE values, 4.206 · 10-2 kg/m3, since
they are very similar s-shaped curves. On the other hand, the inverse tangent curve fitting
presented the highest average RMSE, 4.846 · 10-2 kg/m3. The algebraic form curve fitting
presented an intermediary average RMSE of 4.515 · 10-2 kg/m3. It is worth noting that
the RMSE evaluation also provides insight into residual analysis, since the RMSE can be
regarded as the residuals standard deviation.
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Figure 3.1.5 – Root mean square errors for each s-shaped curve fitting.

Regarding the R2, as depicted in Figure 3.1.6, the logistic and hyperbolic tangent
curve fittings presented the same and the highest average values, ∼ 0.989. Still, the inverse
tangent curve fitting presented the lowest average R2, ∼ 0.985. Again, the algebraic form
curve fitting presented an intermediary average R2 of ∼ 0.987. It is evident from Figures
3.1.5 and 3.1.6 the negative correlation between RMSE and R2 values.



Chapter 3. Density Profiling, Clustering Methods and a Computer Vision based Profiler 53

Algebraic

Hyperbolic tangent
Inverse tangent

Logistic

S-shaped function

0.984

0.985

0.986

0.987

0.988

0.989

Co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

Figure 3.1.6 – Coefficients of determination for each s-shaped curve fitting.

The results showed that the non-linear regression models through s-shaped curve
fitting is a promising method for analytically modeling the foam and emulsion layers by
using density profile data. This achievement will be relevant for experimental separator
vessel DT load modeling in Section 4.

3.1.4 Proposed Density Profile Model

In a three-phase density profile, there are three single phase levels and two interface
layers to be modeled. This indicates that two non-linear regression models has to be
concatenated in order to represent an entire three-phase density profile. Thus, the resultant
model can be represented by the piecewise equation expressed in Equation 3.5:

ρ(z) =

Sgas/oil z < zc

Soil/water z ≥ zc
(3.5)

where ρ(z) is the density profile function, z is the level height, Sgas/oil is the s-shaped
fitted curve related to the foam layer, Soil/water is the s-shaped fitted curve related to
the emulsion layer, and zc is the level where the concatenation is done, generally the oil
layer intermediate level. The proposed density profile modeling workflow is depicted in
Figure 3.1.7. Initially, the density profile measurement has to be split into the foam and
emulsion layer chunks. Then, each chunk is normalized in order to guarantee regression
algorithm convergence. Then, the obtained regression models have to be denormalized and
concatenated in order to map them to the actual density levels and join them into a single
density profile.



Chapter 3. Density Profiling, Clustering Methods and a Computer Vision based Profiler 54

Density profile data 

Splitting

Concatenation

Density profile model

Foam layer 
chunk

Normalization

Non-linear
regression

Denormalization

Emulsion
layer chunk

Normalization

Non-linear
regression

Denormalization

Figure 3.1.7 – Proposed density profile modeling workflow.

Figure 3.1.8 depicts the proposed workflow output model for the density profile
measurement data showed in Figure 3.1.2 (a).
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Figure 3.1.8 – Resultant model for the entire density profile data.

3.2 Interface Level Identification Through Density Profile Cluster-
ing
The level monitoring instruments are an essential part in hydrocarbon processing

industrial plants, and they have been widely applied in the last decades with separator
vessels. The level instrument’s precision and reliability as well as the capability to monitor
every liquid interface layer, including foam and emulsion lengths, are relevant attributes
since the level monitoring is considered to be the main sensing element of separators vessels
automatic process control (HJERTAKER; JOHANSEN; JACKSON, 2001a). Liquid level
measurement has an important role in several industrial applications such as chemical
processes, fuel storage and transport, oil reservoirs, residual treatment plants, etc. Multiple
sensing techniques based on acoustic, mechanic, electric and optic principles are employed
to measure level parameter (Díaz et al., 2018). It is worth considering that electric sensors
are broadly used in level measurement, however they have limitations regarding safety
requirements in hazardous areas (SENGUPTA; KISHORE, 2014).

Oil & Gas industries have directed efforts in development e optimization of process
control in order to enhance production quality and to minimize chemical agents use in
separation processes, since they can increase costs and environmental harm (HJERTAKER;
JOHANSEN; JACKSON, 2001a). Machine learning comes as a promising and comple-
mentary methodology to the traditional monitoring techniques so that the sensor data is
processed and interpreted more effectively. It is comprehended as one of the multidisci-
plinary fields of data science and can be widely defined as computational methods that
use experience to enhance process performance by running learning algorithms (MOHRI;
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ROSTAMIZADEH; TALWALKAR, 2018). Experience refers to past information available
to the learning system, that consists in digital data collected and made available for
analysis. This data may be a labeled digital information set or may be other types of
information obtained by environment interaction. Generally, the quality and size of data
are crucial for the learning system prediction success.

Since gas, oil and water are immiscible liquids with different densities, the separation
process is achieved by confining the multi-phase liquid in storage tanks until gas, oil and
water layers are formed at the top, middle and bottom of the recipient respectively (Guirong
Lu et al., 2009). However, there may be the formation of a interface layer between oil and
water called emulsion (Al-Naamany; Meribout; Al Busaidi, 2007), and also a interface
layer between the gas and oil called foam due to the carbonation process (SHI et al., 1991).
The multi-phase mixture of hydrocarbons may also include sand and other solids present
in petroleum wells forming a clay layer at bottom of separator vessels (HJERTAKER;
JOHANSEN; JACKSON, 2001a).

Recently, the diffusion and consolidation of modern measurement instruments, that
are commonly connected to communication networks, big volumes of data are generated
from sensors applied to several industrial processes (KHAN et al., 2020; Qiu et al., 2020).
In order to extract useful information from such sets of data, machine learning algorithms
can be used for refine measurement readings and to provide support in decision-making or
even to the control system optimization in production processes.

Oil and water separation is one of the key processes in oil & gas industry (LEAL-
JUNIOR et al., 2018). The hydrocarbons contained in production wells consists in a
multi-phase mixture of oil, gas, water and solids (HJERTAKER; JOHANSEN; JACKSON,
2001b). Generally, these heterogeneous components are separated by identifying the density
differences between each immiscible fluids (HJERTAKER; JOHANSEN; JACKSON,
2001b). Nonetheless, there are not laminar and well defined interfaces between each phase.
Contrarily, there are emulsion layer between oil and water, in which its composition and
behavior are affected by the properties of the both liquids and by the process dynamics
(LANGEVIN et al., 2004). Furthermore, there may be foam formation between gas and
oil layers (YANG; BRANT; BECK, 1994). These interface layers have to be monitored
and restrained because they can reduce the efficiency of separation process.

Therefore, level monitoring in separator vessels is necessary to optimize the perfor-
mance of the equipment in order to avoid accidental discharges of oil in water, providing
cost reduction, collaborating with the environment preservation by dispensing chemical
agents in separation process. Also, it is important to control the amount of sand in the
equipment so that this material can be removed before problems can occur in the process
(Holstad et al., 2005).

In this section, it is presented a new approach to identify interfaces levels in separator
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vessels multi-phase liquids through a machine learning technique called clustering. For this
study, four categories of clustering are considered (k-means, hierarchical agglomerative,
spectral and density based). This techniques are applied to real process data in order
to test their viability and to compare each one’s performance in terms of accuracy and
algorithm execution time.

3.2.1 Clustering Density Profiles

Through the machine learning techniques presented above, it is intended to au-
tomatically identify the layers across a density profile of multi-phase liquids in a real
separation process. For this, density profile data provided by the Petróleo Brasileiro S.A.
company (Petrobras) was used (CENPES, 2019). Figure 3.2.1 (a) shows a sample of the
density profile in a separator vessel.

ρ = 12.717 ± 27.354 kg/m3

ρ = 680.389 ± 14.718 kg/m3

ρ = 1047.996 ± 13.711 kg/m3

(a) (b)

Figure 3.2.1 – Density profile data sample: (a) raw data, and (b) hard-coded grouped data.

Since clustering is an unsupervised learning technique, training the model from
labeled data is unnecessary. Additionally, model evaluation by cross-validation is not
suitable for this approach, once an unique model needs to be generated for each density
profile sample. Thus, in order to evaluate the clustering methods performance, it was
necessary to manually group each phase in the data set previously by a hard-coded
algorithm. This labeled grouped will be relevant to compare and then compute accuracy of
clustering results lately. The clustering algorithms were executed in the Google Colabolatory,
a cloud platform for running Jupyter notebooks. Figure 3.2.1 (b) shows the density intervals
that groups each phase present in the heterogeneous liquid.

The labeled density profile data for each clustering method are depicted in Figure
3.2.2 (a), (b), (c) and (d), where the resultant clusters are identified with a color code. It
is worth noting that the k parameter, i.e., the number of clusters, was considered to be
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5 for the parametric methods (k-means, agglomerative hierarchical, and spectral), since
there are gas, foam, oil, emulsion and water layers.
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Figure 3.2.2 – Clustering results: (a) K-means, (b) Hierarchical Agglomerative, (c) Spectral,
(d) DBSCAN.

Figure 3.2.2 (a) and (b) show that the k-means and hierarchical aglommerative
clustering methods have similar results, both giving an accuracy of 95.652%. On the other
hand, spectral clustering was not capable of properly segmenting the data sequence, as
depicted in Figure 3.2.2 (c), giving an accuracy of 53.261%. Finally, DBSCAN was the only
clustering method that matched with the pre-established grouping, giving an accuracy of
100%. It is worth considering that the foam and emulsions layers are interpreted as noise
by DBSCAN algorithm, whereas the gas, oil and water layers were accurately identified as
distinct clusters, as depicted in Figure 3.2.2 (d).

In terms of execution time, the hierarchical hierarchical clustering presented the
best performance, being executed in (1.136 ± 0.176) · 10-3 s. Then, in ascending order
of elapsed time, DBSCAN, hard-coded algorithm, spectral, and k-means clustering were
executed in (1.568 ± 0.348) · 10-3 s, (3.187 ± 0.644) · 10-3 s, (1.177 ± 0.214) · 10-2 s,
(2.178 ± 0.217) · 10-2 s, respectively. Figure 3.2.3 (a) and (b) shows the performance
test results for accuracy and execution time, respectively. This evaluation was realized in
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Google Colabolatory cloud computing environment with default settings.
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Figure 3.2.3 – Clustering performance test results: (a) accuracy, and (b) execution time.

It is worth mentioning that, besides DBSCAN is a non-parametric clustering
method, its algorithm has two main arguments, δ and ν, not linked to the number of
clusters, in which its values have to be optimized in order to improve the clustering process.
Figure 3.2.4 shows the DBSCAN clustering accuracy values for different values of δ and ν.
In this performance analysis, it was considered δ = 34 and ν = 5, since these parameters
combination resulted in 100% of accuracy.
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Figure 3.2.4 – DBSCAN accuracy values in function of δ and ν.

The results showed that clustering can be a useful technique for a non conventional
grouping approach by segmenting density profile data sequences in order to automatically
identify interface levels. The executed tests showed that the DBSCAN and hierachical
agglomerative clustering are the most accurate and the fastest methods. Still, the advantage
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of DBSCAN over the others is that it is a non-parametric method, so the number of clusters
k does not need to be known in advance. Therefore, the conventional hard-coded approach
can be adequately replaced by the DBSCAN or hierarchical agglomerative methods for
automatically density clustering and interface levels identification purposes, since the
interface layers, i.e., foam and emulsion, presents high variability and are irregularly
distributed along the level. Also, the clustering methods are not vulnerable to pressure
and temperature variations, because the actual densities of each liquid phase do not need
to be know before grouping, unlike the conventional hard-coded approach.

3.3 Non-contact Density Profiling Through Computer Vision
The moisture content of crude oil is an important parameter in the petroleum

exploration and petrochemical industries, and it has a lot of significance in terms of crude
oil refining, storage, transportation, and pricing (LIU et al., 2019). There are several
studies about measurement of water in crude oil mixtures using different methodologies,
such as microwave technology (MAKEYEV; LIFANOV; SOVLOUKOV, 2009; MAKEEV;
LIFANOV; SOVLUKOV, 2014; SHARMA; LAO; FALCONE, 2018), conductive principle
(GARCíA-GOLDING et al., 1995), ultra-short-wave technology (LI; GUOYI, 2008), spectral
absorption method (ZHAO et al., 2004), and capacitive sensing system (ASLAM; TANG,
2014; ASLAM; BOON, 2014). Those methods can reliably quantify water content in crude
oil samples in real time, reducing labor pressure in the manufacturing process (LIU et
al., 2019). Nonetheless, they have strict requirements for the measurement environment
and instruments, such as alkanes and hydrocarbons in crude oil, and the environment’s
temperature has a negative impact on measurement performance (LIU et al., 2019).

Sensing structural and physical parameters (e.g, density, pressure, temperature,
vibration, etc) of separator vessels can provide updated versions of its digital representations
in order to run simulations analysis recurrently. Recently, digital image processing has
become a prominent and enticing research field (LIU et al., 2019). Artificial intelligence,
industrial detection, and other fields have benefited from the technology, as well as
the advancement of related disciplines (DELIGIANNIS et al., 2017; DIXIT; NASKAR,
2017). Computer vision techniques have become a trendy method for non-contact liquid
level measurement. Throughout the years, there were works in which computer vision
techniques have been explored for liquid level detection in closed and transparent recipients
through optical imaging processing systems (TAKAGI et al., 1998; Batagelj et al., 2000;
Chakravarthy; Sharma; Kasturi, 2002; YU, 2015; WANG et al., 2009; EPPEL, 2016).
Horizontal liquid level detection using computer vision is becoming more widespread as a
common non-contact liquid level measurement method (LIU et al., 2019). Compared to
other contact liquid measurements, this approach can be adequately applied to the liquid
level measurement of corrosive and explosive liquids, as well as other special application
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scenarios (LIU et al., 2019).

The above-mentioned methods for determining water content are based on the
premise that the physical or chemical properties of each product of a crude oil sample
are different (LIU et al., 2019). Visualization technology has become a relevant tool for
the growth of the oil & gas industry (EVANS et al., 2002). However, image processing-
based approaches for calculating crude oil water content are scarcely found in established
references (Liu et al., 2017). Hence, the approach proposed in this work employs computer
vision to estimate not only the water content in a multi-phase mixture, but also the full
density profile of oil and water content stored in a experimental separator vessel.

3.3.1 Proposed Computer Vision Workflow

The proposed algorithm that process the oil and water mixture image is depicted
by Figure 3.3.1. It consists in a four-stage chain in which the acquired image data is
sequentially pre-processed or filtered, thresholded, and differentiated.
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Figure 3.3.1 – Proposed computer vision workflow diagram.

In order to capture the separator’s display image, a Samsung SAK2L4 ISOCELL
CMOS image sensor with 12 megapixels of resolution, and a pixel size of 1.40 µm was used.
Initially, the separator was filled with Mobil AW68 oil and fresh water. In the captured
separator’s display image frame, as shown in Figure 3.3.2 (a), it is observed that the
oil-water interface is not well defined due to emulsion formation. In contrast, the foam
layer was not observed.
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(a) (b) (c)

Figure 3.3.2 – Oil and water content within the experimental separator vessel: (a) original
image frame, (b) gray-scale image frame, and (c) thresholded gray-scale
image frame.

3.3.2 Pre-processing the Image Data

After receiving the image frame from the sensor, the first step of the proposed
workflow is convert or filter the image data from RGB color space to the gray-scale color
space. Each pixel in a gray-scale image is equivalent to a one-dimensional vector (KUHN;
OLIVEIRA; FERNANDES, 2008), with no chrominance or chroma details. The main
advantage in processing gray-scale images is that they have less redundant information
and image data to handle than RGB images, and their storage memory requirements
are smaller. Figure 3.3.2 (b) shows the image frame in gray-scale color space. It is worth
mentioning that the gray-scale can represent the continuous changes in liquid density
along the vertical axis, i.e., the height, through a uniform color code interval with values
between 0 and 255. Considering a 256-level gray-scale image, the white value, which is 255,
is the highest, and the black value, which is 0, is the smallest (GONZALEZ; WOODS,
2018).

3.3.3 Thresholding the Gray-scale Frame

It is evident that the image frames are polluted by ambient reflections as well as
light refractions due to the display’s reflexive and translucency material. Thus, in order
to detect the less polluted areas in the image, the adaptive thresholding method was
applied in the gray-scale image frame, as illustrated in Figure 3.3.2 (c). This method was
chosen because it deals well with variations of illumination, whereas fixed threshholding
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often fails with light variation in a image. In adaptive threshold method, the threshold
value is computed for each single pixel in the image, providing increased robustness to
illumination changes (BRADLEY; ROTH, 2007). This technique helps to identify by
highlighting reflection and refraction contents through a discrete image segmentation
algorithm (BRADLEY; ROTH, 2007). Then, the image frames are windowed to the region
of interest, i.e., the continuous portion with less segments between 0 and 255, and its
respective column array, with the display height, that contains the mean color code values
along the horizontal axis are obtained, as showed by Figure 3.3.3. These sequences have
data related to the single-phase layers, emulsion layer and also oil-air interface level.
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Figure 3.3.3 – Gray-scale image frame windowing, and averaging.

3.3.4 Differentiating the Data Sequence

In order to track the oil-air interface layer position, it is computed the minimum
value of the obtained gray-scale average array first derivative, as described in Equation
3.6:

min
(

dG
dx

)
= min (G[x+ 1]−G[x]) (3.6)

where G is the average gray-scale value array.

Since the gray-scale value is abruptly reduced from air to oil, the oil-air interface
level can be easily highlighted through its derivative, as shown in Figure 3.3.4.
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Figure 3.3.4 – Gray-scale average array derivative.

Then, this data array can be linearly mapped to the density profile scale based
on the Mobil AW68 oil (880 kg/m3), fresh water (998.21 kg/m3) and air (1.204 kg/m3)
densities at NTP as the referential values. Once there is not enough material deformation
to be detected by the image sensor, the linear mapping approach could be applied directly,
only considering the original equipment dimensions as reference. Since the linear mapping
needs known referential densities, this methodology can be considered as an indirect density
profile estimate.

3.3.5 Density Profiling

In Section 3.1, the foam and emulsion layers from several density profile samples
were modeled by s-shaped curves. Thus, with the gray-scale average value array and its
first derivative sequence, one can observe that this data can be analytically expressed by a
piecewise function derived from Equation 3.5, as described by Equation 3.7:

ρ(z) =

S z < zair

ρair z ≥ zair
(3.7)

where ρ(z) is the density profile function, z is the level height, S is the s-shaped fitted
curve, ρair is the air density, and zair is the oil-air interface level. Hence, the emulsion and
its adjacent single-phase layers are modeled by the s-shaped curve due to their smooth
density transition, whereas the oil-air interface is represented by a step density shift,
since the transition is abrupt there and the foam layer is not observed in the profile. The
obtained s-shaped regression model returned a RMSE of 7.805 · 10-3 kg/m3 and a R2 of
0.865. Figure 3.3.5 (a) and (b) show the emulsion layer non-linear regression model and
the full density profile analytical model, respectively.
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Figure 3.3.5 – Density profiling: (a) emulsion layer non-linear regression model, and (b)
full density profile analytical model.

3.4 Final Remarks
Once the density profiling, clustering, and computer vision profiler methods were

validated, it is possible to test them through the DT architecture model of the experimental
separator vessel presented in the next chapter. Thus, the density profile model, obtained
by the computer vision approach, will be converted into the pressure profile and it will feed
the separator structural model. From there, the operational scenarios can be simulated
and the interface levels for each one can be predicted.
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4 Experimental Separator Vessel Digital
Twin Architecture Model

This chapter explores the proposed architecture model for a separator prototype
DT implementation in order to be a tool for supporting liquid level control systems and
equipment structural monitoring. Through this, the maintenance could be improved if
structural failures are minimized by predicting the occurrence of failures under static and
dynamic loads due to cyclic operations in different working scenarios. Then, through data
processing across a pipeline, the equipment observability can be augmented in terms of
visibility, predicatability and traceability.

4.1 The Physical Element
The experimental separator vessel, i.e., the physical element, has unique structural

characteristics, since it is made by heterogeneous materials. This equipment, as shown in
Figure 4.1.1 (a) and (b), is built with carbon steel sheets and has a polycarbonate display
on the front side in order to monitor the liquid content within it. On the top, the lid has
two flanges for density and pressure profiler instruments installation. On the left side,
there are seven pressure outlets. On the bottom, there are two connections for liquid input
and output as well as four support legs. Some extractions from the experimental separator
vessel’s CAD design are presented in Figures A.0.1 and A.0.2 at Annex A (2SOLVE, 2019).

The proposed DT architecture model is based on the "what-if" and "forward-looking"
keywords (MAYANI et al., 2018). That means it is intended to build a tool that allow us
to continuously pre-establish possible operational scenarios and then run simulations and
predictive analysis in order to enhance safety, reduce risks, prevent losses and increase the
equipment performance and reliability.
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Figure 4.1.1 – Separator prototype used as the physical element of the DT: (a) equipment
design (b) equipment photography.

4.2 Proposed Architecture Model
The architecture, shown in Figure 4.2.1, follows a pipeline model in which data

flows through a chain of transformation procedures, since density/pressure sensing and
data preparation until computational structural simulation and predictive analysis. This
pipeline starts with data acquisition through a data source represented by the sensor to
measure the current separator’s density profile subjected to a physical challenge. The
adopted operational scenarios consist in static load conditions and a deterministic cyclic
load provided by the variation of oil and water levels inside the separator, whose maximum
and minimum are read by the sensor. For this work, we used a image sensor that captures
the display’s reflected and refracted light in order to obtain the density profile respective
to separator’s load state. After the image sensing, there are the pre-processing, processing
and post-processing stages. In the pre-processing stage, the data collected is used to model
the current separator load in which image data is mapped to the density and pressure
profiles.

In related works, computer vision approaches has already been employed to detect
liquids interface levels (EPPEL; KACHMAN, 2014; LIU et al., 2019), but not yet for
process density profiles data. Then, in the processing stage, the modeled and mapped
data is incorporated to the separator’s virtual entity composed by the geometric, material,
structural and rule digital models. When updating the virtual entity with the current pre-
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processed load, a finite element method (FEM) simulation is performed in order to compute
stress and strain values on each node of the model’s structural mesh. Furthermore, the
pre-processed load is clustered by DBSCAN algorithm in order to automatically group each
layer. This clustering approach can be an effective feedback for enhancing the separator
level control system by defining accurate setpoints for actuating valves at the liquid intlet
and outlet. Finally, in the post-processing stage, at the end of the pipeline, the FEM
simulation and clustering results are used to identify the interface levels as well as the
separator’s safety factor and fatigue life under the pre-established operation regime to trace
the spots of major stress and strain concentrations across the experimental separator’s
body. Providing means of visibility, predictability and traceability, it is possible to augment
the separator observability at the process context.

It is worth mentioning that the pipeline stages must be distributed across ICT
infrastructure for being functional. For computational capability reasons, edge and cloud
computing can share distinct workloads present in the architecture. Since the pre-processing
stage requires less computational resources, i.e., processing power and memory, it could lie
on the edge, where the physical space meets the digital space. On the other hand, the pro-
cessing and post-processing stages could be set at cloud, since these steps contains heavier
workloads. Figure 4.2.2 depicts the edge and cloud information technology infrastructure
integration with the operational technology in oil & gas industry.

Operational Technology
Components 

Materials 
Equipments 

Sensors

Edge Computing 
Early data analytics 

Data collection and aggregation

Cloud Computing 
Deep data analytics

Information Technology

Pre-processed data

Post-processed dataFeedback data

Raw data

Figure 4.2.2 – Operational technology integrated with cloud and edge infrastructures for
implementing the pipeline from the DT architecture model.

By establishing the integration between operating technology and information
technology, it is possible to guarantee the communication of data read by the sensors
referring to the interface levels clustering and the density profile. After dynamically
integrating this information to the separator vessel digital models, its states and behaviors
can be predicted in diversified operational scenarious. Thus, with the density profile, it is
possible to analyze the effects of hydrostatic pressure load on the separator vessel walls.
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Additionally, with the clustered interface levels, the pressure and level control system can
be optimized with extra information about foam and emulsion transition layers.

4.3 Experiment Methodology
Initially, the separator were filled with Mobil AW68 oil and fresh water until the

oil-air interface level have reached ∼ 1.4 m of height (minimum level). Then, additional
fresh water was added into the equipment until the oil-air interface level reached ∼ 1.7 m
of height (maximum level). The difference between the minimum and maximum levels (∼
0.3 m) represents the load range that characterizes the amplitude of a cyclic operation
of separator loading and unloading. This operational profile is the "what-if" dynamic
load scenario considered for this work. Besides that, the static load operation scenario
for each level condition will also be considered. The initial assumptions considered for
this case study are: Normal Temperature and Pressure (NTP) conditions (20 ºC and 1
atm), gravitational acceleration of 9.81 m/s2, incompressible liquids, air as an ideal gas,
neglected material hysteresis, and neglected environment effects (e.g, corrosion, oxidation,
friction, etc.).

4.4 Pre-processing Image Data
In order to capture the separator’s display image, a Samsung SAK2L4 ISOCELL

CMOS image sensor with 12 megapixels of resolution, and a pixel size of 1.40 µm was
used. The sensor captured the two frames related to minimum and maximum separator’s
load states in which one can observe a gradient gray-scale color range that represents the
continuous changes in liquid density along the vertical axis, i.e., the height, as depicted in
Figure 4.4.1 (a) and (b).



Chapter 4. Experimental Separator Vessel Digital Twin Architecture Model 71

0 250

0

200

400

600

800

1000

0 250

0

200

400

600

800

1000

0 250

0

200

400

600

800

1000

G
ra

y-
sc

a
le

 p
ro
fi
le

 i
m

a
g
e
 f

ra
m

e

T
h
re

sh
o
ld

in
g

G
ra

y-
sc

a
le

 p
ro
fi
le

 i
m

a
g
e
 f

ra
m

e

T
h
re

sh
o
ld

in
g

0 250

0

200

400

600

800

1000

(a) (b)

Figure 4.4.1 – Oil and water content image and thresholded frames: (a) at minimum load,
(b) at maximum load.

According to Section 3.3, the numerical color code series for this gray-scale gradient
can be mapped to the density profile for the separator load state. However, due to the
display’s reflexive and translucency content, the picture frames are clearly polluted by
ambient reflections as well as light refractions. As a result, the adaptive thresholding
technique was used to detect the image’s least contaminated regions, as shown in Figure
4.4.1 (a) and (b). Using this discrete image segmentation algorithm, this method aids in the
identification of reflection and refraction contents. The image frames are then windowed to
the area of interest, and the corresponding arrays of the image frame height are collected,
which carry the mean color code values along the horizontal axis, as illustrated in 4.4.2 (a)
and (b).
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Figure 4.4.2 – Gray-scale average arrays: (a) at minimum load, (b) at maximum load.

These sequences provide information about the single-phase layers, the emulsion
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layer, and the oil-air interface layers. During separator loading, both oil-in-water and
water-in-oil emulsion are produced as a result of chemical interactions between the liquids
particles. Thus, there are no laminar and well-defined layers due to emulsion formation,
which is influenced by the characteristics of water and oil in terms of composition and
behavior (LANGEVIN et al., 2004; LEAL-JUNIOR et al., 2018). Recalling from Section
3.1, the density profile data can be modeled by a s-shaped or sigmoid curve, by observing
the region of emulsion with its adjacent layers. Then, the single-phase and emulsion layers
array chunks are modeled using non-linear regression through logistic curve fitting. The
obtained models, as depicted in Figure 4.4.3 (a) and (b), returned RMSE values of 7.805 ·
10-2 kg/m3 and 5.9 · 10-2 kg/m3, respectively, and R-2s of 0.865 and 0.964, respectively.
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Figure 4.4.3 – Non-linear regression models: (a) at minimum load, (b) at maximum load.

The minimum values of each gray-scale code series first derivative are used to
identify the location of the oil-air interface layer, as demonstrated in Section 3.1. Figure
4.4.4 (a) and (b) detail the derivatives.
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Figure 4.4.4 – Gray-scale first derivatives: (a) at minimum load, (b) at maximum load.
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Then, this data array is linearly mapped to the density profile scale based on
the Mobil AW68 oil (880 kg/m3), fresh water (998.21 kg/m3) and air (1.204 kg/m3)
densities at NTP as the referential values. The obtained model for separator’s density
profile is characterized by the piecewise function expressed in Equation 4.1 and derived
from Equation 3.5.

ρ(z) =

S z < zair

ρair z ≥ zair
(4.1)

where ρ(z) is the density profile function, z is the level height, S is the s-shaped fitted
curve, ρair is the air density, and zair is the oil-air interface level. Hence, the emulsion and
its adjacent single-phase layers are modeled by the s-shaped curve due to their smooth
density transition, whereas the oil-air interface is represented by a step density shift, since
the transition is abrupt there and the foam layer is not observed in the profile. Figure
4.4.5 (a) and (b) illustrate the resultant load models.
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Figure 4.4.5 – Density profiling results: (a) at minimum load, (b) at maximum load.

The obtained density pressure profile is then integrated over the vertical axis to get
its correspondent separator’s pressure profile, as derived from Equation 2.11 and depicted
by Equation 4.2:

P (z) = −
∫ z

z0
ρ(z)g dz + P0 (4.2)

where P (z) is the pressure profile function, z is an arbitrary level, z0 is the initial level,
ρ is the density function expressed in Equation 4.1, g is the gravitational acceleration,
and P0 is the initial pressure. Figure 4.4.6 details the pressure profiles for the minimum
and maximum load states. This outcomes are the inputs for the processing stage in the
pipeline.
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Figure 4.4.6 – Pressure profile outcomes: (a) at minimum load, (b) at maximum load.

4.5 Processing Load Model Data
This stage is the core of the proposed separator DT architectural model. Here

lies the separator virtual entity that is the composition of digital models that are the
geometric, structural, material and rule models. At this point, the virtual element is
updated with the pre-processed data, i.e., pressure profile load model, in order to assume
the separator current load state. After that, the pipeline runs a FEM solver to process the
updated virtual entity in order to run static analysis and compute nodal stress and strain
values distributed across the separator shell material continuum. Geometric model is a
data structure that describes how the physical element is defined and how it occupies the
physical space. Generally, this model consists in a computer-aided design (CAD) file.

Structural model is another data structure that describes how the geometry defined
by the geometric model is subdivided. This model is derived from the geometric model
and expresses the discretized separator’s body in order to be the direct input of the FEM
solver (LOGAN; IMRAN, 2017). Commonly, structural model is represented by a mesh
that is composed by small interconnected subregions called elements or cells (RAO, 2018).
In order to optimize FEM simulation, the CAD and structural models were simplified by
removing the flanges, pressure outlets and liquid inlet/outlet from them, since these parts
adds several superfluous elements to the separator’s topology and do not compromise the
overall structural behavior. Thus, the adopted separator’s mesh contains 7602 quadratic
tetrahedron elements (non-linear cells) and 15250 nodes. Geometric and structural models
are depicted in Figure 4.5.1 (a) and (b), respectively.
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(a) (b)

Figure 4.5.1 – Separator prototype orthographic views for (a) geometric and (b) structural
simplified models.

Material model is a parametric database that gathers the separator’s multi-material
physical properties. This model complements the structural one and defines the materials
dynamics during simulation execution. Table 1 lists the material properties considered
for the carbon steel and polycarbonate (THE. . . , 2021a; 2013, 2013; THE. . . , 2021b;
SOLUTIONS et al., 2021; MATERIAL, 2021; HASSANIFARD; HASHEMI, 2020).

Table 1 – Material parameters of carbon steel and polycarbonate.

Parameter Carbon steel Polycarbonate

Ultimate tensile strength (MPa) 420 67.5
Density (kg/m3) 1.87 · 103 1.26 · 103

Yield strength (MPa) 350 94.6
Poisson ratio 0.29 0.33

Ultimate strain 22 7.5 · 10-2

Shear modulus (MPa) 8 · 104 6.6
Compressive strength (MPa) 350 140
Young’s modulus (MPa) 2.05 · 105 4.05 · 103

Fatigue strength coefficient (MPa) 850 835
Fatigue strength exponent -0.12 -0.42

Lastly, the rule model consists of an algorithmic rule set that ties together the
other models. It describes how the physical interactions happen as well as the procedures
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related to couple the pressure load to the separator’s digital models together. Here, the
importance of the analytical load profile obtained in the previous stage becomes evident.
The analytical load model, composed by 4.4.3 and 4.4.4, ensures that pressure values,
measured by the computer vision technique and modeled by non-linear regression, are
distributed across all the structural model elements.

Thus, the obtained pressure load model needs to be integrated to the structural
model, since it is acting on the experimental separator surfaces. The hydrostatic pressure
is acting inside the equipment, whereas the atmospheric pressure is acting outside and
inside as well. The process that aggregates the load model to the structural model consists
in sweeping every element external face contained in its mesh. On each iteration, the z
component vector, related to the level height, is obtained from the centroid position of the
element face. Then, the z component enters in the analytical model in order to estimate
the pressure applied on the element face centroid. This process is recursively executed for
all faces in the structural model that are directly exposed to pressure in order to distribute
the hydrostatic forces along the equipment surface. Figure 4.5.2 depicts the element face
centroid from structural model mesh surface, where the hysdrostatic force acts.
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Figure 4.5.2 – Integration between structural and load models.

Separator’s geometric, material and structural models were built on Freecad design
software, its rule model was implemented in Python programming language, and CalculiX
was used as the FEM solver to run stress and strain static analysis (RIEGEL; MAYER;
HAVRE, 2021; DHONDT; WITTIG, 2021).

The separator’s DT prototype was tested in two distinct scenarios. In the first
scenario, the separator was considered to be depressurized, i.e., the experimental real case,
in which the initial pressure at oil-air interface is the atmospheric pressure. Figure 4.5.3
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(a) and (b) show depressurized separator stress and strain distributions at maximum load,
respectively.

Front Side Back Top

Bottom

Front Side Back Top

Bottom

(a)

(b)

Figure 4.5.3 – Depressurized separator: (a) stress distribution, and (b) strain distribution.
The stress scale is in MPa.

In the second scenario, the separator was considered to be pressurized, i.e., the
"what-if" case, in which the internal pressure was considered to be equivalent to the free
water knockout vessel (FWKO) operational pressure (50 psig) (PETROWIKI, 2021).
Figure 4.5.4 (a) and (b) show pressurized separator stress and strain distributions at
maximum load, respectively. The stress and strain results from the FEM solver were
graphically visualized by Paraview software tool (AHRENS; GEVECI; LAW, 2005).

By inspecting the spots across the experimental separator’s body with the highest
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Figure 4.5.4 – Pressurized separator: (a) stress distribution, and (b) strain distribution.
The stress scale is in MPa.

mean stress and strain values, one can track the most critical points of each material where
the failure can initially occur. In the first scenario, the highest stress values are located
at equipment’s bottom in the carbon steel part of separator’s body, whereas the highest
strain values are observed at the bottom of polycarbonate display and carbon steel portion
as well. It is relevant noting that there is not stress concentration in the polycarbonate
display for this case. In the second scenario, the stress is more uniformly distributed across
the separator’s body, whereas the highest strain values are observed along polycarbonate
display longitudinal axis. It is relevant noting that there some punctual stress concentration
locations in the carbon steel portions next to polycarbonate display boundaries. Through
Figure 4.5.3 and Figure 4.5.4, one can observe that the pressurization state directly
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affects the pattern of stress and strain distribution on separator’s body, especially in the
polycarbonate display. It happens because the effect of pressure profile along the height
due to liquid weight is more prominent when depressurized than pressurized.

In real processes, the liquid levels tend to be constant because of separators’ level
control system. Nevertheless, the pressure loads can remain variable due to the gas pressure
fluctuations over time. Thus, the proposed architecture model can redefine the traditional
observability’s concept for the separator’s process control system adding a controlled
variable not yet considered so far: the reliability. Through the separator DT, the process
control would not only be sensitive to liquid levels, but also to the entire pressure profile,
to the current structural life cycle and to critical points of stress and strain concentrations
in the equipment’s body. Observing the changes in the predicted life and the most critical
stress locations during operation, the process parameters can be preventively adjusted
in order to preserve separator’s integrity and then optimize production. Therefore, by
ensuring that separator operates the way it was specified in the design for a longer time,
reliability is enriched by its DT.

It is worth mentioning that the second scenario in the analysis suggests that the
separator DT could be expanded if other sensing systems are coupled to the equipment.
Pressure, temperature, chemical, vibration and optical sensors can increase the dimension-
ality of separator’s physical monitored attributes in order to allow additional structural
predictive failure analysis (i.e., overheating, leakage, stress-corrosion crack, hydrogen em-
brittlement, brittle fractures, ductile fractures, stress rupture, creep rupture (ASM, 2002)),
besides fatigue. Thus, with a wide variety of sensor data updating the digital models, the
DT will become more complex, it will mirror the physical element with more accuracy and
fidelity, and the predictive analysis will be extended, further improving decision-making
and process control.

4.6 Post-processing Stress and Strain Data
The “forward-looking” aspect lies in the DT’s ability to provide predictive analytics

and insights. For this case study, it will be necessary to evaluate the reliability of the
experimental separator through the analysis of structural failures under operational
conditions of static and dynamic loading. Hence, the nodal stress-strain data obtained
at previous pipeline stage has to be post-processed in order to predict separator’s safety
factor, in case of static load, as well as fatigue life under the considered dynamic load
operation.

The majority of equipment failures are caused by time-varying loads rather than
static loads. These failures typically happen at stress thresholds that are much smaller
than the materials’ yield strengths (NORTON, 2011). Often, fatigue failures begin at a
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crack. The crack may have existed in the material since its manufacture, or it may have
formed as a result of cyclic straining across stress concentrations over time (NORTON,
2011). Whereas the safety factor, N , expressed in Equation 2.13 has to be computed for
static loads, the dynamic loads, in which mean stresses are non-zero, are characterized by
estimating the fatigue life in number of cycles, as defined by Equation 4.3:

Nf = 1
2

(
σa

σ′f − σm

)1/b

(4.3)

where Nf is the fatigue cycles, σa is stress amplitude, σm is the mean stress, σ′f is the
material’s fatigue strength coefficient, and b is the material’s fatigue strength exponent or
Basquin exponent (SURESH, 1991; DOWLING; PRASAD; NARAYANASAMY, 2013). In
separator’s case, multiaxial stresses are applied, so it is necessary to compute von Mises
effective amplitude and mean stresses using the principal stresses (DOWLING; PRASAD;
NARAYANASAMY, 2013). The fatigue life implies the number of cycles, Nf , that the
equipment will operate until the event of a crack initiation occurs (SURESH, 1991). Besides
the fatigue life prediction, this pipeline stage can also sorts the full stress-strain datasets
to trace the spots in separator’s structure with the highest stress or strain amplitudes,
since there would be the most probable point to firstly initiate a crack.

4.6.1 Predictions and Insights

4.6.1.1 Interface Levels Identification

In order to identify the interface levels, DBSCAN algorithm was used to cluster
each density profile model, as illustrated in Figure 4.6.1 (a) and (b).
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Figure 4.6.1 – Density profiling clustering results: (a) at minimum load, (b) at maximum
load.

Observing the obtained clustered density profiles, it is evident that the emulsion
layer almost double its length having an increase of 91.391% after additional fresh water
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was added into the experimental separator vessel. Its level range changed from ∼ 0.713 -
0.822 to ∼ 0.575 - 0.8. The oil layer did not change, and its level range was shifted from ∼
0.313 - 0.713 to ∼ 0.163 - 0.575. The water layer has been increased by 25.126%, and its
level range was shifted from ∼ 0.838 - 1 to ∼ 0.8 - 1. The air layer has been reduced by
47.328%, and its level range was shifted from ∼ 0 - 0.313 to ∼ 0 - 0.163. The maximum
distance between neighbors in a single cluster, δ, and the minimum number of points in a
dense region, ν, considered for this analysis were 0.3 and 5, respectively.

4.6.1.2 Structural Failures

Since the stresses acting in the experimental separator vessel material are multiaxial,
it is necessary to compute the von Mises effective stress values through Equation 2.12 in
order to predict safety factors and fatigue life. Figures 4.6.2 (a), (b), (c) and (d) show the
von Mises effective stresses distributions for equipment’s carbon steel and polycarbonate
parts at minimum and maximum loads, respectively.

(a) (b)

(c) (d)

Figure 4.6.2 – Von Mises effective stress distributions: (a) in carbon steel (depressurized),
(b) in polycarbonate (depressurized), (c) in carbon steel (pressurized), (d)
in polycarbonate (pressurized).

Observing Figures 4.6.2 (a) and (b), in the scenario in which the equipment is
depressurized, it is evident that the effective stresses in carbon steel mostly vary in the
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range between 0 and 10 MPa, while in polycarbonate this interval is much smaller being
constrained from 0 to ∼ 0.3 MPa. Additionally, in the Figures 4.6.2 (c) and (d), in the
scenario in which the equipment is considered to be pressurized, one can see that the
effective stresses in carbon steel mostly vary in the range between 0 and ∼ 500 MPa,
whereas, for polycarbonate, this interval covers from 0 to ∼ 60 MPa. It is worth noting
that the differences between the distributions at minimum and maximum levels are more
evident when the experimental separator vessel is depressurized than pressurized.

4.6.1.2.1 Static Load

The safety factors were computed for the static load analysis based on the worst
case, i.e., the highest obtained effective stress on structural mesh. In the depressurized
scenario, at minimum level, the safety factors are 14.41 and 247.786 for carbon steel and
polycarbonate, respectively. On the other hand, at maximum level, the safety factors are
11.998 and 211.722 for carbon steel and polycarbonate, respectively. In the pressurized
scenario, at minimum level, the safety factors are 8.832 · 10-2 and 1.638 for carbon steel
and polycarbonate, respectively. Then, at maximum level, the safety factors remain the
same values for both materials. Therefore, it is observed that the safety factor variability is
drastically reduced at higher hydrostatic pressure loads. Since the safety factor of carbon
steel is decreased to 8.832 · 10-2, i.e., lower than 1, in the pressurized scenario, it indicates
that the carbon steel part would fail if subjected to this working condition.

4.6.1.2.2 Dynamic Load

It is worth mentioning that the predictive analysis is based on the nodes with
the highest effective amplitude stress in each separator’s material in this case study. If
the separator is depressurized under the considered cyclic load conditions, the predicted
fatigue life of carbon steel and polycarbonate are 8.579 · 1021 and 8.402 · 1010 cycles,
respectively. The highest effective stress amplitude and mean values for carbon steel are
1.768 MPa and 26.391 MPa, respectively. The highest effective stress amplitude and mean
values for polycarbonate are 1.611 · 10-2 MPa and 2.97 · 10-2 MPa, respectively.

If the separator is pressurized under the same cyclic load conditions, the predicted
fatigue life of carbon steel and polycarbonate are 1.078 · 105 and 1.288 · 1011 cycles,
respectively. The highest effective stress amplitude and mean values for carbon steel are
1.771 MPa and 8.423 · 103 MPa, respectively. The highest effective stress amplitude and
mean values for polycarbonate are 1.292 · 10-2 MPa and 33.37 MPa, respectively.

The results showed that the carbon steel and polycarbonate have distinct behaviors
in each scenario. Whereas the carbon steel cycles were drastically decreased by 7.961 ·
1016 times, the polycarbonate cycles were increased by 1.534 time. The high cycle value of
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carbon steel in the depressurized scenario indicates that it would not entail risks of failure
due to fatigue in the short and medium term. This means that, if the life of the carbon
steel part only depends on the effects of cyclic stress, its physical integrity would remain
intact for a long period of time. Observing Figure 2.3.2 as a reference, in the depressurized
scenario, the cycles number intercepts the S-N curve beyond its knee, at the asymptotic
portion of the diagram.

One can see that the separator’s carbon steel is suitable for long cyclic operation
in depressurized scenario, while it would have a shortened life for cyclic operation in
pressurized scenario. The anomaly behavior on polycarbonate computed fatigue life, whose
value was increased, turns evident that the adopted dynamic load analysis approach is
suitable only for for ductile engineering metals, as mentioned in Section 2.3.
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5 Conclusions and Future Work

5.1 Conclusions and Contributions
This work presented a DT architecture model of an experimental separator vessel

capable of augment the observability of the equipment as an element of liquid separation
process. This architecture includes a computer vision profiling measurement technique
combined with clustering for liquid level interface identification.

Through the employed computer vision method, it was possible to estimate and
process not only liquid level interfaces but also the entire liquid density and pressure profile
over the experimental separator height. This allowed creating a detailed load model for the
separator DT even if emulsion layer are present in oil-water mixture. Since the proposed
computer vision approach indirectly estimates the density level profile, it is necessary
to employ extra thermal and density sensors in order to complement such method. The
density profiling and clustering approaches combined represents an promising low cost and
safe measurement alternative in providing support to the liquid level control system.

This is crucial for the proposed DT architecture model being capable to establish
the link between "what-if" scenarios and "forward-looking" analysis, by which it is possible
to identify liquid level interfaces, predict safety factors the separator’s and its fatigue life,
and trace the major stress concentration point at operation time. Also, its predictions
on safety factors and fatigue life under static and dynamic loads can be suitable for
maintenance management and process calibration in order to enhance the equipment
performance, stretch the equipment life span, improve reliability and also avoid potential
human and economical losses.

5.2 Publications
During the writing of this dissertation, the following paper were published, being

indirectly linked to the work here presented:

• Santos, R. A. G. Dos, et al. “Datacenter Thermal Monitoring Without Blind
Spots: FBG-Based Quasi-Distributed Sensing.” IEEE Sensors Journal, vol. 21, no. 8,
2021, pp. 9869–9876., doi:10.1109/jsen.2021.3058513.

Moreover, this work also led to the submission of the following paper, currently
under review:
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• Santos, R. A. G. Dos, Ribeiro, M. R. N., Leal-Junior, A. G., Pontes, M. J., &
Neto, A. F. (2021). "Digital Twins and Augmented Observability: An Architecture
for Oil & Gas Separator Vessels". IEEE Software Journal (submitted).

Lastly, the author presented the following short course, that is directly related to
this dissertation:

• Santos, R. A. G. Dos, Ribeiro, M. R. N., Neto, A. F, Martinello, M., & Par-
davila, M. (2019). "Remote Monitoring and Diagnostics (RM&D): Sensing and IoT,
Communication, Modeling, Data Analytics and Artificial Intelligence". IMOC 2019.

5.3 Future Work
The proposed experimental separator DT has the potential to be evolved in future

works, consisting in deploying its architecture model in edge and cloud environment,
allowing separator’s virtual models optimization and real time dynamic processing for the
synchronization between physical and virtual elements. The edge computing infrastructure
could offer the necessary resources for integrate the experimental separator vessel DT to
the process control system, i.e., TO and TI integration establishment. Thus, the latency
issues with feedback from the architecture model to the control system could be mitigated
allowing its loop to be closed.

A metrological analysis is necessary to be made in order to statistically evaluate
the proposed non-contact density profiling technique by computer vision. Other failure
mechanisms, beyond fatigue in dynamic loads, will be considered, since separator vessels are
subjected to diversified environment conditions in an industrial plant in terms of pressure,
temperature, vibrations and chemical agents. Also, variable amplitude and stochastic loads
will be considered, since the operational regime is non-deterministic for real separators.
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APPENDIX A – Clustering Pseudocodes

Algorithm 1: K-means clustering (Lloyd’s algorithm)
1. Seeding: Choose k seed points c1, c2, ..., ck. Set Jold =∞. Compute the

current k-means cost J using seed points as centers, i.e.
Jcurr = ∑n

i=1 minj d
2(xi, cj)

2. While Jcurr < Jold

a) Voronoi partitioning: Computing the Voronoi partitioning of the data
based on the centers c1, c2, ..., ck. In other words, create k clusters C1, C2,
..., Ck such that Ci = x : d(x, ci) ≤ minj 6=id(x, cj). Break ties arbitrarily.

b) Reseeding: Compute new centers c′1, c′2, ..., c′k, where
c′j = mean(Cj) = 1

|Cj |
∑
x∈Cj

x

Set Jcurr = Jold. Update the current k-means cost Jcurr, using the new
centers.

c) Output: The current set of centers c1, c2, ..., ck.

Algorithm 2: Hierarchical clustering (single linkage algorithm)
Input: An n(n− 1) set of dissimilarities

1. Determine the smallest dissimilarity, dik.

2. Agglomerate objects i and k: that is, replace them with a new object, i ∪ k;
update dissimilarities such that, for all objects j 6= i, k:
di∪k,j = min{dij, dkj}
Delete dissimilarities dij and dkj, for all j, as these are no longer used.

3. While at least two objects remain, return to step 1.
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Algorithm 3: Spectral clustering
Input: Similarity matrix S, number of clusters K

1. Transform S Calculate di ←
∑n
j=2 Si,j the node degrees, for i = 1 : n. Form the

transition matrix P with Pi,j ← Si,j/di, for i, j = 1 : n

2. Eigendecomposition Compute the largest K eigenvalues λ1 ≥ ... ≥ λK and
eigenvectors v1, ...,vK of P.

3. Embed the data in K-th principal subspace Let xi =
[
v2
i v3

i ...vKi
]
∈ RK−1, for

i = 1, ..., n.

4. Run the K-means algorithm on the "data" x1:n.

Result: Output the clustering C in step 4.

Algorithm 4: DBSCAN clustering
Input: DB: Database
Input: ε: Radius
Input: minPts: Density threshold
Input: dist: Distance function
Data: label: Point labels, initially undefined
foreach point p in database DB do do

if label(p) 6= undefined then
continue

end
Neighbors N ← RangeQuery(DB, dist, p, ε) if |N | < minPts then

label(p)← Noise continue
end
c← next cluster label
label(p)← c
Seed set S ← N \ p
foreach q in S do do

if label(q) = Noise then
label(q)← c

end
if label(q) 6= undefined then

continue
end
Neighbors N ← RangeQuery(DB, dist, p, ε)
label(p)← c
if |N | < minPts then

continue
end
S ← S ∪N

end
end
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ANNEX A – Experimental Separator
Vessel’s CAD Design Extractions
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