
Universidade Federal do Esṕırito Santo
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Abstract

This work aims to test clustering dark energy with the cosmological skewness, the third
statistical moment of the matter density distribution. Usually, dark energy is treated
as a cosmological constant or a fluid with negative pressure that has the properties to
accelerate the cosmic background expansion. We start our analysis by explaining the
standard treatment about dark energy, then cosmological perturbations are introduced.
In general relativity it is not trivial to work with higher order perturbations so we
make a transition to the Neo Newtonian cosmology, using the fluid dynamics equations
that are equivalent to the general relativity ones to a good approximation. We then
studied the cosmological skewness in two approaches: the single-fluid and two-fluid
analysis. In the first approach, we model the universe as an effective single fluid where
the dark energy background contributions and perturbations are included via the
total equation of state parameter. This is indeed a very simplified attempt, but this
analysis was useful to provide preliminary hints about how dark energy affects the
skewness of matter distribution. We then apply a more general approach, modeling
the universe as two non-interacting components, pressureless matter and dark energy
which is a more realistic scenario. The single fluid analysis shows a great increase in
skewness when including the clustering dark energy terms. This can be explained by
including the terms directly in the matter equation, not just as an additional source for
the gravitational field. The two fluid model results show values around the standard
cosmological ones. Tests are performed to probe the skewness dependence with the
cosmological parameters. Until this work, only an expression for the skewness as a
function of the matter density parameter Ωm0 was available in the literature. We go
beyond introducing several fits for the cosmological skewness value as a function of
the dark energy equation of state wde and the dark energy speed of sound c2de. This
result has been presented in the literature for the first time. In order to check the
consistency of our results, we finish with an observational analysis using CFHTLS-Wide
data. Whereas the current available data is not enough to promote the skewness
to the status of a precise cosmological test, further analysis and observations are
indeed needed to make skewness a better tool to study dark energy models in the future.

Keywords: cosmology, dark energy, structure formation, cosmological perturbations,
clustering dark energy, skewness.



Resumo

Este trabalho tem como objetivo testar o aglomeramento da energia escura com o
skewness (assimetria) cosmológico, o terceiro momento estat́ıstico da distribuição da
densidade da matéria. Normalmente a energia escura é tratada como uma constante
cosmológica ou um fluido com pressão negativa que tem as propriedades de acelerar a
expansão do fundo cósmico. Começamos nossa análise explicando o tratamento padrão
sobre energia escura, então as perturbações cosmológicas são introduzidas. Na relativi-
dade geral não é trivial trabalhar com perturbações de ordem superior então fazemos
uma transição para a cosmologia Neo-Newtoniana, usando as equações da dinâmica dos
fluidos que são equivalentes às da relatividade geral por uma boa aproximação. Estu-
damos então o skewness cosmológico em duas abordagens: a análise de fluido único
e a análise de dois fluidos. Na primeira abordagem, modelamos o universo como um
fluido único efetivo, onde as contribuições e perturbações de fundo de energia escura
são inclúıdas através da equação total do parâmetro de estado. Esta é realmente uma
tentativa muito simplificada, mas esta análise foi útil para fornecer dicas preliminares
sobre como a energia escura afeta o skewness da distribuição da matéria. Em seguida,
aplicamos uma abordagem mais geral, modelando o universo em duas componentes que
não interagem, matéria sem pressão e energia escura, que é um cenário mais realista.
A análise de fluido único mostra um grande aumento na assimetria ao incluir os termos
de energia escura de aglomeração. Isso pode ser explicado incluindo os termos dire-
tamente na equação da matéria, não apenas como uma fonte adicional para o campo
gravitacional. Os resultados dos dois modelos de fluidos mostram valores em torno dos
cosmológicos padrão. Testes são realizados para sondar a dependência da assimetria
com os parâmetros cosmológicos. Até este trabalho apenas uma expressão para a as-
simetria em função do parâmetro de densidade de matéria Ωm0 estava dispońıvel na lit-
eratura. Vamos além introduzindo vários ajustes para o valor do skewness cosmológico
em função da equação da energia escura do estado wde e da velocidade da energia es-
cura do som c2de. Este resultado foi apresentado pela primeira vez na literatura. Para
verificar a consistência de nossos resultados finalizamos com uma análise observacional
usando dados do CFHTLS-Wide. Considerando que os dados atuais dispońıveis não
são suficientes para promover o skewness ao status de um teste cosmológico preciso,
análises e observações adicionais são realmente necessárias para tornar a assimetria
uma ferramenta melhor para estudar modelos de energia escura no futuro.
Palavras-chave: cosmologia, energia escura, formação de estruturas, perturbações
cosmológicas, aglomeração de energia escura, assimetria.
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CHAPTER 1

Introduction

1.1 Introduction

To fully describe our universe we firstly need a theory for gravitational interaction and our
standard choice is general relativity. We then describe the cosmic expansion with a homogeneous,
isotropic, and expanding metric, also called the FLRW (Friedmann-Lemâıtre-Robertson-Walker)
metric. The next step is to include the universe’s matter/energy components. Of course, it is
mandatory the inclusion of the standard particle model building blocks. But in cosmology, the
contribution of all known particles is summarized in terms of the baryonic matter and radiative
components (photons and neutrinos). Due to vast compelling observational evidence, we also need
to add a dark sector in the matter-energy content of the universe. The dark matter is fundamental
to explain astrophysical configurations like galactic rotation curves and galaxy cluster virial
dynamics. But, it is really important to assume its existence in order to correctly explain the
structure formation of the universe in a large scale. This component interacts with ordinary
matter only via gravitation and we would not be able to explain the observed large scale structure.
The picture described above became insufficient in the last couple of decades. The study of the

late time background expansion of the universe became mainly focused on the possible existence
of a new cosmic component, dark energy (DE), responsible for accelerating the current expansion
rate. Firstly comproved with supernova type Ia studies in the projects Supernova Cosmology
Project in 1997 by Perlmutter et al. [8] and High-Z Supernova Search Team [9] in 1998 by Riess
et al., the accelerated expansion is one of the key focus of modern cosmology. The cosmological
constant Λ became the main candidate to explain this accelerated expansion phase, but it is also
important to mention that a dynamical dark energy field remains a possibility as well as modified
gravity.
Among many observational projects/surveys designed and implemented in the last two decades,

one of the currently most important astronomical projects, the DES (Dark Energy Survey) [10],
published its first results at the beginning of the year of 2018, with its main focus on the cosmic
acceleration through observations of the structures in the universe, its geometry, and its expansion
rate. This is the era of precision in cosmology and with it, several cosmological models have
been put to the test. Although the standard cosmological model shows much success there are
some disagreements related to the dark sector, in particular the dark energy phenomena. For
example the cosmological constant problem [11] and the cosmic coincidence problem [12] still
bring discussion in the community. There are also measurements made by Planck [13] where
i.e. grosso modo less structures than the expected by the standard model have been reported.
This can also be related to the dark energy, since the accelerated expansion impact the structure
formation process in an opposite way compared to the gravitational clustering of matter.
If we want to go beyond the analysis of dark energy through the background, it is fundamental

1



Introduction Section 1.1

to extend our study and focus on the perturbative level and properly incorporate dark energy as
both a fluid with negative pressure and eventually also being able to cluster. But the latter does
not occur if dark energy happens in the form of a cosmological constant Λ. For this reason, in
this work, we also studied a dynamical dark energy component assuming an approach in which
it can agglomerate. This possible perturbation in the dark energy sector of course have not any
signatures at early times. By early times we mean the history of the universe as usual, where the
big bang was followed by inflation and as our universe gets colder it passed through radiation
domination. Later on, matter dominates and today the universe experiences a transition to an
accelerated phase where dark energy dominates with 70% of the current universe content. It is
in this latter moment that dark energy signatures can manifest. Then, this study will focus on
late time events where we can use large scale structures to see the influences of dark energy and
its perturbations. Then, our analysis focus on the use of skewness of the matter density cosmic
field. With this quantity, we can assess the asymmetry in the distribution (or departures from a
Gaussian distribution), usually used in statistics, also known as the third moment S3. Using the
skewness for the distribution of the density contrast of matter δm we can study the influence of
dark energy both via its background effects as well as by including its perturbations. The latter
contribution is parameterized by the dark energy speed of sound parameter.
We will employ in this thesis two different settings: an effective single fluid universe and a two

fluid universe. The single fluid analysis would bring the matter and dark energy together. This
has some consequences on the interpretation of how the skewness can be calculated. For the two
fluid analysis, the dark energy fluid is separated from the matter content and would have its own
perturbative equation.
Besides using skewness and evaluating some dark energy models, we also expand our analysis

by considering dark energy perturbations, where its content can be clustered. We compare cases
with and without this clustering dark energy contribution and also provide some interesting fits,
to connect the skewness with other cosmological parameters, not usually set in the literature.
This work will be organized as follows: Chapter 2 introduces some basics around the back-

ground cosmology of our universe and also introduces general relativity. Chapter 3 focuses on
the perturbative analysis, where we provide a detailed deviation of the Newtonian gauge and do
other perturbative analyses with the Einstein equations. We also justify the use of a Neo New-
tonian cosmology instead of the general relativity approach and finalize with some introduction
to clustering dark energy. Next in chapter 4, we show the analysis of the skewness generated by
a single fluid universe with effective negative pressure. Chapter 5 introduces the analysis of the
skewness in a two-fluid model. This is a more general method where we also provide new fits for
the skewness of matter distribution as a function of the cosmological parameters. And finally,
the conclusions are set in the next chapter. The results are based on the papers [4] and [5].

2



CHAPTER 2

The cosmic expansion and dark energy

In this chapter, it is introduced some fundamentals about cosmology towards the focus of my
work with dark energy, structure formation, and skewness of the matter density field.
From the basics of general relativity, we aim to show the entanglement between structure

formation and the universe’s accelerated expansion today. All of these tools will also contribute
to the fundamental cosmological perturbation theory that will be shown in more detail in a future
chapter.

2.1 General Relativity and the universe expansion

The astronomer Edwin P. Hubble (1929) [14], revealed through what became his diagram that
distant galaxies are getting further away from us with velocities that are proportional to their
distances:

v = H × d, (2.1)

where H as seen in the above expression is the local Hubble constant that is measured through
observational data and today its value is given around H0 ≈ 70kms−1Mpc−1.
The scalar expansion function defines how the scale factor varies with time:

H(t) =
da/dt

a
, (2.2)

where a(t) is the scale factor that was introduced in cosmology to parameterize the universe’s
expansion. This parameter helps us to work with distances that were smaller in the past and
are continuously increasing with time, i.e. the physical distance will be proportional to the scale
factor and we define its today’s value as a(ttoday) = 1.

Almost everything in the Universe appears to be moving away from us and the further away,
the more rapid the recession observed in the object. We can also measure this with the redshift.
The redshift is ”basically“ the Doppler effect applied to light waves. If a galaxy is moving away
from us, a movement caused by the universe’s expansion, its emitted wavelength gets extended,
so we observe a wavelength bigger than the emitted one having a lower frequency. This effect
is called cosmological redshift. Since for blue light we have a higher frequency, this means the
wavelength is more compressed. Then, if an object is moving toward us we observe a blueshift.
For example, M31 is blueshifted.
In cosmology, we associate this redshift with the scale factor in relation to the wavelength

emitted and observed. The redshift z is defined as:

1 + z ≡ λobs
λemit

= 1/a. (2.3)
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We use the scale factor and redshift as measurements of time since both are related to the
proper time t. From the definitions, the redshift for today assumes z0 = 0.

2.1.1 The Einstein Equation

In General Relativity, the metric is a function that defines the distance between two points in
space. i.e. with it, we can transform distances between coordinates into physical distances.
The metric that describes a homogeneous and isotropic universe in expansion is the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric:

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 , (2.4)

where µ and ν represent the 4 coordinates (1 of time and 3 of space). For only spatial coordinates,
we use the i, j, k indexes.
The line element with this metric in spherical coordinates is defined as:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2

)
, (2.5)

where we are using c = 1 for the speed of light in our calculations.
For the geometry of the universe we could consider hyperbolic k = −1, flat k = 0 or spherical

k = +1 cases. The flat universe follows the rules of Euclidean geometry and the idea that parallel
lines remain separated by the same distance. Strong observation evidences, such as the local-
ization of the first peak in the angular power spectrum of the Cosmic Microwave Background
(CMB) have indicated that a flat universe is preferred giving us a value for the curvature pa-
rameter very near zero [15], [13]. So in this work, we will consider a flat universe where k (the
curvature parameter) is zero.
The famous equation that relates the curvature of spacetime and the matter-energy distribution

in the universe is the Einstein equation:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.6)

where Gµν is the Einstein tensor (measures the “curvature of spacetime”) and Tµν is the energy-
momentum tensor (measures the “quantity and properties of matter” in the universe). By insert-
ing the FLRW metric into this equation one has a description of the dynamics of the universe.
The Einstein tensor is composed by the Ricci tensor Rµν and its scalar R, that by definition

depend on the metric and its derivatives:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα (2.7)

where Γα
µν are the Christoffel symbols defined as

Γµ
αβ =

gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]
. (2.8)
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For a universe in expansion, we can apply the FLRW metric and obtain the following values
for the Ricci tensors and its scalar

R00 =− 3
ä

a
,

R0i =0,

Rij = δij [2ȧ
2 + aä]

R = gµνRµν = 6

[
ä

a
−
(
ȧ

a

)2
]
. (2.9)

For the right hand side of Einstein’s equation, the energy-momentum tensor is defined through
the flux of energy density and momentum in spacetime. Treating the universe as a fluid with
energy density ρ and pressure p, the energy momentum tensor is described by the following
components

Tµν = (ρ+ p)uµuν + pgµν , (2.10)

where uµ is a 4-vector.
When solving Einstein’s equation for the time and space quantities, one can obtain the Fried-

mann’s equations

H2 =
8πGρ

3
, (2.11)

ä

a
= −4πG

3
(ρ+ 3p), (2.12)

where G = 6.6743 × 10−11m3kg−1s−2 is the gravitational constant. By conserving the energy-
momentum tensor Tµν

;µ = 0, a consequence of the Bianchi identities, we obtain the continuity
equation

ρ̇+ 3H(ρ+ p) = 0. (2.13)

The above set of equations describes the FLRW dynamics of a flat universe seen as composed
by a single perfect fluid. These are considered to be the background equations. It is worth noting
that one can expand the analysis of the cosmic dynamics to other levels such as the cosmological
perturbations that are introduced later in this thesis. Until this point, we also did not mention
how to implement the current accelerated expansion of the universe in the above equations. For
this, we need to add a cosmological constant known as Λ or consider the inclusion of a fluid with
negative pressure.

2.2 The Standard Model and Dark energy

Now that we have described the dynamics of the universe and using the tools of time and distances
described by the redshift (or scale factor), it is possible to understand the history/timeline/evolution
of the universe.
Before describing this timeline, we must define what our universe is made of. Let us consider

then radiation, baryonic matter, cold dark matter, and dark energy as our elements. These
include in general neutrinos, photons, protons, neutrons, electrons, and the dark sector. In the
dark sector, the dark matter is used to explain the amount of structures observed today and
can also be used to explain galaxy rotations and other astrophysical observations. Dark energy
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is used to explain the current accelerated expansion of the universe. This of course also affects
the current quantity of structures being formed since the accelerated expansion goes against the
expected clustering gravitational forces of the matter content of the universe.

Treating our universe as a fluid allows us to associate an equation of state parameter for each
component. This parameter is defined as follows

w =
p

ρ
. (2.14)

Effectively, for each component the following values are assumed: for matter (baryonic and
CDM) wm = 0, radiation wr = 1/3 and for standard dark energy (cosmological constant like
behavior) wde = −1 where a negative pressure brings the accelerated expansion. The latter
is the value used for dark energy in the standard model of cosmology ΛCDM. In the case of
Λ domination, its evolution behaves as a scenario with constant density. It is good to remind
that the cosmological constant contribution Λgµν can be added to the left hand side of the
Einstein’s equation if it is seen as a geometrical quantity. On the other hand, we can apply the
fluid conception and add it as a fluid component on the right hand side of Einstein’s equation
entering into the energy-momentum tensor components. This thesis will mainly work with the
fluid definition to study dark energy models in further chapters.
By solving the continuity equation Equation 2.13 for a non-interacting component with equa-

tion of state given by Equation 2.14 one finds

ρx = ρ0

(
a

a0

)−3(1+wx)

. (2.15)

Using the respective equation of state parameters for each case gives

ρm ∝ a−3

ρr ∝ a−4

ρde ∝ constant. (2.16)

These relations can be used to see how each component density scales (or remain constant)
with time.
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Figure 2.1: Evolution of each density over time. Starts with a radiation era, followed by the
equivalence time between matter and radiation, the matter era, and finally the accel-
erated expansion where dark energy dominates.

Source: https://sites.ualberta.ca/~pogosyan/teaching/ASTRO_122/lect30a/

lecture30a.html

We can observe in Figure 2.1 the relations found in Equation 2.16 with appropriate values for
their today’s densities adopted following the standard cosmology. Radiation dominates the early
universe but it scales faster with time. Next, it is followed by an equivalence era of radiation and
matter that happened around a zeq ∼ 3300. Then one arrives at the matter dominated era scaling
with ∼ a−3. This epoch is fundamental for structure formation. Recently, (around z ∼ 0.55) the
dark energy dominates the cosmic expansion and we observe the accelerated expansion of the
universe.
The background dynamics of the standard cosmological model can be represented by the

acronym ΛCDM . At late times it is effectively composed by the dark energy represented by
Λ, cold dark matter (CDM), and ordinary matter. But radiation contributes to early times. This
model is the most successful in explaining the history of our universe. Some of its fundamental
ideas are the cosmic inflation, the cosmological principle (hypothesis that the universe is isotropic
and homogeneous on large scales), and the inclusion of the dark sector.
Dominating around 70% of the total universe energy today, the idea of dark energy represents

one of the main research areas currently. Figure 2.2 shows the values of each component for
today. We can see that the current contribution of photons and neutrinos are negligible. The
first observational evidence for this accelerated expansion came from measurements of supernovae
type Ia [8], [9], showing that the universe was not expanding at a constant rate or decelerating.

7
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Since then more and more measurements such as Cosmic Microwave Background, gravitational
lensing, and late time large scale structure patterns corroborate to this model.

Figure 2.2: Current representation of the total energy of the universe. It is visible the domination
of the dark energy component, followed by dark matter and the atoms that are a
reference to elemental particles or as usually called baryonic matter.

Source: https://wmap.gsfc.nasa.gov/universe/uni_matter.html

Although very promising, the dark energy does not escape from problems in its theory. In the
cosmological constant problem [11], [16], the dynamical behavior of the vacuum energy theory in
quantum field theory gets in disagreement with Λ values obtained from cosmology. This difference
can be as large as 123 orders of magnitude.
The cosmic coincidence problem also is attributed to the dark energy [12], [17]. This problem

regards about the current equivalence, in orders of magnitude, of the dark energy and dark matter
densities. As mentioned before and looking into Figure 2.1, around z ∼ 0.55 the matter (dark
plus baryonic) and the dark energy densities were in a moment of equability. But why the dark
energy had started its domination and why just recently these effects of accelerated expansion
had begun is still a mystery.
With so many things yet to discover and wondering why we can not detect dark energy directly,

the dark energy became a very strong field of research. This has opened in the last couple of
decades many ways to investigate possible other models and also other modified gravity theories.
Relying on the GR description for the gravitation interaction, in this thesis we will focus on dark
energy models, testing different models with the help of higher order perturbation theory which
will be more detailed in the next chapter.
For now, let us go back to the background equations found with the Einstein equations. To

obtain the Friedmann equations for the ΛCDM model, one can describe the expansion rate of

8
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the universe as a function of its components

H2(a)

H2
0

=
Ωr0

a4
+

Ωb0

a3
+

Ωdm0

a3
+Ωde. (2.17)

The expression above uses the component’s dynamical behavior as described in Equation 2.16
and the density parameters Ω that are defined by the density of each component divided by
the today’s critical density of the universe ρcr(t0) ≈ 1.88h2 × 10−26kgm−3, giving us ρ/ρcr. This
parametrization allows us to have a total density of 1 when all the density parameters are summed
Ωr0 +Ωb0 +Ωdm0 +Ωde = 1.
Now that we have all this information about the components and how they evolve in time,

we can start to understand in more detail Figure 2.3, that represents a timeline of the universe.
According to the standard cosmological model, it starts with the Big Bang singularity where the
universe was in a state of high temperature being very compact and with high energy. It follows
the cosmic inflation where we have a rapid expansion. This increases extremely the scale factor
and allows for the universe to get colder faster. After exiting from inflation, the universe keeps
expanding and getting colder, but is still too hot to be observed, trapping the photons in this hot
dense chaos where they are strongly coupled to the electrons due to the Thompson scattering.
After the transition from the radiation domination era to the matter domination, the temperature
keep decaying with the cosmic expansion at a rate of T ∼ a−1 and then around 380.000 years
after the Big Bang, the photons are finally released as the first atoms were formed. These steps
are called decoupling and recombination, respectively. This happens around z = 1000, where
the Cosmic Microwave Background is released, traveling with almost no further interaction until
its observation today. Such observations provide us with important information, including, the
geometry of the universe, as discussed before, and also about its isotropic properties [15]. Even
dark energy properties can be studied via the Integrated Sachs-Wolf effect.

9
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Figure 2.3: Universe timeline showing each phase of the cosmic evolution, from Big Bang to
today. The estimated age of the universe is 13,8 billion years.

Source: https://www.nasa.gov/mission_pages/planck/multimedia

Inflation theory is necessary since it connects points that would be casually disconnected at
CMB epoch. Inflation also provides a satisfactory solution for other problems. See a review in
[18]. Inflation can also be connected to the CMB temperature fluctuation patterns. For structure
formation, inflation is seen as the source for the primordial seeds for the large scale structure.
Following the universe’s timeline, it is useful to see also in Figure 2.4 how perturbations have

evolved. This figure helps us to understand how the universe has started in a very homoge-
neous and isotropic shape that has evolved until the large scale structure observed today where
the structures are formed. One understands this picture using cosmological perturbation theory
where it is inserted a small perturbation around physical quantities like densities, velocities, and
potentials that are allowed to evolve over time. In this figure, radiation i.e., photons (gamma)
and relativistic neutrinos (ur) have an oscillatory and decaying behavior. Cold Dark matter
(cdm) starts to form its ”wells” of gravitational potentials well before the decoupling. Baryonic
matter (b) falls into the dark matter potential wells after decoupling from the radiation content.
With this theory, we can explain how the structures observed today are formed from a previous
homogeneous universe. Then, dark matter is a fundamental component to accelerated the clus-
tering of baryonic structure. In this picture dark energy plays no role at all. Dark energy usually
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is not treated as a component that could cluster. As a cosmological constant, it is inserted to
explain the accelerated expansion at late times. As the cosmological constant is not the final
answer for the dark energy phenomena, we will be interested in this thesis to treat dark energy
as a fluid that can be perturbed and clustered, using late time large scale structures to test such
approach.

Figure 2.4: Density contrast (δ = δρ/ρ)x conformal time. Each universe component is represented
being gamma the photons, ur relativistic neutrinos, b baryonic matter, and cdm cold
dark matter.

Source: CAMB code files [19].

Returning to Figure 2.3 we can finally understand what happens after CMB with help of
Figure 2.4. Small structures begin to form and evolve to the point that larger structures and
voids are formed. This process takes place continuously until more recent times when dark energy
dominates the background expansion going against these process. This can leave observational
imprints in the large scale structure. Next, we shall enter more deeply in the cosmological
perturbations even going to higher orders to show how this is going to be used to test dark
energy.
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CHAPTER 3

Cosmological perturbation theory

The goal of this chapter is to introduce some basics about cosmological perturbations that will
be needed in this thesis. We start by presenting the formulation for the scalar perturbations in
the general relativistic theory. However, since our final goal is to study higher order statistics of
the cosmic density field via the skewness moment we have to go beyond the first order terms in
perturbation theory. This is not so easy in the full relativistic theory. Therefore, we will introduce
the Neo Newtonian cosmology and its perturbations. The latter is a reasonable approximation
for the matter’s scalar perturbations and will be used further in this thesis. Indeed, in the next
chapters, we will calculate the skewness of the matter density field within a full non-relativistic
theory i.e., the Neo-Newtonian approach.

3.1 Basics on the relativistic cosmological perturbation theory

Cosmological perturbation theory in general relativity is used to help us to understand how the
universe evolved from a homogeneous and isotropic configuration until the point it has currently
with inhomogeneities such as the large scale structures observed today. The idea is that by
applying a small perturbation, let us say for example in the matter component, this allows to
break the full homogeneity where overdense regions start to self attract gravitationally. This
theory have extensive calculations, some will be provided here, but for a more deep insight is
suggested the following books and papers [20], [21], [22], [23], [24], [25], [26].
In the previous chapter, we saw how we described our spacetime through the FLRW metric.

The inhomogeneity in the distribution of matter in the relativistic fluid takes us to metric per-
turbations. Inserting these inhomogeneities is necessary to understand the structure formation
and evolution. So let us use general relativity to describe this approach.
Considering small perturbations δgµν in the FLRW metric

gµν → gµν + δgµν , (3.1)

and using conformal time dη = dt/a, the metric becomes

gµνdx
µdxν = a2(η)(−dη2 + δijdx

idxj). (3.2)

The metric perturbation can be characterized by three types: scalar, vector and tensor per-
turbations. In the δg00 the perturbation behaves like a scalar

δg00 = −2a2ψ. (3.3)

The components of the spacetime δg0i part can be decomposed as a sum of the gradient of a
scalar B and the vector Si with null divergence. This will be better explained further

δg0i = −a2(B,i+Si). (3.4)

12



Cosmological perturbation theory Section 3.1

Since δgij behaves like a tensor, we can decompose it with E as the scalar function, Fi a vector
of null divergence, and the three-dimensional tensor hij

δgij = a2(2ϕδij)− 2E,ij +Fi,j +Fj ,i+hij . (3.5)

The terms ψ and ϕ introduced correspond to scalar functions for the metric perturbations.
To explain this structure of the perturbations it is used a tool that decomposes these per-

turbations in scalar-vector-tensor parts is called the Helmholtz theorem. In the same way as a
three-dimensional vector can be decompose in a gradient of a scalar and a vector of null divergence

Bi = ∂iB︸︷︷︸
scalar

+ Si︸︷︷︸
vector

, (3.6)

with ∂iBi = 0.
Using the Helmholtz theorem for a symmetric tensor of rank-2, we can describe it as

Hij = 2ϕδij + 2E,ij︸ ︷︷ ︸
scalar

+2Fj ,i︸ ︷︷ ︸
vector

+ 2hij︸︷︷︸
tensor

, (3.7)

where

E,ij ≡
(
∂i∂j −

1

3
δij∇2

)
E,

Fj ,i≡
1

2
(Fj ,i+Fi,j ) . (3.8)

As previously described the vectors have null divergence ∂iFi = 0 and ∂iFij = 0.
We also assume that the tensor perturbation has a null trace and is symmetric hii = 0, hij,i = 0.

The decomposition of scalar-vector-tensor in the Einstein equations does not mix in linear order
and can be treated separately.
Considering only scalar perturbations, the scalar perturbed metric becomes:

ds2 = a2[−(1 + 2ψ)dη2 − 2B,i dx
idη + ((1 + 2ϕ)δij − 2E,ij )dx

idxj ]. (3.9)

The metric perturbations are not defined uniquely but depend on the choice of coordinates or
gauge choice. By choosing different gauges we can change the value of the perturbative variables.
To obtain gauge invariant variables, we start by considering a change of coordinates xµ → x̂µ,
gµν → ĝµν .

For this, we need to know how a four-vector transforms under coordinate changes

Âµ =
∂xµ

∂x̂ρ
Aρ,

Âµ =
∂xρ

∂x̂µ
Aρ, (3.10)

where the partial derivatives form the transformation of coordinates matrices (Jacobian matrices).
Notice thatˆis going to be used for the transformed term.
The change of coordinates for the metric will then be

ĝµν =
∂xρ

∂x̂µ
∂xσ

∂x̂ν
gρσ → ĝµν

∂x̂µ

∂xρ
∂xµ

∂x̂σ
= gρσ. (3.11)
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The change of coordinates given by x̂µ = xµ + ξµ(x) for the metric becomes

ĝµν(x+ ξ)∂ρ(x
µ + ξµ)∂σ(x

ν + ξν) = gρσ(x), (3.12)

as ĝ(x+ ξ) = ĝµν(x) + ξλ∂λgµν(x) and ξ
λ∂λgµν = δgµν . After some multiplication of terms and

canceling second order terms (since the perturbations are considered very small), the transformed
metric is given by

ĝρσ(x) = gρσ(x)− gρν∂ρξ
ν − gµσ∂ρξ

ν − ξλ∂λgρσ. (3.13)

For the ĝ00 term, we have under the transformation of coordinates

ψ̂ = ψ − ξ̇0 − ȧ

a
ξ0. (3.14)

In the same way for the other perturbative terms, we have for g0i → ĝ0i

ϕ→ ϕ̂ = ϕ+
ȧ

a
ξ0. (3.15)

Writing the space part of the infinitesimal vector ξρ ≡ (ξ0, ξi) as ξi = ξi⊥ + ζ ,i where ξi⊥ is a
three-dimensional vector of null divergence (ξi⊥,i ) = 0) and ζ is a scalar function.

It is obtained the same way as for ψ̂ and ϕ̂:

B →B̂ = B + ζ̇ − ξ0,

E →Ê = E + ζ. (3.16)

Since the terms ξ0 and ζ contribute only to the transformation of scalar perturbations, choosing
them properly we can set to zero two of the four functions ψ, ϕ, B, E. Manipulating the functions,
for example by assuming E ̸= 0 to eliminate Ê = 0, we must simply choose ζ = −E. Rewriting
in a simpler way, the combination of these functions in a gauge invariant form is the expression
known as Bardeen potentials [27]:

Ψ = ψ − 1

a

d

dη
[a(Ė +B)], Φ = −ϕ+

ȧ

a
(Ė +B). (3.17)

These equations can be used for the definition of different gauges, like the Newtonian gauge
where B=0 and E=0:

ds2 = a2[−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdx
idxj ], (3.18)

so that in this gauge Ψ = ψ and Φ = −ϕ, here Ψ and Φ correspond to the Newtonian potential
and Φ the perturbation to the spatial curvature, respectively.
Another famous gauge is the Synchronous gauge, making ψ = 0 and B = 0:

ds2 = a2[−dη2 + ((1 + 2Φ)δij − 2Eij)dx
idxj ] (3.19)

where Ψ = 1
a

d
dη [aĖ] and Φ = ϕ− aȧĖ.
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3.2 Perturbed Einstein Equation

For the following calculations, we are going to choose the Newtonian gauge. By the definition of
the Christoffel symbol in Equation 2.8, the zero-th order properties for the FLRW metric are:

Γ0
00 = 0,

Γ0
0i = Γ0

i0 = 0,

Γ0
ij = δijaȧ,

Γi
0j = Γi

j0 = δij
ȧ

a
. (3.20)

The perturbed Christoffel symbols are obtained by applying the perturbed metric Equation 3.18
resulting in

Γ0
00 =

1

a
Ψ̇,

Γ0
0i = ∂iΨ

Fourier−−−−−→ ikiΨ̃,

Γ0
ij = δija

2(H + 2H(Φ−Ψ) + Φ,0 ),

Γi
00 =

Ψ,i
a2

Fourier−−−−−→ ikiΨ

a2
,

Γi
j0 = Γi

0j =δij(H +Φ,0 ),

Γi
jk = 2δij∂kϕ+ 2δik∂jΦ− δjk∂iΦ

Fourier−−−−−→ iΦ[δijkk + δijkj − δikki]. (3.21)

In the results above, one must be careful since there are some approximations in the calcula-
tions, for example in terms like g00 = 1/g00 = − 1

1+2Ψ ∼ −1 + 2Ψ and also we applied Fourier
transformations.
The perturbed Ricci tensor and its scalar in similar calculations are:

R00 = −3
d2a

dt2
1

a
− k2

a
Ψ− 3Φ,00+3H(Ψ,0−2Φ,0 ),

Rij = δij

[(
2a2H2 + a

d2a

dt2

)
(1 + 2Φ− 2Ψ) + a2H(6Φ,0−Ψ,0 ) + a2Φ,00+k

2Φ

]
+ kikj(Φ + Ψ),

R = 6

(
H2 +

d2a

dt2
1

a

)
− 12Ψ

(
H2 +

d2a

dt2
1

a

)
+

2k2

a2
Ψ+ 6Φ,00−6H(Ψ,0−4Φ,0 ) +

4k2

a2
Φ.

(3.22)

Now we just need the perturbed energy-momentum tensor that is defined through the flux of
energy and density in spacetime. Assuming the universe as a single fluid with density ρ and
pressure p

T 0
0 = −(ρ+ δρ), T 0

α = (ρ+ p)v,α , T
α
β = (ρ+ δp)δαβ +Πα

β ,

where δρ, δp, v are perturbations in the density, pressure, and scalar potential associated with
the velocity respectively. The term Πα

β is the anisotropic contribution (from shear viscosity for
example) that we shall consider as zero.
Previously we saw the background solutions for the Einstein equations in the forms of Fried-

mann’s equation, and the conservation of the energy-momentum tensor with the continuity equa-
tion. For scalar perturbations in the first order, the Einstein equations (0− 0,0− i,i− j) results
are

− ∇2

a2
Φ+ 3H2Φ+ 3HΦ̇ = −4πGδρ, (3.23)
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HΦ+ Φ̇ = 4πa(ρ+ p)v, (3.24)

3Φ̈ + 9HΦ̇ + (6Ḣ + 6H2 +
∇2

a2
)Φ = 4πG(δρ+ 3δp) (3.25)

In the equations above it is considered the i− j traceless contribution, that lead us to Ψ = Φ
due to Πα

β = 0. The conservation of the energy momentum tensor with perturbations is given in
the form

δρ̇+ 3H(δρ+ δp) = (ρ+ p)

(
3Φ̇ +

∇2

a
v

)
(3.26)

and for the conservation of momentum

[a4(ρ+ p)v]·

a4(ρ+ p)
=

1

a

(
Ψ+

δp

ρ+ p

)
. (3.27)

The perturbative cosmological theory can evaluate the evolution of structure formation with the
definition of the density contrast δ = δρ/ρ. To reach its equation we need to make a combination
of equations Equation 3.23-3.26. This is done to find an equation where the density contrast
depends on the gravitational potential.
Transforming to Fourier space ∇2 → −k2 (where k is the wavenumber) and canceling second

order terms, results in the following set of equations:
-Beginning with the relation of the total density contrast with the potential Φ

δ = −
(

2k2

3a2H2

)
Φ− 2Φ− 2

Φ̇

H
. (3.28)

-Followed by the relation of the evolution of δ with the potential associated with the perturbed
velocity v

δ̇ = −3HΘ+ 3(1 + w)Φ̇− (1 + w)
k2

a
v, (3.29)

where we defined Θ = (c2 − w)δ.
We can also find another equation through the (i-j) component from the Einstein equations

Θ =
2

3H2
[Φ̈ +H(4 + 3w)Φ̇ + w

k2

a2
Φ]. (3.30)

And finally, the dynamics for the velocity term v is found through the Euler equation

v̇ = −vH(1− 3w)− ẇ

1 + w
v +

1

a

[
Φ+

w

1 + w
δ +

Θ

1 + w

]
. (3.31)

To obtain the equation for the total density contrast we can isolate v in Equation 3.28 and
replace it in Equation 3.31 and ignoring second order terms the complete equation is

δ̈ + δ̇(2− 3w)H +
k2

a2
wδ +

k2

a2
(1 + w)Φ = 3(1 + w)[Φ̈ + Φ̇(2− 3w)H] + 3ẇΦ̇− 3HΘ̇

+Θ

[
−k

2

a2
+

3H2

2
(1 + 9w)

]
. (3.32)
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For the density contrast of matter, we have that w = 0 since the matter has zero pressure.
Also taking the quasi-static limit, where the time derivatives of the potentials are neglected in
relation to the spacial ones (Φ̈ << ∇2Φ) we reach the final form

a2δ′′m +

(
aH ′

H
+ 3

)
aδ′m +

k2H2
0

a2H2(a)
Φ = 0, (3.33)

where ’ represents the derivative in the scale factor a.
This same equation with time derivatives can be written as:

δ̈m + 2Hδ̇m − 4πGρmδm = 0. (3.34)

Figure 3.1: Evolution of the matter density contrast (∆ = δm = δρm/ρm) × a (scale factor) for
Equation 3.33 adopting the ΛCDM background.

Source: produced by the author.

In Figure 3.1 we see that δm increases with time as structures are being formed, in the end,
this growth is reduced due to the dark energy dominance at late times. If the quantity for dark
energy is increased, the last term in the Equation 3.34 is smaller since this affects the matter
density. This results in less matter to cluster into structures. From Equation 2.17 we see that to
keep the density parameter balance, this decreases, even more, the evolution of δm. This can be
seen in the example of Figure 3.2.
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Figure 3.2: Example of the density contrast evolution in case of increase or decrease of the last
term that contains the density of matter.

Source: produced by the author.

The distribution of matter is predominant during the late times. We can relate its potential
to the primordial inflationary potential Φp by relating [20]

Φ(k⃗, a) = Φp(k⃗)× {Transfer Function(k)} × {Growth Function(a)}, (3.35)

where the scale dependent transfer function is defined as

T (k) ≡ Φ(k, alate)

ΦLarge−Scale(k, alate)
. (3.36)

As its name suggests, this function corresponds to the evolution of perturbations in the epoch of
the horizon crossing and radiation/matter transition, so we need its dependence on scale k. For
large scales, the transfer function is equal to 1 since the growth factor will describe the late time
growth independent of the wavelength k. So alate corresponds to this late time epoch after the
transfer function operation regime. A well-known transfer function is the Bardeen, Bond, Kaiser,
and Szalay [28]

T (x ≡ k/keq) =
ln[1 + 0.171x]

0.171x

[
1 + 0.284x+ (1.18x)2 + (0.399x)3 + (0.490x)4

]−0.25
. (3.37)

The growth function is evaluated right after the transfer function regime, where the ratio of
the potential can be described as

Φ(a)

Φ(alate)
≡ D1(a)

a
(3.38)

for a > alate and D1 is called the growth function. We can observe that for a matter dominated
universe where the potential is constant D1(a) = a. Solving for large scales and neglecting
anisotropic stress we can obtain that the relation with the primordial potential is given by a
factor of (9/10). The potential for late times (a > alate) can be described as

Φ(k⃗, a) =
9

10
Φp(k⃗)T (k)

D1

a
. (3.39)
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Assuming a > alate and using the Poisson equation we can relate the matter distribution to
this potential (neglecting radiation for these late times)

Φ =
4πGρma

2δ

k2
. (3.40)

It is possible to isolate the density contrast by using the definitions of the density parameter
and the Hubble expansion rate

δ(k⃗, a) =
k2Φ(k⃗, a)a

(3/2)ΩmH2
0

, (3.41)

replacing the potential for late times

δ(k⃗, a) =
3

5

k2

ΩmH2
0

Φp(k⃗)T (k)D1(a). (3.42)

As previously stated, by observing the temperature distribution of the CMB we need to connect
how the scales uncorrelated today had such identical temperatures. The theory of inflation
predicts that at a very early universe when relevant scales are causally connected, quantum-
mechanical perturbations are produced, then these scales are transferred rapidly to outside the
horizon by the inflationary mechanism. These scales enter the horizon much later linking the
initial conditions for anisotropy with structure growth. By describing these perturbations in
Fourier modes, the mean of a given Fourier mode for the gravitational potential is zero < Φ(k⃗) >=
0, being then all modes uncorrelated. But we have a nonzero variance

< Φ(k⃗)Φ∗(k⃗′) >= (2π)3PΦ(k)δD(k⃗ − k⃗′), (3.43)

the δD is the Dirac delta function since, for the same wavelengths the equation above is zero, this
forces the independence of different modes.
In this work we do not focus on inflation theory, more details can be seen in [29], [20], [24].

We just need to know that using the primordial power spectra

PΦ(k) =
50π2

9k3

(
k

H0

)n−1

δ2H

(
Ωm

D1(a = 1)

)2

, (3.44)

where δH corresponds to the horizon-sized scale (k = H0 in c = 1 units), the power spectrum of
matter at late times is

P (k, a) = 2π2δ2H
kn

Hn+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)2

. (3.45)
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Figure 3.3: Matter power spectrum depending of the scale for different redshifts (red z = 0 and
green z = 2). The solid curve is the theory and the traced line represents simulations
for the nonlinear regime.

Source: CAMB code files [19].

In Figure 3.3 it is possible to observe how the power spectrum depends on scale and time.
The nonlinear effects on large scales needed to be simulated as it is needed a nonlinear study
of perturbations for this scale. For large scales, the transfer function is unity, P ∝ k. As for
the small scales, the power spectrum turns over since such modes enter the horizon before the
radiation/matter equality epoch.
But perturbations in general relativity can have peculiar details. With a change of coordinates,

one may give origin to terms not related to the perturbation of the energy content in the Einstein
equation (only related to the curvature of spacetime). We can simplify and use Newtonian
equations for the calculations, while also being free to change coordinates, without having to worry
about transformation terms being introduced. This is valid when the length of the perturbation
wave is smaller than the Hubble radius, avoiding relativistic effects in the spacetime curvature
[30], [24].

3.3 The Neo Newtonian cosmology

Throughout the history of cosmology, Newtonian equations were studied to see the limits that
would still be applied when compared to the equations of the dynamics of our universe in general
relativity. In 1934 Milne [31] and McCrea [32] have shown that relativistic equations could be
obtained using Newtonian equations for the case of zero pressure. Some years later in 1951 [33],
there was an application with a nonzero pressure. This was the start of Neo Newtonian cosmology
[34]. Together with the results also of Harrison (1965) [35] that also coincide with the results
of McCrea, would be created the hydrodynamical equations for Neo Newtonian cosmology. This
approach is based on three main equations:
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The continuity equation, representing the conservation of energy, where the term p∇⃗r · u⃗ is
inserted as a way to be equivalent to the general relativity predictions for scalar matter pertur-
bations [34] (

∂ρ

∂t

)
r

+ ∇⃗r · (ρu⃗) + p∇⃗r · u⃗ = 0, (3.46)

the Euler equation, providing the momentum conservation for a fluid with a source given by
the gravitational potential ϕ(

∂u⃗

∂t

)
r

+ (u⃗ · ∇⃗r)u⃗ = −∇⃗rϕ− (ρ+ p)−1∇⃗rp, (3.47)

and finally, the Poisson equation, that relates the gravitational potential with the mass density
content

∇2
rϕ = 4πG(ρ+ 3p). (3.48)

These equations describe a fluid with density ρ, pressure p, moving with velocity u⃗ affected by
the Newtonian gravitational potential ϕ.
If one replaces ρ by ρ + p in the usual continuity and Euler equations and ρ by ρ + 3p in the

Poisson equation one finds(
∂ρ

∂t

)
r

+ ∇⃗r · (ρ+ p)u⃗ = 0, (3.49)(
∂u⃗

∂t

)
r

+ (u⃗ · ∇⃗r)u⃗ = −∇⃗rϕ− (ρ+ p)−1∇⃗rp, (3.50)

∇2
rϕ = 4πG(ρ+ 3p). (3.51)

By comparison, the correction appears in the pressure term of the continuity equation (that
also carries a velocity of light c−2 term) with the objective to coincide with general relativity
results, more details in [35].
The continuity equation Equation 3.49 assuming the fluid velocity u⃗ = ȧ

a r⃗ is the same obtained
from the Einstein equations as shown in the previous chapter Equation 2.13 assuming a perfect
fluid in a homogeneous and isotropic spacetime. This equation in perturbation theory does agree
with the general relativity results and this is mainly because of the pressure term in the continuity
equation that generates an extra term.
The next chapter will introduce the perturbative equations for the Neo Newtonian cosmology

keeping even second order terms. To avoid repetitions let us compare for now the first order
perturbed continuity equations, starting by perturbing the standard one Equation 2.13

δ̈ + 2
ȧ

a
δ̇ − 4πG(1 + w)(1 + 3w)δ +

ȧ

a
wv⃗ · ∇⃗δ̇ + ä

a
wv⃗ · ∇⃗δ = c2s

a2
∇2δ, (3.52)

followed by the perturbed Neo Newtonian Equation 3.46

δ̈ + 2
ȧ

a
δ̇ − 4πG(1 + w)(1 + 3w)δ =

c2s
a2

∇2δ, (3.53)

it is visible the two extra terms on the left side of the equation of Equation 3.52 that disagrees
with the relativistic theory of cosmological perturbations. The equations above are in comoving
coordinates and this transformation will also be shown in the next chapter. This does not mean
that the standard continuity equation is not valid in the homogeneous case, it is only not valid
when small perturbations are inserted.
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The correction can be explained by doing a conservation of energy dE+PdV = 0, in a volume
V of radius r ∼ a(t) the energy contained is E ∼ ρa3, for a volume changing system

dρ

dt
+ (ρ+ p)

1

a3
d

dt
a3 = 0, (3.54)

that using the definition of u⃗ gives

dρ

dt
+ (ρ+ p)∇⃗r · u⃗ = 0. (3.55)

Expanding the total derivative d/dt = ∂/∂t + u⃗ · ∇⃗r, its obtained the correct Newtonian
approach including pressure effects Equation 3.46. The last term in Equation 3.46 can be related
to the work needed to expand the fluid in its volume V + dV

1

V

dW

dt
= p

4πa2da
4
3πa

3
= 3

ȧ

a
p = p∇⃗r · u⃗, (3.56)

where this term added accounts for the work related to the local fluid expansion.
Now with a valid Newtonian cosmology that works with a nonzero pressure term even at the

perturbative level, it is possible to expand our study using these equations. This will also be
used for a dark energy fluid that when perturbed is treated as a clustering dark energy.

3.4 Clustering Dark Energy

The clustering of the matter content has been observed in may surveys, and it represents an
important tool for the study of the late time universe. This tool is also used to study cosmic
expansion, as dark energy accelerates the universe expansion and impacts structure formations
going against such matter clustering. Previously in section 2.2 was explained some problems in
the dark energy theory, such as the cosmological constant [11] and cosmic coincidence problems
[12], there is also the Planck satellite that detected via the Sunyaev-Zel’dovich effect [36] fewer
clusters than the predicted in the standard model ΛCDM by CMB anisotropies [13]. Clustering
dark energy could bring possible effects to explain such tensions. The next two chapters will
show two different ways to study clustering dark energy, both using Neo Newtonian cosmology
at the perturbative level.
Using our perturbed metric in the Newtonian gauge Equation 3.18 and assuming a universe

composed of matter and dark energy contents, we can analyze how dark energy perturbations
behave. Discarding radiation effects since we are interested in the effects of dark energy that
has a dominated era at late times, considering no anisotropic stress and solving for the Einstein
equation at the (0-0) its obtained Equation 3.23 in Fourier space and conformal time as

k2Φ+ 3H(Φ′ +HΦ) = 4πGa2(ρmδm + ρdeδde). (3.57)

For each fluid (matter and dark energy) the conservation equation of the energy-momentum
tensor ∇νδTµ

ν = 0 is written as

δ′ + 3H(c2s − w)δ + (1 + w)(θ − 3Φ′) = 0 (3.58)

θ′ +H(1− 3c2s)θ = k2Φ+
c2sk

2δ

1 + w
(3.59)
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where θ = ikjvj is the divergence for the fluid peculiar velocity and c2s the sound speed of the
fluid, define as:

c2s =
δP

δρ
. (3.60)

In general, if the fluid pressure can depend on entropy (dissipative effects, like heat exchange)
and the total c2s has an adiabatic and non-adiabatic part

c2s =
δP (ρ, s)

δρ
=
∂P

∂ρ
+
∂P

∂s

∂s

∂ρ
= c2ad + c2nad, (3.61)

these non-adiabatic effects where studied in perturbative levels for dark energy in previous work
by the author [2], [3]. In this work, we are considering only an adiabatic fluid so c2s = c2ad in our
case.
Using Equation 3.58 and Equation 3.59, for an adiabatic dark energy fluid, its density contrast

equation is

δ′′de +H(1− 3w)δ′de+ = [3H′(c2s − w) + 3H2(c2s − w)(1− 3c2s) + c2sk
2]δde

=− (1 + w)
[
k2Φ− 3H(1− c2s)Φ

′ − 3Φ′′] (3.62)

Now it is possible to analyze the magnitude of this dark energy perturbation [37]. On small
scales k2 >> H2,H′ and k2Φ >> HΦ′,Φ′′, during the matter dominated era δm ∝ a and
Φ = constant, its evolution is

δ′′de +H(1− 3w)δ′de + c2sk
2δde = (1 + w)k2Φ. (3.63)

This makes it easier to visualize that Equation 3.62 has the constant solution

δde = −(1 + w)

c2s
Φ. (3.64)

But for c2s = 0 the solution becomes [37],[38], [39], [40]

δde = − (1 + w)

(1− 3w)
δm. (3.65)

Going back to Equation 3.57, we can see that δm ∼ k2Φ, so on small scales dark energy
perturbations are negligible compared to the matter one.
These results show us the dependence of the dark energy perturbations on its equation of state

parameter and the fluid sound velocity. Then if w ̸= −1 its perturbation can have a magnitude
comparable to the matter perturbations. But if its EoS parameter is close to the standard value
w ≃ −1 its influence is suppressed.

In the next chapters, there will be tests around these values of w and c2s for clustering dark en-
ergy. This study will use Neo Newtonian equations, but there several other approaches and models
for dark energy perturbations [41], [24], [42], [43], [44], some of these models are: quintessence
and k-essence [45], [46], tachyon field [47], [48], [49], [50] and spherical collapse [51], [52], [53].
For more about clustering dark energy we recommend the following reading [54], [37], [55].
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3.5 Skewness in cosmology

The studies of cosmological perturbations can have different layers. We can have linear and
nonlinear perturbations and also first to higher orders. For this study, we are going to use linear
perturbations but we need higher orders for the calculation of skewness.

3.5.1 Statistical introduction

The word skewness is known in statistics to represent the third statistical moment. Moments
can provide us with characteristics of the shape of a function if the function is a probability
distribution. The moments are named as

• The first moment: Mean;

• Second moment: Variance;

• Third moment: Skewness;

• Fourth moment: Kurtosis.

There are higher moments, but to understand our objective there is no need to go further.
Skewness describes how the format of the function is according to its asymmetry. Kurtosis can
be associated with the tail of the function, or its peak. Both are equivalent because a longer tail
would mean a lower peak, and a higher peak for example would mean a shorter tail in a PDF
[56].
In Figure 3.4 we provide a better way to visualize this asymmetry associated with skewness.

Figure 3.4: Example of the asymmetry measured by the skewness.

Source: https://www.freecodecamp.org/news/skewness-and-kurtosis-in-statistics-explained/

To understand how skewness can be seen in cosmology, let us start assuming a density distri-
bution function f(δ) defined by

f(δ) ≡ ∆N

N∆δ
(3.66)

representing the normalized number of elements (N is the number of independent elements, let
us suppose they are matter elements since we are associating with the density contrast) within
the range of the density contrast δ, δ + dδ. This quantity can represent the first moment, as it
makes a mean of the number of elements with respect to the total range of the density contrast.
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The second moment is the variance

σ2 =
1

N

N∑
j=1

δ2j = ⟨δ2⟩ (3.67)

providing the dispersion of this density field.
And finally, for the skewness of this PDF, the third moment is

S =
1

N

N∑
j=1

(
δj
σ

)3

=

〈
δ3
〉

σ3
. (3.68)

Comparing to the cosmological moments seen in the literature [56], [57], [58]

Sp = ⟨δp⟩/σ2(p−1), (3.69)

where

⟨δp⟩ =
∫ ∞

0
dδf(δ)δp. (3.70)

For skewness p = 3, as being the third moment this results in

S3 =
⟨δ3⟩
⟨δ2⟩2

. (3.71)

that when compared to Equation 3.68, S = S3 × σ, showing that the cosmological skewness S3
is an amplitude parameters of the mathematical S, as the mathematical one can be viewed as a
power-law function of σ [59]. This analogy helps us see and differentiate a normal PDF skewness
from a cosmological one.
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CHAPTER 4

Skewness in clustering dark energy cosmology:
preliminary approach

Since the computation of the skewness demands access to higher perturbative orders, it is more
convenient to work with the Neo Newtonian cosmology. We are going to use the Neo Newtonian
fluid dynamical approach for cosmology to evaluate models with dark energy perturbations. We
will be looking for the matter density contrast up to second order as a tool for these tests. This
chapter begins with looking into the universe being composed of a single fluid which is an effective
description for a mixture of matter and dark energy content.

4.1 Evolution of perturbations in the Neo Newtonian cosmology

Returning to the definition of Einstein’s equation Equation 2.6. Assuming a universe composed
of two fluids, one being the matter content including baryonic matter and cold dark matter, and
the other fluid for dark energy. Einstein’s equation can be rewritten as:

Rµν −
1

2
gµνR = 8πGTm

µν + 8πGT de
µν , (4.1)

where the first term on the right hand side contains the energy momentum tensor of the total
matter fluid and the second for the dark energy fluid.
The expansion rate can also be rewritten and becomes

H2(a)

H2
0

=
Ωm0

a3
+Ωde(a), (4.2)

here we are neglecting radiation effects since our interest is on how structure formation is affected
by late time effects. The sum of the density parameters then must be Ωm0 +Ωde0 = 1.
Using Equation 2.14 for a dark energy fluid with pressure pde and density ρde, its equation

of state parameter can be written as wde = pde/ρde. The relation of dark energy with the scale
factor can be written in the following function

H2(a)

H2
0

=
Ωm0

a3
+ (1− Ωm0)e

−3
∫
da

1+wde
a . (4.3)

The dynamics of this system can also be described as shown in the Neo Newtonian set of
equations given by the continuity Equation 3.46, Euler Equation 3.47 and Poisson Equation 3.48.
The following calculations are demonstrated for a single fluid, but it is valid for both fluids if

they are non-interacting and connected by the Poisson equation since it contains the total mass
density of the two fluids (more details in the next chapter).
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Assuming the small perturbations on the density δρ, pressure δp, potential φ and velocity field
v⃗:

ρ = ρ0 + δρ, (4.4)

p = p0 + δp, (4.5)

u⃗ = u⃗0 + v⃗. (4.6)

Applying perturbations in the fluid equations Equation 3.46 and Equation 3.47 we will find
the following set of equations(

∂ρ0
∂t

)
r

+

(
∂δρ

∂t

)
r

+ ∇⃗r[(ρ0 + δρ)(u⃗0 + v⃗)] + (p0 + δp)∇⃗r · (u⃗0 + v⃗) = 0, (4.7)

(
∂v⃗

∂t

)
r

+ [(u⃗0 + v⃗) · ∇⃗r](u⃗0 + v⃗) = −∇⃗r(ϕN )− (ρ0 + δρ+ p0 + δp)−1∇⃗r(p0 + δp), (4.8)

where ϕN is the gravitational potential in the Neo Newtonian gravity that satisfies the Poisson
equation

∇⃗rϕN = 4πG(ρ+ 3p). (4.9)

It is important to notice that the Newtonian potential would not have the pressure term.
To simplify the calculations, we are going to change to comoving coordinates x⃗. We apply the

following transformations

r⃗ = ax⃗, ∇⃗x = a∇⃗r,(
∂f(x⃗, t)

∂t

)
r

=

(
∂f

∂t

)
x

− ȧ

a
(x⃗ · ∇⃗x)f, (4.10)

u⃗ = ȧx⃗+ v⃗(x⃗, t),

and we are also going to use the definitions for the equation of state parameter Equation 2.14
and the sound velocity Equation 3.60.

4.1.1 The continuity equation

Let us focus now on the perturbed continuity equation. With these definitions, changing the
coordinates and perturbations, the continuity equation becomes(

∂δρ

∂t

)
x

− ȧ

a
(x⃗ · ∇⃗x)δρ+

∇⃗x

a
[ρ0u⃗0 + ρ0v⃗ + δρu⃗0 + δρv⃗] + (p0 + δp)

∇⃗x

a
· (u⃗0 + v⃗) = 0. (4.11)

We are interested in leaving only first and second order terms for the calculation of the skewness
of the matter density. The way that these terms are going to be useful will be shown further.
We then get the following equation(

∂δρ

∂t

)
x

+ (ρ0 + p0)
∇⃗x

a
v⃗ + (δρ+ δp)

∇⃗x

a
v⃗ + v⃗

∇⃗x

a
(ρ0 + δρ) + (δρ+ δp)

∇⃗x

a
u⃗0 = 0. (4.12)

Dividing by ρ0, adopting δρ = c2sδp and using the background continuity equation

ρ̇0 + 3H(ρ0 + p0) = 0, (4.13)
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to replace some terms such that

δρ̇

ρ
= δ̇ − ρ̇

ρ
δ = δ̇ − 3H(ρ0 + p0)

δ

ρ0
, (4.14)

this results in

δ̇ − 3H(ρ0 + p0)
δ

ρ0
+ (1 +

p0
ρ0

)
∇⃗x

a
v⃗ + (δ + c2sδ)

∇⃗x

a
v⃗ + v⃗

∇⃗x

a
(1 + δ) + (δ + c2sδ)

∇⃗x

a
u⃗0 = 0. (4.15)

The equation of state parameter can finally be introduced using its definition Equation 2.14.
Then,

δ̇ − 3H(1 + w)δ + (1 + w)
∇⃗x

a
v⃗ + (δ + c2sδ)

∇⃗x

a
v⃗ + v⃗

∇⃗x

a
δ + 3H(1 + c2s)δ = 0. (4.16)

Some terms can be canceled and reorganized to result

δ̇ + 3H(c2s − w)δ + (1 + w)
∇⃗x

a
v⃗ + (δ + c2sδ)

∇⃗x

a
v⃗ + v⃗

∇⃗x

a
δ = 0. (4.17)

We perform a transformation of the time derivative with ∂/∂t→ ∂/∂lna, leading to

H
a
δ′ +

3H
a

(c2s − w)
∇x

a
v⃗ + (1 + w)δ

∇⃗x

a
v⃗ + v⃗

∇⃗x

a
δ = 0. (4.18)

With this time transformation, we can use two terms from the equation above to write the
total derivative of δ with respect to N = ln(a) as

dδ(x⃗, t)

dN
= δ′ +

v⃗

H
∇⃗δ. (4.19)

Multiplying the previous equation by a
H :

dδ

dN
+ 3(c2s − w)δ + (1 + w)

∇v⃗
H

+ (1 + c2s)δ
∇v⃗
H

= 0 (4.20)

Since we are looking for the evolution of the density contrast, the term ∇v⃗
H is isolated, resulting

in:
∇v⃗
H

=
−dδ/dN − 3(c2s − w)δ

1 + w + (1 + c2s)δ
, (4.21)

this is done since this velocity derivative will be replaced in the Euler equation after.

4.1.2 The Euler equation

Starting by changing to comoving coordinates the perturbed Euler equation writes(
∂v⃗

∂t

)
x

− äx⃗−Hȧx⃗−H(x⃗ · ∇⃗x)v⃗ +Hȧx⃗+Hv⃗ +H(x⃗ · ∇⃗x)v⃗ +
1

a
(v⃗ · ∇x)v⃗ =

−∇⃗x

a
ϕN − ∇⃗x(p0 + δp)

a(ρ0 + δρ+ p0 + δp)
. (4.22)
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Using the second term äx⃗ and replacing with ä∇⃗x⃗2/2 we can use it to define the effective
gravitational potential

Φ ≡ −
(
ϕN +

1

2
aäx⃗2

)
. (4.23)

Leaving again only first and second order terms it results in

∂v⃗

∂t
+Hv⃗ + (v⃗ · ∇⃗x

a
)v⃗ =

∇⃗x

a
Φ− ∇⃗xδp

a(ρ0 + p0)
. (4.24)

Doing the time derivative transformation ∂/∂t→ ∂/∂lna

∂v⃗

∂lna

H
a

+
H
a
v⃗ +

(v⃗ · ∇⃗x)v⃗

a
=

∇⃗x

a
Φ− ∇⃗xδp

a(ρ0 + p0)
. (4.25)

Since we isolated the divergence of v⃗ before, it is also interesting to do the divergence of the
Euler equation, this way we can obtain by future substitution an equation of evolution for the
density contrast

Hv′i +Hvi + vj∇jvi = ∇iΦ− ∇iδp

(ρ0 + p0)
, (4.26)

reorganizing and using the definition of the EoS parameter and sound velocity leads to

H∇iv′i +H∇ivi +∇i(vj∇jvi) = ∇2Φ−∇i

[
∇jc

2
sδ

1 + w + (1 + c2)δ

]
. (4.27)

The following velocity term can be separated in

∇i(vj∇jvi) = (∇ivj)(∇jvi) + vj∇j∇ivi, (4.28)

on the right side, the last term can be used to make a total derivative and the first term can be
simplified by neglecting shear and vorticity.
Assuming that the velocity field remains purely radial we can write:

v⃗ =
v√
3
{1, 1, 1}, (4.29)

so that

(∇ivj)(∇jvi) =
1

3
H2

(
∇ivi
H

)2

. (4.30)

Dividing 4.27 by H2 and making the product derivative to replace the first term on 4.27:(
∇ivi
H

)′
+

(
1 +

H′

H

)
∇ivi
H

+
1

H2
∇i(vj∇jvi) =

1

H2
∇2Φ− 1

H
∇i

[
∇jc

2
sδ

1 + w + (1 + c2s)δ

]
, (4.31)

reorganizing doing the total derivative with we get finally to

d(∇ivi/H)

dN
+

(
1 +

H′

H

)
∇ivi
H

+
1

3

(
∇ivi
H

)2

=
1

H2
∇2Φ− 1

H
∇i

[
∇jc

2
sδ

1 + w + (1 + c2s)δ

]
. (4.32)

Using 4.21 and defining A = 1 + w + (1 + c2s)δ to simplify, its possible to replace the velocity
divergence parts in terms of the density contrast (here ′ is total derivative d/dN):
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(
∇ivi
H

)′
=

−δ′′ − 3δ′(c2s − w)− 3δ(c′2s − w′)

A
+
w′δ′ + 3w′(c2s − w)δ + δ′2 + 3(c2s − w)δδ′

A2

+
c′2s δδ

′ + 3(c2s − w)c′2δ2 + c2sδ
′2 + 3(c2s − w)c2sδ

′δ

A2
, (4.33)

(
∇ivi
H

)2

=
δ′2 + 3(c2s − w)δδ′ + 9(c2s − w)2δ2

A2
. (4.34)

Replacing the last two equations in 4.32 and also multiplying by A. The evolution of the density
contrast can finally be obtained in the form of

δ′′ + δ′
[
3(c2s − w) +

(
1 +

H′

H

)
− w′

A

]
− δ′2

[
4/3 + c2s

A

]
+ δδ′

[
(w − c2s)(5 + 3c2s)− c′2s

A

]
+ δ2

[
3(w − c2s)c

′2 + 3(w − c2s)
2

A

]
+ 3δ

[
(c′2s − w′) +

(
1 +

H′

H

)
(c2s − w) +

w′(w − c2s)

A

]
+

A

H2
∇2Φ =

A

H2
∇
[
∇(c2sδ)

A

]
. (4.35)

In these calculations we do not specify any fluid (matter or dark energy for our study), this is
a equation of the evolution of the density contrast that can be used for any fluid provided that
the due properties are taken into account. This equation also contains second order terms, if one
needs only a first order equation, the second order terms just need to be canceled.

4.1.3 The Poisson equation

For the Poisson equation, using the effective potential defined in Equation 4.23 we can replace
the second Friedmann equation

ä

a
= −

(
4πG

3
(ρ0T + 3p0T )

)
, (4.36)

to write

∇2

(
ϕN − 2

3
πGa2(ρ0T + 3p0T )x⃗

2

)
= 4πGa2δ(ρT + 3δpT ). (4.37)

And using the definition of the Newtonian potential Equation 4.9, the Poisson equation in
terms of the effective gravitational potential is

∇2

a2
Φ = −4πG(δρT + 3δpT ). (4.38)

In the next chapter, this expression will be worked further for a two separated fluid scenario,
for the analysis in this chapter we only need to treat the single fluid universe.

4.2 The Universe as one Fluid

In a previous work [4], Equation 4.35 was modified to be in terms of the total equation of state
parameter and in its effective speed of sound c2eff = δp/δρ to treat a single fluid universe.
It is possible to rewrite the Poisson equation and the expansion rate in terms of these parameters
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∇2Φ = 4πGa2ρ0(1 + c2eff ),

H2 =
8πG

3
a2ρ,

H′ = −H2

2
(1 + 3w). (4.39)

This method was inspired by the paper [60].
For the sake of the results, since they were obtained using the equation in terms of the scale

factor, the derivatives d/da in this section are indicated by ′. The density contrast equation for
a single fluid universe in terms of w and c2eff is then

a2δ′′+aδ′

[
aH ′

H
+ 3− 3w + 3c2eff − w′a

1 + w + δ
(
1 + c2eff

)]

− δ′2a2

[
4/3 + c2eff

1 + w + δ
(
1 + c2eff

)]+ δδ′a

[(
w − c2eff

) (
5 + 3c2eff

)
− c2′effa

1 + w + δ
(
1 + c2eff

) ]

+ δ2

[
3
(
w − c2eff

)
c2′effa− 3

(
w − c2eff

)2
1 + w + δ(1 + c2eff)

− 3

2

(
1 + 3c2eff

) (
1 + c2eff

)]

+
3

2
δ

[(
3w2 − 2w − 1

)
− 2c2eff(1 + 3w)− 2

(
w′a− c2′effa

)
+

2
(
w − c2eff

)
w′a

1 + w + δ
(
1 + c2eff

)]

=
1 + w + δ

(
1 + c2eff

)
a2H2

∇x

(
∇x

(
c2effδ

)
1 + w + δ

(
1 + c2eff

)) . (4.40)

The one term H′/H, was left so we could insert the background values to solve this system
(H0,Ωm0,Ωde). In the further sections, it is shown how these density contrast equations are going
to be calculated and it is going to be understood why was needed to keep second order terms in
the perturbed calculations.

4.3 The cosmological skewness for the matter density

There are several forms to calculate skewness related to the density contrast [56], [57], [24], [59].
From [56] and [24] we can start to define the cosmological skewness by analysing the dynamics
[58], [24] of a flat ΛCDM universe

∂

∂t
δ(x⃗, t) +

1

a
∇x[(1 + δ(x⃗, t))v⃗(x⃗, t)],

∂

∂t
v⃗(x⃗, t) +

ä

a
v⃗(x⃗, t)+

1

a
[v⃗(x⃗, t) · ∇⃗x]v⃗(x⃗, t) = −1

a
∇xϕ(x⃗, t), (4.41)

∇2
xϕ(x⃗, t) = 4πGρa2δ(x⃗, t),

where we derive the equations above from Equation 3.46-3.48 using the comoving coordinates
transformations define in Equation 4.10 and the definitions of the density contrast δ.
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Following the same steps in section 4.1 we can write the evolution equations

1

H
δ̇+(1 + δ)θ +

1

aH
∇x · (δv) = 0

1

H
θ̇ +

(
2 +

Ḣ

H2

)
θ +

3

2
Ωmδ +

1

aH
∇x · (v · ∇x)v = 0 (4.42)

where θ = ∇ivi/aH is the velocity divergence and we keep proper time derivatives represented
by the dots .̇ We are omitting the time and space dependence sometimes for simplicity.
Also using the perturbative relation of the field velocity described in Equation 4.10 we can

rewrite using the expansion rate relation with the density parameters definition the following
equation [58]

u(x⃗) = −f(Ωm,Λ)
H0

4π

∫
x⃗− x⃗′

|x⃗− x⃗′|
δ(x)d3x⃗′, (4.43)

where f(Ωm,Λ) represents, in a more general way, a function containing the universe content
represented by the density parameters for matter and dark energy constant, this is used to
simplify the calculations. This relation can be extended to the definition of θ [58], [61], resulting
in

θ(x⃗) = −f(Ωm,Λ)δ(x⃗). (4.44)

In the spatial derivatives, is also useful to make the Fourier transformations for the fields δ
and θ

δ(x⃗, t) =

∫
d3k⃗

(2π)3/2
δ(k⃗, t) exp (ix⃗ · k⃗),

θ(x⃗, t) =

∫
d3k⃗

(2π)3/2
θ(k⃗, t) exp (ix⃗ · k⃗). (4.45)

In Equation 4.29 we discussed the pure radial form of v, this leads to its Fourier transformation
in the form of

v⃗(x⃗, t) =

∫
d3k⃗

(2π)3/2
−ik⃗
k2

θ(k⃗, t) exp (ix⃗ · k⃗). (4.46)

Using the set of equations above Equation 4.45-4.46 we can rewrite the equations of dynamics
Equation 4.42 in Fourier space as

1

H
δ̇(k⃗, t) + θ(k⃗, t) +

∫
d3k⃗′

(2π)3/2
F(k⃗′, k⃗ − k⃗′)δ(k⃗ − k⃗′, t)θ(k⃗, t) = 0

1

H
θ̇(k⃗, t) +

(
2 +

Ḣ

H2

)
+

3

2
Ωmδ(k⃗, t) =−

∫
d3k⃗′

(2π)3/2
[F(k⃗′, k⃗ − k⃗′) + F(k⃗ − k⃗′, k⃗′)

− 2G(k⃗′, k⃗ − k⃗′)]θ(k⃗ − k⃗′, t)θ(k⃗′, t) (4.47)

where the functions F and G are defined as

F(k⃗, k⃗′) = 1 +
k⃗ · k⃗′
k2

, (4.48)

G(k⃗, k⃗′) = 1− k⃗ · k⃗′
k2k′2

. (4.49)
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Now with the perturbative dynamics defined we need to filter these fields since perturbations
are valid for very large scales (small k′s), and for small scales, these perturbations (bigger k′s)
didn’t evolve enough and needed to be smoothed out. For this we make use of window functions,
these types of mathematical functions are often used in statistics since it makes zero outside of
a chosen interval and also are used often in cosmology [62], [63].
For our calculations, we are going to use the top-hat window function that for a scale R0 is

Wth(x) = 1 if |x| ≤ R0,

Wth(x) = 0 for all other cases. (4.50)

The density and velocity fields can be rewritten as

δ(R0) =

∫
d3xWth(x)δ(x), (4.51)

θ(R0) =

∫
d3xWth(x)θ(x). (4.52)

That applying Fourier transformations becomes

δ(R0) =

∫
d3k

(2π)3/2
Wth(x)δ(x), (4.53)

θ(R0) =

∫
d3k

(2π)3/2
Wth(x)θ(x), (4.54)

transforming also the format of the top-hat window function to

Wth =
3

(kR0)3
[sin(kR0)− kR0cos(kR0)], (4.55)

where k is the norm of k⃗.
This allows us to provide the second statistical moment, the variance Equation 3.68, for these

fields:

σ2(R0) =

∫
d3k

(2π)3/2
d3k′

(2π)3/2
Wth(kR0)⟨δ(k⃗δ(k⃗′))⟩Wth(k

′R0)

= D2
1(t)

∫
d3k

(2π)3
W 2

th(kR0)P (k), (4.56)

σ2θ(R0) = f2(Ωm)D2
1(t)

∫
d3k

(2π)3
Wth(kR0)P (k), (4.57)

where P(k) is the power spectrum and f(Ωm) a function in terms of the matter density parameter.
D1(t) is the growing factor from the expansion of the density fluctuation and divergence ve-

locity, that assuming Gaussian initial conditions [56], [57] produces

δ(1)(x⃗, t) =D1ϵ(x⃗),

=D1(t)

∫
d3k⃗

(2π)3/2
ϵ
k⃗
eik⃗·x⃗, (4.58)

θ(1)(x⃗, t) = −f(Ωm)D1(t)

∫
d3k⃗

(2π)3/2
ϵ
k⃗
eik⃗·x⃗. (4.59)
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The equation for θ uses the relation Equation 4.44 and ϵ
k⃗
are random variables that obey the

following the properties

⟨ϵ
k⃗
ϵ
k⃗′
⟩ = δD(k⃗ − k⃗′)P (k),

⟨ϵ
k⃗1
· · ·ϵ

k⃗2p+1
⟩ = 0,

⟨ϵ
k⃗1···ϵk⃗2p

⟩ = 1

2pp!

∑
permutations−s

⟨ϵ
k⃗s1
ϵ
k⃗s2

⟩ · · · ⟨ϵ
k⃗s2p−1

ϵ
k⃗s2p

⟩. (4.60)

Finally, for skewness, the third statistical moment needs to be found. This can be made
by expanding the distributions of δ(R0) andθ(R0). The expansion is made around the same
random variable ϵ

k⃗
from above. Until the third order, this expansion for the delta and theta field

distribution is written as

δ(R0) = δ(1)(R0) + δ(2)(R0) + δ(3)(R0) + ..., (4.61)

θ(R0) = θ(1)(R0) + θ(2)(R0) + θ(3)(R0) + ..., (4.62)

by looking into our initial conditions Equation 4.58-4.59 we can assume that each delta function
δj(R0) is proportional to an j degree of the random variable ϵj

k⃗
(the same can be said for θ). As

seen in Equation 3.71 we need to reproduce the leading terms of ⟨δ(R0)
3⟩ and ⟨δ(R0)

2⟩2 (same
for θ since δ evolution equation Equation 4.47 needs also to be solved with it), this can be done

by the doing the ensemble averages of δ(R0)
3
and θ(R0)

3

⟨δ(R0)
3⟩ =⟨(δ(1)(R0) + δ(2)(R0) + δ(3)(R0) + ...)3⟩

=⟨(δ(1))3⟩+ 3⟨(δ(1)(R0))
2δ(2)(R0)⟩+ ... (4.63)

⟨θ(R0)
3⟩ =⟨(θ(1)(R0) + θ(2)(R0) + θ(3)(R0) + ...)3⟩

=⟨(θ(1))3⟩+ 3⟨(θ(1)(R0))
2θ(2)(R0)⟩+ ... (4.64)

The first term on the right side of the result above is zero due to the properties of the random
variables Equation 4.60. This leaves us with the second term as the leading term for the third
moment.
The ratio and definition of skewness like Equation 3.71 for this case reads

S3 =
⟨δ(R0)

3⟩
⟨δ(R0)2⟩2

, (4.65)

and for the divergence of the velocity field, this ratio has a similar composition

T3 =
⟨θ(R0)

3⟩
⟨θ(R0)2⟩2

. (4.66)

The denominator term of Equation 4.65 can be obtained by doing the variance of the field
Equation 4.44

⟨θ(x⃗)2⟩ = f(Ωm)2⟨δ(x)2⟩. (4.67)

To fully solve Equation 4.65 we use the dynamics of a spherical collapse model [56], [64], [24].
This model describes the perturbation evolution in a symmetric spherical region. This depends
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on the background dynamics for a ΛCDM universe within a region R where the perturbation
evolves (similar to Friedmann’s Equation 2.11)

R̈ = −GM(< R)

R2
+

Λ

3
R, (4.68)

where M(< R) contains only the mass inside the region R. Notice that this model has similar
conditions where we restricted to a region R0 with a window function previously.

The density contrast δ for this spherical region represents the following overdensity

δ =

(
R

R0

)−3

− 1 (4.69)

with R0 as the initial comoving radius for this perturbation, this equation represents the over-
density where the first term represents the change in the volume ratio minus the total quantity.
This definition makes this density contrast inside the spherical shell being Equation 4.69 and
outside δ = 0 [24], it behaves like a top-hat function that makes the spacial derivatives for the
density field be canceled.

Using the equations of dynamics and steps made to get the evolution of the density contrast
Equation 4.35 (only first order terms) and considering that for this model we are only considering
time derivatives for a ΛCDM model and also using Equation 4.2 the equation for the overdensity
is determined by

1

3

δ̈

(1 + δ)2
− 4

9

δ̇2

(1 + δ3)
+

2

3

Hδ̇

(1 + δ)2
+

1

2
H2Ωm

1

1 + δ
=

1

2
H2Ωm. (4.70)

The density contrast can be expanded since this equation is linearized in δ

δ =

∞∑
i=1

δi =

∞∑
i=1

Di(η)

i!
δi0.

This results for the first, second, and third order terms

δ(1)(t) = D1(t)δi;

δ(2)(t) = D2(t)
δ2i
2
;

δ(2)(t) = D3(t)
δ3i
6
.

Applying in Equation 4.70 it is possible to obtain the following equations for each order of
perturbation

D̈1 + 2HḊ1 −
3

2
H2ΩmD1 = 0, (4.71)

D̈2 + 2HḊ2−
3

2
H2ΩnD2 = 3H2ΩmD

2
1 +

8

3
Ḋ2

1, (4.72)

D̈3 + 2HḊ3 −
3

2
H2ΩnD3 = 9H2ΩmD2D1 + 8Ḋ2Ḋ1 − 8Ḋ2

1D1 (4.73)

Observing these equations for the spherical collapse model, the D1 function is proportional
to the expansion factor for a small time t or for Ωm = 1 that represents an EdS universe.
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For the D2 equation the initial condition when t → 0 following the previous analysis for D1 is
D2(t) ∼ 34

21D1(t) and for D3(t) ∼ 682
189D

3
1.

The divergence of the velocity field can also be expanded, in a similar way to Equation 4.69,
we can assume for the spherical collapse model

θ(t) =
3Ṙ

HR
− 3 (4.74)

similar to Equation 4.69 the first relates to the ratio of the change in velocity and the last term
is 3 representing the full quantity due to the 3 spatial coordinates. From Equation 4.44, in a
similar way for this case, we can expand this velocity in terms of the δi expansion [58], [56]

θ(t) = −f(Ωm,Λ)

(
E1(t)δi + E2(t)

δ2i
2

+ E3(t)
δ3i
6

+ ...

)
, (4.75)

from the solution of Equation 4.71 we know that D1 is proportional do the expansion factor H,
the first term of f(Ωm,Λ) for this spherical collapse solution assuming Equation 4.74 is defined
them as

f(Ωm,Λ) =
a

D1

D1

da
. (4.76)

Now also solving the dynamics for the divergence velocity, the same way as for the density
contrast evolution equation Equation 4.70, following the same steps as in section subsection 4.1.2
with the proper time derivatives for a ΛCDM universe, we get

E1(t) = D1(t), (4.77)

E2(t) = D1
d

dD1
(D2 −D2

1), (4.78)

E3(t) = D1
d

dD1
(D3 − 3D2D1 + 2D3

1). (4.79)

For more details about the spherical collapse model solutions, the studies in [58], [24] provides
some analytic forms of these functions, on [58] he considers a non zero Λ case, in [24] it already
assumes an EdS universe. In [56] there is a comparison of the numerical results for an ΛCDM
model and compare to analytical results for a Λ = 0 case. We move forward to obtain the
first, and second orders of the density and divergence velocity fields to calculate Equation 4.63
necessary to obtain the cosmological skewness Equation 4.65.
Starting with the linear solutions Equation 4.58-4.59 and also using the filtered fields properties

shown in Equation 4.53 [56], we can write the fields equations for the first order δ(1)(R0) and
θ(1)(R0) as

δ(1)(R0) =

∫
d3k⃗

(2π)3/2
ϵ
k⃗
Wth(kR0)D1(t), (4.80)

θ(1)(R0) =− f(Ωm,Λ)

∫
d3k⃗

(2π)3/2
ϵ
k⃗
Wth(kR0)D1(t). (4.81)

For the second order equations of δ(2)(R0) and θ(2)(R0) we need the set of equations of the
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dynamics in Fourier space Equation 4.47, for second order of the fields

1

H
δ(2)(k⃗, t) + θ(2)(k⃗, t) = a

D1

da
D1

∫
d3k⃗

(2π)3/2
F(k⃗′, k⃗ − k⃗′)ϵ

k⃗−k⃗′ϵk⃗′ , (4.82)

1

H
θ̇(2)(k⃗, t) +

(
2 +

Ḣ

H

)
θ(2)(k⃗, t) +

3

2
Ωmδ

(2)(k⃗, t) = −
(
a
dD1

da

)2 ∫ d3k⃗′

(2π)3/2
(F(k⃗′, k⃗ − k⃗′)

+ F(k⃗ − k⃗′, k⃗′)− 2G(k⃗′, k⃗ − k⃗′))ϵ
k⃗−k⃗′ϵk⃗′ .

(4.83)

To better use the definitions of F , G Equation 4.48 and to apply the properties of the random
variables ϵ

k⃗
Equation 4.60, we can work with the index notation such that for example Fi,j =

F(k⃗i, k⃗j) and G == F(k⃗i, k⃗j), where i and j runs from 1 to 3. Remember that some terms
will be canceled due to the properties of the random variables Equation 4.60. This results for
Equation 4.82 and Equation 4.83

δ(2)(R0) =

∫
d3k⃗1

(2π)3/2
d3k⃗2

(2π)3/2
ϵ
k⃗1
ϵ
k⃗2
Wth(|⃗k1 + k⃗2|R0)

[
D2

1F1,2 −
3

2
G1,2 +

3

4
D2G1,2

]
(4.84)

θ(2) (R0) =−
∫

d3k⃗1

(2π)3/2
d3k⃗2

(2π)3/2
ϵ
k⃗1
ϵ
k⃗2
WTH

(∣∣∣⃗k1 + k⃗2

∣∣∣R0

)
f(Ωm,Λ)

[
D2

1

(
F1,2 −

3

2
F1,2

)
+

3

4
E2G1,2

]
(4.85)

Now we have all pieces to obtain the cosmological skewness Equation 4.65, by replacing the
terms we arrive at the form

S3 (R0) =
3

σ4 (R0)

∫
d3k1
(2π)3

d3k2
(2π)3

P (k1)P (k2)W1W2W12P1,2 (4.86)

where

P = D2
1(Fi,j −

3

2
Gi,j) +

3

4
D2Gi,j , Wi =Wth(kiR0), Wij =Wth. (4.87)

The solution of these integrals is done in every detail in the appendix of [56], these are very
extensive, but basically uses geometry properties doing the integrations over a solid angle, com-
bined with the Gaussian properties of the random variables Equation 4.60 and using the relations
showed in this section for the density and divergence velocity fields, many terms ended up can-
celed and we end up with

S3 =

(
3D2

D2
1

− γ1

)
, (4.88)

where

γ1 = −d log[σ
2(R0)]

d log(R0)
. (4.89)

For an EdS case (Ωm = 1,Λ = 0) this reduces to the well-known value of

S3 =
34

7
− γ1. (4.90)

Many studies on the literature produce these calculations, but one must careful because that
some authors already imply from the beginning that the calculations and approximations are
done for an EdS universe [59], [57], [24], [58], [6], [65].
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The calculations and steps to obtain this skewness are very extensive but also very well demon-
strated in [56], [57], let us give a resume of what is basically done to get to this result. The
skewness can be obtained by first expanding the quantities of the filtered density δ(R0) and the
divergence of the velocity field Θ(R0) (obtained through the integration of a window function
for a given scale R0). These distributions (δ(R0) and Θ(R0)) are then expanded with respect to
random variables that are used to describe the initial density and velocity fluctuations, this is
made to look for the leading order of the third moment distributions (skewness). Finding these
leading terms results in the similar expression saw in this section S3 = ⟨δ(R0)

3⟩/⟨δ(R0)
2⟩2 and

T3 = ⟨Θ(R0)
3⟩/⟨Θ(R0)

2⟩2.
With an equation of evolution of the density contrast (similar to the ones obtained in this

chapter), it expands this density contrast in terms of growth functions. Here we obtain the growth
functions of D1, D2 and D3. After many mathematical manipulations and approximations its
defined that S3(R0) = (3D2/D

2
1−γ1) where γ1 is basically the logarithmic slope of the dispersion

σ2(R0) with the filtering radius R0. This last term for our study can be neglected as this
approximation is expected to work only for small amplitudes of perturbations σ ≲ 0.1, this
results for the skewness in the form

S3 = 3
D2

D2
1

. (4.91)

For more details is recommended [56], [57].

4.3.1 The growth functions for the single effective fluid

Now we return to our single effective fluid study since we know we need the density contrast
equation in terms of the growth functions to be able to calculate the cosmological skewness for
the matter density field. Assuming that all components are part of a single fluid, whose total
EoS parameter is w = wm + wde and square sound velocity c2 = c2s(m) + c2s(de). And assuming a
total pressure p = pm + pde with pm = 0, the total EoS parameter is

w(a) = ΣΩi(a)wi(a) =
Ωde0H

2
0

H2(a)
e−3

∫
da

1+wde
a wde(a). (4.92)

The adiabatic sound speed for the fluid with total density of ρ = ρm + ρde can be written as

c2a =
ṗ

ρ̇
=

w

1 + w

[
(1 + wde)−

a

3

w′
de

wde

]
. (4.93)

We apply the following decomposition

δ =
∞∑
i=1

δi =
∞∑
i=1

Di(η)

i!
δi0, (4.94)

but in order to study the evolution of the density contrast at a first and second perturbative
level, we will keep up to the i = 2 term. As a result, we are allowed to split Equation 4.34 into
two equations. The first order perturbative equation for D1 reads,

a2D′′
1 + aD′

1

(
aH ′

H
+ 3− 3w + 3c2a −

aw′

1 + w

)
− 3

2

(
1 + 2w − 3w2 + 2c2a(1 + 3w) + 2(aw′ − c2a)−

2aw′(w − c2a)

1 + w

)
= 0. (4.95)
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The equation for the second order perturbative term reads,

a2D′′
2 + aD′

2

(
aH ′

H
+ 3− 3w + 3c2a −

aw′

1− w

)
− 3

2
D2

(
1 + 2w − 3w2 + 2(w′a− c2a)−

2aw′(w − c2a)

1 + w

)
= a2D′2

1

(
8/3 + c2a
1 + w

)
− aD′

1D1

(
2(w − c2a)(5 + 3c2a)− a2c2a

1 + w
+

2aw′

(1 + w)2
+

(8/3)c2a
(1 + w)2

)
+ 3D2

1

(
(1 + 3c2a)(1 + c2a) +

2(w − c2a)
2 − 2(w − c2a)a

2c′2a
1 + w

+
2a(w − c2a)w

′

(1 + w2)

)
, (4.96)

where one can notice that the solution for D1 found previously is used as a source term in the
above equation.
Using Equation 4.91 and setting fixed values for H, w and c2a, we can study dark energy models.

Since for the matter content p = 0 → wm = 0 and c2a(m) = 0, the contribution of the dynamic
dark energy will be inside the total equation of state parameter w and adiabatic sound velocity
as described in Equation 4.92 and Equation 4.93.

4.4 Results for the single fluid analysis

In this chapter, we started with a detailed demonstration of the Neo Newtonian treatment of a
hydrodynamic system. This system includes a portion of the matter content (baryonic and dark
matter) and dark energy applying to a single fluid universe, where these fluids do not interact but
can influence each other’s evolution. To analyze how dark energy perturbations could influence
structure formation we make use of the definition of skewness defined by Equation 4.91 [56], [57].
Expanding the equation of the evolution of density contrast Equation 4.34 into first Equation 4.95
and second order Equation 4.96 we can solve this system to obtain numerically D1 and D2. These
results produced the published work [4].
The main difference in evaluating a case with and without dark energy perturbations will be

how this dark energy is included. The density contrast δ is evaluated for the matter content
since we are interested in the skewness of its distribution and the dark energy content can be
included only in the background through the expansion rate H for the case without dark energy
perturbations or we can include dark energy perturbations through the total equation of state
parameter w and sound velocity c2a in Equation 4.95 and Equation 4.96, this way we can evaluate
different models for both cases. For matter, these terms are zero, so they will carry only the dark
energy component in these terms.
It is set δ(a0) = 10−3 and δ′ = 0 with a0 = 10−3 the scale factor around the decoupling era [60]

for the initial conditions. We can assume an Einstein-de Sitter universe Ωm = 1 description during
the period of radiation and matter equality before arriving at the dark energy era zeq < z < zde,
where zeq ∼ 3300 and zde ≲ 1. As seen in Figure 2.1 and Figure 2.4, structures are formed
during this period and with S3 it is possible to measure the asymmetry generated by the matter
fluctuations due to the formation of larger structures. Solving D1 we can use its solution to also
solve D2, since it is a source term in Equation 4.96.
Since we are interested in the dark energy influence and effects on structure formation we are

going to evaluate the solutions for skewness S3 for today a = 1 and also show its dependence
related to the matter density parameter Ωm0. In Figure 4.1 we show the results of this analysis,
this study is also present in [4]. Both figures show today’s skewness S3(a = 1) in the function
of the density parameter Ωm0, we also analyze the dark energy equation of state parameter in a
range of −1.15 < w0 < −0.85 for all cases.
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The left plot in Figure 4.1 shows cases without dark energy perturbations, these results are
ranged around the ΛCDM model as expected since the only variation is in the values of the
equation of state parameter for dark energy that are only included on the background, represented
as w0. Its value only enters in the expansion rate H for this case and the other terms with w
in the perturbative growth rates are considered zero for the pressureless matter fluid and the
adiabatic sound velocity is also zero c2a = 0 as defined in Equation 4.93. The ΛCDM model is
represented by the red line in both plots. On the left the variation around the model is small and
the skewness value around a standard matter density parameter Ωm0 ∼ 0.3 is S3 ∼ 4.91. The
range of lighter (yellow) to darker colors (dark green) goes from the quintessence range wde > −1
and phantom range wde < −1 respectively. Our sets of equations when evaluated for an EDS
universe (Ωm0 = 1) gives the expected value of S3 = 34/7 [56], [57] (black dot in the right plot).
These results agree with the literature [66].
For the right side of Figure 4.1 we include dark energy perturbations through the total equa-

tion of state parameter Equation 4.92 and sound velocity Equation 4.93 in Equation 4.95 and
Equation 4.96, not just in the expansion rate as the previous case. Assuming a single fluid
its total density contrast would be affected by the matter δm and dark energy δde fluctuations.
Since both are sourced by the gravitational potential Φ (this can also be seen in Equation 4.35),
the measurements around the matter clustering by the surveys can’t distinguish between them.
Using dark energy fluctuations in the total fluid perturbations can also be justified if we look
into the usual quantity measured for the total matter perturbations δm, that is associated with
the baryonic fluctuations within a dark matter potential well, both correlated by the bias factor
δb = bδdm. Other studies involving dark energy perturbations use similar methods related to the
total fluid fluctuations [67], [2], [3], [68].
Now the total fluid can include different sound velocities associated with the dark energy com-

ponent, for the cases of c2a ̸= 0, this would leave a scale dependence if we look into Equation 4.40.
By the definition of c2a in Equation 4.93 this last term would remain small due to our range of
tests for this analysis, so this term is neglected.
The right panel of Figure 4.1 shows a great increase in the skewness value for today when adding

dark energy perturbations. The blue and orange stripes contain dark energy perturbations, both
analyses are for a constant equation of state parameter wde included in the total fluid parameter
as defined in Equation 4.92. The blue one presents a case with c2a ̸= 0 where we use the definition
of Equation 4.93. The orange stripe its set c2a = 0 as done in [69], [54]. Both cases goes from
the darker color for values of w0 = −1.15 to lighter colors for w0 = −0.85. Some interposition
is made between the colored stripes where the darker orange superposition is a little part of the
lighter blue. It also shows where the S3 values for the PLANCK 2018 matter density parameter
Ωm0 ∼ 0.315 would reach, being around a value of S3 ∼ 17. Compared to the EdS, S3 ∼ 4.857,
also shown in this panel represented by the black dot, the values of S3 get to 3 times higher. The
ΛCDM case is also shown represented by the red dotted line, this is the same line as the previous
left side panel, used only for comparison.
These results show that including the dark energy perturbations as part of the single fluid

can increase substantially the values of skewness S3. The usual way to calculate skewness is
by only doing the calculation of equations D1 and D2 for the matter content, but in our case
when including the dark energy content as a clustering component through w and c2a, the whole
content of the universe is taken into account increasing significantly the skewness values. For
skewness, there is also only a small dependence of the equation of state parameter for dark
energy w0 observed in this analysis. With these results, the interest in doing more analysis of
these effects for clustering dark energy would rise. This is not the only way to include dark
energy perturbations in the study of the skewness of the matter content. In the next chapter, a
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different approach is made and different results would be produced.

Figure 4.1: Skewness as a function of today’s matter density parameter Ωm0. Left: Case without
dark energy perturbations. For Ωm0 = 0.315, the skewness is approximate S3 ≈ 4.91
and the red-dashed curved represents the ΛCDM model. The panel shows the values
for the dark energy equation of state parameter w0 without DE perturbations. The
color schemes shows an increase (w0 > −1 light green) and a decrease (w0 < −1
darker green). Right: The colored stripes here consider dark energy perturbations.
The blue color scheme is for cases with c2a = 0. The orange one is for a c2a defined by
Equation 4.93. The black dot is for the EDS case Ωm0 = 1 where S3 = 34/7 ≈ 4.857.
The blacks lines show the limits for the Planck best fit value of Ωm0 = 0.315± 0.07.

Source: Produced by the author [4].
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CHAPTER 5

Skewness in clustering dark energy cosmology:
detailed approach

This study will show general equations that are also valid for a system of two non-interacting
fluids, but in this case, instead of a set of 3 hydrodynamics equations (continuity, Euler, Poisson),
we have 5 (2 continuities, 2 Euler, one Poisson).

5.1 Two Fluid Universe Dynamics

The search for the effects of dark energy clustering in structure formations continues in the
following work [5]. The idea is to introduce a more general approach than the previous analysis,
where the dark energy fluid would be a separated component with its own equation for the
density contrast evolution δde. The system contains, for two fluids (one of matter and other of
dark energy), the following 5 equations: 2 continuities Equation 3.46, 2 Euler Equation 3.47 and
1 Poisson Equation 3.48 equations. The fluids are connected to the gravitational potential in the
Poisson equation that sources the gravitational clustering. Doing the same calculations in the
previous chapter until Equation 4.35, we can separate two of these same equations for each fluid.
In the following sections, the final system of equations will be reproduced for further analysis.

5.1.1 Dynamics of the matter and dark energy fluids

As previously suggested in this chapter, in a universe composed by two fluids, one of the total
matter content and the other of dark energy, the Poisson equation can be written as:

∇2Φ = −4πGa2(1 + 3c2de)ρdeδde − 4πGa2ρmδm. (5.1)

Each density evolution is given by

ρm = ρ(0)m

(a0
a

)3
,

ρde = ρ
(0)
de exp

[
−
∫ 0

1

3(1 + wde)

ã
dã

]
. (5.2)

Defined the density parameter, it is possible to isolate the density in terms of the density
parameter as follows

Ωx =
8πGρx
3H2

=
8πGρxa

2

3H2
,

ρx =
3HΩx

8πGa2
. (5.3)
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That means that for our two fluids their respective density parameters can be used to replace
the densities in the Poisson equation

Ω(0)
m +Ω

(0)
de = 1,

Ω(0)
m =

8πGρ
(0)
m a2

3H2
0

, Ω
(0)
de =

8πGρ
(0)
de a

2

3H2
0

, (5.4)

∇2Φ = −3

2
ΩmH2δm − 3

2
ΩdeH2δde(1 + 3c2de). (5.5)

Finally, we have all terms to complete the evolution of the density contrast equation, but for
simplicity, the two fluids Poisson equation will be replaced a bit further. For the dark energy
fluid (with A = 1 + wde + (1 + c2de)δde), its density contrast equation using Equation 4.35 is:

δ′′de + δ′de

[
3(c2de − wde) +

(
1 +

H′

H

)
−
w′
de

A

]
− δ′2de

[
4/3 + c2de

A

]
+ δdeδ

′
de

[
(wde − c2de)(5 + 3c2de)− c′2de

A

]
+ δ2de

[
3(wde − c2de)c

′2
de − 3(wde − c2de)

2

A

]
+ 3δde

[
(c′2de − w′

de) +

(
1 +

H′

H

)
(c2de − wde) +

w′
de(wde − c2de)

A

]
+

A

H2
∇2Φ =

A

H2
∇
[
∇(c2deδde)

A

]
(5.6)

For the matter fluid, its pressure is zero, so Equation 4.35 simplifies greatly due to wm = 0
and c2m = 0:

δ′′m + δ′m

(
1 +

H′

H

)
− δ2

′
m

(
4/3

1 + δm

)
+ (1 + δm)

∇2Φ

H2
= 0. (5.7)

These results were used in the work [5], and further in this chapter, it will be shown the analysis
and results made with these equations.

5.1.2 The growth functions for the two fluid universe

Since our focus is on the skewness for the matter clustering, for the matter equation δm we are
going to expand the density contrast like in the previous chapter

δ =
∞∑
i=1

δi =
∞∑
i=1

Di(η)

i!
δi0.

For the calculation of skewness, we need only until the second order term of the expansion
such that,

δ = D1δ0 +
D2

2
δ20 . (5.8)

Some terms have a fraction with the density contrast that is considered to be very small since
it is a fluctuation. For these terms is possible to use the Taylor expansion as follows

1

1 + δm
→ 1

1− (−δm)
→ 1 + (−δm). (5.9)
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Now replacing the expansions in the matter equation and considering only first and second
order terms

D′′
1δ0 +

D′′
2

2
δ20 +

(
D1δ0 +

D2

2
δ20

)′(
1 +

H′

H

)
−
(
D′2

1 δ
2
0

4

3

)
+

(
1 +D1δ0 +

D2

2
δ20

)
∇2Φ

H2
= 0. (5.10)

The equation above provides us with two equations, one for first order that carries terms with
only δ0 terms that can be written as

D′′
1 +D′

1

(
1 +

H′

H

)
− 3

2
D1Ωm − 3

2
Ωdeδde(1 + 3c2de) = 0, (5.11)

and other for second order equation that would carry δ20 terms

D′′
2 +D′

2

(
1 +

H′

H

)
− 8

3
D′2

1 − 3

2
D2Ωm − 3D2

1Ωm − 3D1Ωdeδde(1 + 3c2de) = 0. (5.12)

As for the dark energy fluctuations equations, we can simplify Equation 5.6 only using the
first order of perturbations, since for the calculation of skewness we only need high orders for the
matter content where the calculations and measurements are made. The first order equation for
the evolution of the dark energy fluctuations δde is defined as

δ′′de + δ′de

[
3(c2de − wde) +

(
1 +

H′

H

)
−

w′
de

1 + wde

]
+ 3δde

[
(c2de − w′

de) +

(
1 +

H′

H

)
(c2de − wde) +

w′
de(wde − c2de)

1 + wde

]
− (1 + wde)

3

2

[
ΩmD1 +Ωdeδde(1 + 3c2de)

]
=

1 + wde

H2
∇
[
∇(c2deδde)

1 + wde

]
. (5.13)

This completes our set of equations that will be solved numerically obtaining the values of
skewness using the definition in Equation 4.91. In terms of the scale factor these equations
transformed as d/dN → d/da, are rewritten in the following form (from here ′ is d/da):

a2D′′
1 + aD′

1

(
aH ′

H
+ 3

)
− 3

2
D1Ωm − 3

2
Ωdeδde(1 + 3c2de) = 0, (5.14)

a2D′′
2 + aD′

2

(
aH ′

H
+ 3

)
− 8

3
a2D′2

1 − 3

2
D2Ωm − 3D2

1Ωm − 3D1Ωdeδde(1 + 3c2de) = 0. (5.15)

The dark energy perturbations equation can be transformed to Fourier space due to the last
term with ∇x → ik2, this transformation gives

δ′′de + δ′de

[
3(c2de − wde) +

(
1 +

H′

H

)
−

w′
de

1 + wde

]
+ 3δde

[
(c2′de − w′

de) +

(
1 +

H′

H

)
(c2de − wde)−

w′
de(c

2
de − wde)

1 + wde

]
− (1 + wde)

3

2

[
ΩmD1 +Ωde(1 + 3c2de)δde

]
+
c2dek

2

H2
δde = 0. (5.16)
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The set of equations above enables us to calculate the skewness for the clustering of matter
through the solutions of D1 and D2. The equation for the dark energy density contrast is
necessary since we treat this system for two separated fluids. The dark energy fluctuation term
enters equations D1 and D2 through the Poisson component that connects the dynamics of the
whole system. The results of this study are presented in the next section.

5.2 Results for the two fluid analysis

Using the main set of equations Equation 5.14-5.16 it is possible to obtain the skewness of the
matter content through Equation 4.91. This chapter sets the initial conditions and values used
to numerically evaluate these equations for this analysis of dark energy perturbations inserted
this time by Equation 5.16. This study was also explored in [5].
For the dark energy equation, looking into the last term of Equation 5.16, there is a dependence

on the wavenumber k. However, we have checked that S3 is very weakly dependent on k-values
on the range of scales of cosmological interest. These changes can get to as lower as 10−5 when
compared to changes of values of the matter density parameter Ωm0, and 10−3 for changes of
the dark energy equation of state parameter wde, these results can be seen in Figure 5.1 and are
reproduced by numerically solving Equation 5.14-5.16 for the skewness values for today (a = 1).
For the left panel, we have also tested for other values of fixed wde and all results produce the
same behavior, where for the same wde the curves would remain indistinguishable for different
values of Ωm0. The k-dependence will be neglected by adopting k=0.01 h/Mpc for the next
results, this is close to the range of scales effectively observed in large-scale surveys.

Figure 5.1: Impact of the wavenumber k values from a range of 0.01 to 0.1 on skewness S3. On
the left, there are 3 cases of Ωm0 of values 0.2, 0.3, and 0.4 but all cases are practically
identical being only visible on one curve since all curves make superpositions, all cases
are made for a same wde, in this plot, we show for wde = −1. For the right side, the
colors are for different values of the equation of state parameter wde being orange for
a quintessence case wde = −0.85, blue for wde = −1 and magenta wde = −1.15 and a
fixed Ωm0 = 0.3.

Source: Produced by the author.

We expand our analysis on skewness by not only evaluating its values with respect to cosmolog-
ical parameters but also by providing a fit equation for some case studies. In the literature, the
expansion of skewness is provided usually around the Einstein-De-Sitter universe (Ωm = 1 and
c2de = 0). In a work from Bernardeau (2002) [57] it is mentioned the importance of knowing the
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dependence of skewness of cosmological parameters since it is induced by gravitational dynamics,
it introduces by some explicit calculations from [70] and doing an expansion around and EdS
universe the following result:

S3 =
34

7
+

6

7
(Ω−0.03

m0 − 1). (5.17)

This equation demonstrates that skewness has a very weak dependence on the matter density
parameter Ωm0. In our work [5] we expand this to other cosmological parameters and for a
universe where ΩΛ ̸= 0, since usually for a flat Ωm + ΩΛ = 1 universe, a simple equation like
Equation 5.17 is not provided. This last case (Λ ̸= 0) is usually obtained by solving the set of
equations Equation 5.14 and Equation 5.15 but considering δde = 0 since it is not common to
use dark energy perturbations. Without dark energy perturbations this set of equation is equal
to the one usually solved for ΩΛ ̸= 0 derived from Bernardeau (1994) [6], this case is also studied
in [71, 65, 72].
With our set of equations Equation 5.14-5.16 we have a more general approach, where the

simpler case without dark energy perturbations can be obtained by making δde = 0 and an EdS
case by solving D1 and D2 for Ωm0 = 1. Since we have one more equation than usual, for
δde, providing the cosmological variables for dark energy wde and c2de, the goal is to make new
equations for skewness S3 with these extra variables.

Besides the fit equations we are going to provide, we solve numerically the set of equations to
evaluate the skewness for different scenarios and since the dark energy sound speed c2de is a free
parameter we shall adopt the following values

• c2de = 0;

• c2de = 1;

• c2de = 1/3.

From the constant values above one can notice we do a different approach from the previous
work [4] mentioned in the previous chapter. Since there we use the definition for the sound
velocity for dark energy given by Equation 4.93.
Looking into a scalar field model of dark energy, whose action is given by

S(ϕ) =

∫ √
−gL(X,ϕ)d4x (5.18)

where L(X,ϕ) is the Lagrangian density of the scalar field [73], [74], [75], [76], [77]. The equation
of state parameter and effective sound speed for such action can then be written as

wde =
L(X,ϕ)

2
(
∂L
∂X

)
X − L(X,ϕ)

, (5.19)

c2s =

(
∂L
∂X

)(
∂L
∂X

)
− 2X

(
∂2L
∂X2

) . (5.20)

Assuming a constant c2s the general form of the Lagrangian is obtained

L = V X
1+c2s
2c2s − U, (5.21)
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where U(ϕ) and V (ϕ) are the potentials and X = ϕ;iϕ
;i/2 is the kinetic energy term for the field

ϕ. So assuming an c2de = 1 as mentioned above is considered the effective sound speed of a scalar
field component, since for c2s = 1 the Lagrangian is reduced to the canonical form L = X − U .
For the limits of c2de = 0 the work on [78] expand this analysis where essentially the dark energy

perturbations follow the behavior of the pressureless-like clustering fluid. And last for c2de = 1/3,
is inspired by the analysis in [79] where it made and ”model independent” reconstruction of dark
energy suggesting this value for the sound speed of dark energy.
For initial conditions to solve Equation 5.14, Equation 5.15 and Equation 5.16 we set ai =

1/(1 + zi), with zi ≃ 300000. Such a greater (more in the past) initial condition for the redshift,
when compared to the previous analysis where we utilize and a0 = 10−3, is adopted because
when doing a more detailed analysis of the numerical solutions we noticed the need to make the
time for the initial condition, to go to zero t → 0, this is also mentioned in [6]. If the initial
condition is not sufficient to make the time goes to a zero value this would carry a residual error
that can be seen when solving the equations for an EdS universe Ωm = 1. The expected value of
the skewness for this case SEdS

3 = 34/7 ∼ 4.85714 would not be precisely obtained for a ”lower”
initial condition value, like the previously used ai = 10−3, making us obtain a value of S3 ∼ 4.854
for this analysis where the dark energy fluctuations have its own equation for its evolution being
a two fluid system.
The results may vary the free parameters, sometimes fixing wde, Ωm0 or c2de and even time z

will be fixed or varied. The value used for the majority of the results for H0 is 70. Only one
result will use a different value due to observational comparison, this will be mentioned when
modified in Figure 5.8.
On Figure 5.2 we show the time evolution for the skewness. Here the ΛCDM model is repre-

sented by the blue line where it is set wde = −1 and Ωm0 = 0.3. The black line represents the
EdS case with Ωm0 = 1 hitting the value S3 ∼ 4.857 giving a constant behavior since we have a
universe only composed of matter. Compared to the ΛCDM case one can notice already that the
dark energy will produce more skewness with time, this makes sense since the expansion would
spread the matter clusters creating more non-Gaussianity effects in the skewness of the matter
content. This figure also provides other models where dark energy perturbations are included,
setting c2de = 1 for solid lines and c2de = 0 for dot-dashed lines. The ΛCDM (blue line) appears
with only one line. This is expected since for this model c2de appears only for dark energy per-
turbations models (see equations Equation 5.14-5.16). So changing this value would not make a
difference in its result. The results with dark energy perturbations have a fixed Ωm0 = 0.3 value
but different equations of state parameters being wde = −0.8, wde = −0.9 and wde = −1.2. Cases
without dark energy perturbations are represented by the dashed line. In these cases only wde

vary. The non-Gaussianity increases from z ∼ 1 where we have the dark energy manifestation,
reaching asymptotically constant values today.
The next figure shows the value of S3 for today z = 0 as a function of the matter density

parameter Ωm0 for several cases of wde and c
2
de in Figure 5.3. The left panel we notice the similar

behavior as seen in Figure 5.2, where for c2de = 0 the skewness depends more on the cosmological
parameters, such that the quintessence [66] case of wde = −0.9 (dot-dashed orange line) decreases
and the phantom [80] wde = −1.2 (dot-dashed magenta line) increases by an greater amount.
The other cases c2de = 1 and no DE perturbations, have a small change in S3 (around 1%).

For the right panel of Figure 5.3 we already provide a fit equation represented by the red crosses.
The fits numerically calculated in this analysis provide S3 as a function of the cosmological
parameters. The quality of the fits will be evaluated by two measurements: the maximum
relative deviation (MRD) and the average standard relative deviation (ASRD). These are defined
respectively as the following percentages
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Figure 5.2: Skewness time evolution in function of redshift. Solid lines represents c2de = 1 cases,
dot-dashed c2de = 0 and dashed no DE perturbations. The colors represents the
following cases: blue for a ΛCDM case i.e., Ωm0 = 0.3, wde = −1; black for EdS case
i.e., Ωm0 = 1. Then, always putting Ωm0 = 0.3, we employ orange for wde = −0.8;
red for wde = −0.9 and magenta for wde = −1.2.

Source: Produced by the author [5].

MRD =100Max
∣∣∣Fit(i)−Data(i)

Fit(i)

∣∣∣,
ASRD =100

√
1

N

∑(Fit(i)−Data(i)

Fit(i)

)
2, (5.22)

where Data(i) represents the numerical outcomes from solving our system of equations for a
number i of parameter values and Fit(i) is the numerical value for the fitted function. The goal
is a precision greater than 1% for ASRD and maximum MRD across all the parametric ranges.
On the right panel of Figure 5.3 the ΛCDM case (wde = −1 and δde = 0) represented by the

dashed black line is given a fitted equation represented by the red crosses. The fit provides the
following equation

S3(Ωm0) = 4.857− 0.053(Ω0.129
m0 − 1). (5.23)

This fit has the quality measures of MRD = 0.01% and ASRD = 0.02%. This case is almost
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identical to Bernardeau’s result in [6]. This is expected since Bernadeau’s equations are the same
as our set equations when δde = 0. This panel also shows dark energy perturbations models for
phantom and quintessence cases with c2de = 1 provided by the solid lines. These are the same
lines as the ones in the left panel.

Figure 5.3: Dependence of the skewness on the density parameter Ωm0. In the left panel the
dot-dashed lines represent c2de = 0, solid lines c2de = 1 and dashed lines is the case
without dark energy perturbations (δde = 0). The colors refer to different wde values:
blue for wde = −1, magenta for wde = −1.2 and orange for wde = −0.9. The dashed
and solid blue lines are indistinguishable. On the right side we show the skewness
for Λ ̸= 0 by Bernardeau (1994) [6] (dashed blue) compared to our result (dashed
black) for the ΛCDM case (wde = −1, Ωm0 = 0.3 (black dot) and no dark energy
perturbations δde = 0). The black line is for the EdS skewness value of 34/7 = 4.857.
The fit Eq.(5.23) is represented by the red cross symbols.

Source: Produced by the author [5].

The plot on Figure 5.4 shows a different point of view from the previous figure, where it shows
the dependence of S3 on the dark energy equation of state parameter wde. The dot-dashed and
solid lines still represents the cases of c2de = 0 and c2de = 1 respectively. Changing the point of view
provides us with the same results where the difference between the cases without dark energy
perturbations and c2de = 1 are very small. It is interesting to notice that around wde ∼ −0.92, for
the c2de = 0 cases there is a change in the dependence of the skewness at the same time it crosses
the usual S3 EdS value, such that the cases with more matter Ωm0 = 0.4 passes to have greater
skewness for wde ≥ −0.92 cases than the Ωm0 = 0.2 cases that have less matter quantity.
We also have the behavior of the growth functionsD1 andD2 as a function of time in Figure 5.5.
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Figure 5.4: Dependence of S3 on the dark energy equation of state wde. The colored curves
refers to different values of the matter density parameter, namely Ωm0 = 0.2 (red),
Ωm0 = 0.3 (blue) and Ωm0 = 0.4 (purple). The black line sets the Einstein-de Sitter
value 34/7. We assumed c2de = 1 for solid lines, c2de = 0 for dot-dashed lines and no
DE perturbations (δde = 0) for dashed lines (hardly visible next to the solid curves).

Source: Produced by the author [5].

This plot is made for several values of wde as used in previous plots but fixed Ωm0 = 0.3.
With our set equations we can provide more general fitting formulas of S3 with the wde, Ωm0

and c2de variables. First we set a simple parametrization using only Ωm0 and wde as variables:

S3(Ωm0, wde) = a+ b(Ωc
m0 − 1) + d|(1 + wde)|e + f(1 + Ωm0wde). (5.24)

The expression above for S3 has six constants represented by the letters a, b, c, d, e and f . We
provided tables for two scenarios, one for phantom Table 5.1 and the other for quintessence
Table 5.2 cases. Each table shows which value of the dark energy sound velocity c2de is fixed and
the respective MRD and ASRD measurements.
We have chosen the values of Table 5.2 for the fit of Equation 5.24 to show an example of the

accuracy of our fit in Figure 5.6, since its the case with the largest MRD and ASRD. For the
other parametrizations, since MRD and ASRD are smaller, it produces even better fits.
In tables Table 5.1 and Table 5.2 the results for c2de = 1 and c2de = 1/3 are very similar and c2de =

0 provides the more distinct result, this behavior was also observed in previous results Figure 5.2,
Figure 5.3, Figure 5.4. This can be explained since c2de = 0 vanishes with the oscillations provided
by the (k/H) ≈ 103 term from the DE perturbative equation Equation 5.16.
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Figure 5.5: D1 and D2 evolutions with the scale factor a. All cases are made for a fixed Ωm0 = 0.3
and different values of wde, wde = −1.2 magenta, wde = −1 blue, wde = −0.8 orange.
The solid lines represent D1 functions and D2 by the dashed lines.

Source: Produced by the author [5].

Table 5.1: Fit values for Eq. (5.24) for the phantom regime −1.25 ≤ wde ≤ −1.

Phantom (−1.25 ≤ wde ≤ −1) a b c d e f MRD% ASRD%

c2de = 0 4.858 0.049 1.492 0.052 0.841 0.069 0.04 0.01

c2de = 1 4.857 -0.034 0.625 -0.012 0.926 -0.015 0.01 0.002

c2de = 1/3 4.857 -0.034 0.621 -0.012 0.930 -0.015 0.01 0.002

Source: Produced by the author [5].

A general fit with c2de as a variable is also provided, with seven constants (a, b,...g) defined as

S3(Ωm0, wde, c
2
de) = a+ b(Ωc

m0 − 1) + d|(1 + wde)|e + f(1 + Ωm0wde) + g(c2de + wde). (5.25)

When c2de > H/k the skewness becomes almost independent of c2de. This can also be observed
in Figure 5.7 which shows an example for a fit using Figure 5.7. This fit will have greater MRD
and ASRD values since we are adding one more variable. The results are provided by Table 5.3
and Figure 5.7.
To finish our analysis an observational approach is made. In Figure 5.8 our result represented

by the red solid line is compared to observational data from the CFHTLS-Wide (Canada-France-
Hawaii Telescope Legacy Survey) survey [81] studied in [7]. As in [57], [7], [56] and [82] we used
the expression for skewness Equation 4.88.
In the work of Wolk et all[7], they use the data from CFHTLS-Wide to construct several

samples, limited by a volume, of galaxies. These would contain more than one million galaxies
around the redshift of 0.2 < z < 1. They provide the skewness by using a count-in-cells technique.
The measured skewness used for Figure 5.8 is showed in Table 5.5, Table 5.6, Table 5.7 and

Table 5.8. For the first column, we have the angular size of the square cell that was used to
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Figure 5.6: Variation of skewness with Ωm0 and wde. On the left panels we fix Ωm0 = 0.3; on the
right panels we fix wde = −0.9. The red line represents the fit from Eq. (5.24) and
Table 5.2, and the black dots the data. Here we have the case for c2de = 0 (top row)
and c2de = 1 (lower row).

Source: Produced by the author [5].

Figure 5.7: Variation of skewness with c2de. The red line represents the fit Eq.(5.25) and Table
5.3 for Ωm0 = 0.3 and wde = −0.9; the black dots are the data.

Source: Produced by the author [5].
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Table 5.2: Fit values for Eq. (5.24) for the quintessence regime −1 ≤ wde ≤ −0.8.

Quintessence (−1 ≤ wde ≤ −0.8) a b c d e f MRD% ASRD%

c2de = 0 4.853 0.186 0.946 -0.216 1.143 0.198 0.1 0.01

c2de = 1 4.858 -0.050 0.574 0.026 1.075 -0.026 0.02 0.002

c2de = 1/3 4.858 -0.050 0.556 0.024 1.070 -0.025 0.02 0.002

Source: Produced by the author [5].

Table 5.3: Fit values for Eq. (5.25) for the phantom and quintessence regimes.
a b c d e f g MRD% ASRD%

Phantom (−1.25 ≤ wde ≤ −1) 4.856 -0.032 0.413 -0.008 1.012 -0.007 -0.002 0.3 0.03

Quintessence (−1 ≤ wde ≤ −0.8) 4.859 -0.053 0.172 -158780 14.258 0.003 0.003 0.8 0.06

Source: Produced by the author [5].

perform the measurement. The second column provides the skewness and the third one is its
error bar. The measurement for skewness in this work [7] is done by a count-in-cells method. To
convert the angular size θ to the physical scale of R, we used

R = x ∗ ·θ (5.26)

where x∗ is the characteristic scale of x that in [7] represents the comoving distance.
The x∗ values for each set of bins used are in Table 5.4, more details about the method in [7].

With these measurements, we can associate each skewness measured to the physical scale of R
resulting in the observational points in Figure 5.8.
The γ1 term from Equation 4.88 provides the count-in-cells correction [6], [7]. To obtain our

theoretical line we solve our set of equations Equation 5.14-5.16 and add this correction to the
skewness value.
The σ2(R) equation in the definition of Equation 4.88 represents the variance of the density

field in real space Equation 4.56.
We used the values of the power spectrum provided by CAMB [83], [84]. As for the window

function, we selected a function that was less oscillating than the top-hat one given by

W (kR) =

√
2e

− kR√
2

kR
sin

(
kR√
2

)
, (5.27)

where W(kR) is the Fourier transform of the smoothed window function for a spherically sym-
metric region with characteristic radius R defined as W (r) = 1/(1 + r/R4) normalized to unity.

Table 5.4: Characteristic scale x∗ values.

x*
(0.2 < z < 0.4) 1280
(0.4 < z < 0.6) 1910
(0.6 < z < 0.8) 2530
(0.8 < z < 1) 3010

Characteristc scale value used in Wolk et all [7].
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Table 5.5: Skewness data used for the reproduction of Figure 5.8. This table is for the set of the
bin (0.2 < z < 0.4).

θ (0.2 < z < 0.4) S3 σS3
0.0011 9.34 4.84
0.0016 4.45 1.33
0.0027 4.72 1.21
0.0043 4.90 0.91
0.0070 4.39 0.55
0.0118 3.73 0.38
0.0193 3.62 0.21
0.0317 3.67 0.14
0.0516 3.71 0.22
0.0849 3.59 0.31
0.1392 3.30 0.40
0.2273 3.06 0.46
0.3729 2.99 0.65
0.6105 3.02 0.81
1.0001 2.81 0.63

Measurements from Wolk et all [7].

Table 5.6: Skewness data used for the reproduction of Figure 5.8. This table is for the set of the
bin (0.4 < z < 0.6).

θ (0.4 < z < 0.6) S3 σS3
0.0011 8.18 4.10
0.0016 6.27 2.45
0.0027 4.46 1.03
0.0043 4.12 0.54
0.0070 4.01 0.27
0.0118 4.03 0.15
0.0193 4.10 0.09
0.0317 4.17 0.14
0.0516 4.09 0.13
0.0849 3.72 0.12
0.1392 3.30 0.10
0.2273 3.15 0.17
0.3729 3.07 0.35
0.6105 3.12 0.60
1.0001 4.01 0.87

Measurements from Wolk et all [7].
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Table 5.7: Skewness data used for the reproduction of Figure 5.8. This table is for the set of the
bin (0.6 < z < 0.8).

θ (0.6 < z < 0.8) S3 σS3
0.0011 7.32 3.43
0.0016 7.64 2.53
0.0027 5.30 1.08
0.0043 4.86 0.70
0.0070 4.64 0.54
0.0118 4.62 0.45
0.0193 4.60 0.44
0.0317 4.40 0.44
0.0516 4.05 0.49
0.0849 3.58 0.48
0.1392 3.13 0.45
0.2273 2.67 0.36
0.3729 2.13 0.41
0.6105 1.06 0.43
1.0001 -0.69 0.33

Measurements from Wolk et all [7].

Table 5.8: Skewness data used for the reproduction of Figure 5.8. This table is for the set of the
bin (0.8 < z < 1).

θ (0.8 < z < 1) S3 σS3
0.0011 11.0 3.75
0.0016 11.5 3.18
0.0027 6.96 2.01
0.0043 5.54 1.55
0.0070 5.20 1.41
0.0118 5.01 1.19
0.0193 4.77 1.02
0.0317 4.54 0.93
0.0516 4.23 0.85
0.0849 3.60 0.62
0.1392 2.99 0.44
0.2273 2.45 0.34
0.3729 1.81 0.39
0.6105 0.99 0.47
1.0001 -0.36 0.95

Measurements from Wolk et all [7].
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Figure 5.8: Skewness compared to observational data from [7]. The red line represents the theo-
retical plot using our set of equations with Ωm0 = 0.27 and H0 = 71 km/s/Mpc that
was also used in [7]. The cases for different values of wde and c

2
de are indistinguishable

in this scale. Also, the theoretical curve is almost independent of z; we plot here the
z = 0.9 case.

Source: Produced by the author [5].

The window function expresses the way the particles will be selected within a given region, being
constant inside the survey and zero outside, in our case, we have just chosen a different expression
to obtain a greater range and smoothed results in Figure 5.8.
When the theoretical line was calculated it was noticed that, at least on this plot scale, the

skewness is almost independent of the redshift z, being indistinguishable from the intervals of
z tested for this analysis. The intervals were like the ones from the observational data z =
{0.3, 0.4, 0.7 and 0.9}.
From this plot, we can only assume that very high precision is needed to evaluate such models

with this kind of observational data since different models of wde and c2de were indistinguishable
on this scale. The analysis on [7] did not manage to provide a theoretical function through all
the data like in our plot Figure 5.8, we assumed that this could be due to the window function
used, but this information was not provided by the authors in their analysis.
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CHAPTER 6

Conclusions

6.1 Conclusion

The idea of clustering dark energy seems unnatural due to the usual denomination of a dark
energy fluid that is responsible to accelerate the background expansion of the universe and, in
principle, has no contribution to the mass quantity of galaxies and galaxy clusters. In fact, the
main candidate to account for this effect, the cosmological constant Λ, behaves as its name i.e.,
it is constant in space and time admitting no clustering. This comes with the consequence that
most alternative dark energy models do not consider any fluctuations in this component or have
their fluctuations being negligible, such as in quintessence models, for scales below the horizon.
Nevertheless, there is room for investigating clustering dark energy models. For example, studies
about the abundance of galaxies clusters and the Planck satellite have shown fewer clusters than
expected by the standard model through the Sunyaev-Zel’dovich effect [13], [85], [86], [54]. This
analysis focus on the correlation between the CMB anisotropies and the structure formation
patterns seen today. One can conclude that something could be interfering in these structure
formation processes in a way that the ΛCDM model could not predict. This opens room to
models that can present dark energy fluctuations and also for different values of wde since the
recent observations could not constrain how much this parameter can deviate in some intermediate
redshifts. Also, the cosmological constant and coincidence problems mentioned previously also
contribute to motivating such investigations in possible new dark energy scenarios.
Using higher order terms of the matter perturbation expansion we can put to test such time

evolving model for dark energy. In this case, we used the skewness of the matter density field as
a cosmological probe. Skewness in the case of the matter density is usually calculated for models
where Λ can be zero (for EdS models) or for nonzero cases where it would be able to test some
constant values for wde [56], [57]. But we can go beyond and add dark energy perturbations.
This has to be done carefully as seen in our different results from section 4.4 and section 5.2.

This work tested several clustering dark energy models that range from the quintessence to
phantom cases. Four our first set of results in section 4.4 we have used the values for the
sound speed for dark energy c2de as dependent on the equation of state and also included these
dark energy perturbations directly as a part of the matter contained in the total equation of
state parameter. This would show a great impact and increase on skewness where this single
fluid would have more ”matter” and its sound velocity would have unusual values due to being
directly connected to the wde parameter.

This first result would make us wonder if this result would remain for a more general analysis
where the dark energy fluctuations would have their own evolution equation acting as a source for
the gravitational potential sided by the matter content and not directly included in the matter
density contrast as before. These results in section 5.2 would give us another view, where the
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skewness would have a closer value to the ΛCDM model. The greater differences would rise from
models with c2de = 0 both for phantom and quintessence cases. Depending on the regime this
speed would increase or lower the skewness to greater values than for c2de > 0 cases. As for values
of wde = −1 the skewness was shown to be not a useful tool to test different clustering dark
energy models with different sound speeds.
This second set of results would also be used to provide fit equations for skewness. These fits

aim to provide expressions with other parameters not usually provided in the literature, as in
the literature is usually done an approximation around EdS and ΛCDM models. Such models
would show that skewness has very low dependence on the matter density parameter Ωm, but we
had our interest to see and show how an equation would look like for extra parameters such as
wde and cde. These fits can be useful to compare cosmological models to scale structures at high
orders.

6.2 Future

During this research was very difficult to find observable data testing this matter density skewness
for cosmological models. We have provided one observational result but this would only show
that on that scale skewness was not useful to test models with observational data. Maybe future
experiments such as Euclid can provide data to differentiate at least cases with and without dark
energy fluctuations. The model itself with clustering dark energy is also not very explored in
the literature and can be expanded much further. This analysis with skewness can be extended
also for modified gravity since its an alternative tool to explain the accelerated cosmic expansion
[87], [88]. This work shows that much can be explored both with skewness analysis and with
clustering dark energy and that maybe future data with more precision to evaluate even small
perturbations could bring more attention to this area.
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CHAPTER 7

Appendix

In the following pages, there are some of the codes used in this work starting with the code
used to calculate skewness for the c2de = 0 and c2de = 1 cases from Figure 5.3.
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Solving D1, D2, δde

In[1]:= Clear[Ωm0, w0, ca, cde, D1q, D2q, wde, w1, FDE, δde]

In[2]:= Ωm0 = 0.3;

w0 = -0.99999;

cde[x_] := 1;

wde[x_] = w0;

H0 = 1/3000;

FDE[x_] = Exp[-3*Integrate[(1 + wde[x])/x, x]];

Ωm[x_] := Ωm0*x-3Ωm0*x-3 + (1 - Ωm0)*FDE[x];

Ωde[x_] := ((1 - Ωm0)*FDE[x])Ωm0*x-3 + (1 - Ωm0)*FDE[x];

H[x_] := H0*Ωm0x3 + (1 - Ωm0)*FDE[x]
1/2

;

k = 0.01;(*h/Mpc*)(*oscillation less strong in 0.01 than 0.1*)

aeq = 1/(1 + 300 000);

In[13]:= EQde[x_] := x2*δde''[x] + x*δde'[x]* 3*(cde[x] - wde[x]) + 3 +
x*H'[x]

H[x]
- x*

wde'[x]

1 + wde[x]
+

3*δde[x] x*(cde'[x] - wde'[x]) +

2 + x*
H'[x]

H[x]
*(cde[x] - wde[x]) + x*

wde'[x]*(wde[x] - cde[x])

1 + wde[x]
-

(1 + wde[x])*(3/2)*(Ωm[x]*D1q[x] + Ωde[x]*δde[x]*(1 + 3*cde[x])) +

1 + wde[x]

x2*(H[x])2
*k2*

cde[x]*δde[x]

1 + wde[x]
 0;

EQ1[x_] := x2*D1q''[x] + x*D1q'[x]* 3 +
x*H'[x]

H[x]
-

(3/2)*D1q[x]*Ωm[x] - (3/2)*Ωde[x]*δde[x]*(1 + 3 cde[x]) 0;

EQ2[x_] :=

x2*D2q''[x] + x*D2q'[x]* 3 +
x*H'[x]

H[x]
- (8/3)*x2*(D1q'[x])2 - (3/2)*(D2q[x])*Ωm[x] -

3*(D1q[x])2*Ωm[x] - 3*(D1q[x])*Ωde[x]*(δde[x])*(1 + 3*cde[x]) 0;

solAll = NDSolveEQ1[x], EQde[x], EQ2[x],

D1q[aeq] aeq, D1q'[aeq]
D1q[aeq]

aeq
, δde[aeq] 10-5, δde'[aeq] 10-5,

D2q[aeq] (aeq)2, D2q'[aeq] 2*
D2q[aeq]

aeq
, {D1q, δde, D2q}, {x, aeq, 1};

In[17]:= D1res[x_] = D1q[x] /. solAll;

D1r = D1res[1]; (*it will be evaluated today in a=1*)

D2res[x_] = D2q[x] /. solAll;

D2r = D2res[1];

S3 =
3 *(D2r)

(D1r)2

Out[21]= {4.86453}
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cde=0 with Ωm0 and wde variation:

In[22]:= Clear[Ωm0, w0, ca, cde, D1q, D2q, wde, w1, FDE, δde]

In[23]:= wde[x_] = w0;

H0 = 1/3000;

FDE[x_] = Exp[-3*Integrate[(1 + wde[x])/x, x]];

Ωm[x_] := Ωm0*x-3Ωm0*x-3 + (1 - Ωm0)*FDE[x];

Ωde[x_] := ((1 - Ωm0)*FDE[x])Ωm0*x-3 + (1 - Ωm0)*FDE[x];

H[x_] := H0*Ωm0x3 + (1 - Ωm0)*FDE[x]
1/2

;

k = 0.01;(*h/Mpc*)(*oscillation less strong in 0.01 than 0.1*)

aeq = 1/(1 + 300 000);

In[31]:= Ωm0min = 1/100; Ωm0max = 1; frac1 = 1/100;

w0min = -125/100; w0max = -79/100; frac2 = 2/100;

cde[x_] := 0;

dataS31 =

ParallelTablecounter++;

EQde[x_] :=

x2*δde''[x] + x*δde'[x]* 3*(cde[x] - wde[x]) + 3 +
x*H'[x]

H[x]
- x*

wde'[x]

1 + wde[x]
+

3*δde[x] x*(cde'[x] - wde'[x]) +

2 + x*
H'[x]

H[x]
*(cde[x] - wde[x]) + x*

wde'[x]*(wde[x] - cde[x])

1 + wde[x]
-

(1 + wde[x])*(3/2)*(Ωm[x]*D1q[x] + Ωde[x]*δde[x]*(1 + 3*cde[x])) +

1 + wde[x]

x2*(H[x])2
*k2*

cde[x]*δde[x]

1 + wde[x]
 0;

EQ1[x_] := x2*D1q''[x] + x*D1q'[x]* 3 +
x*H'[x]

H[x]
-

(3/2)*D1q[x]*Ωm[x] - (3/2)*Ωde[x]*δde[x]*(1 + 3 cde[x]) 0;

EQ2[x_] :=

x2*D2q''[x] + x*D2q'[x]* 3 +
x*H'[x]

H[x]
- (8/3)*x2*(D1q'[x])2 - (3/2)*(D2q[x])*Ωm[x] -

3*(D1q[x])2*Ωm[x] - 3*(D1q[x])*Ωde[x]*(δde[x])*(1 + 3*cde[x]) 0;

solAll1 = NDSolveEQ1[x], EQde[x], EQ2[x],

D1q[aeq] aeq, D1q'[aeq]
D1q[aeq]

aeq
, δde[aeq] 10-5, δde'[aeq] 10-5,

D2q[aeq] (aeq)2, D2q'[aeq] 2*
D2q[aeq]

aeq
, {D1q, δde, D2q}, {x, aeq, 1};

D1res[x_] = D1q[x] /. solAll1;

D1r = D1res[1]; (*it will be evaluated today in a=1*)

D2res[x_] = D2q[x] /. solAll1;

D2r = D2res[1];

S31 = Ωm0, w0,
3 *(D2r)

(D1r)2
〚1〛

, {Ωm0, Ωm0min, Ωm0max, frac1}, {w0, w0min, w0max, frac2};

In[42]:= c0newdatas3 = Flatten[dataS31, 1];
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In[43]:= MatrixQ@c0newdatas3

Out[43]= True

In[44]:= c0dataw0m011 = c0newdatas3 /. {x_, y_ /; y ≠ -1.19, z_}  Nothing;

c0dataw0m10 = c0newdatas3 /. {x_, y_ /; y ≠ -0.99, z_}  Nothing;

c0dataw0m09 = c0newdatas3 /. {x_, y_ /; y ≠ -0.89, z_}  Nothing(*-0.89 or -0.91*);

c0data2Dw0m11 = Map[Drop[#, {2}] &, c0dataw0m011];

c0data2Dw0m10 = Map[Drop[#, {2}] &, c0dataw0m10];

c0data2Dw0m09 = Map[Drop[#, {2}] &, c0dataw0m09];

In[50]:= MatrixQ@c0data2Dw0m10

Out[50]= True

In[51]:= c0plotw0m10 =

ListLinePlot[c0data2Dw0m10, PlotStyle  {Blue, Dashing  {0.025, 0.025/2, 0.01}}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All]

Out[51]=
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In[52]:= c0plotw0m11 = ListLinePlot[c0data2Dw0m11,

PlotStyle  {Magenta, Dashing  {0.025, 0.025/2, 0.01}}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];

In[53]:= c0plotw0m09 = ListLinePlot[c0data2Dw0m09,

PlotStyle  {Orange, Dashing  {0.025, 0.025/2, 0.01}}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];
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cde=1;

In[54]:= Clear[Ωm0, w0, ca, cde, D1q, D2q, wde, w1, FDE, δde]

In[55]:= cde[x_] := 1;

wde[x_] = w0;

H0 = 1/3000;

FDE[x_] = Exp[-3*Integrate[(1 + wde[x])/x, x]];

Ωm[x_] := Ωm0*x-3Ωm0*x-3 + (1 - Ωm0)*FDE[x];

Ωde[x_] := ((1 - Ωm0)*FDE[x])Ωm0*x-3 + (1 - Ωm0)*FDE[x];

H[x_] := H0*Ωm0x3 + (1 - Ωm0)*FDE[x]
1/2

;

k = 0.01;(*h/Mpc*)(*oscillation less strong in 0.01 than 0.1*)

In[63]:= Ωm0min = 1/100; Ωm0max = 1; frac1 = 1/100;

w0min = -125/100; w0max = -79/100; frac2 = 2/100;

(*w1min=-0.2;

w1max=0.2;*)

In[65]:= dataS32 =

ParallelTablecounter++;

EQde[x_] :=

x2*δde''[x] + x*δde'[x]* 3*(cde[x] - wde[x]) + 3 +
x*H'[x]

H[x]
- x*

wde'[x]

1 + wde[x]
+

3*δde[x] x*(cde'[x] - wde'[x]) +

2 + x*
H'[x]

H[x]
*(cde[x] - wde[x]) + x*

wde'[x]*(wde[x] - cde[x])

1 + wde[x]
-

(1 + wde[x])*(3/2)*(Ωm[x]*D1q[x] + Ωde[x]*δde[x]*(1 + 3*cde[x])) +

1 + wde[x]

x2*(H[x])2
*k2*

cde[x]*δde[x]

1 + wde[x]
 0;

EQ1[x_] := x2*D1q''[x] + x*D1q'[x]* 3 +
x*H'[x]

H[x]
-

(3/2)*D1q[x]*Ωm[x] - (3/2)*Ωde[x]*δde[x]*(1 + 3 cde[x]) 0;

EQ2[x_] :=

x2*D2q''[x] + x*D2q'[x]* 3 +
x*H'[x]

H[x]
- (8/3)*x2*(D1q'[x])2 - (3/2)*(D2q[x])*Ωm[x] -

3*(D1q[x])2*Ωm[x] - 3*(D1q[x])*Ωde[x]*(δde[x])*(1 + 3*cde[x]) 0;

solAll2 = NDSolveEQ1[x], EQde[x], EQ2[x],

D1q[aeq] aeq, D1q'[aeq]
D1q[aeq]

aeq
, δde[aeq] 10-5, δde'[aeq] 10-5,

D2q[aeq] (aeq)2, D2q'[aeq] 2*
D2q[aeq]

aeq
, {D1q, δde, D2q}, {x, aeq, 1};

D1res[x_] = D1q[x] /. solAll2;

D1r = D1res[1]; (*it will be evaluated today in a=1*)

D2res[x_] = D2q[x] /. solAll2;

D2r = D2res[1];

S3 = Ωm0, w0,
3 *(D2r)

(D1r)2
〚1〛

, {Ωm0, Ωm0min, Ωm0max, frac1}, {w0, w0min, w0max, frac2};

In[66]:= newdatas32 = Flatten[dataS32, 1];
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In[67]:= MatrixQ@newdatas3

Out[67]= False

In[68]:= dataw0m0112 = newdatas32 /. {x_, y_ /; y ≠ -1.19, z_}  Nothing;

dataw0m102 = newdatas32 /. {x_, y_ /; y ≠ -0.99, z_}  Nothing;

dataw0m092 = newdatas32 /. {x_, y_ /; y ≠ -0.89, z_}  Nothing(*-0.89 or -0.91*);

data2Dw0m112 = Map[Drop[#, {2}] &, dataw0m0112];

data2Dw0m102 = Map[Drop[#, {2}] &, dataw0m102];

data2Dw0m092 = Map[Drop[#, {2}] &, dataw0m092];

In[74]:= plotw0m102 = ListLinePlot[data2Dw0m102, PlotStyle  {Blue}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All]

Out[74]=
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In[75]:= plotw0m112 = ListLinePlot[data2Dw0m112, PlotStyle  {Magenta, Thickness[0.005]}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];

In[76]:= plotw0m092 = ListLinePlot[data2Dw0m092, PlotStyle  {Orange}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];

SkewDEc1c0test.nb     5

Printed by Wolfram Mathematica Student Edition



No DE perturbations

In[77]:= Clear[Ωm0, w0, ca, cde, D1q, D2q, wde, w1, FDE, δde]

In[78]:= cde[x_] := 1;

wde[x_] = w0;

H0 = 1/3000;

FDE[x_] = Exp[-3*Integrate[(1 + wde[x])/x, x]];

Ωm[x_] := Ωm0*x-3Ωm0*x-3 + (1 - Ωm0)*FDE[x];

Ωde[x_] := ((1 - Ωm0)*FDE[x])Ωm0*x-3 + (1 - Ωm0)*FDE[x];

H[x_] := H0*Ωm0x3 + (1 - Ωm0)*FDE[x]
1/2

;

k = 0.01;

(*h/Mpc*)

In[86]:= Ωm0min = 1/100; Ωm0max = 1; frac1 = 1/100;

w0min = -125/100; w0max = -79/100; frac2 = 2/100;

In[88]:= dataS3n =

ParallelTablecounter++;

EQ1[x_] := x2*D1q''[x] + x*D1q'[x]* 3 +
x*H'[x]

H[x]
- (3/2)*D1q[x]*Ωm[x] 0;

EQ2[x_] := x2*D2q''[x] + x*D2q'[x]* 3 +
x*H'[x]

H[x]
-

(8/3)*x2*(D1q'[x])2 - (3/2)*(D2q[x])*Ωm[x] - 3*(D1q[x])2*Ωm[x] 0;

solAlln = NDSolveEQ1[x], EQ2[x], D1q[aeq] aeq, D1q'[aeq]
D1q[aeq]

aeq
,

D2q[aeq] (aeq)2, D2q'[aeq] 2*
D2q[aeq]

aeq
, {D1q, D2q}, {x, aeq, 1};

D1res[x_] = D1q[x] /. solAlln;

D1r = D1res[1]; (*it will be evaluated today in a=1*)

D2res[x_] = D2q[x] /. solAlln;

D2r = D2res[1];

S3 = Ωm0, w0,
3 *(D2r)

(D1r)2
〚1〛

, {Ωm0, Ωm0min, Ωm0max, frac1}, {w0, w0min, w0max, frac2};

In[89]:= newdatas3n = Flatten[dataS3n, 1];

In[90]:= MatrixQ@newdatas3

Out[90]= False

In[91]:= dataw0m011n = newdatas3n /. {x_, y_ /; y ≠ -1.19, z_}  Nothing;

dataw0m10n = newdatas3n /. {x_, y_ /; y ≠ -0.99, z_}  Nothing;

dataw0m09n = newdatas3n /. {x_, y_ /; y ≠ -0.89, z_}  Nothing(*-0.89 or -0.91*);

data2Dw0m11n = Map[Drop[#, {2}] &, dataw0m011n];

data2Dw0m10n = Map[Drop[#, {2}] &, dataw0m10n];

data2Dw0m09n = Map[Drop[#, {2}] &, dataw0m09n];
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In[97]:= nodeplotw0m10 = ListLinePlot[data2Dw0m10n, PlotStyle  {Dashing  {0.05}, Blue}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All]

Out[97]=
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In[98]:= nodeplotw0m11 = ListLinePlot[data2Dw0m11n, PlotStyle  {Magenta, Dashing  {0.05}}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];

In[99]:= nodeplotw0m09 = ListLinePlot[data2Dw0m09n, PlotStyle  {Dashing  {0.05}, Orange}, Frame  True,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black], StyleForm["S3", "Subsection", Black]},

FrameTicksStyle  Directive[Black, 16], PlotRange  All];
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In[100]:= Show[plotw0m092, plotw0m112, plotw0m102, c0plotw0m09, c0plotw0m11,

c0plotw0m10, FrameLabel  {StyleForm["Ωm0", "Subsection", Black, FontSize  30],

StyleForm["S3(z=0)", "Subsection", Black, FontSize  30]},

FrameTicksStyle  Directive[Black, 24], PlotRange  {{0, 1}, {4.84, 4.92}},

Axes  False, AspectRatio  3/2, ImageSize  Large];

In[101]:= Show[nodeplotw0m09, plotw0m092, PlotRange  All]

Out[101]=
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In[102]:= Show[nodeplotw0m10, plotw0m102];
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In[103]:= Show[plotw0m092, plotw0m112, plotw0m102, c0plotw0m09,

c0plotw0m11, c0plotw0m10, nodeplotw0m09, nodeplotw0m10, nodeplotw0m11,

FrameLabel  {StyleForm["Ωm0", "Subsection", Black, FontSize  30],

StyleForm["S3(z=0)", "Subsection", Black, FontSize  30]},

FrameTicksStyle  Directive[Black, 24], PlotRange  {{0.1, 1}, {4.85, 4.89}}, Axes  False,

AspectRatio  3/2, ImageSize  Large, Epilog  {Black, PointSize[Large], Point[{0.3, 4.8647}],

Text[Style["ΛCDM", FontSize  16, Black], Offset[{20, 10}, {0.3, 4.865}]]}]

Out[ ]=
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