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Abstract

In recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine

Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scien-

tific community for implementing robotic systems for rehabilitation. For instance, Motorized

Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by

Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low

customization in applications. In addition, intentionality detection with EEG signals during

pedaling tasks has not been fully explored.

This dissertation aims to use different strategies on EEG signals for the detection of pedaling

tasks using several algorithms. In addition, these methodologies approaches to implement

real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive ped-

aling, and MI tasks were executed, and different signal processing methodologies were ad-

dressed. Machine and deep learning techniques were used here to classify EEG signals with

accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based

methods were also used to identify MI tasks after passive pedaling at three different speeds

(30, 45, and 60 rpm) with accuracies close to 0.78.

Additionally, a BCI was designed with visual neurofeedback, passive pedaling assistance, and

MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80,

and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it

was possible to observe the cortical response in the parieto-central cortex of the brain during

the session. The results allow concluding that the implemented methodologies are feasible

and accurate for the design of robotic lower limb BCIs that allow more personalized physical

and neural neurorehabilitation and better human-machine interaction, which could help in

the restoration of skills of people with neuromotor disabilities.

The results presented here open the door to continue exploring brain information during the

development of lower-limb tasks that may allow technological innovation in BCI systems for

rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for

people with neuromotor impairments, such as post-stroke or spinal cord injury populations.
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Resumo

Nos últimos anos, o desenvolvimento de Interfaces Cérebro-Computador (ICC) com Eletroen-

cefalografia (EEG) ganhou reconhecimento na comunidade cient́ıfica para a implementação

de sistemas de reabilitação robótica. Por exemplo, os Monociclos Estáticos Motorizados

(MEMs) têm sido usadas para assistência passiva, com controle acionado pela Imagética

Motora (IM). No entanto, essas ICCs enfrentam desafios como longo tempo de calibração,

baixa personalização em aplicativos. Ademais, a detecção de intencionalidade com sinais de

EEG durante tarefas de pedalada ainda não foi totalmente explorada.

Esta dissertação tem como objetivo utilizar diferentes estratégias algoŕıtmicas em sinais de

EEG para a detecção de tarefas de pedalada, utilizando várias abordagens algoŕıtmicas para

implementar ICCs de neurorreabilitação em tempo real. Para isso, foram executados pro-

tocolos com tarefas de pedalada ativa, pedalada passiva e MI, onde foram abordadas difer-

entes metodologias de processamento de sinais. Foram utilizadas técnicas de aprendizado

de máquina e aprendizado profundo para classificar sinais de EEG com precisão próxima a

0.95 para MI e 0.80 para pedalada passiva. Métodos baseados em geometria Riemanniana

também foram utilizados para identificar tarefas de IM após o recebimento de pedaladas

passivas em três velocidades diferentes (30, 45 e 60 rpm) com precisão próxima a 0.78.

Além disso, foi projetada uma ICC com neurofeedback visual, assistência passiva ao pedal

e IM, que foi avaliada na fase on-line, alcançando uma precisão de aproximadamente 0.80 e

fornecendo um feedback ao o indiv́ıduo, com o objetivo de incentivar modulações. Posterior-

mente, foi posśıvel observar a resposta cortical no córtex parieto-central do cérebro durante a

sessão. Os resultados nos permitem concluir que as metodologias implementadas são viáveis

e precisas para o projeto de ICCs robóticas de membros inferiores. Ademas, elas permitem

uma neurorreabilitação f́ısica e neural mais personalizada e uma melhor interação homem-

máquina, o que poderia ajudar na restauração das habilidades de pessoas com deficiências

neuromotoras.

Os resultados apresentados aqui deixam a porta aberta para continuar explorando as in-

formações cerebrais durante o desenvolvimento de tarefas para membros inferiores, o que

pode permitir a inovação tecnológica em sistemas de ICC para reabilitação. Além disso,

propõe-se utilizar o sistema proposto em intervenções terapêuticas para pessoas com deficiência

neuromotora, como pacientes pós-AVC ou com lesão da medula espinhal.
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Resumen

En los últimos años, el desarrollo de Interfaces Cerebro-Máquina (ICC) con Electroence-

falograf́ıa (EEG) ha ganado reconocimiento en la comunidad cient́ıfica para implementar

sistemas robóticos de rehabilitación. Por ejemplo, Minibicicletas Estáticas Motorizadas

(MEMs) han sido utilizadas para asistencia pasiva, con control impulsado por Imaginación

Motora (IM). No obstante, estas ICC enfrentan desaf́ıos como calibraciones largas, baja per-

sonalización en las aplicaciones, además de que la detección de intencionalidad con señales

de EEG durante tareas de pedaleo no ha sido totalmente profundizada.

Esta disertación tiene el objetivo de utilizar diferentes estrategias en señales EEG para la de-

tección de tareas de pedaleo, utilizando varios enfoques algoŕıtmicos para implementar ICCs

de neurorrehabilitación en tiempo real. Para esto fueron ejecutados protocolos con tareas

de pedaleo activo, pedaleo pasivo e IM, donde diferentes metodoloǵıas de procesamiento de

señales fueron abordadas. Fueron utilizadas técnicas de Aprendizaje de Máquinas y Apren-

dizaje Profundo para clasificar señales EEG con exactitudes cercanas a 0.95 para IM y 0.80

para pedaleo pasivo. También fueron utilizados métodos basados en la geometŕıa de Riemann

para identificar tareas de IM después de recibir pedaleo pasivo en tres diferentes velocidades

(30, 45, y 60 rpm) con exactitudes cercanas al 0.78.

Adicionalmente, fue diseñada una ICC con neuroretroalimentación visual, asistencia pasiva

de pedaleo e IM, la cual fue evaluada en fase online logrando una precisión de aproximada-

mente 0.80 y aportando un feedback al sujeto con el objetivo de incentivar las modulaciones.

Posteriormente, fue posible observar la respuesta cortical en la corteza parieto-central del

cerebro durante la sesión. Los resultados permiten concluir que las metodoloǵıas implemen-

tadas son viables y precisas para el diseño de ICCs robóticas de miembros inferiores. Además,

dichas metodoloǵıas permiten una neurorehabilitación f́ısica y neural más personalizada y

una mejor interacción humano-máquina, las cuales podŕıan ayudar en la restauración de

habilidades de personas en condiciones de discapacidad neuromotora.

Los resultados aqúı presentados dejan la puerta abierta para continuar explorando la infor-

mación cerebral durante el desarrollo de tareas de miembros inferiores que puede permitir

la innovación tecnológica en los sistemas ICC para rehabilitación. Adicionalmente, se pro-

pone utilizar el sistema propuesto en intervenciones terapeúticas de personas con deficiencia

neuromotora, como población post-ictus o con lesión de la médula espinal.
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1 Introduction

1.1 Motivation

According to the last report of the World Health Organization (WHO), approximately 15.6%

of the world’s population has a disability, of which 6.3% are related to neuromotor disability

[1]. Most neuromotor disabilities are caused by injuries to the neurological system, such as

Stroke or Spinal Cord Injury (SCI), which damage the Central Nervous System (CNS) and

Periferal Nervous System PNS [2]. On the one hand, a stroke is a neurological syndrome

that causes death or, in survivors, may cause the loss of the upper and lower limbs’ voluntary

control, thereby increasing the difficulty in performing Activities of Daily Living (ADLs) such

as walking, pedaling, and stability [2]. SCI refers to damage that affects the spinal cord, the

bridge between the brain and the body’s periphery, which can be caused by accidents, falls,

sports injuries, or other traumatic circumstances [3]. Depending on the severity and location

of the injury, the symptoms can range from loss of sensation and motor function to complete

paralysis. Therefore, neuromotor rehabilitation is essential for movement restoration and

the independence recovery in this population. For instance, a form of rehabilitation for

post-stroke or SCI patients is neuroplasticity [4].

Neuroplasticity is a phenomenon in the nervous system that refers to its ability to reorganize

and adapt through changes in the neural structure and synapses in response to experience,

learning, and injury [4]. This dynamic capacity allows the brain to modify its function to

recover its abilities after injury, as well as to adapt to new challenges and acquire new skills.

Neuroplasticity can manifest itself through changes in the strength of connections, formation

of new neural synapses, and reassignment of functions in brain areas, which can be induced

through physical, cognitive, and other exercise therapies [4]. The literature suggests that it

is possible that these populations can maintain neuroplasticity, allowing better recovery with

physical rehabilitation therapies, and even recovery of part of the movements approximately

6 months after injury [5].

Among the traditional methods of physical rehabilitation for post-stroke people are mirror

therapy [6, 7], exoskeletons [8, 9], treadmill training [10, 11] and the use of machines for

cycling exercises, such as Motorized Mini Exercise Bikes (MMEBs) [12, 13, 14]. Mirror

therapy is a noninvasive technique used in patients who suffer from the loss of one side

of the body (hemiparesis), which consists of performing tasks of the functional limb with a

mirror that reflects it as if it was the affected limb, intending to work the brain in re-learning

the movement [7]. However, it is a therapy that often may not generate any progress, or
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the patient recovers movement after a long time [6]. On the other hand, for lower limb

rehabilitation, exoskeletons have been used for gait assistance or stability in people with

neuromotor disabilities. However, these systems have a lot of complexity in infrastructure,

design, and control, and are often quite expensive [13, 15]. Finally, MMEBs in recent years

have been implemented for recovery of neuromotor functions in lower limb tasks [12, 13, 14],

considering that the literature reports that therapies related to cycling activities can have the

same results as walking activities, and additionally these therapies offer advantages related

to passive lower limb support, portability, among others [13].

Human-Machine Interfaces (HMIs) have been used to decode user intentions and control

robotic devices [16]. However, the challenge of the scientific community in this area is the

detection of intentions by different types of sensors that are comfortable, portable, and ac-

curate. Among the most widely used strategies reported in the literature for the design of

rehabilitation systems, the Electroencephalography (EEG) technique allows the detection of

mental activities, transforming them into commands that allow interaction with the envi-

ronment; this is known as Brain computer Interfaces (BCIs). However, it should be noted

that EEG signals have low signal-to-noise ratios (SNR), are time-varying, and are affected

by external noise as well as physiological artifacts of the individual [17].

BCIs have also been implemented with robotic systems, where it is possible to highlight

the use of brain information as a control signal for different devices such as exoskeletons

and prostheses [16]. In patients with brain and/or spinal cord injuries, it is important that

these devices focus on rehabilitating or assisting ADLs related to the lower limbs, such as

walking, pedaling, and standing, such as for instance, the proposals by Luu et al. and Ko et

al. for the control of lower-limb robotic assistance devices for gait rehabilitation with EEG-

initiated activation [18, 19]. However, it has also been identified that gait-related therapies

may require minimal movement capability, which may limit BCI use [15]. The feasibility of

MMEB has been envisioned because the patient can remain in a static position while passive

assistance is performed with robotic devices, which induces lower-limb exercise [13].

Thus, BCIs have been developed in recent years to measure the user’s brain signals and trans-

late their intention to activate systems that provide cycling movements, such as MMEBs.

For example, Romero et al. developed a low-cost system for detecting lower-limb MI and

MMEB activation for post-stroke rehabilitation [13]. Cardoso et al. found interesting corti-

cal information produced by the MI of pedaling tasks, along with connectivity, that could be

used to command lower limb rehabilitation devices [20]. Nevertheless, these control strate-

gies focus on on/off activations with constant speeds and high calibration times, which limit

HMI and system usability [21]. This issue leaves a gap for further research on passive pedal-

based BCIs, with the aim of improving intentionality detection, recognition models, and

personalized rehabilitation applications.

Nevertheless, the above strategy could allow the application of the concept of cognitive tasks

with passive movement, which would induce the use of brain regions that could be affected

after a stroke or SCI. In addition to motor rehabilitation, neuroplasticity can be generated
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(neurorehabilitation) [22]. A recently explored neurorehabilitation strategy is Neurofeedback

(NFB) [23]. NFB is a technique that teaches individuals to self-regulate their brain activity

using real-time measurements [23]. NFB can be visually indicated on a screen through

instructions that induce the patient to modulate their brain signals with a target. The

literature shows promising results obtained with this methodology when combined with

BCIs in the rehabilitation of post-stroke patients [24]. In this context, it is important to

highlight that NFB scanning combined with lower-limb assistive devices is not well known

in the literature [25, 26].

1.2 Objectives

The main objective of this Master Dissertation is to propose a BCI based on pedaling

tasks for conveying commands to a lower limb passive assistive device, in order to provide

neurorehabilitation to patients with neuromotor disabilities. Several challenges define the

following specific objectives:

• Design a system that allows the development of an experimental protocol for EEG

acquisition during the development of pedaling tasks (Actual Movement – AM, and

Motor Imagery – MI).

• Implement the protocol to experiments with healthy subjects using passive and active

pedaling (using the MMEB).

• Develop algorithms of data processing for user’s MI recognition through EEG.

• Design a control strategy that allows the interaction between the MMEB and the user

based on the progressive intention of the subject.

• Validate the control strategy during pedaling by using real data.

1.3 Justification

According to WHO reports, stroke left permanently disabled approximately 5 million people

worldwide in that year [27]. Stroke is a serious and disabling global health problem that

has been increasing in the last few years [28]. On the other hand, between 250.000 and

500.000 people suffer from SCI every year [29]. In this context, the implementation of HMIs

during rehabilitation and assistance therapies has demonstrated progressive advancement in

the neuromotor restoration of individuals with disabilities [30]. For this purpose, BCIs have

been useful because these systems allow a bridge between the subject and the environment

without the need to incorporate the PNS, thus allowing their use by subjects with neuromo-

tor disabilities [30, 13, 16]. EEG is commonly used to obtain this intentionality information
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because of its noninvasive advantages and portability [31, 16]. However, there are still chal-

lenges in decoding these signals, owing to their low SNR, intersubject variability, influence

of physiological artifacts, and random environmental noise [31, 32].

Despite technological advances in rehabilitation engineering, adequate HMI is necessary with

respect to the tasks to be performed in this manner [16, 31, 13, 33]. For instance, inter-

ventions using MMEB-based BCIs that work with on/off control through MI with adequate

accuracy detection have been reported in the literature [13]. However, there is still an open

challenge in the implementation of different algorithms that allow proper identification of

this type of movement, which could improve the control commands of this type of device.

Different algorithms have been reported in the literature to recognize the cortical activity

produced by lower-limb movements or MI. For example, classification algorithms have been

used with EEG to recognize different states using the lower limbs, such as sit vs. stand [34],

idle vs. ankle dorsiflexion [35], go vs. stop, and walking speeds [36]. However, these studies

only classified a small discrete number of states, which could limit the usability of BCIs.

One way to generate more personalized control strategies corresponds to motion estimation.

In recent years, kinematic estimation algorithms for upper and lower limb tasks have gained

recognition. For example Luu et al., Nakagome et al. and Tortora et al. have developed

techniques based on Kalman Filters (KF), Machine Learning (ML) and Deep Learning (DL)

to estimate the position of joints during gait [18, 37, 38, 39]. This allows interaction with

rehabilitation techniques, such as virtual reality games, to incentivate individuals during

therapy. This is a motivator for deepening the use of these computational techniques in

different lower-limb cyclic tasks, such as pedaling.

BCIs incorporating mental tasks combined with passive lower-limb movements have been

used for the rehabilitation of post-stroke individuals, where MI recognition algorithms were

implemented to activate and deactivate an MMEB. Nonetheless, these strategies only allow

the intentional detection of MI using constant speeds and in a fixed period of time [21, 13, 20].

Therefore, the exploration of strategies that allow the identification of more personalized

tasks through EEG is necessary, and has not yet been deepened in the literature. To address

this, tasks can be accomplished by implementing protocols with variable-sized time windows

along with exploration of different velocities during passive pedal assistance.

NFB has been explored in recent years because it promotes brain regulation and thus re-

organizes synaptic configurations [24]. This could lead to the restoration of neural activity

lost during the development of a neurological disease. However, to the best of the author’s

knowledge, NFB-based techniques using lower-limb assist devices have not been addressed

yet [25, 26].

Considering the open challenge for the scientific community that is focused on the design

of alternative strategies for neuromotor rehabilitation of people with disabilities, this work

focuses on addressing different strategies of EEG signal analysis that extend the current

knowledge about brain behavior during motor execution (Actual Movement-AM) and Motor

Imagery (MI) of pedaling tasks. The findings of this research allow for the design of alter-
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natives for the control of external devices involving EEG together with lower limb cyclic

movements, which were implemented in the design of a visual NFB-based BCI during the

execution of passive movement tasks. The results will deepen the medical and therapeutic

applications of BCIs for the neurorehabilitation of people with disabilities, such as those

affected by stroke or SCI.

Another important aspect of this Master Dissertation is that it is part of the objective of

the Laboratory of Robotics and Assistive Technology (LRTA) of the Federal University of

Espirito Santo (UFES) to build technological strategies that allow the motor rehabilitation

of people with disabilities. Some of the previous approaches developed by the LRTA team

at UFES to lower limb rehabilitation with pedaling tasks have been addressed by with post-

stroke patients, so the results of this research can be used to improve the current systems,

and thus, a more personalized and progressive rehabilitation.

1.4 Publications

In the time frame of this disertation, about 18 journals papers (J), 18 conference works (C)

and 2 book chapters were either published, accepted, under review or are under preparation.

These works also include the collaboration with other researchers and international groups.

The contributions are divided into the ones that contributed directly in this research (marked

as T) and the ones from collaborations and parallel researches (marked as P).

1.4.1 Journal Articles

• [J1-T] Blanco-Dı́az, C. F., Guerrero-Mendez, C. D., Delisle-Rodriguez, D., de

Souza, A. F., Badue, C., and Bastos-Filho, T. F. (2023). Lower-limb kinematic re-

construction during pedaling tasks from EEG signals using Unscented Kalman filter.

Computer Methods in Biomechanics and Biomedical Engineering, 1-11.

• [J2-T] Luiz Henrique Bertucci Borges, Cristian Felipe Blanco-Dı́az, Bruno Hen-

rique e Silva Bezerra, Caroline Cunha do Espirito Santo, Teodiano Bastos-Filho, Denis

Delisle-Rodriguez, and André Felipe Oliveira de Azevedo Dantas. Multichannel Func-

tional Electrostimulation Integrated to a Human-Machine Interface for Lower Limb

Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering.

(submitted in 08-2023).

• [J3-P] Gonzalez-Cely, A.X.,Blanco-Dı́az, C.F.,Rodŕıguez-Dı́az, C.A.,Bastos-Filho,

T.F.,Krishnan, S. Towards Wheelchair Operation with Neck Movements using POF-

based Sensors and Machine Learning. Optical Fiber Technology. (submitted in 01-

2023).
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• [J4-T] Guerrero Mendez, C. D., Blanco-Dı́az, C. F., Ruiz Olaya, A. F., Lopez-

Delis, A., Jaramillo Isaza, S., Milanezi Andrade, R., ... and Bastos Filho, T. F. (2023).

EEG Motor Imagery classification using Deep Learning approaches in näıve BCI users.

Biomedical Physics & Engineering Express.

• [J5-T] Blanco-Dı́az, C. F., Guerrero-Méndez, C. D., and Ruiz-Olaya, A. F. (2023).

Enhancing P300 Detection Using a Band-Selective Filter Bank for a Visual P300

Speller. IRBM, 44(3), 100751.

• [J6-T] Blanco-Dı́az, C. F., Guerrero-Méndez, C. D., Bastos-Filho, T., Jaramillo-

Isaza, S., & Ruiz-Olaya, A. F. (2022). Effects of the concentration level, eye fatigue

and coffee consumption on the performance of a BCI system based on visual ERP-P300.

Journal of Neuroscience Methods, 382, 109722.

• [J7-P] González-Cely, A.X., Blanco-Diaz, C.F., Bastos-Filho T. & Camilo A.R.

Dı́az. Real-time posture monitoring classification for wheelchair users preventing the

generation of pressure ulcers. IEEE Transaction on Human Machine Systems. (sub-

mitted in 05-2023).

• [J8-T] C.F. Blanco-Dı́az, C.D. Guerrero-Méndez, Denis Delisle-Rodriguez, Sebastián

Jaramillo-Isaza, Andrés Felipe Ruiz-Olaya, Anselmo Frizera, Alberto Souza & Teodi-

ano Bastos-Filho. Evaluation of Temporal, Spatial and Spectral Filtering in CSP-based

Methods for Decoding Pedaling-Based Motor Tasks Using EEG signals. Journal of

Biomedical Physics & Engineering Express.(submitted in 04-2023).

• [J9-T] Cristian D. Guerrero-Mendez, Cristian F. Blanco-Diaz, Teodiano F. Bastos-

Filho, Sebastian Jaramillo-Isaza and Andres F. Ruiz-Olaya. On the Use of Power-Based

Connectivity between EEG and sEMG Signals to Classify Three Different Weights

During a Reach-to-Grasp Movement. Research on Biomedical Engineering. (submitted

in 02-2023).

• [J10-T] C.D. Guerrero-Mendez, C.F. Blanco-Diaz, H. Rivera-Flor, A.F. de Souza,

S. Jaramillo-Isaza, A.F. Ruiz-Olaya, and T.F. Bastos-Filho. Coupling Effects of Cross-

Corticomuscular Association During Object Manipulation Tasks on Different Haptic

Sensation. Neurosci. (Accepted in 07-2023).

• [J11-T] Blanco-Dı́az, C. F., Guerrero Mendez, C. D., Milanezi Andrade, R., Badue,

C., D., de Souza, A. F., Delisle-Rodriguez, D. and Bastos-Filho, T. F. Decoding Lower-

Limb kinematic Trajectory During Pedaling Tasks Using Deep Learning Approaches.

Biomedical Signal Processing and Control. (submitted in 08-2023).

• [J12-P] Cristian D. Guerrero-Mendez, Alberto Lopez-Delis , Cristian F. Blanco-

Diaz, Teodiano F. Bastos-Filho, Sebastian Jaramillo-Isaza and Andres F. Ruiz-Olaya.
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Continuous Reach-to-Grasp Motion Recognition Based on Extreme Machine Learning

Algorithm Using sEMG Signals. (under preparation process).

• [J13-T] Cristian F. Blanco-Diaz, Ericka Raiane da Silva, Caroline Cunha do Es-

pirito Santo, Teodiano Bastos-Filho, Denis Delisle-Rodriguez. BCI based visual neuro-

feedback during the use of robotic-assisted treadmill walking for rehabilitation. (under

preraration process).

• [J14-T] Cristian F. Blanco-Diaz, Aura Ximena González-Cely, Cristian David

Guerrero-Méndez, Denis Delisle-Rodriguez, Teodiano Bastos-Filho. BCI based on Mo-

torized Mini Exercise Bikes and visual neurofeedback for lower-limb rehabilitation.

(under preraration process).

• [J15-T] Cristian F. Blanco-Diaz, Cristian David Guerrero-Méndez, Aura Ximena

González-Cely, Denis Delisle-Rodriguez and Teodiano Bastos-Filho. Intent-based de-

coding of continuous pedaling motion using EEG signals. (under preparation process).

• [J16-T] Cristian F. Blanco-Diaz, Aura Ximena González-Cely, Cristian David

Guerrero-Méndez, Denis Delisle-Rodriguez, Teodiano Bastos-Filho. Motor Imagery

task recognition of pedaling at three different velocities with passive assistance and

Riemann Geometry. (under preparation process).

• [J17-P] CD. Guerrero-Mendez, CF. Blanco-Diaz, H. Rivera Flor, C. Badue, D.

Delisle-Rodriguez, AF. De Souza, TF. Bastos-Filho. Neural Network Incremental

Training to Discriminate Motor Imagery Patterns of Complex Upper Limb Tasks.

(under preparation process).

• [J18-P] González-Cely, A.X., Blanco-Diaz, C.F., Camilo A.R. Dı́az, Bastos-Filho

T. Roborueda: Python-based GUI to control a wheelchair and monitor user posture

Software X. (submitted in 07-2023).

1.4.2 Conference papers

• [C1-T] C.F. Blanco-Dı́az, A.X. González-Cely, C.D. Guerrero-Méndez, A.F. De

Souza, D.Delisle-Rodriguez, T.F.Bastos-Filho. Machine Learning Classification of Ped-

aling Phases Using sEMG Signals: Towards Adaptive Control-based Muscle-Machine

Interfaces. IX neuroengineering symposium. (submitted in May 2023).

• [C2-T] C.F. Blanco-Diaz, A.X. Gonzalez-Cely, M. Callejas-Cuervo, A.F. De Souza,

D. Delisle-Rodriguez, T.F. Bastos-Filho. Characterization of a Motorized Mini Ex-

ercise Bike: Towards the Adaptive Control of a Lower-Limb Rehabilitation System

Based on Pedaling. IX neuroengineering symposium. (submitted in May 2023).
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• [C3-T] Cristian David Guerrero-Mendez, Cristian Felipe Blanco-Dı́az, Rafhael

Milanezi de Andrade, Claudine Badue, Alberto Ferreira De Souza, Teodiano Freire

Bastos-Filho. Decoding Knee Joint Angles During Gait Using Electroencephalography

Signals and Convolutional Neural Networks. IX neuroengineering symposium. (sub-

mitted in May 2023).

• [C4-T] A.X. González-Cely, C.F. Blanco-Diaz, D. Delisle-Rodriguez, T.F. Bastos-

Filho. Decoding Lower-LimbMotion with Pedaling-Based HMIs Using EEG and sEMG

for Rehabilitation Purposes. IX neuroengineering symposium. (submitted in May

2023)

• [C5-T] Cristian F. Blanco-Diaz, Cristian D. Guerrero-Mendez, Denis Delisle-Rodriguez,

Teodiano F. Bastos-Filho, Andres F. Ruiz-Olaya and Sebastian Jaramillo-Isaza. Detec-

tion of Pedaling Tasks through EEG Using Extreme Learning Machine for Lower-Limb

Rehabilitation Brain-Computer Interfaces. IEEE Colombian Conference on Applica-

tions of Computational Intelligence – ColCACI.

• [C6-P] González-Cely, A.X., Blanco-Diaz, C.F., Camilo A.R. Dı́az & Bastos-Filho

T. Real-Time Wheelchair Controller Based on POF-Based Pressure Sensors. 2023

IEEE Latin American Electron Devices Conference (LAEDC).

• [C7-P] Cristian D. Guerrero-Mendez,Cristian F. Blanco-Diaz, Denis Delisle-Rodriguez,

Andres F. Ruiz-Olaya, Teodiano F. Bastos-Filho and Sebastian Jaramillo-Isaza. Anal-

ysis of EEG Rhythms During Four-Direction First-Person Reach-to-Grasp Kinesthetic

Motor Imagery Tasks from the Same Limb. IEEE Colombian Biocas workshop 2023.

• [C8-T] C.D. Guerrero-Méndez, C.F. Blanco-Dı́az, A.Lopez-Delis, T. Bastos-Filho

and R.M.Andrade. Decoding sEMG Under Non-Ideal Conditions Toward Robust

Muscle-Machine Interface Control. International Conference on Intelligent Robots and

Systems.

• [C9-T] Cristian Felipe Blanco-Dı́az, Cristian D. Guerrero-Mendez, Denis Delisle-

Rodriguez & Teodiano F. Bastos-Filho. Protocolo de Medida de EEG, sEMG y

Cinemática hacia el control de un sistema de rehabilitación de miembro inferior post-

AVC. XII Ibero-American Congress of Support Technologies to Disability.

• [C10-T] Cristian D. Guerrero-Mendez, Cristian Felipe Blanco-Dı́az, Denis Delisle-

Rodriguez & Teodiano F. Bastos-Filho. Avances y Retos Computacionales para Inter-

faz Cerebro-Computador basado en Imaginación Motora. XII Ibero-American Congress

of Support Technologies to Disability.

• [C11-P] S. Jaramillo-Isaza, C.D. Guerrero-Mendez, L.V. Montealegre, C.F. Blanco-

Diaz, T.F. Bastos-Filho & A.F. Ruiz-Olaya. Estimation of pathological gait asym-
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metry of lower-limb prosthetic users at high and low walking speeds. In IX Latin

American Congress on Biomedical Engineering.

• [C12-P] Guerrero-Méndez, C. D., Blanco-Dı́az, C. F & Bastos-Filho, T. Wavelet

coherence corticomuscular analysis during tasks involved in object manipulation. In

IX Latin American Congress on Biomedical Engineering.

• [C13-P] A.F. Ruiz-Olaya, C.F. Blanco-Diaz, C.D. Guerrero-Mendez, T.F. Bastos-

Filho & S. Jaramillo-Isaza. Enhancing classification of grasping tasks using hybrid

EEG-sEMG features. In IX Latin American Congress on Biomedical Engineering.

• [C14-T] Blanco-Dı́az, C. F., Guerrero-Méndez, C. D., & Bastos-Filho, T. Single

Trial P300 Detection Using Dimensionality Reduction and Extreme Learning Machine.

In IX Latin American Congress on Biomedical Engineering.

• [C15-T] A.X. González-Cely, C.F. Blanco-Dı́az, C.D. Guerrero-Méndez, D.Delisle-

Rodriguez, T.F.Bastos-Filho. One-handed open/close motor imagery classification in-

cluding passive assistance and a robotic glove. IEEE Colombian Caribbean Confer-

ence). (submitted in 08-2023).

• [C16-T] C.F. Blanco-Dı́az, A.X. González-Cely, C.D. Guerrero-Méndez, F. Vaz de

Souza, D.Delisle-Rodriguez, T.F.Bastos-Filho. Effects of the passive movement pro-

duced by a robotic glove on the design of a MI-based BCI. IEEE Colombian Caribbean

Conference). (submitted in 08-2023).

• [C17-T] Cristian Guerrero-Mendez, Cristian Felipe Blanco-Diaz, Rafhael An-

drade, Denis Delisle-Rodriguez, Bastos-Filho, Teodiano. Proposta de desenvolvimento

de um controlador para um exoesqueleto robótico usando decodificação de imagética

motora. in VIII Simpósio de Neuroengenharia Instituto Santos Dumont.

• [C18-T] Cristian Felipe Blanco-Diaz, Cristian Guerrero-Mendez, Denis Delisle-

Rodriguez, Bastos-Filho, Teodiano. Proposta de desenvolvimento de um protótipo de

interface humano-máquina h́ıbrida para reabilitação de membros inferiores. in VIII

Simpósio de Neuroengenharia Instituto Santos Dumont.

1.4.3 Book Chapter

• [B1-T] C.D.Guerrero-Mendez, C.F Blanco-Dı́az, T. Bastos-Filho, A.F.Ruiz-Olaya

& S. Jaramillo- Isaza. Artificial Intelligence applied to Neuromotor Rehabilitation

Engineering: Advances and challenges. in Computational Approaches in Biomaterials,

Bioinformatics and Biomedical Engineering Applications. Ed: CRC Press, Taylor and

Francis Group, USA. (Accepted in 01-2023).



30 1 Introduction

• [B2-T] C.F Blanco-Dı́az, C.D.Guerrero-Mendez, A.D. Orjuela-Cañon, T. Bastos-

Filho, A.F.Ruiz-Olaya & S. Jaramillo- Isaza. The brain response to coffee consumption:

electroencephalogram (EEG) changes and implications. in Coffee in Health and Disease

Prevention 2ed.. Ed: Academic Press-Elsevier. (Accepted in 07-2023)

1.5 Organization of this dissertation

This dissertation is divided into six chapters as follows. Chapter 1 presents the motivation

and introduction aspects. Chapter 2 provides the theorical background and some knowl-

edge to understand the methodology implemented in the following chapters, as well as a

contextualization of the state of the art to support and discuss the results of this research.

Chapter 3 presents the materials and methods used to build the proposed BCI. Additionally,

algorithmic methods for the recognition of lower limb tasks, either executed or imagined,

through EEG signals are presented. Chapter 4 presents the most important results obtained

during the development of this research, which are discussed in the following chapter. Chap-

ter 5 includes the discussion of the results obtained, as well as the comparison with some

related works reported in the literature. Based on this, potential applications and identified

limitations are mentioned. Finally, conclusions and future work are presented in Chapter 6.
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2.1 Rehabilitation Principles

Considering the alarming statistics provided by international organizations regarding neuro-

motor disabilities, it is important to search for strategies for the restoration of neuromotor,

cognitive, psychological, and social functionality [40]. Rehabilitation plays an important role

in improving the quality of life of people with impairments in the performance of Activities

of Daily Living (ADLs) [41].

Rehabilitation is a multidisciplinary therapy designed to help people who have experienced

an injury, illness, or disability to recover or improve their physical, cognitive, and/or emo-

tional function [40]. The goal of rehabilitation is to maximize individuals’ independence,

helping them reintegrate into their social environment in an appropriate manner. Therefore,

motor rehabilitation involves a set of mechanisms, activities, and protocols that improve or

recover neuromotor functions of the body, such as mobility, stability, and manipulation of

the environment [41]. However, the effectiveness of a patient’s rehabilitation depends on

different factors, according to the integral needs and capabilities of each individual. There-

fore, designing a rehabilitation plan with appropriate strategies and equipment becomes a

challenge for the community in this area [40]. Some of the current challenges and principles

of neuromotor rehabilitation are summarized in Table 2-1 [40, 42, 43].

2.2 Signals used in rehabilitation: an overview

As mentioned in Section 2.1, for the design and implementation of HMIs in the field of re-

habilitation and neuromotor assistance, it is important to consider functional characteristics

such as range of motion, muscle strength, and perception of the individual. By contrast, a

signal is defined as a form of energy or information that is transmitted, propagated, or modi-

fied to convey a message or perform a specific function [44]. For this reason, different types of

signals generated or obtained by the human body have been used as a second way to obtain

information about the patient’s intention, and thus execute some interaction with the en-

vironment [45], such as Electroencephalography (EEG), surface electromyography (sEMG),

and inertial measurements, among others.
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Table 2-1: Currents challenges and principles in neuromotor rehabilitation.
Challenges Principles

Range of mo-
tion

Several factors, such as pain, inflam-
mation, and joint hypomobility, can
limit range of motion. In addition, lack
of muscle flexibility and weakness may
also contribute to these limitations

Rehabilitation programs that empha-
size early movement, assisted and unas-
sisted weight lifting are successful in
restoring mobility

Flexibility Contractures are permanent muscle
shortening that occur due to lack of
stretching and movement in the joints.

Flexibility deficits are best treated
through the use of various stretch-
ing techniques utilizing static, dynamic
and proprioceptive neuromuscular fa-
cilitation stretching

Muscular
strength

Lack of use and lack of physical activ-
ity can lead to muscle atrophy in peo-
ple with neuromotor disabilities. Mus-
cle atrophy results in decreased muscle
strength and mass, limiting the ability
to generate adequate force.

Funtional Electrical Stimulation (FES)
involves the application of mild elec-
trical currents to muscles to stimulate
muscle contraction. This technique can
be used in rehabilitation to activate
muscles affected by atrophy and pro-
mote their development. Neuromuscu-
lar Electrical Stimulation (NMES) can
be combined with active or passive ex-
ercises to maximize the benefits.

Propioception
and neu-
romuscular
control

Alterations in muscle activation and
control can cause imbalances between
agonist and antagonist muscle groups.
These imbalances can affect flexibility
and limit range of motion in certain
joints.

Rehabilitation can use biofeedback de-
vices to improve neuromuscular control
and proprioception. These devices pro-
vide real-time information on therapeu-
tic activity, stability or joint position,
allowing the person to have visual or
auditory feedback on their own perfor-
mance. This helps to improve percep-
tion and awareness of movements, thus
promoting better recovery.

Functional
progression

Each person may have a unique pace
and level of progress, and it is essential
to tailor functional progressions to the
specific capabilities and needs of each
individual.

In some cases, adaptations or modifi-
cations to rehabilitation exercises may
be necessary to suit individual needs.
This may involve adjusting technique,
using aids or assistive devices, or chang-
ing the way certain movements are per-
formed to facilitate participation and
progression.

Patient per-
ception

Neuromotor disabilities can affect spa-
tial perception, which can make it dif-
ficult to understand position and the
relationship between the body and the
environment.

HMIs can enable patients to control
prosthetic or assistive devices, improv-
ing their perception and control, allow-
ing them to interact directly with the
environment in a more natural and ef-
fective way.
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2.2.1 Electroencephalography (EEG)

The interaction and communication of neurons results in electrical activity in the brain.

These electrical signals, also known as brain waves, provide information about brain func-

tion and activity under different mental states and conditions [46]. EEG is a non-invasive

technique for recording and measuring the electrical activity of the brain through electrodes

placed on the scalp [47]. Generally, an EEG test consists of a cap of strategically placed

electrodes (see Figure 2.1(a)) that captures brain signals and amplifies them for recording

[47]. Strategic electrode placement is usually performed using the international 10-20 system

(see Figure 2.1(b)), which was developed as a guideline to ensure accurate and consistent

electrode placement on the scalp, thereby allowing for a more reliable comparison of EEG

results between different patients and studies [48, 49].

(a) (b)

Figure 2-1: (a) Cap with electrodes for EEG acquisition. (b) International 10-20 system
for EEG acquisition. Image taken and modified from [49,50].

EEG shows different brain wave patterns that vary according to an individual’s physiolog-

ical conditions and mental state. For instance, brain waves can be classified into different

frequency bands, which are presented in Table 2-2 [46, 47, 50].
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Table 2-2: Classification of EEG waves according to frequency bands
EEG wave Frequency (Hz) Principle

Delta (δ) 0.1 - 4 It is the wave with the highest amplitude but

slowest of all, and normally appears in deep

sleep states.

Theta (Θ) 4 - 8 It manifests itself mainly in phases of deep

meditation and is related to the production

of serotonin and relaxation. It has also been

associated with lower limb activities in recent

years.

Alpha (α) 8 - 13 It manifests mostly in adults in a relaxed or

concentrated state, eyes closed, and is recorded

mainly in the occipital and parietal lobes.

Beta (β) 13 - 30 It manifests in states of actions and imagina-

tion, related to the senses, memory, decision

making and problem solving, registered in the

frontal and parietal lobes.

Gamma (γ) 30-100 It is related to perception and consciousness,

high brain activity in alert states.

Considering brain wave patterns, it is possible to develop strategies for the identification of

intentionality of individuals and create rehabilitation strategies focused on HMIs, such as

BCIs or BMIs [51]. In this phase, EEG signals can be divided into two groups based on the

paradigm and brain waves of interest:

• Exogenous EEG Signal: This type of EEG signal is generated independently of

external stimulation and may be freely regulated by the individual, which is helpful

for patients with neurological problems because it allows for more natural and sponta-

neous interactions [51]. However, this type of signal often requires longer training time.

Among the most widely used paradigms in rehabilitation are those based on sensori-

motor rhythms and slow cortical potentials, which are associated with Motor Imagery

(IM) or Actual Movement (AM) due to the generation of Event-Related Desynchro-

nization/Synchronization (ERD/ERS) [31, 32, 52, 53].

• Endogenous EEG Signal: This type of EEG signal is produced in response to

external inputs such as visual or auditory cues. External stimuli, such as flashing LEDs

and music, can influence brain activity. However, to evoke patterns, it is necessary for

the subject to concentrate on external stimuli, which limits their applications. Among

the most widely used paradigms in rehabilitation are Event Related Potentials (ERPs),

such as the P300, and Evoked Potentials, such as the Steady State Visual Evoked

Potentials (SSVEP) [50, 54, 55, 56, 17].

In summary, EEG signals are proposed to be a suitable sensing system to detect the intentions

of individuals using brain information [51], so they have been shown to be useful for the
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creation of BCIs/BMIs applied to rehabilitation, which will be discussed in Section 2.3.

2.2.2 Surface Electromyography (sEMG)

Similar to EEG, Electromyography is a technique used to measure and record muscle elec-

trical activity. It is used to evaluate the behavior of muscle fibers by detecting the electrical

impulses generated during muscle contraction (action potentials) [57]. During EMG ac-

quisition, it is necessary to strategically place electrodes, where the most used technique

corresponds to sEMG because of its non-invasive characteristics. The sEMG is detected by

electrodes placed on the skin and recorded as a graphic trace in an electromyogram [58].

In the electromyogram, it is possible to observe patterns and characteristics of action poten-

tials, such as amplitude, duration, waveform, and frequency of action potentials [58]. These

patterns can provide valuable information about muscle function and health as well as pos-

sible neuromuscular disorders or injuries. In this context, technological advancements in the

areas of signal processing have allowed the development of another approach, myoelectric

control [57].

Myoelectric control refers to the use of electrical signals generated by muscle activity to con-

trol electronic devices or prostheses [59]. Once myoelectric signals are acquired, algorithms

and signal processing techniques are used to analyze and extract relevant information. This

information is used to translate electrical signals into commands that control the devices

[59]. Myoelectric control has provided significant opportunities to improve the quality of

life for people with neuromuscular disorders. Through this technology, it has been possible

to design HMIs in which people can regain some level of independence and functional abil-

ity by using residual muscle activity to control robotic devices with greater precision and

naturalness [58].

2.2.3 Other signals used in rehabilitation

Other types of signals have been used for the design of rehabilitation and assistive devices,

among which inertial sensors, computer vision, and fiber-optic-based sensors are among the

most prominent.

• Inertial Sensors: Inertial sensors are electronic devices that combine accelerometers

and gyroscopes to measure and record the acceleration, angular velocity, and orien-

tation of an object in a three-dimensional space, providing information about the

movements and position changes of the object to which they are attached [60]. In re-

habilitation and assistive engineering, inertial sensors are used to monitor and analyze

the biomechanics of the body during the execution of movements through real-time

capture, which facilitates the design of personalized interventions and evaluation of

progress in the treatment of neuromotor disorders. Additionally, this technology en-
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ables the development of assistive devices, such as exoskeletons and prostheses, with

improved detection capabilities and adaptation to user needs [60, 61].

• Computational vision: Considering images as two-dimensional signals, computer

vision has been widely used in rehabilitation and assistive engineering to provide al-

ternatives for improving the quality of life of people with disabilities. Through the

analysis and processing of images or videos, computer vision systems can detect and

track body movements, identify gestures and facial expressions, and evaluate posture

and biomechanics [62, 63, 64, 65]. These advances have enabled the development of

assistive technologies such as gaze- or motion-controlled prostheses, rehabilitation sys-

tems with real-time visual feedback, and navigation devices for the visually impaired

[66, 65]. Computer vision has also been used to track body movements to detect

neuromotor disorders.

• Fiber optic sensors: Fiber optic sensors are an emerging technology in rehabilita-

tion and assistive engineering because of their numerous advantages and benefits for

monitoring and improving the motor function and quality of life of people with dis-

abilities [67]. These sensors offer high precision and sensitivity in the measurement

of variables such as posture and body forces, so they have been used in different as-

sistive device contexts, for instance, posture control and monitoring during the use of

powered-electric wheelchairs [68].

2.3 Human-Machine Interface

A Human-Machine Interface (HMI) is a communication and control system that allows

humans to interact with machines or electronic devices through different modalities, such

as body-generated signals, voice, or movement commands [69]. In the field of rehabilitation

and assistance, HMIs have been implemented as a bridge between people and devices to

restore the physical, psychological, and social capabilities of people with disabilities [16].

In other words, these interfaces can enable people with disabilities to control prostheses,

assistive devices, and virtual reality systems through muscle signals, brain signals, or other

forms of interaction [16, 70]. The concept of an HMI can be seen in Figure 2-2, where it

can be observed this signal-based HMIs are composed of different sets of complex steps and

processes that still present challenges to the scientific community [16].
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Figure 2-2: HMIs are based on human intention (EEG, sEMG, kinematics, among others),
and include processing, feature extraction, classification/regression stages, and
finally control commands for various assistive, rehabilitation or assistive devices.

It is noteworthy that HMIs provide opportunities for greater independence and functionality,

as individuals can actively participate in their rehabilitation and perform daily activities with

greater ease and precision, providing them with a better quality of life and greater social

inclusion [70]. However, it is necessary to know the physical, functional, and neurological

limitations of a person to design an HMI focused on assistance or rehabilitation. For example,

previous studies have shown that patients with neuromotor impairment (such as post-stroke

or SCI) have reduced electrical functionality in some parts of the body, which becomes a

barrier for HMIs based on sEMG. Therefore, each signal has advantages and challenges in

designing HMIs for rehabilitation and assistive devices, which are presented in Table 2-3

[69, 16].
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Table 2-3: Advantages and limitations of different types of signals for user intent and ap-
plication detection in HMIs

Type of

Signal

Advantages Limitations

EEG * Access to brain information.

* Multisensory information.

* Non-invasive.

* Not dependent on movement or

muscle activity.

* Potential for neurofeedback and

therapy.

* Portability.

* Low Signal to Noise Ratio

(SNR).

* Commonly affected by environ-

mental or physiological conditions

of the individual.

* Non-stationary.

* Intersubject variability.

* Often require calibration.

sEMG * Non-invasive.

* High Precision.

* Greater resistance to ambient

noise.

* Adaptability to different body

parts and conditions.

* Muscle fatigue.

* Electromyographic interfaces of

nearby muscles.

* May require learning and train-

ing.

* Sensitivity to non-ideal condi-

tions that may affect data collec-

tion.

Inertial

sensors

* Size and weight.

* High accuracy in dynamic mea-

surements.

* Low power consumption.

* May be affected in acquisition

over prolonged periods of time.

* Sensitivity to vibrations and

shocks.

* Information on velocities and ac-

celerations but do not provide ab-

solute position.

* Periodic calibration.

Computational

vision

* Perception of the environment.

* Object detection and recogni-

tion.

* Task automation.

* Complexity and computational

resources.

* Sensitivity to light and noise con-

ditions .

* Training and labeling require-

ments .

* Limitations of complex environ-

ments (overlapping data).

Fiber optic

sensors

* Immunity to electromagnetic

fields.

* High sensitivity.

* Do not conduct electricity.

* Resistance to hostile environ-

ments.

* Light dependence.

* Non-stationary signals in dy-

namic conditions.

* Alignment requirements.
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As mentioned above, an HMI is composed of different stages that are responsible for con-

verting the user’s intention (measured by a sensor and transduced to a signal) into the task

of a device, which can be a robotic assistive device [16]. These stages can be summarized as

follows:

• Acquisition: Here, the sensors are positioned with the objective of acquiring infor-

mation about the individual’s intention (EEG, sEMG, movements, etc.). Depending

on the type of signal, amplifiers and physical filters may be used. In addition, the

sampling rate must be adjusted depending on the frequency band of the signals and

the physical capacity of the electronic devices [69, 16].

• Pre-processing: It is necessary to implement strategies to eliminate noise present in

the signals. Time window segmentation, frequency domain filters, and other filters,

such as spatial reference filters, can be examples of signal pre-processing [71].

• Feature extraction: For the identification of intentionality through patterns in the

signals, extraction techniques are applied to obtain the features that allow the discrim-

ination of the user’s intention in an adequate way [72].

• Classification and regression: Considering the problem faced or the objective of the

HMI, control triggers can be established through discrete (classification) or continuous

(regression) outputs. In this phase, algorithms based on artificial intelligence, such as

machine learning or deep learning, are applied to identify patterns in signals obtained

from the human body [73, 74].

• Control: Depending on the sensors and actuators, the output is translated into the

action of a device that interacts with the environment. In the literature, a large number

of robotic devices for rehabilitation and assistance have been reported, controlled by

signals obtained from the human body, where the most common are exoskeletons,

prostheses, electric wheelchairs, among others [75, 76].

• Interface: A very important factor in the design of an HMI is the construction of

an adequate interface that allows a correct human-machine interaction, as well as the

patient’s feedback regarding the task performed [77].

2.3.1 Brain-Computer Interface

A Brain Computer Interface (BCI) is a system that functions as a communication channel

between the brain and computers, so that the user’s environment can be controlled in a way

that is compatible with the user’s intentions. BCIs have been widely used in rehabilita-

tion engineering because these technologies allow interaction with the environment through

signals resulting from mental tasks; therefore, physical mobility is not necessary to use the

interface, which is useful for people with reduced mobility. However, considering some of the
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disadvantages of acquisition systems, such as EEG (see Table 2-3), it is necessary to design

an interface that can be used by the target population; therefore, the type of paradigm to

be used is important [51]. Considering the BCI proposed based on ERD/ERS in Section

3.1, cortical rhythms generated in Actual Movement (AM) and Motor Imagery (MI) tasks

are discussed in this section.

2.3.1.1. Event Related Desynchronization/Synchronization

ERD/ERS are oscillatory cortical phenomena generated by a large group of neurons involved

in activities related to cognitive processes in the Mu (µ) and Beta (β) bands [78]. These

rhythms can be captured with EEG during the performance of limb motor tasks or even

the imagination of limb movement [78, 32]. ERD refers to the temporal slowing in response

to a stimulus or event. For example, when a subject performs a motor task related to the

lower limbs, a decrease in the amplitude and frequency of the Mu band may be observed

in the EEG in the central area of the cortex. In contrast, ERS refers to an increase in the

cortical rhythm in response to an event. For example, this increase in electrical activity

may be observed in the beta rhythm in parieto-central areas of the brain when a person is

performing a task that requires increased cognitive or motor activation [78]. An example of

these cortical responses is shown in Figure. 2-3.

Figure 2-3: ERD/ERS principle of processing. Image taken from [119].
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2.3.1.2. Preprocessing Techniques

As discussed above, EEG signals are of low amplitude and are usually influenced by external

noise or artifacts produced by the physiological processes of each subject [17]. For this

reason, different types of preprocessing are recommended for the design of BCIs. Among the

most prominent in the literature are those based on signal filtering in the time, frequency,

or spatial domains [79].

Time domain filters tend to reduce and/or eliminate noise related to event-related potentials,

such as ocular artifacts [79]. One of the most commonly applied filters in the neuroscience

world is the Common Average Filter (CAR), which consists of averaging the temporal infor-

mation of the channels of interest in a region to eliminate the common noise present in the

electrodes [80].

Frequency domain filters consist of filtering the signal with respect to the frequencies of

interest, such as those shown in Table 2-1, which allows the analysis of the signal content

where it is possible to detect the paradigm. For example, a frequency filter between 8 and 13

Hz would allow the analysis of the signal in the Mu band, which is one of the most important

bands during MI tasks [31].

On the other hand, spatial filtering allows discriminating information from channels of in-

terest or with low noise content, which would allow for an improvement in task detection

through EEG. Some of them consist of channel weighting, and more mathematically com-

plex techniques such as Common Spatial Patterns (CSP), which will be contextualized below

[79, 31, 32].

Other processing steps may include those related to the windowing. Windowing is a tech-

nique used in both signal analysis and real-time HMI, because it allows information to be

obtained from a time segment [81]. Here, it is necessary to choose a suitable number of

windows that allow the determination of a window that provides sufficient information to

decode the task as well as an adequate response time in the BCI [81]. Each window can be

considered as a trial or example (speaking in Machine Learning terms), in which different

features can be extracted for the design of classification and/or regression strategies [81, 54].

2.3.1.3. Feature Extraction

Feature extraction in EEG signal processing is a fundamental process that involves identify-

ing and quantifying the relevant and distinctive patterns present in brain signals [82]. These

features are numerical values that represent the key attributes of the signals, such as the

amplitude, frequency, symmetry, and variability. Feature extraction reduces the complexity

of EEG data, highlights the most relevant information, and facilitates its analysis and under-

standing [82]. By selecting and quantifying specific features, it is possible to identify cortical

rhythms, patterns associated with cognitive functions, or neurological abnormalities, and

then apply classification or recognition techniques to interpret brain signals. Some feature

extraction techniques for motor tasks are described below [31].
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• Amplitude: In recent years, the feasibility of decoding continuous movements has

been demonstrated through mathematically complex techniques, as well as the use of

signal amplitude information in the delta band, which are slow signals that allow the

prediction of positions and kinematic velocities through EEG signals [38, 83, 84].

• Features in Time-domain: Techniques based on the statistical behavior of signals

in the time domain have also been used in the literature because of their low compu-

tational cost and because they can provide discriminant information of EEG signals

considering mental tasks. Among these, it is possible to highlight the mean, median,

variance, or Root Mean Square (RMS) [85].

• Power Spectral Density: Is a measure used to characterize the distribution of

energy at different frequencies, which, in the context of EEG, is applied to study

brain electrical activity in different frequency bands [86]. This technique provides

information regarding the intensity of brain oscillations at each frequency, allowing

the identification of characteristic patterns associated with different mental states and

cognitive functions. The PSD is obtained by computing the frequency spectrum of

the signal; then, a statistical process may be used, such as the integral of the signal

at certain frequencies of interest, to obtain features and classify mental tasks, such as

motor tasks [86]. An example of extracting the integral of the power spectral density

and obtaining features through the discrete Fourier transform is presented in Algorithm

1.

• %ERD: Considering that the power in the Mu and Beta bands fluctuates in MI tasks,

one of the metrics used in the literature corresponds to the %ERD, which marks the

ratio between the power obtained from the baseline and the power obtained during

MI. This is represented by Equation 2-1.

ERD(%) = 100 ∗ (PMI − PB)

PB

, (2-1)

where PMI corresponds to the power during MI tasks, and PB corresponds to the power

during the baseline.

• CSP: Is an EEG signal processing technique that is widely used in BCIs and brain

rhythm analysis applications [31]. This technique aims to identify spatial patterns

that maximize the separation of the features associated with different mental states.

CSP extracts an optimal linear combination of EEG channels, resulting in a series of

characteristic spatial patterns that reflect the specific activation of brain areas involved

in a specific task or condition [79]. These spatial patterns allow for improved discrim-

ination between different mental states or actions. For example, in motor tasks, this



2.3 Human-Machine Interface 43

Algorithm 1 Feature Extraction based on PSD for EEG

Input: SA, SE ∈ Rt×s×c ▷ where SA and SE are the EEG signals for the training and
testing set, respectively; t is the number of trials, c is the channels number, and s is the
number of samples.
Output: FA, and FE ▷ where FA and FE are the feature matrices for training and
testing

for each trial ti in SA and SE do
Fti ← fft(si) ▷ Compute the DFT for the segment for all channels
PSDsi ← |Fsi |2 ▷ Compute the power spectral density (PSD)
Powersi =

∫
b
PSDsidf ▷ b is the Frequency band of interest.

end for
FA = PowerA
FE = PowerE

Note: The choice of frequency bands depends on the specific analysis.

technique has been used to maximize signal features with higher variance and minimize

those with lower variance [32]. Some algorithms for computing CSP-based methods

are available in [87], where the concept of CSP to extract features from two motor

tasks for classification is shown in Algorithm 2:

Other variations of the CSP have been presented with the aim of improving the identi-

fication rate of motor tasks using EEG signals, such as the Filter Bank CSP (FBCSP)

or Filter Bank Common Spectral Spatial Patterns (FBCSSP). Further information on

these methods is available in [88, 32, 87].

• Riemann Geometry: Is a method based on unsupervised operations such as tem-

poral filtering and covariance estimation, which has been widely used in the literature

for the detection of mental tasks such as MI [89, 21]. This method reduces common

interference and enhances the variance ratio between EEG trials from different motor

tasks. Some algorithms for computing Riemann Geometry-based methods are avail-

able in [89], where the concept of Riemannian Geometry for extracting EEG features

in binary classification tasks can be seen in Algorithm 3.

2.3.1.4. Classification

Classification is a fundamental task in the field of Artificial Intelligence (AI), and consists

of assigning objects, data, or examples to predefined categories or labels based on their

characteristics or attributes [90]. Commonly, Machine Learning-based techniques have been

used to classify tasks recognized through EEG, as described below [56].

• LDA: Linear Discriminant Analysis (LDA) is a ML technique for classification and

dimension reduction in multivariate data. Its main objective is to find a linear com-

bination of the original features that maximizes the separation between classes and
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Algorithm 2 CSP for feature extraction and spatial filtering

Input: SA, SE ∈ Rt×s×c ▷ where SA and SE are the EEG signals for the training and
testing set, respectively; t is the number of trials, c is the channels number, and s is the
number of samples.
Output: FA, and FE ▷ where FA and FE are the feature matrices for training and
testing

Let SA and SE ▷ Training and Testing Sets.
Separate the groups considering the labels of SA (class 1 and class 2).
C1 = SA1S

T
A1

▷ Computing the covariance matrix for the class 1.

C2 = SA2S
T
A2

▷ Computing the covariance matrix for the class 2.
JCSP = (w C1 wT ) / (w C2 wT )
Extreme JCSP (w), i.e., maximize and minimize it, to obtain spatially filtered signals whose
band power is maximally different between classes.
XA = wSA ▷ Applying the spatial filtering for training set
XE = wSE ▷ Applying the spatial filtering for testing set
FA = log(var(XA)) ▷ Computing the features based on logarithm of variance
FE = log(var(XE))

Note: T corresponds to the transpose.

Algorithm 3 Feature extraction based on Riemann Geometry

Input: SA, SE ∈ Rt×s×c ▷ where SA and SE are the EEG signals for the training and
testing set, respectively; t is the number of trials, c is the channels number, and s is the
number of samples.
Output: FA, and FE ▷ where FA and FE are the feature matrices for training and
testing

Let SA and SE ▷ Training and Testing Sets.
CA = covariances(SA) ▷ Computing the covariances matrices for the training set
Cref = mean covariances(CA,

′ riemann′) ▷ Computing the covariance mean based on
Riemann distance.
CE = covariances(SE) ▷ Computing the covariances matrices for the testing set
FA = tangent space(CA, Cref )

T ▷ Projection of the covariance matrices onto the
reference matrix (training set).
FE = tangent space(CE, Cref )

T ▷ Projection of the covariance matrices onto the
reference matrix (testing set).

Note: T corresponds to the transpose.
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minimizes the variability within each class. In this manner, LDA seeks to project the

data into a new, lower-dimensional space while maintaining discrimination between

classes.

• SVM: Support Vector Machine (SVM) is a supervised ML algorithm used for classi-

fication and regression. Its main objective is to find the optimal hyperplane that best

separates the data into different classes, maximizing the margin between the closest

samples in each class. In addition, SVM can be extended to work in higher-dimensional

spaces using kernel functions to solve nonlinear classification problems.

• KNN: k-Nearest Neighbor (KNN) is a simple, non-parametric ML algorithm used for

classification and regression. In KNN, predictions are based on the similarity between

the data to be classified and their nearest ” neighbors ” in the feature space. The

number of neighbors considered (k) determines the accuracy and robustness of the

algorithm. KNN is effective for problems where the data have a clear neighborhood

structure and can adapt well to different forms of data distribution. However, their

performance can be affected by noisy data and high dimensionality.

• LR: Logistic Regression (LR) is a classification model used to solve binary problems,

which is used for classification. It uses a logistic function to model the probability of

belonging to one of the two classes as a function of the predictor variables.

2.3.1.5. Regression

One of the disadvantages of using classifiers in BCIs is that the outputs are discrete, which

limits the use of continuous controllers, and thus may reduce the usability of the system [91].

In recent years, it has been possible to demonstrate the use of decoders, such as those based

on Kalman Filters (KF) [91], Deep Learning (DL) [38], or ML regressors [83]. Some of these

are defined as follows.

• KF: Is a recursive estimation technique used to estimate the state of a dynamic system

based on noisy measurements and previous data [91]. Although it shares some concepts

with regression, its main objective is to provide an optimal and accurate estimate of the

system state in an environment with uncertainty and noise. For BCIs, the KF and its

variations have been used as decoders of kinematic signals using brain information. It is

important to note the use of the Unscented Kalman Filter (UKF), which has been one of

the most widely used filters for decoding motor tasks, because this mathematical model

considers the nonlinear relationship between the neural system and the movement

[91, 92]. More information on this method is available in [91].

• Regressors: Regression is a statistical and ML technique used to predict continuous

numerical values from a dataset. Different classifiers mentioned above can be used as
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regressors, such as SVM, KNN, or LR, where in this case the target output variable is

continuous and is not labelled as if it was a class [93].

2.3.1.6. Artificial Neural Networks (ANNs)

ANNs have emerged as attempts to emulate the functioning of biological neurons. This is

done with the aim of developing a system that has high processing capacity and performs

highly complex tasks from input signals. An artificial neuron, similar to a biological neuron,

communicates with other neurons through synapses with a respective weight, which allows

the generation of one or several outputs [54]. ANNs have been widely used in the context

of BCIs for signal analysis because they allow the discrimination of more relevant informa-

tion using more mathematically complex techniques, which means that detection algorithms

can be more robust and accurate. [94]. However, for real-time applications, it should be

noted that they tend to be computationally expensive, which is limited in some cases when

considering the response times and computational resources. Some of the most widely used

methods are the Multilayer Perceptron (MLP), Extreme Learning Machine (ELM), Convo-

lutional Neural Network (CNN), and Long Short-Term Memory (LSTM) [94].

• MLP: Is a type of ANN consisting of multiple layers of neurons connected together,

which is designed to solve complex classification and regression problems by learning

nonlinear representations of data [95]. The MLP has an input layer that receives input

data, one or more hidden layers that process and transform information, and an output

layer that produces the final predictions or classifications. Each neuron in the MLP

uses a nonlinear activation function to introduce nonlinearities into the model, allowing

it to learn more complex relationships in data [54].

• ELM: Is a neural network family of Single Hidden Layer Feedback Neural Networks,

that has been reported in the literature for motor tasks classification and regression

[96]. It is composed of a single hidden layer with its respective activation function,

where the objective is to train the network by modifying the weights of the neurons in

the inner layer to such an extent that it allows the classification of a group of input

variables [97]. The ELM has advantages over other types of classifiers because its

training time is low.

• CNN: Is a type of ANN inspired by the human visual system that uses convolutional

layers to extract relevant features from the data. It then employs clustering layers to

reduce dimensionality and fully connected layers to perform classification or regressions

[94]. CNNs have demonstrated outstanding performance in task classification using

EEG signals [94].

• LSTM: Is a special type of Recurrent Neural Network (RNN) designed to process

and model sequences of data, where LSTMs have a gated cell structure that allow
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them to remember long-term information and avoid the problem of gradient fading

[38]. These gates control the flow of information in the cell, allowing the LSTMs to

retain and forget relevant information over time. This is because of its long-term

memory capability. LSTMs have demonstrated an outstanding performance in task

classification and regression using EEG signals [38].

2.3.1.7. Performance Metrics

Performance metrics are normally used to evaluate the performance and effectiveness of

classifiers. For example, in the case of classifiers, performance metrics are based on confusion

matrices between the predicted variables and the original variables, such as Accuracy (ACC),

which is indicated in Equation 2-2.

ACC =
TP + TN

TP + FP + TN + FN
, (2-2)

where TP is a true positive, TP is a true negative, FP is a false positive, and FN is a false

negative. On the other hand, for regression-based continuous representations, the most com-

monly used metric is Pearson’s Correlation Coefficient (PCC), which allows quantification of

the prediction data versus the true data, normally when kinematic information is predicted.

PCC takes values in the range of -1 to 1. A value of 1 indicates a perfect positive correlation,

meaning that as one variable increases, the other increases in proportion. A value close to

zero indicates a weak correlation, suggesting that there is no linear relationship between the

two variables [83].

In the context of decoding, if the PCC between the independent variable and the dependent

variable is close to 1 or -1, it suggests that there is a strong linear relationship between

them, which may indicate that a linear regression model could work well in predicting the

dependent variable as a function of the independent variable [83]. This metric is computed

using 2-3.

PCC =
1

N − 1

N∑
i=1

(
P i
x − µPx

σPx

)(
P i
y − µPy

σPy

)
, (2-3)

where Px is the measured data, Py is the estimated data for a total number of samples N ,

and µq and σq are the mean and standard deviation of q, respectively, with q ∈ Px, Py [83].

2.4 HMI for Lower-Limb Rehabilitation and Assistance

Robotic devices are electromechanical systems that use different types of technologies and

automation to perform physical tasks and/or assist humans in various activities [98]. Over
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the years, these devices have been modified and adapted, thus having a wide variety of

shapes and sizes from industrial robotic arms to portable exoskeletons and bionic prostheses

[99].

In the context of rehabilitation and assistance, robots have proven to be useful in improving

the functionality and quality of life of people with disabilities or physical limitations [99].

Among these, it is possible to highlight limb exoskeletons, assistive and postural devices for

gait rehabilitation, electrically powered wheelchairs, and assistive devices for other types of

movements, such as pedaling [99]. Several robotic devices for rehabilitation and assistance

in lower limb rehabilitation are listed in Table 2-4.

Table 2-4: Devices used for the rehabilitation and assistance of persons with lower limb
neuromotor disabilities.

Name Tasks

(Type)

Principle Limitations

Electrical

powered

wheelchair

Transport

(Assis-

tance)

They are equipped with motors that

drive the wheels, allowing the user to

control the wheelchair movements eas-

ily and comfortably. They can be

equipped with sensors that allow mon-

itoring of the person as well as the

environment.[100]

* No rehabilitation.

* Weight and size.

* Difficulty in uneven ter-

rain.

Lokomat Walking

(Rehabili-

tation)

It consists of a user-fitted robotic leg

exoskeleton whose motors and sensors

are synchronized with the patient’s

movement, enabling precise assistance

and support during walking. This sys-

tem combines robotic technology with

assisted locomotion therapy to provide

an intensive and effective form of reha-

bilitation for patients with neuromotor

impairments [101].

* Cost.

* Space requirements.

* Requires patient adapt-

ability.

* Fatigue.

Continued on next page
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ZeroG Walking

(Rehabili-

tation)

It is a suspension and body weight as-

sistance system used in rehabilitation

therapies, whose operation consists of

providing a safe and effective way to

perform exercises and functional activ-

ities while reducing the weight load on

the patient’s body. This system con-

sists of an aerial track installed on the

ceiling or on an elevated structure, on

which a motorized trolley moves [102].

* Cost.

* Space requirements.

* Infrastructure.

* Patient adaptability.

Prosthesis Movement

(Assis-

tance)

Artificial devices designed to replace

a missing limb, such as a leg or foot.

These prostheses are designed to re-

store function and mobility lost due to

amputation, allowing the performance

of various physical activities such as

standing or walking [103].

* Shelf life.

* Adaptability of the per-

son.

* Functional limitations.

* Physical and psychologi-

cal changes in the person.

Motorized

Mini Ex-

ercise

Bike

Pedaling

(rehabilita-

tion)

Device used in rehabilitation to im-

prove mobility and muscle strength of

users. This compact and portable bicy-

cle is equipped with an electric motor

that provides automatic movement of

the pedals, allowing the individual to

perform pedaling exercises without ex-

erting significant force (passive pedal-

ing). In recent years it has emerged as

an alternative for patients with mobil-

ity limitations or weakness in the lower

extremities, as it allows them to partic-

ipate in a gentle and controlled form of

exercise. Additionally, it can be used at

home or in rehabilitation centers [13].

* Limitation in exercises.

* Lack of adjustable pa-

rameters.

* Static position.

* Little known in the liter-

ature.

Although advances in robotics for lower limb rehabilitation and assistance have been sig-

nificant, it should be noted that commercial devices can be expensive and require complex

physical structure, while MMEB-based therapies have proven to be viable for their ability

to assist in cyclic movements and portability [13]. However, the exploration of this type of

technologies with BCIs has not been fully explored, leaving a gap to continue deepening in

control and neurorehabilitation methodologies. Some strategies, proposals and results will

be discussed below.
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3.1 Robotic system

The development of lower-limb assistance addressed in this work is an adaptation of the

commercial low-cost pedal-assisted MMEB used in previous research [104, 13]. This device

proved to be robust in the implementation of BCI systems for lower limb rehabilitation,

however, the default configuration of this MMEB is eight speeds, and the activation is

discrete. Therefore, an external circuit for speed control was realized to enhance usability.

The MMEB is shown in Figure 3.1(a).

The circuit was designed to control the velocity of the motor power supply to 100 VDC. A

full-wave rectifier circuit was implemented using a 127 VAC power-line source. Subsequently,

a filter configuration before a metal–oxide–semiconductor field-effect transistor (MOSFET)

device was used to commute at high velocities while controlling the motor. Moreover, an

optoisolator (MOC3021) was used to send control signals to the motor, which was powered at

5 VDC using a voltage regulator and pull-down connection. Figure 3.1(b) shows the circuit

described above, where ESP32 is the device used to send the velocity control commands

through Pulse Width Modulation (PWM) signals to the MMEB.

(a) (b)

Figure 3-1: (a) MMEB used and adapted for the development of this research. (b) Elec-
tronic instrumentation for power supply and velocity control of MMEB.

Subsequent to the realization of the circuit and initial checks, it was necessary to perform

a characterization to determine the PWM ratio with respect to the final speed. Kinematic



52 3 Methodology

characterization was performed based on camera and inertial motion recordings. A cam-

era was placed in front of the MMEB to identify the reflective marker placed in the user

[63], whereas a motion capture device based on inertial sensors (IMOCAP) was placed in

the MMEB pedal [105, 106]. Then, for the motion data, signal integration was performed

according to the acceleration to obtain the angular velocity. For the camera information,

a grayscale filter was implemented to analyze the videos using the DL software for pose

estimation DEEPLABCUT, where the positions of the interest points were obtained from

both the image and angular velocity computation with the signal difference [107]. Figure 3-2

illustrates the previously explained methodology used for the MMEB calibration.

Figure 3-2: Methodology used in this work for MMEB characterization based on a motion
capture system and a camera.

3.1.1 Error

To evaluate the behavior of MMEB with respect to the modification of Pulse Width Mod-

ulation (PWM) signals with IMOCAP and reflective markers, the Root Mean Square Error

(RMSE) metric between the two signals was evaluated. Subsequently, curve fitting was per-

formed between the PWM values and the computed angular velocity, where the hypothesis

was that the system exhibits a linear behavior. Finally, the RMSE metric was again calcu-

lated during the acquisition of the protocol with and without the subject to observe if there

was a difference in the passive pedaling as a consequence of the weight characterization,

where a linearity value of r = 0.9797 was found, which allowed the estimation of the propor-

tional rate of the MMEB and the input signal. With this procedure, it is possible to adjust

continuous velocities in the MMEB, which will be useful in the protocol implementations.

3.2 EEG acquisition and protocols

During the development of this work, different protocols for EEG acquisition during pedaling-

related tasks have been proposed. Mainly three protocols: The first includes active pedaling

tasks, where pedaling tasks are generated voluntarily by the person. The second protocol

involved the implementation of MMEB-generated passive pedaling tasks combined with MI
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at different velocities. The third stage consisted of two main stages: passive pedaling,

presentation of visual neurofeedback during MI and passive pedaling, and real-time BCI to

classify MI and neuromodulation of the visual stimulus. The protocols are described in detail

below.

3.2.1 EEG acquisition

EEG signals were recorded using an OpenBCI cap with eight electrodes placed on the scalp

following the 10-20 international system, as shown in Figure 3-3. Reference electrodes

were placed on the left (A1) and the right (A2) earlobes, and conductive gel was applied

to all electrodes to reduce impedance (< 20 kΩ). This choice of electrodes was made by

considering the cortical response in the cerebral cortex during pedaling exercises, which has

been reported in the literature: FC1, FC2, C3, CZ , C4, CP1, CP2, and PZ [21, 13, 20, 108].

EEG signals were recorded at a sampling rate of 250 Hz, and a notch filter was implemented

at 60 Hz to reduce the power line artifact. Initially, impedances were verified using software

provided by OpenBCI, whereas environments for stimulus acquisition and generation were

designed using OpenVibe [109]. OpenVibe is compatible with the openBCI card, where it is

possible to generate environments for the acquisition and processing of EEG signals through

blocks with functions. Additionally, this execution environment is compatible with Python,

which facilitates the operation of data and compilation of algorithms in real time [109].

Figure 3-3: Electrodes used for EEG acquisition according to the 10-20 international system
considering the parieto-central cortex and the reference electrodes (A1 and A2).
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3.2.2 Experimental Design

For the experimental designs, it was necessary to use a noise-free isolated room, where the

MMEB was used to perform pedaling tasks (passive or active). Everything related to in-

dications or visual stimuli was presented on a 1280 × 768 screen located two meters away

from the individual at a 60 Hz refresh rate. Additionally, all sessions were recorded using

a high-speed camera at 60 fpm, which was positioned in the sagittal plane and synchro-

nized with the open acquisition system for analysis related to kinematics [110]. The sEMG

electrodes were placed on the vastus lateralis (VL) and Gastrocnemius Lateralis (GL) mus-

cles [111], whose analyses were not included in this study. Graphical representations of the

experimental design are shown in Figures 3.4(a) and 3.4(b).

(a) (b)

Figure 3-4: Experimental environment for performing EEG acquisition protocols and ped-
aling tasks.

3.2.3 Acquisition protocols

3.2.3.1. Active pedaling

This protocol was intended to acquire EEG and kinematic information during the execution

of active pedaling tasks, meaning that the subject was encouraged to perform voluntary

pedaling with visual instructions (See Figure 3.5(a)). The experiment consisted of two

sessions, implemented in three steps.

• The subject rests their foot on the minibike pedals and fixes their attention on a black

screen for 5 s without engaging in any mental activity.
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• A green cross is displayed on the screen, after which the subject pedals the minibike

for 5 s.

• The subject rests for 5 to 7 s, and the cycle is repeated 30 times.

3.2.3.2. Passive pedaling and MI

This protocol was intended to acquire EEG and kinematic information during the execution

of passive pedaling, combined with MI tasks. For this, the subject was instructed to perform

MI tasks subsequent to passive pedaling at different velocities, considering that, according to

the literature, this may increase the variation in cortical rhythms [20, 21, 13]. In this case,

visual instructions were not implemented, and the MMEB executed three velocities (30,

45, and 60 rpm) randomly (See Figure 3.5(b)). The experiment consisted of two sessions,

implemented in four steps.

• The subject rests their foot on the minibike pedals and fixes their attention on a black

screen for a baseline of 60 s without engaging in any mental activity.

• The MMEB is activated in a time lapse between 7.5 and 10 s for passive assitance.

• The subject has to perform the pedaling MI for the same amount of time as before.

• A break of approximately 2 s without mental task is taken by the subject, which is

indicated by a beep.

Each session of the above protocol consisted of 10 trials per speed (30 trials per session), for

a total of 60 trials performing MI and passive pedaling.

3.2.3.3. MI with Visual-Neurofeedback

During the performance of this protocol the subject was always executing passive pedaling

by the MMEB at a speed of 30 rpm, considering that the objective of this protocol is focused

on neuromodulation. For visual neurofeedback, a percentage box was implemented on the

screen where 100% means that the subject is modulating correctly during MI tasks, while 0%

means that the subject is not modulating or performing MI. When modulation is detected

for values above 40%, the box is green, whereas for a lower value the box is red (See Figure

3.5(c)).The protocol is divided into three parts.

• The subject puts their foot on the MMEB pedals while is performing passive pedaling

but withouth executing mental tasks (baseline) for 150 s. During this time, visual

stimulus are randomized.

• The subject is encouraged to perform MI tasks during passive pedaling. Here, the

ERD percentage is calculated and displayed on the screen with the aim of motivating
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the individual to neuromodulate for 150 s. Meanwhile, the ERD percentage computed

with the actual values of power by using a time window of 1 s (overlapping 50%)

computed with Equation 2-1 is presented in the screen.

• The subject proceeds to perform pedaling MI for 5 minutes continous, using visual

neurofeedback-based BCI, which is going to be presented later.

(a)

(b)

(c)

Figure 3-5: Different protocols performed during this research based on (a) active pedal-
ing; (b) passive pedaling combined with MI; (c) BCI based on MI and visual
neurofeedback.

3.2.4 Participants

A sufficient number of subjects was determined based on a statistical power analysis realized

in G*power software [112]. An analysis was performed to verify the appropriate number

of subjects for model generalization based on the results reported in the literature. For
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this purpose, a G∗power d = 2.13, a value of α = 0.05, and a power of 0.90 were used, as

recommended in previous studies focused on BCI systems [84]. The minimum number of

subjects calculated by the G∗ Power software for the Wilcoxon signed-rank test was seven;

however, in this study, a deviation of 20% was considered as the final sample size.

Eight healthy subjects (five men and three women, aged 22 – 32 years) with no history of

neurophysiological disorders participated in the study by validating the first two protocols. In

contrast, real-time validation of the proposed visual-neurofeedback-based BCI was performed

in a case study involving a 35-year-old male subject with no reported neurological diseases.

The participants voluntarily signed an informed consent form following the guidelines of

the Declaration of Helsinki, and the experimental protocol was approved by the Ethics

Committee of the Federal University of Espirito Santo (UFES), Brazil, under the number

CAAE:39410614.6.0000.5060. All subjects were instructed on the experimental design and

correct execution of the experiment.

3.3 Motor tasks classification

3.3.1 Classification of AM

Considering some strategies published in the literature for motor task classification, simple

strategies of low computational cost were initially used to classify AM tasks during pedaling

tasks executed by the subjects, as shown in Figure 3.5(a). Two strategies were implemented,

as described below.

3.3.1.1 Using ELM and PSD:

After preprocessing techniques performed based on CAR filter and a butterworth filter of

order 4 between frequencies from 3 to 30 Hz, PSD values were used together with the ELM

in 4 frequency bands (FB1:3-7 Hz, FB2: 7-13 Hz, FB3: 7-30 Hz, and FB4: 3-30 Hz)

to classify pedaling vs. rest execution tasks. Notably, the literature does not report this

combination for the classification of target movements. In addition, PSD has worked with

adequate ACC with other approaches, as well as ELM [31, 113, 114, 96, 97].

The methodology for classifying the PSD feature extraction (see Algorithm 1) and classifying

them using ELM (see Section 2) is summarized in Figure 3-6. Then, to find the most suitable

configuration of the ELM, the hidden layer was adjusted and validated for 13 values: 10, 20,

30, 40, 50, 60, 70, 80, 90, 100, 200, 500, and 1000, using information from FB1. To generalize

ELM, a k-fold cross-validation methodology was performed, where the total feature dataset

was separated into two parts (training and validation) with a random number of k times.

The process was then repeated for a value of k = 5, and the validation metrics were computed

and averaged. This process was performed for the features extracted from each frequency

configuration (FB1, FB2, FB3, and FB4).
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Figure 3-6: Block diagram of the methodology for the identification of pedaling tasks using
PSD and ELM.

3.3.1.2. Using CSP-based methods and LDA:

Another strategy widely explored in the literature for classification of limb tasks movements

corresponds to those based on CSP, such as FBCSP or FBCSSP [32, 87]. However, these

methodologies have not yet been fully explored for pedaling [21]. Thus, these methods were

used to classify pedaling vs. rest, and to find a suitable frequency band along with a suitable

time window.

To address this methodology, a pre-processing was performed with a frequency band between

8 and 30 Hz, and then different filter banks and time windows were evaluated. Considering

that the protocol contains 5 s for each task, the size of the windows was selected according

to Figure 3-7, and the frequency bands were selected according to table 3-1.

Table 3-1: Configuration of Filter Bank for FBCSP and FBCSSP methods.
Filter Bank
Configurations

Bandpass fil-
ter 1 (Hz)

Bandpass fil-
ter 2 (Hz)

Bandpass fil-
ter 3 (Hz)

Bandpass fil-
ter 4 (Hz)

FB1 8-13 13-30 - -
FB2 8-19 19-30 - -
FB3 8-16 14-22 20-28 -
FB4 8-15 15-22 22-29 -
FB5 8-15 13-20 18-25 23-30
FB6 8-13 13-18 18-23 23-28
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Figure 3-7: Configuration of time-windows used for feature extraction in CSP-based meth-
ods. Time 0 represents the trigger time (onset of the AM task).

For this research, the number of patterns was established and analyzed for the values 1, 2,

3, and 4, which allows for obtaining 2, 4, 6, and 8 CSP, respectively. Once the filters are

obtained and implemented, the logarithm of variance (logvar) was extracted considering the

different Time Window (TW) and FB. Then, LDA classifier was implemented to discrim-

inate the pedaling tasks vs. rest, where the input came from the obtained features from

algorithm 2. The k-fold cross trial-validation was used to validate the method according to

the performance metrics with a k = 5, considering of 70% of the trials for training and 30%

for the testing. Subsequently, considering previous studies and the CSP, FBCSP and FBC-

SSP were implemented under the same methodology. These methodologies are summarized

in Figure 3-8.

(a)

(b)

(c)

Figure 3-8: Spatial filtering and feature extraction for classification of pedaling tasks by
using (a) CSP; (b) FBCSP; (c) FBCSSP.
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To evaluate the performance of the above classification methods, metrics based on the con-

fusion matrices obtained were used, especially using ACC.

3.3.2 Classification of MI

For the classification of MI after passive pedaling, strategies previously reported in the

literature were considered [13, 21]. For this, information obtained from covariance matrices

and calculations using Riemannian geometry were used as features.

Here the objective was to classify the MI with respect to the baseline, however, it is necessary

to highlight that the protocol 3.5(b) presents a novelty with respect to the experimental

designs reported in the literature [21, 13]. This novelty consists of the implementation

of different time lapses and different passive assistance speeds, whereby the subject had to

perform the MI task based on a previous stimulation with any of the three available velocities

performed by the MMEB: 30 rpm, 45 rpm, and 60 rpm. Here the hypothesis was to analyze

whether it is possible to discriminate these tasks using Riemannian geometry, as seen in

multiclass classification studies.

Initially a filtering process was carried out, considering previous experiences with MI tasks

[21, 32], where signals were segmented considering the triggers of the protocol and filtered in

a range from 8 to 30 Hz using a 4 order Butterworth filter. Initially, the MI vs. baseline tasks

were classified without considering the velocities to validate the performance of Algorithm

3. Subsequently, the one vs one strategy with LDA reported for multiclass classification

was used, where different reference matrices were computed to classify the MI tasks for each

speed. Additionally, the k-fold cross validation strategy with k = 5 was used to find the

Riemann matrix that allowed the best discrimination for each class, using the ACC as a

reference. In addition. considering that this is a multiclass problem, also in this case it is

important to calculate the Area Under Curve (AUC) of ROC curve as metric, since this

metric allows evaluating how well a class was discriminated with respect to the others [54].

A summary of this methodology is presented in Figure 3-9.

3.3.3 Pedaling tasks decoding

In recent years, kinematic decoding through EEG signals has been of interest because this

type of strategy generates continuous outputs that can be used as controllers of rehabilitation

devices in a more robust way compared to discrete outputs by classifiers [37, 38].

However, these strategies for reconstruction of pedaling tasks have been little explored in

the literature. For this reason, part of this research was to establish strategies to decode

kinematic information of the lower limbs through EEG signals. To obtain the kinematic

information, videos of the sagittal plane together with the position of the reflective markers

were used (see Figure 3.4(a)), using the freely available software Deeplabcut [107].

The points were obtained according the reflective markers located in the hip, knee, and
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Figure 3-9: Feature extraction based on Riemannian geometry and classification with LDA
for a multiclass approach.

ankle, considering that these are the joints involved in the pedaling tasks [111] (see Figure

3-10).

Subsequently, Deeplabcut generates the kinematic signals, which were filtered with a But-

terworth type low-pass filter to eliminate interference produced by occlusion. Two methods

were used for the decoding of kinematics during pedaling tasks which are based on the

Unscented Kalman Filter and Deep learning (CNN and LSTM).

3.3.3.1. Unscented Kalman Filter for velocities reconstruction:

To decode the pedaling tasks, EEG signals were filtered using a Butterworth filter in the

frequency band of 0.1 to 4 Hz (δ band) [18, 38]. A CAR filter was used to reject the common

noise involved in all EEG channels. In this case, four channels of EEG were used: CZ , C3,

C4, and PZ , considering that literature reports Cz corresponds to more discrimant channel

for decoding lower members [18, 13, 115].

In this case, EEG data was used to decode the kinematic behavior of the ankle joint, which

is the most variable joint involved in pedaling tasks, and the knee angle, which is the most

important joint involved in lower-limb movements [38]. Specifically, the velocities in the x

and y axis were decoded for the ankle joint, according 2D registration, and the knee angular

velocity was formed between the ankle, knee, and hip joints. To estimate the performance of

the actual and decoded kinematic data, Equation 3-3 computed the knee angular velocity.
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Figure 3-10: Reference points generated by Deeplabcut considering the three main joints:
hip, knee, and ankle.

θ̇ =
d

dx

[
cos−1

(
ā · b̄
|ā| ·

∣∣b̄∣∣
)]

, (3-1)

where a corresponds to the vector formed between the hip and knee, b corresponds to the

vector formed between the knee and ankle, and θ̇ corresponds to the knee angle velocity. The

first derivative was applied to Equation 3-3 to compute the angular velocity. In addition, the

envelope of each kinematic signal was calculated using the spline interpolation method over

the local maxima in a specific number of samples (50 in this case) to compare the real and

estimated data [110]. Finally, considering that it is necessary for the kinematic and EEG

signals to have the same sampling frequency, they were resampled and subsampled at 100

Hz [38].

The UKF is an improved version of the Kalman Filter due to its robustness in nonlinear

applications. This method generates sigma points that are separated by the covariance of the

estimated current state, which allows for better performance considering noise that affects

the system. The UKF uses an Unscented Transform (UT) to incorporate nonlinearity into

the model, which is important considering the nonlinear relationship between neural signals

and limb motion [91, 18, 38].

In this study, the UKF was used as a decoder for the reconstruction of three kinematic
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signals. For this, the nonlinear system consists of a motion model named state model, and

a neural model (observation model). More information about these models is available in

[56, 91]. In this case, the variables to estimate correspond as follow:

xt = [θ̇knee, ẋankle, ẏankle]
T , (3-2)

where ẋankle denotes the velocity in x-axis of the ankle joint, ẏankle corresponds to the velocity

in y-axis of the ankle joint, and θ̇knee denotes the knee angle velocity.

Considering the matrices that allow relating the neural behavior with respect to the kine-

matics, it is possible to obtain a vector of predictions for Equation 3-2. The methodology

consisted of evaluating different time windows to predict the kinematic variable (lags), as

shown in Figure 3-11. In this case, information from TWs of 10, 20, 50, and 100 ms were

used, which correspond to lag values of 1, 2, 5 and 10, respectively. Here, the PCC is com-

puted to evaluate the performance of the implemented method to estimate the kinematics

[110].

Figure 3-11: Decoding schematic for tap size = l. When running multiple experiments,
the tap sizes ranged from 1, 2, 5, 10, which correspond to 10, 20, 50, 100 ms,
respectively.
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3.3.3.2. Deep learning for trajectory estimation:

Unlike the previous method, where it was possible to estimate the kinematic velocities present

in the pedaling movement, in this case the trajectories were estimated [83]. For this, the

information of the x and y axis of the ankle was used, together with the joint angle, obtained

from the Equation 3-3.

θ = cos−1

(
ā · b̄
|ā| ·

∣∣b̄∣∣
)
, (3-3)

where a corresponds to the vector formed between the hip and knee, b corresponds to the

vector formed between knee and ankle, and θ corresponds to the knee joint amplitude. Fi-

nally, this kinematic information is normalized by using max-min normalization technique,

considering previous results [83]. After, the signals were segmented in TWs similar to es-

timate the kinematic parameter, such as the procedure shown in Figure 3-11. After, the

CNN and the LSTM were used in regression mode to estimate the angle.

• The CNN structure used in this study is shown in Fig. 3.12(a), which consists of

different convolution and pooling layers. This architecture is based on related works of

DL in decodification with EEG [83, 116, 117]. Furthermore, the size of the intermediate

layers as well as the chosen hyperparameters were applied considering literature studies

[83]. All the intermediate layers use ReLU as an activation function, as using this

activation function the gradient has a constant value. In addition, different TWs were

evaluated, where the lags had numbers equal to 50, 100, 150, 200, 250, and 300 ms.

The input layer was based on features which correspond to the AM potentials in the

delta band. The output layers were the estimated knee angle and ankle position, which

were configured as a regression problem [117].

• LSTM was used considering the configuration shown in Fig. 3.12(b). The architecture

used along with the established hyperparameters were chosen considering the reports

of Nakagome et al. and Jain et al. [38, 83]. ReLu was used as the activation function

for the hidden layers. The process was similar to the CNN methodology, where the

features correspond to the AM potentials in the delta band for each lag (50, 100, 150,

200, 250, and 300 ms), and the output layers are the estimated kinematic parameters

that were configured as a regression problem [117].

Training and Testing

After pre-processing and segmentation by time windows for EEG and kinematic samples, the

data from the two sessions for each test subject were concatenated. Subsequently, the data



3.4 Visual Neurofeedback-based BCI 65

(a)

(b)

Figure 3-12: Proposed ANN-based structures for pedaling task identification. Above each
block the configuration value set for each layer and the method is presented.
Seq corresponds to sequence.

were randomized using the 70-15-15 strategy [110, 83], where 70% of the trials were used to

train the ANNs, 15% were used to validate and generalize the algorithms, and finally 15%

of the data were used to evaluate the efficiency of the network. The latter are presented in

the results section. In total, 42 trials were used for training, 9 were used for validation and

9 for evaluation.

3.4 Visual Neurofeedback-based BCI

Finally, a real-time BCI system is proposed for the evaluation of a visual neurofeeback. For

this, the Baseline and MI information shown in the protocol 3.5(c) are used to train the

classification model. To address this, the features of the Riemannian geometry presented in

the algorithm 3 were used.

Furthermore, the approach computes Euclidean distances of feature vectors extracted in a

multi-channel EEG scenario with respect to cluster centers to help individuals regulate their

cortical rhythms associated with MI. As explained below, two clusters are defined in this

approach, one composed of baseline, and other composed of MI. This strategy was based

on previous studies presented by [118]. Let be a feature vector F = {f1, · · · , fi · · · , fK}
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considering that i equals the epochs, and the features obtained by the Reimanian geometry

for the class when MI is running. Subsequently, the visual neurofeedback percentage is

calculated based on the Euclidean distance, considering a marker that allows weighting the

features. According the above:

di =
√
(fi − u)(fi − u)T , (3-4)

u =
∑
i

wi × fi, (3-5)

where

wi = Bi ×

[
N∑
l=1

Bl

]−1

(3-6)

where Bi is the biomarker considering electrodes E = {e1, · · · , eL}, fi is a feature recog-

nized as MI task, di is the Euclidean distance of fi with respect to the mean vector of its

corresponding set, and N is the total number of feature vectors in the subset. For this case,

the relative power in the band mu and beta is used as biomarker. In Equation 3-7, the

biomarker increases for MI. In this study, the electrodes closer to Cz play an important role

during lower MI activity. For this reason, CP1, CP2, and CZ , were used to calculate the

biomarker by:

Bi =

((
µMI + βMI

PMI

)
−
(
µb + βb

Pb

))
i

=
L∑

e=1

((
µMIe + βMIe

PMIe

)
−
(
µbe + βbe

Pbe

))
, (3-7)

where e represents each specific EEG location, L is the number of total specific electrodes that

fi is computed, µ is the power in mu band, β is the power in beta band, P is the total power,

b corresponds to baseline, MI corresponds to the MI. Subsequently, an interpolation-based

strategy was used to establish the Eucladian distances and convert them into a percentage.

The lower the Eucladian distance to the MI clusters, the higher the percentage rate, with a

maximum value of 100% and a minimum value of 40%. This is presented to the individual as

visual neurofeedback in green color. On the other hand, when the subject does not perform

MI, a value of 0% is presented in red. A summary of the proposed BCI can be seen in Figure

3-13. It should be noted that for the calibration phase the data from the baseline and MI

phase with neurofeedback calculated by the protocol depicted in Figure 3.5(c) are used.
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Figure 3-13: Block diagram of the proposed BCI.





4 Results and Discussion

4.1 Data Analysis

First, before performing the classification tasks, it is possible to make a Time-Frequency (TF)

representation of the cortical rhythms during the pedaling tasks [108]. For this, the Morlet

wavelet transform was used on the Cz channel between the 8 to 30 Hz frequency bands, after

a CAR filter. Additionally, Equation 2-1 was used to calculate the ERD percentage in each

case. Figure 4-1 shows the ERD for the active pedaling tasks per subject, whereas Figures

4-2 and 4-3 show the ERD for the MI tasks after performing passive pedaling for each of

the 3 MMEB speeds.

Figure 4-1: Quantification of ERD cortical changes for all subject while performing active
pedaling tasks, where the x-axis corresponds to time, the y-axis is the frequency
domain, and the z-axis corresponds to the ERD in channel CZ .

From Figure 4-1 it can be argued that there is an evident behavior of power decrease in the

Mu band, for all subjects, which is in accordance with the literature in previously presented

studies [20, 108]. For instance, these findings were similar to the results of Pfurtscheller et

al.[119], who determined that the ERD behavior of lower limb movements are similar between

frequency bands between 8 and 30 Hz and time segments after the trigger for approximately

1 s. On the other hand, this phenomenon also arises when the subject performs MI, as

presented in Figures 4-2 and 4-3, considering that these last two figures also indicate a

power increase (synchronization) in the beta band at the beginning and end of the MI cycle,
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which are similar to the results reported by Storzer et al. between the frequency ranges of

28 to 35 Hz [108].

(a) (b)

(c) (d)

Figure 4-2: Quantification of ERD cortical changes for all subject while performing MI
pedaling tasks after passive pedaling for the three velocities, where the x-axis
corresponds to time, the y-axis is the frequency domain, and the z-axis corre-
sponds to the ERD in the channel CZ for the subjects S1-S4 ((a)-(d)).

4.2 Classification

4.2.1 PSD-ELM

The results of the ELM evaluated for different number of hidden neurons is shown in Figure 4-

4, which shows the variation of ACC and FPR parameters by changing the number of hidden

neurons in the network structure. From the figure, it can be noted that a higher number of

neurons in the hidden layer does not mean a better performance. Thus, a configuration with

20 neurons in the hidden layer was selected for additional post-processing. This configuration

initially achieved an ACC of 0.706±0.12, and a FPR of 0.29±0.11.
Four frequency bands were evaluated, and the results are shown in Fig 4-5. Figure 4.5(a)

represents the ACC results for each frequency band, where the best performance was achieved

with the FB2 with an ACC of 0.73±0.12, and the lowest behavior was obtained with the

FB3 with an ACC of 0.67±0.15. It is worth nothing that for this case, Subject 5 obtained

the highest performance with an ACC of 0.89 using the FB2.

On the other hand, Figure 4.5(b) represents the average FPR results for all subjects, where

the lowest FPR value was achieved for Subject 5 with the FB1 of approximately 0.07. In
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(a) (b)

(c) (d)

Figure 4-3: Quantification of ERD cortical changes for all subject while performing MI
pedaling tasks after passive pedaling for the three velocities, where the x-axis
corresponds to time, the y-axis is the frequency domain, and the z-axis corre-
sponds to the ERD in the channel CZ for the subjects S5-S8 ((a)-(d)).

addition, The lowest average FPR value obtained was with the FB1 of 0.26±0.13, while the
worst performance was obtained with 0.33±0.17 by implementing FB4. The FB2 configu-

ration achieved an FPR of 0.28±0.14. It is worth mentioning that the best results mean an

ACC close to 1 and an FPR close to 0.

The results indicated that the highest ACC was obtained with the FB2 configuration to in-

dentify pedaling tasks through EEG signals, whereas the best FPR performance was obtained

with FB1. These two frequency bands are according to the literature, where suggestions

are that the most discriminating information for movement execution with the lower limbs

should be obtained in the frequency ranges of 3-7 Hz (delta band) and 7-13 Hz (mu band)

[115, 18, 110]. This study provides an extension in the literature, where frequency analysis

across filter banks has not been fully explored, and the most reported studies for pedaling

tasks were acquired between 7-30 Hz or 3-30 Hz (FB3 and FB4, respectively) [115, 13]. This

suggests that selective filtering in frequency bands may improve the performance of BCIs

for movement detection with EEG, as reported for upper limb motor tasks [32], but not

necessarily for lower limb pedaling tasks.

Compared to the previous literature, this study obtained a mean ACC of 0.73 and a maxi-

mum of 0.89 using ELM as a classifier, and PSD as feature, which surpasses techniques for

lower limb recognition, such as that of Ugarte et al., where an ACC of 0.61 was obtained

[120]. In addition, Liu et al. proposed a study for the identification of ankle movements,

obtaining an ACC higher than 0.81 [121]. However, the latter is not fully comparable be-
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Figure 4-4: ACC and FPR for the different configurations of number of hidden neurons.

(a) (b)

Figure 4-5: Average classification metrics for ELM for the different frequency band config-
urations for all subjects. Considering (A) ACC; (B) FPR.

cause the movements are different. Studies related to pedaling MI tasks have reported ACC

of approximately 0.85 or FPR of approximately 0.18 by using Riemannian computational

strategies [13]. However, this technique has not been explored to active movement. It

is worth commenting that these strategies based on MI may be not useful in some cases

whether the idea is implement more personalized systems, considering that their functioning

is based on on/off methodology. Furthermore, movements related to pedaling have not been

explored extensively using different spectral analyses [115, 13], whereas the use of ELM and

PSD for the classification of lower limb tasks is not well documented in the literature.

4.2.2 CSP-based Methods and LDA

Fig 4-6 represents the results for ACC and FPR according to the different TWs and the

number of patterns for CSP. It is possible to see that the best performance is achieved with

4 patterns. On the contrary, for the TW normally used in the literature in motor tasks

(TW1) it is possible to observe an ACC of 0.73±0.17 and FPR of 0.26±0.17. Meanwhile,



4.2 Classification 73

the best result was obtained with TW7 and 4 patterns, representing an average accuracy of

0.79±0.13 and FPR of 0.20±0.14.

(a) ACC (b) FPR

Figure 4-6: Average classification (a)ACC; (b) FPR for CSP for the different TWs and
number of patterns for all subjects.

(a) ACC (b) FPR

Figure 4-7: Average performance metrics for FBCSP and FBCSSP for the different Filter
Bank cosidering all subjects by using as metrics: (a) ACC; (b) FPR.

Figure 4-7 shows a better performance with the FBCSSP concerning the FBCSP method,

where the FB2 was the best with an ACC of approximately 0.80±0.12 and 0.80±0.14 for the

FBCSP and FBCSSP, respectively. On the other hand, the minimum FPR was 0.19±0.14
and 0.19±0.14, for the FBCSP and FBCSSP, respectively.

In order to distinguish between active pedaling tasks and resting tasks by using EEG, this

section presents a comparative study of various combinations of configurations for CSP,

FBCSP, and FBCSSP methods based on the variation of number of patterns in spatial

filtering, TW in temporal segmentation, and filter banks during frequency filtering. The
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best results are obtained with a number of 4 patterns, a non-overlapping 2 filter bank (FB2),

and a TW between 1.5 and 2.5 s (TW7), according to the evaluation metrics.

Furthermore, the lower performance was obtained with the CSP method using the TW6

(between 1 and 2 s) and 2 patterns. On the other hand, for the frequency filtering, the lower

performance was obtained using a bank of 4 filters without overlap. These results provide a

contribution to the challenge of scientific community for the recognition of lower limb motor

tasks, considering the fact that the variations of spatial and frequency filtering together with

TW segmentation for pedaling execution detection has not been deepened in the literature,

making it difficult to compare among decoding techniques. Related studies have proposed

this type of analysis, where Blanco et al.[32] reported the use of CSP, FBCSP and FBCSSP

for the discrimination of upper-limb tasks, in which an approximate average ACC of 74%

was obtained, using 3 filter banks with no overlap and a window between the segment of 1.5

and 3 s.

Liu et al.[121] proposed a study for the identification of ankle planter flexion MI using 1.5 s

time windows, a filter between 4-48 Hz, and 32 EEG channels, obtaining ACC about 81%.

Additionally, similar studies have been proposed for the decoding of pedaling MI, where

Ugarte et al.[120] reported an ACC of 61% using a frequency range between 6-30 Hz and

30 EEG channels; Romero et al.[13] reported FPR of 0.18 using 8 EEG channels and a

filter between 0.1-30 Hz; Rodriguez-Ugarte et al.[122] reported ACC of 0.85 using a 4 s time

window; and Gurve et al.[123] reported ACC of 0.96 using a filter between 0.1-30 and 19 EEG

channels. Nevertheless, these studies do not propose to delve into the different variations

of temporal segmentation, spectral and spatial filtering, can increase the performance of

standard methods, as evidenced in this study.

4.3 Classification of MI

For MI classification using Riemannian geometry, was initially validated to identify baseline

vs. MI for all subjects, which has reported ACC near 98% in previous studies [21]. To

perform this procedure, the data were segmented using k-fold cross validation, where 70%

of the dataset was used for training, 15% for validation and 15% for evaluation. Here, the

projection matrix that generated the highest ACC was used on the evaluation data for model

generalization. The confusion matrices using this methodology for each test subject on the

evaluation data for all subjects are presented in Figure 4-8.

Considering the confusion matrices, ACC is computed for each subject, which are presented

in Table 4-1. These results are in line with expectations, considering that previous studies

have reported MI combined with passive pedaling, obtaining ACC around 0.98 [21].

Subsequently, the methodology of Figure 3-9 is used to decode the MI task after passive

pedaling at the three different speeds. As before, the dataset was validated using k-fold

cross validation with k = 5 to obtain the best Riemannian distance projection matrices in

addition to the LDA classifier. Considering that it is a multi-class task, the one .vs one
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(a) S01 (b) S02 (c) S03 (d) S04

(e) S05 (f) S06 (g) S07 (h) S08

Figure 4-8: Confusion matrices for the 8 Subjects using Riemannian geometry-based Fea-
ture Extraction, and LDA to classify Baseline (Class 1) and MI(Class 2).

Table 4-1: ACC for classification of MI tasks by using Riemannian geometry and LDA

Subject S01 S02 S03 S04 S05 S06 S07 S08 Average
ACC 0.9062 0.9706 0.9412 0.9687 0.9375 0.9444 0.9687 0.9687 0.9507

strategy was used so that different ACCs were obtained in the identification of binary tasks.

The ACC results are shown in Figure 4-9 for each test subject.

The results in Figure 4.9(i) allow verifying that the methodology to identify pedaling MI

tasks at different speeds were the most discriminant class correspondent to the Baseline,

which is in accordance with the results presented in Table 4-1. It was also possible to

determine that the most discriminant class of the 3 MIs corresponds to the 60 rpm, with

respect to the 30 rpm, with an ACC of 0.78, whereas the other two speeds obtained average

performance close to 0.68.

Some related studies have been focused on evaluating EEG at different walking speeds, either

using exoskeletons or treadmills. For the case of exoskeletons, Quiles et al. have conducted a

methodology related to intentionality to change the velocities of an exoskeleton in a pseudo-

online phase [124]. In this study, non-linear extraction techniques were used where was

possible to obtain an ACC close to 0.68. On the other hand, Wu et al. used strategies to

classify SSVEP at different speeds of a treadmill, and evaluate through an ANN whether

it was possible to classify the speeds [125]. Through the aforementioned methodology, they

got an ACC of 0.77 to discriminate higher speeds from lower speeds.

In this study, a strategy for classifying pedaling MI tasks at different speeds was presented

for the first time. To address this, passive pedaling at different speeds was performed by a

passive-assistive MMEB. The results allowed determining that the most discriminative task

corresponds to differentiating the highest available speed (60 rpm) with respect to the lowest
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(a) S01 (b) S02 (c) S03

(d) S04 (e) S05 (f) S06

(g) S07 (h) S08 (i) Average

Figure 4-9: Confusion matrices for the 8 Subjects using Riemannian geometry-based Fea-
ture Extraction, and LDA to classify the MI after passive pedaling with three
different velocities (Class 1 = Baseline; Class 2= MI after 30 rpm; Class 3=
MI after 45 rpm; Class 4= MI after 60 rpm).
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speed (30 rpm). This is somewhat related to the results of Wu et al. where for the case of

walking it was possible to identify SSVEP responses during walking at high speeds compared

to low speeds in a more feasible way using ANN [125]. On the other hand, discrimination

between the other speeds (30-45rpm and 45-60 rpm) generated adequate ACCs considering

the binary classification problem and the randomized probability (50%).

4.4 Kinematics reconstruction of continuous active

pedaling tasks with UKF

An hiperparameter to be considerend when UKF is used corresponds to the system order

[91]. For this reason, Figure 4-11 presents the results of the variation by using the PCC as

metric. It is possible to highlight that for the angular velocity variable of the knee, the most

adequate order of the system corresponds to order 9 with a PCC = 0.20 ± 0.04; whereas,

for the values of the ankle velocities, the best PCC is obtained with order 3 for an average

value of 0.212± 0.04 in x-axis and 0.22± 0.05 for y-axis with order 9. Therefore, all UKFs

were set in the order of 9.

(a) (b) (c)

Figure 4-10: PCC values obtained by varying the UKF order for the kinematic variables:
(a) knee angular velocity (θ), (b) ankle velocity in x-axis (ẋ), and y-axis (ẏ).

Figure 4.11(a) represents the obtained PCC values for angular velocity (θ̇) prediction, where

it is possible to observe a maximum PCC of approximately 0.24 with five lags and a mean of

0.21±0.02. Figure 4.11(b) represents the obtained PCC values for linear velocity in the x-axis

(ẋ) prediction, with a maximum value of 0.30 with two lags, and an average of 0.20±0.04.
Figure 4.11(c) presents the obtained PCC values for linear velocity in the y-axis (ẏ), where

a maximum value of 0.33 was obtained by using two lags, and an average of 0.21±0.03.
Finally, considering the most appropriate order of the system, the reconstructed kinematic

information for the best subject (S06) is presented in Figure 4-12.
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(a) (b) (c)

Figure 4-11: Average PCC for the prediction of lower limb joint from EEG signals for all
subjects for each evaluated lag.

(a) (b) (c)

Figure 4-12: Measured and reconstructed lower limb joint parameters during a cycle of
pedaling task from EEG signals for the Subject S06. Light gray represents
the true measurement, and black the estimated parameter.

4.5 Decoding trajectories of continuous active pedaling

tasks with DL approaches

The analyses of this study were performed for each of the subjects considering the inter-

subject variability, the lags of interest, and the decoders presented for each of the three

kinematic parameters (θ, x, and y). The reconstructionof of PCC during the pedaling tasks

is given in Table 4-2 for each EEG TW, each ANN, for each subject.

In this table it is possible to see that the decoders improve as the TW is increased, which is

the expected result. This average behavior can be seen more clearly in Figure 4-13. On the

one hand, it can be observed that the variable that obtained the best decoding corresponded

to the knee joint angle, which is in agreement with the previous results. On the other hand,

the LSTM-based decoder obtained higher average PCC values compared to the CNN for the

decoding of the θ angle, however, on average for the position of the ankle in the x and y

axes, the highest PCC values were obtained with the CNN. The best PCC values obtained
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Table 4-2: Analysis per subject of neural decoders (CNN and LSTM) with TW of 50, 100,
150, 200, 250m and 350 ms.

Lag ANN Variable
Subject

S01 S02 S03 S04 S05 S06 S07 S08 Average

50 ms

CNN
Theta 0.3713 0.3894 0.3643 0.4054 0.5255 0.4280 0.4566 0.4282 0.4211

X 0.3442 0.4032 0.3578 0.4150 0.5222 0.4341 0.4456 0.4063 0.4160
Y 0.3624 0.4295 0.3553 0.4018 0.4804 0.3986 0.4343 0.3942 0.4071

LSTM
Theta 0.2577 0.3600 0.3331 0.3827 0.6032 0.4586 0.4621 0.4553 0.4141

X 0.2391 0.3600 0.3207 0.3751 0.5942 0.4330 0.4436 0.4199 0.3982
Y 0.2832 0.3828 0.2480 0.3378 0.4386 0.3634 0.3928 0.3402 0.3484

100 ms

CNN
Theta 0.3462 0.3691 0.3877 0.4088 0.5536 0.4606 0.4626 0.4386 0.4284

X 0.3494 0.3938 0.3799 0.4357 0.5518 0.4534 0.4589 0.4251 0.4310
Y 0.3686 0.4157 0.4023 0.3816 0.4883 0.4720 0.4686 0.4086 0.4257

LSTM
Theta 0.4111 0.3932 0.3890 0.4799 0.6406 0.5149 0.5127 0.5430 0.4855

X 0.3666 0.3707 0.3687 0.4700 0.6219 0.4686 0.4786 0.5219 0.4584
Y 0.3443 0.4225 0.3466 0.3589 0.5105 0.4529 0.4524 0.4262 0.4143

150 ms

CNN
Theta 0.3646 0.4130 0.4185 0.4473 0.5705 0.5224 0.4723 0.5119 0.4651

X 0.3723 0.3798 0.4314 0.4363 0.5767 0.5104 0.4543 0.4997 0.4576
Y 0.4113 0.4184 0.4141 0.4362 0.5365 0.5023 0.4519 0.4734 0.4555

LSTM
Theta 0.3987 0.4184 0.4546 0.4670 0.6958 0.5482 0.5475 0.5633 0.5117

X 0.3541 0.4211 0.4498 0.4623 0.6885 0.5113 0.5197 0.5300 0.4921
Y 0.4090 0.3900 0.3861 0.3816 0.5189 0.4798 0.4844 0.4915 0.4427

200 ms

CNN
Theta 0.4518 0.4534 0.4835 0.5043 0.6883 0.5210 0.5798 0.6133 0.5369

X 0.4487 0.4657 0.4750 0.5046 0.6710 0.5187 0.5815 0.6006 0.5332
Y 0.4612 0.4392 0.4820 0.4973 0.6152 0.5054 0.5497 0.6006 0.5188

LSTM
Theta 0.4039 0.4314 0.5691 0.5197 0.7364 0.6240 0.5823 0.6422 0.5636

X 0.3886 0.4514 0.5430 0.4918 0.7131 0.5869 0.5697 0.6106 0.5444
Y 0.3824 0.4211 0.4620 0.4024 0.5526 0.5202 0.4903 0.4970 0.4660

250 ms

CNN
Theta 0.5059 0.4784 0.5252 0.5895 0.6856 0.5854 0.6239 0.6630 0.5821

X 0.5115 0.5057 0.5374 0.6158 0.6727 0.5836 0.6355 0.6359 0.5873
Y 0.5261 0.4927 0.4911 0.5408 0.6206 0.5524 0.6004 0.6158 0.5550

LSTM
Theta 0.4596 0.4852 0.5455 0.5827 0.8273 0.6360 0.6057 0.6974 0.6049

X 0.4389 0.5103 0.5154 0.5608 0.7888 0.5792 0.5791 0.6640 0.5796
Y 0.4043 0.3903 0.4513 0.4789 0.6374 0.5653 0.5129 0.5233 0.4955

300 ms

CNN
Theta 0.5208 0.4612 0.5635 0.6114 0.7224 0.6506 0.6605 0.6749 0.6082

X 0.5139 0.4627 0.5589 0.6071 0.7032 0.6570 0.6560 0.6656 0.6031
Y 0.5382 0.5317 0.5694 0.5965 0.6443 0.6345 0.6439 0.6431 0.6002

LSTM
Theta 0.4638 0.4524 0.5817 0.5775 0.8024 0.6693 0.6601 0.7133 0.6150

X 0.4065 0.4709 0.5607 0.5298 0.7657 0.6088 0.6146 0.6578 0.5769
Y 0.4406 0.4209 0.4470 0.5079 0.6524 0.6005 0.5861 0.5921 0.5309

were 0.6150 for θ with LSTM, and 0.6031 and 0.6002 for the x and y direction of the ankle,

respectively, using a TW of 300 ms.

On average, the decodings using a lag of 300 ms obtained average PCCs of 0.6150, 0.5769,

and 0.5309 for θ, x, and y, respectively with LSTM; whereas using CNN obtained PCCs of

0.6082, 0.6031, and 0.6002 for θ, x, and y, respectively. Additionally, in Table 4-2 it can be

observed that the variable θ obtained best PCCs using LSTM in comparison to the CNN.

For instance, it can be observed for subjects S03-S08 using TWs of 100 and 150 ms. The

highest performance was achieved by subject S05 for a 250 ms window, with a PCC of 0.8273,

using the LSTM to decode the θ parameter. On the other hand, the lowest performance was

obtained using the shortest time window by subjects S01 and S03 and the LSTM decoder,

with PCC values near 0.30.

It is worth noting that this is the first time that a continuous decoding approach is made
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(a) (b) (c)

(d) (e) (f)

Figure 4-13: Kinematic trajectory decoding for θ, x and y-directions for subject S05 using
CNN decoder in (a)–(c), and LSTM decoder in (d)–(f). A 300 ms lag window
was taken. Light gray represents the true measurement, and black the esti-
mated parameter.

in pedaling tasks, therefore, there is no literature reported towards these approaches [110].

Nevertheless, it is necessary to compare the results obtained in this study with those in the

literature. Hosseini et al. implemented a regressor based on Gaussian processing to decode

random hand trajectory tasks, where they obtained PCC close to 0.37 [84]. Under similar

motions, Jain et al. obtained PCC about 0.63 for upper limb movement prediction by using

ANN [83]. Additionally, for lower limb tasks the focus has been put on tasks such as walking,

where Pressaco et al. were the pioneers to report a Wiener Filter based decoder to decode

lower limb parameters during walking, obtaining PCC of about 0.68 [126]. Years later, Luu

et al. started using nonlinear classifiers for estimating kinematics during gait, obtaining

PCCs close to 0.75 with Kalman filters (KF) [127]. Subsequently, ANN for decoding was

used to decode movements of gait joints, such as hip, knee and ankle, obtaining PCC values

between 0.55 and 0.65 [38, 37, 128]. Some of this works are presented and compared in Table

4-3.

4.6 Visual neurofeedback-based BCI

To evaluate the use of BCI in real time, it was first necessary to perform training with

the data from the first two phases of the protocol 3.5(c). Subsequently, 1 s windows with

0.5 overlapping were calculated for both baseline and MI. A strategy based on k-fold cross-

validation was performed, where 150 s were divided into 120 s to train the models and 30 s

to evaluate them. The first 120 s were divided into 12 segments of 10 s, where the data were
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Table 4-3: Summary of the proposed method and others reported for lower limb movement
prediction.

Ref Task Method PCC
[128] Gait CLDA 0.53
[38] Gait LSTM 0.32
[18] Gait UKF 0.47
[126] Gait LWF 0.56
[127] Gait UKF 0.40
Proposed pedaling UKF 0.33
Proposed pedaling CNN/LSTM 0.60
Note: CLDA: Close-Loop Decoder Adaptation Algorithm

LWF: Linear Wiener Filter

randomized and validated using the extraction techniques based on Riemannian geometry.

The process was repeated for a value of k = 10, where at the end the Riemannian matrix

that provided the maximum ACC in validation set was chosen to project into Tangent space.

Subsequently, all data were used to re-train the LDA model in the real-time implementation.

The ACC confusion matrices for the cross-validation and generalized model are shown in

Figure 4.15(a) and 4.15(b), respectively. From these confusion matrices, the ACC values are

0.6957 and 0.7978 for the ACC test and for the ACC of the re-trained model, respectively.

Subsequently, the system was evaluated in real time as shown in Figure 4-14. Here the

subject is instructed to perform MI which is quantified to a percentage through the Euclidean

distance calculated in section 3.2.3. The phenomenon is that when the neuromodulation is

higher (the Euclidean distance is closer to the MI cluster) the green box has a score closer to

100. On the contrary, if the MI task is not performed correctly, the system indicates a 0%

(red color). The ACC in real time was of approximately 0.80 as is presented in the Figure

4.15(c).

The average percentages of neuromodulation for each minute of the evaluation phase is

presented in Figure 4-16. Additionally, the brain behavior of the biomarker calculated in

section 3.2.3 for each minute is shown in Figure 4-17.

It is possible to observe the variation of percentages in Figure 4-16, where it is interesting to

analyze that during the first minute the subject had a low percentage of neuromodulation,

which subsequently rose and was attempted to be maintained until the end. This allows

determining the learning that the person had during the performance of the task. On the

other hand, the biomarker showed a similar behavior during each minute for the Cz channel,

which is important to highlight, considering that this is the most influential eletrode during

lower limb MI tasks [119].
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Figure 4-14: MMEB-based BCI with MI and visual neurofeedback in real-time.
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(a) (b)

(c)

Figure 4-15: Confusion matrices obtained in the calibration phase for the visual
neurofeedback-based BCI, where (a) confusion matrix for test set; (b) con-
fusion matrix obtained from the general model; (c) confusion matrix from
online phase.
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Figure 4-16: Performance of the participant using the BCI to control the percentage pre-
sented in the screen by using MI.

Figure 4-17: Representation of the ratio (mu+beta)/total, of the test subject using the vi-
sual neurofeeback-based BCI calculated after each minute of the online phase.
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5.1 General Discussion

In this study it was possible to determine that there is a lack of literature regarding the

implementation of BCIs based on pedaling tasks, considering that some studies have reported

the use of brain signals for the on/off control of MMEB at constant speeds [21, 13, 20]. This

has been of significant progress, however, this may limit rehabilitation and HMI. In view of

this, this dissertation aimed to extend the knowledge acquired for the analysis of pedaling

tasks through signal processing in different approaches towards the design and practical

application of real-time BCI systems for rehabilitation.

To address this, three protocols based on pedaling tasks and the use of an MMEB were pro-

posed: one based on active pedaling, one based on passive pedaling and MI, and one based

on visual neurofeedback during passive pedaling and MI. Initially, some guiding methodolo-

gies from the literature were performed to analyze the acquired data, where it was possible

to demonstrate the ERD that is highly reported in the literature on the Cz electrode for the

performance of lower limb tasks [119, 108].

Subsequently, different classification algorithms were performed. First, PSD features were

used together with ELM to classify active pedaling, where it was possible to obtain ACC

values close to 0.73 with a maximum of 0.89, which exceeds some results reported in the

literature [120, 122] and shows viability in the classification. However, it is necessary to

deepen the optimization of the ANN hyperparameters. In contrast, a study that imparted

CSP-based methods was applied. This study showed that spatial, spectral and temporal

configurations have a significant effect on the performance of a BCI based on the CSP,

FBCSP, and FBCSSP methods for decoding pedal motor execution tasks, considering ACC

and FPR. The best results were obtained with four patterns for the CSP, a 2-filter bank

without overlap (8-19 Hz, 19-30 Hz), and a TW between 1.5 and 2.5 s after indication. A

maximum ACC of 0.80 and minimum FPR of 0.19 were obtained, for all subjects, which

indicates that the CSP-based algorithms are adequate for the discrimination of pedaling

tasks. Furthermore, the worst configuration obtained was a bank with four filters without

overlap, a TW between 1 and 2 s, and two CSP patterns. Interestingly, in the literature, this

joint temporal, spectral, and spatial domain feasibility analysis has not been fully explored

with lower limbs during active pedaling tasks, but only for upper limb tasks.

Another variation used in this dissertation corresponded to the use of Riemannian geometry

to decode pedaling MI tasks after passive pedaling. This has been addressed previously,
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where ACCs of approximately 0.97 have been reported [115, 123, 13]. However, in our study

an ACC of 0.95 was obtained, which is not a significant difference. Nevertheless, for the

first time, this algorithm was used in a multiclass variation to discriminate MI tasks at

different speeds, obtaining ACCs close to 0.78 and 0.69. The results indicate that the most

discriminating speed corresponds to the maximum speed (60 rpm), which is consistent with

the study performed in [125]. In a previous study, the authors concluded that higher walking

speeds are easier to discriminate using EEG than lower speeds. Likewise, the implemented

methodology of feature extraction using Riemannian geometry proved to be feasible for

identifying MI under different conditions, which is an advance and can be applied to control

MMEBs at different speeds, allowing for a more personalized rehabilitation therapy.

In recent years, some authors have expressed in the literature to leave aside the discrete

decoding of mental tasks for the design of BCIs and opt for the use of continuous decoding.

Among these, Presaco et al., Luu et al., Nakagome et al., and others have focused on decoding

gait using brain signals in the delta band [126, 18, 37, 38]. Thus, the continuous decoding of

pedaling tasks is not known in the literature. For this reason, this dissertation includes two

new strategies that allow decoding knee and ankle kinematics using two different approaches.

To reconstruct the velocities, the UKF was used with delta band information to obtain

PCCs close to 0.33, whereas for trajectory decoding, ANN with CNN and LSTM structures

were used to obtain PCCs close to 0.70. It was possible to identify reasonable metrics

with TWs of 200 ms and 300 ms, which are acceptable in the implementation of BCIs.

These results demonstrate the proposed methods show feasibility of decoding the kinematic

parameters of the lower limb during pedaling, where the above findings leave the door open

to implementation in the development of new BCIs based on continuous decoding for better

accuracy in intentionality detection and control strategies, as done by Luu et al. in the

interactive implementation of games based on EEG-controlled avatars [127].

Last but not least, the visual neurofeedback has been explored in recent years because it

promotes brain regulation and thus reorganizes synaptic configurations [24]. Therefore, in

this dissertation, a BCI proposal is proposed based on passive pedaling through MMEB and

MI-controlled neurofeedback. The results showed that the algorithms based on Riemannian

geometry allowed the classification of MI with an ACC of 0.80. This metric is a little

low compared to the literature, however, in this study, a protocol was presented where

the baseline was driven by passive pedaling tasks, while studies reported a static baseline

[13, 123]. In addition, it was possible to quantify the percentage of task completion, where

percentage stabilization was obtained after the first minute of the session. This allows

determining the learning that the subject had during the passage of the session, which is an

important factor in neuromodulation. It is worth commenting that this strategy can be used

in the neurorehabilitation of people with disabilities because it promotes the use of passive

pedaling driven by an MMEB while performing MI tasks, which motivates the performance

of simultaneous mental tasks. Based on the literature, this may lead to the restoration of

neural activity lost during the development of a neurological disease [25, 26].
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5.2 Limitations

Some of the limitations during the execution of this dissertation correspond to the fact

that the protocols were executed in healthy people, which limits the final objective as a

rehabilitation device. Nevertheless, different strategies were addressed in the exploration of

EEG signals and applications of BCI systems based on pedaling tasks, which can be oriented

in future studies to post-stroke or SCI populations.

5.3 Clinical and potential applications

Passive assistance has been of importance in post-stroke rehabilitation therapies. Addition-

ally, the use of MMEBs brings with it many advantages because it is a lower limb assistance

and rehabilitation device that is portable, does not require a complex structure, relatively

very low cost compared to exoskeletons, among others. Therefore, the techniques used here

may be of interest to the neuroscientific community because it broadens the understanding

of EEG signals during pedaling tasks, while different algorithms have potential use in more

personalized neurorehabilitation therapies, such as the strategy for MI detection at different

speeds or continuous decoding of movement.

Additionally, a BCI proposal based on MMEB for passive assistance and MI was presented,

where the objective was to encourage the subject to neuromodulate brain signals, which may

increase neuroplasticity in a person with neurological impairment. However, it should be

noted that this type of approach is being simultaneously implemented in lower limb assistive

devices, such as the Lokomat exoskeleton, for intervention towards the neurorehabilitation

of people with SCI in the Edmond and Lily Safra International Institute of Neurosciences

(see figure 5-1), which demonstrates the importance of this study.
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Figure 5-1: Proposal based on passive lower limb movement during the use of a BCI based
on visual neurofeeback and MI and Lokomat by a person with SCI.
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During the last years the development of BCIs using EEG has been of interest for the Engi-

neering community, because it has allowed the implementation of robotic systems in thera-

peutic interventions, giving progressive results in the increase of plasticity and restoration of

mobility of post-stroke and SCI population. Additionally, the use of MMEB has expanded

the usability of BCIs, since it has allowed controlling the device with MI tasks, which encour-

ages the patient during their passive pedaling sessions. However, this has brought challenges

related to long calibration phases, intersubject variability, and the lack of customization of

these devices for each patient.

Thus, according to the objectives initially stated in this dissertation, it was possible to

expand the knowledge regarding pedaling tasks and their relationship with EEG signals.

Different protocols were executed with different approaches, which were processed using

different resources, classification and/or regression algorithms, which generated alternatives

for the practical implementation of real-time BCIs. These algorithms were feasible for the

detection of movement intentionality of the subjects with respect to MI tasks or actual

executed pedaling movement, showing ACC close to 0.95 and 0.80, respectively.

Other approaches were carried out, aiming at the development of personalized rehabilita-

tion systems with MMEBs, where the implemented methodologies were adequate for the

detection of MI in different velocity conditions or the exploration of continuous kinematics

with information of low brain frequencies, highlighting ACC close to 0.78 for velocity iden-

tification or PCCs close to 0.70 for continuous decoding. This has been little known in the

literature.

Finally, some methodologies were involved for the design of a BCI based on visual neuro-

feedback and MI, where an ACC, in online phase, of approximately 0.80 was reported, and

it was possible to analyze the cortical response of the subject during the development of

the experimental methodology, observing a better neuromodulation after the first minute of

the session. Therefore, it is possible to conclude that the results of this dissertation can be

used for the design of more personalized lower limb neurorehabilitation systems that allow

a better usability for the subject and a better HMI.

As future work, it is recommended to deepen in the processing of brain signals during

execution of pedaling tasks (either active, passive or imagined), which will allow developing

different approaches that can be used as control signals for robotic rehabilitation devices,

such as MMEB. Additionally, future research will be focused on the implementation of the

generated BCI, which is based on passive motion and neurofeedback for the therapeutic
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intervention of people with SCI with other approaches, such as walking.
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Isaza, “Implementation of computational methods to estimate lower limb angle ampli-

tudes during squat,” TecnoLógicas, vol. 25, no. 53, 2022.

[65] M. K. Sharma, V. S. Dhaka, T. Perumal, N. Dey, J. M. R. Tavares, et al., Innova-

tions in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020.

Springer, 2021.

[66] A. C. Plazas-Molano, M. E. Duarte-González, C. F. Blanco-Dı́az, and S. Jaramillo-
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