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Abstract

When the operation of electric power systems is concerned, one may associate security
with predicting a future event, and then be always ready to what may happen in the future.
The number of possible events increases even further when not only single contingencies
are evaluated, but also multiple contingencies. Therefore, one must seek for the balance
between desired security level and practical cost-efectiveness. A critical event that is
not mapped will not be analyzed and might represent an issue in the system’s event
response mechanisms. On the other hand, the screening is vital because the number of
possible contingency scenarios turns impractical to make an exhaustive detailed simulation
approach. One alternative approach to make analyses on power systems is to consider
topological aspects instead of, or even together with electrical information from the systems.
In this case, graph models of the power systems can be constructed and evaluated. In
this dissertation, Graph Machine Learning techniques are evaluated on graph models
constructed from the system data, aiming to classify critical and non-critical transmission
lines. First, a literature review is made, highlighting the main models and methods, which
are then adapted and applied. Then, a set of test systems that are commonly used in
benchmarks is selected for the evaluation step. Three approaches for learning architectures
are proposed, given that the formulated learning problem is not directly treated in the
known literature. The learning approaches are trained for reproducing a known criticality
index for transmission lines in a graph model, and the obtained results are analyzed.
Finnaly, conclusion about the obtained results are made and possible future research

themes are proposed.

Keywords: power systems. security. graph theory. complex networks. graph machine

learning.






Resumo

No que diz respeito a operagao de sistemas elétricos de poténcia, pode-se associar seguranca
a previsao de um evento futuro e, assim, estar sempre pronto para possiveis contingéncias.
O numero de eventos possiveis aumenta ainda mais quando nao apenas contingéncias
Unicas sao avaliadas, mas também miultiplas contingéncias. Portanto, deve-se buscar o
equilibrio entre o nivel de seguranca desejada e o custo associado. Um evento critico que
nao seja mapeado nao sera analisado e pode representar um problema nos mecanismos
de resposta a eventos do sistema. Por outro lado, a triagem é vital porque o niimero
de cenarios de contingéncia possiveis torna impraticavel fazer uma abordagem exaustiva
de simulacdo detalhada. Uma abordagem alternativa para fazer andlises em sistemas
de poténcia é considerar aspectos topologicos ao invés de, ou mesmo em conjunto com
informagoes elétricas dos sistemas. Neste caso, modelos de grafos dos sistemas de poténcia
podem ser construidos ¢ avaliados. Nesta dissertagao, técnicas de Aprendizado de Maquina
em Grafos sao avaliadas em modelos de grafos construidos a partir dos dados do sistema,
visando realizar a classificagdo de linhas de transmissao criticas e nao criticas, com relacao
a contingéncias simples e multiplas. Primeiramente é feita uma revisao da literatura,
levantando os modelos e métodos que serao adaptados e avaliados. Em seguida, um
conjunto de sistemas de teste que sao comumente usados em benchmarks é selecionado para
aplicacao dos métodos de aprendizagem. Trés abordagens para arquiteturas de aprendizado
sao propostas, tendo em vista que o problema de aprendizagem que foi construido, na
forma de classificacdo de arestas, nao é diretamente tratado na literatura visitada. As
arquiteturas foram treinadas para reproduzir um indice de criticidade conhecido para linhas
de transmissao em um modelo de grafo e, ao final, os resultados obtidos sao analisados.
Por fim, conclui-se sobre os resultados que foram obtidos nas estratégias adotada e sao

propostas possiveis pesquisas futuras.

Palavras-chave: sistemas de poténcia. seguranca. teoria de grafos. redes complexas.

aprendizado de maquina em grafos.
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1 Introduction

Since mid 19th century, when they were initially build to provide lighting in urban
areas, the Electric Power Systems (EPS) have grown, not only in size, but also in complexity
around the world. The first EPS to operate in scale aggregated generation, distribution
and loads in a spatially limited urban area, not being able to power a whole district
(ANDRADE; LEAO, 2012). Currently, some EPS cover continental areas, connecting
consumers through several thousands kilometers of transmission lines, being operated to

ensure power stability and quality.

In order to enable such scale of EPS, many devices and technologies have been
developed over the decades. Nowadays, every EPS contains not only generating units,
distribution lines and loads, but a huge set of transformers, reactors, capacitor banks
and protection devices such as circuit breakers, fuses and protection relays (PAPAILIOU,
2021). This increase in the number of devices, together with the growth in scale, makes

the reliable operation of EPS more challenging every day.

1.1 The Need for Electric Power

Electric power is an essential resource for daily life in the modern world. Since late
1990s electric power is already considered an necessity for most activities in a daily routine
(GUY; MARVIN, 1998). More than an ease in people’s life, it has been a key resource
for powering transport systems, communications, food production, hospitals and many
processes that happen to enable life in modern society (ZOHURI; MCDANIEL, 2019).

When there is a threat to the electric power supply, many structures in modern
society are affected. For instance, prices can begin to oscilate due to inflation (VIECELI,
2021), factories may have to interrupt their activities due to preventive power rationing
decisions and social chaos can happen when a lasting power outage occurs, as happened
recently in the northen brazilian state of Amapa, where a transformer short-circuit isolated
the entire state from the interconnected transmission system for 22 days in late 2020s.
During this period, the population suffered with problems in the water distribution system,

food transport and storage and property security issues (G1, 2020; ONS, 2020).

Therefore, as essential as the electric power is for the modern society, also it is
vital to keep the systems that enable the daily use of electric power in normal operation.
However, due to the size and complexity of those systems, meeting this necessity becomes

a challenge.
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1.2 Challenges in EPS Operations

In order to meet the demand for broad electrical power supply, EPS have grown in
size and scale. In order to enable the modern EPS operation, the number of installed ficld
devices, sensors and control applications increase each day. For the Brazilian Interconnected
System’s (SIN) Basic Network (RB), keeping the system with all devices in operation is
nearly impossible. This system has over 3000 installed field devices among transformers,
buses, capacitor banks, reactors and syncronous and static compensators to support more
than 1000 transmission lines, with more than 100,000 km of extension (ONS, 2021).

With a large scale EPS, device failure will occur almost every day. However, it is
not expected that the system suffer a major breakdown every time a device fails. It is
expected that some devices are more critical than others for the entire system operation.
This may happen in the case of a large generating unit, transmission line, or a transformer

that lowers the voltage for an important load.

In the case of failure in such devices, it is expected that the system reacts as
fast as possible to restore the normal operation. However, this cannot be always done by
repairing the damaged device. Some events require the system to recover only through
electrical maneuvers, changing the operation state of other devices to re-enable the supply
for the affected region. This can only happen if a specific study regarding that contingency
scenario has been previously developed, and all the actions that must be taken in that

case are already mapped.

Given the number of devices and transmission lines in modern EPS, it is not practical
to evaluate all possible scenarios and make detailed studies about every contingency that
might occur. This kind of study usually is made through complex simulations, that consider
a great number of parameters and models for the system, and the system expansion alone
makes this approach impractical due to changes in the existing devices and the model
parameters. Therefore, a certain number of scenarios, namely the most critical scenarios

must be evaluated and studied in detail.

1.3 Security in Electric Power Systems

In the context of Electric Power Systems, one can define security for many specific
cases. For instance, when analyzing devices, the security can be associated with robustness,
meaning that the device will not break or enter an defectuous state if the propper
maintanence is made. If analyzing locations, such as substations, security can be associated
with not allowing unauthorized entrance or, if it happens, not allowing the intruder to

make any harmful mancuvers.

When the operation of the EPS is concerned, one may associate security with
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predicting a future event, and then be always ready to what may happen in the future.
For instance, in the morning the amount of power generated by photovoltaic plants may
increase by degrees of magnitude in the time interval of minutes, so a secure operation
would be to already prepare the devices and transmission lines around these plants to be

able to transmit all this power when it reaches the system.

Considering all the aforementioned cases, when dealing with the EPS as a whole,
one can define security as the ability of the power system to withstand contingencies
(BALU et al., 1992). This definition is broad in the sense it admits that contingencies
will occur. Otherwise, it could be rewritten as “the ability of the power system to avoid

contingencies”.

When associating security with withstanding contingencies, obtaining a more secure
EPS becomes a task deeply entangled with having robust and solid contingency plans.
In this context, the power system operators are required to continuosly evaluate their
contingency strategies to ensure the fastest response to a contingency scenario that might
not have happened before. The number of possible events increases even further when not

only single contingencies are evaluated, but also multiple contingencies.

In order to have the most secure EPS as possible, one might suggest to develop
the system to withstand all possible multiple contigencies, but that may be economically
unfeasible. Therefore, one must seek for the balance between desired security level and
practical cost-efectiveness. For normal operation, an EPS with N components is considered
to have moderate security if the outage of any single component does not affect the normal
operating state. This is known as the N — 1 criterion, which is the most used criterion in
contingency analysis (WOOD: WOLLENBERG; SHEBLE, 2013).

Some improvements to the N — 1 criterion have been proposed in the literature, but
besides generalizing the analyzed contingencies to N — k with k& > 1, other modifications
in the way of evaluating the criticality of each contingency have been made, such as the
optimal transmission switching (KHANABADI; GHASEMI; DOOSTIZADEH, 2013) and
the transmission capacity expansion planning (MAJIDI-QADIKOLAT; BALDICK, 2016b;
MAJIDI-QADIKOLAI; BALDICK, 2016a).

1.4 Contingency Analysis

A number of common approaches in evaluating scenarios to be considered in EPS
contingency analysis are based on performance indices (DORAISWAMI; CARVALHO,
1979; EJEBE; WOLLENBERG, 1979), which are non-monotonic functions and can have
unpredictable behavior for multiple contingencies (BULAT; FRANKOVI¢;, VLAHINIE,
2021). Even though the EPS configuration changes in time, the operators have pratical

knowledge about the system’s behavior in many contingency scenarios, and can predict
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which cases may be worth of studying based on which cases were studied earlier.

Although some other criteria may be considered in evaluating the contigency
scenarios, such as the devices that have the greatest rated power capacities, or the ones
nearest the largest power sources, some methods can be found in the literature to rank
the most critical scenarios for a given EPS, such as the sensitivity factors (WOOD;
WOLLENBERG; SHEBLE, 2013), which approximate changes in line flows through a DC
load flow aiming to detect possible overloads in generators and transmission lines. This
initial step, of evaluating the scenarios that will be studied and simulated in detail, is
called the screening step (EJEBE et al., 1996).

The screening step is critical to the contingency analysis and security assessment
of power systems, mainly because it constrains the future study scenarios on a limited
set of contingencies. A critical event that is not mapped in the screening step will not
be analyzed in further simulations, and might represent an issue in the system’s event
response mechanisms. On the other hand, the screening is vital because the number of
possible contingency scenarios turns impractical to make an exhaustive detailed simulation

approach.

As the security assessment of EPS mostly uses the NV — 1 criterion, contingency
screening is also generally made in terms of single contingency scenarios, where the system
operates with a single component in failure state. This criterion by itself already provides
a broad search space for the contingency screening step, where the number of possible

contingencies equals the number of components in the EPS.

However, the number of scenarios becomes even larger when the system operates
with N — k components, with & > 1. These are called multiple contingency (multi-
contingency) scenarios. In order to make a viable evaluation of a multi-contingency scenario,
Yang, Guan e Zhai (2017) developed a method for DC grid security assessment using
Optimal Power Flow by constructing a reduced set of representative constraints based on
the network parameters. This approach enabled the analysis of multi-contingency scenarios
in DC networks, but did not provide a way of ranking the most severe multi-contingencies

or the most critical elements in the system with respect to single and multi-contigencies.

Even though the probability of a multi-contingency (N — k) is much smaller than
a single contingency (N — 1), decreasing with the value of k, one may need to evaluate
such scenarios and, therefore, may have efficient methods to study these cases and rank a

subset of contingencies.

One approach of evaluating and ranking the most severe contingencies and most
critical devices in the EPS was developed using centrality measures from graph theory on
graph models of the EPS. Analyses that are made in graph models are called topological

since the results are obtained by considering the topology of the connections between the
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system’s elements instead of power flow simulations.

In Gorton et al. (2009), Jin et al. (2010), new methods and algorithms for calculating
a previously existing centrality measure, the betweenness centrality, and through this
measure obtaining the most relevant devices in the system, are proposed. These methods
provided speed-ups in parallel computing environments and for specific graph models
of the EPS. In Cetinay, Kuipers e Mieghem (2016), spectral graph theory is used for
estimating sensitivities of electrical variables by line and bus removal. In Wang, Scaglione
e Thomas (2010), modifications on classical graph centrality measures are proposed for

EPS vulnerability analysis.

More than one centrality measure is evaluated in Coelho et al. (2019), where the
betweenness, closeness and current-flow betweenness centralities are applied in the same
critical node and bus exhaustive identification method and the results are compared with
Bompard, Wu e Xue (2011) and Yan, He e Sun (2014), indicating that the method had a

high rate of agreement.

In order to extend the topological contingency analysis to greater networks and to
reduce computation time, an alternative implementation of the proposed method using
metaheuristics was proposed in Coclho et al. (2022), showing a reasonable agreement with

the exhaustive method for a given set of standard test power systems.

In this dissertation, a Graph Machine Learning (GML) approach is evaluated for
solving the contingency screening problem in EPS graph models, for the single and multiple
contingency cases. A known Criticality Index, proposed in Coelho (2019) is considered and
machine learning methods are applied instead of using metaheuristics, as in Coelho et al.
(2022). The considered approaches are based on the formulation of an edge classification
problem, which is not a classical problem in the Graph Machine Learning literature, since
the extensively studied problems are either the node or graph classification (HAMILTON,
2020). The methodology is applied to a set of benchmark test systems and the learning

results are compared to the exhaustive approach from Coelho (2019).

1.5 Objectives

The main objective of this dissertation is to extend the topological multi-contigency
analysis and evaluation method proposed in Coelho (2019) by using Graph Machine Learn-
ing techniques on a formulated edge classification problem. Instead of using metaheuristics,

alternative approaches are proposed using graph embedding and Graph Neural Networks.

The specific objectives can be listed as follows:

e Overview and consider the usage of complex network generation methods for im-

proving the learning methods.
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1.6

Overview and analyze current graph, node and edge embedding techniques for further

steps of the contingency screening methodology.

Define graph for evaluating the methodology and compare the obtained results with

the exhaustive topological contingency screening approach from (COELHO, 2019).

Evaluate different approaches for the contingency screening problem through edge

classification with Graph Machine Learning and other alternative formulations.

Text Organization

This dissertation is organized as follows:

Introduction: makes an overview and contextualizes the contingency analysis

problem and the chosen approach to solve it.

Graph Theory Overview and Graph Models of Power Systems: summarizes
the relevant aspects of graph theory useful for the comprehension of the remaining

text, such as graph transformations and centrality measures.

Graph Machine Learning Fundamentals: makes an introduction to the graph
machine learning resources that are evaluated and used in the proposed methodology

for the multi-contingency analysis.

Methodology: explains the chosen approach and the evaluated alternatives to solve

the problem, together with the chosen test data.

Results: exposes the behavior of the criticality index in the chosen test data and

the obtained results for the learning approaches.

Conclusion and Future Developments: in the final chapter the conclusions are

presented and possible future works are enumerated.
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2 Graph Theory Overview and Graph Models

of Power Systems

In this chapter the basics of Graph Theory are reunited in order to substantiate the
key concepts and results that will be used in further sections of this dissertation. Graph
Theory is a widely resecarched areca in pure mathematics and there are many applications
that are entirely based on graph data models, which are also illustrated in this chapter.
The concepts and results more closely related to Graph Machine Learning are presented in
Chapter 3 and the reader which is more familiar with Graph Theory fundamental concepts
and mainstream applications may skip this chapter. The definitions regarding graph theory
were mainly extracted from Balakrishnan e Ranganathan (2012) and Benjamin, Chartrand

e Zhang (2017), being explicitly cited if otherwise.

2.1 Introduction

The origin of graph theory as a field in mathematics is considered to be in early
18th century, when the Swiss born mathematician Lehonard Euler published the solution
for the contemporary puzzle of The Bridges of Konisberg (EULER, 1736), which now
refers to the city of Kaliningrad, Russia. The problem was to design a route that crossed
every bridge that was built across the Pregel river exactly once, without crossing any
bridge twice. At that time, there was a total of 7 bridges that connect 4 picces of land,
as shown in Figure 1. Euler approached a real problem by extracting an abstract graph
model with the pieces of land as nodes and bridges as edges, connecting them and giving

an rigorous proof that it was not possible to be done in that case.

This approach of abstracting the unnecessary elements from the real world that will
not have any influence in the outcome, such as houses, streets, if there were any squares in
the pieces of land, which one was larger, and so on, was essential for Euler to demonstrate
such simple and comprehensive result. In the end, only the pieces of land and bridges were

considered.

For this dissertation, more relevant than Euler’s result, which now characterizes a
family of graphs, called Eulerian Graphs, is the adopted methodology of simplifying a real
world scenario in existing elements, which are called vertices or nodes, and connections
that represent some kind of similarity or bond between them, which are called edges or

links. This approach leads to the definition of a graph as considered nowadays.

Definition 1 A graph G = G(V, E) is composed of the sets V and E. Elementsv € V are
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called the vertices of G. Elements of E are unordered pairs of elements of V, e = {u,v} € E,
u,v € V', and are called the edges of G.

Figure 1 — Annotations made by Euler in order to abstract the problem only with the
relevant information in the model

Lomment Aead. dixBm VT I25. mfr. /28,

Source: extracted from (EULER, 1736)

This dissertation uses the words vertex and node as synonyms, and well as edge
and link. By definition a graph is a very generic structure. In a great set of problems that
can be solved with graphs, it is common to model the entities with a certain family of
graphs called simple graphs, which are formally defined in Definition 2 and one example is

shown in Figure 2.

Definition 2 (Simple Graph) A graph G = G(V, E) is called a simple graph when the
vertex set V' is non-empty and finite, and the elements of the edge set e € E are made of

distinct vertices e = {u,v} € E, u#v V.

For the simple graph shown in Figure 2 the vertex set is V' = {1,2,3,4,5}, whereas
the edge set is £ = {{1,2},{1,3},{1,5},{2,3},{3,4},{4,5}}. This graph will be kept for
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illustrating other definitions in this section, therefore it will be valuable to have its vertex

and edge sets fully described as above.

Figure 2 — A simple graph following the Definition 2

T~

\

Source: the author

When the constraint regarding the edges of a simple graph is removed, one is
allowed to have edges that relate only to a single vertex. This kind of edge is said to be a
self-loop, or simply a loop. A graph which has a loop is shown in Figure 3. If a graph has a

self-loop, then it cannot be considered a simple graph anymore.

Another way to add edges to a graph that violates the simple graph edges constraint
is adding parallel edges to the same vertex pair. A graph in which a vertex pair has more

than one edge is called a multigraph, which is illustrated in Figure 4.

Figure 3 — A graph with a self-loop in vertex 1

a
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Source: the author
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Definition 3 (Multigraph) A graph G = G(V, E) is called a multigraph when the edge
set E has more than one edge that connects the same vertex pair. Given e, e € E, one

may write e; = {u,v} and eg = {u,v}, u,v € V.

A graph can also contain both self-loops and repeated edges, in which case it
would also be a multigraph. If any of the aforementioned structures are present among the
graph’s edge set, then it cannot be considered a simple graph, and a lot of results from
graph theory cannot be applied in the approached problem. Actually, if it is possible to

construct a consistent model only with simple graphs, it is the preferred solution.

Figure 4 — A multigraph with duplicated edges connecting vertices 1 and 2
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Source: the author

4

In all the above defined and illustrated graphs, the edges connect a pair of vertics
in a symmetric way. If one says that, for a graph G = G(V, E), e = {u,v} € E, then
it can be said that u is connected to v as much as v is connected to u. However, some
applications require modeling of unidirectional relationships, or asymmetrical connections.
In order to cover these models, a certain class of graphs, called the digraphs (short for

directed graphs).

Definition 4 (Digraph) A graph G = G(V, E) is called a digraph when the edge set
E has elements that are defined through ordered pairs or vertices (u,v) € E, instead of

unordered ones.

For the digraph illustrated in Figure 5, which has the same vertex set as the
previously mentioned graphs but directed edges, the edge set could be written as £ =
{(1,5),(2,1),(2,3),(3,1),(4,3), (4,5)}. It would be incorrect to say that (5,1) € E because,

as the edges are directed and written as ordered pairs of vertices, (5,1) # (1,5).
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Figure 5 — A digraph

Source: the author

With the aforementioned graph definitions one can comprehend most graph models
for power systems. As will be described in Section 2.5, there are different approaches for
extracting a graph from the electric diagram. For instance, multiple circuits can be denoted
as repeated edges, resulting in a multigraph, or the edges can be oriented according to the

power flow simulation result.

2.2 Paths and Connectivity

In order to use graphs to model the topology of an Electrical Power System (EPS),
one must introduce topological definitions from graph theory. In a contingency scenario, it
is expected that a contingency in a given device will have greater impact on the device’s
neighborhood than in some distant load. Therefore, in order to introduce the concept of

distance, one must define a walk.

Definition 5 (Walk) Given a graph G = G(V, E), a walk W is a sequence of vertices
W = (v, v, ...,0x) such that, for anyi=1,2,... k—1, the edge e; = {v;,v;41} exists in
G.

Intuitively, if a person is placed in a given vertex v; € V' in a graph G, it can walk
to any vertex that has a connection with vy, namely v5. In a second moment, being in v,,
the person can walk again, going to any other vertex that has a connection with vy, even

repeating v;.

If a constraint on repeating vertices is put, than the walk becomes a path, as

formally stated in Definition 6. The first and last vertices of the sequence are called source
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and destination, respectively. The only exception for repeating a vertex in a path is when

the path is called closed, i.e., when v; = v;. This special kind of path is called cycle.

Definition 6 (Path) Given a graph G = G(V, E), a path P is a sequence of distinct
vertices P = (vy,va, ..., v) such that, for anyi=1,2,...,k — 1, the edge e; = {v;, v;41}

exists in G.

In certain applications some level of redundancy is required, and for modeling
this kind of situation one may define distinct paths. Actually, if two paths P, and P
share the same source and destination, but have a single different vertex in the middle,
then these paths are already distinct ones. However this situation may not reflect the
desired redundancy status. A stronger requirement is the situation on which P, and P, are
disjoint. In graph theory, paths can be vertex-disjoint, when they do not share any common
vertex, or edge-disjoint, when they don’t share any common edge (implicitly, a path can
be defined in terms of the edges instead of the vertices). If a path is vertex-disjoint, than

it is edge-disjoint, but the reciprocal is not always true.

If dealing with a digraph or a graph with repeated edges, both walk and path
definitions hold. Given a graph G = G(V, E) and a pair of vertices u,v € V such there
is a path with v as origin and v as destination, we can say that the vertices u and v are

connected. More generally, this leads to the definition of a connected graph.

Definition 7 (Connected Graph) A graph G = G(V, E) is called connected if, for each

pair of vertices u,v € V', there is a path P,, connecting u and v.

If a graph is not connected, it is said to be disconnected. The graph model of an
EPS should be always connected. If transmission lines are modeled as edges and their
contingencies are modeled as edge removals, contingencies that turn the graph model into

an disconnected graph are expected to be treated as severe ones.

For a given path P C V', the length of P is the number of vertices in P minus one,
i.e., the number of edges that were considered in order to define the path. Using paths

and their lengths one can define the distance between a pair of vertices.

Definition 8 (Distance) Given a pair of vertices u,v € V' that are connected in a graph
G = G(V,E), the distance d(u,v) between u and v is the length of the shortest path that

has u as source and v as destination.

The distance between vertices in a graph is a widely used metric for topological

analysis and characterization. For instance, a simple characterization is done by evaluating
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all the distances between pairs of vertices in a graph and taking the average, which is

called mean distance and the maximum, which is called the diameter.

Another way of characterize a graph is by analyzing the distribution of the vertices
connections in the graph. If there are few vertices with many connected edges and many
vertices with few edges, or if the edges are uniformly distributed among the vertices is
a way of obtaining insights about the graph being dealt with. Formally, the definition

behind this is the degree of a vertex.

Definition 9 (Degree) The degree deg(v) of a vertex v € V in a graph G = G(V, E) is

the number of edges that are connected to v.

The degrees of the vertices in a graph G can be considered themselves a centrality
measure, called the degree centrality. This centrality is based on measuring the relevance of
a vertex by the number of other vertices connected to it. More details about this centrality

and others are given in Section 2.4.

Another important definition in graph theory is the neighborhood of a vertex. There
are two main definition for a neighborhood, which can be a open neighborhood and a closed
netghborhood, as stated in Definitions 10 and 11.

Definition 10 (Open Neighborhood) Let G = G(V, E) be a graph and v € V' a vertex
in G. The open neighborhood of v is the set of vertices N(v) C V that are connected to v.

Definition 11 (Closed Neighborhood) Let G = G(V,E) be a graph and v € V a
vertex in G. The closed neighborhood of v is N(v) = {v} U N(v), the union of the open
netghborhood of v with the vertex v itself.

There are some transformations for extracting properties from graphs. In particular,
the line graph is useful since it switches the vertices and edges in the graph, as defined in
Definition 12.

Definition 12 (Line Graph) Let G = G(V,E) be a graph. The line graph of G is

denoted G' = G'(V', E") and its vertex and edge sets are constructed as follows:

e Fach vertex of G' is associated with an edge of G

e Two vertices of G' are connected if and only if their corresponding edges incide in a

common vertex in G.

Another relevant definition is associated with graph editing. The process of removing
edges from a graph has the possibility of turning a connected graph into a disconnected

one. In this context, an cut set is defined in Definition 13.
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Definition 13 (Cut Set) Let G = G(V, E) be a connected graph. A set of edges e* =
{e1,...,ex} C E is called a cut set if their removal from graph G turns G into a discon-

nected graph. If the set is unitary, e* = {e}, e is called a disconnecting edge.

2.3 Graph Matrix Representations

While being formally defined in Definition 2, graphs have many other ways of
representation. In the area of spectral graph theory, many matrix representation for graphs
were developed, and one of the most direct and comprehensive ones is the adjacency matrix.

Two vertices are called adjacent if they are connected by an edge.

Definition 14 (Adjacency Matrix) The adjacency matric A = A(G) of a graph G

with vertices {vy,vq, ..., v,} is a matriz of order n and entries:

1, if verticesiand jareadjacent
Aij = .
0, otherwise

For the simple graph shown in Figure 2, considering the rows and columns are
ordered following the labels given to the vertices, the adjacency matrix would be as in

Equation 2.1.

011 0 1]
10100
A=11 1010 (2.1)
00101
10010

A common approach while modeling some problem using graphs is adding weights
to connections. If an edge e = {v;, v;} is given a weight w. € R, then one can define an

weighted adjacency matriz, in which the value of a;; = a;; = 1 is replaced by we.

Another common matrix representation in spectral graph theory is the laplacian

matriz, which considers both adjacencies and degrees of the vertices.

Definition 15 (Laplacian Matrix) The laplacian matric L = L(G) of a graph G with

vertices {vy,va, ..., U} s a matriz of order n given by:

where D = D(G) is a diagonal matriz of order n in which the it" entry is the degree of

vertex v;, d;; = deg(v), and A(G) is the adjacency matriz of G.
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For the simple graph shown in Figure 2, the laplacian matrix is in Equation 2.2

3
-1
-1

0
-1

-1
2
-1
0

-1
-1
3
-1
0

—1

-1
0
0

-1
2

Another matrix representation of graphs, which together with both adjacency and

laplacian matrices is widely used in defining centrality measures is the incidence matrix.

Definition 16 (Incidence Matrix) The incidence matric B = B(G) of a graph G with

vertices {vy,vq,...,v,} and edges {e1,ea,...,en} is a matriz of size m by n and given by:

1, ifedgee,;incidesin vertex v;
b;; =4 —1, ifedgee, originates from vertex v,

0, otherwise

In simple graphs, since edges are not directed, a random orientation can be made.
For the simple graph shown in Figure 2, if we make the convention of labeling the edges
(1,3), e3 = (1,5), e4 = (2,3), e5 = (4,3) and eg = (4,5), then

the incidence matrix would be as in Equation 2.3.

following e; = (1,2), e =

-1 1 0 0 O

-1 0 1 0 O
B -1 0 0 0 1 (2.3)

-1 1 0 O

0 -1 1 0

0 -1 1

All the aforementioned matrix representations of graphs are used in the formulation
of many of the centrality measures that are used in this dissertation, as shown in the
following section. More results about the adjacency, laplacian and incidence matrices,
including the description of many eigenvalues of their spectra and their meaning are known

and can be found in Balakrishnan e Ranganathan (2012).

2.4 Centrality Measures

The center, originated from the ancient greek kéntron was used to give meaning to
a little wooden stick, which greeks used to draw a circle by tying up a small woolen yarn.

The stick was at the center of the circle, and became known as kéntron. As it was not
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possible to draw the circle without the stick, the meaning of importance was associated
with the center of something, and from this one can understand the purpose of centrality

measures.

The most classical way of measuring the centrality, or the importance in a graph
was defined for vertices, in terms of the number of connections a vertex has, as mentioned
in Section 2.2. The degree centrality of a vertex is simply the number of edges that connect

to it, sometimes being normalized by n — 1, where n is the number of vertices in the graph.

In Figure 6 one can sce an illustration of the degree centrality for a widely used
reference graph in graph theory, the Zachary’s Karate Club, which was originally used
in Zachary (1977) for describing community structures in graphs. This graph models a
social network of members from a karate club studied by Wayne Zachary from 1970 to
1972, where nodes represents students and two students are linked if they developed some
kind of relationship outside the club. There was a conflict during the study period which
led the club to be split in two, and Zachary predicted the students that would be in each
side of the splits, except for one. This centrality measure clearly points to the vertices
34 and 1 as the most central ones, as the have degrees of 17 and 16, respectively. These
nodes represent the two leaders of each split of the club. The third most central vertex is
33, with a degree of 12, a large drop when compared to the second most central vertex.
Vertices 34 and 1, which have degrees significantly greater than the other vertices in the

graph, and are called hubs.

Figure 6 — Zachary’s Karate Club with vertices colored by their degree centrality. Darker
colors means higher values.

Source: the author
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Another widely used centrality measure, which uses the concept of distance instead

of degree is the closeness centrality, initially proposed in Freeman (1978).

Definition 17 (Closeness Centrality) Given a graph G = G(V, E) with n vertices, the

closeness centrality of a vertex u is given, following Definiltion 8, by

n—1

Clu) —
() Svev\fu} d(u, v)

As for the degree centrality, higher values of closeness indicates higer centrality. As
it is entirely based on distance, the most central vertex in a graph will be the vertex that
is closer to all the others. Figure 7 shows the evaluation of the closeness centrality for the
Zachary’s Karate Club. By evaluating centrality through distances, the vertices closer to
the hubs have greater centrality since they can reach most vertices in the graph through
their connection to the hub, despite the hubs being defined in terms of degrees and not

the closeness itself.

Figure 7 — Zachary’s Karate Club with vertices colored by their closeness centrality. Darker
colors means higher values.

Source: the author

Instead of using the explicit distance from a vertex w to all the others in a graph
(G, one could consider the vertices that appear more frequently in shortest paths. This is
pictured in the betweenness centrality, first published in Freeman (1977), but receiving
modifications for better suiting certain applications, such as in Caporossi et al. (2011).

For the betweenness centrality, there is also an alternative formulation for measuring the
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centrality of the edges, called edge betweenness centrality, with an equivalent formulation
(BRANDES, 2008).

Definition 18 (Betweenness Centrality) Given a graph G = G(V, E) and a vertex
u €V, the betweenness centrality of u is given by

() = Z o(s,t|u)

s.teV U(S’ t)

where o(s,t) is the number of shortest paths with s as source and t as destination and
o(s,t|u) is the number of shortest paths with s as source and t as destination that passes

through verter u.

In Figure 8, the same aforementioned graph is represented with its vertices colored
with respect to their betweenness centrality. When compared to the closeness centrality, at
a first glance it is possible to notice how different the relative centrality is, for example, in
vertices 3 and 32, which were as central as 1 and 34 for the closeness, but are considerably
less for the betweenness.

Figure 8 — Zachary’s Karate Club with vertices colored by their betweenness centrality.
Darker colors means higher values.

Source: the author

The last centrality measure presented in this section, which is also the one whose
definition embbeds more EPS concepts is the current flow betweenness centrality, first
proposed by Newman (2005), soon having its evaluation algorithm improved in Brandes e
Fleischer (2005), when it was proposed its edge equivalent centrality measure, the edge

current flow betweenness centrality.
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In order to define the equation for the current flow betweenness centrality, one
must go through its formulation. A bus v, from a circuit modeled by a graph G, with lines
weighted by R = 1€2, has the current flow betweenness measured by Ceopg(v). The current
enters the circuit from s € V, that is a single source and out to the circuit by a sinking
bust €V \s. A vector b: V — R called supply is the representation of it. Only unitary

currents are considered and b is defined as:

1, V=S
ba(v) = —1, v=t (2.4)

0, otherwise

Considering the direction of current flow, and an arbitrary orientation of these
edges, these oriented edges represents arcs. A set of arcs which is given by E is formed by

the oriented pairs (v, w), where v,w € V', or simply by €.

A vector of electrical currents, defined by x : E— R, satisfies both:

> a(v,w) = Y z(u,v) = b(v), (2.5)

('U,'LU)EE (uﬂ;)@ﬁ
which holds for every v € V and is known as Kirchhoff’s Current Law (KCL), and
k
x(é;) = 0, (2.6)
i=1
which holds for every non-oriented cycle ey, ..., e in G and is known as Kirchhoft’s Voltage
Law (KVL).

By convention, when the current flows in the direction given to the edge e a positive

value is given to x(€), otherwise z(€) has a negative value.

The vector of voltages can be defined as p : E — R with p = x, with only unitary
edge weights. The vector p: V — R, with p(v, w) = p(v) — p(w) represents the absolute
potentials, chosen by assigning the potential of the vertex v; as p;. The vectors were taken

with the st-supply and it is indicated by x4, ps; and pg.

The Laplacian matrix L(G) is used to compute the absolute potentials, which is

the application of Kirchhoff’s Current Law to each vertex in the graph.

Taking the above explanation, a supply b and L(G), it is possible compute the b
vector:

Lp=Db. (2.7)

One can verify that the Laplacian matrix L(G) is singular, since all its rows and
columns sum 0 and 0 must be an eigenvalue. Therefore, one forces the potential in a vertex,

namely p(vy1), to be a known value, for instance 0. By removing the entries relative to v;
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in the vectors p and b, together with the first line and column of L, it is obtained a new
matrix, denoted L. In order to solve the system given in Equation 2.7, one might invert L,

obtaining L~!, and then construct the matrix M as given in Equation 2.8.

0 of
w0 ) o

The absolute potentials can now be obtained since p = Mb. With the obtained
absolute potentials p and the supply vector b, the current x is computed. Then, with these
results it is possible to define the throughput of an vertex v, based on Equation 2.5, as:

1
(o) = (i + X @) 29)
ewee

where e : v € e means that the sum is made for every edge incident on vertex v.

Figure 9 — Zachary’s Karate Club with vertices colored by their current flow betweenness
centrality. Darker colors means higher values.

Source: the author

Definition 19 (Current Flow betweenness Centrality) Taking into account Equa-
tion 2.9, which defines the throughput T(v) of a vertex v, the current flow betweenness
centrality Copp : V — R is defined as:

1

Corslv) = =9

Z Tst('u)' (210)

s,teV

The current flow betweenness centrality is deduced by making an analogy between

a graph and an electric circuit. By not considering only the shortest paths, one can give
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another degree of relevance to vertices that are near the shortest paths. This happens since
the centrality is evaluated as the average node current throughput on unitary electrical
circuit solutions. In Figure 9 the same aforementioned graph is shown, with its vertices
colored with respect to the current flow betweenness centrality. It is immediate to notice
the correlation between the betweenness centrality shown in Figure 8 and the current flow
betweenness centrality, but the difference is also noticed for the vertices with lower values

of centrality.

Table 1 — Comparison of the vertices with greatest values of centrality in the Zachary’s
Karate Club.

| Ranking | deg(v) C(v) c¢p(v) Cerp(v) |

1 34 1 1 1
2 1 34 3 34
3 33 33 34 3
4 3 3 32 33
3 2 32 33 2
6 32 9 9 32
7 4 2 14 9
8 9 14 20 4
9 14 20 2 14

Source: the author

In Table 1 it is shown a comparison among the vertices with the greatest values of
centrality evaluated by each of the centrality measures in this section. From this result
one may conclude, at least for the Zachary’s Karate Club network, that the centrality
measures have a similar behavior with respect to the most central vertices. However, as
shown in Coelho et al. (2019), the chosen centrality measure can have significant influence

in the contigency analysis result.

2.5 Complex Networks and Network Models of Power Systems

2.5.1 Complex Networks and Network Science

Even when one is able to represent real world systems in graph models, another
challenge arises. For a specific given graph, it is possible to evaluate many centrality
measures, but modeling a single network does not give one a characterization of how other

networks that model similar systems might be.

One of the challenges of the area called network science is to build models that
reproduce some topological properties of real networks (BARABASI, 2016). This task
begun even before the research field nowadays known as network science had this name,
with the research of P4l Erdds and Alfréd Rényi on random graphs (ERDOS; RENYT,



42 Chapter 2. Graph Theory Overview and Graph Models of Power Systems

1959).

The model known as Erdés-Rényi (ER) or G(n, m) builds random networks using
the most naive approach: given a network with n nodes, m links will be randomly distributed
among the n(n — 1)/2 possible pairs of nodes. A second model, proposed in Gilbert (1959)
and called G(n, p) became more popular. In this model, given a network with n nodes, to
each of the node pairs, an edge was added with probability p. This became known as the
classical random network model. Figure 10 shows one random graph generated with the
G(n,p) graph model, together with its degree distribution, with is known to follow the

binomial distribution, given in Equation 2.11.

n—1 el
p(k) = ( } )p’“(l—p) o (2.11)

When the network is sparse, i.e. k << n, where k = % * 1 ky is the average degree
of the network, it is common to approximate it’s degree distribution by the Poisson, given

in Equation 2.12.

plk) = e (212

Figure 10 — A generated graph for the G(n,p) random graph model, together with its
degree distribution.
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(a) Graph generated with the G(n,p) graph degree
model for n = 1000 and p = 0.1. Vertex (b) Degree distribution for the generated
size is proportional to degree. G(n,p) graph.

Source: the author

Despite its theoretical richness, the random graph model does not represent most
real world networks, mainly because the interactions are not random (BARABASI, 2016).
Instead of expect the nodes’s degrees to have a binomial distribution, where most are
around the average degree, with very small probabilities of deviating from this value,

by observing real world network models, it was found that there are many nodes with
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small degrees, and few nodes with degrees much greater than the average. This property
was considered an lack of scale, and this was called the scale-free property (BARABASI;
ALBERT, 1999).

The Barabasi-Albert Model (BA) is able to generate scale-free networks which

aims to approximate a power-law degree distribution, described in Equation 2.13.

p(k) = k™ (2.13)

The key concept for generating scale-free networks is the prefferential attachment.
In order to generate a scale-free network with n nodes, the BA model starts with an initial
graph G, iteratively adding nodes with w edges, where the probability of attachment on a
given vertex is proportional to the vertex degree. The approximate degree distribution for

a BA network is given in Equation 2.14.

p(k) ~ 2w’k (2.14)

Figure 11 illustrates a BA network generated with n = 1000 nodes and prefferential

attachment with w = 3 edges added in each iteration, together with its degree distribution.

Figure 11 — A graph generated for the BA graph model, together with its degree distribu-
tion.
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The BA model generates graphs that model many real world networks, such as the
WWW (BARABASI; ALBERT, 1999) and citation networks (LESKOVEC; KLEINBERG:;
FALOUTSOS, 2007). When dealing specificaly with power systems, it has been found

that the preferential attachment hypotesis is not valid when modeling the growth, mainly
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because the large hubs are not found in this kind of system. Some other degrees distributions
such as the power law with exponential cutoff and the stretched exponential, or even the
actual exponential distribution can also fit these networks (BARABASI, 2016).

2.5.2 Network Models of Power Systems

When modeling power systems using graphs, there is a number of considerations
to be made on which elements are relevant to the model and which are not. For instance,
if the vertices are generators or buses and edges are the transmission or distribution lines,
the direction of the power flow in the lines in normal operation can be used to embbed
additional information in the edges, resulting in a digraph, such as made in Bompard,
Pons e Wu (2012), which also weighted the edges by the magnitude of their equivalent
impedance, and called this an “electrical distance”. In the same work, an extension for the

betweenness cetrality, called “electrical betweenness centrality” is proposed.

In Pang e Kezunovic (2011), the EPS is also modeled as an directed graph, using
the direction given in the power flow result, but the lines are not weighted and the classical
betweenness centrality is used. The directed model is enforced as being more coherent
when analyzing steady state systems in Dwivedi e Yu (2013), which uses an alternative

maximum flow approach to evaluate vulnerabilities.

However, not all graph models of power systems are based in digraphs. In Nasiruzza-
man e Pota (2014), an undirected graph model is used for studying extensions of traditional
centrality measures for electrical applications. In Pagani e Aiello (2013), a survey is made,
containing directed and undirected models with weighted and unweighted elements. More
recently in Chu e Iu (2017), another survey is made, again enforcing the use of undirected

models when applying centrality measures.

One of the results presented in the aforementioned surveys is the characterization
of power systems as graphs through the usage of complex networks models. For this task,
the node degrees are evaluated and a statistical distribution is fitted, in order to picture
how the connections are made in the system. In Pagani e Aiello (2013), most power system
models were fitted to either power law degree distributions or exponential distributions.
As stated in Barabasi (2016), the exponential degree distribution is related to the lack of

preferential attachment, whereas the power law degree distribution reflects its presence.

For the Brazilian Interconnected System (SIN), a simple graph model was extracted
considering vertices as substations (buses) and transmission lines as edges. All voltage
levels were considered. The data used for constructing the graph is available in ONS (2022).
The resulting graph model and its degree distribution are represented in Figure 12. As
one can verify in the degree distribution, there is a faster decay in the probability for

hubs when compared to power law networks, meaning the BA graph model would not
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Figure 12 — The constructed graph model for the Brazilian Interconnected System (SIN),
together with its degree distribution and the fitted exponential curve.
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be suited for modeling the SIN graph. However, some variations of the BA graph model
which consider vertex removal might be suited for modeling the SIN graph, since their

degree distribution can range from power law to exponential (BAUKE et al., 2011).

2.6 Summary

The graph theory has plenty of resources for modeling a wide range of problems
in present day. In the case of power systems analysis, there are many forms of obtaining
graph models for the underlying system, such as considering the power flow direction, the

different kinds of connection between electric devices, and so on.

For the contingency analysis problem, the developed graph models have recurrently
considered centrality measures to formulate the decision process, with the betweenness

centrality and its generalizations having a distinct role among the other measures.

In this dissertation, in order to apply learning techniques for the graph models of
power systems, given the reduced amount of available real-world data and that for training
most deep learning techniques a large amount of data is nedded, graph generation models

must be considered.

For what can be seen from the liteature and for the built model for the SIN graph,
the popular BA model does not give a good fit in terms of degree distribution for most
power system graphs. However, some variations of the BA model which regulates the

preferential attachment can be applied, since the given degree distributions approximate
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the exponential.

In the next chapter, an introduction to the graph machine learning techniques is
made. Some classical methods for dealing with graph data are shown, being compared to

the most recent literature results.
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3 Graph Machine Learning Fundamentals

When dealing with conventional serial or tabular data, machine learning techniques
have notorious success, being widely publicized and applied both in research and real world
applications. These conventional techniques usually take as input well-structured data and
apply pattern recognition strategies. However, when one has to deal with relational data,
the number of available techniques decreases dramatically, most being recently developed
(HAMILTON, 2020). In this chapter, the fundamental problems of dealing with graph data
with conventional machine learning are presented, together with some approaches and

techniques from the literature, which are used in the proposed methodology in Chapter 4.

3.1 Machine Learning on Graphs

Machine learning problems are often categorized based on the type of task they
seek to solve. When the goal is to predict a target output in unknown test data, based
on given training data, it is called a supervised task. On the other hand, when the task
is to infer patterns in the data, such as clusters, the task is said to be unsupervised. On
graphs, these usual categories are mostly not informative, and the learning tasks are said
to be self-supervised, since that the graph topological structure is used for training, even
if not all the vertex labels are known (NICKEL et al., 2016). Three of the fundamental
tasks of machine learning in graphs are introduced in the following: node classification,

link prediction and community detection.

3.1.1 Node Classification

Let G = G(V, E) be a graph where each vertex u € V is assigned to a label y,,
which can be a class, an attribute or any other property. If only a subset of vertices have
their labels known, called the training set Vi .inn C V, the node classification task is to

determine the labels of the remaining vertices in the graph.

It is usual that only a small subset of vertices have their labels known in a graph,
as for classifying the topic of documents referenced by hyperlinks in web graphs or
papers in citation graphs (KIPF; WELLING, 2016) and for the role of proteins in an
interactome (HAMILTON:; YING; LESKOVEC, 2017a). This task appears to be, but is not
a straightforward variation of the classical supervised classification. First, the samples, or
the vertices, are not independent from each other, breaking a series of assumptions taken in
most methods. Second, it is not possible to ensure that the labels are identically distributed,

frequently leading to unbalanced problems. One key concept that is behind many of the
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successful methods for node classification is to exploit homophily, the tendency for vertices
to share attributes and influence their neighbors (MCPHERSON; SMITH-LOVIN; COOK,
2001). In the particular object of study for this dissertation, applying this concept to
graphs that model power systems would mean that buses that are immediately connected

to critical buses tend to be critical.

3.1.2 Link Prediction

The second classical problem when dealing with graph data is the link prediction.
As with node classification, the graph G may have missing data, such as the labels of
the vertices that had to be obtained, sometimes the graph that represents the underlying
network may have some links missing. Link prediction has been applied in many areas,
such as content recommendation in social networks (YING et al., 2018) or inferring facts
in relational databases (BORDES et al., 2013).

Given a graph GG with an incomplete edge set Fy..,, C E, the goal of link prediction
is to use this incomplete information to infer the missing edges. For graphs which model
only one kind of relation, such as social network graphs, there are simple heuristics that
can reach good performance (LU; ZHOU, 2011). The link prediction task can also vary
among the prediction object, which can be the missing edges of a single graph or across
multiple disjoint graphs (TERU; HAMILTON, 2019). For this dissertation, the power
systems databases are closely analyzed and studied, so the probability of existing missing
link information in the data is low. However, instead of predicting the existence or not of
some link, one might be interested in predicting one link’s attributes or classifying the

link in some given classes, such as critical and non-critical links.

3.1.3 Community Detection

For as much as both node classification and link prediction tasks can be seen as
analogs of classical machine learning supervised tasks, community detection can be seen

as the analog of unsupervised clustering for graph data.

Networks inherently have clusters, being them the areas of knowledge in a knowledge
graph, a common circle of friends from the university on a social network, or even diseases
with similar symphtoms in a disease interactome. The task is to identify the communities
of vertices only using the graph topology. More formally, the task is, given a graph
G = G(V, E), determining the partition of V' that best suits in the graph data. It means
that each vertex u must be put on a subset V,, C V of the vertices that belong to the same
community if « shares a number of characteristics with the remaining vertices in V,,. Some
real world applications of community detection are to identify fraudulent groups of users

in transaction networks (PANDIT et al., 2007) and extract functional modules in genetic
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networks (AGRAWAL; ZITNIK; LESKOVEC, 2018).

3.2 Node Embeddings

A fundamental process of learning with graph data is to define an embedding for
the vertices of a graph, or even for a graph itself. An embedding of a node u in a graph
G is a projection of u in a low-dimensional latent space R that summarizes its position

inside G, where nodes that are similar to u are close to its projection in the latent space
(HOFF; RAFTERY; HANDCOCK, 2002).

The notation used to define the embedding techniques that are used in this text
consider a graph G = G(V, FE) with adjacency matrix A and an optional matrix of node
attributes X € RV where |V] is the size of the vertex set, i.e., the number of vertices
and d € N is the number of node attributes supplied for the embedding process. The goal
is to use the existing information from both A and X to map each node, or subgraph, to
a vector z € R where d << |V|. Most methods do this task in an unsupervisied method,
without making use of the downstream machine learning task that the embeddings will
be used for. However, some methods optimize the embeddings to give the best results on
a certain task, such as node classification or community detection, which are said to be

supervised learning embeddings.

3.2.1 Encoders and Decoders

In the first years of research in node embeddings there were developed a diversity
of notations and models, which lead to issues in understanding and comparing models.
In order to make an overview of the existing approaches, Hamilton, Ying e Leskovec
(2017b) developed a general framework to organize the embedding methods, called the

encoder-decoder framework.

The encoder and the decoder are two key mapping functions. The encoder’s role is
to map each node to a low-dimensional vector that holds structural information of the
node and it’s neighborhood, i.c., the nodes connected to it and how they are connected.
The decoder is able to extract the relevant information for the specific machine learning
task for each node from its embedding vector. More formally, the encoder is a function

that maps nodes v; to low-dimensional vectors z; € R?, given in Equation 3.1.

ENC:V — R? (3.1)

The decoder is another function, which accepts sets of embeddings and decodes
specified graph statistics. For instance, a simple decoder can predict the existence of edges

between nodes, given their embeddings, or might predict the community that a node
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belongs. Most works make use of the basic pairwise decoder, which is defined in Equation

3.2. This decoder maps pairs of node embeddings to a real node similarity measure.

DEC :R? x R — R (3.2)

The goal is to optimize the encoder-decoder process so that the reconstruction
error is minimized, which means that the entire or most part of the structural information
contained in the graph is recovered after the embedding process, as denoted in Equation

3.3, where s¢(v;,v;) is a similarity measure in graph G, applied to nodes v; and v;.

DEC(ENC(v;), ENC(v;)) = DEC(2;, 2;) = sa(vs, v;) (3.3)

The canonical example is when the similarity measure is set to the adjacency
relation, where sg(v;,v;) = 1 if v; and v; are adjacent, and 0 otherwise. In any case, the
embeddings are learned by minimizing a loss function £ over a subset of vertex pairs T,
as in Equation 3.4, where [ : R x R — R is a loss function defined by the user, which

measures the discrepancy between the estimated and true values for the similarity.

L= > I(DEC(zz),sc(vi,v;)) (3.4)
{viw;}eT

Most embedding approaches are said to be shallow embeddings. This kind of
embedding allows the encoder function to be written as a simple “embedding lookup”, as
in Equation 3.5, where Z € RVl is a matrix with all the embedding vectors and v; is a
one-hot indicator vector (values 1 on the i-th coordinate and 0 elsewhere) for selecting
the column associated with v;. These approaches are inspired by matrix factorization
techniques, and more recent developments, called Graph Neural Networks, are not included

in this group.

ENC(v;) = Zv; (3.5)

3.2.2 Factorization-Based Embeddings

The embeddings described in this section are called factorization-based embeddings
because, averaging over all vertices, their loss functions are optimized, approximately, in
the form shown in Equation 3.6, where S is the matrix containing the pairwise similarity

measures: s; ; = Sg(v;, v;).

L~||Z"Z - S|; (3.6)
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One of the earliest embedding techniques for graphs was developed in the context of
computer vision. Despite the complete algorithm included a step for constructing a graph
from a set of data points extracted from images, the Laplacian eigenmaps (LE) technique
can still be used if the graph is already known (BELKIN; NITYOGI, 2002). The embedding

process can be summarized as a solution for the generalized eigenvector problem.

Given a graph G where its edges are weighted and denoting by w;; the weight of
the edge that connects vertices v; and v;, the diagonal weighted matrix Dy, which is a
generalization of the diagonal degree matrix used in Definition 15, is defined in Definition
20. The weighted adjacency matrix, which is the adjacency matrix for weighted graphs, is
defined in Definition 21.

Definition 20 Let G = G(V, E) be a simple graph with vertices v; € V., i € {1,...,n}
and weighted edges e,, € E. Let w, € R be the weight of edge e, € E. The diagonal
weighted matriz Dy, € R™™ is such that its entry d,(v;), associated with vertex v;, is

valued by sum of weights of edges that incide on v;.

Definition 21 Let G be a simple graph with vertices u,v € V and weighted edges e,, € E.
Let w € R be the weight of edge e, € E. The weighted adjacency matriz Ay € R"™" is
such that the value of entry a,(u,v) is the weight of the edge that connects vertices u and

v, being 0 if the vertices are not connected by any edge.

The generalized laplacian matrix for weighted graphs is given by Ly = Dy — Aw
and the embedding is obtained by solving Equation 3.7. If yo,y1,...,yr_1 are the solutions

of Equation 3.7, the embedding for vertex v; in the lower-dimensional space R? is given by

Zi = (}’1(2), cee 7yd(z>)

The decoder for the LE technique can be written as in Equation 3.8 and the
loss function in Equation 3.9. These results are obtained in the formulation of the LE
methodology as proposed in (BELKIN; NIYOGI, 2002).

DEC(z;, %) = ||z — %]l (3.8)
L= > DEC(z,z)-sa(vi,vj) (3.9)
{vi,vj}ET

It is relevant to observe that the pairs of vertices can receive any real weight, which

means that the true value of the similarity measure, expressed by the weighted adjacency
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matrix W, can be any real attribute specific for the application. Figure 13 shows the result

of the embedding using LE for the Zachary’s Karate Club graph.

Figure 13 — Zachary’s Karate Club graph with node embeddings generated using the
Laplacian Eigenmaps method.
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Another technique for node embedding that is frequently cited in the literature is
the high-order proximity preserved embedding (HOPE), which belongs to a larger group
of embeddings, called inner-product methods (OU et al., 2016). Among this group, the

decoders can be written in the form of an inner-product, as in Equation 3.10.

DEC(z;, %) = 21 (3.10)

The HOPE approach aims to preserve a property called asymmetric transitivity,
present in digraphs and which pictures the differences in path lengths for a given pair
of vertices when the source and destination are commuted. The equation for the HOPE
embedding writes the learning problem in a very standard way for factorization methods,
as shown in Equation 3.11. S is the matrix for the similarity measures, which is called
proximities in the original proposition of the method. Z*, Z* € R"*? are the embedding

matrices for a graph with n nodes and embeddings with dimension d.

min||S — Z°- 2" ||% (3.11)

In (OU et al., 2016), closed forms for writing the S matrix are proposed for a given
set of classical similarity measures, such as the number of common neighbors, the Katz
Index (KATZ, 1953) and the Adamic-Adar Index (ADAMIC; ADAR, 2003). Figure 14
shows the embedding using the HOPE approach for the Zachary’s Karate Club graph.
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Figure 14 — Zachary’s Karate Club graph with node embeddings generated using the
HOPE method.
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3.2.3 Random Walk Embeddings

Despite the progress in defining methods for embedding that produce a low recon-
struction error and are able to encode the structural information of a node in a graph, all
factorization-based embeddings employ deterministic measures of similarity. On recent
years, a lot of methods that use stochastic measures were developed by using random walks
in graphs, as these approaches promised to be more scalable. For the methods that are
cited in this section, it is necessary to define a random walk, which is done in Definition
22.

Definition 22 (Random Walk) Given a graph G = G(V, E) and a vertex v; € V, a
random walk rooted at v; is denoted W,,. It is a stochastic process with random vari-
ables W), , W2 ..., WE .. WE such that Wit is a vertex chosen randomly from the

netghborhood of sz We can denote WSL, =v;. I is the length of the random walk.

The standard random walk is also known as unbiased random walk, which is a
random walk following the stated in Definition 22. However, the process of choosing a
vertex from the neighborhood of v does not have to be done with uniformly distributed
probabilities. Some neighbord might have a grater chance of selection than others, what
it said to be a bias in the selection process. The distribution of probabilities for vertex
selection in a random walk is called a random walk strategy. Random walks that are made

following a strategy different from the random selection are called biased random walks.
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One of the first successful methods to deliver good performance and scalability in
the embedding was the deepwalk approach (PEROZZI; AL-RFOU; SKIENA, 2014), which
was developed in a context of embedding social network graphs. The embedding method
was inspired in language modeling techniques, which tried to predict the probability of
a given word showing in a context, given the words that are already present. In this

¥d s initialized randomly, with the

approach, the embedding look-up matrix Z € RIV
entries being updated each iteration by using stochastic gradient descent. The loss function
for computing the update is a variant of the softmax function, which approximates the
probability pg(vj|v;) of visiting a given node v; in a random walk rooted in v;, called
hierarchical softmax. The equations for the deepwalk method in the encoder-decoder
framework are shown in Equations 3.12 and 3.13 for the decoder and the loss function,
respectively. In these equations, 7' is a training set generated by sampling random walks

starting from each node.

T
eZL- Zj
DEC(z;, z;) = —— ~ pc(vj|vi) (3.12)
vV e%i
L= > —log(DEC(z,z)) (3.13)
{Ui7’l}j}ET

Instead of evaluating the sum in the denominator of Equation 3.12, deepwalk uses
an approximation called hierarchical softmax, which consists in assigning the vertices
visited in the random walk to the leaves of a binary tree and computing the probabilities
and products from paths in the tree (MNIH; HINTON, 2009). This approximation reduces
the complexity of evaluating Equation 3.12 from O(|V|) to O(log|V]). Figure 15 shows
the node embedding for the Zachary’s Karate Club using DeepWalk.

Another embedding method, which is also based on random walks is the node2vec
(GROVER; LESKOVEC, 2016). Coming from the same language modeling background,
there are many similarities between node2vec and deepwalk, except for two main differences.
First, the walks in node2vec are biased by input parameters that control how far from
the root node the walks tend to go, called the in-out parameter p, or how much the

neighborhood of the root node is revisited, called the return parameter q.

Also, instead of using hierarchical softmax to approximate the softmax func-
tion, node2vec uses another strategy from language processing called negative sampling
(MIKOLOV et al., 2013). Equations 3.12 and 3.13 also describe well the node2vec embed-
ding method in the encoder-decoder framework. On its publication, node2vec outperformed
most shallow embedding methods from the state of the art, including ones based in fac-
torization methods and the deepwalk. Figure 16 shows the Zachary’s Karate Club graph

with embeddings evaluated using node2vec.
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Figure 15 — Zachary’s Karate Club graph with node embeddings generated using the
DeepWalk method.
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Figure 16 — Zachary’s Karate Club graph with node embeddings generated using the
node2vec method.
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All of the aforementioned embedding methods were developed to evaluate the
optimal embeddings only looking at the graph’s structure. This means that the embedding
methods are agnostic to which machine learning task will be evaluated with the embed-

dings, which might not capture the desired information in some learning tasks. Also, the
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embedding methods do not make use of an embedding that was evaluated for a given
vertex in the evaluation process of the embedding of another vertex, which turns to be
computationally inefficient. However, shallow embeddings are still very useful since a whole
set of classical machine learning techniques can be applied to the node embedding data

once the embedding is done.

The following section introduces a different framework for accomplishing the
embedding task by optimizing the embedding together with the machine learning task,
the Graph Neural Networks.

3.3 Graph Neural Networks

The aforementioned embedding techniques are approaches to learn low-dimensional
shallow embeddings of nodes in a graph. However, these embeddings are not learned while
of the classification or regression task that has to be accomplished, or considering any

external feature information that might help to solve the problem.

Graph Neural Networks (GNNs) are a general framework for defining neural
networks in graph (or relational) data. The goal is to learn representation of nodes that
are not a simple look-up embedding and consider both structural information from the

graph and additional feature information.

A first obstacle for defining neural networks in graph data is that graphs cannot
be represented in a canonical way with structured data (or the problem of embedding
would not be a problem). If one tries to use common neural networks such as convolutional
neural networks (CNNs) - by inputting the adjacency matrix of the graph - and recurrent
neural networks (RNNs) - by inputting a serialization of the edge list - the output of the

networks would change by a simple relabeling of the nodes, what should not happen.

Although the fundamental GNN models can be motivated in a number of ways,
such as a generalization of convolutions (BRUNA et al., 2014), a common framework for
understanding most GNN models will be introduced, where the nodes communicate a sort
of vector messages, updating their internal state using neural networks (GILMER et al.,
2017).

3.3.1 Neural Message Passing Framework

For the description of the framework and the different kinds of RNN, the notation
will be as follows: given a graph G' = G(V, E) with a set of node features X € RVl the

goal is to learn node embeddings z,,u € V. The formulation of the framework follows the
notation from (HAMILTON, 2020).

To each node a hidden embedding h{¥ is defined, where v € V and k is the iteration
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number of the learning process. The embedding information is updated with information

from node u’s open neighborhood N(u). The iterative process is shown in Equation 3.14.

hE+ = UPDATE® (b, AGGREGATE™ ({h(, v € N (u)})) (3.14)

The UPDATE and AGGREGATE are arbitrary functions, with the constraint

to be differentiable (for example, neural networks). It is common to denote mg\lﬁzu) =

AGGREGATE® ({n® v € N(u)}), which is called the message aggregated from u’s
neighborhood. The role of the AGGREGATE function is to summarize the information
from all the nodes in u’s neighborhood. The summarized information is then combined
with the current hidden embedding A{®) of u through the UPDATE function. The initial
embeddings are set to the input features of each node h(®) = z,,, u € V. After K iterations of
message passing, one can use the hidden embeddings to define the actual node embeddings,

as in Equation 3.15.

2 =h ueVv (3.15)

One of the most popular tasks which GNNs are used for is node classification. For
this task, a subset of nodes Vi C V of a graph G = G(V, E) is selected for training in a
supervised manner. A one-hot encoded vector y, € Z°¢ is defined for each vertex v € V|
where ¢ is the number of classes. The classification is done by using a softmax function
and a negative log-likelihood loss as in Equation 3.16, where z, is the embedding of node
v and w;, w; € R? are trainable parameters. The loss minimization is usually done using
stochastic gradient descent (RUMELHART; HINTON; WILLIAMS, 1986).

ezgwi
j:

L= Y —log(softmax(z,,y,)) = > —log iyv(i)

S WTai'n 'Uev},ra,in

When applying GNNs for link prediction, the usual approach is to model edge
features as a combination of pairwise node feature, such as addition, average or dot
product. For the loss function, since link prediction can be seen as an special case of
binary classification, the most common option is using binary cross entropy, which is a
special case of Equation 3.16 with 2 classes (SCHLICHTKRULL et al., 2018). For graph
classification tasks, the same loss function is used, but applied to graph-level embeddings,

denoted zg.

For node classification tasks, which are the case of this dissertation, the graph
neural networks are commonly compared in citation datasets with nodes being papers,
labeled based on the paper topic (BOJCHEVSKI; GUNNEMANN, 2018). One of the most

used datasets is Cora, which was built from an online portal of computer science research
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papers. It contains 19793 nodes with 8710 features each, 65311 edges and the nodes are
labeled according to the paper topic (MCCALLUM et al., 2000). Edges represent citations.
The goal is to consider only a subset of paper topics to predict the topics of the remaining
ones. Usually a subset of the entire graph is used for evaluating and benchmarking GNNs,
such as in (YANG; COHEN; SALAKHUDINOV, 2016), with 2708 nodes with 1433 features
each and 10556 edges. There are 7 paper topics in the dataset, which results in a multi-class
classification task. Figure 17 shows the Cora network subgraph, together with the nodes

colored by class.

Figure 17 — Cora citation network subgraph commonly used for benchmarking in node
classification.

(a) Cora citation network subgraph with node (b) Cora citation network subgraph with node
sizes proportional to degrees. labels colored according to their classes.

Source: the author

3.3.2 Graph Convolutional Networks

One widely applied GNN model is the Graph Convolutional Network (GCN), which
can be viewed in the message passing framework in Equation 3.17. In this equation, both
AGGREGATE and UPDATE functions were summarized in a single one by considering
the closed neighborhood N (v). Moreover, the aggregation of neighborhood information is
done using a trainable weight matrix W and a normalization with respect to the geometric
mean of the size of the neighborhoods N(v) and N(u). The hidden embedding update
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uses a sigmoid function o.

k) = o (W(’“) 3 o ) (3.17)

weN (U} [N (V)| N (u)]

Given the requirement of differentiability, the GCN uses very simple operations
in both AGGREGATE and UPDATE functions. Despite this fact, the GCN can obtain
decent results in a number of benchmarks (KIPF; WELLING, 2016). Figure 18 shows
the node embeddings extracted from the GCN trained for node classification in the Cora
dataset, which achieved 81.5% of accuracy. The dimensionality reduction from the chosen
embedding dimension d = 128 to 2, for visualization, was done using the t-SNE method
(MAATEN; HINTON, 2008).

Figure 18 — Visualization of the node embeddings produced using a GCN for node classifi-
cation in the Cora dataset, with nodes colored according to their classes.
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Source: the author

3.3.3 Graph Isomorphism Networks

In the opposite direction of the AGGREGATE and UPDATE simplicity from
the GCN, Xu et al. (2018) develops a theoretical analysis for determining the most
representative class of GNNs. The analysis results in a class of “maximally powerful”
GNNS5 that learn the most representative functions by defining a Multi-Layer Perceptron
(MLP) neural network in the UPDATE step. The authors still propose an architecture
called the Graph Isomorphism Network (GIN), which can be defined in the message passing
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framework as in Equation 3.18, where € is a trainable parameter, commonly set to 0.

R (RO R ) 319

ueN(v)

3.3.4 Relational Graph Neural Networks

The two aforementioned GNN structures, despite being able to consider directed
graphs, cannot make use of any information of multi-relational graphs or heterogenous
graphs. One of the first approaches to consider information from the graph edges, such
as edge features, is known as the Relational Graph Neural Networks (RGCN). In this
approach, Schlichtkrull et al. (2018) define an aggregation function that contains one
trainable matrix per relation type, such as in Equation 3.19, where R is the number of
relation types in the graph, N, (v) is the neighborhood of node v considering the relation
type r and ¢, , is a normalization constant that can be defined in a number of ways, mainly

considering some operation over the node degrees.

1

P>

reRueN, (v) Cor

k=D p k=) 4 Wék_l)h,(k)) (3.19)

The main downside of the RGCN is that the number of trainable parameters grows
significantly when compared to the other GNN models, as the learning structure size is
proportional to the number of relation types in the graph. Together with the proposition of
the RGCN, the authors already propose a parameter-sharing scheme where the learnable
matrices W~V are written in terms of a set of basis matrices, reducing the number of

total parameters in the model.

3.3.5 Graph Attention Networks

To add another layer of complexity to the aggregation process and inspired on
the application of attention mechanisms in sequence processing, Velickovi¢ et al. (2017)
introduced the Graph Attention Networks (GAT). The aggregation step in GATs uses
attention weights a, ,, to each neighbor u of node v, defining a weighted average to aggregate
information, instead of a simple average, as in Equation 3.20. The attention weights are
also trained in the learning process, computed as in Equation 3.21, where a € R*? is
a trainable attention vector, W is a trainable matrix and & denotes the concatenation

operation.

AP = o ( 3 av,uWhg’@) (3.20)
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3.4 Summary

The application of classical machine learning techniques on graphs can be done in a
variety of approaches. The first step is to represent the graph elements in a structured way
using an embedding technique. After having succesfully obtained an embedding for the
graph, one might apply classical machine learning algorithms for classification or regression

of the graph elements or the graph itself.

However, it is possible to go even further and, instead of obtaining the embeddings
based on the graph structure or a given feature matrix, one might be able to train a Graph
Neural Network (GNN) for obtaining the best embedding for doing the desired learning

task, being that classification or regression.

In this dissertation, as part of the contingency analysis process consists on evaluating
the possibly most critical contigencies in a graph model for an EPS, which can be framed
as an binary (or possibly multi-class) classification problem, the Graph Machine Learning

techniques can contribute in a relevant way to deliver consistent results.

In the next chapter, the proposed methodology for approaching the contingency
analysis problem is described. The reference model from (COELHO, 2019) is considered,
while making some modifications to the criticality measure. An exhaustive method is

considered as the ground-truth for the learning methods to approximate.
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4 Methodology

In this chapter the methodology for the application and evaluation of Graph
Machine Learning (GML) in the screening of possibly critical contigencies in power
systems is introduced. More than one formulation of the screening problem is made,
through classical topological embedding such as node2vec and GNN methods such as
Graph Convolutional Networks (GCN). The learning is made upon a reference criticality
index, which is computationaly expensive and not feasible for evaluation in large systems.
The role of this index is to express the relevance of a line or a bus in a single or multi
contingency scenario. For this dissertation, the considered criticality measure is the sum of
differences in the Current Flow Betweenness (CFB) Centrality for the simple graph model
of the power system as proposed in Coelho (2019). However, for learning purposes, other

indices could be used.

4.1 Criticality Index and Contingency Screening

For evaluating the criticality of transmission lines in possible single and multi-
contingencies, Coelho (2019) propose the sum of the absolute differences in the CFB for
the power system graph and the graph with the element of interest removed, or the edited

graph.

In the following, the methodology is introduced for the cases of single and multi-
contingencies of transmission lines, which is the scope of this dissertation. The case of
contingencies in buses is not treated in this text. More formally, given a connected graph
G = G(V,E), let Cs(v) be the CFB for vertex v € V in the power system graph G. If
one denotes by G \ e¥, e¥ C E the graph obtained by editing G with the removal of edge
set ¥ where |e¥| = k € N, then the CFB for vertex v in the edited graph is given by
Ce\er(v). In this context, G\ ¥ is considered to be connected. If it is not, then the edge
set e¥ is immediately critical and should be treated separately. The absolute variation of

the considered centrality measure, the CFB, is given in Equation 4.1.

ACIG\ ](v) = [Caner (v) — Ca(v)] (4.1)

In order to obtain the most critical single contingencies, one should make £ =1
and then edge sets with single elements would be evaluated. For obtaining one value that

defines the contingency for the entire graph, it is worth to define the Contingency Impact
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C1 of an edge set e as the sum of the AC for every vertex v € V, as in Equation 4.2.

CI(e") = > ACIG\ ¥ (v) (4.2)
veV

When analyzing single contingencies, each edge is associated with one possible
contingency. However, for values of £ > 1, the same edge may be involved with multiple
events. Therefore, it is not possible to evaluate the impact of a single edge in multi-
contingencies through C'I. For addressing this issue, Equation 4.3 defines the Global
Impact GI(e) for an edge e € E as the sum of all Contingency Impacts CI(e*) for which
the edge sets e* contain edge e. As previously stated, if any of the edge sets removal
disconnects the graph, then it is not considered in the calculation and should be treated
separately. Therefore, only the edge sets e* whose removal does not disconnect graph G

are used in the computation of G 1.

Gl(e)= > CI(e" (4.3)

eCE, ecek

For k =1, i.e., when analyzing single contingencies, GI(e) = CI(e). However, for
k > 1, the Global Impact G1(e) is an index of the criticality of a given edge e with respect
to k-contingencies. With the above definitions one may already rank the most and the least
critical lines with respect to multi-contingencies. However, the last step in the methodology
proposed by (COELHO, 2019) is normalizing the values of GI to the range [0, 1], which
are denoted g¢i, by dividing by the greatest value among all the edges, as in Equation 4.4.
Then, thresholds are stablished for defining critical, non-critical and regular edges. The
chosen thresolds, that presented good results when compared to previous methodologies
in a set of test systems are gi(e) > 70% for considering an edge e critical and gi(e) < 20%
for considering an edge non-critical. The remaining edges, for which 20% < gi(e) < 70%

are said to be reqular.

GI(e) — mingep{GI(e)}

maxoe n{GI(0)] — min,ep{GT(e)) (44)

gi(e) =

As originally formulated, the methodology gives three classes for the edges of a
graph, either critical, non-critical or regular. For this dissertation, the methodology will
be adjusted so that the classification problem that will be formulated in the following
becomes a binary classification. Thus, only the upper threshold of 70% is considered and
the existing classes are critical and reqular edges. This is done because the objective of
the learning methodology is to classify possibly crtitical edges, with the non-critical ones
not being much relevant in this context. The process of obtaining gi(e) for an edge e of a

graph G is summarized in Algorithm 1.
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Algorithm 1: Obtaining the normalized criticality index gi(e)

Data: Simple graph G, contingency order k
Result: Normalized criticality index gi(e) for every edge e of G
Compute every subset of edges with k elements e C E(G);
Compute the current flow betweeness centrality C(v) for every vertex v of G
foreach ¢* do
if G\ ¢* is connected then

foreach v € V(G) do

CG\ek (U);
L ACIG\ €"](v) = [Caner (v) — Ca(v)] ;

CI(e") = Lyev AC[G \ €¥(v);

else
|_ Continue;

Compute the global impact;

G[(e) = ZeCE, ecek C[(ek)’
N GI(e)—min.cp{GI(e)}
gl(e) - maxeeE{Gl(e)}*ernEineeE{GI(e)}

4.2 Formulation of the Screening Problem with Graph Machine

Learning

The Contingency Screening problem for lines consists in evaluating the lines that
could lead to adverse operational conditions on their absence, which are called critical lines.
Therefore, since every edge is labeled as critical or non-critical (regular), the contingency
screening can be seen as en edge classification problem in the graph model of the power

system.

However, as mentioned in Chapter 3, the GML approaches were developed to
learn on graph based on node embeddings. More specifically, the GNN architectures are
formulated for solving either the node classification or the link prediction problems, and
no direct approach for the edge classification problem was found in the literature. Mainly,
graph models are supposed to be made with the nodes as the elements of interest and the
links are the connections between these elements. Despite some GNN architectures such
as the RGCN being able to deal with multigraphs, the link types are previously defined
and used as input for a classification task on the nodes. Meanwhile, the link prediction
task requires the assumption of an incomplete graph model, and the outputs are possibly

existing edges, and therefore are not made for classifying already existing edges.

For dealing with the absence of GML models for edge classification, a couple of
alternatives are developed, as detailed in Section 4.3. Mainly, either the edge embeddings
are obtained through a commutative operation on the node embeddings or the classification

is made in the line graph of the power system graph model.
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The edge classification task in the contingency screening problem has an unbalanced
nature. From a large set of edges, the goal is to identify the most critical ones, that could
lead to severe outages in the power system. Therefore, it is expected that the number of
critical edges is much less than the total number of edges in the graph model, leading to

an unbalanced binary classification task.

For the unbalanced classification problem, the adopted strategy is to balance
the training set. The balancing strategy is the random under-sampling. For the node
classification task, given a graph G = G(V, E) with |V| = n, if the nodes are divided
into classes V7 and V5 such that |Vi| = ng, |Vo| = ne and ny + ny = n, one defines
Nmin = Min{ny, no}. If the desired training split is p%, then the same ratio is sampled
from the class with least nodes, obtaining a number of training nodes for the rarest class
| min - %] . The other class have the same amount of nodes sampled, in order to balance

the training node set with the same number of elements on both classes.

4.3 Proposed Approaches

4.3.1 Classification on Generated Embeddings (CGE)

The first evaluated approach for the edge classification on the power systems graph
models was using the node embeddings generated without any GNN, but with shallow
embedding techniques. The chosen technique was the node2vec, since it is known as the
state of the art for shallow node embeddings. The node embeddings were converted into
edge embeddings by using the element-wise product operation, i.c., given the embeddings
21, 20 € R? for nodes vy, vo € V, respectively, the embedding for the edge e = {vy,v,} is
given by z. = 21 * 25, where % denotes the element-wise product operation. The process of

obtaining the training, validation and testing datasets is shown in Algorithm 2.

Algorithm 2: Obtaining the dataset for the CGE approach
Data: Simple graph G, criticality label for each edge y.
Result: Pairs in the form of (z,y.), where z. is the edge embedding and y. the
criticality label for edge e € E(G);
Compute the node embeddings z, with node2vec for every vertex v € V(G);
foreach v € V(G) do

| 2z, = node2vec(v)

Compute the edge embeddings z, with the inner product of its vertices embeddings;
foreach e € E(G) do
| ze = 21 % 2o, where e = {v1, 05}

Associate each edge embedding z, with its label y,;

Since the node2vec method only generates embeddings, the classification task relies

on conventional machine learning classifiers, which are applied in a set of samples in
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R and trained against a set of labels, obtained via the exhaustive method described
previously in Section 4.1. The selected classification method is the Random Forests from
Breiman (2001), since there is no known result about the distribution of the criticality
indices and the embeddings can be high-dimensional. This approach will be reffered to as
CGE throughout the text.

4.3.2 GNN Node Classification in the Line Graph (CLG)

The second evaluated approach is to use a conventional node classification GNN
architecture applied to the line graph of the power system graph model. Since each node in
the line graph is associated with an edge in the power system graph model, classifying the
nodes in the line graph can be seen as classifying the edges in the model graph. However,
the edges in the line graph represent the existence of nodes that are shared by the edges,
which is usually greater then number of edges in the model graph. Additionaly, the greater
number of nodes and edges in the line graph tends to slow down the training of the GNN
methods in this approach. Algorithm 3 demonstrates the process of obtaining the dataset
for the CLG approach.

Algorithm 3: Obtaining the dataset for the C'LG approach
Data: Simple graph G, criticality label for each edge v,
Result: Pairs in the form of (¢v/,y,/), where v’ is the vertex in the line graph
associated with edge e and y,, the criticality label for vertex v';
Compute the line graph G’ of G;
Denote by v’ the vertex in V(G') associated with edge e € E(G) ;
Define the classification label for each vertex in the line graph;

foreach v' € V(G') do
L Yo = Ye

All the vertices (v') now have labels (y,/) for training a GNN classifier;

Since GNNs rely on learning the node embedding together with the classification
step, some initial embedding must be given to the graph model. For defining the initial
embeddings, one might consider a number of conventional graph measures that intuitively
tend to facilitate the classification process. However, the influence of the initial embeddings
tend to be small in the final result, so the common practice is to randomly initialize the
embeddings for all nodes and let the GNN learn the best embeddings. This approach will
be reffered to as C'LG throughout the text.

4.3.3  GNN Regression on the Line Graph (RLG)

The third and last approach for the transmission line classification problem is an
indirect approach for obtaining the critical and regular edges by estimating the criticality

index. A GNN architecture is trained for a regression task on the line graph of the power
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system model graph, where the target values are the criticality indices on each node. This
approach requires evaluating both the regression and the conclusion of the classification
done with the estimated values for each criticality index. This approach will be reffered to
as RLG throughout the text, and the process for obtaining the dataset for this approach

is shown in Algorithm 4.

Algorithm 4: Obtaining the dataset for the RLG approach
Data: Simple graph G, criticality index for each edge gi(e)
Result: Pairs in the form of (v, y,/), where v is the vertex in the line graph
associated with edge e and ¥,/ the regression target for vertex v’;
Compute the line graph G’ of G;
Denote by v’ the vertex in V(G’) associated with edge e € E(G) ;
Define the regression target for each vertex in the line graph;
foreach v' € V(G’) do
| Yo = gile)
All the vertices (v') now have targets (y,s) for training a GNN for regression;

4.4 Evaluating the GML Application

The proposed approaches are applied to the test systems described in Section
5.1. For each system, each approach is evaluated for single contingencies (k = 1) and
multi-contingencies up to k£ = 4. A number of hyperparameters is tested for each approach,
ensuring that the obtained results are actually reflecting the learning capability of the

proposed architecture.

For each combination of hyperparameters, multiple training tasks with different
random cmbedding initializations are made, in order to evaluate the relevance of cach
parameter in the architecture instead of mistaking the obtained values due to lucky

embedding initializations.

For scoring the binary classification task, classical classification metrics are used.
For the following definitions, a positive sample will be associated with a critical line,
whereas a negative sample will be associated with a regular line. In the next equations T'P
represent the number of true positives, i.e., the critical lines that are predicted as critical.
TN if the number of true negatives, i.e., the regular lines that are predicted as regular.
Similarly, F'P and F'N are false positives and false negatives, respectively, which represent

the lines that are predicted in a wrong manner.

The accuracy is probably the most required metric of a classifier, but is not enough
to ensure that the learning was properly done. Specially in the task of classifying lines as
critical or regular, which is an imbalanced classification task, high values of accuracy can

be obtained by simply classifying all samples as belonging to the most frequent class.
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For preventing this kind of conclusion, another set of classical metrics is used. The
first is the F'1-score, which is defined using two other metrics, the precision and the recall,
which are defined in Equations 4.5 and 4.6. The FI-score is defined in Equation 4.7.

TP
P iy — 4.
recision = s (4.5)
TP
= ——F—Fr 4.
Recall = 75 FN (4.6)

Precision - Recall
Fl1=2 4.7
Precision + Recall (4.7)

All the above defined metrics take values in the interval [0, 1], where greater values
means better performance. The precision requires that the classifier has a low rate of false
negatives, whereas the recall requires that the classifier has a low rate of false negatives.
The F1-score is the harmonic mean of Precision and Recall, only assuming values close to

1 if the classifier has low rates of both false positives and false negatives.

For the regression approach, the evaluation is done in two steps. First, the capacity
of predicting the correct values of the criticality index for each line is evaluated through
regression metrics, which are defined in the following. Then, the predicted values are used,
together with the 70% threshold to determine the critical and regular lines, which follows
an evaluation using classification metrics. For the regression step, the considered evaluation
metric is the R?, which is defined in Equation 4.8. In the definitions, the test set is denoted
by {v1,...,yn} and the predicted samples by {@1,...,9n}. The average of the test set is

denoted by g, which correspond to the baseline regressor that always outputs the mean.

N 52
z':l(yi —?J)

4.5 Summary

In this chapter, the adopted methodologies for the contingency screening and the
application of GML to the screening task are explained. Finnaly, the metrics that are used
for scoring the learning architectures are defined. In the next chapter, the results of the
application of the above described approaches are shown, together with the proposal of

improvements for the learning architectures and the applied criticality index.
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5 Results

In this chapter, the results of the described methodology applied to the test systems
are shown. In the beginning of the chapter, the test systems are described. Then, the
behavior of the criticality index on each test system is analyzed and the distribution
of the indices gi(e) are shown. Following, each of the approaches are shown separately,
highlighting the architectures and the evaluated hyperparameters. Each of the test systems
is evaluated for single and multi-contingencies up to k = 4. After, the approaches are
compared for each test system considering the best set of hyperparameters. In the end,
some analysis and considerations are made about the adopted criticality measure and the

results obtained by each of the learning approaches.

The developed code for evaluating both the global impacts gi(e) and the GM L
analysis is available in <https://github.com/rjmalves/k-contingency-screening> and

<https://github.com /rjmalves/gnn-contingency-analysis>, respectively.

5.1 Test Systems

For evaluating the learning of criticality index though GML, a set of test systems
is used, which are commonly considered when proposing methodologies for power system

analysis. For each test system, different training and testing data splits are evaluated.

The first considered system is an 11-bus model of a designed system for transfering
generated power from Itaipu generating facilities in Parana River from Southern Brazil
along 800 kV long transmission lines, extracted from (EJEBE; WOLLENBERG, 1979).
Previous reliability analysis in this system indicated that voltage problems might occur
after the loss of critical lines, which was assessed through power transfer reduction. For
this reason, the system was filled with synchronous condensers and reactors in order to
balance reactive power, and was considered a good option for the power transfer issue in

the region.

Other test systems that are used in the evaluation of the methodology are the
IEEE Bus Test Systems, which are widely used for evaluation of new methodologies in
sensitivity and power flow analysis. IEEE 39 Bus is known as New England power system,
which contains 10 generators and 46 transmission lines and is shown in Figure 20 together

with its graph model.

IEEE 57 Bus and 118 Bus are approximations of the American Electric Power
system in early 1960s. The IEEE 300 Bus is a synthetic power system which was developed
by IEEE for test purposes. All the test systems, together with their graph models are
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Figure 19 — ITAIPU 11 bus single line diagram and graph model.
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(a) ITAIPU 11 bus single line diagram. (b) ITAIPU 11 bus graph model.

Source: (EJEBE; WOLLENBERG, 1979) (diagram) and the author (graph model).

Figure 20 — IEEE 39 bus single line diagram and graph model.
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(a) IEEE 39 bus single line diagram. (b) IEEE 39 bus graph model.

Source: (ATHAY; PODMORE; VIRMANTI, 1979) (diagram) and the author (graph model).

shown in Figures 21, 22 and 23.

5.2 The Criticality Index on the Test Systems

5.2.1 ITAIPU 11

The ITAIPU 11 test system is an 11-bus system with 15 lines. It is a small test
system with respect to the number of buses and lines, since most real world EPS have

hundreds or thousands of buses and lines.

Figure 24 shows the ITAIPU 11 test system with critical edges colored as orange
and disconnecting edges colored green and dashed. Edge widths are determined by their
criticality. The edges considered as critical differ significantly when comparing single and
multiple contingencies. For k = 1, edges {6,8}, {7,9} and {9,10} are considered critical
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Figure 21 — IEEE 57 bus single line diagram and graph model.

(a) IEEE 57 bus single line diagram. (b) IEEE 57 bus graph model.

Source: (CHRISTIE, 1993c) (diagram) and the author (graph model).

Figure 22 — IEEE 118 bus single line diagram and graph model.

(a) IEEE 118 bus single line diagram. (b) IEEE 118 bus graph model.

Source: (CHRISTIE, 1993a) (diagram) and the author (graph model).

following the methodology from (COELHO, 2019). For k = 4, completely different edges

are considered critical, mostly in the highly connected part of the graph, such as edges

{3,5} and {6, 7}.

This is a consequence of the criticality index formulation. For computing the global
criticality gi(e) of and edge e through the exhaustive method, only the non-disconnecting
sets of removals are considered. Therefore, since the edges considered critical for k = 1

mostly disconnect the graph for higher values of £, when they are removed simultaneously,

their global criticality for multiple contingencies receive a lower score.
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Figure 23 — IEEE 300 bus single line diagram and graph model.

(a) IEEE 300 bus single line diagram. (b) IEEE 300 bus graph model.

Source: (CHRISTIE, 1993b) (diagram) and the author (graph model).

Another consequence of the formulation of the Criticality Index is that edges which
connect to degree 1 vertices are never considered for evaluation, since their removal always
disconnect the graph. For the ITAIPU 11 test system, this is the case of edge {10, 11}.

Therefore, only 14 of the 15 edges are considered in the classification.

Figure 24 — Criticality Index and critical lines on the ITAIPU 11 graph model.

Source: the author.

Given that the formulated classification problems in approaches CGE and CLG
are imbalanced, as highlighted in Section 4, it is important to analyze the degree of
imbalancement of the lines among the critical and regular classes. This task is done

through the distributions of the criticality indices, shown in Figure 25. As one can see, for
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the ITAIPU 11 test system, with £ = 1 and k = 2 there are 3 critical edges. For k = 3 and

k = 4, the number of critical edges increase to 6 and 5, respectively.

Figure 25 — Distribution of the Criticality Index gi(e) on ITAIPU 11.
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5.2.2 IEEE 39

The TEEE 39 test system is significantly larger than the ITATPU 11, with 39 buses
and 46 lines. In Figure 26, critical edges are colored as orange, whereas disconnecting
edges are colored green and dashed. Edge widths are determined by their criticality. One
can see that the edges {14, 15} and {15, 16} are considered critical for all k. Edge {16, 17}
is critical for £ = 2 and k = 3, whereas {17,27} is critical only for k = 1. There are edges

that are critical in multi-contingency scenarios but are not critical in single-contingencies,
such as {2,3} and {4,5}.

The distribution of the Criticality Index for IEEE 39 is shown in Figure 27. As
in the ITAIPU 11 test system, the number of critical edges following the 70% threshold
from the methodology and the distribution of the criticality index itself change with the
value of k. For £ =1 and k = 2, 4 edges are considered critical. For £ = 3 and k = 4, the

number of critical edges increases to 8 and 6, respectively.
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Figure 26 — Criticality Index and critical lines on the IEEE 39 graph model.

o e S
° >.\/.\.’\/"_.\.\ ./.>.\ /0\.\/"—.\‘\
@ . o 'y ® ®
1D \ N
Qx—x.. © PY
‘““.\*’.\.II—-.’ ‘\./0~.I . ~o/0>.l_o"\./o- |
[ Snd ~¢ ¥ ~o’
- e ‘ ® L ‘
. ® ¢ @ .
° -
" -
(a) k=1 (b) k =2
L ‘ ® ®. . ®
./ >.\ O\.\/. \‘\ ./ >.\ /0\.\ @ 0\‘\
@ @, @ @,
\././ \‘-—-.i\/. \ /./ \.-—.’\/‘
(R .,,.\I .,o/\ ® I. ® = .,,.\I o—° o | o
! /‘/f o<.7‘ ! /‘/f \o<.7
. ° P . ° PS
@ @
(¢) k=3 (d) k=4
Source: the author.
5.2.3 |EEE 57

For the IEEE 57, with 57 buses and 78 lines, there is a significant difference between
the edges considered critical for k = 1 and k = 2 when compared to £k = 3 and k = 4, as
can be seen in Figure 28. Critical edges are colored as orange, while disconnecting edges
are colored green and dashed. Edge widths are determined by their criticality. For single
contingencies and k = 2, a large number of critical edges is located in the less dense region
of the graph, namely the edges {24,25}, {24,26}, {26,27} and {28,29}. Some edges that
are critical for & = 3 are not considered critical for and k& = 4, namely edges {22, 23},
{22,38} and {37,38}. Actually, the number of critical edges decreases with k. For k from
1 to 4, the number of critical edges is, respectively, 10, 10, 5 and 3.

The distribution of the Criticality Index for the IEEE 57, shown in Figure 29 has
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Figure 27 — Distribution of the Criticality Index gi(e) on IEEE 39.
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a distinct characteristic when compared to both ITAIPU 11 and IEEE 39 test systems.
Despite the variation in the number of critical edges, the distributions have a similar shape
for all k. A large number of edges have criticality close to 0 and the frequency decreases

as the criticality increases.

The IEEE 57 is the first evaluated graph in this dissertation that shows a similar
distribution of the Criticality Index for single and multiple contingencies. Even with such
similarities in the distribution, the constant 70% threshold results in a considerable different
number of critical labels when approaching the classification problem since, despite some

edges are critical for all k, the number of critical edges varies as k increases.

5.2.4 |EEE 118

For the graph model of the IEEE 118 test system, as can be seen in Figure 30, the
same edges are considered critical for all values of k. Critical edges are colored as orange,
while disconnecting edges are colored green and dashed. Edge widths are determined by
their criticality. Edges {23,24} and {38,65} are the only critical ones in the entire graph,
which contains 118 buses and 179 edges.

One can notice an emerging pattern regarding the number of critical edges in the
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Figure 28 — Criticality Index and critical edges on the IEEE 57 graph model.
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test systems. For larger graphs, a smaller percentage of the edges is considered critical.
While for the ITATPU 11 test system 6 of the 15 edges are critical for k = 3, in the IEEE
118 only 2 out of 179 edges are considered critical. This is an important factor, since the
imbalancement in the classification problem leads to difficulties in training the classifier,

which will not learn to properly differentiate the existing classes.

Figure 31, which illustrates the distribution of the Criticality Index for the IEEE
118 graph, shows another emerging pattern in the used test systems. The shape of the
distribution changes even less with the values of £ when compared to the IEEE 57 graph.

Also, a larger portion of the edges have lower criticality values. For instance, more than
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Figure 29 — Distribution of the Criticality Index gi(e) on IEEE 57.
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100 of the 179 edges have criticality below 10%.

The imbalance in the frequency of the lower criticalities when compared to the
greater criticalities tends to be an obstacle to the application of learning techniques in
this context. As it will be shown in the following sections, for the test systems with only 2
critical edges, as random under-sampling is used for treating the imbalance during the
training phase, the learning techniques are trained with only 2 edges and applied to the

remaining ones.

In this context, it is reasonable to expect difficulties for adjusting the architecture
and the hyperparameters of the learning techniques to ensure the maximum information

extraction from a small number of samples.

5.2.5 |EEE 300

For the IEEE 300, some patterns that emerged while analyzing the IEEE 118 graph
are still present. As can be seen in Figure 32, only 3 edges are considered critical, namely
the {54,123}, {122,123} and {116, 119}. As the IEEE 300 graph has 300 buses and 409
lines, the imbalance in the edge labels is even more noticeable than in the IEEE 118 graph.
The classification task for the IEEE 300 tends to be challenging, since the training will
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Figure 30 — Criticality Index and critical edges on the IEEE 118 graph model.
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only be done with 1 or 2 edges of each class, resulting in a total of 2 or 4 edges.

The distribution of the criticalities for the IEEE 300 graph is shown in Figure 33.
As for the IEEE 118 graph, the shape of the distributions have little change with the
values of k.

For all the evaluated cases, around 250 edges have criticality below 10% and
approximately 50 have criticality between 10% and 20%. Given the total number of edges
in the graph is 409, more than 75% of the edges have criticality below 20%.

Given the observed emerging patterns, a couple of conjectures can be made. First,
for large graphs, the multi-contingency screening following the methodology described in
Chapter 4 tends to reach the same results of the single-contingency screening, i.e., the

value of k£ does not matter for determining critical edges. In this scenario, the problem
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Figure 31 — Distribution of the Criticality Index gi(e) on IEEE 118.
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could be solved by inspecting only single contingencies.

A second conjecture is associated with the imbalanced nature of the classification
task. For large graphs, the distribution of the Criticality Index is such that the frequency
is monotonic decreasing with the criticality. In this context, large scale EPS graphs tend
to result in more imbalanced classification problems, beign an obstacle for the application
of GML for contingency screening using the Criticality Index from (COELHO, 2019).

5.3 Learning Approaches Applied to the Test Systems

5.3.1 Architectures and Evaluated Hyperparameters

In this section, the results of the application of the learning approaches proposed
in Chapter 4 are shown. A preliminary analysis of hyperparameters was made, and the

chosen architectures and hyperparameters are shown in the following.

Every set of hyperparameters had 50 fitted models for each of the approaches, and
the average values of the respective classification and regression metrics were considered.
For all the tables in this chapter, the results are presented in the form of AVG £+ STD,
where AV G is the average value among the 50 fitted models and ST'D is the standard
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Figure 32 — Criticality Index and critical edges on the IEEE 300 graph model.

Source: the author.

deviation of the respective metric for the 50 samples. The architectures described in the
following text are the ones whose hyperparameters provide the best results. Every approach
was trained for different training splits, i.e. the ratio of nodes that were used for training.
Since the classification tasks are heavily imbalanced, instead of showing the fraction of
nodes used in the training, the explicit number of edges belonging to the critical class that

were considered for the training set are presented.
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Figure 33 — Distribution of the Criticality Index gi(e) on IEEE 300.
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As mentioned in Chapter 4, given that random under sampling is used to attenuate
the effect of the imbalancement, each training set contained the same number of samples
of each class. For example, if 2 critical edges are used in the training step, 2 regular edges
are randomly chosen to compose the training set. For the approach RLG, since it is a
regression task, the fraction of used nodes and the results are shown in terms of the actual

training split among all the nodes in the test graphs.
For approach CGE, the considered hyperparameters are shown in Table 2.

For approach C'LG, a 3-layer GCN architecture with dropout was chosen. After
each GCN convolutional layer, the ReLLU activation function was applied, followed by
a dropout, except on the last convolution, which gave the resulting embedding. The

considered hyperparameters are shown in Table 3.

For approach RLG, the regression architectures consists of a 4-layer GCN with
2 GCN convolutional layers followed by a 2 linear layers. After each convolutional and

linear layers the ReLLU activation function is applied. The considered hyperparameters are
shown in Table 4.
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Table 2 — Hyperparameters for the CGE approach

Name | Value
node2vec
Embedding size d 128
Walk length [ 10
Context window size k 10
Walks per node r 10
Negative samples 1
Walk bias parameters p and q 1
Learning rate 1072
Epochs 200
Random Forest

Number of trees 100
Split quality metric gini
Tree depth limit 00

Source: the author

Table 3 — Hyperparameters for the C LG approach

Name Value

Num. of GCN layers 3
Activation function | ReLU

Dropout rate 50%
Embedding size d 128
GCN hidden unis 64

Learning rate 1073
Epochs 200

Source: the author

Table 4 — Hyperparameters for the RLG approach

Name Value
Num. of GCN layers 2
Num. of linear layers 2
Activation function | ReLU
Embedding size d 32
GCN hidden unis 32
Learning rate 1073
Epochs 100

Source: the author

5.3.2 ITAIPU 11

The ITAIPU 11 test system is previously known to be a small network when
compared to most real EPS graph models. Given that GNN applications are mostly done
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in large graphs as the Cora citation network shown in Chapter 3, it is expected that the
learning approaches might have some issues in extracting the relevant information due to

the lack of samples.

Table 5 — Classification results for the ITAIPU 11 test system with the CGE approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 37.9+£11.8 30.8 + 8.7

2 46.5+15.3 16.7 4+ 22.7
k=2

1 31.6 £14.2 29.74+9.8

2 421+ 154 15.5+20.5
k=3

1 46.3 = 15.1 59.7 £ 10.0

2 61.5+18.2 55.5 +24.7

3 59.7 £ 18.5 61.2+16.7
k=14

1 43.8 £ 17.7 52.7+11.3

2 65.1 +16.0 56.0 +22.0

Source: the author

Table 5 shows the results from the application of CGE approach to the ITATPU
11 graph model. As can be seen, the CGE approach was able to reasonably extract
information for classifying the nodes of the line graph of ITAIPU 11. For £k = 3 and k = 4,
where the total number of critical edges raised from 3 to 6 and 5, respectively, the F'1-score
for the critical class was able to hit 61.2 and 56.0 in average, which were considered good

results.

The CGE approach does not use any topological information for the classification
process, since the embedding step is done separately. The C'LG approach does the embed-
ding and classification in a single step using a GCN architecture. Table 6 shows the results
for the critical line classification in ITAIPU 11 test system using the C'LG approach. It
is possible to note that the best average values for every k are significantly greater than

respective values in the CGE approach.

The RLG approach, which consists in a regression task for the criticality index,
did not provide good results. Table 7 shows the results for the ITAIPU 11 system only
for the 50% training split, which was the greatest evaluated split. The negative R? values
shows that the GCN regression could not reproduce the trend in the data.

In general, CGE and C'LG approaches were successful in extracting information
for the ITAIPU 11 test system. However, one relevant aspect of these results are that the
classification task for the ITAIPU 11 is not highly imbalanced, since the graph contained

15 edges, from which only 14 are valid for removal, since one turns the graph into a
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Table 6 — Classification results for the ITAIPU 11 test system with the CLG approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 63.1 +20.5 47.8 +25.2
60.3 £ 19.8 459+ 234
k=2

1 44.5 £15.2 33.2+13.3

2 425+ 15.8 31.7+16.7
k=3

1 54.2+9.1 64079

2 55.7£8.4 63.5 = 10.3

3 56.7 = 8.6 63.6 £10.4
k=4

1 55.1+104 58.7 £ 8.5

2 53.5 £ 11.5 57.7£11.3

Source: the author

Table 7 — Regression results for the ITAIPU 11 test system with the RLG approach

Train Split | R?

k=1

50% [ -05+£1.2
k=2

50% [ -0.8+1.6
k=3

5% | -1.0+1.6
k=4

50% | —04+08

Source: the author

disconnected one. The case with & = 3, which reaches the highest F'l-score for the critical

class, has 6 critical edges, which represent around 40% of the total.

5.3.3 IEEE 39

For the IEEE 39 test system, Tables 8 and 9 show the results for the application of
CGFE and C'LG approaches, respectively.

Both CGE and CLG approaches continue to produce good results as for the
ITAIPU 11. The C'LG approach obtains better results for the F'1-score of the critical class,
except for k = 4. For this graph, it is important to highlight that the classification task is
significantly more imbalanced than for the ITAIPU 11 graph. For £ =1 and k£ = 2, only 4
edges are considered critical by the Criticality Index, which represents only 9% of the 46
edges of the graph.
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Table 8 — Classification results for the IEEE 39 test system with the CGE approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 2444104 16.9+4.4

2 428 +11.0 17.74+9.0
k=2

1 25.44+£98 172+ 4.3

2 43.0 +£10.1 15.7£9.7
k=3

1 34.1+10.1 386 £6.6

2 49.0 £ 9.0 33.1+12.7

3 53.7+£10.0 33.3+£13.8

4 52.8£10.9 35.0£13.6
k=4

1 28.3 £10.0 26.8+5.1

2 45.7+12.3 25,5 £ 11.3

3 39.8 +£11.6 23.6 7.8

Source: the author

Table 9 — Classification results for the IEEE 39 test system with the C'LG approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 40.7+ 134 245+ 78

2 43.5 £10.7 20.8£6.8
k=2

1 33.6 +11.2 19.3+6.8

2 37.3+£13.1 16.4 £8.4
k=3

1 448+ 94 40.5 £8.1

2 56.5 +11.7 46.3 £10.8

3 29.7T £ 8.7 47.14+9.5

4 60.3 +11.9 489 +11.3
k=4

1 33.6 +11.2 19.3£6.8

2 32.2£10.5 18.5+£5.9

3 374+ 13.6 15.7+ 8.9

Source: the author

The RLG approach again fails to produce significant results, as shown in Table
10. Even with the training split of 50%, which means to use 23 edges for training the
regression task, the R? remains close to 0 with negative average values, meaning that the

architecture is not able to learn the trend of the data.
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Table 10 — Regression results for the IEEE 39 test system with the RLG approach

Train Split | R?

k=1

50% | —0.5+0.5
k=2

50%0 | —0.6+04
k=3

50% | —0.5+04
k=14

50% | —04+04

Source: the author

5.3.4 |EEE 57

For the IEEE 57 test system, Tables 8 and 9 show the results for the CGE and
C LG approaches, respectively. Both approaches follow each other in terms of the evaluated
scores. The C' LG approach is able to achieve better results in most cases, such as the best
results for £k = 1 and k& = 2. The critical F'1-scores are greater for the CLG approach.
Also, the critical F'1-score achieves reasonably better results for k = 1 and k& = 2, since the
number of critical edges for this system, which are 10 for both k values mentioned earlier,
drop to 5 and 3 for £k = 3 and k = 4, respectively. For this graph, the imbalancement takes
a fundamental role in preventing the achievement of good results in the application of

these learning approaches.

The RLG approach still fails to produce significant results, as shown in Table 13.
The R? also tends to be closer to 0, and the prediction now tends to have no correlation
with the true criticality values. These results can be explained by the distribution of the
criticality indices in the graph. Since the IEEE 57 is the first evaluated test system on
which most values tends to be closer to 0, as shown in Figure 29, the predicted values tend
to smaller values, minimizing the absolute and square errors. However, the R? allows one
to ensure that this does not mean the learning is being done succesfully, and the predicted

values are close to random.

5.3.5 IEEE 118

The TEEE 118 test system, as shown previously in this chapter, continues to display
the patterns that emerged on the IEEE 57 system for the criticality indices. For the results
obtained by the learning approaches, the system also displays the same trend announced
in the IEEE 57 system, but the classification approaches CGFE and C'LG reach their worst
values among all the test systems. Since the approaches use random under sampling for
balancing the training set and there are only 2 critical edges for all values of k, all the

models for this test system were trained with only 2 edges in the training set, being 1
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Table 11 — Classification results for the IEEE 57 test system with the CGE approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 26.4+9.2 206 +-4.3

2 43.1 £ 7.8 18.2 £ 8.5

3 38.7£8.8 20.1£5.2

4 456+ 7.3 16.2 £ 8.0

D 40.4+94 16.3 £6.7
k=2

1 26.2+104 21.7+ 3.8

2 44.74+9.1 20.9 £8.0

3 34.2+£9.7 18.9 £4.7

4 469+ 6.6 17.2 £ 8.2

) 42.8 + 7.3 16.5+6.5
k=3

1 20.9 £ 10.5 10.3+29

2 40.5+ 9.8 9.8+6.3

3 39.4+£8.1 8.3+£59
k=4

1 19.3 £9.7 6.1+1.5

2 39.1 + 8.7 5.2+£438

Source: the author

regular edge and 1 critical edge. As can be seen in Tables 14 and 15, the F'l-scores display

the lack of learning for the models with such reduced training sets.

For the RLG approach, the errors also follow the same trend from the results for
the IEEE 57 test system. Since the Criticality Index distribution from Figure 31 is even
more unbalanced than the IEEE 57 case, the results also tend to smaller errors but with

no correlation with the truth values.

5.3.6 IEEE 300

The results for the IEEE 300 test system break the observed trend from the previous
IEEE test systems when taken into account the distribution of the Criticality Index, as in
Figure 33. Since this system has 3 critical edges, the training is made with 1 or 2 critical
edges in training. The F'l-scores continue to display values close to 0. Actually, when the
training is done with 1 critical edge and the 2 other critical edges remain for the testing,
the F'1 values are greater than in the other case, when only 1 critical edge is present for

training.

This fact highlights another issue with the learning done with the decribed ap-
proaches for the given Criticality Index. The heavy imbalancement in the test set may

also distort the obtained results when there are very low numbers of test samples for the
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Table 12 — Classification results for the IEEE 57 test system with the C'LG approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 51.6 +20.2 325+ 15.1

2 51.7+194 31.8+14.3

3 51.3 £15.7 284 +£12.5

4 51.0 £ 18.2 30.9 £13.8

> 50.8 £19.5 32.1+14.8
k=2

1 51.0+18.7 32.1£13.0

2 50.7 £ 20.2 323+144

3 50.9£19.9 33.2+139

4 50.6 +19.4 32.4+£12.6

D 49.8 £ 20.9 30.4 £ 14.2
k=3

1 374+ 17.1 13.24+£9.5

2 38.1£17.7 14.2 £ 8.8

3 39.5+15.3 13.1 + 8.9
k=4

1 33.0£17.0 10.6 = 5.7

2 282+ 15.2 8.8 +4.8

Source: the author

Table 13 — Regression results for the IEEE 57 test system with the RLG approach

Train Split | R?

k=1

50% [ —0.240.2
k=2

50% | —0.2+0.2
k=3

50% | —0.2+0.3
k=4

50% | —0.2+0.2

Source: the author

critical class, as is the case for the IEEE 118 and IEEE 300 test systems.

The RLG approach in the IEEE 300 system also demonstrates low performance,

confirming that the regression task on the line graph is not a good approach for learning

the critical and regular edges in the evaluated test systems.
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Table 14 — Classification results for the IEEE 118 test system with the CGE approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 [ 143+108 12406
k=2

1 | 14.1£10.3 1.1+0.6
k=3

I [ 156£96 124038
k=4

1 | 13.9+10.5 1.1£0.6

Source: the author

Table 15 — Classification results for the IEEE 118 test system with the C'LG approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 | 26.3+1338 1.0£0.9
k=2

1 | 28.6+£13.9 0.74+0.9
k=3

1 | 254+£149 0.84+0.9
k=4

1 | 286+144 0.8+ 1.0

Source: the author

Table 16 — Regression results for the IEEE 118 test system with the RLG approach

Train Split | R?

k=1

50% | —0.2+0.3
k=2

50% | —0.1+0.1
k=3

50% | —0.1+0.1
k=14

50% [ —0.1+0.1

Source: the author

5.4 Summary

In this chapter, the results for the Criticality Index applied to the test systems and

the performance of the learning approaches were presented.

First, the test systems used for evaluating the methodology and analyzing the

results are also presented, highlighting the graph models that are obtained from their line
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Table 17 — Classification results for the IEEE 300 test system with the CGE approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)
k=1
1 18.2+12.3 1.6 +0.7
36.1 +10.1 0.6 £0.8
k=2
1 18.8 £134 1.4+0.6
2 36.7+9.5 1.0£1.1
k=3
1 16.2 £13.0 1.4+06
36.1 +11.5 0.9+1.2
k=4
1 16.2 £13.0 1.4+06
2 36.1 +11.5 0.9+1.2

Source: the author

Table 18 — Classification results for the IEEE 300 test system with the C'LG approach

# Critical Edges in Train | Avg. Fl-score (%) Critical Fl-score (%)

k=1

1 29.4 £18.6 3.9£55

2 31.9+15.6 1.0x1.1
k=2

1 26.6 +£18.4 3.2+39

2 281 +155 0.8+1.1
k=3

1 283 £17.3 29+34

2 31.2+139 0.9+0.8
k=4

1 283+ 17.3 29+34

2 31.2+13.9 0.9+0.8

Source: the author

diagrams.

For the ITAIPU 11 test system, the results of evaluating the Criticality Index on it
are significantly different than the results obtained on the other test systems, given the
small size with respect to the number of buses and lines. In the other way, the classification
task obtained better results, since the critical and regular classes are not imbalanced as in

the other test systems.

In the first part, the Criticality Index has shown to be more imbalanced as the
graph size grows. In other words, larger graphs tend to have less critical edges. This has
proven to be a challenge for the GML approaches, since the classification tasks have more

difficulties for learning with imbalanced classes. The regression approach RLG was shown
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Table 19 — Regression results for the IEEE 300 test system with the RLG approach

Train Split | R?

k=1

50% | —0.0+0.1
k=2

50% | —0.0+0.1
k=3

50% | —0.0+0.1
k=4

50% | —0.0+0.1

Source: the author

to be inneficient for learning any relevant information for predicting the Criticality Index

in the evaluated test systems. In the next chapter the conclusions and proposed further

developments are exposed.






6 Conclusion and Future Developments

6.1 Considerations

Ensuring security and reliability is challenging for the electrical power systems
operations, and the contingency screening methods play an important role for accomplishing
this task. With the constant increase in the complexity and scale of most power systems,
alternative approaches for evaluating the most critical contingency scenarios among all

the possible events have been considered, such as topological analysis with graph models.

Even when the system model is simplified by the use of simple graph models, the
number of possible event combinations turns to be infeasible for an exhaustive analysis
in multiple contingencies. Therefore, alternative approaches for approximating these
contingency indices must be developed. In this dissertation, this approximationg through

Graph Machine Learning was evaluated.

The application of GML for solving the contingency screening problem in EPS
through graph models has demonstrated to be challenging. Considering the chosen Criti-
cality Index, the imbalancement between the critical and regular lines has proven to be a
challenge for the learning techniques, and the results for large graphs with few critical

edges were shown to be poor.

The regression learning approach RLG - GNN Regression on the Line Graph - was
shown to be specialy inneficient for this task, and there was no success in obtaining a
good learning methodology for this approach on the given test systems, with the chosen

Criticality Index.

However, the classification approaches CGE - Classification on Generated Embed-
dings - and C'LG - GNN Node Classification on the Line Graph - have shown good results
for the evaluated scores in smaller systems, where the classes are not as imbalanced as in
larger graphs. The obtained results are considered acceptable for a first work in the edge
classification problem in the context of KPS graph models, specially since there are not

specific architectures for dealing with edges as the main goal of the learning task.

The C'LG approach demonstrated that, even when the processed graph is the
line graph of the original model, the capabilities of GNNs to use topological information
together with the learning algorithms has proven to frequently provide better results than

the CGE approach, where the embedding is done separately.

Finnaly, the application of GML techniques for the contingency screening can be

further improved by addressing the mentioned issues such as the class imbalancement.
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6.2 Future Works

In future works, one might address some issues that were observed in the results for
the evaluated approaches. First, the high variance of each score might be due to the random
initialization of the node embeddings. There might be some reasonable methodology for
initializing the node embeddings before applying the GCN architecture, in order to make
the results more predictable. Also, the learning approaches can be applied to different
criticality indices that the one used for this dissertation. Different initial labelings might
lead to better classification results, which can be even more evident if the classes become

more balanced.

As the evaluated approach through GML is based on learning patters from data,
one might consider learning from a set of multiple graphs instead of training and testing in
a single graph. Through this, the number of edges in each class can become more relevant,
overcoming some issues that were observed with 2 or 3 edges belonging to the critical

class.

Another possible approach is developing an data augmentation approach for using
in the learning tasks. This could contribute for balancing the classes, possibly boosting

the classification scores.

One specially interesting kind of methodology to be researched and evaluated is the
complex networks models for generating EPS-kind of graphs. If such models were known,
the training data for the learning approaches could be synthetic, generated with desired

degree distributions that matches the power system graph models.

At last, more modern GNN architectures can be considered for the task, such as the
GAT or the GIN. However, these layers turn the training process slower when compared
to the GCN, as they contain more parameters and the GIN has an entire MLP network in
the encoding step. The hyperparameter and data split analysis made in this work might
be difficult to be reproduced with slower training GNN architectures. The learning can be
even improved if a network generation model for EPS graphs is known, such as the BA
model for social networks, since the training could be done in multiple graphs with the

same characteristics.
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