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Abstract

The annual number of cases of Dengue, Zika, and Chikungunya in Brazil are
alarming. A way to minimize this problem is to identify and treat possible mosquito
breeding grounds, such as swimming pools, untapped water tanks, etc. Focusing on
creating a tool to help authorities in finding such breeding grounds, as a contribution to
the fight against these mosquitoes, this thesis proposes a YOLO custom model to detect
swimming pools in a certain neighborhood, from images captured by a quadrotor. Thus,
it is proposed an object detection system based on a convolutional neural network, the
YOLOvV3 one, to detect swimming pools on images collected by the quadrotor when flying
autonomously over such a neighborhood. A dataset was created, with high-resolution
aerial bird’s eye view images, with the desired objects annotated, to be used as a training
data set for the YOLO CNN inner layers, with 150 images collected from high resolution
photography websites. The evaluation of the classifier thus obtained occurred on a database
containing 72 satellite images with different resolutions, at three different image scales,
for two different locations, collected from Google maps. Other tests were performed over
images collected by a Bebop 2 quadrotor flying over a neighborhood, besides videos, in a
frame by frame basis. The result is that the classifier was able to correctly object detect,
which means to identify the object searched for and to mark its localization through a
bounding box. As a result, the perspective of using the proposed system to detect possible
mosquitoes’ breeding grounds is quite meaningful, justifying the development of the whole

system, as described in this thesis.

Keywords: UAV, YOLO, CNN, object detection, Aerial surveillance, computer

vision.



Resumo

O numero anual de casos de Dengue, Zika e Chikungunya no Brasil é alarmante. Uma
forma de minimizar esse problema ¢ identificar e tratar possiveis criadouros do mosquito,
como piscinas, caixas d’agua inexploradas, etc. Com foco em criar uma ferramenta para
auxiliar as autoridades a localizar tais criadouros de mosquitos, esta Dissertagao de
Mestrado propoe um modelo YOLO especifico para detectar piscinas em um determinado
bairro, a partir de imagens capturadas por um quadrimotor. Assim, é proposto um sistema
de detec¢ao de objetos baseado em uma rede neural convolucional, a YOLOv3, para
detectar piscinas em imagens coletadas pelo quadrimotor ao voar autonomamente sobre tal
vizinhanca. Foi criado um conjunto de dados, com imagens aéreas de alta resolugao, com
os objetos desejados anotados, para ser usado como um conjunto de dados de treinamento
para as camadas internas da YOLO, com 150 imagens coletadas de sites de fotografias
de alta resolugao. A avaliacdo do classificador assim obtido ocorreu em um banco de
dados contendo 72 imagens de satélite com diferentes resolucoes, em trés diferentes escalas
de imagem, para duas localidades distintas, coletadas do Google maps. Outros testes
foram realizados sobre imagens coletadas por um quadrimotor Bebop 2 sobrevoando um
bairro, além de videos, quadro a quadro. O resultado é que o classificador conseguiu
detectar corretamente o objeto, o que significa identificar o objeto procurado e marcar
sua localizacdo por meio de uma caixa delimitadora. Com isso, a perspectiva de utilizar o
sistema proposto para detectar possiveis criadouros de mosquitos é bastante significativa,

justificando o desenvolvimento de todo o sistema, conforme descrito nesta dissertacao.

Palavras-chave: VANT, YOLO, CNN, detec¢ao de objetos, vigilancia aérea, visao

computacional.
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1 Introduction

At the beginning of 2020, during the Covid-19 pandemic, there was a severe increase
in the number of cases of Dengue, Zika, and especially Chikungunya (Secretaria de Saide
do Estado do Espirito Santo, 2021c) Figure 1 in the city of Vitoria, State of Espirito
Santo (ES), Brazil, and especially in Ilha do Boi, a neighborhood settled in an island area
with huge houses, several of them having lavish gardens and swimming pools requiring
constant maintenance. From January to April 2020, 59.7% of the 9293 Chikungunya cases
in the state were in Vitoéria, with a heavy impact in [lha do Boi neighborhood. During the
same period in 2021, the number of Chikungunya cases in the state came down to 1411
(Secretaria de Saide do Estado do Espirito Santo, 2021a), which still is unacceptable. For

more confirmed cases information see Appendix A.

Accumulative Number of Confirmed Cases

B Dengue & Chikungunya ™ Zika

year 2021 [ |

yvear 2020 _ |

year 2010 | ]
year 201 ||

year 2017 [N |

year 2016 |

0 10000 20000 30000 40000 50000 G0OOOO  7OOOO  B0O00DO 90000

Mumber of Cases

Figure 1 — Aedes Aegypti Disease Confirmed Cases in Espirito Santo: 2016 to 2021

Taking into account the demand for actions directed to reduce the incidence of the
Aedes Aegypti mosquito, this thesis proposes a tool to help the authorities to search for
possible breeding grounds, through the use of aerial images collected using an unmanned
aerial vehicle (UAV), in particular a quadrotor, popularly known as drone. The proposed
system focuses on collecting images and identifying in such images, through computer
vision techniques, objects with potential to store mosquitoes larvae. In particular, this
work focuses on identifying swimming pools, which are quite frequent in Ilha do Boi
neighborhood, Vitéria, and are much likely, when not correctly treated, to be breeding

ground for the mosquitoes.
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1.1 Problem Definition

The state of Espirito Santo is a natural region of the mosquito Aedes Aegypti'
(MALTA et al., 2005), and annually many features contribute to create the necessary and
suitable conditions for its procreation (Secretaria de Satde do Estado do Espirito Santo,
2021b). Typical high temperatures at the end of summer and good local afforestation, for
instance, create a natural habitat for such a mosquito. In 2020, at the beginning of the
pandemic, almost no residents were wandering around the city. Besides, with the high
precipitation then verified (VALENCA et al., 2013) puddles and stagnant water came on,

which caused, as a consequence, proliferation of mosquito larvae.

1.2 Motivation

With a significant increase in the number of Chikungunya confirmed cases during
the shortage in health resources caused by the Covid-19 pandemic, this work proposes a

tool to minimize the mosquito problem and, as a consequence, its diseases.

As our laboratory? deals with mobile robotics and computer vision, we decided to
develop a system to search for nest environments of such a mosquito using a micro aerial
vehicle Parrot Bebop 2 (PINTO et al., 2020), controlled via ROS (Robot Operating System )
as UAV (Unmanned Aerial Vehicle), working with the video streaming of its camera for
Object Detection, looking for things that could hold water, thus being, therefore, favorable
to the proliferation of such mosquito. Places searched on previous studies (MALTA et
al., 2005) (VALENCA et al., 2013), such as swimming pools, untapped water tanks, lost
tires, vases without plant, some varieties of plant bromeliad (COGLIATTI-CARVALHO
et al., 2010), down to a tiny bottle lid on the ground, are among the items described by
the State Health Department (Secretaria de Satde do Estado do Espirito Santo, 2021c).
The success of the application is directly related to the capability of the drone camera
and the use of internet to search and download high-definition aerial images to create a
custom Dataset. To simplify, we started by searching big objects, such as a swimming

pool, leaving smaller object classes for future work.

1.3  Objectives

This work has the objective of implementing a UAV Aerial surveillance system to

capture images for georeferencing a water reservoir and visually detect potential Aedes

<https://en.wikipedia.org/wiki/Aedes aegypti>
LAT - Laboratory of Automation and Intelligence from the Portuguese "Laboratério Automagdo
Inteligente", Universidade Federal do Espirito Santo - UFES

2
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Aegypti breeding ground, as a tool intended to help decrease the number of cases of

diseases caused by this mosquito.
As part of this general objective, the following specific objectives are stressed:

o To write a code to control the Drone autonomously, using Open Source tools, such
as Python and ROS.

« To create a custom dataset of water reservoirs (to detect potential mosquito breeding
grounds) in urban areas from high-resolution bird’s-eye view images downloaded
from the internct.

o To run experiments to test the custom Dataset.

o To run experiments correspondent to outdoor UAV flights to test the swimming pool

detection system.

1.4 State-of-the-art

Quadrotors have become a quite typical rotary-wing vehicle, and, therefore, they are
present in several daily-life tasks. In many applications, quadrotors, the popular drones or
UAVs, have been used as remotely operated vehicles, although being working autonomously

in a crescent number of cases, such as in this thesis.

They have been used in a bunch of civil and even military applications (CHEN;
LAEFER; MANGINA, 2016), such as in fire prevention and extinguishing (MERINO; DIOS;
OLLERO, 2015; AMORIM; VASSALLO; SARCINELLI-FILHO, 2019; HARIKUMAR;
SENTHILNATH; SUNDARAM, 2019; LENZ, April 28, 2021), plantation inspection and
other activities in agriculture (ZHANG; KOVACS, 2012; RADOGLOU-GRAMMATIKIS
et al., 2020), load transportation (VILLA; BRANDaO; SARCINELLI-FILHO, 2020),
and building inspection (TAN et al., 2021), just to mention a few of them. Much of the
versatility of using such vehicles as the main hardware in inspection is their capability to
collect bird-eye-view images of the areas being inspected, allowing an overview of large
areas through a single image. Therefore, many of these applications explore the combined

use of image processing facilities and autonomous navigation based on high-level control
of the UAV motion.

As mentioned above, this is the case in this thesis, which combines autonomous
navigation of a quadrotor Bebop 2 from Parrot Drones SAS with machine learning
techniques to analyze images collected by the UAV. The idea is to collect high-quality images
of a residential area, looking for swimming pools in such images, to record the georeference
correspondent to the detected swimming pools, using a YOLO CNN (REDMON et al., 2016)
as the image processing structure, in particular, its 3rd version (REDMON; FARHADI,
2018).
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Several other proposals are using the YOLO structure in its third version to process
aerial images, such as in (SUN; PIAO; CUI, 2020), where the focus is in optimizing
the YOLOv3 structure, in (JIAO et al., 2020), whose focus is the feature learning for
fire detection, and in (QU et al., 2018), whose focus is to detect pedestrians in urban
images. Similarly, this thesis focuses on detecting objects in aerial images collected by an
autonomous drone flying over a previously established region, particularly swimming pools,
considering different image scales (the drone can fly in different altitudes) and resolutions

(satellite images got from the internet are used in the training step).

Throughout this thesis research development, the partial results obtained reported
in articles published in international conferences: (PINTO et al., 2020) and (PINTO;
CIARELLI; SARCINELLI-FILHO, 2021).

« A. O. PINTO, H. N. MARCIANO, V. P. BACHETT, M. S. M. MOREIRA, A. S.
BRANDAO AND M. SARCINELLI-FILHO, "High-Level Modeling and Control of
the Bebop 2 Micro Aerial Vehicle," 2020 International Conference on Unmanned Air-
craft Systems (ICUAS), 2020, pp. 939-947, doi: 10.1109/ICUAS48674.2020.9213941.

« A.O.PINTO, P. M. CTARELLI AND M. SARCINELLI-FILHO, "Creating a Yolov3
Custom Model for Aerial Surveillance," 2021 XIX Workshop on Information Pro-
cessing and Control (RPIC), 2021, pp. 1-6, doi: 10.1109/RPIC53795.2021.9648411.

1.5 Thesis Structure

The organization of this Master Thesis follows the structure below:

Chapter 1: Introduction This chapter shows the damage of the Aedes-Aegypti mosquito;
mentions UAV autonomous navigation applications with image processing, and pro-
poses an autonomous UAV aerial surveillance YOLO.

Chapter 2: System Design This chapter details the parts used that make up the
system in hardware and software and the characteristics to help understand and
replicate the case study of this master’s thesis.

Chapter 3: Path Planning & Control This chapter presents the application work-
flow by dividing it into three sections Input Data, Path Planning, and Control.

Chapter 4: Computer Vision This chapter shows how to custom train YOLO, for
object detection swimming pool, one probable mosquito breeding ground.

Chapter 5: Post-processing This chapter displays the post-processing techniques to
overcome the Bebop 2 Drone imagery limitations.

Chapter 6: Experiments This chapter presents the experiments and their results.

Chapter 7: Conclusion and Future Works This chapter lists the main conclusions

of the work carried out and proposals for continuing the research.
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2 System Design

This chapter describes the development of this research from a physical and logical
point of view. After reading it, the reader should understand the test environment and
replicate it if necessary. It will be explained technical data of the hardware used, software

architecture, the developed interfaces, and the physical environment used for testing.

2.1 Hardware

In this section, the hardware aspects used will be discussed, such as specifications,
equipment models, and essential characteristics considered for the correct execution of the

experiment.

2.1.1 Bebop2

The Bebop 2 is a rotary wing "quadrimotor" drone produced by the company Parrot
Drones SAS, Figure 2. As a filming drone, it is equipped with a 14 mega-pixel fisheye
front camera, with FullHD 1080p resolution and optical stabilization. It also has dualcore
CPU and quadcore GPU embedded processors. It comes with built-in instruments such
as sensors: barometer and ultrasound (help to measure altitude), GPS, accelerometers,
battery charge level and a face-down camera for optical flow. Most of these sensors can be
accessed through software provided by the manufacturer or through a ROS package 2.3.4
(used in this work), based on the official Parrot SDK (Software Development Kit).

P —
—

. -

Parro ParI'Ot

BEBOP DRONE 2

Figure 2 — Bebop 2
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2.1.1.1 Bebop 2 Dynamic Modelling

From the operational point of view, the UAV has 6 Degrees of Freedom (6 DoF). It
can activate linear velocity commands in all three axes 2, y® and 2° (where the superscript
b indicates Bebop’s frame), as well as angular velocity commands around the same axes.
These angular velocity commands correspond to the Roll, Pitch and Yaw movements,
represented by the angles ¢, # and ), respectively. Combinations of such movements are
performed by controlling the forces generated by each one of the rotors, as indicated in

Figure 3.

Figure 3 — Bebop 2 Mobility

Roll and Pitch movements are not the focus in this work since it uses a bebop
model were these movements were limited to £5°, to be possible to model the UAV as a

fully actuated system (see (PINTO et al., 2020)), whose velocity commands are

U:[uvw Uy Us qu-r, (2.1)

Y

without considerable loss in the precision of the model. Since this application happens
in an outdoor environment and to overcome the wind, one of the uncontrollable forces
of nature, more aggressive Roll and Pitch movements were applied and limited to 4+10°.
As a consequence, they were introducing a small error to the model x° axis and 1 axis.
As observed in Experiment on Chapter 6.2 stability for the linear axes; however, Yaw
movement was influenced by such model change, therefore to bypass this issue, a fix North

Orientation to Yaw movement was established.

The kinematic model of the Bebop 2 also considers it as a massless virtual point

which can respond to the velocity commands instantaneously.
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Taking into account only the four DoF specified in (2.1), and considering that
the Pitch and Roll movements are small enough so that they may be ignored when the
UAV moves alongside the 2° and y” axes (see (PINTO et al., 2020), its matrix of direct

kinematics is

costy —siny 0 0
A, = sinyy  cosy 0 0 7 (2.2)
0 0 10
0 0 0 1
and its matrix of inverse kinematics is
cosy siny 0 0O
Al = —siny cosy 0 0 ’ (2.3)
0 0 10
0 0 01

so that the transformation of the velocities from the Bebop Frame (BF) to the WF is

written as

T U
=a, 7], (2.4)
z Uz
(0 (5
and the transformation from the WF to the PF is written as
Uy, )
i = a7, (2.5)
Uz z
|4 ] K

qT
where {x y Z ﬂ are the linear velocities and the yaw velocity, in the WF.

Now, taking into account the dynamics of the UAV, a new model is considered,
described as (SANTANA; BRANDaO; SARCINELLI-FILHO, 2016)

X = fllld - fg}(7 (26)
where,
cosy —siny 0 O [Ky O O O
i 0 0/|]0 Ky 0 0
g |y o ’ — AK,, (2.7)
0 0 1 0|0 O Ky O
0 0 0 1 0O 0 0 Ky
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cosyp —sinyy 0 O [Ky O 0 0
i 0 0]{0 Ky O O
fy = siny - cosy : = AKs, (2.8)
0 0 1 0|10 0 Kg O
0 0 0 110 0 0 Kg

For the design of the controller to be used for the quadrotor, the dynamic model
proposed in (SANTANA et al., 2014; SANTANA; BRANDAO; SARCINELLI-FILHO,
2016; SANTANA, 2016) and already used in (SANTOS, 2017), (SANTOS et al., 2017),
(SANTOS et al., 2017) and (SANTOS et al., 2019) given by

X =f,U-£X, (2.9)

from which the controller is designed based on the vehicle inverse dynamics, given by

U = (v + £,X) (2.10)
where

o U is a vector that contains the control signal sent to the drone;

« f! represents a matrix of positive constants characteristic of each drone;

« vis given by v = X, + Kpf( + Kd)L(;

« K, and K, are defined positive diagonal matrices (gains);

« X=Xy-X=|zg-a Y-y z—y %—w]T; and

o f5 also represents a matrix of positive constants characteristic of each drone.

2.1.1.2 ldentification of Bebop 2 dynamic model parameters

Table 1 — Parameters Values from the Identified Dynamic Model

K K, K Ky Ks  Kg Ky Ky
0.8417 0.1823 0.8354 0.1710 3.966 4.001 9.8524 4.7295

X = [m y z Qbr, X = [m y oz z/;r and ug is a vector with the control signals sent
to the UAV. As for the parameters Ki,--- , Kg, they are estimated using experimental
values gathered according to the procedure described in (PINTO et al., 2020). The values
thus obtained for such parameters, which are the values used in this thesis, are presented
in Table 1.
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2.1.2 Wi-Fi Router

The communication between UAV and computer is Wi-Fi connection. The Parrot
Bebop 2 Drone is 2.4 and 5.0 GHz compatible. The range is higher in the 2.4 GHz band
because lower frequencies can penetrate solid objects, such as walls and floors. However,
higher frequencies allow data to be transmitted faster than lower frequencies, so the 5
GHz band allows faster file uploading and downloading. Since the speed is within the
band range speed and the experimentation is outdoor, a 2.4 GHz Wi-Fi router was the
better option. In other words, reach longer distance flights and penetrating solid objects or
possible obstacles, such as treetops, parts of the external housing wall, chimes, or rooftop
edges. For these reasons, the Wifi router TL-WR941HP Figure 4 was selected.

(a) Wi-Fi Router: Front View (b) Wi-Fi Router: Back View

Figure 4 — Wi-Fi Router TP-LINK TL-WR941HP

Brand: TP-LINK
Model: TL-WR941HP'
Description: 2.4 GHz 450Mbps (802.11n) High Power Wireless N Router

Specs overview:

o Wireless Range up to 900m? — High power amplifiers and high-gain antennas.
o Wall-Penetrating Wi-Fi — cuts through walls and obstacles, eliminating dead zones.
o Three wireless Functionality - Router, Range Extender, and Access Point.

o 450Mbps Wireless Speed — Ideal for video streaming, online gaming and VolP.

1 <https://www.tp-link.com/en/home-networking /wifi-router /t1-wr941hp/v2/#specifications>
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2.1.3 Computer

The experiment run on a computer described on Table 2 from UFES LAI Labo-
ratory. Computer model Dell XPS 8700, a Tower desktops form factor computer with a
GPU upgrade to GeForce GTX 16502

Model Dell XPS 8700
0OS Ubuntu 16.04 LTS 64-bit
CPU  Intel® Core™ i7-4790 CPU @ 3.60GHz x 8 cores
GPU GeForce GTX 1650
RAM 16 GB DIMM DDR3-1600
SSD 500 GB
PSU 460 Watt
Others Monitor, Keyboard and Mouse

Table 2 — Computer Specifications

2.1.4 PS4 Joystick

For safety reasons the PS4 Joystick DualShock 4 controller is set and overrides
the position controller ROS speed message cmd_ vel before publishing to the Bebop 2.
It features two sticks, a touchpad, a 3.5mm headphone jack, four triggers, a directional
pad, plus triangle, cross, circle, and square buttons, the PS buttons, and the share button
and options button. This last two work as land and takeoff command when the code is

running. For flight commands controller configuration see Figure 5.

. Land Takeoff )
L2 = Nothing \ / R2 = Nothing
L1 =Take Picture / R1 = Nothing

D-Pad Up =Cam Forward \
D-Pad Down = Cam Down

Thrust (U
ru_s1 (Up) Move: Forward
A
Yaw p 3 Yaw
(ccw) (CW) Left -1 1 Right
1 \
b
Thrust (Down) PS4 Controller Power Off Backward

Figure 5 — PS4 Joystick

2 <https://www.nvidia.com/pt-br/geforce/graphics-cards/gtx-1650/>
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2.1.5 Landing pad

During the development of this thesis, some types of visual markers as Landing
pads got used. While some Figure 6¢ painted with white on 50x50cm black rubber tiles,
geometric forms to create a high contrast image for the bebop2 low-resolution camera to
better detect optical flow and better position itself in space during takeoff and landing.
Other markers had more visual information to pass as the marker’s precise position to the
center of the camera lenses, like the Whycon used to calculate the homography Figure 35

and visual calibration.

2.1.6 Tripod

To measure the FoV (Field of View) of the Bebop 2 Camera and its video aspect
ratio after homography from 83 degrees, which is the maximum pitch angle of this drone to
90 degrees angle bird’s-eye view in Chapter 5.5 Figure 35. A firm and stable base created
with a flat plastic cover 35x25cm screwed onto a Professional Tripod Model FT-6905
FanCies. With its handles and built-in bubble level, it is possible to level the drone on top
of the base at one-meter height from the camera line of sight to the ground level. This
allowed to implement camera functionalities while drone is on the ground facing down at

different visual pattern:

Technical Data: Anodized aluminum, height of 73cm to 176¢m, load 6kg and weight 6.5kg.

2.1.7 Overview

As shown in Figure 6, a system composed of a computer running Linux operating
systems and many peripherals connected outside on an open environment. Furthermore,
the task force for a single flight experiment needed some effort by packing, transporting,

setting up at the flight site. A detailed list of equipment is below:

e Drone case: Drone, 3 batteries, extra propeller, and necessary tools.

o Computer Linux ROS: Desktop DELL 7Tth generation INTEL Core 17 processor,
16GB DDR4 RAM, 1TB hard drive and Graphics Card GeForce GTX 1650;

e Peripherals: Monitor, keyboard and mouse;

o Joystick: PS4 model for drone safety.

o Wifi Router: Model Tplink Gigabit 2.4GHz wifi transmission;

e Furniture: Plastic Table and plastic chairs.

o Landing pad: Rubber matres with visual markers painted.

o Cabling: Energy cable 25 meters and Ethernet Cable 25 meters.

o Notebook: Pen and paper for annotation.
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(a) Equipment packing (b) Equipment transportion

(c) Setting up Equipment (d) Flying Outdoor Experiments

Figure 6 — Overview

2.2 Bebop Camera Calibration

When a camera act as a visual sensor as part of one of these fields like robotics,
surveillance, space exploration, or industrial automation, there is a need to rely upon
imagery for measurement purposes and determine an accurate relationship between the
actual world 3D points and its corresponding 2D pixel projected in the image. Knowing
the camera’s parameters in this application is essential to use it effectively as a visual
sensor. Therefore, camera calibration is the process of estimating these camera parameters
(intrinsic and extrinsic) by captured images of known ground truth, such as a chessboard?,

in different poses, angles, distances, and locations on the image. Appendix B.4

Intrinsic parameters refer to the camera/lens system include focal length, optical
center, and lens radial distortion coefficients; And, Extrinsic parameters refer to the

camera’s orientation (rotation and translation) concerning a world coordinate system.

3 <http://wiki.ros.org/camera_ calibration/Tutorials/MonocularCalibration?action=AttachFile&do=

view&target=check-108.pdf>
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2.3  Software

This section shows an approach to the software architecture used and the soft-
ware developed to carry out the experiments, and the interfaces developed to exchange

information between the equipment.

2.3.1 OS: Linux

Due to pre-requirements of the ROS bebop_ autonomy package, the OS Linux*
Distribution is 16.04, and the ROS version suitable for this is ROS Kinetic Kame?®.

Ubuntu is a Linux OS (Operating System) distribution based on Debian and
composed mostly of free and open-source software. Ubuntu is officially released in three
editions: Desktop, Server, and Core for IoT (Internet of things) devices and robots. All
the editions can run on the computer alone or in a virtual machine. Ubuntu is released

every six months, with LTS (long-term support) released every two years.

2.3.2 ROS (Robot Operating System)

This topic, however, will stick to the concepts necessary for the reader to understand
their use in the context of this dissertation. ROS Essentials: Installation Appendix-B.1
and Cheatsheet Appendix-B.2.

ROS is not a specific operating system for robots, as the name says. ROS is an
open-source and flexible framework that connects to a low-level system through a wide
variety of high-level inputs for the most diverse systems and hardware used in robots.
The ROS ecosystem Figure 7 comprises plumbing, tools, capabilities, and community
that facilitate the development of complex behaviors of robots acting individually or
together. At its core, ROS provides a message-passing system, often called "middleware"
or "plumbing". The tools include launch, introspection, debugging, visualization, plotting,
logging, and playback. Capabilities from drivers to algorithms to user interfaces, ROS
provides the building blocks that focus on the application. The ROS community is large,

diverse, and global.

o -
#:ROS = @ + {& + g + 2
plumbing tools capabilities community

Figure 7 — ROS Ecosystem

4 <https://ubuntu.com/16-04>
5 <http://wiki.ros.org/kinetic>
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In simple terms, ROS operates with a central service called Master node, which
coordinates communication between all nodes in the network. This node has the information
of the agents that make up the network, together with their respective messages, which

are published and received.

When connecting to the network, the new node informs its address, topics and
types of messages to the Master node that has a fixed and known address®. It checks
if any other node has the same topics with the same types of messages, if there is, the
master node responds to the requesting node the address of the other nodes and which
topics are the same. Thus, requesting node one sends a message to the second node, which
connects to the first node when sending a response, thus building an information network
where messages are published and subscribed all the time. Nodes can be Publisher and/or

Subscriber types. Figure 8 illustrates this communication.

. ek Master Sl
- ~
Advertising Subscription
7 N

N
\

\

Publication Callback -

Figure 8 — ROS master node topic communication

BebopClass was written using ROS Python with OOP and using a patterns
design called Facade. See section 2.3.7 of this chapter.

Python vs Cpp with ROS Depending on the application, performance, and pro-
grammer skills, one language might be better than the other see Table 3. The code is in
Python in this project because of its versatile nature for prototyping and facility for future
implementation. On the other hand, some nodes are in Cpp due to performance, especially

image handling nodes that carry a vast amount of information at a high-frequency rate.

ROS officially supports Python (rospy) and Cpp (roscpp), and has modules imple-

mented in that language for interacting with ROS, respectively rospy and roscpp.

As good programming practices, codes written in Python and Cpp using OOP
(Object Oriented Programming) are presented Appendix-B.3, showing one of the biggest

advantages of this implementation, which is the future change in the code.

6 ROS_MASTER__URI= http://hostname:11311/
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Table 3 — ROS Python vs Cpp Comparison

Python | Cpp
Academic or learning ROS Use ROS Professionally
No need for performance Need for Performance
Short Development Time Long Development Time
Not familiar with Cpp Familiar with Cpp
Easy Code Maintenance Hard Code Maintenance
There is only a Python library | There is only a Cpp library
Interpreted Code Compiled Code

2.3.3 Bebop_lai

The Bebop__lai is a collection of ROS packages Bebop_ autonomy, Darknet_ ros,
Whycon bounded together on a single package and accessed through the BebopClass. It
was developed at LAI Intelligent Automation Laboratory at UFES by this thesis’s author.

2.3.4 Bebop_autonomy

The bebop_autonomy’ package acts as a connection driver between ROS and
official SDK made available by Parrot. It was developed at the Autonomy Lab at Simon
Fraser University by Mani Monajjemi and a few collaborators, and maintained by Sepehr
MohaimenianPour (also from the Autonomy Lab, Simon Fraser University), Thomas
Bamford (from the Dynamic Systems Lab, University of Toronto) and Tobias Naegeli
(Advanced Interactive Technologies Lab, ETH Zurich).

Developed in the C++ programming language, the package offers a series of topics
and resources that enable the Bebop 2 user to access internal data and send commands
to the quad engine. To explain in a superficial way, the communication driver publishes
threads that send messages with information on odometry and status of the four engine,

and receive messages like speed commands.

The communication driver downloaded in February 2020 and used in this research
was run on a Linux operating system distribution Ubuntu 16.04, along with the ROS

Kinetic version cited in Subsection 2.3.2.

2.3.5 Darknet_ros

The Darknet_ ros® is a ROS package (BJELONIC, 2016-2018) developed for object
detection in-camera images. It is an implementation ROS Package of YOLO ("You only
look once") a state-of-the-art, real-time object detection system. In the following ROS
package, use YoloV3 (YOLO version 3) (REDMON; FARHADI, 2018) on GPU and CPU.

T <https://github.com/AutonomyLab/bebop_ autonomy >
8  <https://github.com/leggedrobotics/darknet_ ros>
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The pre-trained model of the convolutional neural network can detect pre-trained classes,
including the data set from VOC and COCO, or create a network with custom detection
objects. For more information about YOLO?, Darknet, available training data, and training
YOLO.

2.3.6  Whycon

WhyCon'’ is a vision-based localization system that can be used with low-cost
web cameras and achieves millimeter precision with very high performance (NITSCHE
et al., 2015). These characteristics allow its use as an alternative to more expensive
localization systems. The system is capable of efficient real-time detection and precise
position estimation of several circular markers in a video stream. This is the Landing
pad used for Video Calibration see Chapter3.3, State S2 on Table 4. It can be used both
off-line, as a source of ground truth for robotics experiments, or online as a component of
robotic systems that require real-time, precise position estimation Figure 9. WhyCon is an

alternative to widely used and expensive localization systems. It is fully open-source.

p n:
x: -0.00116789849935

y: -4.97764194733e-05

z: 0.9620364880856
orientation:

x: -8.0575774591174

y: B.70BB33621839

z: B.8569179134179

- \gd B
1P wW: 8.78871398232
h ACanthonygdesktopz:~5 I
h -~ L 3.201

Figure 9 — Whycon ROS implementation marking image center

2.3.7 BebopClass

The BebopClass class is a superset class of the bebop__autonomy package. It
uses a Structural Design Pattern called Facade (pronounced [fa-sahd]), implemented in
Python with ROS and Object-Oriented Programming principles. According to (HUNT,
2013) book Gang-of-Four Design Patterns, the concept behind the Facade design pattern
is to create a complex system like the Bebop 2 Drone by aggregating instances of smaller
subsystems, such as the GPS or the camera. Therefore making it more straightforward to
create and, if necessary, modify the complex system. Figure 10 is a visual description of
the BebopClass structure using UML (Unified modeling language) (GREGOIRE, 2018),

and complete description is shown on appendix C.

9 <https://pjreddie.com/darknet /yolo/>
10" <https://github.com/anthonymiglio/whycon >
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Parameter(config_file) [ config_file |
-load(config_file) < -bebop2.yaml
BebopClass()
-pPar:Parameter{bebop2.yaml’) Position()
RIS -rospy.Subscriber.odom

-pSC:SignalControl()
-pFlag:Flag() " —
-pGPS:GPS()
-pMon:Maonitor()
-pCam:Camera(cam_tilt_angle_limits) SignalControl()
-rospy.Publisher.takeoff
-rospy.Publisher.land e
-rospy.Publisher.cmdvel
+takeoff(). pub_takeoff()
“Hand().pub_land()
+get_yaw() Flag()
+camera_look_up() g
+camera_look_forward()
+camera_look_tilted()
+camera_look_down()
+camera_look_at(tilt_angle)

+get_attribute()
+set_attribute()

+get_attribute()
+set_attribute()

+get_attribute()
+set_attribute()

& ; GPS()
-rospy.Subscriber.gps
+get_attribute()
Monitor()
-rospy.Subscriber.battery
-rospy.Subscriber.wifi
-rospy.Subscriber.altitude
Camera_Yolo()
Cameral(tilt_angs) -
~ —»{ -T10Spy.Subscriber.yolo_boxes
-witycon:Camera_Whycaon() \ -rospy.Subscriberyolo_found
\_ -yolo:Camera_Yolo() | _ !
-rospy.Subscriber.cameraState b Camera_Whycon()
-rospy.Subscriber.rol_pit_yaw I - - -
—rospy.Publisher.camera_ctrl - 'rospy_Subscr!ber.whycnn_ls_trackmg
-rospy.Subscriber.whycon_target
Figure 10 — Design Pattern Facade: BebopClass
2.3.8 Exiftool

Exiftool!! is a command-line utility, technically a Perl open-source library written
by Phil Harvey, first released in 2003, that has an approach in Python (TOEVS, 2015).
Since then, ExifTool has become the go-to tool for working with metadata at the command
line due to the vast array of file formats and types of metadata it supports, enabling read

and write standard and custom metadata tags quickly without being a software developer.

To install Exiftool:

sudo apt install libimage-exiftool-perl

Metadata is information embedded in documents and media typically hidden from
view stored as metadata tags or just tags. Tags are key-value pairs embedded into files
that store information about that file, such as timestamp, camera info, Global Positioning
System (GPS) data, and other necessary information of the picture taken, for instance
Figure 11. Tags are classified, like Digital Imaging and Communications in Medicine
(DICOM) and Exchangeable image file format (EXIF). Exif is a specification followed by

1 <https:/ /exiftool.org/>
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digital camera manufacturers that record information about the technical conditions of

image capture and the image file itself in the form of tagged metadata.

anthony@desktop2:~5 exiftool -s Bebop2_20200603121944-0300.jpg FlashpixVersion : 0100
ExifToolVersion : 10.18 ColorSpace : Uncalibrated

FileName : Bebop2_20200603121944-0300. jpg ExifImageWidth : 4096

ExifImageHeight : 3320

G ExposureMode : Auto
FileModifyDate 4 - 0 WhiteBalance : Auto
FileAccessDate s : e 0 FocalLengthIn3smmFormat
FileInodeChangeDate g Z51: :00 GPSVersionID
FilePermissions : GPSLatitudeRef
FileType g GPSLongitudeRef B s
FileTypeExtension o] GPSAltitudeRef : Above Sea Level
MIMEType : image/jpeg ImageUniquelID : 4DAC9IBDAA43F3DOD66CAA4207054BBES
ExifByteOrder : Big-endian (Motorola, MM) CameraserialNumber
Compression H Yaw
PhotometricInterpretation : Pitch
ImageDescription A 2 g Roll
D1DO5F317EC40E4B115F993158", "2020-06-03T121626-0300", "filen IntegratedGyroX : 315.11126709%0

2020-06-03T121944-0300_25E1C5.jpg”, "media_date”: "2020-06 [BIITH LTI : -571.003784180
IntegratedGyroz : 10.252861977

: PARROT AboveGroundAltitude t 23.729

1 Bebop 2 DataTimestamp : 338.134460
orientation : Rotate 270 CW FrameTimestamp : 338.132477
XResolution 2 72 ImageWidth z 96
YResolution & ImageHeight : 3320
ResolutionUnit Bl s EncodingProcess : Baseline DCT, Huffman coding
Software : Dragon 4.7.1 ; Impala:0.0 P3A:0.1 BitsPerSample =8
ModifyDate 1 2020:06:03 12:19:44 ColorComponents i)
YCbCrPositioning H YCbCrsubSampling : YCbCr4:2:0 (2 2)
ExposureTime H 0 Aperture £ 2.3
FNumber Her GPSAltitude : 48 m Above Sea Level
ExposureProgram - GPSLatitude : 20 deg 18' 45.52" §
1s0 B GPSLongitude £ deg 17' 1. W
ExifVersion B GPSPosition 5 deg 18' 45.52" S, 40 deg 17' 1.86" W
DateTimeOriginal g H = 44 ImageSize © 4096x3320
CreateDate 5 H:H :19:44 Megapixels : 13.6
ComponentsConfiguration L - ScaleFactor35efl Hiers]
ShutterSpeedvalue G 0 ShuttersSpeed : 1/2012
ApertureValue Hear Circle0OfConfusion : 0.009 mm
MaxApertureValue s 2 FOV : 143.1 deg
MeteringMode g FocalLength35efl - 8 mm (35 mm equivalent: 6.0 mm)
LightSource = i HyperfocalDistance H 16 m
FocallLength Fraly LightValue o .8

Figure 11 — Exiftool Metadata Extraction of Fig.30a
on Chapter 4.4.1

2.3.9 ODM: OpenDroneMap

ODM!? is an open-source command-line toolkit for processing aerial drone imagery.
Typical drones use simple point-and-shoot cameras, so the images from drones, while from
a different perspective, are similar to any pictures taken from point-and-shoot cameras

non-metric imagery. OpenDroneMap turns those simple images into three-dimensional

geographic data and combines them with other geographic datasets into Orthophoto or
Orthorectified Imagery (Fig.12a), Point Clouds (Fig.12b), Digital Surface Models (Fig.12c),
Textured Digital Surface Models (Fig.12d), Digital Elevation Models, among other models.
There is a Graphical version of ODM called WebODM.

(a) Orthophoto (b) Point Cloud. (c) Digital surface model.  (d) Textured mesh.

Figure 12 — OpenDroneMap image examples over UFES Rectory Square.

12° <https://www.opendronemap.org/>



3 Path Planning & Control

This chapter describes the development of this research of the necessary data to
input for path planning to be executed on the loop control and its controllers. After reading
it, the reader should understand how the Bebop_lai app operate from input data with its
GUI interface to execution in a outdoor environment. This chapter is broken down into

these three sections: UAV Input Data, Path Panning and Control Loop, and the app work

flow is represented in Figure 13.

GUI: Bebop Input Data

!

Path Planning: ’

uav_search_pattern( )

{

While True >

A

Conditional Tasking: Xd(x, y, z, psi) ]

AJ

Position Controller: U(X, Xd) -> XtiI:OJ

Y

Manual Override Controller: Joystick

.

|

ROS: Publisher(cmd_vel) to drone

J

Figure 13 — FlowChart - Main Loop

3.1 UAV Input Data

For this project as part of bebop__lai package, a GUI (Graphical User Interface)
Figure 17 was created to make Path Planning Input Data in an easier and parametric way
diminishing human input error. When the bebop_lai ROS app run, a browser window
will open with Google Maps predefined GPS coordinates Figure 14, that can be adjusted
to fit the geographical location. Since Google Maps is an approximated orthophoto map,
it is possible to use it to measure distance and angles for Path Planning, by filling the

required parametric variables distancel, anglel, distance2, angle2, height, forward overlap

and horizontal overlap, shown on Figure 15 and 16
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(a) Spot: TakeOff (b) Dist. Measurements (c) dist]l (First Corner) (d) Tool: Protractor

Figure 15 — GUI: Bebop Input Data Steps 1 of 2

a) Left Click for selecting TakeOff spot.

b) Right Click for Measuring Distances.

)
)

c) Left Click for dist1, distance from Takeoff to first corner of search area.
)

d

Left Click Extensions, then select Protractor.

(a) Place Protractor (b) angll (CCW angle) (c) dist2 (total distance) (d) angl2 (CCW angle)

Figure 16 — GUI: Bebop Input Data Steps 2 of 2

a) Place Protractor Center over TakeOff spot > Green line point up (North).
b) angll = Angle CCW from Green to Blue Line align with first line segment.
)
)

¢) Left Click for dist2 = distl + distance from first to second corner of search area.

d) angl2 = Angle CCW from Green to Blue Line align with first line segment.
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0 GUI: Bebop Input Data

Bebop Input Data
Values:

L1 = distancel: ‘ 2.0 3 [meters]
angl = anglel: | 225.0 2 [degrees]
;“’ L1+ L2 = distance2: | 22.0 % [meters]
ang2 = angle2: | 315.0 7 [degrees]
height: I 20.0 iﬂ [meters]

Forward Overlap: | 0.80 3 o8]

Horizontal Overlap: | 0.65 3 [og]

_ ABORT | HOME ‘ START | ZERO |

Figure 17 — GUI: Bebop Input Data Filled

3.2 Path Planning

Path planning or Motion planning is a computational problem to find a sequence
of valid configurations that moves the object from the source to the destination. Consider
navigating a mobile robot inside a building to a distant waypoint for illustration. It should
execute this task while avoiding walls and not falling downstairs. A motion planning
algorithm would describe these tasks as input and produce the speed and turning commands
sent to the robot’s wheels. In this thesis, since the Bebop 2 drone has only one high-
resolution camera and is facing down in a Bird-eye-view during operation, Obstacle
Avoidance is not on the scope since the camera must be facing the same direction as the

UAV motion.

3.2.1 UAV Obstacles

The obstacles can be physical Fig.18a, Fig.18b, Fig.18c¢ or interference in nature
Fig.18d, Fig.18e, Fig.18f. To overcome the physical obstacles that are not unsurmountable,
the operator has a ground point-of-view from the desired search area and a satellite
view from Google Maps Fig.14; thus, the robot will rise to a considerable safe flight
height (stipulated by the operator) Fig.17 in an unobstructed environment (SCHULDT;
KURUCAR, 2018). Nevertheless, the interference obstacles must be dealt with by signal
treatings, such as adjusting WiF1i signal frequency or avoidance, for instance, flying from

10:00h to 14:00h during sunny days to avoid rain and long cast shadows.

In this thesis, no wildlife was injured or hurt during the outdoor experiments. Avoid
wildlife at any cost, and the ones involved in the UAV project must understand that the
drone is the intruder in the wildlife environment. For instance, Fig.18a shows Aggressive

Birds Are Attacking Google’s Delivery Drones in Australia.
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Source: Fig.18a!, Fig.18b?, Fig.18¢?, Fig.18d*, Fig.18¢°, Fig.18f°.

\
(a) Animal Life (b) Energy Post and Wiring (¢) Buildings and Antennae

BARRETO_2.4G

(d) Long Casting Shadow (e) Direct sunlight (f) 2.4GHz WiFi Signal Overlap

Figure 18 — UAV Obstacles: Physical and Interference

3.2.2 UAV Search Patterns

The 1979 Convention, adopted at a Conference in Hamburg, was aimed at developing
an international maritime SAR" (Search And Rescue) plan so that, no matter where an
accident occurs, the rescue of persons in distress at sea will be coordinated by a SAR
organization and, when necessary, by co-operation between neighboring SAR organizations.
Based on the developments of this convention, some recent research adapted SAR techniques
for UAVs Fig.19 (SCHULDT; KURUCAR, 2018) to support with the same operational
force and a few drones to cover a broader area in a shorter time to do the greater good to
rescue lives at sea (KARAMANOU et al., 2018), and in land (POLKA; PTAK; KUZIORA,
2017), whilst others uses swarm drone behavior (ARNOLD; YAMAGUCHI; TANAKA,
2018).

<https://screenrant.com/wing-drone-delivery-bird-attacks/>
<https://www.cniguard.com /latest-news/overhead-power-lines />

<https:/ /epicroofs.com/top-5-reasons-not-to-install-a-satellite-dish-on-your-roof />
<https://roboticsbiz.com/breathtaking-drone-photos-in-the-world-drone-photography />
<https://www.thedronegirl.com/2021/04/06 /reduce-glare-flying-drones-controller />

6 WiFi Anilizer App for Android

T <https://ec.europa.eu/home-affairs /pages/glossary /search-and-rescue-sar-operation__en>

T W NN =
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Figure 19 — Search Patterns: Creeping Line, Increasing Square, Sector

Table 4 — SAR Search Patterns Comparison

SAR Patterns |

Creeping Line

| Increasing Square |

Sector

Area Covered
Start at
Victim lost for
Victim location
Sea/wind Currents

Large / Medium
Close to the operator
some time
not sure
Against or parallel

Medium / Short
Specific coordinate
short time
some sure
without current

Short / tiny
Current coordinate
recent sighted
Know the location
with and without

The aerial surveillance search techniques of this proposed work are the same as on
the research cited in the previous paragraph and shown in Figure 19, and a comparison
between the pattern is presented in Table 4 to clarify the moment to use each one. Based
on these SAR (Search and Rescue) techniques, uses only two patterns implementation:
Creeping line Figure 20a for a broader area and Increasing Square Figure 20b for a more
refine Figure 21 or the need to create the orthophoto from the victims found coordinate.
The victim here is the Yolo Custom trained Classification for Object Detection on Chapter
4, and in this work, the first classification is Swimming Pool for the Custom UAV Dataset
Chapter 4.3.

20 - t 20

10 - 10

=T
-10

-10 10 20 30 40

|

-40 =30 =20

(a) Creeping Line (b) Increasing Square

Figure 20 — UAV Search Pattern: Creeping Line and Increasing Square
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-30 i o sl e o o

(a) Increasing Square 1 turn (b) Increasing Square 2 turns (¢) Increasing Square 3 turns

Figure 21 — UAV Search Pattern: Increasing Square Evolution

3.3 Conditional Tasking

The Conditional Tasking is a Behavior Controller and the first controller on the
Loop Control of the Bebop_ lai app. This module is parametric and divided into ten
states as described in Table 5 and Conditional Tasking Overall Layout shown in Figure 22.
Depending on the Input Data Section 3.1, it will execute Path Planning by checking if
the conditions of each state have been fulfilled to achieve the state task and changing the
UAYV desired position Xd, allowing to go for the next state at another desired position,

consequently reaching the final state and completing the surveillance task.

?erslgeo'f\'Vt Wiews

Figure 22 — Conditional Tasking Overall Layout
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5 — Conditional Tasking States

Table

State Name

S0 Wifi Connection

S1 Takeoff Procedure

S2 Visual Calibration

S3 Ascend to Height

S4 Goto Pose

S5 Surveillance

S6 Mission Control

S7 Home

S8 | Landing Procedure

S9 | Save and Power Off

Description
Wifi connection is established
All necessaries steps for Takeoff
Calibrate landing pad as the origin
Ascend to UAV unobstructed environment Height
Go from Home to first search pattern point
UAV displaces according to path planning
Repeat previous State or go Home
Go from last search pattern point to Home
All necessaries steps for Landing
Save flight data and finish app

The Conditional Task has some similarities with a state machine, but one significant

difference is that it does not stay in the state until it finishes the task; it works in the
control loop; therefore, it enters a state and will leave on the same state no task done
Figure 23. In the case of a task accomplished, it will switch to the next state unless abort
occurs and follow through a safe return path. Each state has this flowchart Figure 24, and

the only difference is the recurrent block depicted in Appendix C that holds the main

state action.

Input: S0

Next State

—

| s0: Bebop Wifi Connect

Output: SO @
Abort

Abort

[ 51: TakeOff Procedure J

v

Initializing(Scurr)
init_state = False

Abort

| s2: visual calibration |

v

—

Recurrent(Scurr)
next_state =T or F

Abort

| s3: Ascend_to(height=2) |

v

[ 54: Goto_pose( pose=7?)

[ S5: Surveillance

v

S6: Mission Control

v

Abort or Home I 9 ——
* | True
Abort or Home l |
i
] Abort or Home i
[ S7: Home JJ

|

R R—

Abort or Home
next_state = True

False
next) ¢

True

Finishing

[ S8: Landing Procedure )

v

init_state = True ’

[ 59: Save Data and PowerOff J‘f-

v 1

Figure 23 — Flowchart Overview

Figure 24 — Flowchart State

I J
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3.4 Position Controller

This thesis adopted a position control strategy for the UAV. The Bebop 2 dynamic
controller characterized in Equation (2.10), initially proposed in (SANTANA et al., 2014),
was used to obtain the U, signal. To characterize the desired robot position, the actual
robot position in the global coordinate system, given by X, measured through the drone’s
internal odometry that uses the data from its GPS as sensor fusion in its internal controller,
and its derivative X’, obtained numerically from X. The Position Controller creates a
control variable X, the difference between desired position and current position, and work
to decrease this control variable to zero by calculate the instant U speed to take the UAV
from its current position to the desired position, as described on (PINTO et al., 2020).

3.5 Override Manual Controller: Joystick

Together with the Bebop_ lai Class, the Override Manual Controller is a class
instantiated as a global variable; therefore, it is hierarchy superior to the other controller
that are local instances of the Main algorithm. Every control loop cycle; Conditional Task
Controller sets the desired position Xd; the Positon Controller calculates the speed U;
the Override Manual Controller keeps and watchdog over the analog Joystick checking
for a minimal movement threshold. If the Joystick moves (configuration Chapter 2.1.4),
the Position Controller speed ROS message cmd_ vel is overwritten with the Joystick
cmd__vel while actuated for the time being. Otherwise, the Joystick movement goes down
the threshold, and the Position Controller establishes the UAV cmd_ vel.

3.6 ROS Publiser cmd_ vel

At the end of every control loop cycle, a ROS Publisher keeps sending the ROS
message cmd__vel to the Bebop 2 at a rate of 5Hz. Moreover, there is only one ROS
Publisher for each published topic to avoid duplicated commands. Before the Publisher,
ROS message is only information, but it becomes command actions sent to the UAVs and

converts into movement.
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4 Computer Vision

4.1 Computer Vision

This chapter will explain the different tasks in Computer Vision, focusing on Object

Detection, the main task for this project, some applications, concepts, and a few methods.

4.1.1 Computer Vision Tasks

Nowadays, some of the most research topics in Computer Vision are Image Classi-

fication, Image Localization, Object Orientation, and Image Segmentation.

Human vision exploits natural intelligence (SINHA, 2020), while artificial intelli-
gence controls computer vision, and because of this, we have much superior comprehension
of Vision. Looking at Figure 25, we can see different tasks! performed by Computer Vision.
We have image classification, image localization, object detection, and image segmentation

from left to right.

Human beings can perform these tasks quite easily, while artificial intelligence
needs a lot of 2D data (ZHANG, 2010) to train Machine Learning (ML) Models and use

Deep Learning Networks to perform these tasks in real-time.

. . Classification . . Instance
Classification + Looalrtion Object Detection

Segmentation

— - -

Figure 25 — Computer Vision Tasks. Image from ClimateNet Website
Source: ClimateNet Homepage

4.1.2 Object Detection

Object Detection is a computer technology related to computer vision and image
processing tasks where ML models detect various objects within a digital image or video,
predicting their corresponding classes and position with bounding boxes. Well-researched

domains of object detection include face detection, face recognition, and pedestrian

1 <https://www.nersc.gov/research-and-development /data-analytics /big-data-center /climatenet />
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detection, including image retrieval and video surveillance, during real-time or post-

processing.

A comparison between different Object Detection methods with various detectors is
performed in (BOCHKOVSKIY; WANG:; LIAO, 2020), regarding speed and accuracy. These
methods fall into either neural network-based or non-neural approaches. The later group
(Viola—Jones object detection based on Haar features, Scale-invariant feature transform
(SIFT)(LINDEBERG, 2012), Histogram of oriented gradients (HOG) features (DALAL;
TRIGGS, 2005)) demands the definition of features using some method, in association
with a technique to classify them, such as a support vector machine (SVM). In opposition,
deep neural network techniques (Region Proposals R-CNN (GIRSHICK et al., 2014), Fast
R-CNN (GIRSHICK, 2015), Faster R-CNN (REN et al., 2015), cascade R-CNN (CAI;
VASCONCELOS, 2021)), Single Shot MultiBox Detector (SSD) (LIU et al., 2016), You Only
Look Once (YOLO) (REDMON et al., 2016) (REDMON; FARHADI, 2017) (REDMON;
FARHADI, 2018) (BOCHKOVSKIY; WANG; LIAO, 2020) (WANG; BOCHKOVSKIY;
LIAO, 2021), Single-Shot Refinement Neural Network for Object Detection (RefineDet)
(ZHANG et al., 2018), Retina-Net (LIN et al., 2020) (PANG et al., 2019), Deformable
convolutional networks (ZHU et al., 2019)) can do end-to-end object detection without

defining handcrafted features, being typically based on convolutional neural networks
(CNN).

4.2 Yolo: Real Time Object Detection

YOLO is a state-of-the-art real-time object detection system for images that uses
a CNN-based deep neural network, written in Darknet?, a fast open-source neural network
framework written in C and CUDA with computations in CPU or GPU. While previous
detection systems used the sliding window technique, Yolo only needs one evaluation to
predict the object class probability and the bounding box (BBox). And it uses the metric
IoU (Intersection over Union), which is a metric for comparing the similarity of a set of
samples between predicted BBox and annotated BBox. It deals with object detection as a
regression problem to compose and associate the separated parts into bounding boxes and

class probabilities.

The base YOLO model architecture, illustrated in Figure 26, is fast enough to
process in real-time images captured at 45 frames per second (FPS) on a computer (CPU:
i7-5820K RAM 32GB with GPU: Titan X), but this depends on the framework. The
Darknet framework runs better with GPU, while for CPU computations the better choice,
according to (STADNIK; SAZHIN; HNATIC, 2020), is the OpenCV framework. There is

also a smaller version (called tiny-yolo), lighter in terms of memory usage, and faster than

2 <https://pjreddie.com/darknet/>
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Figure 26 — Yolo version 1 Network Architecture (REDMON et al., 2016)

the full version.

Even though YOLO is prone to more localization errors and far less likely to predict
false detections than the other previous state-of-the-art detection methods, like RCNN,
Fast RCNN, and Faster RCNN; it outperformed all of these methods in speed and keeping
a high average precision. Because its network only looks at parts of the image with a high

probability of containing the objects.

When launched, YOLOvV2 performed from twice up to 10 times faster than the
others and higher AP (Average Precision). YOLOv3 was a significant improvement, in
terms of FPS and AP, the same happening when launching YOLOv4, as one can see
in Figure 27, which compares the performance of YOLOv3 and YOLOv4 with other
object detection algorithms. As one can see, YOLOvV4 has a good real-time performance,
including in terms of FPS. However, not everything worked along the way: YOLOv3 did

not performed well with Anchor box (x, y) offset predictions, Linear (x, y) predictions,

MS COCO Object Detection
) 1tDet (DO-D4) real-time

48 "\\
\
46 b =
- YOLOvV4 (ours)
4 L\\\ >—
~a_, 8
4 A, S
AR .
A \ A e
: 40 | | <
—4—YOLOV4 (our N e
. V4 (ours) \ A L 3
—e—YOLOV3 [63]
36 | —m—EfficientDet [77] X
\
ATSS [04] \
4 u YOLOV3
—4— ASFF* [48]
32
CenterMask™ [40]
30
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FPS (V100)

Figure 27 — YOLOv4 Performance Graph. AP(Average Precision) vs FPS
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Table 6 — Comparison of YOLO Versions Performance for the dog.jpg sample photo

YOLO Version

| YOLOv1 | YOLOv2 YOLOv2-tiny | YOLOv3 YOLOv3-tiny | YOLOv4 YOLOv4-tiny

BFLOPS 40155 29475 5412 65879 5571 128459 6910
Workspace Size [MB] | 104.87 131.08 52.43 39.83 19.57 52.44 19.57
Loaded layers 32 32 16 107 24 162 38
Prediction Time [s] [ 0.727524 | 0.363412  0.343773 [ 0.394389  0.348965 | 0.421282  0.349144
Probability:
bicycle 0.39 0.84 0.84 0.99 0.39 0.92 0.59
car 0.74 - 0.67 - 0.71 0.22 0.40
dog 0.26 0.79 0.52 1.00 0.81 0.98 0.84
motorbike - - 0.50 - - - -
*person - - 0.43 - - - -
*pottedplant - - - - - 0.33 -
truck - 0.78 - 0.93 0.61 0.92 0.80

*The object: Person and pottedplant, are False Positive found by YOLO.

and Focal loss.

For comparison reason between Yolo versions, Table 6 synthesizes the performance
of the YOLO versions on the sample photo dog.jpg on this hardware (CPU: i7-4790
8x3.60GHz 16GB with GPU: GeForce GTX 1650). A difference between Yolo versions is
the number of deep layers inside the CNN and its structure; this is directly related to

performance (the execution time and probability of detection of objects).

This research uses YOLO full version. It is more precise and reliable than its
tiny version developed for embedded systems, and we chose YOLOv3 because it must be
compatible with the ROS version UAV application that uses an implementation of darknet
compatible up to YOLOv3 and OS Linux Ubuntu 16.04. And not YOLOv4 because it is
another ROS module implementation and not compatible with the OS of this application.

4.3 Dataset

YOLO is a supervised technique, so it needs to be trained by an image dataset for
several epochs to perform well. One approach is to grab a camera and move around while
taking pictures in different angles of an object, such as in (Li et al., 2019), work which
created the Richly Annotated Pedestrian (RAP) dataset. Alternatively, the dataset DOTA
(XTA et al., 2018) is a large-scale aerial image dataset that uses a huge amount of satellite
images labeled by aerial image experts, from six international science departments, into 15
common object categories. Even though one of the classes is a swimming pool, the image
information is not ideal for a quadrotor flying at up to 30 meters of altitude. Moreover,

nowadays high-resolution drone photography cameras are full-HD and 4K.
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4.3.1 Image data acquisition

As it would be an invasion of privacy to fly with a drone over people’s homes to
collect swimming pool photos, this work proposes to use websites specialized in photog-
raphy® with licenses for non-commercial use by searching and downloading images from
the Internet. The same image selection technique (GAUEN et al., 2017) occurs in many
renowned datasets, such as PASCAL VOC (EVERINGHAM et al., 2014), COCO (LIN
et al., 2014), SUN (XIAO et al., 2010), and ILSVRC (RUSSAKOVSKY et al., 2014), for

instance.

According to the images required to create this Dataset (the list with 150 images for
download available on GitHub.?), many high-resolution photos Fig.28 in 4K and FULL-HD
at 72dpi of the desired objects on sunny day in birds-eye view are necessary for training a
YOLO model to classify an object of interest and locate it in the frame. The purpose of this
is to aid the UAV localization and decision-making based on computer vision, considering
classified objects. An excellent example of these objects is a swimming pool detected and
used as a visual reference to take pictures in the most suitable poses respecting image

overlap criteria for georeferencing mapping by post-processing.

Before starting flying for data acquisition, ANAC (the National Civil Aviation

Agency of Brazil) recommends to consult local weather forecast®, to plan the flight, and to

3 Such as: <https://unsplash.com/>, <https://www.pinterest.com>, <https://pixabay.com>, <https:
//www.dreamstime.com/>, <https://www.pexels.com/>, <https://www.istockphoto.com/>
<https://github.com/anthonymiglio/YoloV3TrainingCustomModel >
https://www.climatempo.com.br/vento/

e : .

(a) Photo: Guillherme Schneider (b) Photo: Carles Rabada (¢) Photo: Avi Waxman

(d) Photo: Chuttersnap (e) Photo: Bart Jaillet (f) Photo: Mudassir Ali

Figure 28 — Downloaded photos from Unsplash website
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keep the Visual Line of Sight recommended in its website section Drones and Meteorology®.
Furthermore, one should stop the flight if it starts raining, in case of a fog or when the

speed of wind gusts exceeds 30 km /h.

4.3.2 Image data augmentation

An image processing technique is image rotation. It makes the model more robust
and versatile when detecting an object that can appear in any orientation. According
to Rifd-CNN technique (CHENG et al., 2019), object detection has several significant
challenges, including object rotation, within-class diversity, and between-class similarity.
This is why a sports court has been detected and classified as swimming pool class in the
image shown in Figure 29a, but not in every scene of Figure 29b. Even though they are
not in the classes of this Dataset, it has intrinsic similarities with the swimming pool class
from a birds-eye point of view. Therefore, classes of objects similar to the desired one
should be added to the Dataset to avoid these mistakes, improving the search. Another
reason is that professional photographers have a knack for framing and aligning their
pictures. Therefore, this is a must for downloading high-resolution images. Furthermore, it
increases the number of images in the Dataset, since they are not as easy to get. Moreover,
remember that to get well-shot photos light is essential. Sunlight between 10 a.m. and 2

p-m. is a good choice to minimize shadows effect on the image.

(a) Photo: CHUTTERSNAP (b) Photo: CHUTTERSNAP

Figure 29 — Downloaded from Unsplash.com

4.3.3 Image annotation

After downloading the images, one should select objects by marking them with a

bounding box, and choose a class for each one, in each image, since YOLO is supervised

6 https://www.anac.gov.br/en /safety /aeronautical-meteorology /drones-and-meteorology
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Table 7 — Comparison between some common annotation formats

Annotation Comparison COCO YOLO DOTA
File JSON TXT with same name TXT with same name
Object Instance One per line One per line One per line
Bounding Box BB BB OBB (Oriented Bounding Box)
BB Variables ID, x, y, width, height ID x y width height x1, y1, x2, y2, x3, y3, x4, y4, ID, difficult
ID = Category 1D ID = object-class OBB 1st point is Yellow = (x1, y1)
x = BB__top-left x x = BB_center x OBB 2nd point clockwise = (x2, y2)
y = BB__top-left y y = BB_center_y OBB 3rd point clockwise = (x3, y3)
w = BB_ width w = BB_ width OBB 4th point clockwise = (x4, y4)
h = BB_ height y = BB_ height ID = category
difficult (from 0.0 to 1.0)
Observations have more object variables X, ¥, w, h are relative Annotation File contain Metadata:
outside the Bounding Box. | to Image Width and Height. | image acquisition date, satellite source, GSD.
Category IDs start from 1 (Ground sample distance) in meters

and needs this for training. After, it is necessary to create a TXT file for each image with
the data of each classified object found in the image as per standard YOLO annotation,
using the description <ID> <left_ x> <top__y> <width> <height> for each object

in all the training images.

It is a tedious job to manually identify each object and tag it on each image.
Fortunately, there is a software called Labellmg.exe’ that simplifies and minimizes
human error by assisting labeling and doing the necessary math from the coordinates of a

two clicks bounding box into the YOLO annotation standard.

Different Object Detection and Segmentation models use different object anno-
tations (labels) formats, as shown in Table 7. It is simple algebra to convert COCO
annotation to YOLO since image width and height are the same first-order equation
system. On the other hand, to Convert from DOTA annotation to YOLO is not trivial,
but there is a code to do this®, in which x, y, width, and height are relative to the corners,
width and height of the bounding box delimiting a classified object in the image. The code
to convert the format is data_transform/YOLO__ Transform.py.

4.3.4 Training YOLOv3 Dataset on Google Colab

In this repository” there is the code with instructions to train YOLOV3 Custom Dataset.

After 3350 epochs with an average loss of 0.079327, YOLOv3 training stopped
because it exceeded the Google Colab Free GPU (NVIDIA Tesla T4 16GB) processing
time limit with remaining 2h40min to go from the initial preview. The algorithm Yolo

uses data augmentation internally on the 150 original images used for training.

<https://tzutalin.github.io/labellmg/>
<https://github.com/ringringyi/DOTA__ YOLOv2/tree/master/data__transform>
9 <https://github.com/anthonymiglio/ YoloV3TrainingCustomModel >
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4.4  Testing of Dataset

This section presents the visual result showing how the model behaves in different
scenarios and image quality (high and low resolution). Hardware used (CPU: i7-4790
8x3.60GHz 16GB, GPU: GeForce GTX 1650) run at 15 FPS.

4.4.1 High Resolution Images taken by UAV

The YOLOv3 Custom Model detected the object (swimming pool) successfully
in the three images of Figure 30a, a fish-cye acrial photography of resolution 4096 x
3072, Figure 30b, a frame removed from aerial video of 1080p resolution, and last but
not least, Figure 30c, a PrintScreen from ROS Steaming UAV camera at 856 x 480 pixel.
The model is robust enough to detect objects captured by different types of lenses and
in various resolutions. On the other hand, it is not perfect, as we can see that it lacks
some classes, like sports courts and cars in bird’s-eye view images. Due to similar features,
misjudgement can occur. Following for a video demonstrating the Yolov3 Custom Model

in action: <https://www.youtube.com/watch?v=fKb_ Imoklgw>

(a) Bebop 2 Fish-eye (b) Bebop 2 Video Frame (¢) ROS Streaming Bebop 2 Camera
Photography

Figure 30 — Validation in High Resolution

4.4.2 Low Resolution Images taken by Satellite

A total of 72 satellite images from Google Maps, tested and visually analyzed for
the city of Vitéria, ES, Brazil, Figure 31(a, ¢ and e), at Ilha do Boi neighborhood and for
a sunny Las Vegas, NV, USA, Figure 31(b, d and f). Divided evenly among the locations
into three scales (5, 10 and 20 m/inch), and respectively outcome for True Positives: Ilha
do Boi 49.52%, 29.16%, 0.0%; Las Vegas 94.36%, 69.23%, 20.83%. Even though one is
a semi-tropical island in the southern hemisphere and the other is a desert area in the
northern part of the Globe, these cities were selected by exhibiting a similar neighborhood
visual environment, ample housing, extensive gardens, many pools, sunny days. However,

one attribute of the satellite images is that the Las Vegas pictures are cleaner and with
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slightly higher definition, consequently aiding the model in finding more pools than in Ilha
do Boi.

(e) 20 m/inch scale. 0 of 41 objects detected (f) 20 m/inch scale. 1 of 40 objects detected

Figure 31 — Validation in Low Resolution Images from Ilha Do Boi and Las Vegas.
Source: Google Maps



5 Post-processing

5.1 Video Export

To extract the video file into the computer, connect the Bebop 2 rear USB-micro port
Figure 32 to the computer via USB-micro/USB-A cable. Switch the Parrot Bebop 2 on.
The computer detects the Parrot Bebop 2 automatically and the Photos application opens.
Copy the last video to the computer.

Figure 32 — Bebop 2 USB Port for Video Extraction
source: Parrot Bebop 2 Drone - User Guide

5.2 Video Conversion

Unfortunately, for some reason of incompatibility between ROS OpenCV module
ros-kinetic-opencv3-3.3.1 and the Bebop 2 video mp4 parameters and the following error
will come up:

OpenCV Error: Assertion failed (size.width>0 && size.height>0) in imshow, file /tmp/
binarydeb/ros-kinetic-opencv3-3.3.1/modules/highgui/src/window.cpp, line 331
Segmentation fault (core dumped)

To overcome this issue, use VLC media player 3.0 to work around and convert the
original mp4 Bebop 2 Video File to another mp4 file; otherwise, OpenCV will signal an

Error message and not be able to extract frames from the original mp4 Video File.

5.3 Frame Extraction

Access rosbag file to grab the timestamp numbers of the GPS coordinates collected
at the points of the desired position according to path planning. Subtract by the Takeoff

timestamp to get the mp4 Video time reference that starts at zero seconds.
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Access mp4 Converted Video Properties to get the new FPS of the video to calculate
the frame number. Divide the time of the video events by the FPS and round to get the

frame number. Use OpenCV to extract these frames from the mp4 Converted Video.

5.4 Metadata Inputation

As introduced in Chapter 2.3.8, Metadata is information within the photography
that can tell a lot about the image, such as timestamp, lightning parameters, camera
technical data, georeference information, and much more. The frames extracted from the
video have no metadata, and ExifTool is a library to use for metadata imputation, starting
by copying all the Metadata from a high-resolution image from Bebop 2 Figure 30a into all
the extracted frames. Then delete all GPS Tags from the frames and write each GeoTag

collected during the flight to its correspondent frame.

5.5 Image Homography

Assuming a pinhole camera model, any two images of the same planar surface in
space have a homography relation. Moreover, there is an estimated homography matrix, and
this information may be used for navigation or to adjust the photo at 83 degrees (maximum
Bebop 2 pitch angle camera) to a photo at 90 degrees with the correct perspective and

appear as if initially taken at bird’s-eye view Figure 33.

N e

(a) Original: Image at 83° (b) Homography: Image at 90° (¢) Crop: Final Image

Figure 33 — Applying Homography on the original image for a bird’s-eye view
Google Colab Notebook Bebop2 Homography.ipynb, source code on Github!

5.5.1 Calculating Bebop Homography Parameters

A camera bird’s-eye view, seen from a geometric perspective, forms different shapes
from the camera lens to the observed surface. It depends mainly on the alignment angle and
the camera’s internal projection shape to form the image. For fisheye lens image is circular,

the volume observed is a cone, while the standard camera image is rectangular and the

1 <https://gist.github.com/anthonymiglio/2900af4b1e3678f4eb5cc824f701859f>
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ot
ot

volume observed is a pyramid, and wide-angle lenses form images and volumes between the
two types as mentioned earlier lenses. The Bebop 2 MAV has a fisheye lens, register still
images as fisheye, but for video recording, the drone has an FPGA (Field-Programmable
Gate Array) that undistort and crops the digital image in real-time into a rectangular
shape according to the CMOS or CCD, registering a Full-HD resolution video at 30 FPS.

There are different types of pyramids. However, the Bebop 2 camera at bird’s-eye
view at the maximum pitch angle of -83 degrees creates an FoV of an Oblique Rectangular
Pyramid (Figure 34)% to avoid distortions during orthophoto creation; must apply a

homography procedure to each captured image for a pitch angle of -90 degrees.

Right Rectangular
Pyramid

Oblique Rectangular
Pyramid

o center

Figure 34 — Rectangular Pyramid: Oblique and Right

According to Perspective Projection on a pyramid, if the measurement of the
image’s aspect on the ground at 1,00-meter height Figure 35, there is a ratio directly
proportional to the other desired height, in this case, the UAV surveillance flying height
from 20,00 to 30,00 meters.

(a) Bebop 2 FoV Visualization (b) Bebop 2 Camera Pitch An-
gle at 83°

Figure 35 — Bebop 2 Camera FoV: Oblique Rectagular Pyramide
Photographer: Anthony Oliveira Pinto

2 <https://mathbitsnotebook.com/Geometry/3DShapes/pyramidobliquel.jpg>
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To measure the FoV (Field of View) of the Bebop 2 Camera in the video aspect:
drone placed on a flat base set at the top of a photography tripod Figure 35 at the height
of 1,00-meter from the center of the camera lens to the Whycon marker Chapter 2.3.6 on
the ground as reference for the drone visual 90 degrees angle projection. Four A4 pieces of
paper taped on the ground passing the captured image limits on the ground. Viewing the
Bebop 2 camera streaming video and by hand with a pencil, the boundaries marked on the
A4 papers the linear distances measured with a tape measure and angle with a protractor.
The aspect ratio (with the camera at 1,00-meter height) from the bottom border to the
top border is 1.532 / 1.692. In other words, the quadrilateral projection on the ground has
a bottom border 90.53% the size of the top border of the original image.

5.6 Overlap

Overlap is a essential concept that must be used in order to make an Orthophoto.
It consist on how much of a photo is part of the adjacent photo or adjacent Lidar beam
(ALSADIK; REMONDINO, 2020), usually presented in percentage and it can be of two
natures forward overlap and lateral overlap Figure 36°. The higher the overlap, more image
information to process by the orthophoto software, but with a greater accuracy as the final
result, on the other hand a smaller overlap, a smaller accuracy on the final orthophoto.
Their is a balance between forward and lateral overlap, and according to ODM (Open
Drone Map) chapter 2.3.9 forward overlap 0.80 and lateral overlap 0.65. See, Experiment
3 on Chapter 6.3.

607 overlap fore/aft

Figure 36 — Image Overlap

5.7 Orthophoto

An orthophoto is photos in orthogonal projection Figure 374. It is a photographic
representation of a region of the earth’s surface in aerial photography. All elements present
the same scale, free from errors and deformations with the same validity as a cartographic

plan.

3 <https://www.fao.org/3/W0615E/W0615E02. HTM >
4 <https://en.wikipedia.org/wiki/Orthophoto>
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To create an Orthophoto, a set of aerial images Figure 45° (taken from an airplane,
UAV, or satellite) digitally corrected to represent an orthogonal projection without per-
spective effects. It is possible to perform exact measurements, unlike an aerial photograph,
which always has deformations caused by the perspective of the camera, the altitude,
or the speed at which the camera is moving. This digital correction process is called
orthorectification. Google Maps approximates an orthophoto taken from its satellites, but

it is good to estimate approximate distances between points.

Orthographic view Perspective view

Figure 37 — Orthographic view vs Perspective view

58 GSD

The Ground Sampling Distance (GSD) is a metric that measures the distance
between two consecutive pixel centers measured on the ground Figure 38. The bigger the
value of the image GSD, the lower the spatial resolution of the image and the less visible

details.

Sensor Pixel Size

f _ Sensor Pixel Size

Scale = H "~ Ground Pixel Size

f= Focal length of the camera
H=Flying height above ground level

Ground Pixel Size

Figure 38 — Perspective Projection

®  <https://en.wikipedia.org/wiki/Orthophoto>



6 Experiments

6.1 Experiment 1: Drone Flight with Yolo over a house pool

In this first experiment, the Bebop 2 fly manually by remote control on a natural
urban outdoor environment to test the drone dynamics and the Yolo custom UAV Dataset
in action searching for classified objects, a swimming pool'. The mission consisted of
taking off from the parking place, raising to 20 meters height looking around in person
point-of-view. Then look down, switching to Bird-Eye-view, searching for the swimming
pool and displacing over it. While raising the drone, Figure 39 has some False positives,

and these do not come into account because the UAV Dataset is for Bird-Eye-view only.

o — =

(a) Surrounded Clear Sky (b) White Wall in Shade (¢) Surrounded Body of Water

Figure 39 — UAV Dataset False Positives in Person Point-of-view

Once it switched to bird’s-eye view, the detection of both False Positives as Silver
Car Roof Tops and True Positives Swimming Pool came out on screen in Fig.40a and
Fig.40b. However, in every image frame, the probability of the Swimming pool object
was higher than the Car rooftops. In contrast, only the True Positive was object detected
in many frames, showing the consistency of the trained model with the swimming pool

classifier and a need for reinforcement training for the car rooftop classifier due to similarities

in color and shape.

(a) False and True Positive (b) False and True Positive (c¢) Only True Positive

Figure 40 — UAV Dataset True and False Positives in bird’s-cye view

1 Youtube video: <https://www.youtube.com/watch?v=fKb_Imoklgw>
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6.2 Experiment 2: UAV Flight Yaw Orientation vs Fix Orientation
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(b) 3D Graph Fix Yaw Orientation
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Figure 41 — UAV Flight Yaw Orientation Issue

As presented in chapter 2.1.1.1, the Bebop 2 Modeling work at +5°. Furthermore,
the Roll and Pitch movements increased to £10° to overcome the outdoor winds. This
change influenced the YAW movement Figure 41a, by introducing a position error into the
x-axis and y-axis while the UAV changes its orientation in YAW Figure 41c¢ from Sampling
Time 40 to 110. Once established the PSI angle, the drone corrects itself and carries on
with the path-planning task step-by-step up to a point where it finished the creeping line
and orientates PSI towards home, missing the landing spot and regaining position control

once it stops YAW rotation.

Even though the linear axes stability, the Yaw axial movement suffers from such
model change from 5 to 10-degree limitation. Therefore, a fixed North Orientation instead

of a Yaw movement bypass this issue, as show on Figure 41b and 41d.
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6.3 Experiment 3: UAV Flight Different Overlap at same height
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Figure 42 — UAV Flight Different Overlap at same height

As presented in chapter 5.6, the path planning will have a different outcome Figure
42¢ and Figure 42d for different overlaps. The closer overlap is to 0%, the shorter the
overlap, the greater the distance between photos on the path planning. On the other
hand, the closer overlap is to 100%, the greater the overlap, the shorter the distance
between photos on the path planning. It is possible to observe this by comparing Figure
42a at overlap forward 40% and lateral 30% has six photos desired positions to cover
the same area as the Figure 42b at overlap forward 80% and lateral 65% has 16 photos
desired positions. This number of photos will directly affect the orthophoto resolution.
The standard for the ODM app is overlapped 80% and 65% for a high-quality orthophoto.
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6.4 Experiment 4: UAV Flight at 20 meters height over Parking lot
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Figure 43 — UAV Flight at 20 meters height over Parking lot

Subplot per Axis

20
1200
250 200 400 600 800 1000 1200
0 1 L 1 1 L
1508 200 400 600 800 1000 1200
e 100 ; : : : o
< 0
?é‘:i§§ o I SR ) RS SN o i S
Q 200 400 600 800 1000 1200
o WOt R
< 0
< =50
= 00
& 150
50
2 100
$ %
50
= Z188

200 400 600 800 1000 1200
Sampling Time (every 200 ms)

Figure 44 — 3D Overview of Fight at 20 meters

This experiment runs at a higher surveillance level, with longer distances for a longer
duration. By comparing Figure 43 with the previous two experiments, the first noticeable
trait is that the delimitation square for the photo desired position has decreased in
proportion to the size of the path planning. The delimitation square is a fixed 0.5x0.5x0.5m

cube that determines this space as the boundaries of the photo’s desired position equal to
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the desired position when the UAV enters this air space. For longer flight dimensions, the
UAV flies smoother Figure 44, and this is observed in-camera with more stable images as
Figure 45 shown in the order taken. At the end of the flight, there are picks on the UAVs
angular positions because the accumulative odometry error in the Z-axis increased due to

a more extended flight, and the vehicle calculated the ground lower than it was, but the

drone altitude sensor and the internal controller kept from colliding to the ground until it
land.

(c) Photo 12 (d) Photo 13

()

(j) Photo 07

(m) Photo 01 (n) Photo 08 (o) Photo 09 (p) Photo 16

Figure 45 — Search Pattern Photos Composition

Execute the steps on Chapter 5, then upload into the ODM app environment. It asks
to create a new project, upload the images, select the preferences, but for orthophoto and
point cloud, keep it on default, press enter, and way for some time that will depend basically
on the number of images and their resolution. The software has been an open-source

project in development for the last seven years.
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6.4.1

Experiment 4: ODM Image Results: 2D Orthophoto and 3D Point Cloud

(a) Orthophoto

(b) Point Cloud

Figure 46 — ODM Image Results: 2D Orthophoto and 3D Point Cloud

Table 8 — ODM Quality Report: Dataset and Processing Summary

Date
Area Covered
Processing Time
Capture Start
Capture End

29/12/2021 at 15:35:42
0.000398 km?2
13.0m:44.0s
28/11/2021 at 15:03:56
28/11/2021 at 15:07:38

Reconstructed Images
Reconstructed Points (Sparse)
Reconstructed Points (Dense)

Average Ground Sampling Distance (GSD)
Detected Features
Reconstructed Features

Geographic Reference
GPS errors

16 over 16 shots (100.0%)
19899 over 19941 points (99.8%)
230,816 points
1.7 cm
8,773 features
3,764 features
GPS
0.86 meters

This subsection presents the result o ODM with a orthophoto Figure 46a, a point

cloud 46b and a quality report on 8, that show the processing time of over 13 minutes for

these 16 photo.
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6.4.2 Experiment 4: Georeference Objects in Orthophoto

-20.27499 . -40.30253

Map data: © Goog\e_Maps

Figure 47 — ODM Orthophoto Georeference

Table 9 — Georeferencing Objects on image:

Object: | Silver Car | Black Car
Bounding Box Type: DOTA YOLO
Perimeter: 10.82 m 12.98 m
Area: 6.56 m2 10.32 m?2
Volume: 2.55 m3 4.34 m3

GPS (latitude, longitude): | (-20.275017, -40.302640), | (-20.275037, -40.302458),
(-20.275028, -40.302628), | (-20.275071, -40.302459),
(-20.275052, -40.302651), | (-20.275070, -40.302432),
(- (-

20.275040, -40.302664) 20.275037, -40.302432)

Based on each image’s GPS information, latitude, longitude, and altitude, the
ODM app process the orthophoto by comparing similarities and features on the image. It
also statistically calculates the GPS coordinates on each image and inputs a calculated
GPS coordinate on each pixel. This way, it is possible to use the measurement tool of the
software to select the lines or bounding boxes for georeferencing of the selected objects.
Figure 47 shows the false positives car rooftop georeferenced in two different techniques
Table 9 for demonstration, DOTA (XIA et al., 2018) on the left and YOLO on the right.



7 Conclusion

The objective of this thesis was to show that it is possible to create a unique solution
to deal with the problem at a custom level. The first step was to create a customized
object detection system, using the YOLO v3 convolutional neural network as the tool to
analyze images collected by a UAV that uses visual references as landmarks for navigation.
The project contributes with a quick introduction to computer vision tasks, machine
learning models, and deep learning algorithms in a single project. As a case study, it was
considered to detect swimming polls in a certain neighborhood, searching for possible
breeding grounds for the Aedes Aegypti mosquito, a great problem in the city of Vitoria,
ES, in particular in the ITha do Boi neighborhood, for the diseases it causes. Such a system
corresponds to the Beboi_lai ROS package, written in Python and Cpp, to control the
UAV to autonomously fly over a given inspection area collecting aerial images. Such a
package is available as an open-source code, with the side objective of encouraging other
people to follow this same path, bringing computer vision into play in mobile robotics,
especially regarding UAVs, thus showing the effectiveness of the initial proposition of this

work.
In the sequel some possible directions to continue this work are given. They are:

1. To increase the database of captured images, focusing on improving the precision
of the model, as well as to expand the number of classes the system is capable of
identifying, thus reducing the number of false positives and allowing to search for
other possible breeding grounds for the mosquito.

2. To redo the modeling of the Bebop 2 in an outdoor environment for making possible
more aggressive attack angles in different wind conditions.

3. To use a different GPS, with higher precision and access to a more satellites, thus
allowing increasing the sampling rate associated to the control loop from 5 Hz to
20Hz, to provide a smoother UAV motion control.

4. To design and assembly a proper outdoor UAV, able to transport a payload of
at least 1kg, to make possible to install more hardware on board the UAV, such
as a high-resolution camera with a Jetson Xavier single-board computer, to allow
processing the images on-board, for instance.

5. Other interesting hardware to install on board, in such a case, are two auxiliary
stereo cameras, to make possible to implement SLAM and obstacle avoidance, for
instance.

6. To implement a surveillance system using a multi UAV system, able to fly as a
formation, implementing the necessary path-planning considering the multiple UAVs

and how they are distributed.
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APPENDIX A - C(Cases from 2016 to 2021 in
the State of Espirito Santo

A.1 Accumulative Cases: Dengue, Chikungunya, Zika
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Figure 48 — Histograms: Confirmed Cases per Week from 2016 to 2021
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APPENDIX B - ROS essentials

B.1 Install ROS Kinetic Kame

As discussed, ROS is not an operating system, but it needs a host operating system

to work. Ubuntu Linux is the most preferred OS for installing ROS.
0. Go to <http://wiki.ros.org/kinetic/Installation/Ubuntu>
1. Open Terminal and follow installation steps

1.1 Setup your computer to accept software from packages.ros.org:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(1lsb_release -sc) main" > /etc/

apt/sources.list.d/ros-latest.list'

1.2 Set up your keys

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add

1.3 Update Debian package index:

sudo apt-get update

1.4. Run Desktop-Full Install:

sudo apt-get install ros-kinetic-desktop-full

1.5 Environment setup:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc source ~/.bashrc

1.6 To install tools and other dependencies for building ROS packages, run:

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator python-

wstool build-essential

1.7 Install rosdep:

sudo apt install python-rosdep

1.8 Before using ROS tools, must initialize rosdep:

sudo rosdep init

rosdep update
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B.2 ROS Cheatsheet

Copyright © 2010 Willow Garage.
<https://mirror.umd.edu/roswiki/attachments/de /ROScheatsheet. pdf>
Copyright © Clearpath Robotics Inc. All rights reserved.

<https://clearpathrobotics.com/ros-robot-operating-system-cheat-sheet />
B.3 ROS OOP (Object Oriented Programming)

1 #!/usr/bin/env python

2 import rospy

3 from std_msgs.msg import Int64

1 from std_srvs.srv import SetBool

5

6 class NumberCounter:

N

8 def __init__ (self):

9 self.counter = 0

10 self .pub = rospy.Publisher ("/num_count", Int64, queue_size=10)
11 rospy.Subscriber ("/number", Int64, self.callback_number)

12 rospy.Service("/reset_counter", SetBool, self.callback_reset)
13

14 def callback_number (self, msg):

15 self .counter += msg.data

16 new_msg = Int64 ()

17 new_msg.data = self.counter

18 self .pub.publish(new_msg)

19

20 def callback_reset(self, req):

21 if req.data:

22 self.counter = 0

23 return True, "Counter has been successfully reset"

24 return False, "Counter has not been reset"

25

26 if _ _name__ == '_ _main__':

27 rospy.init_node ('number_counter') # Initialize node

28 number_counter = NumberCounter () # Instantiate NumberCounter Class
29 rospy.spin ()

Listing B.1 — OOP in rospy code example
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I#include <ros/ros.h>
2#include <std_msgs/Int64.h>
3#include <std_srvs/SetBool.h>

|

5int counter = 0;

6

7class NumberCounter {

3

9
10
11
12
13
14

38%};

private:
ros::Subscriber sub;
ros::Publisher pub;

ros::ServiceServer svr; //reset_service

NumberCounter (ros::NodeHandle *nh) {
public:

sub = nh.subscribe ("/number", 1000, CB_number);

pub nh.advertise<std_msgs::Int64>("/number_count", 10);

srv nh.advertiseService ("/reset_counter",CB_resetCounter) ;
}
void CB_number (const std_msgs::Int64& msg){
counter += msg.data;
std_msgs::Int64 new_msg;
new_msg.data = counter;
pub.publish(new_msg) ;
}
bool CB_resetCounter (std_srvs::SetBool::Request &req,
std_srvs::SetBool::Response &res){
if (req.data) {

counter = 0;

res.success = true;

res.message = "Counter has been reset";
}
else {

res.success = false;

res.message = "Counter has not been reset";
}

return true;

}

// NumberCounter

10int main(int argc, char *xxargv){

ros::init (argc, argv, "number_counter");
ros::NodeHandle nh;

ros::Rate loop_rate (10);

NumberCounter number_counter = NumberCounter (&nh) ;

ros::spin();

Listing B.2 — OOP in roscpp code example
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B.4 ROS Bebop Monocular Camera Calibration

To Calibrate a Monocular Camera:
Print a checkerboard with known dimensions and number of squares.
Have the monocular camera publishing images over ROS.

Compiling the driver and its dependencies.

rosdep install camera_calibration

List ROS topics to check that the images are published:

rostopic list

Check the topics are on: /camera/camera_info and /camera/image_raw.

Running the Calibration Node:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 image:=/camera/

image_raw camera:=/camera

In order to get a good calibration you will need to move the checkerboard around in the

camera frame such that:

e checkerboard on the camera’s left, right, top and bottom of field of view;
o X bar - left/right in field of view;

e Y bar - top/bottom in field of view;

o Size bar - toward/away and tilt from the camera,

o checkerboard filling the whole field of view;

o checkerboard tilted to the left, right, top and bottom (Skew).

At each step, hold the checkerboard still until the image is highlighted in the calibration

window Figure 49.

“ S t4+4E@BEPAY

Figure 49 — ROS Camera Calibration
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Calibration Results:

# Bebop2 camera intrinsics
width 856
height 480

camera matrix

537.292878 0.000000 427.331854
0.000000 527.000348 240.226888
0.000000 0.000000 1.000000

distortion
0.004974 -0.000130 -0.001212 0.002192 0.000000

rectification

1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

projection\\

539.403503 0.000000 429.275072 0.000000
0.000000 529.838562 238.941372 0.000000
0.000000 0.000000 1.000000 0.000000

Creating yaml file from Calibration result output for OpenCV standard:

image_width: 856
image_height: 480
camera_name: bebop_front
camera_matrix:
rows: 3
cols: 3
data: [537.292878, 0.000000, 427.331854, 0.000000, 527.000348, 240.226888, 0.000000,
0.000000, 1.000000]
distortion_model: plumb_bob
distortion_coefficients:
rows: 1
cols: 5
data: [0.004974, -0.000130, -0.001212, 0.002192, 0.000000]

rectification_matrix:

rows: 3
cols: 3
data: [1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000, 0.000000,
1.000000]
projection_matrix:
rows: 3
cols: 4

data: [539.403503, 0.000000, 429.275072, 0.000000, 0.000000, 529.838562, 238.941372,
0.000000, 0.000000, 0.000000, 1.000000, 0.000000]



APPENDIX C - BebopClass

C.1 UML - BebopClass

Position() SignalControl()
-_init__() -_init__()
-X -U
-ax -Ur
-Xd -Ud
-dXd -controller_on
-Xtil -controller_gains_updated
-Xo -GUI_input_data_updated
-pose_origin -time_control_in
-Xe -time_control_out
-rospy.Subscriber.odom -button_abort
-rospy.Publisher.odom_new -button_home
+get_attribute() -button_start
+set_attribute() -button_zero

+_convert2euler_from_quaternion()
+_convert2quaternion_from_euler()
+_callback_odometry(msg).pub_odom_new()
+convert2numpy_from_message_ROS()

+get_attribute()
+set_attribute()

Monitor()

-_init__()

-battery
-rospy.Subscriber.battery
-rospy.Subscriber.wifi
-rospy.Subscriber.altitude
-rospy.Subscriber.speed
-rospy.Subscriber.video_enable

BebopClass()
-pPos:Position()
-pSC:SignalControl()
-pFlag:Flag() Camera()
-pPar:Parameter('bebop2.yaml’) -_init__()
-pGPS:GPS() -cam_pan_angle
-pMon:Monitor() -cam_tilt_angle
-pCam:Camera(cam_tilt_angle_limits) -cam_tilt_up

-rospy.Publisher.takeoff
-rospy.Publisher.land
-rospy.Publisher.cmdvel

+_callback_battery(msg)
+_callback_wifi(msg)
+_callback_altitude(msg)
+_callback_speed(msg)
+_callback_video_enable(msg)

+takeoff().pub_takeoff()
+land().pub_land()
+get_yaw()
+camera_look_up()
+camera_look_forward()
+camera_look_tilted()
+camera_look_down()
+camera_look_at(tilt_angle)

GPS()

-_init_() Parameter() Flag()
-statqs -__init__(filename) -__init_()
-semce -filename -connected
»Iatrtqde -Model_simp -airborne
-Ion_gltude -ip -grounded
-amtuge -manufacture -desired_pose
-satellite -model -visual_calibrated
-rospy.Subscriber.gps -CAM TILT UP +get_attribute()
-rospy.Subscriber.num_sat _CAM TILT DOWN +set_attribute()
-get_coordnates =

+get_attribute()
+_callback_gps()
+_callback_num_sat()

+convert_gps_DMS_from_decimal(gps_decimal)
+dist_gps_haversine(gps_pt_from, gps_pt_to)

-CAM_TILT_CENTER
-CAM_TILT_TILTED
-gains

-max_altitude
-max_tilt_angle_x
-max_tiit_angle_y

-max_vert_speed_z
-max_rota_speed_z

-cam_tilt_down
-cam_tilt_forward
-cam_tilt_tilted

-cam_up

-cam_forward

-cam_tilted

-cam_down

-width

-height
-whycon:Camera_Whycon(cam_tilt_angle)
-yolo:Camera_Yolo()
-bounding_boxes

-bridge = CvBridge()
-rospy.Subscriber.cameraState
-rospy.Subscriber.rol_pit_yaw
-rospy.Publisher.cam_ctrl

+_callback_camera_orientation(msg)
+_callback_rol_pit_yaw(msg)
+cam_control_tilt(cam_tilt_angle).pub_cam_ctrl()
+bridge_imgmsg_to_cv2(img_msg)

+bounding_box_to_cv2(bounding_boxes)
T

I
: Vi
Camera_Yolo() Camera_Whycon()
-_init__() -__init__(cam_tilt)
-bboxes -whycon_is_tracking
-bbox -whycon_target
-obj_found -rospy.Subscriber.whycon_is_tracking

-rospy.Subscriber.yolo_boxes

-rospy.Subscriber.whycon_target

S ——

["config file | -vel_linear
= < - - -vel_angular
-bebop2.yam| *_repr_0

-rospy.Subscriber.yolo_found

+_str_()

-_callback_yolo_boxes(msg)
-_callback_yolo_found(msg)

+msg_PoseStamped()

+_callback_whycon_is_tracking(msg)

+_callback_whycon_target(msg)

Figure 50 — UML: BebopClass
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APPENDIX D - Conditional Tasking
Recurrent Block Flow Chart per State

Recurrent(S0)
|
stepy, True Bebop Wifi
1 Connect (ip) [
False
False
True
'
step, True camera
2 look forward
R —
False

next_state

Figure 51 — Recurrent(S0) Block

Recurrent(S2)

Recurrent(S1)
|
True alpha zero
—»-(airborne
TakeOff False
False
True
'{ue Xd(0,0,2.5,00)
controller_on = True
False

True Camera
look_down

False

True
Count_Target

False

True Visual
Calibration

—
False

R

next_state

Figure 52 — Recurrent(S1) Block

next_state

Figure 53 — Recurrent(S2) Block

Recurrent(S3)
|
True Orientation
(alpha_zero)
Xd(hx,hy,2.5,00)
False

‘{ue Translation

(z=20.0) >
Xd(hx,hy,20.0,000)

S —

False =Q ;)

desired

next_state

Figure 54 — Recurrent(S3) Block
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Conditional Tasking Recurrent Block Flow Chart per State
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Recurrent(S4)
|

Y

True

False

False

p0 = home_point

pl = search_points[0]
betha = head angle(p0, p1)

Orientation
(betha)
Xd(pOx,p0y,20,B)

S —

True

False

Translation
(goto_point)
Xd(p1x,ply,20,B)

—

Recurrent(S5)
|
True idx = 0
finished_points = False
step = step 2
False

False

Translation (p[idx])
Xd(px,py,20.0,0.0)

Orientation
(North=0°)

.

False

e| Take picture
idx+=1
step = step 2

max_prob(id)
.get_pose()

next state

Figure 55 — Recurrent(S4) Block

Recurrent(S6)
|

next_state

Figure 56 — Recurrent(S5) Block

Recurrent(S7)

Object Detection
Analisis

S —

o False

UAV Search Pattern
(Increasing_Square)

False

True

,&7

l

next_state

Figure 57 — Recurrent(S6) Block

True

False

s

p0 = current_positon
pl = home_point[-1]

betha = head_angle(p0, p1)

False

Orientation
(betha)
Xd(p0x,p0y,20,B)

True

False

Translation
(goto_point)
Xd(p1x,ply,20,B)

next_state

Figure 58 — Recurrent(S7) Block
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Recurrent(S8)
|
Y
True Orientation
(alpha_zero)
Xd(hx,hy,20.0,00)
—
False
Recurrent(59)
True Translation I
(z=2.5) *
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True .
Ealse A Save Files
\
True | Controller_on=False False
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False
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Figure 59 — Recurrent(S8) Block Figure 60 — Recurrent(S9) Block

See You Space Cowboy...
—"The Real Folk Blues" by the Seatbelts



