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Abstract

The order reduction technique (ORT) is an iterative method of solution of
higher order differential equations. It consists of treating the higher order
terms perturbatively so that the lower order in the order reduction must be
chosen according to which regime of solution the method is going to reproduce.
In some cases, the presence of solutions that do not have physical behavior
is observed, mainly associated with particularly higher order differential
equations. Fortunately, as it is known in the literature, the order reduction
method presents fewer solutions, and with that, one of the intentions of the
technique is to make it easier to select the solutions which present a good
physical behavior. However, it must be emphasized that one disadvantage
of the method is that there could be some physical solutions that the order
reduction will not detect.

The ORT is applied to the following cases:

1. The study of the dynamics of the motion of a charged particle.

2. The harmonic oscillator.

3. The inflationary paradigm of Starobinsky.

We show that in the case of the examples cited above, the ORT as an iterative
perturbative method does not show convergence in the oscillating regime of
a weak coupling limit. This regime is excluded by the order reduction. In
addition, the method shows good convergence in the strong coupling regime,
non-oscillating which slowly approaches equilibrium.

The main results discussed are based on the work [1].

Keywords: order reduction technique, harmonic oscillator, Starobinsky infla-
tion.



Resumo

A técnica de redução de ordem (TRO) é um método iterativo de solução
de equações diferenciais de ordem superior. Consiste em tratar de forma
perturbativa os termos de ordem superior de modo que a ordem inferior na
redução de ordem deve ser escolhida de acordo com qual regime de solução
o método deve reproduzir. Em alguns casos, a presença de soluções que
não possuem comportamento f́ısico é observada, principalmente associada
à equações diferenciais particulares de ordem superior. Felizmente, como é
conhecido na literatura, o método de redução de ordem apresenta um número
menor de soluções, e com isso, uma das intenções da técnica é facilitar a seleção
das soluções que apresentam um bom comportamento f́ısico. No entanto, deve
ser enfatizado que uma desvantagem do método é que pode haver algumas
soluções f́ısicas que a redução de ordem não irá detectar.

A TRO é aplicada nos seguintes casos:

1. O estudo da dinâmica do movimento de uma part́ıcula carregada.

2. O oscilador harmônico.

3. O paradigma inflacionário de Starobinsky.

Mostramos que no caso dos exemplos citados acima, a TRO como um método
perturbativo iterativo não apresenta convergência no regime oscilante do limite
de acoplamento fraco. Este regime está exclúıdo pelo método de redução
de ordem. Além disso, o método mostra boa convergência no regime de
acoplamento forte, não oscilante que se aproxima lentamente do equiĺıbrio.

Os principais resultados são baseados no trabalho [1].

Palavras-chaves: técnica de redução de ordem. oscilador harmônico. inflação
de Starobinsky.
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CHAPTER 1.

Introduction

“Life is like riding a bicycle.
To keep your balance, you must keep moving.”

— A. Einstein.

Our current understanding of the universe is based on the standard model of cosmol-
ogy, the so-called ΛCDM model. In this model, the 95% of the energy content of the
universe is constituted by cold dark matter (CDM) and dark energy (DE) in the form of
the cosmological constant Λ. Dark matter is cold, without electromagnetic interaction,
and non-baryonic, and its existence is indicated by several astronomical measurements
as a consequence of its gravitational interaction. There are a lot of candidates for dark
matter, one popular among them are the particles beyond the standard model [2]. Dark
energy is the name given to a type of anti-gravity energy that could be responsible for the
accelerated expansion of the universe; the cosmological constant is one of the candidates
for DE.

Standard cosmology also presents issues such as the flatness and the horizon problems.
The universe must be flat now and flatter at the beginning, since Ωk ∝ 1/(Ha)2. The
latest Planck data constrain the present curvature density as Ωk,0 = 0.0007± 0.0019 [3].
Theoretically, we have Ωk(10−43 sec) ≤ O(10−60) at the Planck epoch and Ωk(1 sec) ≤
O(10−16) at the epoch of the primordial nucleosynthesis. So, the flatness problem con-
sists in a fine-tuning of the initial conditions for the spatial curvature. For example, Ωk

must be determined with about 60 significant digits of precision at the Planck scale.
The horizon problem arises from Cosmic Microwave Background Radiation (CMBR)

observation. The Hot Big Bang cosmological model does not explain why regions that
apparently have never been in thermal contact present similar physical properties [4].
These problems can be solved, or at least alleviated if the universe went through an
accelerated epoch in its beginnings. This epoch is called inflation [4], [5], [6], [7], [8] and
[9]. Several models of inflation emerged since the end of the 1970’s [10]. In particular,
this thesis focuses on the model that arises from quadratic corrections to Einstein’s
general relativity: the Starobinsky inflationary model [11]. The main motivation for
this theory is that it arises naturally as a quantum correction in a consistent model of
semi-classical gravity, i.e. in a scenario where quantum matter fields are considered in a





Introduction Section 1.0

classical gravitational background, [12]. The action for this theory is:

S =

∫
d4x
√
−g

M2
PL

2

{
R+ βR2 + α

[
RµνR

µν − 1

3
R2

]}
(1.1)

include Starobinsky’s model [11]. The value of β ≈ 1.305 × 109 M−2
PL can be inferred

from observation [13], [14], [15].

Different inflationary models are described by essentially two parameters: r, the
tensor-to-scalar ratio, and nS , the scalar index. They are obtained from the ampli-
tudes of the power spectrum (scalar and tensor ones) of the primordial fluctuations
produced during inflation. Different inflationary models differ in their predictions of
these parameters [16], which can be constrained from observation of the CMBR.

The most precise observational tests for inflation have been performed with the help
of the Planck [13] satellite. With better predictive power for the future, the Probe of
Inflation and Cosmic Origins (PICO) aims to determine the energy scale of inflation
[16] and the Cosmic Origins Explorer (COrE) designed to detect the primordial gravita-
tional waves generated during the inflation period [17]. According to the latest CMBR
observations [13], [16], [17] the Starobinsky model is the one that best fits the amplitude
of the scalar-tensor ratio.

Metric variations in the action (1.1) result in partial differential field equations of
order-4. Therefore, the Starobinsky model contains a differential partial equation with
higher–than–second order time derivatives.

Higher derivatives were also studied in the context of electrodynamics by Lorentz and
Abraham [18]. In particular, in the study of the dynamics of a charged particle in an
electromagnetic field, it is considered by Lorentz a simple model in which the electrons
are bound elastically and the system treated as a charged harmonic oscillator. Making
an analogy with Larmor’s work on the equality of energy loss radiated by a harmonic
oscillator with a damping force, Lorentz found an additional term that arises due to its
accelerated motion [19],

fself =
2

3

q2

c3
ȧ. (1.2)

Here q and m are the charge and mass of the particle, respectively, c is the speed of light,
and ȧ is the first order derivative of the particle’s acceleration with respect to the time.
This term arises through the balance between mechanical energy and energy radiated
to infinity from the particle, which in turn acts back on it as a back-reaction force and
alters the electron’s motion, this term is called self-force.

After that, Abraham considered, as a model for the electron, a uniformly charged rigid
sphere [20]. However, in 1904, Abraham realized the inconsistency of his model with the
Lorentz transformations (LT). Right after these transformations were better established
by Einstein, Abraham [18] abandoned his rigid electron by an electron whose shape
change under LT and gives a relativistic generalization for the self-force term found by





Introduction Section 1.0

Lorentz (1.2) as
2

3

q2

c3
(gµν + uµuν) ȧν . (1.3)

Where gµν is the metric tensor, uµ = dz/dτ the four-velocity, aµ = duµ/dτ the four-
acceleration and ȧµ = daµ/dτ the first derivative of the four-acceleration of the particle
along the world line which is described by the relation z(τ), where τ represents the
proper-time.

Nevertheless, the Lorentz-Abraham model does not hold in the case where the radius
of the electron tends to zero, being the self-energy divergent. Dirac solved this problem,
generalizing the Lorentz-Abraham model [21]. Dirac showed that the field responsible
for the radiation can be better conveniently written as a combination of the retarded
and advanced electromagnetic fields. Also, he considered a thin tube surrounding the
electron world line in space-time to calculate the flow of energy and momentum through
the surface of the tube. With this, he assumes the existence of an infinite and negative
mass in the center of the tube such that, when subtracted from the infinite and positive
mass produced by the Coulomb field, which surrounds the outside of the field, results
in a finite and measurable mass for the particle. In this way, the problem of infinite
mass and consequently divergent self-energy, found by the Lorentz-Abraham model, was
solved.

The equation of motion of a charged and accelerated particle became known as the
Lorentz-Abraham-Dirac (LAD) equation

aµ =
q

m
Fµνu

µ +
2

3

q2

mc3
(δµν + uµuν) ȧν . (1.4)

Here, Fµν is the electromagnetic field tensor.
This model consists of an equation of motion that allows non-physical solutions. For

example, a particle that is not subject to an external force can acquire an acceleration
that grows exponentially with time. This solution is called a runaway solution and
is not physical. Moreover, as discussed by Dirac in [21], when he tried to avoid the
runaway solution, considering that an external force starts to act at a certain time, it
causes changes in the particle’s movement before the beginning of the action of that
force, violating thus causality.

To avoid non-physical solutions of the dynamics of a charged particle in an electro-
magnetic field, Eliezer and Peierls [22] was among the first to derive equations of motion
with reduced order, no more than second order. In their approach, they assume an ex-
pansion of the equation of motion containing derived terms of even higher order, with the
highest-order derivative terms assumed to be small and the convergence for the equation
of motion of the electron in an electric field only happens when the external frequency
is much smaller than the natural frequency of the system.


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In this limit, the equation of motion becomes

mv̇ = eE +
2

3

q3

mc3
Ė. (1.5)

Where v is the velocity of the particle, E is the external electric field, and the dot means
a time derivative. Here, for convenience, a different notation has been used from the
original work of Eliezer and Peierls. Some applications of this equation have already
been made in [22].

Still, in the context of electrodynamics, a slightly different approach was obtained by
Landau and Lifshitz [23] which applies the ORT as the limit where the self-force is much
smaller than the external force. In this way, the self-force is treated as a perturbation.
In [23], the method is applied to the non-relativistic version of the LAD equation,

mv̇ = qE +
q

c
v ×H +

2

3

q2

c3
v̈, (1.6)

using a coordinate system in which the charge is momentarily at rest. In the above
equation, E and H are the external fields and the last term is the self-force.

As mentioned above, the self-force term is considered as a perturbation. In this way,
substituting the first approximation v̇ = qE/m for the term of first derivative, the
self-force term of the Equation (1.6) results in

fself =
2

3

q3

mc3
Ė +

2

3

q4

m2c4
E×H. (1.7)

If there is no external field acting on the charge, E = 0 and H = 0, the Equation (1.6)
becomes mv̇ = 0 and Newton’s first law is satisfied. The expression for the self-force
term (1.7) was the same found by Eliezer and Peierls for the case of the electron submit-
ted only to an electric field (1.5). The condition that the self-force is much smaller than
the external force follows from the possibility of comparing the frequencies, as noted
earlier by Eliezer and Peierls, that the external frequency must be much smaller than
the natural frequency of the system. Thus, as Eliezer, Peierls, Landau, and Lifshitz
themselves warn, this condition limits the validity of the method.

The ORT is also used in [24] and [25] in the context of self-force. Evidently, because
they are perturbations on differential equations, the technique is also applied to effective
gravity. To our knowledge, the first to apply the ORT in this context were the authors
Bel and Zia [26], after that, also by Simon [27], [28] and Parker [29].

As far as both the point particle self-force and effective gravity are concerned, there
is a drastic difference between them that we must emphasize here [1]. In the case of ef-
fective gravitational theories, it is not possible to know in advance which solutions have
physical behavior. As it is well-known, solutions were found with no initial singularities
[11] or with no initial singularity and with no particle horizons [30], [31], [32]. Also,





Introduction Section 1.0

instabilities as tachyon were showed by [33] and [34] for the sign of the regularization
parameters α > 0 and β < 0 in the action (1.1). The authors [11], [28], [29], [30], [31], [32]
consider, for the equation of motion, an additional term with zero covariant divergence
in all conformally flat models, which is due to Ginzburg [35], see also [36]. Although
this term is different from the others because it does not come from the variation of
the effective action, it is allowed by Wald’s axioms [37], [38]. In this work, Ginzburg’s
term is not considered in the equation of motion. Only terms that arise by varying a
consistent model of effective gravity are taken into account in a scenario where quantized
fields are considered in a classical gravitational background, see, for instance, [12], [39],
[40], [41], [42], and [43] the technique developed by Schwinger-DeWitt where the diver-
gences present in the effective action can be eliminated by redefining some renormalized
constants [44].

The present work aims to carefully analyse the conditions of validity of the ORT ap-
plied to Starobinsky inflation [11] and the connection of those to the slow–roll conditions.

The thesis is organized as follows:

1. Chapter 2 offers a brief review of the standard model of cosmology, the ΛCDM
model;

2. Chapter 3 presents a review of inflation;

3. Chapter 4 contains the original contribution of this thesis: the analysis of the
conditions of validity of the ORT applied to the case of Starobinsky inflation. The
content of this chapter is based on Ref. [1].

4. The conclusions are contained in Chapter 5.

The results are obtained numerically using the gnu/gsl ode package1, containing the
Runge-Kutta Prince-Dormand (8, 9) method, on Linux. This method is one of those used
to obtain numerical solutions to initial valued Ordinary Differential Equations (ODE).
It converts a higher order system into a first order one set by introducing a new variable.
The codes were obtained using the algebraic manipulator Maple 17.

The metric signature is −+ ++, Greek indices run over values 0−3 and natural units
G = ~ = c = 1 are employed.

1https://www.gnu.org/software/gsl/doc/html/ode-initval.html





CHAPTER 2.

The standard cosmological model

The Standard Cosmological Model (ΛCDM) with cold dark matter and dark energy in
the form of the cosmological constant Λ (dominating at late times) belongs to the class
of the Hot Big Bang models. These are supported by the following three observational
pillars:

• The CMBR is a thermal relic of a hot and high density phase of the evolution
of our universe at early times. The measurement of the CMBR indicates a high
degree of isotropy of the early universe. Recent observations of the large scale
structure (greater than 100 Mpc) of the universe also suggests homogeneity. The
cosmological principle assumes homogeneity and isotropy, i.e. at any given time,
the spatial hypersurfaces are maximally symmetric. This results in the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric (2.1);

• The production of the lightest elements (principally Helium) during a primordial
nucleosynthesis [45]. On the other hand, the heaviest elements in the universe were
produced within the oldest stars through nuclear fusion;

• The expanding universe. Observations establish a linear relation between the re-
cessional velocity of the galaxies and their proper distance, known as the Hubble-
Lemâıtre’s law. Mathematically, the FLRW line element can account for this law
[46], [47].

There are some puzzles related to the Hot Big Bang model, such as the flatness problem
and the horizon problem. Postulating a sufficiently abrupt accelerated early phase of
expansion, some of these problems can be solved. This phase is called inflation and will
be discussed in Chapter 3.

2.1. Friedmann-Lemâıtre-Robertson-Walker metric

The FLRW line element is given by:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ

)]
, (2.1)





The standard cosmological model Section 2.2

where t is the cosmic time, (r, θ, ϕ) are the comoving (spherical) spatial coordinates, a(t)
is the scale factor (with the dimension of a length) and k is the constant spatial curvature
of the universe, which can assume the values +1, −1 and 0 for spherical, hyperbolic or
flat spaces of constant spatial curvature, respectively. Natural units c = 1 are used.

Using the well-known formula for the Levi-Civita connection:

Γµνλ =
1

2
gµσ(gνσ,λ + gλσ,ν − gνλ,σ), (2.2)

where a comma represents the partial derivative and using the FLRW metric the resulting
non-zero terms of the connection are:

Γ0
11 =

aȧ

1− kr2
,Γ0

22 = aȧr2,Γ0
33 = aȧr2 sin2 θ,

Γ1
11 =

kr

1− kr2
,Γ1

22 = −r
(
1− kr2

)
,Γ1

33 = −r sin2 θ
(
1− kr2

)
,

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ

a
,Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
,

Γ2
33 = − sin θ cos θ,Γ3

23 = Γ3
32 = cot θ. (2.3)

Here ȧ ≡ da/dt, the time dependence of the scale factor has been omitted to simplify
the notation.

Using the formula for the Ricci tensor:

Rνβ = Rµνµβ = Γµνβ,µ − Γµνµ,β + ΓµσµΓσνβ − ΓµσβΓσνµ, (2.4)

and the connection (2.3), the non-null terms are given by

R00 = −3ä/a, R11 =
aä+ 2ȧ2 + 2k

1− kr2
,

R22 = r2
(
aä+ 2ȧ2 + 2k

)
, R33 = r2 sin2 θ

(
aä+ 2ȧ2 + 2k

)
. (2.5)

For the Ricci scalar,

R = Rνν = gνβRνβ = g00R00 + g11R11 + g22R22 + g33R33, (2.6)

using (2.5), one obtains:

R = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
. (2.7)

2.2. Friedmann equations

The Einstein-Hilbert action couples the geometry of space-time to matter as follows:

S =
1

16πG

∫
d4x
√
−gR+

∫
d4x
√
−gLM , (2.8)





The standard cosmological model Section 2.2

where G is the gravitational constant, g is the determinant of the metric gµν , d4x
√
−g

is the invariant volume element, R is the Ricci scalar, and LM is the Lagrangian density
of the matter.

Variation of this action with respect to the metric, leads to the Einstein-Hilbert equa-
tion, as instance, see [48] and [49], Gµν = κTµν , with

Gµν = Rµν −
1

2
gµνR, Tµν = − 2√

−g
δ(
√
−gL)

δgµν
. (2.9)

Where Gµν is the Einstein’s tensor, Tµν the energy-momentum tensor and κ = 8πG/c4

with c the speed of light.
The cosmological principle leads us to model the universe as a perfect fluid, whose

energy-momentum tensor Tµν has the following form:

Tµν = (ρ+ p)uµuν + pgµν , (2.10)

where uµ is the 4-velocity of a fluid element, ρ(t) and p(t) are the density of energy
and fluid pressure, respectively. They depend only on time because of the cosmological
principle, to simplify the notation this time dependence is omitted. In the comoving
reference frame, we have Tµν = diag[−ρ, p, p, p].

The component µ = 0 of the conservation of the energy-momentum tensor: Tµν ;ν = 0,
where the semi-colon represents the covariant derivative, results in

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (2.11)

where the FLRW metric has been employed here.
For a simple equation of state (EoS) p = wρ, with w constant, the energy density

evolves as ρ ∝ a−3(1+w). Some examples of relevant w’s are: w = 1/3 for radiation,
with ρr ∝ a−4; w = 0 for cold matter, with ρm ∝ a−3; w = −1 for the vacuum energy
(equivalent to the cosmological constant), with ρΛ ∝ const.

The Einstein-Hilbert equation has the tensor of the lhs related to the geometry of
the space-time and the tensor of the rhs with the matter content of the universe. This
equation was initially modified by A. Einstein in 1917, he introduced a term called the
cosmological constant, Λ, to counterbalance the gravitational force and keep the universe
stationary, a static model of the universe at that time was expected. After Hubble found
that the universe is in expansion, Einstein dropped this change in his equation. Presently,
the cosmological constant has another use in the original Einstein-Hilbert equation. The
general form for the actually modified equation becomes,

Rµν −
1

2
gµνR = κTµν − Λgµν . (2.12)

It follows that the cosmological constant term is equivalent to adding in the form of the
energy-momentum tensor the constant energy density and isotropic pressure:

ρvac =
Λ

κ
, pvac = −Λ

κ
, (2.13)





The standard cosmological model Section 2.3

representing an equivalence of the cosmological constant to vacuum energy [50]. The
negative pressure of the vacuum can accelerate the universe allowing for a desirable
cosmological model.

Using the FLRW metric in the Einstein-Hilbert equations, the Friedmann equations
are obtained. These are the dynamic equations that describe the evolution of the scale
factor a(t). Due to the isotropy of the FLRW metric, the Friedmann equations are only
two:

ȧ2

a2
= H2 =

κ

3
ρ− k

a2
, (2.14)

where the Hubble parameter is defined as:

H ≡ 1

a

da

dt
=
ȧ

a
. (2.15)

This parameter is not constant (except for the period of inflation when it is approximately
constant).

Moreover,

2
ä

a
+
ȧ2

a2
+

k

a2
= −κp. (2.16)

If (2.14) is substituted into (2.16), one has:

ä

a
= Ḣ +H2 = −1

6
κ (ρ+ 3p). (2.17)

Here it is considered the case where the cosmological constant is set as null Λ = 0 unless
we want to include any non-zero vacuum energy density in the total energy-momentum
tensor.

The first Friedmann’s equation (2.14) can be reformulated as,

k

(Ha)2
= Ω− 1, (2.18)

where Ω is the ratio of the density to the critical density ρc ≡ 3H2/κ, that is: Ω ≡ ρ/ρc.
Usually, Ω = Ωm + Ωr + ΩΛ, where Ωm refers to the matter density, Ωr to the radiation
density, and ΩΛ to the vacuum energy density.

The term Ωk = k/(Ha)2 is the curvature density.

2.3. Problems of the standard model

Despite its successes, the Hot Big Bang model presents some issues. Some of these will
be discussed in this section. In the next chapter, it will be shown how inflation might
help in solving these puzzles.
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2.3.1. The horizon problem

A convenient way to write the FLRW metric is

ds2 = a2(η)
(
−dη2 + dχ2

)
, (2.19)

where we chose θ = const and φ = const and thus χ is the comoving distance. The time
coordinate employed here is the so-called conformal time:

η ≡
∫

dt

a(t)
. (2.20)

Massless particles moves along null geodesics, i.e. ds2 = 0, or −dη2+dχ2 = 0. Therefore,
the function χ(η) is determined by

χ(η) = ±η + const, (2.21)

which correspond to straight lines at angles ±45◦ in the plane (η, χ), i.e. the light cone
[7]. No particle travels faster than the speed of light, so causally connected events must
have overlapping past light cones.

It so happens in the CMBR sky that many regions had never been in causal contact
(i.e. do not have overlapping past light cones) and nonetheless share the same average
temperature, see Figure 2.1.

We can elaborate a bit more on this point. If the universe has a finite age, then
photons can travel only a finite distance. Thus, the causal connection is limited by a
certain volume with a boundary called particle horizon, also represented in Figure 2.1.

According to (2.20) and (2.21) the comoving coordinate χp for the particle horizon,
or the comoving horizon, is:

χp = η − ηi =

∫ t

ti

dt̄

a(t̄)
=

∫ a(t)

a(ti)

da

a

1

aH
, (2.22)

where (aH)−1 is known as the comoving Hubble radius and ηi or ti corresponds to the
beginning of the universe.

In the Hot Big Bang model, one has that Ha diverges as a → 0 (for example as
1/a, if radiation dominates at early times). Therefore, the particle horizon also tends to
zero as a → 0, and events separated by a distance larger than the particle horizon are
thus causally disconnected. On the other hand, it can be shown that an early phase of
accelerated expansion is able to make the particle horizon arbitrarily large in the past.
Indeed, note that

d

dt
[a(t)H(t)] =

d2

dt2
a(t). (2.23)

Thus, the comoving Hubble radius, (aH)−1, decrease when aH increase, and in this
epoch the universe is accelerates,

d

dt
[a(t)H(t)] > 0⇒ d2

dt2
a(t) > 0. (2.24)

Therefore, an early phase of accelerated expansion may provide a mechanism by which
different regions in the CMBR sky were in causal contact.
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Figure 2.1.: The conformal diagram for the Hot Big Bang model, reproduced from ref-
erence [5]. The Figure shows that the CMBR sky has many regions that
were never in causal contact (there is no overlap in your past light cones).
It also showed the limited volume with a boundary called particle horizon
for a finite age universe.

2.3.2. The flatness problem

As shown in Equation (2.18):
Ωk = Ω− 1. (2.25)

Here Ωk = k/(Ha)2 is the curvature density.
If radiation dominates all the way to the Big bang, at early times we have:

Ωk ∝ 1/(Ha)2 ∝ a2 . (2.26)

Therefore, the spatial curvature grows considerably.
The latest Planck data provides the following restriction for the present value of the

curvature density: Ωk,0 = 0.0007± 0.0019 [3]. Therefore, we must have Ωk(10−43 sec) ≤
O(10−60) at the Planck epoch and Ωk(1 sec) ≤ O(10−16) at the epoch of the primordial
nucleosynthesis, in order to be consistent with observation. This means that Ωk must be
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determined at the Planck scale with a fine-tuning of 60 significant digits. This fine-tuning
of the initial conditions is known as the flatness problem.
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CHAPTER 3.

Inflation

The original idea of inflation arose to explain the issues of the Hot Big Bang models
mentioned in Section 2.3. Inflation is an epoch when the scale factor a(t) grew quasi-
exponentially, about 10−34 seconds after the Big Bang. Most theories model inflation via
a spatially homogeneous scalar field φ(t), named inflaton, subject to a potential V (φ).
Inflation occurs during a regime of the evolution of the inflaton known as slow-roll, where
the field slowly moves towards the minimum of the potential. When the latter is reached,
the scalar field begins to oscillate and the universe starts reheating. See Figure 3.1 for
an example of inflaton potential.

Figure 3.1.: The plot shows the regime of the evolution of the inflation when the scalar
field slowly decreases to its minimum value. This regime is known as slow-
roll. After that, the scalar field oscillates around the minimum φ = σ, and
the universe starts reheating. Figure reproduced from reference [5].
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3.1. Definition

As we will show, an exponential expansion of the universe can be obtained if we consider
a field with properties similar to a vacuum. As shown in the Section 2.2, the density of
the vacuum energy is constant, ρvac = const. Thus, the first Friedmann equation (2.14)
results in

H =

√
κρvac

3
= const. (3.1)

The spatial curvature term was ignored in the Friedmann equation because it anticipates
the huge increase in the scale factor. Thus, the term k/a2 becomes very small and can
be neglected (that is the reason why Inflation solves the flatness problem).

From the vacuum energy density given in (2.13), with Λ > 0, we have H =
√

Λ/3.
Thus,

da

a
=

√
Λ

3
dt⇒ a(t) = c exp (Ht), (3.2)

where it is used the definition for the Hubble parameter (2.15). According to (3.1) and
(3.2) the scale factor grows exponentially with time,

a(t) ∝ exp(Ht) ∝ exp

(√
Λ

3
t

)
. (3.3)

As will be discussed below, inflation can solve some of the puzzles of the Hot Big Bang
model. In the Subsection 2.3.1, it was shown that the particle horizon problem is a
direct consequence of the deceleration of the universe. Thus, a possible solution is to
consider an accelerated phase of expansion before the deceleration phase.

3.2. Dynamics of the inflaton

Neglecting interactions with matter, the inflaton Lagrangian can be written as:

L = −∂µφ∂µφ/2− V (φ) =
φ̇2

2
− V (φ), (3.4)

where ∂iφ = 0 as a result of the field being homogeneous [6].
The energy-momentum tensor for the field φ is:

Tµν = − 2√
−g

δ(
√
−gL)

δgµν
= ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ+ V (φ)

)
, (3.5)

where the temporal and spatial terms are

T00 =
φ̇2

2
+ V (φ), (3.6)

T11 =
φ̇2

2
− V (φ), (3.7)
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respectively (using here the FLRW metric already).
Comparing with the definition of the energy-momentum tensor for a perfect fluid,

Equation (2.10), it results in,

ρ = φ̇2/2 + V (φ), (3.8)

p = φ̇2/2− V (φ). (3.9)

Thus, the EoS parameter w becomes

w =
p

ρ
=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (3.10)

The first Friedmann equation (2.14) for k/a2 � ρ is H2 = κρ/3, with ρ given by (3.8)
becomes H2 = κ[φ̇2/2 + V (φ)]/3, deriving both sides, we obtain

2HḢ =
κ

3

[
φ̇φ̈+ V ′(φ)φ̇

]
, (3.11)

where V ′(φ) ≡ dV (φ)/dφ. Using the conservation of the energy-momentum tensor
(2.11), and taking the derivative of the first Friedmann equation (3.1), we can get Ḣ =
−κ(ρ+ p)/2 and then substituting the results from (3.8)-(3.9) it is found that

Ḣ = −κφ̇
2

2
. (3.12)

Using (3.11) and (3.12), we obtain the following equation of classic motion for the scalar
field

φ̈+ 3Hφ̇+ V ′(φ) = 0, (3.13)

where the second term is proportional to the Hubble factor, showing that the growth of
the scalar field is damped by the expansion of the universe.

The equation of motion (3.13) can also be obtained by varying the action given by the
Lagrangian (3.4), using the Euler-Lagrange formalism, or using the conservation of the
energy-momentum tensor Tµν ;ν = 0.

3.2.1. Slow-roll regime

In the slow-roll regime, the term φ̈ is neglected. As a result, some conditions arise which
we will discuss shortly. The equation of motion (3.13), reduces to

3Hφ̇ = −V ′(φ). (3.14)

The first Friedmann equation (2.14) with (3.8) and k/a2 � ρ, is given by

H2 =
1

3M2
PL

(
φ̇2

2
+ V (φ)

)
, (3.15)
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where κ = 1/M2
PL with MPL =

(
~c5/G

)1/2
the Planck mass, c the speed of light, ~ the

Planck constant and G the gravitational constant.
For a quasi-exponential expansion, it is necessary the condition |Ḣ|/H2 � 1, which

is satisfied by
φ̇2 � V (φ), (3.16)

where it is used the Equations (3.12) and (3.15). Therefore, the kinetic energy of the
scalar field φ̇2/2 is much smaller than its potential energy V (φ), so ρ ' V (φ) according
to Equation (3.8), and Equation (3.15) becomes approximately

H2 ' 1

3M2
PL

V (φ). (3.17)

Furthermore, for the EoS parameter, Equation (3.10), the approximate value is w ' −1,
i.e., the same as for the case of the energy density governed by the vacuum energy
density, as mentioned in the Section 2.2. The approximately constant vacuum density
implies V (φ) ' const during the slow-roll period, as can be seen in Figure 3.1.

To obtain one of the slow-roll conditions in terms of the potential we will initially
calculate the derivative of the first Friedmann equation for this regime, (3.17), which
becomes

2HḢ = (V ′(φ)φ̇)/(3M2
PL). (3.18)

After, using the equation of motion (3.14), it can be obtained

Ḣ ' − 1

M2
PL

φ̇2

2
. (3.19)

To proceed, we divide Equation (3.18) by Equation (3.17) and replace Equations (3.14)
and (3.19) in place of H and Ḣ, respectively. Then, adjusting the terms and using the
condition (3.16), we arrive at one of the conditions satisfied by the potential V (φ) in the
slow-roll regime, ∣∣∣∣V ′(φ)MPL

V (φ)

∣∣∣∣� (3)1/2. (3.20)

The rhs of the second Friedmann equation (2.17) can be written as,

ä

a
= H2

(
1 +

Ḣ

H2

)
= H2 (1− ε), (3.21)

where ε ≡ −Ḣ/H2. Thus, according to Equation (3.21) we get, ε = 1− ä/aH2. During
inflation for an accelerated expanding universe, ä > 0, it is discussed before that, as a
consequence, aH increases and so ε < 1. For a ∝ eHt then ε = 0. Thus, ε � 1 for a
quasi-exponential expansion, which is implemented by the slow-roll condition.

The slow-roll condition ε� 1, can be written as−Ḣ � H2. Deriving both sides results
in the second condition for the slow-roll period in terms of the Hubble parameter,

η ≡ − Ḧ

HḢ
� 1. (3.22)
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Both ε and η can be written in terms of φ and its derivatives when we substitute in
their expressions the values of Ḣ = −φ̇2/(2M2

PL) and Ḧ = −φ̈φ̇/M2
PL obtained when

the first Friedmann equation (2.14) is substituted into the second Friedmann equation
(2.17) and it is used Equations (3.8)-(3.9). Thereby, in the slow-roll approach,

ε ≡ − Ḣ

H2
=

φ̇2

2H2M2
PL

� 1, (3.23)

η ≡ − Ḧ

HḢ
= − φ̈

Hφ̇
� 1. (3.24)

Deriving the equation of motion (3.14) and ignoring the term that contains ε by the
condition that this term becomes negligible during this regime ε � 1, with this, we
obtain,

φ̈ = −V
′′(φ)φ̇

3H
=
V ′′(φ)V ′(φ)

9H2
, (3.25)

where it is substituted again the equation (3.14). The slow-roll regime allows us to state
that the condition (3.16) can be see as φ̈/V ′(φ)� 1. Thus, the Equation (3.25) results
in

V ′′(φ)� 9H2, (3.26)

substitute the Equation (3.17), we get the condition∣∣∣∣V ′′(φ)M2
PL

V (φ)

∣∣∣∣� 3. (3.27)

In the period of slow-roll, the consequence of negligence the term φ̈ requires that the
conditions (3.23) and (3.24) are satisfied by the Hubble parameter or by the terms of
the derivatives of φ, and the conditions (3.20) and (3.27) are satisfied by the potential
V (φ).

Dividing Equation (3.17) by Equation (3.14) to isolate H, it is possible to calculate
the number of e-folds of growth in the scalar factor that occurs before the inflation end,

N ≡ ln

(
aend
ainitial

)
=

∫ f

i
Hdt =

∫ f

i

H

φ̇
dφ = − 1

M2
PL

∫ φf

φi

V (φ)

V ′(φ)
dφ. (3.28)

It is enough to take φf = σ, see Figure 3.1, as the minimum value of the field. That is
also the end of the slow-roll period when the expansion slows down showing that inflation
ends up starting the process of decay of the scalar field into other particles known as the
reheating period of the universe.

For a polynomial potential, V ′′(φ) ∼ V ′(φ)/φ, using Equation (3.17) it results in
N ∼ 3H2/V ′′(φ) by the condition of slow-roll (3.26) we get N � O(1) [6]. To solve the
flatness and horizon problems it is necessary N ≥ 60 [5].
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3.3. Inflationary models

The conditions (3.20) and (3.27) are conveniently rewritten in terms of the dimensionless
parameters εV and ηV as,

εV ≡
M2
PL

2

(
V ′

V

)2

, ηV ≡M2
PL

(
V ′′

V

)
, (3.29)

where the conditions that |ε| , |η| � 1 at the slow-roll regime implies that ε ≈ εV and
η ≈ ηV − εV . Although these parameters are not observable, they are related to inflation
observables, which we will see below.

Inflation is the period when quantum fluctuations may have developed primordial
structures. There are two classes of such fluctuations: scalar and tensor. The scalar
becomes densities of fluctuations that develop in cosmic structures, while the tensor one
generates primordial gravitational waves [7], [51], [52], [53].

The amplitudes of the power spectra of the fluctuations densities, AS , and of the
gravitational wave power spectrum, AT , expressed in terms of V and ε are

AS(k) ' 1

24π2

(
V

M4
PLε

)∣∣∣∣
k=a(φ)H(φ)

, AT (k)) ' 2

3π2

(
V

M4
PL

)∣∣∣∣
k=a(φ)H(φ)

. (3.30)

The definition of the tensor-scalar ratio is

r ≡ AT (k)

AS(k)
≈ 16ε. (3.31)

The scalar index is defined as

nS ≡ 1 +
d lnAS(k)

d ln k
≈ 1 + 2η − 6ε. (3.32)

Several theoretical inflation models can be compared with observational data through
experimental constraints on r and nS and thus analyze their validity, see Figure 3.2,
reproduced from the reference [16], for a number of e-folds from 47 to 57. Among these
models, we have the Starobinsky inflation, R2, represented by the smaller orange ball,
which will be discussed in the next subsection, for the number of e-folds N = 50. In
Figure 3.2, light blue contours are a current constraint by BICEP2/Keck Array telescope
taken through 2014 (BK14) [54] and by Planck mission. The red spot will generate a
new type of constraint that a new mission, such as PICO, can establish [16]. If the model
is above the red spot, like Starobinsky’s inflationary model, it will be well detected by
this future mission. Instead, if the model is below the red spot, an upper limit can be
set. There is one class characterized by the monominal potential of the form V (φ) ∝ φp,
where select models are represented by blue lines. Some of the models of this class
are already unfavorable by current observations. The other class is characterized by
potentials that approach a constant as a function of the field value, as a power law,
or exponentially. Two examples of this class are represented in Figure 3.2 by the gray
and green bands. Starobinsky inflation and the Goncharov-Linde model (GL) of chaotic
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initial conditions in supergravity [55] (represented by the smaller purple ball), is also
included in this class and predicts r ∼ 0.004 and r ∼ 0.0004, respectively. On the Higgs
inflationary model, a scalar field is coupled non-minimally to gravity, and in [56] it is
allowed to contain terms of R2 in the action. The Higgs inflationary model is represented
by the larger orange ball in Figure 3.2.

Starobinsky inflationary model is one of those that best fit the amplitude values of
the tensor-to-scalar ratio, according to the latest observations of the CMBR [13], [16],
[17].

Figure 3.2.: In the figure, we see the predicted values of r and nS for several inflationary
models, for a number of e-folds from 47 to 57. The confinement contour
is obtained by combining the data from a number of independent experi-
ments. Some of these models are already excluded. Figure reproduced from
reference [16].

3.3.1. Starobinsky inflationary model

The action of the gravitational f(R) theory is defined as follows

S =
1

2κ

∫
d4x
√
−gf(R), (3.33)

where, as before κ = 8πG/c4.
The field equations are obtained by taking the variation of the action (3.33) with

respect to the metric gµν , see the Appendix A. The equation of motion is

f ′Rµν −
1

2
fgµν − OµOνf ′ + gµν�f

′ = 0, (3.34)
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where for simplicity of notation f(R) ≡ f and f ′ ≡ ∂f/∂R, the Ricci scalar dependence
of f(R) has been omitted to simplify the notation. The action (3.33) can be rewritten
in the following way

S =

∫
d4x
√
−g
(

1

2κ
f ′R− V̄ (φ)

)
(3.35)

with V̄ (φ) = (Rf ′ − f)/2κ and f ′ ≡ φ, see [57].
The higher-order theory described by the action (3.35) is written in the Jordan frame.

In this frame, the scalar field φ is non-minimally coupled with the Ricci scalar in the
Lagrangian and the theory is nonlinear. It is possible to obtain this action in the Einstein
frame by the conformal transformation of the metric tensor and with re-scaling of the
scalar field, see Equation (3.46). In the Einstein frame, the scalar field is coupled with the
matter field and the theory is linear in the Ricci scalar, similar to the general relativity
theory. The conformal transformation of the metric tensor is

g̃µν = eΩgµν , (3.36)

g̃µν = e−Ωgµν , (3.37)

where eΩ is the conformal factor and the tilde represents the quantity in the Einstein
frame. See, for instance, [7], [57], [58], and [59] for references on conformal transforma-
tion.

To obtain the relation for the Ricci scalar between the two frames in detail, see the
Appendix B. The Ricci scalar in the Einstein frame written in terms of the Jordan frame
is

R̃ = e−Ω

(
R− 3�Ω− 3

2
Ω,γΩ,

γ

)
. (3.38)

Following the choice,
f ′ = eΩ, (3.39)

with, √
−g̃ = e2Ω√−g, (3.40)

note that, e−2Ωf ′ → e−Ω. Thus, substituting (3.39) and (3.40) in the action (3.35) yields

S =
1

2κ

∫
d4x
√
−g̃
(
e−ΩR− V̄ (φ)e−2Ω

)
. (3.41)

After, the Ricci scalar in the Jordan frame R is isolated in (3.38) in terms of the Einstein
frame and then used in (3.41), leading to the following results

S =

∫
d4x
√
−g̃
{

1

2κ

[
R̃+ 3e−Ω (�Ω + 2Ω,γΩ,

γ)
]
− V (φ)

}
, (3.42)

where

V (φ) ≡ V̄ (φ)e−2Ω =
V̄ (φ)

f ′2
=
Rf ′ − f

2κf ′2
. (3.43)
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The next step is to obtain the conformal transformation in the metric for the terms
inside the parentheses to the Einstein frame. Note that the transformation of the first
term is not so obvious. Using (3.37) and (3.40) we get for this term,

�Ω =
1√
−g

∂µ
[√
−ggµν∂νΩ

]
=

1√
−g̃

e2Ω∂µ

[√
−g̃e−Ωg̃µν∂νΩ

]
=

1√
−g̃

e2Ω
[
−
√
−g̃e−Ωg̃µν∂νΩ∂µΩ +

√
−g̃e−Ω�̃Ω

]
= eΩ�̃Ω− eΩg̃µν∂νΩ∂µΩ. (3.44)

Therefore, the conformal transformation (3.37) and the resulting transformation to
the �Ω, (3.44), is used in (3.42) to become,

S =

∫
d4x
√
−g̃
{

1

2κ

[
R̃− 3

2
g̃µν∂νΩ∂µΩ

]
− V (φ)

}
. (3.45)

For the conformal transformation (3.36) in the Einstein frame, it is defined according
to [60] as

φ̃ =

√
3

2κ
lnφ, (3.46)

to obtain the Einstein-Hilbert equations with a scalar field coupled with the matter, a
potential V (φ̃) given by a re-scaling in (3.43) and the energy-momentum tensor given
by (3.5), see for instance, [57], where eΩ ≡ φ. Thus, the action (3.45) becomes,

S =

∫
d4x
√
−g̃
[

1

2κ
R̃− 1

2
g̃µν∂ν φ̃∂µφ̃− V (φ̃)

]
. (3.47)

Defining the energy-momentum tensor (3.5) and the Lagrangian (3.4), we see that this
action leads to the Einstein-Hilbert equation Gµν = Tµν(φ̃) and to the equation of classic
motion for the scalar field (3.13), according to the choice and definition of (3.39) and
(3.46), see [60]. Therefore, the gravitational f(R) theory is conformally equivalent to
Einstein-Hilbert gravity with an additional scalar field coupled with the matter. In
Appendix C it is shown for the inflationary Starobinsky model f(R) = R + βR2, with
the FLRW metric employed, that these equations lead to the higher order derivative
field equations in the Jordan frame.

If the scalar field satisfies the conditions of the slow-roll period, then we have an infla-
tionary solution in the Einstein conformal frame. However, we also have an inflationary
solution in Jordan’s original frame [7].

For a given model like the Starobinsky inflation the potential V̄ (φ) seen in (3.35)
becomes

V̄ (φ) =
1

2κ
(f ′R− f) =

1

2κ
[R(1 + 2βR)−R− βR2] =

1

2κ
(βR2) =

1

2κ

1

4β
(1− f ′)2.

(3.48)
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Using the choice (3.39) and the definition made before for eΩ ≡ φ, we have f ′ = φ. Thus,

V̄ (φ) =
1

2κ

1

4β
(1− φ)2 = M2

PL

1

8β
(1− φ)2, (3.49)

in terms of the Planck massMPL, see Figure 3.3. The inflationary solution of Starobinsky
in Jordan’s frame was previously obtained by Ruzmaikina and Ruzmaikin [61].

Figure 3.3.: In this figure, the graph of the Starobinsky potential × scalar field on the
Jordan frame for the Equation (3.49) is plotted in blue, where the regular-
ization parameter β must be positive to avoid the tachyon.

According to the definition of (3.46),

eΩ = f ′ = exp

(√
2κ

3
φ̃

)
, (3.50)

this yields the following potential in the Einstein frame for Starobinsky inflation [62],
according to Equation (3.43),

V (φ̃) =
1

2κ

1

4β

[
1− exp

(
−
√

2κ

3
φ̃

)]2

= M2
PL

1

8β

[
1− exp

(
−
√

2

3

φ̃

MPL

)]2

, (3.51)

see Figure 3.4, in terms of the Planck mass MPL.
In the limit where φ̃→∞ the Starobinsky potential tends to a constant value in the

Einstein frame, leading to a slow-roll regime for φ̃�MPL [58].
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Figure 3.4.: In this figure, the graph of the Starobinsky potential × scalar field on the
Einstein frame is plotted in blue for the Equation (3.51), where the regular-
ization parameter β must be positive to avoid the tachyon.

Calculating the derivative of the Starobinsky potential in the Einstein frame (3.51)
with respect to the scalar field φ̃ yields,

V ′(φ̃) = M2
PL

1

8β

2

MPL

√
2

3
exp

(
−
√

2

3

φ̃

MPL

)[
1− exp

(
−
√

2

3

φ̃

MPL

)]
, (3.52)

where V ′(φ̃) ≡ dV (φ̃)/dφ̃.
To get the number of e-folds, substitute Equation (3.51) and its derivative (3.52) into

the expression (3.28), which gives the following,

N = − 8π

M2
PL

∫ φ̃f

φ̃i

V (φ̃)

V ′(φ̃)
dφ̃ = − 8π

MPL

1

2

∫ √3

2

[
1− exp

(
−
√

2
3

φ̃
MPL

)]
exp

(
−
√

2
3

φ̃
MPL

)
 dφ̃

= − 8π

MPL

1

2

∫ √
3

2

[
exp

(√
2

3

φ̃

MPL

)
− 1

]
dφ̃ ≈ 3

4
exp

(√
2

3

φ̃

MPL

)
. (3.53)

Substituting Equation (3.51) and its derivative (3.52) into the parameter (3.29), we
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get,

εV =
M2
PL

2

(
V ′(φ̃)

V (φ̃)

)2

=
4

3

exp
(
−2
√

2
3

φ̃
MPL

)
[
1− exp

(
−
√

2
3

φ̃
MPL

)]2 =
4

3

[
1− exp

(√
2

3

φ̃

MPL

)]−2

.

(3.54)

In terms of the number of e-folds (3.53) the parameter εV (3.54) can be rewritten as,

εV ≈
3

4N2
. (3.55)

By deriving Equation (3.52) with respect to the scalar field φ̃ we obtain the second
derivation of the Starobinsky potential in the Einstein frame

V ′′(φ̃) = M2
PL

1

8β

{
4

3

1

M2
PL

exp

(
−2

√
2

3

φ̃

MPL

)
− 4

3

1

M2
PL

exp

(
−
√

2

3

φ̃

MPL

)
[

1− exp

(
−
√

2

3

φ̃

MPL

)]}
(3.56)

where V ′′(φ̃) ≡ dV ′(φ̃)/dφ̃. The use of Equations (3.51) and (3.56) in the second pa-
rameter for the slow-roll period (3.29), leads to

ηV = M2
PL

(
V ′′(φ̃)

V (φ̃)

)
=

4

3

exp
(
−2
√

2
3

φ̃
MPL

)
[
1− exp

(
−
√

2
3

φ̃
MPL

)]2 −
4

3
exp

(
−
√

2

3

φ̃

MPL

)
(3.57)

[
1− exp

(
−
√

2

3

φ̃

MPL

)]−1

.

Therefore, using Equation (3.53) for the number of e-folds,

ηV ≈ −
1

N
+O

(
1

N2

)
. (3.58)

One can find the tensor-to-scalar ratio (3.31) and the scalar index (3.32) in terms of
the parameters (3.55) and (3.58), where, as mentioned above in the Section 3.3, the
conditions |ε| , |η| � 1 in the slow-roll regime lead to ε ≈ εV e η ≈ ηV − εV ,

r ≈ 12

N2
, nS ≈ 1− 2

N
+O

(
1

N2

)
. (3.59)

For N = 50, r = 0.0048 and nS = 0.96. These values for the Starobisnky inflationary
model are consistent with the Figure 3.2 represented by the smaller orange ball.
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CHAPTER 4.

The order reduction technique

In the study of the dynamics of a charged particle, it is well known that some equations
with higher order derivative can present non-physical solutions, such as runaway solu-
tions or problems with causality [21]. Instabilities in some of the higher order derivative
theories have been known since Ostrogradsky’s time [63]. A dynamical variable that suf-
fers from Ostrogradsky’s instability will carry kinetic terms with opposite signs, which
through couplings can result in infinite energy transfers between degrees of freedom,
while the total energy of the system is conserved. This type of instability is known to-
day as ghosts [64], [65], [66], [67]. It should be noted that it is not possible to eliminate
the ghosts by a suitable choice of theory parameters, as is the case with the tachyon
mentioned in the introduction in the action (1.1).

On the other hand, as known in the literature, it is possible to eliminate the ghosts
in the gravitational f(R) theory [66], [68]. In this case, it violates the assumption for
Ostrogradsky’s instability, the nondegeneracy [63]. As mentioned in [66], the field equa-
tions from the gravitational f(R) theory results in only a single higher order derivative
equation that carry the dynamics. The lower order derivative equation results in a con-
straint that limit the lower derivative degrees of freedom. This result can be shown by
the conformal equivalence between the gravitational f(R) theory in the Jordan frame
with the Einstein-Hilbert gravity in the Einstein frame, as mentioned early in Subsec-
tion 3.3.1. In Appendix C, the argument is verified through this conformal equivalence
between the two frames for the equation of motion of the Starobinsky inflation, with the
FLRW metric applied.

In order to avoid non-physical solutions in the context of electrodynamics, Landau
and Lifshitz were the among the first to apply the ORT [23], precisely in connection
with perturbative treatments of self-force. Evidently, because they are perturbations on
differential equations, the authors Simon and Parker [29] apply the ORT to quadratic
gravity equations and obtain reduced equations awaited to contain fewer instabilities
than the original higher order equations, this way it is easier to identify and remove
non-physical solutions.

This chapter reviews the literature on the Ostrogradsky theorem and the LAD equa-
tion. This is followed by a brief presentation of the reduction method used by Landau
and Lifshitz [23] and the exact solutions to the relativistic LAD equation for observers
with constant proper acceleration and constant external force, found by Dirac [21], see
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also [19]. To emphasize the ORT, the perturbative method is applied for the relativistic
LAD equation without external gravitational fields and a constant source. Also, the
particular case of a harmonic oscillator is tested shortly thereafter [69]. And finally, as
a more realistic case, the application and analysis of the validity conditions of the ORT
applied to Starobinsky inflation and the connection of those to the slow-roll conditions
is verified [1].

4.1. Ostrogradsky instability

Ostrogradsky’s theorem associates a linear instability in the Hamiltonian resulting from
nondegenerate Lagrangian that depends on time derivative greater than first order [63].
As a result, the energy of the system is unbounded below or above [68]. This is a direct
consequence of the fact that the Hamiltonian is a linear function of increasing momentum
instability as the order of the time derivative associated with the Lagrangian increases
[66], [68].

We suppose here for simplicity a point particle in one dimension whose position as a
function of time is described by q(t).

To begin with, the well known case in the literature in which the equations of motion
are of second-order will be shown. In this particular case, the Hamiltonian does not
show signs of instabilities. The Lagrangian is of the form L = L(q, q̇) with q = q(t) and
q̇ = dq/dt, the time dependence of the particle position has been omitted to simplify the
notation. The Euler-Lagrange equation is written as [70], [71], [72],

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (4.1)

As mentioned, the Lagrangian is assumed to be nondegenerate, which means that ∂L/∂q̇
depends on q̇. And under these conditions, the Euler-Lagrange equation can be put in
the following Newtonian form

q̈ = F(q, q̇)⇒ q(t) = Υ(t, q0, q̇0). (4.2)

The solution depends on the initial conditions q0 = q(0) and q̇0 = q̇(0).
The solution needs two initial conditions, which means it must have two canonical

coordinates, Q, and P . It is common to find them defined in the literature as

Q ≡ q, P ≡ ∂L

∂q̇
. (4.3)

The nondegeneracy assumption makes it possible to invert the phase space transforma-
tion (4.3) to solve q̇ in terms of Q and P . That is, there is a function v(Q,P ) such
that,

∂L

∂q̇

∣∣∣∣
q=Q,q̇=v

= P . (4.4)

The Legendre transform on q̇ results in the canonical Hamiltonian,

H(Q,P ) ≡ P q̇ − L = Pv(Q,P )− L(Q, v(Q,P )). (4.5)
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It can be seen that the evolution of the canonical equations reproduce Equations (4.1)
and (4.3)

Q̇ ≡ ∂H

∂P
= v + P

∂v

∂P
− ∂L

∂q̇

∂v

∂P
= v, (4.6)

Ṗ ≡ −∂H
∂Q

= −P ∂v

∂Q
+
∂L

∂q
+
∂L

∂q̇

∂v

∂P
=
∂L

∂q
, (4.7)

where it is used the phase space transformation (4.4).
When the Lagrangian is associated with first order temporal derivative, the Hamilto-

nian is associated with conserved quantities and the equation of motion results in second
order equations in time. See [70], [71], [72].

The Ostrogradsky instability [63] arise in Lagrangians that depend on time derivative
greater than first order [66], [68]. Setting up a system where the Lagrangian is L =
L(q, q̇, q̈) and nondegenerate in q̈. The Euler-Lagrange equation for this case is written
as,

∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
= 0. (4.8)

As before, q is a function of time and dot represents the derivative with respect to time.
The Equation (4.8) can be written very differently from the Newton form discussed

earlier,
....
q = F (q, q̇, q̈,

...
q )⇒ q(t) = Υ(t, q0, q̇0, q̈0,

...
q0). (4.9)

In this case, the solution needs four initial conditions. This implies four canonical coor-
dinates, so in Ostrogradsky choose [63],

Q1 ≡ q, P1 ≡
∂L

∂q̇
− d

dt

∂L

∂q̈
, (4.10)

Q2 ≡ q̇, P2 ≡
∂L

∂q̈
. (4.11)

As in the previous case, the nondegeneracy assumption makes it possible to invert the
phase space transformation (4.10)-(4.11) to solve q̈ in terms of Q1, Q2, and P2. Which
means that there is a function a(Q1, Q2, P2) such that,

∂L

∂q̈

∣∣∣∣
q=Q1,q̇=Q2,q̈=a

= P2. (4.12)

The Ostrogradsky Hamiltonian can be obtained by the same method as before, through
the Legendre transform on q̇ = q1 and q̈ = q2,

H(Q1, Q2, P1, P2) ≡
2∑
i=1

Piq
(i) − L

= P1Q2 + P2a(Q1, Q2, P2)− L(Q1, Q2, a(Q1, Q2, P2)), (4.13)

where dH/dt = 0 and H can be called the conserved energy of the system.
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As before, the evolutions of the canonical equations can be verified,

Q̇i ≡
∂H

∂Pi
, Ṗi ≡ −

∂H

∂Qi
. (4.14)

For Q̇1,

Q̇1 ≡
∂H

∂P1
= Q2 = q̇, (4.15)

according (4.11).
For Q̇2,

Q̇2 ≡
∂H

∂P2
= a+ P2

∂a

∂P2
− ∂L

∂q̈

∂a

∂P2
= a, (4.16)

in which it is used the phase space transformation (4.12).
For Ṗ1,

Ṗ1 ≡ −
∂H

∂Q1
= −P2

∂a

∂Q1
+
∂L

∂q
+
∂L

∂q̈

∂a

∂Q1
=
∂L

∂q
, (4.17)

where it is used the phase space transformation (4.12) and reproduces the Euler-Lagrange
equation (4.8) together with (4.10).

For Ṗ2,

Ṗ2 ≡ −
∂H

∂Q2
= −P1 − P2

∂a

∂Q2
+
∂L

∂q̇
+
∂L

∂q̈

∂a

∂Q2
= −P1 +

∂L

∂q̇
=

d

dt

∂L

∂q̈
, (4.18)

where the phase space transformation (4.12) is used together with (4.10) and the Euler-
Lagrange equation is reproduced (4.8).

Therefore, Ostrogradsky’s choice generates the temporal evolution of the system. How-
ever, as can be seen in the Ostrogradsky Hamiltonian on (4.13), there is a linear depen-
dence of the momentum P1. As will be discussed below, this dependence implies that
the energy is unbounded below or above [68].

The Hamiltonian (4.13) is third-order in q because it is linear in P1 which the following
format

H = −q̇
...
q + lower order terms, (4.19)

see, for instance, [68]. By setting the initial values q, q̇ 6= 0 and q̈,
...
q can be freely chosen

and then H become unbounded.
The Hamiltonian in this case is unbounded below or above. By the initial assumption

that energy is unbounded from below and bounded from above. Then, we changed the
signs of L and H and notice that the energy now is bounded from below and unbounded
from above. This is not surprising because in this case there is no preference for the sign
of the Hamiltonian [68].

If higher order derivatives are added to the Lagrangian, the instability in the Hamilto-
nian will become larger [66]. In this case, the Lagrangian is of the form L = L(q, q̇, ..., q(N))
and assumed to be nondegenerate in q(N). The Euler-Lagrange equation becomes

N∑
i=0

(
− d

dt

)i ∂L
∂qi

= 0, (4.20)
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The choices for the canonical Ostrogradsky coordinates are

Qi ≡ q(i−1), Pi ≡
N∑
j=i

(
− d

dt

)j−i ∂L

∂q(j)
. (4.21)

As before, the nondegeneracy condition allows to invert the phase space transforma-
tion (4.21) and write q(N) in terms of PN and Qi’s. Thus, there exists a function
V (Q1, ..., QN , PN ), such that,

∂L

∂q(N)

∣∣∣∣
q(i−1)=Qi,q(N)=V

= PN . (4.22)

The Ostrogradsky Hamiltonian is obtained through the Legendre transform on q(N) =
q(i),

H(Q1, Q2, ..., QN , P1, P2, ..., PN ) ≡
N∑
i=1

Piq
(i) − L

= P1Q2 + P2Q3 + ...+ PN−1QN + PNV (Q1, ..., QN , PN )− L(Q1, ..., QN , V ), (4.23)

and by the following evolution equations

Q̇i ≡
∂H

∂Pi
, Ṗi ≡ −

∂H

∂Qi
, (4.24)

the reproduction of the canonical transformations (4.21) and the Euler-Lagrange equa-
tion (4.20) can be verified.

The Hamiltonian becomes linear at moments P1, P2, ..., PN−1 and therefore, for the
same reason as above, is bounded from above or below. Note that only PN can be
bounded.

4.2. Particular situations

4.2.1. Lorentz-Abraham-Dirac equation

The classical theory of a charged and accelerated particle was conceived by H. A. Lorentz
at the beginning of the last century. Coming from the work of Sir J. Larmor, who equated
the energy loss radiated by a harmonic oscillator with a damping force, Lorentz was able
to consider a very simple model in which the electrons could be bound elastically and
the system treated as a charged harmonic oscillator. The electron’s motion needs to
change to ensure that the sum of mechanical energy and energy radiated to infinity
remains constant. This energy balance manifests itself as a force acting back on the
particle, called electromagnetic self-force [19], [73], [74]. The self-force term appears in
the Lorentz equation of motion and is proportional to the third derivative of the particle
position, as seen before in the equation (1.2),

fself =
2

3

q2

c3
ȧ. (4.25)
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Here q and m are the charge and mass of the particle, respectively, and c is the speed of
light.

After that, Abraham considered a rigid sphere with spherically symmetric charge
distribution as a model for the electron [20]. However, in 1904, Abraham realized in-
consistency of his model with the LT. Right after these transformations were better es-
tablished by Einstein, Abraham [18] abandoned his rigid electron by an electron whose
shape change under LT and gives a relativistic generalization for the self-force term
found by Lorentz (4.25), as mentioned in the introduction, Equation (1.3),

2

3

q2

c3
(gµν + uµuν) ȧν . (4.26)

Where gµν is the metric tensor, uµ = dz/dτ the four-velocity, aµ = duµ/dτ the four-
acceleration and ȧµ = daµ/dτ the first derivative of the four-acceleration of the particle
along the world line which is described by the relation z(τ), where τ represents the
proper-time.

Nevertheless, the Lorentz-Abraham model does not hold in the case where the electron
radius tends to zero, which results in a divergent self-energy. Dirac solves this problem
by generalizing the Lorentz-Abraham model to a point model of the electron [21]. Dirac
showed that the field responsible for the radiation can be better written as a combination
of the retarded and advanced electromagnetic fields. Also, he considered a thin tube
surrounding the electron world line in space-time to calculate the flow of energy and
momentum through the surface of the tube. With this, he assumes the existence of an
infinite and negative mass in the center of the tube such that, when subtracted from the
infinite and positive mass produced by the Coulomb field, which surrounds the outside of
the field, results in a finite and measurable mass for the particle. In this way, the problem
of infinite mass and consequently divergent self-energy, found by the Lorentz-Abraham
model, was solved.

As enunciated in the introduction, Equation (1.4), the equation of motion of a charged
and accelerated particle became known as the Lorentz-Abraham-Dirac (LAD) equation

aµ =
q

m
Fµνu

µ +
2

3

q2

mc3
(δµν + uµuν) ȧν , (4.27)

in absence of external gravitational fields. Here Fµν is the electromagnetic field tensor.
The first term of the LAD equation, (4.27), refers to the external force acting on the
particle and the second to the self-force.

However, this model results in an equation of motion that allows non-physical solu-
tions. For example, a particle that is not subjected to an external force can acquire
an acceleration that grows exponentially with time. This solution is called a runaway
solution and is not observed in nature. Moreover, as discussed by Dirac in [21], when
he tried to avoid the runaway solution, considering that an external force starts to act
at a certain time, it causes changes in the particle’s movement before the beginning of
the action of that force. This is not expected, as we know that the equation of motion
certainly needs to be causal.

The LAD equation for a curved space-time can be seen in [12] and [24].
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4.2.1.1. Problems of the Lorentz-Abraham-Dirac equation

As an example of the emergence of non-physical solutions associated with the Lorentz-
Abraham-Dirac equation, let us consider the simplest case shown in [73]. It is considered
a non-relativistic limit of a charged particle accelerated by a constant external force, F,
which acts only during the time interval 0 ≤ t ≤ T . The LAD equation, (4.27), reduces
to

a(t) =
F

m
+

2

3

q2

mc3
ȧ(t), (4.28)

with solution,

a(t) =


[(F/m) + C]et/τ if t ≤ 0,

[(F/m) + Cet/τ ] if 0 ≤ t ≤ T,
[(F/m)e−T/τ + C]et/τ if t ≥ T.

(4.29)

Here the continuity condition at t = 0 and t = T has been imposed, C is a constant and
τ ≡ 2q2/3mc3.

This solution shows that, if an external force acts at a certain moment, it causes
changes in the particle’s movement before the beginning of the action of that force,
violating thus causality. Also, independently of whether the charged particle is subjected
to an external force or not, the particle can gain an acceleration that grows exponentially
with time. This solution is called a runaway solution and is not observed in nature. It
can be shown that it is not possible to eliminate runaway and pre-acceleration problems
with the same choice of integration constant.

4.2.1.2. Landau and Lifshitz method

In order to avoid non-physical solutions of the dynamics of a charged particle in an
electromagnetic field, Eliezer and Peierls [22] was among the first to derive equations of
motion with reduced order, no more than second order. In their approach, they assume
an expansion of the equation of motion containing derived terms of even higher order,
with the highest-order derivative terms assumed to be small and the convergence for the
equation of motion of the electron in an electric field only happens when the external
frequency is much smaller than the natural frequency of the system. In this limit, the
equation of motion becomes Equation (1.5), as mentioned early in the introduction. The
authors themselves made some applications of this equation [22].

Still, in the context of electrodynamics, a slightly different approach was obtained by
Landau and Lifshitz [23] which applies the ORT as the limit where the self-force is much
smaller than the external force. In this way, the self-force is treated as a perturbation.
In [23], the method is applied to the non-relativistic version of the LAD equation, seen
before Equation (1.6),

mv̇ = qE +
q

c
v ×H +

2

3

q2

c3
v̈, (4.30)

using the reference system that the charge is momentarily at rest. Here, E and H are
the external fields and the last term is the electromagnetic self-force.
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The self-force term is considered as a perturbation and the second derivative of velocity
can be written as

v̈ =
q

m
Ė +

q

mc
v̇ ×H. (4.31)

Then, substituting the first approximation v̇ = qE/m for the term of the first derivative,
the self-force term of Equation (4.30) results in

fself =
2

3

q3

mc3
Ė +

2

3

q4

m2c4
E×H, (4.32)

as mentioned before in the introduction, Equation (1.7).
The expression for the self-force (4.32) was the same found by Eliezer and Peierls for

the case of the electron submitted only to an electric field (1.5).
Through the condition that the self-force is much smaller than the external force,

fself � eE, and let ω the frequency of motion, we have Ė ∝ ωE, so from the terms of
the self-force (4.32), the following conditions are obtained;

q2

mc3
ω � 1, H� m2c4

q3
. (4.33)

Introducing the wavelength of the incident radiation λ ∼ c/ω, we have from the first
condition (4.33),

λ� q2

mc2
. (4.34)

Here q2/mc2 is the electric charge “radius”. In this case, the wavelength of the incident
radiation is large when compared to the “radius” of the electric charge q2/mc2, or on the
other hand, the frequency of movement is small when subjected to the same comparison.
Furthermore, by the second condition, it is also necessary that the external magnetic
field, H, not be too large.

The condition that the self-force is much smaller than the external force, fself � eE
follows from the possibility of comparing the frequencies, as noted earlier by Eliezer and
Peierls, that the external frequency must be much smaller than the natural frequency
of the system. Thus, as Eliezer, Peierls, Landau, and Lifshitz themselves warn, this
condition limits the validity of the method.

4.2.1.3. Exact solution

Following [19] and [21], observers with constant proper acceleration constitute exact
solutions for the LAD equation.

In the context of the charged particle, the relativistic LAD equation in the absence of
the presence of gravitational fields becomes, Equation (4.27),

aµ =
q

m
Fµνu

ν +
2

3

q2

mc3
(gµν + uµuν) ȧν . (4.35)

The second term on the right is the self-force term.
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On the other hand, the Rindler coordinates (ξ, τ) are

xµ = (ξ sinh τ, ξ cosh τ, y, z) , (4.36)

where τ is the proper time and ξ the inverse of the modulus of the proper acceleration
of the particle [75]. Orbits with ξ = const. describe particles with constant proper
acceleration and are exact solutions of the LAD equation (4.35), when the external
force, Fµν , is constant [19], [21]. In this case, the self-force term is identically null.

In terms of the Cartesian coordinates the components in the Rindler coordinate (4.36)
are;

t = ξ sinh τ, y = y,

x = ξ cosh τ, z = z. (4.37)

By taking the derivatives in (4.37),

dt = ξ cosh τdτ + sinh τdξ, dy = dy,

dx = ξ sinh τdτ + cosh τdξ, dz = dz, (4.38)

the line element,
ds2 = gµνdx

µdxν = −dt2 + dx2 + dy2 + dz2, (4.39)

becomes,
ds2 = −ξ2dτ2 + dξ2 + dy2 + dz2. (4.40)

Rewriting the line element (4.40) as,

ds2 =

(
−ξ2 +

d2ξ

dτ2
+

d2y

dτ2
+

d2z

dτ2

)
dτ2, (4.41)

for ξ, y and z constant, we get ds2 = −ξ2dτ2 and thus,

dτ

ds
=

1

ξ
. (4.42)

Through the line element (4.40) and the relation (4.42) we can calculate the derivatives
of a particle positioned at ξ = const. in Rindler coordinates,

uµ =
dxµ

ds
=

dxµ

dτ

dτ

ds
=

1

ξ

dxµ

dτ
. (4.43)

Thus,

uµ = (cosh τ, sinh τ, 0, 0) , (4.44)

aµ =
1

ξ
(sinh τ, cosh τ, 0, 0) , (4.45)

ȧµ =
1

ξ2
(cosh τ, sinh τ, 0, 0) . (4.46)
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In the particular case where the particle is subject only to an electric field in the
x−direction, the electromagnetic field tensor becomes

Fµν =


0 E 0 0
E 0 0 0
0 0 0 0
0 0 0 0

. (4.47)

Substituting the Equations (4.44)-(4.47) into the LAD equation, Equation (4.35), results
in

1

ξ
(sinh τ, cosh τ, 0, 0) =

q

m


0 E 0 0
E 0 0 0
0 0 0 0
0 0 0 0




cosh τ
sinh τ

0
0

 =
q

m
E (sinh τ, cosh τ, 0, 0) ,

(4.48)
where the self-force term is canceled in the Rindler coordinates;

(gµν + uµuν)ȧν =
1

ξ2
(cosh τ, sinh τ, 0, 0)− 1

ξ2
(cosh τ, sinh τ, 0, 0) = 0, (4.49)

it is used uν ȧ
ν = −1/ξ2.

Therefore, the orbit with ξ = m/qE = const. is an exact solution in which the self-
force term vanishes. Isolating the electric field results in

E =
m

qξ
, (4.50)

and, thus,

q

m
Fµν =

1

ξ


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (4.51)

Note that, as mentioned above, taking the modulus of Equation (4.45), we get, ξ = 1/|a|,
and the orbits with constant ξ describe exact solutions to the LAD equation, Equation
(4.35), for particles with constant proper acceleration when the external force is constant,
see, for example, [19], [21].

4.2.1.4. Example: constant external force

In the following, the ORT will be applied to the particular case of the relativistic LAD
equation, without the presence of gravitational fields and with constant external force.

Let’s proceed with the order reduction applied to Equation (4.35) for a constant
electric field E in the x direction. With this condition, the electromagnetic field tensor
becomes (4.47). Of course, this fulfills its convergence requirements, since the external
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source has zero frequency, which is always less than the natural frequencies of the system.
To the lowest approximation, neglecting the highest order term, we have

aµ0 =
q

m
Fµνu

ν
0 . (4.52)

Consider a time-like uµ = (u0, u1, 0, 0) with uµu
µ = −1. Then, zeroth-order solution

(4.52) is uµ0 = (cosh(qEt/m), sinh(qEt/m), 0, 0), which coincides with Rindler’s orbit
(4.44). The derivative of (4.52) substituted into the second term in the right-hand side
of (4.35) vanishes, showing that perturbatively the exact result is consistently obtained
with the order reduction. This is not anything new, since this exact solution was found
by Dirac [21], see also [19]. Similar applications have already been made in [22].

4.2.2. Harmonic oscillator

To emphasize the iterative ORT it will be applied to the harmonic oscillator. In this sub-
section, both situations with and without external force will be shown for the harmonic
oscillator, and then the convergence regimes will be analyzed in both cases.

The equation for the harmonic oscillator is

εẍ+ γẋ+ ω2x = f0e
iΩt, (4.53)

where x = x(t), ẋ = dx/dt, ẍ = d2x/dt2, the time dependence of x(t) has been omitted
to simplify the notation, f0 is a constant, γ is the damping coefficient, ω is the natural
frequency of the free system, Ω is the external frequency and where, as usual, 0 ≤ ε ≤ 1
is a dimensionless perturbative parameter which is set to unity in the end to return to
the original equation for the harmonic oscillator.

In order to make possible the application of a perturbative technique, it is necessary
to consider the higher order term much smaller than those of lower orders, however,
in the equation presented in (4.53) for the harmonic oscillator, it is not possible to do
this comparison because the terms x, ẋ and ẍ have different dimensions. To solve this
problem a dimensionless parameter is defined; τ ≡ γt, the damping constant γ has a
dimension of t−1. Thus, x = x(t) = x(t(τ)) and the successive derivatives ẋ = γx′,
ẍ = γ2x′′, where x′ = dx/dτ and x′′ = d2x/dτ2. As τ is a dimensionless parameter, we
can consider the higher order term smaller than the others: |x′′| < |x′| < |x|, because
now they all have the same dimension.

Thus, the Equation (4.53) becomes

εx′′ + x′ +
ω2

γ2
x =

f0

γ2
ei(Ω/γ)τ . (4.54)

Here, the derivatives are with respect to the dimensionless time τ ≡ γt.
The application of the order reduction gives the recurrence relation

εx′′n + x′n+1 +
ω2

γ2
xn+1 =

f0

γ2
ei(Ω/γ)τ . (4.55)
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To lowest order,

x′0 +
ω2

γ2
x0 =

f0

γ2
ei(Ω/γ)τ , (4.56)

which can be easily solved assuming x0 = c0e
i(Ω/γ)τ , when c0 is

c0 =
f0

ω2 + iγΩ
. (4.57)

To first order,

εx′′0 + x′1 +
ω2

γ2
x1 =

f0

γ2
ei(Ω/γ)τ , (4.58)

assuming x1 = c1e
i(Ω/γ)τ and using (4.57) results in

c1 =
f0 + εΩ2c0

ω2 + iγΩ
. (4.59)

Successively,

cn+1 =
f0 + εΩ2cn
ω2 + iγΩ

, (4.60)

and therefore,

xn =
f0e

i(Ω/γ)τ

ω2 + iγΩ

[
1 +

εΩ2

ω2 + iγΩ
+

ε2Ω4

(ω2 + iγΩ)2 +
ε3Ω6

(ω2 + iγΩ)3 + ...

]
≈ f0e

i(Ω/γ)τ

ω2 + iγΩ

[
1

1− εΩ2

ω2+iγΩ

]
, (4.61)

as long as Ω/ω < 1, the order reduction, in this case, converges to the exact particular
solution

xn→∞ =
f0e

i(Ω/γ)τ

ω2 + iγΩ− εΩ2
, (4.62)

for the non homogeneous Equation (4.54). This is the case when there are 2 frequencies,
an external one Ω and the natural frequency of the free system ω with Ω/ω < 1 and this
is the situation in which it is very well known the convergence of the order reduction as
written in Landau-Lifshitz book [23].

As it is well known, this system has 3 regimes. The underdamped, overdamped,
and critically damped. When the system is underdamped |x′′| is of the same order of
|x|(ω/γ)2. Thus, the order reduction technique does not apply to the underdamped
regime.

To apply the order reduction in the homogeneous equation version of Equation (4.54),

x′n+1 +
ω2

γ2
xn+1 = −εx′′n, (4.63)
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it is also necessary that |x′′| < |x′| < |x|. To lowest order

x′0 +
ω2

γ2
x0 = 0. (4.64)

Substituting x0 = c0e
λ0τ into (4.64) gives λ0 = −ω2/γ2 with

x0 = c0e
−ω2τ/γ2 . (4.65)

To get the next order, x0 from (4.65) is replaced into

εx′′0 + x′1 +
ω2

γ2
x1 = 0, (4.66)

with solution

x1 =

(
c1 − ε

ω4

γ4
c0τ

)
exp

(
−ω

2

γ2
τ

)
, (4.67)

shows an additional constant c1.
To the next orders,

x2 =

[
c2 −

(
εc1

ω4

γ4
+ 2ε2c0

ω6

γ6

)
τ +

(
ε2c1

ω8

γ8

)
τ2

2!

]
exp

(
−ω

2

γ2
τ

)
, (4.68)

x3 =

[
c3 −

(
εc2

ω4

γ4
+ 2ε2c1

ω6

γ6
+ 5ε3c0

ω8

γ8

)
τ +

(
ε2c1

ω8

γ8
+ 4ε3c0

ω10

γ10

)
τ2

2!

−
(
ε3c0

ω12

γ12

)
τ3

3!

]
exp

(
−ω

2

γ2
τ

)
, (4.69)

x4 =

[
c4 −

(
εc3

ω4

γ4
+ 2ε2c2

ω6

γ6
+ 5ε3c1

ω8

γ8
+ 14ε4c0

ω10

γ10

)
τ +

(
ε2c2

ω8

γ8
+ 4ε3c1

ω10

γ10

+14ε4c0
ω12

γ12

)
τ2

2!
−
(
ε3c1

ω12

γ12
+ 6ε4c0

ω14

γ14

)
τ3

3!
+

(
ε4c0

ω16

γ16

)
τ4

4!

]
exp

(
−ω

2

γ2
τ

)
,

(4.70)

x5 =

[
c5 −

(
εc4

ω4

γ4
+ 2ε2c3

ω6

γ6
+ 5ε3c2

ω8

γ8
+ 14ε4c1

ω10

γ10
+ 42ε5c0

ω12

γ12

)
τ

+

(
ε2c3

ω8

γ8
+ 4ε3c2

ω10

γ10
+ 14ε4c1

ω12

γ12
+ 48ε5c0

ω14

γ14

)
τ2

2!
−
(
ε3c2

ω12

γ12
+ 6ε4c1

ω14

γ14

+27ε5c0
ω16

γ16

)
τ3

3!
+

(
ε4c1

ω16

γ16
+ 8ε5c0

ω18

γ18

)
τ4

4!
−
(
ε5c1

ω20

γ20

)
τ5

5!

]
exp

(
−ω

2

γ2
τ

)
.

(4.71)

The appearance of additional constants is a direct consequence of this method since, for
each perturbative order, a differential equation must be solved. Since higher perturbative
orders of whichever perturbative technique must contain the lower order approximations,
these additional constants are uniquely determined and made equal to c.
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Then, written up to order 5 in ε the technique results in

x = c exp

[
−
(
ω2

γ2
+ ε

ω4

γ4
+ 2ε2

ω6

γ6
+ 5ε3

ω8

γ8
+ 14ε4

ω10

γ10
+ 42ε5

ω12

γ12

)]
τ . (4.72)

Considering Equation (4.63) as a map, in the Appendix D, it is discussed that this
map is a contraction, and by the Banach fixed point theorem [76], the method converges
to the exact solution

x = c exp
[(
−1 +

√
1− 4εω2/γ2

) τ

2ε

]
, (4.73)

which is a fixed point for this map.
In this same Appendix D, it is also discussed that the other fixed point, namely

x = c exp
[(
−1−

√
1− 4εω2/γ2

) τ

2ε

]
, (4.74)

it’s not defined when ε → 0. While when ε → 0; both (4.73) has a well defined limit
x = ce−ω

2τ/γ2 , which coincides with the exact solution x = ce−ω
2τ/γ2 of (4.63). This

second fixed point, (4.74), then must be excluded and when ε → 1 we are left with the
unique solution of (4.63)

x = c exp
[(
−1 +

√
1− 4ω2/γ2

) τ
2

]
, (4.75)

led to conclude that this iterative procedure converges to this solution.

4.3. Starobinsky inflation

We will now apply the order reduction to the case of the Starobinsky inflation [11]. As
already mentioned, this inflationary model is the one that best fits the scalar-tensor ratio
amplitude, according to the CMBR observations [13], [16], [17].

In this thesis, only the Jordan frame is chosen and the model can be thought of as an
effective gravity action that arises naturally as quantum corrections in a consistent model
of semi-classical gravity, i.e., in a scenario where quantum matter fields are considered
in a classical gravitational background, see, for instance, [12], [39], [40], [41], [42], and
[43] the technique developed by Schwinger-DeWitt where the divergences present in the
effective action can be eliminated by redefining some renormalized constants [44]. As
mentioned in the introduction, (1.1), the necessary counterterms for a consistent theory

S =

∫
d4x
√
−g

M2
PL

2

{
R+ βR2 + α

[
RµνR

µν − 1

3
R2

]}
(4.76)

include Starobinsky inflationary model. In this model α and β are renormalized constants
and the cosmological constant is set as null Λ = 0. The value of β ≈ 1.305× 109 MPL

−2

can be inferred from observations [13], [14], [15]. Instabilities such as tachyon were
pointed out by [33] and [34] for the sign of the regularization parameters α > 0 and
β < 0 in the action (4.76).
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Metric variations in (4.76), shown in the Appendix E, result in the field equations,

Eµν ≡ Gµν +

(
β − 1

3
α

)
H(1)
µν + αH(2)

µν = 0, (4.77)

where,

Gµν = Rµν −
1

2
Rgµν , (4.78)

H(1)
µν = −R

2

2
gµν + 2RRµν + 2�Rgµν − 2R;µν , (4.79)

H(2)
µν = −1

2
RλσR

λσgµν −R;µν + 2RλσRλνσµ +�Rµν +
1

2
�Rgµν . (4.80)

The field equations (4.77) have partial differential equations in order-4 at the metric
since the Ricci tensor and the Ricci scalar already includes second-order derivatives in
gµν .

For the FLRW homogeneous isotropic line element gµν = diag[−1, a2, a2, a2] with zero
spatial curvature, there is the 00

1

6
H2 + β

[
2ḦH + 6ḢH2 − Ḣ2

]
= 0, (4.81)

and the 11

−1

2
H2 − 1

3
Ḣ + β

[
−2

...
H − 12ḦH − 9Ḣ2 − 18ḢH2

]
= 0, (4.82)

equations of motion, where H = ȧ/a is the Hubble parameter. These equations were

obtained using the algebraic manipulator Maple 17. Since the metric is isotropic, H
(1)
µν =

3H
(2)
µν , and the terms that multiply α are canceled. This linear dependence occurs in all

conformally flat spacetime, including the FLRW metric, [29] and [35].
It is shown in the Appendix F that the covariant divergence of the equation of motion,

(4.77), vanishes, which implies that E00 and E0i = 0 are constrains, while the dynamic
equation is found in the spatial part Eij , see, for instance, [48], [49] and [65]. Thus, the
00 equation of motion, Equation (4.81), as the lowest order equation is a constraint that
is dynamically preserved and is used as a numerical check.

As mentioned at the beginning of this chapter and extensively discussed in [66], the
field equations from the gravitational f(R) theory results in only a single higher deriva-
tive equation which carry the dynamics, Equation (4.82). In this case, it violates the
nondegeneracy assumption of the Ostrogradsky instability. The lower order derivative
equation results in a constraint that limits the lower derivative degrees of freedom. In
Appendix C, the argument is verified for the equation of motion of the Starobinsky in-
flation, with the FLRW metric employed. In this appendix it was used the conformal
equivalence of the gravitational f(R) theory in the Jordan frame with the Einstein-
Hilbert gravity in the Einstein frame, see Subsection 3.3.1. Therefore, for the right
choice of the sign for the regularization parameter in the Starobinsky model, being of
the class of the gravitational f(R) theory, the theory becomes free of tachyon and ghosts.
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Again, the order reduction is applied. The temporal equation is chosen for the ap-
plication of the technique, as it is of the lowest order in H. Since the aim of the order
reduction technique is to reduce the ODE by one order, the temporal equation will be
reduced from the second to the first order in H. The 00 equation of motion, Equation
(4.81), results in the recurrence relation

−2εβ
Ḧn

Hn
+ εβ

Ḣ2
n

H2
n

+
1

6

[
1− 36βḢn+1

]
= 0, (4.83)

where, as usual, 0 ≤ ε ≤ 1 is a dimensionless perturbative parameter and at the end
is made ε = 1 to return to the original equation. Here, Hn 6= 0 and the equation is
dimensionless in the proper time t. The conditions used are |βḦ| � |H| and |βḢ2| �
|H2|. The first and second slow-roll conditions for inflation are given by |Ḧ| � |ḢH| and
|Ḣ| � |H2|, from Equations (3.23) and (3.24), and there is some overlap in convergence
region of the order reduction and slow-roll conditions. We mention that it is possible
to rewrite the order reduction technique, (4.81), in such a manner that its convergence
conditions are identical with the slow-roll conditions. In this case, for the slow-roll
conditions, the recurrence relation for the temporal equation is

−2εβ
Ḧn

HnḢn

+ εβ
Ḣn

H2
n

+
1

6

[
1

Ḣn+1

− 36β

]
= 0. (4.84)

To lowest order, we have the solution of Ruzmaikina and Ruzmaikin [61], which de-
scribes the slow-roll regime

1 + 36βḢ1 = 0⇒ H1 =
1

36β
(te1 − t). (4.85)

To second order,

H2 =
1

36β
(te2 − t) +

1

6

ε

(te2 − t)
. (4.86)

this solution is also found by [77] for slow-roll conditions.
To third order

H3 =
1

36β
(te3 − t) +

1

6

ε

(te3 − t)
− 8

3

βε2

(te3 − t)3
. (4.87)

The method can be repeated for the next orders.
Until the five order,

H4 =
1

36β
(te4 − t) +

1

6

ε

(te4 − t)
− 8

3

βε2

(te4 − t)3
+

584

5

β2ε3

(te4 − t)5
, (4.88)

H5 =
1

36β
(te5 − t) +

1

6

ε

(te5 − t)
− 8

3

βε2

(te5 − t)3
+

584

5

β2ε3

(te5 − t)5
− 282048

35

β3ε4

(te5 − t)7
.

(4.89)
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In both cases tei is a constant of integration for i = 1, 2, 3, ... and means the end of
inflation. A different value is obtained for each tei to satisfy the initial condition chosen
for H.

As can be shown by the perturbative approximations, Equations (4.85)-(4.89), both
conditions for the order reduction and slow-roll are satisfied for

1� 1√
β

(tei − t). (4.90)

In this case, the inflation occurs for t < tei . While for t > tei the conditions are
inapplicable, and it presents the graceful exit from inflation.

Figure 4.1.: It is well known that H(t) decreases linearly (slow-roll or Ruzmaikina’s
regime) approaches zero and enters into the phase of the damped oscillations
[78]. It is shown in red the exact numerical solution of Eq. (4.81) for
β = 1.305×109M−2

PL. The initial condition is chosen as H = 1.0×10−3MPL

and Ḣ = −2.12856534× 10−11M2
PL.

It is well known that H(t) decreases linearly (slow-roll or Ruzmaikina’s regime) ap-
proaches zero and enters into the phase of the damped oscillations [78]. See Figure 4.1,
Figure 4.2, Figure 4.3, and Figure 4.4 in red the exact numeric solution of equation (4.81)
for β = 1.305 × 109M−2

PL, H(t). It can be seen that the perturbative solutions do not
agree with the field equation (4.81) in the oscillating regime of the weak coupling limit.
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Figure 4.2.: It is shown in red the exact numerical solution of Eq. (4.81) for β = 1.305×
109M−2

PL. Plotted in blue is the perturbative solution (4.85), H1(t). Only
one of the initial condition is chosen as H = 1.0×10−3MPL, while the other
Ḣ = −2.12856534×10−11M2

PL and the constant te1 = 4.69800000×106M−1
PL

in (4.85) are fixed by the choices made. It can be seen that the perturbative
solution does not agree with the field equation in the oscillating regime of
the weak coupling limit. On the other hand, both solutions show very good
agreement in the slow-roll regime.

This is expected, as this region does not fulfill the requirements for the order reduction.
On the other hand, both solutions show very good agreement in the slow-roll regime.

As shown in the perturbative approximation (4.89), in this case, the order reduction
results in a Laurent series with non-zero principal part with infinite terms [79]. As it’s
well known this series will not converge in the limit t→ tei [80], shown by the asymptotes
in Figure 4.1, Figure 4.2 Figure 4.3, and in Figure 4.4. The location of the asymptote
in the weak-field limit of small oscillations is a consequence of the value of the constant
t = tei done exclusively to best fit the initial condition chosen for H. For higher-orders,
the asymptotes appear alternated in pairs due to successive powers of β, which must be
positive to avoid the tachyon, as mentioned in the introduction.

Besides that, it is possible to see that higher orders of the order reduction method
show some convergence to the exact numeric solution as shown in Figure 4.5, Figure 4.6,
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Figure 4.3.: It is shown in red the exact numeric solution of Eq. (4.81) for β = 1.305×
109M−2

PL, H(t). The perturbative approximation is plotted in blue for the
eq. (4.85), H1(t). Only one of the initial condition is chosen as H = 1.0 ×
10−3MPL, while the other Ḣ = −2.12856534× 10−11M2

PL and the constant
te1 = 4.69800000× 106M−1

PL are fixed by the choices made. Plotted in green
is the perturbative solution for the Eq. (4.86), H2(t). Only one of the
initial condition is chosen as H = 1.0 × 10−3MPL, while the other Ḣ =
−2.27810215× 10−11M2

PL and the constant te2 = 4.69633274× 106M−1
PL are

fixed by the choices made.

Figure 4.7 and Figure 4.8. It must also be mentioned that the convergence of the order
reduction is slow and becomes even slower for higher order approximations.

The situation changes in the presence of sources or spatial curvature since then the
field equations will depend explicitly on the scale factor. For instance, in the presence
of perfect fluid source p = wρ with EoS parameter w the covariant conservation of this
source ∇νTµν = 0 implies the Equation (2.11) and a dependence on the scale factor, a,
as ρ = ρ0(a/a0)−3(w+1). In this case, the method will necessarily present second time
derivatives to lowest order instead of first time derivatives in H. If the source is also
considered perturbatively, to lowest order, the first derivative equation (4.85) is replaced
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Figure 4.4.: It is shown in red the exact numeric solution of Eq. (4.81) for β = 1.305×
109M−2

PL, H(t). The perturbative approximations are plotted in blue for
the Eq. (4.85), H1(t). Only one of the initial condition is chosen as H =
1.0 × 10−3MPL, while the other Ḣ = −2.12856534 × 10−11M2

PL and the
constant te1 = 4.69800000× 106M−1

PL are fixed by the choices made. Plotted
in green is the perturbative solution for the Eq. (4.86), H2(t). Only one
of the initial condition is chosen as H = 1.0 × 10−3MPL, while the other
Ḣ = −2.12781021×10−11M2

PL and the constant te2 = 4.69633274×106M−1
PL

are fixed by the choices made. In yellow is plotted the perturbative solution
for the Eq. (4.87), H3(t). Only one of the initial condition is chosen as
H = 1.0 × 10−3MPL, while the other Ḣ = −2.12781182 × 10−11M2

PL and
the constant te3 = 4.69633432 × 106M−1

PL are fixed by choices made. In
black is shown the perturbative solution for the Eq. (4.88) H4(t). One
of the initial condition is chosen as H = 1.0 × 10−3MPL, while the other
Ḣ = −2.12781181×10−11M2

PL and the constant te4 = 4.69633431×106M−1
PL

are fixed by the choices made. The last plot in gray shows the perturbative
solution for the Eq. (4.89), H5(t). One of the initial condition is chosen as
H = 1.0 × 10−3MPL, while the other Ḣ = −2.12781181 × 10−11M2

PL and
the constant te5 = 4.69633431× 106M−1

PL are fixed by the choices made.

by

1− 36β

[
ä1

a1
+

(
ȧ1

a1

)2
]

= 0, (4.91)
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Figure 4.5.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.81), H(t) and the analytical approximation (4.85), H1(t) by the
exact numeric solution, H(t). The initial conditions used are H = 1.0 ×
10−3MPL and Ḣ = −2.12856534 × 10−11M2

PL. The constants are β =
1.305×109M−2

PL and te1 = 4.69800000×106M−1
PL. Plotted in blue is the ratio

of the difference between the exact numeric solution (4.81), H(t) and the
analytical approximation (4.86), H2(t) by the exact numeric solution, H(t).
The initial conditions used are H = 1.0×10−3MPL and Ḣ = −2.12781021×
10−11M2

PL, while the constant is te2 = 4.69633274× 106M−1
PL.

remind that H = ȧ/a. The explicit dependence of the field equation on the scale factor,
through the source ρ = ρ0(a/a0)−3(w+1) will come in higher perturbative approximations,
by assumption.

A different choice of variables is presented compared to the work of Simon and Parker
[29]. The reason for this is that this order reduction, which we are presenting here, is
very sensitive to the choice of the lowest perturbative approximation. The lowest order
system in the order reduction must be chosen in accordance with which regime of the
solution is going to be reproduced by the method. If higher than first time derivatives
of the scale factor are neglected in the lowest perturbative approximation of the order
reduction, the Ruzmaikina’s regime H = ȧ/a ∝ −t is not reproduced. For example, in
order to get the desired regime, the lowest order must be given by (4.91).
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Figure 4.6.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.81), H(t) and the analytical approximation (4.86), H2(t) by the
exact numeric solution, H(t). The initial conditions used are H = 1.0 ×
10−3MPL and Ḣ = −2.12781021 × 10−11M2

PL. The constants are β =
1.305×109M−2

PL and te2 = 4.69633274×106M−1
PL. Plotted in blue is the ratio

of the difference between the exact numeric solution (4.81), H(t) and the
analytical approximation (4.87), H3(t) by the exact numeric solution, H(t).
The initial conditions used are H = 1.0×10−3MPL and Ḣ = −2.12781182×
10−11M2

PL, while the constant is te3 = 4.69633432× 106M−1
PL.

To end this chapter, the order reduction will be applied to the trace of the field
equation (4.77) for the homogeneous isotropic line element with zero spatial curvature.

The trace of the field equation (4.77) results in

gµν
[
Rµν −

1

2
Rgµν +

(
β − 1

3
α

)(
−R

2

2
gµν + 2RRµν + 2�Rgµν − 2R;µν

)
+ α

(
−1

2
RλσR

λσgµν −R;µν + 2RλσRλνσµ +�Rµν +
1

2
�Rgµν

)]
= 0. (4.92)

Here, the terms that multiply α are null, the trace (4.92) results in,

R− 6β�R = 0, (4.93)
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Figure 4.7.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.81), H(t) and the analytical approximation (4.87), H3(t) by the
exact numeric solution, H(t). The initial conditions used are H = 1.0 ×
10−3MPL and Ḣ = −2.12781182 × 10−11M2

PL. The constants are β =
1.305 × 109M−2

PL and te3 = 4.69633432 × 106M−1
PL. Plotted in blue is the

ratio of difference between the exact numeric solution (4.81), H(t) and the
analytical approximation (4.88), H4(t) by the exact numeric solution, H(t).
The initial conditions used are H = 1.0×10−3MPL and Ḣ = −2.12781181×
10−11M2

PL, while the constant is te4 = 4.69633431× 106M−1
PL.

as before, for the FLRW homogeneous isotropic line element gµν = diag[−1, a2, a2, a2]
with zero spatial curvature, the equation of motion becomes

1

6

[
Ḣ + 2H2

]
+ β

[...
H + 7ḦH + 4Ḣ2 + 12ḢH2

]
= 0. (4.94)

In following, we apply the ORT to the equation of motion (4.94) and we get the
recurrence relation,

ε

6

Ḣn

H2
n

+ εβ

[ ...
Hn

H2
n

+ 7
Ḧn

Hn
+ 4

Ḣ2
n

H2
n

]
+ 12

[
1

36
+ βḢn+1

]
= 0. (4.95)

The conditions used are
∣∣∣Ḣ∣∣∣� ∣∣H2

∣∣, |β ....
H | �

∣∣H2
∣∣, ∣∣∣βḦ∣∣∣� |H| and

∣∣∣βḢ2
∣∣∣� ∣∣H2

∣∣.
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Figure 4.8.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.81), H(t) and the analytical approximation (4.88), H4(t) by the
exact numeric solution, H(t). The initial conditions used are H = 1.0 ×
10−3MPL and Ḣ = −2.12781181 × 10−11M2

PL. The constants are β =
1.305×109M−2

PL and te4 = 4.69633431×106M−1
PL. Plotted in blue is the ratio

of the difference between the exact numeric solution (4.81), H(t) and the
analytical approximation (4.89), H5(t) by the exact numeric solution, H(t).
The initial conditions used are H = 1.0×10−3MPL and Ḣ = −2.12781181×
10−11M2

PL, while the constant is te5 = 4.69633431× 106M−1
PL. It is possible

to see a weak convergence for higher orders to the exact numerical solution
in the regime of slow-roll.

To lowest order,

1

36
+ βḢ1 = 0⇒ H1 =

1

36β
(te1 − t). (4.96)
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Until the five order,

H2 =
1

36β
(te2 − t) +

1

6

ε

(te2 − t)
, (4.97)

H3 =
1

36β
(te3 − t) +

1

6

ε

(te3 − t)
−
(

8

3

β

(te3 − t)3
+

108

5

β2

(te3 − t)5

)
ε2, (4.98)

H4 =
1

36β
(te4 − t) +

1

6

ε

(te4 − t)
−
(

8

3

β

(te4 − t)3
+

108

5

β2

(te4 − t)5

)
ε2 +

(
692

5

β2

(te4 − t)5

+
158976

35

β3

(te4 − t)7
+ 54432

β4

(te4 − t)9

)
ε3, (4.99)

H5 =
1

36β
(te5 − t) +

1

6

ε

(te5 − t)
−
(

8

3

β

(te5 − t)3
+

108

5

β2

(te5 − t)5

)
ε2 +

(
692

5

β2

(te5 − t)5

+
158976

35

β3

(te5 − t)7
+ 54432

β4

(te5 − t)9

)
ε3 −

(
441024

35

β3ε4

(te5 − t)7
+

33642288

35

β4

(te5 − t)9

+
1769382144

55

β5

(te5 − t)
11 +

5819869440

13

β6

(te5 − t)
13

)
ε4. (4.100)

The region of convergence is similar with the order reduction and slow-roll conditions
applied to the equation (4.81) when is made ε = 1 at the end. Again, it can be seen that
the successive analytical approximations obtained from the recurrence relation (4.95)
show some slow convergence to the exact numerical solution (4.94), as shown in Figure
4.9, Figure 4.10, Figure 4.11 and Figure 4.12.
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Figure 4.9.: The graph in red shows the ratio of the difference between the exact nu-
meric solution (4.94), H(t) and the analytical approximation (4.96), H1(t)
by the exact numeric solution, H(t). The initial conditions used are
H = 1.0 × 10−3MPL, Ḣ = −2.12856534 × 10−11M2

PL and Ḧ = 0.0M3
PL.

The constants are β = 1.305 × 109M−2
PL and te1 = 4.69800000 × 106M−1

PL.
Plotted in blue is the ratio of the difference between the exact numeric solu-
tion (4.94), H(t) and the analytical approximation (4.97), H2(t) by the exact
numeric solution, H(t). The initial conditions used are H = 1.0×10−3MPL,
Ḣ = −2.12781021× 10−11M2

PL and Ḧ = 3.21469450× 10−21M3
PL, while the

constant is te2 = 4.69633274× 106M−1
PL.
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Figure 4.10.: The graph in red shows the ratio of the difference between the exact
numeric solution (4.94), H(t) and the analytical approximation (4.97),
H2(t) by the exact numeric solution, H(t). The initial conditions used
are H = 1.0 × 10−3MPL, Ḣ = −2.12781021 × 10−11M2

PL and Ḧ =
3.21469450 × 10−21M3

PL. The constants are β = 1.305 × 109M−2
PL and

te2 = 4.69633274 × 106M−1
PL. Plotted in blue is the ratio of the difference

between the exact numeric solution (4.94), H(t) and the analytical approxi-
mation (4.98), H3(t) by the exact numeric solution, H(t). The initial condi-
tions used areH = 1.0×10−3MPL, Ḣ = −2.12781182×10−11M2

PL and Ḧ =
3.19981479×10−21M3

PL, while the constant is te3 = 4.69633432×106M−1
PL.
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Figure 4.11.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.94), H(t) and the analytical approximation (4.98), H3(t) by
the exact numeric solution, H(t). The initial conditions used are H =
1.0 × 10−3MPL, Ḣ = −2.12781182 × 10−11M2

PL and Ḧ = 3.19981479 ×
10−21M3

PL. The constants are β = 1.305×109M−2
PL and te3 = 4.69633432×

106M−1
PL. Plotted in blue is the ratio of difference between the exact numeric

solution (4.94), H(t) and the analytical approximation (4.99), H4(t) by
the exact numeric solution, H(t). The initial conditions used are H =
1.0 × 10−3MPL, Ḣ = −2.12781181 × 10−11M2

PL and Ḧ = 3.19995564 ×
10−21M3

PL, while the constant is te4 = 4.69633431× 106M−1
PL.
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Figure 4.12.: The graph in red shows the ratio of the difference between the exact numeric
solution (4.94), H(t) and the analytical approximation (4.99), H4(t) by
the exact numeric solution, H(t). The initial conditions used are H =
1.0 × 10−3MPL, Ḣ = −2.12781181 × 10−11M2

PL and Ḧ = 3.19995564 ×
10−21M3

PL. The constants are β = 1.305×109M−2
PL and te4 = 4.69633431×

106M−1
PL. Plotted in blue is the ratio of the difference between the exact

numeric solution (4.94), H(t) and the analytical approximation (4.100),
H5(t) by the exact numeric solution, H(t). The initial conditions used are
H = 1.0×10−3MPL, Ḣ = −2.12781181×10−11M2

PL and Ḧ = 3.19995422×
10−21M3

PL, while the constant is te5 = 4.69633431× 106M−1
PL.
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CHAPTER 5.

Conclusions

In this thesis, it is shown a simple extension of the order reduction as an iterative
method of solution of higher order differential equations. The analytical approximations
following this technique also are compared with the direct numerical solution of the
equation of motion. The main results are based on Ref. [1].

In Section 4.2, some simple examples were presented for which the technique converges
to the exact solution. Both situations, with or without a source, are analyzed. Surpris-
ingly, the order reduction presents a very good agreement in strong coupling regimes,
non-oscillating which slowly approaches equilibrium. While in the oscillating regime of
a weak coupling limit, the ORT is inapplicable. The cases with external sources fall
into the class of problems mentioned in the introduction. It is possible to control the
external frequency to be much smaller than the natural frequency of the system and
order reduction converges to the expected solution.

In Subsection 4.2.1, the order reduction is applied to the relativistic LAD equation
of motion in the absence of external gravitational fields. It is considered a constant
source and the method gives the well known Rindler motion for the point charge [19].
This is not anything new, since this exact solution can be seen in [19] and some similar
applications have already been made in [22]. It must be mentioned that in this situation
there is strong coupling and an external source with zero frequency, which is always less
than the natural frequencies of the system.

In Subsection 4.2.2, the method is applied to the harmonic oscillator. As expected,
the non homogeneous equation converges when submitted to the control of the two
frequencies, such that the external frequency must be smaller than the natural frequency
of the system. For the homogeneous equation version for the harmonic oscillator, the
Banach fixed point theorem is used to show that the order reduction converges uniquely
for the overdamped solution of the harmonic oscillator. The oscillating underdamped
regime is excluded by the method.

To our knowledge, previous applications of the order reduction to effective gravity
mentioned in the introduction [26], [27], [28], [29] seemed to be done only with the
presence of sources.

In Section 4.3, the order reduction is applied to Starobinsky inflation [11]. Here, it is
considered the model in absence of sources. The order reduction is applied to the field
equation (4.81) resulting in the recurrence relation (4.83). The convergence region has
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some overlap with the first and second slow-roll conditions for inflation. This recurrence
relation (4.83) is used to obtain successive analytical approximations that are compared
to the direct numerical solution of the equation (4.82). Equation (4.81) as a constraint
is dynamically conserved and is used to numerically check the code.

It can be seen in Figure 4.2, Figure 4.3 and Figure 4.4 that the perturbative solution
does not agree with the field equation (4.81) in the oscillating weak coupling limit. The
asymptote present in the perturbative solutions occurs in the oscillating regime, where
the technique of order reduction does not work, as shown by the condition of convergence
(4.90). For the following perturbative approximations, the asymptotes appear alternated
due to successive powers of β, which must be positive to avoid the tachyon, as mentioned
in the introduction. On the other hand, both perturbative solutions showed agreement
in the slow-roll regime.

Moreover, it is verified the convergence of the order reduction, as shown in Figure 4.5,
Figure 4.6, Figure 4.7 and Figure 4.8 in the slow-roll regime. It is possible to see that
successive approximations of the order reduction method show some convergence to the
exact numeric solution. It must also be mentioned that this convergence is slow and
becomes even slower for higher order approximations.

In the presence of sources or spatial curvature, as mentioned at the end of Section
4.3, the correct choice of the variable should be of scale factor instead of the Hubble
parameter. The field equations written with respect to the scale factor will have an
additional time derivative as compared to the same field equations written with respect
to H as it’s done here.

The order reduction presented here is very sensitive to the choice of the lowest pertur-
bative approximation. The lowest order system in the order reduction must be chosen in
accordance with which regime of the solution is going to be reproduced by the method.
To obtain the desired Ruzmaikina regime, the lowest order for the field equations written
in terms of the scale factor must be given by (4.91). If higher than first time derivatives
of the scale factor are neglected in the lowest perturbative approximation of the order
reduction, the Ruzmaikina’s regime H = ȧ/a ∝ −t is not reproduced.

Furthermore, in Section 4.3, order reduction is also applied to the trace of the field
equation (4.77) for the homogeneous isotropic line element with zero spatial curvature
used in the previous case of the Starobinsky inflationary model. The equation of motion
becomes (4.94) and the order reduction results in the recurrence equation (4.95). The
region of convergence is similar with the order reduction and slow-roll conditions applied
to the equation (4.81) when is made ε = 1 at the end. Again, it is possible to see that
higher orders of the order reduction method show some slow convergence to the exact
numerical solution (4.94), as shown in Figure 4.9, Figure 4.10, Figure 4.11 and Figure
4.12.

As is well known [81], the order reduced equations present fewer solutions. This was
one intention of the ORT to make it easier to select the ones that are physically relevant
[26], [29]. This present work agrees with this reasoning. For all solutions analyzed, the
perturbative order reduction in its convergence region approaches the physical solutions.
However, it must be emphasized that one disadvantage of the method is that there could
be some physical solutions that the order reduction will not detect.
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APPENDIX A.

Variation on the action for the gravitational
f(R) theory

This appendix will show the minimum variation principle of the action of the gravi-
tational f(R) theory

S =
1

2κ

∫
d4x
√
−gf(R), (A.1)

in relation to the metric gµν .
First note that

δ[
√
−gf ] = fδ

√
−g +

√
−gf ′δR, (A.2)

where for simplicity of notation f(R) ≡ f and f ′ ≡ ∂f/∂R.
To calculate the variation of this action the following equations in the free fall frame

become useful:

δ
√
−g =

1

2

√
−ggµνδgµν , (A.3)

δgµν = −gµσgνλδgσλ, (A.4)

R = gµνRµν , (A.5)

δR = Rµνδg
µν + gµνδRµν , (A.6)

Rµνλσ = Γµνσ,λ − Γµνλ,σ, (A.7)

Rνσ = Rµνµσ = Γµνσ,µ − Γµνµ,σ, (A.8)

δΓσµν =
gσλ

2
[δgλµ,ν + δgλν,µ − δgµν,λ] . (A.9)

See, for instance, [48] and [49].
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Using Equations (A.8) and (A.9) in the second term of Equation (A.6) follows∫
d4x
√
−gf ′gµνδRµν =

∫
d4x
√
−g f

′

2
gµν [gσλ (δgλµ,νσ + δgλν,µσ − δgµν,λσ)

− gσλ (δgλµ,σν + δgλσ,µν − δgµσ,λν)] =
1

2

∫
d4x
√
−ggµν [gσλ(f ′,νσδgλµ + f ′,µσδgλν

− f ′,λσδgµν − f ′,σνδgλµ + f ′,µνδgλσ − f ′,λνδgµσ)] =
1

2

∫
d4x
√
−g(f ′,

µν
δgµν −�f ′gµνδgµν

−�f ′gµνδgµν + f ′,
µν
δgµν) =

∫
d4x
√
−g(f ′,

µν
δgµν −�f ′gµνδgµν), (A.10)

where Leibniz’s rule is used, and the surface integral terms vanish.
Substituting Equations (A.3), (A.4), (A.6) and (A.10) in Equation (A.2) the variation

of the action for the f(R) theory results in

δS =
1

2κ

∫
d4xδ[

√
−gf ] =

1

2κ2

∫
d4x
√
−g
(
−1

2
gµνfδg

µν + f ′Rµνδg
µν −5µ 5ν f

′δgµν

+�f ′gµνδg
µν
)

=
1

2κ2

∫
d4x
√
−g
(
−1

2
gµνf + f ′Rµν −5µ 5ν f

′ +�f ′gµν

)
δgµν

(A.11)

where Equation (A.4) is being used to move the metric index up and down within the
variation.

By the minimum variation principle δS = 0 and the term inside the parentheses
cancels out, resulting in the equation of motion,

f ′Rµν −
1

2
gµνf −5µ 5ν f

′ +�f ′gµν = 0. (A.12)
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Conformal transformation

The conformal transformation from the Jordan frame to the Einstein frame is as
follows

g̃µν = eΩgµν , (B.1)

g̃µν = e−Ωgµν . (B.2)

Where eΩ is the conformal factor and the tilde represents the quantity in the Einstein
frame.

From the Jordan’s frame in free fall

Γµνλ = 0, Γµνλ,σ 6= 0, (B.3)

the definition (A.9) for the connection, and the conformal transformations (B.1)-(B.2),
we have

Γ̃µνλ =
1

2
g̃µγ [g̃νγ,λ + g̃λγ,ν − g̃νλ,γ ] =

1

2
e−Ωgµγ

[(
eΩgνγ

)
,λ

+
(
eΩgλγ

)
,ν
−
(
eΩgνλ

)
,γ

]
= Γµνλ +

1

2
gµγ [gνγΩ,λ + gλγΩ,ν − gνλΩ,γ ] . (B.4)

According to (B.3) the first term on the right-hand side vanishes and therefore

Γ̃µνλ =
1

2
gµγ [gνγΩ,λ + gλγΩ,ν − gνλΩ,γ ]. (B.5)

Substituting the connection in the Einstein frame written in terms of the Jordan frame,
(B.5), in the Riemann tensor

R̃µνλσ = Γ̃µνσ,λ − Γ̃µνλ,σ + Γ̃µγλΓ̃γνσ − Γ̃µγσΓ̃γνλ, (B.6)

results in,

R̃µνλσ =

[
1

2
gµγ (gνγΩ,σ + gσγΩ,ν − gνσΩ,γ)

]
,λ

+
1

4
gµε (gγεΩ,λ + gλεΩ,γ − gγλΩ,ε)

gγθ (gνθΩ,σ + gσθΩ,ν − gνσΩ,θ) + Γµνσ,λ − (λ↔ σ). (B.7)
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Using gµν,λ = 0 and gµλgνλ = δµν in Equation (B.7) the Riemann tensor written in the
Einstein frame becomes

R̃µνλσ = Rµνλσ +
1

2
(δµνΩ,σλ + δµσΩ,νλ − gµγgνσΩ,γλ) +

1

4

(
δµγΩ,λ + δµλΩ,γ − gµεgγλΩ,ε

)
(
δγνΩ,σ + δγσΩ,ν − gγθgνσΩ,θ

)
− (λ↔ σ). (B.8)

The Ricci tensor is obtained through (B.8) as

R̃νσ = R̃µνµσ = Rνσ +
1

2
[Ω,σν + Ω,νσ − gνσ�Ω]− 1

2
[Ω,νσ + 4Ω,νσ − Ω,νσ]

+
1

4
[(Ω,γ + 4Ω,γ − Ω,γ) (δγνΩ,σ + δγσΩ,ν − gνσΩ,

γ)−
(
δµγΩ,σ + δµσΩ,γ − gγσΩ,

µ
)

(
δγνΩ,µ + δγµΩ,ν − gνµΩ,

γ
)]
. (B.9)

Manipulations on Equation (B.9) result in

R̃νσ = Rνσ − Ω,νσ −
1

2
gνσ�Ω +

1

2
Ω,νΩ,σ −

1

2
gνσΩ,γΩ,

γ . (B.10)

To end, the Ricci scalar is obtained through the Ricci tensor (B.10) and the conformal
transformation according to (B.2) as

R̃ = R̃µµ = g̃µνR̃µν = e−Ωgµν
(
Rµν − Ω,µν −

1

2
gµν�Ω +

1

2
Ω,µΩ,ν −

1

2
gµνΩ,γΩ,

γ

)
.

(B.11)
Manipulations on (B.11) result in the following expression for the Ricci scalar in the
Einstein frame in terms of the Jordan frame,

R̃ = e−Ω

(
R− 3�Ω− 3

2
Ω,γΩ,

γ

)
. (B.12)
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Conformal equivalence of the f(R) theory
and the Einstein-Hilbert gravity

As mentioned in the Subsection 3.3.1, the gravitational f(R) theory is conformally
equivalent to the Einstein-Hilbert gravity. In the original Jordan frame, the scalar field
φ is non-minimally coupled with the Ricci scalar. It is possible to rewrite this theory
in the Einstein frame with the scalar field coupled with the matter by the conformal
transformation of the metric tensor (3.37) and with a re-scaling of the scalar field, see
Equation (3.46).

Thus, the action for the gravitational f(R) theory, see Equation (3.33), nonlinear in
the Ricci scalar, becomes the action (3.47) given in the Einstein frame. This results in
the Einstein-Hilbert equation Gµν = Tµν(φ̃) and in the equation of classic motion for
the scalar field (3.13), according to the choice and definition of (3.39) and (3.46), see
[60]. As a particular case with the FLWR metric employed, these equations are:

3H̃2 = κ

(
1

2
φ̃′2 + V (φ̃)

)
, (C.1)

2H̃ ′ + 3H̃2 = −κ
(

1

2
φ̃′2 − V (φ̃)

)
, (C.2)

φ̃′′ + 3H̃φ̃′ +
dV (φ̃)

dφ̃
= 0, (C.3)

see Equations (2.14) and (2.17) for the first and second Friedmann equations, Equations
(3.6) and (3.7) for the temporal and spatial terms of the energy-momentum tensor. Here
the prime means a time derivative in the Einstein frame and this time dependence has
been omitted to simplify the notation.

In this appendix, it will be shown how these equations lead to only a single higher
derivative equation that carries the dynamics and a single lower order derivative equation
that results in a constraint in the Jordan frame.

Through the conformal transformation as mentioned earlier, g̃µν = eΩgµν , with the
choice eΩ = f ′, where as before f(R) ≡ f and f ′ ≡ ∂f/∂R, follows the re-definitions

dt̃ =
√
f ′dt, ã(t̃) =

√
f ′a(t). (C.4)
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The Hubble parameter and its first time derivative in the Einstein frame becomes,

H̃ =
ã′

ã
=

H√
f ′

(
1 +

Ṙf ′′

2Hf ′

)
, (C.5)

H̃ ′ =
1√
f ′

(
Ḣ√
f ′

+
R̈f ′′ + Ṙ2f ′′′ −HṘf ′′

2f ′3/2
− 3

4

(Ṙf ′′)2

f ′5/2

)
. (C.6)

Here f ′′ ≡ ∂f ′/∂R, f ′′′ ≡ ∂f ′′/∂R and the dot means a time derivative in the Jordan
frame.

As seen before, the re-scaling scalar field Equation (3.46), and its first and second
time derivative in the Einstein frame are

φ̃ =

√
3

2κ
ln f ′, (C.7)

φ̃′ =

√
3

2κ

f ′′Ṙ

f ′3/2
, (C.8)

φ̃′′ =
1√
f ′

√
3

2κ

(
f ′′′Ṙ2 + f ′′Ṙ

f ′3/2
− 3

2

(Ṙf ′′)2

f ′5/2

)
. (C.9)

The potential and its scalar field derivative in the Einstein frame are

V (φ̃) =
Rf ′ − f

2κf ′2
, (C.10)

dV (φ̃)

dφ̃
=

√
2κ

3

1

4βκ

(
f ′ − 1

f ′2

)
. (C.11)

Using Equations (C.5), (C.8) and (C.10) in Equation (C.1), it results in

3H2 =
κ

f ′′

(
Rf ′′ − f

2κ
− 3Hf ′′Ṙ

κ

)
. (C.12)

Replacing Equations (C.5), (C.6) and (C.8), (C.10) in Equation (C.2), we obtain

2Ḣ + 3H2 = − κ

f ′′

(
Ṙ2f ′′′ + (2HṘ+ R̈)f ′′

κ
− Rf ′′ − f

2κ

)
. (C.13)

Finally, substituting Equations (C.5), (C.8), (C.9) and (C.11) in Equation (C.3) follows

3Ṙf ′′H + f ′′′Ṙ2 + f ′′R̈+
1

6β
(f ′ − 1) = 0. (C.14)

Equations (C.12)-(C.14) for Starobinsky inflation f(R) = R+βR2 in the Jordan frame
follow only a single higher order derivative dynamic equation with a constraint given by
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the temporal lower order derivative equation:

1

6
H2 + β

[
2ḦH + 6ḢH2 − Ḣ2

]
= 0, (C.15)

−1

2
H2 − 1

3
Ḣ + β

[
−2

...
H − 12ḦH − 9Ḣ2 − 18ḢH2

]
= 0. (C.16)

These same equations can be found by the principle of minimum variation in Appendix
E, with the FLRW employed in the Section 4.3, see Equations (4.81)-(4.82).
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APPENDIX D.

Convergence of the order reduction to
harmonic oscillator

Consider the following first order differential equation for xn+1 to be understood as
an iteration map

x′n+1 +
ω2

γ2
xn+1 = −εx′′n, (D.1)

where the parameter 0 ≤ ε ≤ 1 and at the end is made ε = 1. We will check that the
above iteration map is a contraction. Variables are changed to xn = e−ω

2τ/γ2yn assuming
that yn and its derivatives are limited functions in the time interval in question

I = [τ0, τ ]. (D.2)

Integrating by parts twice

y′n+1 = −εeω2τ/γ2x′′n,

yn+1 − y0
n+1 = −ε

∫ τ

τ0

eω
2s/γ2x′′n(s)ds,

yn+1 − y0
n+1 = −ε

[
eω

2s/γ2x′n(s)
]τ
τ0

+ ε
ω2

γ2

[
eω

2s/γ2xn(s)
]τ
τ0

− εω
4

γ4

∫ τ

τ0

eω
2s/γ2xn(s)ds,

yn+1 − y0
n+1 = −ε

[
y′n(s)− 2

ω2

γ2
yn(s)

]τ
τ0

− εω
4

γ4

∫ τ

τ0

yn(s)ds, (D.3)

where y0
n+1 is the initial condition. The metric is induced by the uniform norm

||y(τ)‖ = sup
τ∈I
|y(τ)|. (D.4)

First, we show that for a given function y, its first iteration y1 is within some upper
limit,

||y1 − y0
1‖ < b, b > 0. (D.5)
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Begin with

y1 − y0
1 = −ε

[
y′(s)− 2

ω2

γ2
y(s)

]τ
τ0

− εω
4

γ4

∫ τ

τ0

y(s)ds, (D.6)

from (D.3). Then, considering that both

|y(τ)− y(τ0)| ≤ sup

∣∣∣∣dydτ
∣∣∣∣∆τ = ‖y′‖∆τ

|y′(τ)− y′(τ0)| ≤ sup

∣∣∣∣d2y

dτ2

∣∣∣∣∆τ = ‖y′′‖∆τ (D.7)

and that ∣∣∣∣∫ τ

τ0

y(s)ds

∣∣∣∣ ≤ ∫ τ

τ0

|y(s)|ds ≤ ‖y‖∆τ (D.8)

with ∆τ = τ − τ0 it is possible to rewrite ‖y1 − y0‖ as

‖y1 − y0
1‖ ≤ ε

{
‖y′′‖+ 2

ω2

γ2
‖y′‖+

ω4

γ4
‖y‖
}

∆τ. (D.9)

Since y and its derivatives have a definite norm, it is always possible to choose ∆τ such
that ‖y1 − y0

1‖ < b.
Now, given two functions ya and yb, we shall prove that

‖y1
a − y1

b‖ ≤ q‖ya − yb‖, (D.10)

for some 0 ≤ q < 1. We will suppose that both y′ and y′′ have Lipschitz constants L1 ≥ 0
and L2 ≥ 0 in the time interval I

‖y′a − y′b‖ ≤ L1‖ya − yb‖ ‖y′′a − y′′b ‖ ≤ L2‖ya − yb‖ (D.11)

which is a rather strong condition, anyway reasonable, since, by assumption, all these
functions are limited in the considered time interval. Following (D.6) for two distinct
functions ya and yb with same initial condition y0

a = y0
b and performing their difference

results in

y1
a − y1

b = −ε
[
y′a(s)− y′b(s)− 2

ω2

γ2
(ya(s)− yb(s))

]τ
τ0

− εω
4

γ4

∫ τ

τ0

(ya(s)− yb(s))ds. (D.12)

Keeping in mind (D.7) and (D.8) then

‖y1
a − y1

b‖ ≤ ε
{
L2 + 2

ω2

γ2
L1 +

ω4

γ4

}
‖ya − yb‖∆τ. (D.13)
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It is always possible to choose a sufficiently small time interval ∆τ such that the above
relation is

‖y1
a − y1

b‖ ≤ q‖ya − yb‖ (D.14)

with 0 ≤ q < 1, which shows that the map is a contraction in the metric space of
functions with uniform norm. Banach fixed point theorem states that, since it is a
contraction map, it has a unique fixed point [76].

It must be mentioned since the analytic solution is known, that there are two fixed
points x+

∞ and x−∞ for (D.1)

x±∞ = c exp

[(
−1±

√
1− 4εω2

γ2

)
τ

2ε

]
. (D.15)

We know that x+
∞ is one of the solutions of (D.1). We call it xn and take its second

derivative x′′n to get xn+1. Substituting x′′n in (D.1) we get the following ODE for xn+1

ε

[
− 1

2ε
+

1

2ε

√
1− 4

ω2

γ2

]2

exp

{[
− 1

2ε
+

1

2ε

√
1− 4

ω2

γ2

]
t

}
+ x′n+1 +

ω2

γ2
xn+1 = 0,

(D.16)
solving this ODE, we get that xn+1 = x+

∞. The same proof follows for the other solution
of (D.1), namely x−∞. Thus, we show that x+

∞ and x−∞ are the two fixed points that (D.1)
has. On the other hand, it can be easily seen in (D.1) that when ε → 0 the solution is
xn = e−ω

2τ/γ2 . Now, only one of the fixed points x±∞ is consistent with this solution,
namely,

x+
∞ = c lim

ε=0

{
exp

[(
−1 +

√
1− 4εω2

γ2

)
τ

2ε

]}
= e−ω

2τ/γ2 . (D.17)

The other fixed point, x−∞ does not have a well defined limit when ε → 0 and must be
excluded.

The iterative procedure (D.1), when ε→ 1, then converges to the unique solution

x = c exp

[(
−1 +

√
1− 4ω2

γ2

)
τ

2

]
. (D.18)
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APPENDIX E.

Effective action variation

For the effective gravity, the action is

S =

∫
d4x
√
−g

M2
PL

2

{
R+ βR2 + α

[
RµνR

µν − 1

3
R2

]}
. (E.1)

By the minimum variation principle, the effective gravity action variation must be zero.
To obtain this variation, the Equations (A.3)-(A.9) together with

∂
√
−g =

1

2

√
−ggµν∂gµν , (E.2)

∂gµν = −gµσgνλ∂gσλ, (E.3)

become useful.
For the linear curvature term, we have∫

d4xδ(
√
−gR) =

∫
d4xδ(

√
−ggµνRµν) (E.4)

=

∫
d4x

{
(δ
√
−g)R+

√
−g(δgµν)Rµν +

√
−ggµν(δRµν)

}
=

∫
d4x

{
−1

2

√
−gRgµνδgµν +

√
−gRµνδgµν +

√
−ggµν(δRµν)

}
(E.5)

the last term becomes null, because∫
d4x
√
−ggµνδRµν =

∫
d4x
√
−ggµνδ(Γλµν,λ − Γλµλ,ν)

=

∫
d4x

{
∂λ[
√
−ggµνδΓλµν ]− ∂ν [

√
−ggµνδΓλµλ]

}
= 0 (E.6)

where we use Equations (E.2)-(E.3), Leibniz’s rule, and the fact that the surface integral
terms vanish.

Thus, ∫
d4xδ(

√
−gR) =

∫
d4x
√
−g
(
Rµν −

1

2
Rgµν

)
δgµν . (E.7)
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This term, when considered alone in action, results in the Einstein-Hilbert field equation.
See, for instance, [48] and [49].

For the quadratic curvature term, we have∫
d4xδ(

√
−gR2) =

∫
d4xδ(

√
−gRµλgµλRνσgνσ)

=

∫
d4x

{√
−g
(
−R

2

2
gµν + 2RRµν

)
δgµν +

√
−g2RgµνδRµν ]

}
, (E.8)

where Equations (A.3)-(A.4) are used. The last term becomes∫
d4x
√
−g2RgµνδRµν =

∫
d4x
√
−g2Rgµνδ(Γλµν,λ − Γλµλ,ν)

=

∫
d4x
√
−g
(
−2R;λg

µνδΓλµν + 2R;νg
µνΓλµλ

)
=

∫
d4x
√
−g
{
−R;

γgµν [(δgγµ);ν + (δgγν);µ − (δgµν);γ ] +R;
µgλγ [(δgγµ);λ + (δgγλ);µ

−(δgµλ);γ ]} =

∫
d4x
√
−g(−2�Rgµν + 2R;

µν)δgµν , (E.9)

where (A.8)-(A.9) and Leibniz’s rule with zero surface integral terms are used. As we
are working in the free fall reference frame, we can always change the partial derivatives
(comma), for covariant derivatives (semicolon), because in this reference the connection
is null. Substituting (E.9) into (E.8) results in∫

d4xδ(
√
−gR2) =

∫
d4x
√
−g
(
−R

2

2
gµν + 2RRµν + 2�Rgµν − 2R;µν

)
δgµν , (E.10)

with (A.4) being used to move the metric index up and down within the variation.
In the end, for the product of the Ricci tensors, we have∫

d4xδ(
√
−gRµνRµν)

=

∫
d4x
√
−g
{[
−1

2
RσνRσνgµλ + 2Rµ

σRλσ

]
δgµλ + 2RµνδRµν

}
, (E.11)

where Equations (A.3)-(A.4) are used. The last term becomes∫
d4x
√
−gRµνδRµν

=

∫
d4x
√
−g1

2

(
−2Rνλ;µ

ν +�Rµλ +Rλν;
ν
µ

+Rνσ;
νσgµλ −Rµν;

ν
λ

)
δgµλ, (E.12)

proceeding in the same way as in the Equation (E.9).
By the relation between commutators of the covariant derivative

Rνλ;µ
ν = Rνλ;

ν
µ +RσµRσλ +Rλ

σν
µRνσ, (E.13)
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and using, Rµν ;µ = Rµν,µ + (Rgµν),µ, we have

Rµν ;µ =
1

2
R,ν . (E.14)

Thus,∫
d4xδ(

√
−gRµνRµν) (E.15)

=

∫
d4x
√
−g
(
−1

2
RλσR

λσgµν −R;µν + 2RλσRλνσµ +�Rµν +
1

2
�Rgµν

)
δgµν .

(E.16)

Therefore, the equation of motion becomes

Eµν ≡ Gµν +

(
β − 1

3
α

)
H(1)
µν + αH(2)

µν = 0, (E.17)

with

Gµν = Rµν −
1

2
Rgµν , (E.18)

H(1)
µν = −R

2

2
gµν + 2RRµν + 2�Rgµν − 2R;µν , (E.19)

H(2)
µν = −1

2
RλσR

λσgµν −R;µν + 2RλσRλνσµ +�Rµν +
1

2
�Rgµν . (E.20)
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Covariant divergence

In the following, it is verified that the covariant divergence of the equation of motion
(E.17) is zero.

For the first term, which is the Einstein-Hilbert gravity (E.18),

5µ Gµν = 5µRµν −
1

2
5µ (gµνR) = Rµν;

µ − 1

2
(gµνR;

µ) =
1

2
R;ν −

1

2
R;ν = 0, (F.1)

with Equation (E.14) and the metric condition 5µg
µν = 0 used.

For the second term (E.19),

5µH(1)
µν = 5µ

(
−R

2

2
gµν + 2RRµν + 2�Rgµν − 2R;µν

)
= (−5µ Rgµν)R+ 2(5µR)Rµν + 2R(5µRµν) + 25µ �Rgµν − 25µ R;µν

= −RR;ν + 2R;
µRµν +RR;ν + 2�R;

ν − 2R;µR
µ
ν − 2�R;

ν

= 0, (F.2)

where it is used Rab;a = 1
2R,b, the metricity condition and the following relation for the

commutators of the covariant derivative

5ν �R = 5ν 5µ (5µR) = 5µ 5ν 5µR+Rµλµν 5λ R = �R;ν −Rλν 5λ R. (F.3)

Finally, for the last term (E.20),

5µH(2)
µν = 5µ

(
−1

2
RλσR

λσgµν −R;µν + 2RλσRλνσµ +�Rµν +
1

2
�Rgµν

)
= −Rλσ;νR

λσ −�R;ν + 2Rλσ ;
µ
Rλνσµ + 2RλσRλνσµ;

µ +5µ 5σ 5σRµν

+
1

2
5ν 5σ 5σ R = Rλσ (Rλν;σ −Rλσ;ν +Rλνσµ;

µ) , (F.4)

where it is used

5µ 5σ 5σRµν = Rµλ;
σRν

λµ
σ +
�R;ν

2
+5σ

[
Rλ

σ
Rλν +Rν

λµσRµλ

]
(F.5)
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and Equation (F.3). Substituting Bianchi’s identity Rλνσµ = Rσλµν + Rλµσν in (F.4)
and observing that RλσRσλµν = 0 we get

5µH(2)
µν = Rλσ (Rλν;σ −Rλσ;ν +Rσνλν;

µ) = 0, (F.6)

where the Jacobi identity is used Rλνγµ;σ +Rλνµσ;γ +Rλνσγ;µ = 0.
Thus, it is shown the following covariant divergence

5µ Eµν = 0, (F.7)

for Eµν given by Equation (E.17).
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