UNIVERSIDADE FEDERAL DO ESPÍRITO SANT O CENTRO DE CIÊNCIAS AGRÁRIAS PROGRAMA DE PÓS-GRADUAÇÃO EM PRODUÇÃO VEGETAL

FRANCIANE LOUSADA RUBINI DE OLIVEIRA LOUZADA

BALANÇO HÍDRICO CLIMATOLÓGICO COM DADOS ESTIMADOS PELO SATÉLITE *TROPICAL RAINFALL MEASURING MISSION* PARA A BACIA HIDROGRÁFICA DO RIO DOCE

ALEGRE - ES 2016

BALANÇO HÍDRICO CLIMATOLÓGICO COM DADOS ESTIMADOS PELO SATÉLITE *TROPICAL RAINFALL MEASURING MISSION* PARA A BACIA HIDROGRÁFICA DO RIO DOCE

Tese de doutorado apresentada ao Centro de Ciências Agrárias da Universidade Federal do Espírito Santo, como parte das exigências do Programa de Pós-Graduação em Produção Vegetal, para obtenção do título de Doutor em Produção Vegetal, na linha de Pesquisa de Recursos Hídricos e Geoprocessamento em Sistemas Agrícolas.

Orientador: Prof. Dsc. Alexandre Cândido Xavier **Coorientador:** Prof. Dsc. José Eduardo Macedo Pezzopane

> ALEGRE - ES 2016

Dados Internacionais de Catalogação-na-publicação (CIP) (Biblioteca Setorial de Ciências Agrárias, Universidade Federal do Espírito Santo, ES, Brasil)

Louzada, Franciane Lousada Rubini de Oliveira, 1980-

L895b

Balanço hídrico climatológico com dados estimados pelo Satélite
Tropical Rainfall Measuring Mission para bacia hidrográfica do Rio Doce
/ Franciane Lousada Rubini de Oliveira Louzada. – 2016.

107 f. : il.

Orientador: Alexandre Cândido Xavier. Coorientadores: José Eduardo Macedo Pezzopane. Tese (Doutorado em Produção Vegetal) – Universidade Federal do Espírito Santo, Centro de Ciências Agrárias.

Imagem orbital. 2. Deficiência hídrica. 3. Disponibilidade hídrica.
Chuva. 5. Precipitação (Meteorologia). I. Xavier, Alexandre Cândido.
Pezzopane, José Eduardo Macedo. III. Universidade Federal do Espírito Santo. Centro de Ciências Agrárias. IV. Título.

CDU: 63

FRANCIANE LOUSADA RUBINI DE OLIVEIRA LOUZADA

BALANÇO HÍDRICO CLIMATOLÓGICO COM DADOS ESTIMADOS PELO SATÉLITE TROPICAL RAINFALL MEASURING MISSION PARA A BACIA HIDROGRÁFICA DO RIO DOCE

Tese de doutorado apresentada ao Centro de Ciências Agrárias da Universidade Federal do Espírito Santo, como parte das exigências do Programa de Pós-Graduação em Produção Vegetal, para obtenção do título de Doutor em Produção Vegetal, na linha de Pesquisa de Recursos Hídricos e Geoprocessamento em Sistemas Agricolas.

Aprovada em 29 de fevereiro de 2016.

COMISSÃO EXAMINADORA

ID/ Prof. Dr. Alexandre Cândido Xavier.

Universidade Federal do Espírito Santo (Orientador)

Prof. Dr. José Eduardo Macedo Pezzopane Universidade Federal do Espírito Santo (Coorientador)

Prof. Dr. Julião Soares de Souza Lima Universidade Federal do Espírito Santo

1/2

Prof. Dr. Alexandre Rosa dos Santos Universidade Federal do Espírito Santo

Prof. Dr/João Batista Esteves Peluzio Instituto Federal do Espírito Santo, Campus Alegre

AGRADECIMENTOS

Ao meu soberano Deus, pela sabedoria, paciência e coragem para sempre seguir em frente superando os obstáculos.

Ao meu querido esposo, Marck Cesár Tavares Louzada, pelo amor, paciência, companheirismo, incentivo e por estar sempre ao meu lado, sempre com palavras sábias e encorajadoras.

Ao meu pai, Aloísio Rubini de Oliveira, pela criação, apoio, incentivo e por ser o amigo de todas as horas.

À minha mãe, Sueli Lousada (*In memoriam*), minha eterna gratidão pela criação, apoio, incentivo e pelos ensinamentos que jamais esquecerei.

Ao meu irmão, Francis Lousada, que sempre me motivou a ir além, na carreira acadêmica.

Aos meus sogros, Eudinea e Alaor Louzada, que sempre oraram por mim e sempre me desejaram forças para continuar firme em meus projetos.

Aos meus parente e amigos, que demonstraram interesse, preocupação, apoiandome sempre.

Aos meus irmãos em Cristo, que sempre oraram por mim e me incentivaram, em especial, às Senhoras Adélia, Dorvalina, Zilda e Marta, obrigada pelo carinho.

A todos os meus amigos parceiros do doutorado e mestrado, por compartilharem as dúvidas e as respostas, pelo aprendizado na convivência diária, em especial, a meu grande amigo Fábio Castro, hoje Doutor, que muito me ajudou e também aos meus amigos Abel, Rafael, Daniel P. Pereira e Daianne Pirovani.

Aos Professores, Dr. Alexandre Cândido Xavier e Dr. José Eduardo Macedo Pezzopane, pela orientação, apoio e confiança.

Aos Professores, Dr. Julião Soares de Souza Lima, Dr. Alexandre Rosa dos Santos e João Batista Esteves Peluzio, que me honraram por participarem da banca de defesa, pelo auxílio, incentivos e sugestões oferecidas. Aos professores que participaram do processo de qualificação, pela importante ajuda com sugestões e aos professores do Programa de Pós-Graduação, pela oportunidade e aprendizado durante o doutorado.

Ao Programa de Pós-Graduação em Produção Vegetal do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), pela oportunidade concedida.

À secretária, Madalena Caetano Capucho de Oliveira, pelas informações e trabalhos prestados.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, pelo apoio e incentivo financeiro na concessão da bolsa de estudos que foi extremamente importante para a realização deste trabalho.

À Agência Nacional das Águas – ANA, Instituto Nacional de Meteorologia – INMET, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural – INCAPER e a *National Aeronautics and Space Administration* – NASA em parceria com a Agência Japonesa de Exploração Aeroespacial – JAXA, pela disponibilização dos dados de precipitação.

A todos àqueles que, direta ou indiretamente, contribuíram para este trabalho.

"O homem traça seu caminho, mas o Senhor lhe dirige os passos" Provérbios 16.9

> "Tudo posso Naquele que me fortalece" Filipenses 4.13

> > "Até aqui nos ajudou o Senhor" I Samuel 7.12

BIOGRAFIA

FRANCIANE LOUSADA RUBINI DE OLIVEIRA LOUZADA, filha de Aloísio Rubini de Oliveira e Sueli Lousada de Oliveira, nasceu em 26 de fevereiro de 1980, na cidade de Alegre, estado do Espírito Santo.

Concluiu o segundo grau no ano de 1997, na Escola Agrotécnica Federal de Alegre, hoje Instituto Federal de Alegre – Ifes, no estado do Espírito Santo.

Ingressou na Faculdade de Filosofia Ciências e Letras de Alegre - FAFIA em 2005, graduando-se bióloga no mês de dezembro do ano de 2007. Ingressou no curso de especialização em Educação Ambiental na mesma faculdade, no ano de 2008.

Em agosto de 2008, iniciou o curso de mestrado do Programa de Pós-Graduação em Ciências Florestais – PPGCF, área de concentração em Ciências Florestais, na linha de pesquisa de Sensoriamento Remoto e Manejo de Bacias Hidrográficas, no Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCAUFES/Alegre-ES), submetendo-se à defesa em novembro de 2010.

Em fevereiro de 2011, iniciou o curso de complementação para Bacharel em Ciências Biológicas na Faculdade de Filosofia Ciências e Letras de Alegre - FAFIA.

Em março de 2012, iniciou o curso em nível de Doutorado do Programa de Pós-Graduação em Produção Vegetal – PPGPV, área de concentração em Produção Vegetal, na linha de pesquisa de Recursos Hídricos e Geoprocessamento em Sistemas Agrícolas, no Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCAUFES/Alegre-ES), submetendo-se à defesa em fevereiro de 2016.

LISTA DE FIGURAS

Figura 2.1-	Limite da área de estudo, bacia hidrográfica do rio Doce englobando a bacia do rio Barra Seca. Fonte: Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce e Planos de Ações para as Unidades de Planejamento e Gestão de Recursos Hídricos no Âmbito da Bacia do Rio Doce	40
Figura 2.2-	Fluxograma com visão geral dos procedimentos desenvolvidos no trabalho	43
Figura 2.3 -	Localização da bacia hidrográfica do rio Doce com a área do pixel do TRMM 3B43-v7, a área cinza são pixels que possuem postos meteorológicos em sua área de abrangência. Postos meteorológicos representadas na cor AZUL e o ponto central dos pixels do satélite 3B43-v7 em vermelho	44
Figura 2.4-	Índice de precipitação dos postos meteorológicos (OBS) e o produto 3B43-v7 do TRMM para a bacia hidrográfica do rio Doce, entre 1998 e 2012 e seus respectivos valores de Erro (TRMM-OBS) e Erro Relativo (100*Erro/OBS), respectivamente. a . Média dos totais mensais (mm/mês) e b . totais anuais (mm/ano)	46
Figura 2.5-	Gráfico de dispersão dos dados de precipitação do satélite 3B43- v7 e dos postos meteorológicos do período de 1998 a 2012. a. Série histórica - SHM (R= 0,91; n= 15120); b. Média do Total Mensal - MTM (R= 0,98; n= 1008); c. Total Anual - MTA (R= 0,81; n= 12.	48
Figura 2.6-	Análises estatísticas entre os dados do TRMM 3B43-v7 e os postos meteorológicos (1998 e 2012). Primeira coluna (a., d., g., j .) Série histórica mensal - SHM, segunda (b., e., h., l .) Média do total mensal - MTM e terceira (c., f., i.; m .) Total anual - TA. (a, b e c) Coeficiente de correlação de Pearson; (d., e., f .) Erro/Viés (mm); (g., h., i .) RMSE (mm); (j., l., m .) MAE (mm)	50
Figura 2.7 -	Mapa de Hipsometria (altitudes) da bacia hidrográfica do rio Doce, baseado nas imagens digitais do SRTM com os 14 pontos que subestimaram em relação ao observado (postos)	51
Figura 2.8-	Gráfico de dispersão dos dados da média da precipitação mensal para o período de 1998 a 2012 estimada pelo satélite TRMM-3B43 e postos meteorológicos na bacia hidrográfica do rio Doce, com seus respectivos coeficientes de correlação	53
Figura 2.9-	Distribuição espacial do erro relativo do volume precipitado (ERVP) da Média dos Totais Mensais (MTM) entre o 3B43-v7 e os postos meteorológicos da bacia hidrográfica do rio Doce, de janeiro a dezembro.	
		54

Figura 2.10-	Mapa de Hipsometria (altitudes) da bacia hidrográfica do rio Doce, baseado nas imagens digitais do SRTM com os pontos de análises das comparações entre os dados estimados pelo 3B43- v7 e o observado (postos). O círculo preto assinala a região de Baixo Guandu-ES	56
Figura2.11-	Precipitação estimada pelo satélite TRMM produto 3B43-v7 para a bacia do rio Doce. a. Precipitação mensal. b. Precipitação anual	57
Figura 3.1-	Localização da bacia hidrográfica do rio Doce; Postos meteorológicos representadas na cor AZUL e o ponto central dos pixels do satélite 3B43-v7 em vermelho	65
Figura 3.2-	Fluxograma com visão geral dos procedimentos desenvolvidos no trabalho	66
Figura 3.3-	Temperatura média anual e mensal para a bacia hidrográfica do rio Doce, estimadas por meio de equações múltiplas lineares e modelo digital de elevação (MDE)	73
Figura 3.4-	Espacialização dos erros relativos (ER) da disponibilidade hídrica (ETR/ETP) realizados com as duas fontes de dados de precipitação, satélite (3B43-v7) e postos meteorológicos (OBS). a. ER mensais; b. ER anual. Círculo preta: área com maior erro relativo da ETR. Círculos vermelhos são os pontos que serão discutidos mais à frente (Baixo Guandu, Jaguaré e Desterro de Melo)	76
Figura 3.5-	Comparação entre o extrato do balanço hídrico climatológico com dados de precipitação (P) estimada pelo satélite TRMM – 3B43- v7 e o Bhclim com os dados de P dos postos meteorológicos (DEF e EXC) e os dados de ETP e ETR. a. Baixo Guandu – ES (pixel 54.3 e OBS 1941009); b. Jaguaré – ES, leste da bacia (pixel 103 e OBS 1840008) – litoral; c. Desterro do Melo – MG, sul da bacia (pixel 02 e OBS 2143003)	79
Figura 3.6-	Evapotranspiração potencial (ETP) anual acumulada na bacia hidrográfica do rio Doce	80
Figura 3.7 -	Evapotranspiração real (ETR) anual acumulada na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7)	81
Figura 3.8-	Disponibilidade hídrica anual (ETR/ETP) na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7)	81
Figura 3.9-	Deficiência hídrica (DEF) anual na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7)	82

Figura 3.10-	Excedente hídrico (EXC) anual na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7)	83
Figura 3.11-	Excedente hídrico mensal na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7)	85

LISTA DE TABELAS

Tabela 1.1-	Características dos principais satélites utilizados para estimativa de precipitação	23
Tabela 1.2-	Características dos produtos derivados de múltiplas fontes TRMM (TRMM-3B42 e 3B43)	28
Tabela 2.1-	Comparações estatísticas entre a precipitação estimada pelo produto 3B43-v7 e as observadas pelos postos meteorológicos para a bacia hidrográfica do rio Doce	49
Tabela 2.2-	Resumo das médias das comparações estatísticas entre a precipitação estimada pelo TRMM3-B43 e as observadas pelos postos meteorológicos referentes a cada mês para bacia hidrográfica do rio Doce	55
Tabela 3.1-	Coeficientes das equações de regressão para estimativa dos valores mensais e anual de temperatura média do ar, com seus respectivos coeficientes de determinação ajustados para a bacia hidrográfica do rio Doce	71
Tabela 3.2-	Análises estatísticas das comparações anuais entre as variáveis do Bhclim gerados com dados de precipitação estimados pelo TRMM e com os postos meteorológicos para a bacia hidrográfica do rio Doce	74

LOUZADA, Franciane Lousada Rubini de Oliveira, Universidade Federal do Espírito Santo, Fevereiro de 2016. Balanço Hídrico Climatológico com dados estimados pelo satélite *Tropical Rainfall Measuring Mission* para a bacia hidrográfica do rio Doce. Orientador: Alexandre Cândido Xavier. Coorientador: José Eduardo Macedo Pezzopane.

RESUMO GERAL – A precipitação é importante para calcular a disponibilidade hídrica de uma região e a qualidade desses dados pode afetar os resultados do balanço hídrico. Portanto, dados com melhor cobertura espacial são necessários. O satélite Tropical Rainfall Measuring Mission -TRMM, produto 3B43-v7, estima a precipitação com resolução espacial de 0,25° x 0,25°. O objetivo deste trabalho foi avaliar os dados de precipitação estimados pelo 3B43-v7 e seu potencial uso na elaboração do balanço hídrico climatológico para a bacia hidrográfica do rio Doce. Foi gerado o mapeamento da disponibilidade hídrica pixel-a-pixel com boa cobertura espacial. Os dados do satélite foram comparados com os dados dos postos meteorológicos. Os erros relativos na estação chuvosa apresentaram melhores resultados do que na estação seca, que apresentou maiores porcentagens de erro. O satélite estimou adequadamente a precipitação, apresentando ótima correlação com os postos meteorológicos e respondendo a sazonalidade do clima da região nas estações de seca e chuvosa. Entretanto, apresentou tendência a superestimar a precipitação. O balanço hídrico climatológico com o 3B43-v7 apresentou correlação acima de 0,82. Os maiores erros percentuais foram encontrados em postos na região sudeste e nordeste da bacia (no Baixo Doce e Médio Doce). Os dados do 3B43-v7 caracterizou o balanço hídrico climatológico de forma semelhante aos dados observados pelos postos meteorológicos. A precipitação estimada pelo 3B43-v7 proporcionou a realização do balanço hídrico climatológico dessa bacia com boa cobertura. A utilização dos dados de precipitação estimados pelo 3B43-v7 pode ser uma ferramenta importante na caracterização de disponibilidade hídrica regional, contribuindo para o planejamento e manejo agrícola, principalmente por preencher as lacunas deixadas devido à ausência de postos meteorológicos nessa bacia, disponibilizando um produto com boa cobertura espacial.

Palavras- chave: precipitação, TRMM, deficiência hídrica, disponibilidade hídrica, imagem orbital.

LOUZADA, Franciane Lousada Rubini de Oliveira, Federal University of Espírito Santo, February de 2016. Water Balance Climatological with data estimated by the Tropical Rainfall Measuring Mission satellite to the watershed of the river Doce. Advisor: Alexandre Cândido Xavier. Coadvisor: José Eduardo Pezzopane.

ABSTRACT – Rainfall is important to calculate water availability of a region and its quality may affect the results of the water balance. Therefore data source with better spatial coverage is needed. The Tropical Rainfall Measuring Mission satellite -TRMM 3B43-v7 product estimated precipitation with spatial resolution of 0.25 ° x 0.25 °. The objective of this study was to evaluate the rainfall data estimated by 3B43-v7 and its impact on climatic water balance, by Thornthwaite method and Mather (1955), to the watershed of the river Doce. Mapping was generated pixel-by-pixel water availability with good spatial coverage. Satellite data were compared with data from weather stations. The errors in the rainy season showed better results than in the dry season that had the highest error percentages. The satellite performed well, properly estimated the rainfall, showed excellent correlation with weather stations, said the seasonal climate of the area, but tended to overestimate precipitation. The climatic water balance with the 3B43-v7 showed good correlation with the observed. Errors may have had an influence of cold air masses that predominate in this period and the higher regions. The largest percentage errors were found in stations in the southeast and northeast of the basin (in the Baixo Doce and Médio Doce). The 3B43-v7 data characterized the climatic water balance in a manner similar to data collected by the meteorological stations. The rainfall estimated by 3B43-v7 provided the realization of climatic water balance of the basin with good coverage. The use of estimated rainfall data by 3B43-v7 can be an important tool in the characterization of regional water availability, contributing to the planning and agricultural management, mainly to fill the gaps left by the absence of weather stations in this basin, providing a product with good spatial coverage.

Key Words: rainfall, TRMM, water stress, water availability, orbital image.

SUMÁRIO

1 INTRODUÇÃO GERAL	14
2 REFERÊNCIAS	17

1 INTRODUÇÃO	20
2 ESTIMATIVA DA PRECIPITAÇÃO POR SATÉLITES	21
2.1 TROPICAL RAINFALL MEASURING MISSION - TRMM	24
3 COMPARAÇÕES ENTRE PRECIPITAÇÃO ESTIMADAS POR MEDIÇÕES PONTUAIS EM CAMPO	SATÉLITES E 29
4 CONSIDERAÇÕES FINAIS	31
5 REFERÊNCIAS	32

4 00		
5 RE	FERÊNCIAS	59

CAPÍTULO 3 - BALANÇO HÍDRICO CLIMATOLÓGICO PRECIPITAÇÃO ESTIMADOS PELO SATÉLITE TRMM HIDROGRÁFICA DO RIO DOCE	COM DADOS DE PARA A BACIA
1 INTRODUÇÃO	63
2 MATERIAL E MÉTODOS	64
2.1 DADOS MENSAIS DE PRECIPITAÇÃO OBSERVADOS	66

2.2 DADOS MENSAIS DE PRECIPITAÇÃO ESTIMADOS PELO SATÉLITE TRMM 67
2.3 ANÁLISE DE REGRESSÃO PARA A TEMPERATURA DO AR68
2.4 BALANÇO HÍDRICO CLIMATOLÓGICO69
2.4.1 Comparação dos Bhclim com os dois tipos de dados de precipitação70
2.4.2 Balanço hídrico climatológico, pixel a pixel, com dados do TRMM70
3 RESULTADOS E DISCUSSÃO71
3.1 ANÁLISE DE REGRESSÃO PARA TEMPERATURA DO AR71
3.2 COMPARAÇÃO ENTRE OS BALANÇOS HÍDRICOS CLIMATOLÓGICOS74
3.2.1 VARIÁVEIS DO BALANÇO HÍDRICO CLIMATOLÓGICO PIXEL A PIXEL COM DADOS DO TRMM80
4 CONCLUSÃO
5 REFERÊNCIAS
ANEXOS

1 INTRODUÇÃO GERAL

A precipitação é caracterizada por grande aleatoriedade espacial e temporal, sendo amplamente reconhecida como a variável climatológica mais importante na região tropical, de suma importância para o planejamento das atividades humanas e desenvolvimento local (AMANAJAS & BRAGA, 2012).

O conhecimento da quantidade de precipitação em uma região é fundamental para o planejamento estratégico dos recursos hídricos e de todas as atividades que fazem uso desses recursos, fornecendo subsídios para vários estudos como: balanço hídrico; controle de inundações; irrigação de culturas; modelagem hidrológica; monitoramento de seca e de geada; e caracterização climatológica.

As culturas agrícolas passam por fases em seus desenvolvimentos que necessitam de água. Conhecer a necessidade hídrica pode auxiliar no planejamento da irrigação e influenciar na produtividade final, sendo, portanto, de extrema importância o conhecimento do regime de precipitação e conhecimento de seu balanço hídrico.

O monitoramento da precipitação é realizado por postos e estações meteorológicas e por imagens de satélites. No Brasil, seu monitoramento é feito, principalmente, pelos postos meteorológicos. Podem ser adquiridos nos postos da Agência Nacional das Águas – ANA, nas estações do Instituto Nacional de Meteorologia – INMET e Instituto Capixaba de Pesquisa, Assistência técnica e extensão rural – INCAPER, dentre outros. Porém, esses postos estão mal distribuídos e com baixa densidade.

As imagens de satélites orbitais têm sido ferramentas extremamente úteis e uma alternativa para monitorar a precipitação espacialmente e temporalmente. Os estudos são crescentes nas últimas décadas devido à disponibilidade de aquisição e melhor cobertura espacial com menores custos, tornando-se uma ferramenta importante, principalmente para regiões que não possuem postos meteorológicos. De acordo com Chiu et al. (2008), essas técnicas, que utilizam sensores de origem espacial, proporcionam um excelente complemento para o monitoramento contínuo de eventos de chuva, espacialmente e temporalmente.

Diversas metodologias vêm sendo propostas por meio de imagens feitas por satélites, em diversas bandas do espectro eletromagnético, de forma que seja possível obter estimativa de precipitação com maior detalhamento e acurácia na distribuição espacial como, por exemplo: NOAA ("*National Oceanic and Atmospheric Administration*"); GOES ("*Geostationary Operational Environmental Satellite*"); Meteosat e; TRMM ("*Tropical Rainfall Measuring Mission*").

O satélite *Tropical Rainfall Measuring Mission* - TRMM é uma parceria entre a NASA (*National Aeronautics and Space Administration*) e a Agência Japonesa de Exploração Aeroespacial (JAXA) com objetivo principal de monitorar e estudar a precipitação nos trópicos, além de verificar como a mesma influencia o clima global (Kummerow et al., 2000).

Os produtos desse satélite têm sido utilizados para observar a variabilidade da precipitação em diversos lugares do mundo. São realizadas análises de validação com as postos de superfície, verificando boa correlação entre eles, principalmente o produto TRMM-3B43 em escala mensal, apresentando menores erros e maiores correlações (AS-SYAKUR et al., 2013; DINKU et al., 2007; COLLISCHONN et al., 2006; COLLISCHONN et al., 2007; FEIDAS, 2010; NICHOLSON et al., 2003; SILVA et al., 2013; ADEYEWA & NAKAMURA, 2003).

Também são utilizadas em diversas áreas agrícolas e climatológicas (LI et al., 2013; LAZARIM & ZULLO JUNIOR, 2009; XUE et al., 2013; VOLPATO et al., 2013), como no trabalho de Ferreira et al. (2012), que avaliaram esses dados em modelos estatísticos para apurar a previsão de modelos numéricos de previsão do tempo. Collischonn et al. (2008) examinaram as estimativas de precipitação TRMM como entrada para modelos de vazão de chuva para a previsão de escoamento. Hongwei et al. (2012) avaliaram o potencial do TRMM para monitoramento da seca. Silva (2011) utilizou como entrada em modelos agrometeorológicos de estimativa de produtividade de soja.

No entanto, há falta de estudo quando se utilizam dados de precipitação estimados por esse satélite como entrada no Balanço hídrico climatológico, principalmente com o método de Thornthwaite e Mather, como o trabalho de Mahmud (2014) e Quirino et al. (2015). Li et al. (2012) também avaliaram os dados TRMM no balanço hídrico de uma bacia hidrográfica, porém utilizaram um modelo hidrológico distribuído (*Water Flow Model for Lake Catchment-* WATLAC) para simular a vazão.

O balanço hídrico climatológico - Bhclim permite quantificar as entradas e saídas de água, que auxilia na determinação dos períodos mais críticos de deficiência hídrica no solo, possibilitando a determinação de quanto e quando irrigar com base em um monitoramento histórico, a fim de garantir maiores e melhores produções. Também se aplica no acompanhamento da disponibilidade hídrica regional, em tempo real sendo, nesse caso, balanço hídrico sequencial ou seriado, calculando-se o balanço em períodos sequenciais ao longo do ano ou dos anos, e não mais com valores normais (PEREIRA et al., 2002).

Podem ser úteis, também, para o zoneamento agroclimático de uma região e definição de prioridades no planejamento de pesquisas. Pode ser aplicado na caracterização de períodos de secas e de seus efeitos na agricultura, como redução da produção (AGUILAR et al., 1986) e permite conhecer a época mais apropriada para o preparo do solo, semeadura e plantio.

Esta pesquisa tem como hipótese que os dados de precipitação estimados pelo 3B43v7 provenientes do satélite TRMM possuem bons resultados em relação aos observados por postos meteorológicos com boa cobertura espacial e podem ser utilizados em escalas mensais em estudos para o balanço hídrico climatológico na bacia hidrográfica do rio Doce.

Para este estudo, foi selecionada a bacia hidrográfica do rio Doce (BHRD), devido a sua importante contribuição na geração de divisas pelas exportações de café (Minas Gerais e Espírito Santo), polpa de frutas, pecuária e silvicultura (ES). Atividades que necessitam do monitoramento da precipitação para obter boa produção, assim como outras atividades econômicas (reflorestamento, lavouras tradicionais e cana-de-açúcar) (SOUZA et al., 2010). Essa bacia merece atenção especial, pois no ano de 2015 passou por um grande desastre ambiental, considerado o mais relevante ocorrido no Brasil.

Diante do exposto, o objetivo geral deste trabalho foi avaliar os dados de precipitação estimados pelo satélite *Tropical Rainfall Measuring Mission -* TRMM produto 3B43-v7 e seu impacto no balanço hídrico climatológico pelo método de Thornthwaite e Mather (1955) para a bacia hidrográfica do rio Doce.

Para tanto, especificamente, objetivou-se:

- Comparar os dados de precipitação estimados pelo 3B43-v7 com os dados dos postos meteorológicos para a bacia hidrográfica do rio Doce.
- Desenvolver equações de regressão múltipla com ajuste linear, para estimativas das temperaturas médias mensais do ar e anual para bacia hidrográfica do rio Doce e especializá-las com o auxílio de um modelo digital de elevação (MDE), obtidos a partir de dados do radar SRTM (*Shuttle Radar Topography Mission*) para ser utilizado no balanço hídrico climatológico.
- Comparar o balanço hídrico climatológico gerado com os dados de precipitação estimada pelo 3B43-v7 com os gerados com os dados dos postos meteorológicos.
- Realizar o balanço hídrico climatológico pixel-a-pixel da região com boa cobertura espacial e com potencial para aplicação na agrometeorologia.

Para o desenvolvimento deste trabalho, a pesquisa foi dividida em 3 capítulos centrais, sendo: Capítulo 1 – trata-se de uma revisão de literatura sobre dados de precipitação estimadas por satélites, em especial, o TRMM produto 3B43-v7; Capítulo 2 - trata-se de uma análise comparativa dos dados de precipitação estimados pelo 3B43-v7, com os dados observados dos pluviômetros para a BHRD; Capítulo 3 - Comparação do balanço hídrico climatológico realizado com os dados de precipitação estimada pelo 3B43-v7 com os dados dos pluviômetros, objetivando gerar o mapeamento da disponibilidade hídrica da região com boa cobertura espacial.

2 REFERÊNCIAS

ADEYEWA, Z. D.; NAKAMURA, K. Validation of TRMM Radar Rainfall Data over Major Climatic Regions in Africa. **Hydrospheric Atmospheric Research Center**, v.42, n. 2, p.331-347, fev., 2003.

AGUILAR, D.; KRUKER, J.; CALHEIROS, R. D.; SILVA, C. Determinação da vapotranspiração potencial e balanço hídrico climático da região da Grande Dourados, MS. Dourados: EMBRAPA-UEPAE Dourados, 1986.

AMANAJAS, J. C.; BRAGA, C. C. Padrões espaço-temporal pluviométricos na Amazônia Oriental utilizando análise multivariada. **Rev. bras. meteorol**., 27. Dez. 2012. AS-SYAKUR, A. R.; TANAKA, T.; OSAWA, T.; MAHENDRA, M. S. Indonesian rainfall variability observation using TRMM multi-satellite data. **International Journal of Remote Sensing**, v.34, n.21, p. 7723–7738. 2013.

COLLISCHONN, B.; ALLASIA, D.; COLLISCHONN, W.; TUCCI, C. E. Estimativas de precipitação por sensoriamento remoto passivo: desempenho do satélite TRMM na bacia do alto Paraguai até Descalvados. In: Simpósio de Geotecnologias no Pantanal, 1. (GEOPANTANAL). **Anais**... Campinas: Embrapa Informática Agropecuária, p. 47-56, 2006. Disponível em http://urlib.net/sid.inpe.br/mtc-m17@80/2006/12.12.10.52>. Acesso em 12 de 08 de 2013.

COLLISCHONN, B.; ALLASIA, D.; COLLISCHONN, W.; TUCCI, C. E. Desempenho do satélite TRMM na estimativa de precipitação sobre a bacia do Paraguai Superior. **Revista Brasileira de Cartografia**. v. 59, n.1, p. 93-99, abril de 2007.

COLLISCHONN, B.; COLLISCHONN, W.; TUCCI, C. E. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. **Journal of Hydrology**, p. 207-216, 2008.

DINKU, T.; CECCATO, P.; GROVER-KOPEC, E.; LEMMA, M.; CONNOR, S.; ROPELEWSKI, C. Validation of satellite rainfall products over East Africa's complex topography. **International Journal of Remote Sensing**, v. 28, p. 1503-1526, 2007.

FEIDAS, H. Validation of satellite rainfall products over Greece. **Theoretical and applied climatology**, v. 99, p. 193 -216, 2010.

FERREIRA, S. P.; VARONE, F.; ALVES, R. D. Uso do TRMM para a correção estatística da chuva prevista pelo modelo BRAMS. **Anais.** IV Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação, p. 1-9, 6 maio de 2012.

HONGWEI, Z.; LIJUAN, L.; JIUYI, L. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. **Journal of Geographical Sciences**, v. 22, n. 2, p. 273-282, 2012.

KUMMEROW, C.; SIMPSON, J.; THIELE, O.; BARNES, W.; CHANG, A. S.; ADLER, R.; OLSON, W. S. The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. **Journal of Applied Meteorology**, p. 1965-1982. Dez., 2000.

LAZARIM, C.; ZULLO JUNIOR, J. Estimativa da temperatura da superfície terrestre, através de imagens do satélite AVHRR/NOAA, destinada ao monitoramento agrometeorológico. **Anais**, p. 6943-6949, 25-30 abril de 2009.

LI, X., ZHANG, Q.; YE, X. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China. **Water**, v.5, 1848-1864, 2013.

Li, X.-H.; Zhang, Q.; Xu, C. Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. **Journal of Hydrology**, v. 426-427, p. 28-38, 2012.

MAHMUD, M. Space based observations: a state of the art solution for spatial monitoring tropical forested watershed productivity at regional scale in developing countries. 8th

International Symposium of the Digital Earth (ISDE8). IOP Conf. Series: Earth and Environmental Science, v. 18, p. 1-6, 2014.

NICHOLSON, S. E.; SOME, B.; MCCOLLUM, J.; NELKIN, E.; KLOTTER, D.; BERTE, Y.; GAYE, I. Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products. **Jornal of Applierd Meteorology**, outubro de 2003.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. Agrometeorologia: fundamentos e aplicações práticas. v.1. Guaíba, RS: Livraria e Editora Agropecuária Ltda., 2002.

QUIRINO, D. T.; CASAROLI, D.; PEREIRA, R. M.; OLIVEIRA, R. A.; ALMEIDA, R. T.. Avaliação das estimativas de precipitação do satélite TRMM (algoritmo 3B42 Versão 7 e Real Time) utilizadas no balanço hídrico climatológico no Estado de Goiás. **Anais**: XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, p. 5094 – 5101, 25 a 29 de Abr. de 2015.

SILVA, D. F. Uso de modelos agrometeorológicos de estimativa de produtividade e de risco climático para a soja no Vale do Médio Paranapanema, SP. 2011. Dissertação (Mestrado em Agricultura Tropical e Subtropial) - Programa de Pós-Graduação do Instituto Agronômico, 2011.

SOUZA et al. Plano integrado de recursos hídricos da bacia hidrográfica do rio Doce: Relatório final, CONSÓRCIO ECOPLAN – LUME, v. 1, 2010.

VOLPATO, M. M.; Vieira, T. G.; ALVES, H. M.; SANTOS, W. J. Imagens do Sensor MODIS para monitoramento agrometeorológio de áreas cafeeiras. **Coffee Science**, v. 8, n.2, p. 176-182, abr/jun de 2013.

XUE, X.; HONG, Y.; LIMAYE, A. S.; GOURLEY, J. J.; HUFFMAN, G. J. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? **Journal of Hydrology**, p. 91-99, 2013.

CAPÍTULO 1 - ESTIMATIVA DA PRECIPITAÇÃO PELO SATÉLITE TROPICAL RAINFALL MEASURING MISSION – TRMM

1 INTRODUÇÃO

Os elementos climatológicos são considerados como "grandezas (variáveis) que caracterizam o estado da atmosfera, como a radiação solar, temperatura, umidade relativa, pressão, velocidade e direção do vento e precipitação" (PEREIRA et al., 2002). Esse conjunto de variáveis descrevem as condições atmosféricas num dado local e instante. A mensuração desses elementos, principalmente da precipitação, são de vital importância para o planejamento e tomada de decisões no ambiente agrícola.

Esses elementos são monitorados por postos e estações meteorológicas e por imagens de satélites. No Brasil, as principais fontes de dados são por meio de estações de superfície, automáticas e convencionais (manual), e por radares meteorológicos, com amostragens diárias. Os radares meteorológicos ainda são em pequena quantidade. Os postos estão distribuídos na superfície terrestre e coletam informações para uma pequena área localizada em seu entorno.

Para monitorar extensas áreas, é necessária uma densa rede, o que em certos casos é inviabilizado pelo custo e/ou pela dificuldade de acesso (áreas montanhosas, terras não povoadas e oceanos). No Brasil, esses dados podem ser adquiridos como, por exemplo, pelos postos da Agência Nacional das Águas – ANA e estações do Instituto Nacional de Meteorologia – INMET, Centro Integrado de Informações Agrometeorológicas – CIIAGRO e Instituto Capixaba de Pesquisa, Assistência técnica e extensão rural – INCAPER.

As medições *in situ* de boa qualidade e sem falhas são de difícil aquisição (BERTONI & TUCCI, 2004). Os dados possuem erro de amostragem, que vão desde erros no manuseio do equipamento pelo pessoal de campo aos impactos meteorológicos sobre as medições (BERTONI & TUCCI, 2004; FRANCHITO et al., 2009). Outros problemas identificados são a má distribuição e baixa densidade de postos meteorológicos existentes. Isso pode gerar um problema de representatividade da área. Por exemplo, na medição da precipitação por um pluviômetro, quando ocorre precipitação

convectiva e isolada, que pode ocorrer em áreas menores e com forte intensidade, podendo não ser registrada pelo equipamento (BERTONI & TUCCI, 2004).

Técnicas de interpolação, tradicionalmente utilizadas para a distribuição espacial dos dados meteorológicos, podem enfrentar algumas limitações devido aos problemas acima citados, pois a qualidade depende da densidade dos postos meteorológicos. Essas técnicas visam à criação de superfícies contínuas a partir de amostras pontuais conhecidas.

No entanto, técnicas de sensoriamento remoto, como os satélites orbitais artificiais, têm sido ferramentas extremamente úteis e uma alternativa para monitorar os elementos climatológicos espacialmente e temporalmente.

Os estudos vêm crescendo nas últimas décadas devido ao avanço da tecnologia. Isso ocorre devido à disponibilidade de aquisição e melhor cobertura espacial com menores custos, tornando-se uma ferramenta importante, principalmente para regiões que não possuem postos meteorológicos. Assim, as imagens geradas por satélites têm contribuído para uma melhor quantificação dos fenômenos atmosféricos, cobrindo áreas remotas e auxiliando o monitoramento hidrológico.

2 ESTIMATIVA DA PRECIPITAÇÃO POR SATÉLITES

A precipitação é muito importante nos processos hidrológicos e é caracterizada por uma grande aleatoriedade espacial e temporal e não permite uma previsão determinística com grande antecedência. É amplamente reconhecida por muitos pesquisadores como a variável climatológica mais relevante na região tropical, sendo essencial para o planejamento das atividades humanas e desenvolvimento local (AMANAJAS & BRAGA, 2012).

O conhecimento da quantidade de precipitação e do regime hidrológico em uma região é fundamental para o planejamento estratégico dos recursos hídricos e de todas as atividades que fazem uso desses recursos. Vários trabalhos vêm estudando os dados de precipitação provenientes de satélites e também de dados de temperatura por satélite e aplicando-os em diversas áreas, como no monitoramento: de **seca** (LI et al., 2013; HONGWEI et al., 2012; LEIVAS *et al.*, 2012; RHEE et al., 2010; DU et al., 2013; ZHANG & JIA, 2013); de **geada** (LAZARIM & ZULLO JUNIOR, 2009; RAFAELLI & MOREIRA, 2007); da **produtividade** (SILVA, 2011; ROSA et al., 2010); da **previsão de tempo** (FERREIRA et al., 2012); como entrada em **modelos hidrológicos** (COLLISCHONN et al., 2008; LI et al., 2012; BEHRANGI et al., 2011; XUE et al., 2013); no **balanço hídrico** (WANG et al., 2014; MAHMUD, 2014; BASTIAANSSEN & CHANDRAPALA, 2003); no **déficit hídrico** (LIU & FERREIRA, 1991; VOLPATO et al., 2013) e na estimativa de **evapotranspiração** (MATEOS et al., 2013; BASTIAANSSEN et al., 1998; BEZERRA et al., 2008; LIMA et al., 2009; SILVA et al., 2012; STANCALIE et al., 2010; KIM et al., 2012; RUHOFF et al. 2011; ROSSATO et al., 2005). Esses estudos possibilitam o planejamento e gerenciamento da produção, reduzindo os prejuízos.

Os principais satélites e sensores que são utilizados na estimativa de precipitação estão descritos na Tabela 1.1, além do mais recente, *Global Precipitation Measurement* (GPM), lançado em fevereiro de 2014, missão internacional que compreende um consórcio de agências espaciais internacionais que substituirá o TRMM.

As primeiras metodologias desenvolvidas para estimar precipitação por satélite eram baseadas em imagens infravermelha - IV e visível - VIS e logo depois, começaram a utilizar imagens de sensores de micro-ondas (LEVIZZANI et al., 2002). Antes do primeiro satélite meteorológico, TIROS, já se pensavam que a ocorrência e intensidade de chuva poderiam ser inferidas a partir da resposta espectral de conjunto de nuvens (PETTY, 1995).

O princípio da estimativa com a banda do VIS é que o brilho da luz do sol refletida por nuvens pode ser uma indicação razoável de sua espessura e, consequentemente, do volume de água em seu interior (PETTY, 1995). O princípio da estimativa com a banda do infravermelho é que a temperatura de topo de nuvens baixas está associada a um maior desenvolvimento vertical de uma nuvem e, consequentemente, uma maior taxa de precipitação (COLLISCHONN et al., 2006). No entanto, logo tornou-se evidente que nem toda nuvem brilhante e nem todo topo de nuvem frio (baixa reflectância no IV) está de fato produzindo precipitação. Até o meado de 1990, essas foram a base para muitos trabalhos (PETTY, 1995).

		Princi-		Resolu-		
Satélite	Órbita	pais Senso-	Alt. (km)	ção espacial	Operação	Abran- gência
TRMM - <i>Tropical</i> <i>Rainfall Measuring</i> <i>Mission, 1997</i>	Polar	TMI VIRS PR	403	2,10 4,30 5,00	NASA	Global
NOAA - National Oceanic and Atmospheric Administration,196 0 e 1970	Polar	AVHR R AMSU MHS	833	1,10	NOAA NASA	Global
TERRA/ AQUA - 1999	Polar	MODIS HSB	705	0,25 0,50 1,00	NASA	Global
DMSP - The Defense Meteorological Satellite Program – 1976	Polar	SSM/I	835	12,50 25,00	NASA - Força Aérea dos EUA	Global
GOES - Geoestationary Operational Environmental Satellite, 1975	Geoest	VISSR	35.80 0	1,0 4,0 8,0	NOAA	1/3 da superfície terrestre
METEOSAT – Meteorological Satellite, 1977	Geoest.	VISSR	35.80 0	2,5 5,0	EUMETSAT – Agência Nacional Européia	42% da superfície terrestre
GMS - Gestationry Meteorological Satellite – 1977 e 1978	Geoest.	VISSR	35.80 0	1,25 5,00	AMJ - Japão	Hemisfério Norte

Tabela 1.1 - Características dos principais satélites utilizados para estimativa de precipitação

Fonte: Adaptada. Geoest.: Geoestacionário. Disponível em: <www.trmm.gfsm.nasa.gov>; <www.sat.cnpm.embrapa.br>; <www.noaa.gov>; <www.eumetsat.de>; <www.goes.noaa.gov>; <www.arm.gov/xds/static/gms.htm> e LIU (2006).

A utilização de micro-ondas na estimativa de precipitação por satélite foi considerada um divisor de águas, pois respondem de forma física à presença de água e cristais de gelo nas nuvens. Hoje, existem técnicas híbridas que extraem as vantagens e minimizam as desvantagens de cada um.

2.1 TROPICAL RAINFALL MEASURING MISSION - TRMM

O Projeto TRMM é uma parceria entre a NASA (National Aeronautics and Space Administration) e a Agência Japonesa de Exploração Aeroespacial (JAXA). O objetivo principal é monitorar e estudar a precipitação nos trópicos, além de verificar como a mesma influencia o clima global (KUMMEROW et al., 2000). Foi lançado em 27 de novembro de 1997, com tempo de vida estimado de três anos, entretanto, continua em atividade até o presente com previsão de término em 2016, mas podendo mudar em função da atividade solar (TRMM, 2014).

O TRMM é composto por cinco instrumentos, sendo: imageador de micro-ondas; radar de precipitação; sensores no visível e infravermelho; sensor para o imageamento de relâmpagos e; sensor de energia radiante e de nuvens (LEIVAS et al., 2009; HUFFMAN et al., 2007; TRMM, 2014; JESEN, 2009), descritos a seguir.

- imageador de micro-ondas (*Microwave Imager* - TMI) é o principal sensor do satélite. É um sensor passivo desenvolvido para prover informação quantitativa de chuva em uma ampla faixa imageada e mede a intensidade da radiação em cinco frequências com resolução espacial de 45 km (10,7 GHz) e 5 km (19,4; 21,3; 37; 85,5 GHz). Serve para quantificar o vapor de água, a água precipitável e a intensidade da chuva na atmosfera, por meio da intensidade da radiação na temperatura do brilho.

- Radar de precipitação (*Precipitation Radar* - PR) é o primeiro radar a bordo de um satélite, trata-se de um sensor ativo, que o diferencia dos outros, isto é, emite a radiação em micro-ondas e mede a intensidade do sinal que retorna (reflexão) dos alvos na atmosfera. Foi desenvolvido para prover mapas de estrutura de tempestade, em três dimensões, sobre o continente e o oceano. Define a profundidade da camada de precipitação e fornece informação sobre a chuva que está realmente atingindo a superfície, que é usada para determinar o calor latente da atmosfera. O radar de varredura opera em 13,8 GHz, com resolução espacial de 4,3 km ao nadir.

- Sensores no visível e infravermelho (*Visible and Infrared Scanner* - VIRS) é um instrumento primário do satélite, por se tratar de um indicador de chuva muito indireto, com sensores capturando a radiação advinda da Terra em cinco regiões espectrais, do visível ao infravermelho próximo, 0,63, 1,6, 3,75, 10,80 e 12 μm, resolução espacial

de 2,1 km ao nadir. O sistema utiliza também dados de outras fontes de estimativas em conjunto, como as medidas rotineiras de satélites meteorológicos, como o GOES.

- Sensor para o imageamento de relâmpagos (Lightning Imaging Sensor - LIS) mede a incidência global, usando um sistema de sensoriamento remoto óptico operando em 0,777 µm com resolução espacial de 5 km ao nadir.

- Sensor de energia radiante e de nuvens (*Clouds and the Earth's Radiant Energy System* - CERES) é um instrumento que operou apenas até março de 2000 e atuou no visível e infravermelho. Foi projetado, especialmente, para medir energia radiativa refletida e emitida pela superfície da Terra e pela atmosfera.

Esse satélite possui órbita oblíqua baixa não-síncrona com o Sol, sendo 350 km com inclinação de 35° no início, e após 2001, cerca de 403 km. O período de translação é de 91 minutos, considerado curto, permitindo assim, alta resolução temporal e espacial, gira ao redor do globo 16 vezes por dia, aproximadamente. Os dados são estimados a cada 3 horas, com cobertura geográfica entre as Latitudes de 50°S e 50°N.

Os diversos produtos de estimativa de chuva resultantes da missão TRMM são processados pelo TRMM *Science Data and Information System* (TSDIS) e disponibilizados operacionalmente pelo *Gooddard Distributed Active Archive System* (DAAC) (KUMMEROW et al., 1998).

Embora seja possível estimar a precipitação exclusivamente a partir de um tipo de sensor, como o PR, TMI e VIRS, os pesquisadores têm combinado esses sensores com outros satélites e dados de superfície, por meio de diferentes algoritmos, permitindo obter os mais variados produtos numa tentativa de melhorar a acurácia, a cobertura e a resolução. Como os produtos: TRMM-2B31 (TMI + TRMM PR), TRMM-3B42 (TRMM *and Other Data Precipitation Data Set*), e TRMM-3B43 (*TRMM 3B43 and Other Sources Rainfall Product*) (HUFFMAN et al., 1995; HUFFMAN et al., 2007). Dessa forma, o usuário não acessa as informações diretas dos sensores, mas os produtos derivados das diferentes combinações.

A melhoria nessas combinações pode ser observada no trabalho de Nicholson et al. (2003), em que utilizaram 920 postos de superfície no Oeste da África para avaliar a estimativa de precipitação dos produtos do TRMM (produtos 2A25, 2A12, 2B31, 3B42

e 3B43) para o ano de 1998. Enquanto os produtos 2A25 (PR) e 2A12 (TMI) apresentaram tendência de superestimar, o 3B43 mostrou uma excelente concordância com os postos meteorológicos, tanto na escala mensal quanto na média das estações da área.

A versão sete (v7) é a última dos produtos do TRMM, lançada em junho de 2011. O produto 3B43-v7 é o resultado da combinação de dois produtos, a estimativa a cada 3 horas do algoritmo 3B42-v7 e a precipitação observada por pluviômetros do projeto *Global Precipitation Climatology Centre* (GPCC) e CAMS (*Climate Assessment and Monitoring System*) em escala mensal. Xue *et al.* (2013) compararam o produto 3B42 v6 e a v7 com dados de superfície e constataram a melhoria na estimativa da precipitação na v7 em relação a v6. Já Anderson et al. (2013) avaliaram as duas versões para o produto 3B43 e obtiveram resultados similares, com R² de 0,76 para ambos, porém o resíduo entre os dados dos postos e o 3B43 apontou uma pequena melhora no desempenho na v7.

Para gerar o produto 3B42, o algoritmo combina a precipitação estimada pelo TMI (micro-ondas), corrigidas por meio de informações sobre a estrutura vertical das nuvens pelo PR (radar de precipitação). Os produtos do radar passivo do TRMM passam por uma validação terrestre (*Ground Validation* – GV) para minimizar as diferenças entre estimativas por satélite e medições o solo. Esse produto inclui taxas de precipitação de estações e estimativas de radares localizados na superfície em alguns locais do globo. As estimativas são convertidas para acumulados mensais por meio de interpolação para preencher as lacunas na continuidade temporal, decorrentes da baixa frequência de passagem, gerando o produto mensal com espaçamento horizontal de 0,25° x 0,25°, que é chamado de 3B31. Em seguida, o 3B31 é usado para corrigir as estimativas de precipitação feitas por meio do infravermelho do *Geoestationary Operational Environmental Satellite* - GOES, que é dada a cada 3 horas. Portanto, o produto 3B42 apresenta espaçamento horizontal de 0,25° x 0,25° a 0,25° e frequência de 3 horas (HUFFMAN et al., 2007; FENSTERSEIFER, 2013).

Finalmente, o produto do TRMM ou TMPA (*TRMM Multisatellite Precipitation Analysis*) emprega as três fontes adicionais de dados: o instrumento combinado TRMM (TCI), que combina dados de ambos TMI e o PR – Produto 2B31; análises pluviométricas

mensais do Centro Global Climatológico de Precipitação (GPCC); e o Sistema de Avaliação e Monitoramento Climático (CAMS), que são análises pluviométricas mensais desenvolvidas pelo Centro de Precipitação Climática (CPC) (FENSTERSEIFER, 2013).

Os sensores de micro-onda passivos que o TRMM utiliza são; SSM/I (*Spatial Sensor Microwave/Imager*) do satélite DMSP; AMSR-E (*The Advanced Microwave Scanning Radiometer*) do satélite AQUA; TMI (*TRMM Microwave Imager*) do satélite TRMM; AMSU (*Advanced Microwave Sounding Unit*) e MHS (*Microwave Humidity Sounders*) do satélite NOAA (HUFFMAN et al., 2007).

O produto TRMM é, portanto, calculado em quatro etapas resumidamente: 1- as estimativas de precipitação de micro-ondas são intercalibradas e combinadas; 2- as estimativas de Infravermelho (IR) são criadas com ajuda de uma calibração baseada também nos resultados das estimativas de micro-ondas; 3- é feita a combinação de ambos os resultados obtidos nas etapas 1 e 2; 4- finalmente, dados observados em pluviômetros e pluviógrafos são integrados (HUFFMAN et al., 2007).

As características dos produtos derivados do TRMM estão descritas na Tabela 1.2.

O algoritmo TRMM é complexo e não disponibiliza dados imediatamente, devido ao tempo e ao número de dados necessários para gerá-los. Com o intuito de acelerar a disponibilidade dos dados, desenvolveu-se o produto 3B42 *Real Time*, que se encontra em carácter experimental, que disponibiliza em tempo quase real.

O produto 3B42 *Real Time* tem resolução temporal de 3 horas e resolução espacial de 0,25°, e sua composição segue as etapas da estimação do produto anterior com a diferença de que as calibrações feitas para a estimativa de chuva por micro-onda apenas é efetuada com o TMI (Imageador de micro-ondas) e não com o PR (Radar de Precipitação), porque o PR não está disponível em tempo real (HUFFMAN et al., 2007; FENSTERSEIFER, 2013).

Tabela 1.2 - Características dos produtos derivados de múltiplas fontes TRMM (TRMM-3B42 e 3B43)

Produto	Breve Descrição
3B42	Produto de chuva de 3 horas com combinação de múltiplos sensores
	e de diferentes satélites.
3B42 derived	Produto com chuva diária acumulada de 0 UTC a 24 UTC.
3B43	Produto de chuva mensal com combinação de múltiplos sensores
	de satélite.
3B42RT	Produto experimental com combinação de múltiplos sensores sem
	correção de pluviômetros.
3B42RT <i>derived</i>	Produto experimental de chuva acumulada 0 UTC a 24 UTC.
3B40RT(HQ)	Produto experimental com base em micro-onda intermédia de 3 hr-
	0,25°x0,25°.
3B41RT	Produto experimental com base em infravermelho IR de 3 hr-
	0,25°x0,25°
Fonte: TRMM (20	14).

O 3B42 Real Time não leva em conta a última etapa, que integraria valores de chuva observados em solo, na produção da estimativa, além de algumas simplificações nas etapas anteriores para reduzir o tempo total do processo. Cada pixel contém dados instantâneos da estimativa do satélite.

A vida útil do TRMM, inicialmente, foi prevista para março de 2004 (KUMMEROW et al., 2000), mas com a manobra de elevação de altitude em agosto de 2001 (de 350 km para 403 km, aproximadamente) passou a economizar combustível e com isso a vida útil aumentou. A data do fim do projeto foi adiada algumas vezes, mas em 2005 foi atingida a reserva de combustível necessária para reentrada controlada na atmosfera. O fim do projeto foi avaliado por dois métodos, sendo que um estimou para agosto de 2014 e o outro, para novembro de 2015 a novembro de 2016 (TRMM, 2014). Diante do sucesso apresentado com esse projeto, a NASA lançou, no início do ano de 2014 (27 de fevereiro), um programa sucessor, chamado GPM – *Global Precipitation Measurement*, com lançamento de múltiplos satélites equipados com sensores e radares semelhantes ao TRMM, porém com melhor resolução (GPM, 2014).

3 COMPARAÇÕES ENTRE PRECIPITAÇÃO ESTIMADAS POR SATÉLITES E MEDIÇÕES PONTUAIS EM CAMPO

Os produtos provenientes de satélites têm sido utilizados para observar a variabilidade da precipitação em diversos lugares do mundo. São realizadas análises de validação com os postos meteorológicos, verificando que esses produtos possuem boa correlação, principalmente o produto TRMM-3B43 em escala mensal, apresentando menores erros e maiores correlações com medições em postos meteorológicos. Isso pode ser observado em diversos estudos. As-Syakur et al. (2013) comparou o TRMM-3B43 com 5 postos no arquipélago da Indonésia e encontrou r = 0,98, 0,90, 0,98, 0,95, e 0,85. Feidas (2010) analisou dados de precipitação mensal na Grécia oriundos de seis produtos de satélites (TRMM 3A12-TMI, TRMM 3B32, TRMM 3B43, GPCP-1DD, GPCP-SG, CMAP), em três resoluções espaciais diferentes (0,5°, 1° e 2,5°) em relação aos postos meteorológicos. O TRMM 3B43 apresentou o melhor desempenho nos três grupos. Dinku et al. (2007) avaliaram 10 diferentes produtos de satélites (GPCP-MS, GPCP-SG, CMAP, TRMM-3B43, REF, ARC, GPCP one-degree-daily, TRMM-3B42, TAMSAT e CMORPH) com os postos da Etiópia divididos em dois grupos e observaram que o TRMM-3B43 e o CMAP no grupo 1 com resolução espacial de 2,5° e temporal mensal, apresentaram melhor desempenho.

O produto TRMM-3B32, de escala temporal diária, quando avaliado em escala mensal, também apresenta melhor correlação linear com os postos meteorológicos, como observado por Li et al. (2013), com o coeficiente de correlação (R²) de 0,88, sendo em escala diária R² de 0,45. Li et al. (2012) também observaram melhor correlação com os pluviômetros em escala mensal (R²= 0,81 a ,89) e com a média da área (R²= 0,83). As análises de correlação foram realizadas com o auxílio da observação dos gráficos de dispersão, mostrando a boa correlação linear.

A validação dos dados estimados por satélites tem sido realizada de várias maneiras, comparando-as com os dados dos postos meteorológicos. Alguns autores fizeram comparações pontuais avaliando cada estação (LI et al., 2012; KARASEVA, 2012; AS-SYAKUR et al., 2013) e outros, análises espaciais, realizando comparação da precipitação média sobre uma região (COLLISCHONN et al., 2008). Outra análise utilizada é a ponto-a-ponto, que compara o valor do ponto central do pixel (da grid) do

satélite com o do posto mais próximo dele ou os mais próximos, podendo realizar uma média entre esses dados que estão na área do pixel, ou ainda comparar cada posto com o valor do pixel correspondente. Alguns trabalhos utilizam o método de interpolação dos dados dos postos meteorológicos para gerar uma superfície contínua para a região e então, compará-los aos dados de satélite, pode-se também especializar a diferença entre o satélite e a estação e compará-los.

Apesar do TRMM apresentar boa correlação com as medições em situ, ocorrem diferenças entre eles. Observam-se limitações na detecção precisa de taxas de chuvas baixas ou altas, apresentando tendência a superestimar a precipitação baixa e subestimar a precipitação alta (CHEEMA & BASTIAANSSEN, 2012; ISLAM & UYEDA, 2008). Isso ocorre porque as estimativas de precipitação por satélites contêm erros instrumentais de amostragem. Esses erros são causados pela frequência de amostragem discreta e cobertura de área dos sensores (CONDOM et al., 2011). Os erros de amostragem de cerca de 30% (FRANCHITO et al., 2009) e os erros instrumentais em recuperação de chuvas incluem fatores de atenuação, de distribuição do tamanho da gota e da densidade de partículas sólidas (CHEEMA & BASTIAANSSEN, 2012).

De acordo com Xuan & Yunfang (2012), os dados TRMM, principalmente em áreas montanhosas onde a tendência é subestimar a precipitação, precisam de calibração para reduzir tais erros, para não resultar em conclusões errôneas se aplicada diretamente e sem calibração. Seguindo esse pensamento, alguns autores desenvolveram métodos de calibração/correção ou técnica de fusão entre os dados observados e os dados dos satélites, observando melhor desempenho e redução nos desvios. Essa última (fusão) é denominada MERGE (ROZANTE et al., 2010), que propõe minimizar os problemas com interpolação de redes de observação em regiões de baixa densidade, combinando estimativas de precipitação do satélite TRMM-*RealTime* (TRMM em tempo real "TRMM-3B42RT") com observações de superfície.

Já CHEEMA & BASTIAANSSEN (2012) aplicaram duas técnicas, a Análise de Regressão (RA) e a Análise Diferencial Geográfica (GDA), que interpola a diferença entre o satélite e os postos com o método Inverso do Quadrado da Distância (IDW) e o mapa resultante é subtraído do TRMM. As duas técnicas apresentaram padrões semelhantes, porém o GDA apresentou melhor desempenho com aumento do R² de

0,92 para 0,99. Xuan & Yunfang (2012) aplicaram um fator de correção utilizando 15 variáveis de localização geográfica e topográfica na análise de regressão múltipla: latitude, longitude, elevação, declividade, aspecto e rugosidade e suas variações. Observaram melhora no desempenho, reduzindo o erro em mais de 30%.

Os trabalhos utilizam diferentes estatísticas, o que dificulta a comparação entre performances obtidas, mas as estatísticas mais comuns nesses tipos de estudos para comparar quantitativamente o produto TRMM-3B43 com as observações pluviométricas de superfície, são, Coeficiente de Correlação de Pearson (CC), Erro Médio Absoluto (EMA), Raiz do Erro Quadrático Médio (RMSE) e Erro (ias) e Erro Relativo (AS-SYAKUR et al., 2011; ROZANTE et al., 2010; VIANA et al., 2010; FEIDAS, 2010; KARASEVA et al., 2012; SILVA et al., 2013; AS-SYAKUR et al., 2013; CONDOM et al., 2011; DUAN & BASTIAANSSEN, 2013; FLEMING et al., 2011).

4 CONSIDERAÇÕES FINAIS

A utilização de dados estimados por sensoriamento remoto vem crescendo nas últimas décadas. Isso se deve às novas tecnologias desenvolvidas com o objetivo de melhorar a resolução espacial e temporal dos produtos gerados pelos satélites. Também são desenvolvidos novos algoritmos na tentativa de minimizar as interferências atmosféricas, gerando produtos com valores mais próximos das medições em campo.

Estudos são realizados frequentemente, com o objetivo de avaliar a qualidade desses produtos em relação aos postos meteorológicos. Observou-se que existe boa correlação entre as variáveis, sendo recomendada sua utilização, principalmente em regiões onde os postos meteorológicos são poucos e mal distribuídos.

5 REFERÊNCIAS

AMANAJAS, J. C.; BRAGA, C. C. Padrões espaço-temporal pluviométricos na Amazônia Oriental utilizando análise multivariada. **Rev. bras. meteorol.**, São Paulo, 27, dec 2012. Disponível em: http://www.scielo.br. Acesso em: 09 maio de 2013.

ANDERSON, L. O.; ARAGÃO, L. E. O. C.; ARAÍ, E. Avaliação dos dados de chuva mensal para a região Amazônica oriundos do satélite Tropical Rainfall Measuring Mission (TRMM) produto 3B43 versões 6 e 7 para o período de 1998 a 2010. **Anais**, XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR. Foz do Iguaçu, PR, Brasil. 13 a 18 de abril, 2013.

AS-SYAKUR, A. R.; TANAKA, T.; OSAWA, T.; MAHENDRA, M. S.. Indonesian rainfall variability observation using TRMM multi-satellite data. **International Journal of Remote Sensing**, v. 34, n.21, p. 7723–7738, 2013. Disponível em: http://dx.doi.org/10.1080/01431161.2013.826837. Acesso em: 03 set. 2013.

AS-SYAKUR, A. R.; TANAKA, T.; PRASETIA, R.; SWARDIKA, I. K.; KASA, I. W. Comparison of TRMM multisatellite precipitation analysis (TMPA) products and dailymonthly gauge data over Bali. **International Journal of Remote Sensing**, v. 32:24, p. 8969-8982, 2011. Disponível em: http://dx.doi.org/10.1080/01431161.2010. 531784>. Acesso em: 07 jun 2013.

BASTIAANSSEN, W. G. M. et al. The Surface Energy Balance Algorithm for Land (SEBAL): Part 1 formulation. **Journal of Hydrology**, v. 212-213, p. 198-212, dez, 1998.

BASTIAANSSEN, W. G. M.; CHANDRAPALA, L. Water Balance variability across Sri Lanka for assessing agricultural and environmental water use. **Agricultural Water Management**, v. 58, p. 171-192, 2003.

BEHRANGI, A. et al. Hydrologic evaluation of satellite precipitation products over a midsize basin. **J. Hydrol.**, n. 397, p. 225–237, 2011.

BERTONI, J. C.; TUCCI, C. E. M. PRECIPITAÇÃO. In: TUCCI, C. E. M. **Hidrologia:** ciências e aplicação. 3.ed. ed. Porto Alegre: Editora da UFRGS/ABRH, p. 174, 2004.

BEZERRA, B. G.; SILVA, B. B. D.; FERREIRA, N. J. ESTIMATIVA DA EVAPOTRANSPIRAÇÃO REAL DIÁRIA UTILIZANDO-SE IMAGENS DIGITAIS TM - LANDSAT 5. **Revista Brasileira de Meteorologia**, v. 23, n.3, p. 305-317, 2008.

CHEEMA, M. J. M.; BASTIAANSSEN, W. G. M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. **International Journal of Remote Sensing**, v. 33, n. 8, p. 2603–2627, 20 april 2012.

COLLISCHONN, B., ALLASIA, D., COLLISCHONN, W., & TUCCI, C. E. Estimativas de precipitação por sensoriamento remoto passivo: desempenho do satélite TRMM na bacia do alto Paraguai até Descalvados. In: Simpósio de Geotecnologias no Pantanal, 1. (GEOPANTANAL). **Anais.** Campinas: Embrapa Informática Agropecuária, pp. 47-56, 2006. Disponível em http://urlib.net/sid.inpe.br/mtc-m17@80/2006/12.12.10.52>. Acesso em 12 de 08 de 2013.

Collischonn, B.; Collischonn, W.; Tucci, C. E. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. **Journal of Hydrology**, v. 360, p. 207–216, 2008.

CONDOM, T.; RAU, P.; ESPINOZA, J. C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. **Hydrological Processes**, n. 25, p. 1924–1933, 2011. Disponível em: <DOI: 10.1002/hyp.7949>.

DINKU, T.; CECCATO, P.; GROVER-KOPEC, E.; LEMMA, M.; CONNOR, S.; ROPELEWSKI, C. Validation of satellite rainfall products over East Africa's complex topography. **International Journal of Remote Sensing**, v. 28, p. 1503-1526, 2007.

DU, L.; TIAN, Q.; YU, T.; MENG, Q.; JANCSO, T.; UDVARDY, P.; HUANG, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. **International Journal of Applied Earth Observation and Geoinformation**, v. 23, p. 245-253, ago. 2013.

DUAN, Z.; BASTIAANSSEN, W. G. M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. **Remote Sensing of Environment**, p. 1-13, 2013. http://dx.doi.org/10.1016/j.rse. 2012.12.002.

FEIDAS, H. Validation of satellite rainfall products over Greece. **Theoretical and applied climatology**, v. 99, p.193 -216, 2010.

FENSTERSEIFER, C. A. Qualidade das estimativas de precipitações derivadas de satélites na bacia do Alto Jacuí - RS. Santa Maria, RS: Dissertação de mestrado (Engenharia Civil e Ambiental) Universidade Federal de Santa Maria, 2013.

FERREIRA, S. P.; VARONE, F.; ALVES, R. C. M. Uso do trmm para a correção estatística da chuva prevista pelo modelo brams. **ANAIS. IV Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação**, Recife - PE, p. 001-009, 06 a 09 maio, 2012.

FLEMING, K.; AWANGE, J.; KUHN, M.; FEATHERSTONE, W. Evaluating the TRMM 3B43 monthly precipitation product using gridded raingauge data over Australia. **Australian Meteorological and Oceanographic Journal**, p. 171-184, 2011.

FRANCHITO, S. H.; RAO, V.; VASQUES, A.; SANTO, C.; CONFORTE, J. C. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. **J. Geophys. Res.**, v. 114, p. 1-9, 2009.

GPM. Global Precipitation Measurement (GPM), Grenbelt: GDFC. Disponível em: http://pmm.nasa.gov/GPM>. Acesso em: 11 jun, 2014.

HONGWEI, Z.; LIJUAN, L.; JIUYI, L. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. **Journal of Geographical Sciences**, v. 22, n. 2, p. 273-282, 2012.

HUFFMAN, G.; ADLER, R.; RUDOLF, B.; SCHNEIDER, U.; KEEHN, P. Global precipitation estimates based on a technique for combining satellite based estimates, rain
gauge analysis, and NWP model precipitation information. **Journalof Climate**, v. 8, p. 1284–1295, mai., 1995.

HUFFMAN, G. J.; ADLER, R. F.; BOLVIN, D. T.; GU, G.; NELKIN, E. J.; BOWMAN, K. P.; WOLFF, D. B. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. **Journal of Hydrometeorology**, February, p. 38-55, 2007.

JESEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. Tradução de José Carlos Neves Epiphanio (Coordenador). São José dos Campos, SP: Parêntese, 2009.

KARASEVA, M. O.; PRAKASH, S.; GAIROLA, R. M. Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan. **Theoretical Applied Climatology**, v. 108, p. 147–157, 2012.

KIM, H. W.; HWANG, K.; MU, Q.; LEE, S.; CHOI, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. **KSCE Journal of Civil Engineering**, v. 16, n. 2, p. 229-238, fev., 2012.

KUMMEROW, C. D.; SHIUE, J.; SIMPSON, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. **Journal of Atmospheric and Oceanic Technology**, v. 15, p. 809-817, 1998.

KUMMEROW, C.; SIMPSON, J.; THIELE, O.; BARNES, W.;, CHANG, A. S.; ADLER, R.; OLSON, W. S. The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. **Journal of Applied Meteorology**, p. 1965-1982, dez., 2000.

LAZARIM, C. G.; ZULLO JUNIOR, J. Estimativa da temperatura da superfície terrestre, através de imagens do satélite AVHRR/NOAA, destinada ao monitoramento agrometeorológico. **Anais**, XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, p. 6943-6949, 25-30 abril 2009.

LEIVAS, J. F.; ANDRADE, R. G.; VICTORIA, D.; TORRESAN, F. E.;, BOLFE, E. L; BARROS, T. Monitoramento da seca ocorrida em 2012 no nordeste brasileiro a partir dos dados do Spot-Vegetation e TRMM. **VI Geonordeste**, Aracaju, SE, 26-30 nov. 2012.

LEIVAS, J. F.; RIBEIRO, G. G.; SOUZA, M. B.; ROCHA FILHO, J. Análise comparativa entre os dados de precipitação estimados via satélite TRMM e dados observados de superfície em Manaus. **Anais**, XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, p. 1611-1616, 25-30 abril, 2009.

LEVIZZANI, V.; AMORATI, R.; MENEGUZZO, F. A Review of Satellite-based Rainfall Estimation Methods. Multiple-Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting – MUSIC., Bologna-Italy, 2002.

LI, X.; ZHANG, Q.; YE, X. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China. **Water**, n. 5, p. 1848-1864, 2013.

LI, X.-H.; ZHANG, Q.; XU, C.-Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. **Journal of Hydrology**. v. 426-427, p. 28-38, 2012.

LIMA, E. D. P.; ANDRADE, R. G.; SEDIYAMA, G. C.; DELGADO, R. C.; FERREIRA, A. S.; CAPUTI, E.; FERREIRA, W. J. Estudo da evapotranspiração real diária utilizando imagem de satélite na bacia do rio Paracatu. **Anais**, II Seminário de Recursos Hídricos da Bacia Hidrográfica do Paraíba do Sul: Recuperação de Áreas Degradadas, Serviços Ambientais e Sustentabilidade. Taubaté, Brasil, p. 1-8, 9-11 dez, 2009.

LIU, W. T. H. **Aplicações de sensoriamento remoto**. Campo Grande: UNIDERP, p. 908, 2006.

LIU, W. T.; FERREIRA, A. Monitoring crop production regions in the São Paulo State of Brazil using NDVI. Proceedings of the 24th International Symposium of Remote Sensing for Environment, Rio de Janeiro, RJ, Brasil, v. 2, p. 447-455, 1991.

MAHMUD, M. E. Space based observations: A state of the art solution for spatial monitoring tropical forested watershed productivity at regional scale in developing countries. 8th International Symposium of the Digital Earth (ISDE8). IOP Conf. Series: Earth and Environmental Science, v. 18, p. 1-6, 2014.

MATEOS, L.; GONZÁLEZ-DUGO, M.; TESTI, L; VILLALOBOS, F. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. **Agricultural Water Management**, v. 125, p. 81-91, jul., 2013.

NICHOLSON, S. E.; SOME, B.; MCCOLLUM, J.; NELKIN, E.; KLOTTER, D.; BERTE, Y.; GAYE, I. Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products. **Jornal of Applierd Meteorology**. out., 2003.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. Agrometeorologia: fundamentos e aplicações práticas. Guaibá: Agropecuária, 2002.

PETTY, G. W. The status of satellite-based rainfall estimation. **Remote Sensing of Environment**, v. 51, p. 125-137, 1995.

RAFAELLI, D. R.; MOREIRA, M. Detecção de geada em lavouras de café. Cap.11. In: RUDORFF, B. F. T.; SHIMABUKURO, Y. E.; CEBALLOS, J. C. **O sensor MODIS e suas aplicações ambientais no Brasil**. São José dos Campos,SP: Parêntese, p. 145-151, 2007.

RHEE, J.; IM, J.; CARBONE, G. J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. **Remote Sensing of Environment**, v. 114, p. 2875-2887, 2010.

ROSA, V. G. C.; MOREIRA, M.; RUDORFF, B.; ADAMI, M. Estimativa da produtividade de café com base em um modelo agrometeorológico-espectral. **Pesquisa Agropecuária Brasileira**, Brasília, v. 45, n. 12, p. 1478-1488, dez., 2010.

ROSSATO, L.; ALVALA R. C.; FERREIRA, N. J.; TOMASELLA, J. Evapotranspiration estimation in the Brasil using NDVI data. **Remote Sensing for Agriculture, Ecosystems and Hydrology VII**, v. 5976, p. 377-385, out., 2005.

ROZANTE, J. R.; MOREIRA, D. S.; GONCALVES, L. G.; & VILA, D. A. Combining TRMM and Surface Observations of Precipitation- Technique and Validation over South America. **WEATHER AND FORECASTING**, v. 25, jun, p. 885-894. 2010.

RUHOFF, A. L.; ARAGÃO, L.; COLLISCHONN, W.; ROCHA, H.; MU, Q.; RUNNING, S. MOD16: Desafios e limitações para a estimativa global de evapotranspiração. **Anais**, XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba, PR, Brasil, INPE, p. 5124-5131, abr., 2011.

SILVA, B. B.; BRAGA, A.; BRAGA, C.; OLIVEIRA, L. Evapotranspiração e estimativa da água consumida em perímetro irrigado do Semiárido brasileiro por sensoriamento remoto. **Pesq. agropec. bras.**, Brasília, v. 47, n. 9, p. 1218-1226, set 2012.

SILVA, D. F. Uso de modelos agrometeorológicos de estimativa de produtividade e de risco climático para a soja no Vale do Médio Paranapanema,SP. 2011.Dissertação (Mestrado em Agricultura Tropical e Subtropial) - Programa de Pós-Graduação do Instituto Agronômico, Campinas-SP, 2011.

SILVA, D. F.; PRELA-PANTANO, A.; CAMARGO, M. B. P. Análise de dados de precipitação estimados pelo satélite TRMM para o Vale do Médio Parapanema – SP. **Engenharia na agricultura**, Viçosa - MG, v. 21, n.2, Março/Abril, p. 138-147, 2013.

STANCALIE, G.; MARICA, A.; TOULIOS, L. Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. **Physics and Chemistry of the Earth**, v. 35, p. 25-30, 2010.

TRMM. Tropical Rainfall Measurement Mission (TRMM) Home Page. Greenbelt: GSFC. Disponível em: http://trmm.gsfc.nasa.gov. Acesso em: 01 abr. de 2014.

VIANA, D. R.; FERREIRA, N. J.; CONFORTE, J. C. Avaliação das estimativas de precipitação 3B42 e 3B43 do satélite TRMM na Região Sul do Brasil. **In: XVI Congresso Brasileiro de Meteorologia.** A Amazônia e o clima global, v. 1, n. 1, p. 5, 2010.

VOLPATO, M. M.; Vieira, T. G.; ALVES, H. M.; SANTOS, W. J. Imagens do Sensor MODIS para monitoramento agrometeorológio de áreas cafeeiras. **Coffee Science**, v. 8, n.2, p. 176-182, abr/jun de 2013.

WANG, H.; PRICE, K. P.; RICH, P. M. Examination of water budget using satellite products over Australia. **Journal of Hydrology**, v. 511, p. 546-554, 2014.

XUAN, J.; YUNFANG, C. Characterizing Spatial Patterns of Precipitation Based on Corrected TRMM 3B43 Data over the Mid Tianshan Mountains of China. **J. Mt. Sci.**, p. 628–645, 2012. ISSN 9. Disponível em: <DOI: 10.1007/s11629-012-2283-z>. Acesso em: 25 mar 2013.

XUE, X.; HONG, Y.; LIMAYE, A. S.; GOURLEY, J. J.; HUFFMAN, G. J. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the

Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? **Journal of Hydrology**, p. 91-99, 2013.

ZHANG, A.; JIA, G. Monitoring meteorological drought in semiarid regions using multisensor microwave remote sensing data. **Remote Sensing of Environment**, v. 134, p. 12-23, 2013.

CAPÍTULO 2 - VALIDAÇÃO DA PRECIPITAÇÃO ESTIMADA PELO SATÉLITE TRMM PARA A BACIA HIDROGRÁFICA DO RIO DOCE

RESUMO: A precipitação é um elemento climatológico muito importante para a agropecuária. Produtos de satélites têm sido usados para observar a variabilidade de chuvas em muitas partes do mundo, especialmente o Tropical Rainfall Measuring Mission - TRMM. O objetivo deste estudo é avaliar a precipitação mensal estimada por esse satélite (produto 3B43-v7) e compará-lo com os dados dos postos meteorológicos da bacia hidrográfica do rio Doce no período de 15 anos e gerar mapas da precipitação mensal e anual. Na análise para a precipitação média da bacia, foi observado um erro relativo dos totais anuais inferior a 14%, enquanto que para os totais mensais, o erro foi inferior a 38% em junho, sendo erro menor que 17 mm. Na análise ponto-a-ponto, os meses secos apresentaram maiores erros relativos. O satélite apresentou bom desempenho, estimou adequadamente a precipitação, com ótima correlação entre os postos meteorológicos e respondeu à sazonalidade do clima da região. No entanto, apresentou tendência a superestimar a precipitação. Quando analisado cada mês, o 3B43-v7 apresentou melhores resultados na estação chuvosa, pois na estação seca pode ser influenciado pela massa de ar fria e os locais de maior altitude, resultando em erros maiores. Esse produto é uma alternativa para aquisição de informações da precipitação com boa cobertura espacial e pode ser utilizada em escala mensal nessa bacia hidrográfica.

Palavras-chave: sistema de informação geográfica, imagens orbitais, chuva.

1 INTRODUÇÃO

A precipitação é uma variável climatológica importante para a atividade humana e desenvolvimento local e regional, sendo sua medição fundamental para o planejamento dos recursos hídricos, para o gerenciamento de produções e para outras atividades.

Seu monitoramento é realizado, principalmente, por postos meteorológicos, automático, radar e convencional/manual, sendo este último o mais utilizado. As medições, com estações manuais, com boa qualidade e sem falhas, são de difícil

aquisição (Bertoni & Tucci, 2004). Devido à má distribuição e baixa densidade de postos, é necessário buscar outras fontes como as imagens de satélites, que são muito úteis, principalmente para regiões sem postos.

Os principais satélites são: *Tropical Rainfall Measuring Mission*; NOAA- National Oceanic and Atmospheric Administration; GOES- Geoestationary Operational Environmental Satellite; METEOSAT- Meteorological Satellite e TERRA/AQUA.

Estudos de validação do TRMM têm sido realizados nas últimas décadas, como os de As-Syakur et al. (2013), na Indonésia, que compararam com cinco postos meteorológicos. Feidas (2010), na Grécia, comparou seis produtos de satélites em três resoluções espaciais diferentes e Dinku et al. (2007), na Etiópia, avaliaram 10 produtos de satélites diferentes, sendo o 3B43 com melhor desempenho.

Diante do exposto, o objetivo foi avaliar a precipitação mensal estimada pelo satélite TRMM produto 3B43-v7 e compará-la com os dados dos postos meteorológicos para a bacia hidrográfica do rio Doce.

2 MATERIAL E MÉTODOS

2.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

Para este estudo, foi selecionado a bacia hidrográfica do rio Doce (BHRD), localizada na Região Hidrográfica do Atlântico, Sudeste do Brasil, entre os estados de Minas Gerais e Espírito Santo, nos paralelos 17°45' e 21°15' de latitude sul e os meridianos 39°30' e 43°45' de longitude oeste. Foi utilizado, para este estudo, o limite da bacia adotado no Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce (SOUZA et al., 2010) que engloba, também, a bacia do rio Barra Seca, para efeito de gestão.

A bacia em estudo possui uma área de drenagem com cerca de 86.711 km², sendo que 82% pertencem ao Estado de Minas Gerais (71.432 km²) e 18% ao Estado do Espírito Santo (15.279 km²) (Figura 2.1).

Figura 2.1 - Limite da área de estudo, bacia hidrográfica do rio Doce englobando a bacia do rio Barra Seca.

Fonte: Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce e Planos de Ações para as Unidades de Planejamento e Gestão de Recursos Hídricos no Âmbito da Bacia do Rio Doce (SOUZA et al., 2010).

Limita-se ao sul com a bacia hidrográfica do rio Paraíba do Sul, a oeste com a bacia do rio São Francisco, e, em pequena extensão, com a do rio Grande. Ao norte, limitase com a bacia dos rios Jequitinhonha e Mucuri e a noroeste com a bacia do rio São Mateus. Na região Sudeste, limita-se com 6 bacias do estado do Espírito Santo (Itabapoana, Itapemirim, Jucu, Santa Maria, Reis Magos e Riacho).

O rio Doce recebe esse nome depois do encontro do rio Piranga, considerado seu principal formador, com o rio do Carmo. O rio Piranga nasce nas serras da Mantiqueira e do Espinhaço, limites oeste e sul da bacia, no município de Ressaquinha, em Minas Gerais, enquanto o rio do Carmo nasce no município de Ouro Preto. Suas nascentes formadoras estão em altitudes superiores a 1.000 m.

Em função das características físicas da bacia, esta foi dividida em três regiões distintas, sendo: Alto Doce - vai das nascentes até a confluência com o rio Piracicaba,

afluente do rio Doce pela margem esquerda, nas proximidades da cidade de Ipatinga, em Minas Gerais; **Médio Doce** - vai da confluência com o rio Piracicaba até a divisa entre Minas Gerais e Espírito Santo, nas proximidades da confluência com o rio Guandu no Espírito Santo e; **Baixo Doce** - vai da divisa entre Minas Gerais e Espírito Santo até a foz no Oceano Atlântico (MARANHÃO, 2005).

As altitudes variam de 0 a 2.600 metros, elevando-se de leste para oeste com o predomínio entre 100 a 200 metros e de 600 a 800 metros, respectivamente, sendo as maiores, situadas na serra do Caparaó (pico da Bandeira 2.880m, coordenadas 20° 19` e 20° 37` S e 41° 43` e 41° 53` W) divisa de Minas Gerais e Espírito Santo, localizada na extremidade centro-sul da bacia no Parque Nacional do Caparaó (COELHO, 2007).

As altitudes no canal principal a partir do município de Desterro do Melo (MG), um dos formadores do rio Doce (rio Xotopó) é de 835m. Na confluência entre os rios Piranga e Carmo, decai para menos de 350m. No encontro entre o rio Piracicaba com o rio Doce, as altitudes são inferiores a 250m. Desse ponto em diante, ela diminui proporcionalmente até a foz, com exceção da ruptura de declive situada no setor entre os municípios de Itueta (MG) e Baixo Guandu (ES), caindo de 98 m para 77 m, local em que foi construída a UHE de Aimorés (Coelho, 2007).

Segundo o IBGE, residem na bacia mais de 3,5 milhões de habitantes, com a população urbana representando mais de 70% da população total (SOUZA et al., 2010). A taxa de crescimento urbano é inferior às verificadas nos dois Estados e o êxodo rural é generalizado (CBH-RIO DOCE, 2013).

As principais atividades econômicas da bacia são: agropecuária (reflorestamento, lavouras tradicionais, café, cana-de-açúcar, pecuária de leite e corte, suinocultura); indústria (sucroalcooleira, siderurgia, metalurgia, mecânica, química, alimentícia, álcool, têxtil, curtume, papel e celulose); mineração (ferro, ouro, bauxita, manganês, rochas calcárias e pedras preciosas) comércio e serviços de apoio aos complexos industriais e; geração de energia elétrica (CBH-RIO DOCE, 2013; SOUZA et al., 2010).

O clima da bacia divide-se em três tipos, de acordo com a classificação de Köppen, o clima tropical de altitude, com chuvas de verão e verões frescos, presente nas vertentes das serras da Mantiqueira e do Espinhaço e nas nascentes do rio Doce; o clima tropical de altitude, com chuvas de verão e verões quentes, presentes nas nascentes de seus afluentes e; o clima quente, com chuvas de verão, presentes nos trechos médio e baixo do rio Doce e de seus afluentes.

A precipitação média anual na bacia varia de 1.500 mm, nas nascentes localizadas nas serras da Mantiqueira e do Espinhaço, a 900 mm, na região da cidade de Aimorés-MG, voltando a crescer em direção ao litoral (SOUZA et al., 2010). De acordo com o autor, as temperaturas médias anuais na bacia variam de 18° C em Barbacena, a 24,6° em Aimorés, com período mais quente compreendendo os meses de janeiro e fevereiro, enquanto as temperaturas mínimas ocorrem em junho e julho.

2.2 BASE DE DADOS

Os dados de precipitação foram organizados em planilha eletrônica. Os Mapas de saída utilizaram a projeção geográfica e Datum horizontal SIRGAS 2000. Uma visão geral dos processos realizados pode ser obtida por no fluxograma na Figura 2.2.

Os dados do produto 3B43-v7 foram comparados com os observados nos 105 postos meteorológicos, para o período entre 1998 e 2012, sendo 94 da Agência Nacional das Águas – ANA, 5 do Instituto Nacional de Meteorologia – INMET e 6 do Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural – INCAPER (ANEXO 1).

As medições dos postos meteorológicos passaram por um processo de preenchimento de falhas por meio do método da ponderação regional. Esse método é simplificado e, normalmente, o mais utilizado para o preenchimento de séries mensais ou anuais de precipitações, conforme Bertoni & Tucci (2004).

A análise de consistência utilizada foi o método da Dupla Massa desenvolvido pelo *Geological Survey* (USA) (Bertoni & Tucci, 2004). Caracteriza-se por verificar o grau de homogeneidade entre dados dos postos de interesse e dos postos vizinhos.

A versão 7 do TRMM-3B43, lançada em junho de 2011, apresenta melhoria na estimativa da precipitação em relação a 6, conforme Xue et al. (2013). O 3B43-v7 combina dois produtos, a estimativa a cada 3 horas do algoritmo 3B42-v7 (diário) e a

precipitação observada por pluviômetros do projeto *Global Precipitation Climatology Centre* (GPCC) e *Climate Assessment and Monitoring System* (CAMS) em escala mensal.

Figura 2.2. Fluxograma com visão geral dos procedimentos desenvolvidos no trabalho.

Foram adquiridos gratuitamente os dados do 3B43-v7, distribuídos em grade regular de pontos (grid-point), no formato ASCII no site da NASA (NASA, 2013) referentes ao quadrante da referida grid que cobre todo o limite da bacia e, posteriormente, foram excluídos os externos ao limite da bacia, utilizando 150 pontos (pixels) no total, conforme Figura 2.3.

Figura 2.3- Localização da bacia hidrográfica do rio Doce com a área do pixel 3B43v7, as áreas cinzas são pixels que possuem estações meteorológicas em sua área de abrangência. Estações meteorológicas representadas na cor AZUL e o ponto central dos pixels do satélite 3B43-v7, em vermelho.

As análises foram realizadas de duas formas: a primeira, para a média da bacia hidrográfica e a segunda, ponto-a-ponto, ou seja, por estação, conforme As-Syakur et al. (2011) e Prasetia et al. (2013). Para a análise da média da bacia dos totais mensais e totais anuais da precipitação, foram utilizados todos os postos meteorológicos localizados na bacia e em seus limites mediante o método de interpolação do polígono de Thiessen, conforme Li et al. (2012), e todos os pontos do TRMM que cobrem a bacia (150 pixels).

Para a análise ponto-a-ponto, foi utilizada somente os pontos do TRMM que possuíam postos meteorológicos em sua área de abrangência, com resolução espacial de 0,25° x 0,25° (1 pixel da grid). Portanto, foram selecionados 84 pontos do TRMM e 105 postos. A comparação foi realizada com cada ponto estimado pelo satélite com a média entre os pluviômetros que estão na sua área de abrangência, conforme mostrado na Figura 2.3. Dessa forma, as médias da precipitação dos postos representam melhor a estimativa na área de um pixel, conforme observado por Viana et al. (2010).

Os dados foram organizados para as análises de três formas: totais mensais ao longo do período de janeiro de 1998 a dezembro de 2012, denominado de série histórica mensal (SHM); média dos totais mensais (MTM), referente à média de cada mês e; totais anuais (TA), referentes ao acúmulo de precipitação em cada ano. Todos os dados foram ordenados e analisados estatisticamente.

Para comparar o produto 3B43-v7 com as observações pluviométricas de superfície, foram utilizadas as estatísticas mais comuns neste tipo de estudo: coeficiente de correlação de Pearson (r); erro médio absoluto (EMA); raiz do erro quadrático médio (RMSE); Erro (Viés) e erro relativo do volume precipitado (ERVP = Erro/OBS*100) (AS-SYAKUR et al., 2011; COLLISCHONN et al., 2007; FEIDAS, 2010; SEMIRE et al, 2012). O RMSE é utilizado para avaliar o grau de confiabilidade das estimativas. Segundo Adeyewa & Nakamura (2003), quando o RMSE relativo (RMSE dividido pela média) é inferior a 50%, as estimativas podem ser consideradas confiáveis.

O valor de correlação de Pearson foi considerado pequeno (até 0,25), baixo (0,26 – 0,49), moderado/médio (0,50- 0,69), alto/boa (0,70-0,89) e muito alta/ótima (acima de 0,90), de acordo com os valores de referência descritos por Jonson & Gross (1997).

3 RESULTADOS E DISCUSSÃO

3.1 ANÁLISE DA MÉDIA DA PRECIPITAÇÃO PARA A BACIA HIDROGRÁFICA

A média da precipitação para a BHRD estimada pelo 3B43-v7 foi comparada com a média dos postos meteorológicos. Na Figura 2.4a e 2.4b, apresenta-se o índice de precipitação (P) observado pelos postos meteorológicos e pelo 3B43-v7 para a média do total mensal (MTM) e anual (TA). Foi observado que o TRMM estimou adequadamente a precipitação sobre a bacia hidrográfica do rio Doce (BHRD). Essa característica foi observada também por Collischonn et al. (2007) na bacia do rio Paraguai.

A média dos TA dos postos meteorológicos é de 1.231 mm, entre 894 mm e 1.544 mm. Em 2007, 2012 e 2003 ocorreram os menores acúmulos de precipitação e em 2004, 2005 e 2009 os maiores.

Figura 2.4 - Índice de precipitação dos postos meteorológicos (OBS) e do produto 3B43-v7 do TRMM para a bacia hidrográfica do rio Doce, entre 1998 e 2012 e seus respectivos valores de Erro (TRMM-OBS) e Erro Relativo (100*Erro/OBS). **a**. Média dos totais mensais (mm/mês) e **b**. totais anuais (mm/ano).

A precipitação média dos TA estimada pelo satélite para a bacia é de 1.328 mm, entre 958 mm e 1.703 mm. Apresentou correlação de 0,96 e o erro médio de 97 mm, valor próximo ao encontrado por Li et al. (2012) na bacia de Xinjiang- China, no período de 1998 a 2003. O ERVP inferior a 14% (média = 8%), corroborando com o trabalho de Semire et al. (2012) na Malaysia – Ásia que obtiveram erro inferior a 15%. Nos anos

de 1999, 2007 e 2012 apresentaram menores índices de precipitação, em 2005, 2004 e 2009, os maiores. Nos anos de 2004, 2005 e 2009 apresentaram maiores índices nas duas fontes de dados e em 2007 e 2012 os menores.

Os maiores erros relativos foram apresentados na estação seca, junho, julho e agosto e os menores, nos meses entre setembro e janeiro.

O TRMM tem tendência a superestimar a MTM da precipitação nessa bacia. No entanto, o oposto foi encontrado por As-Syakur et al. (2011) em Bali – Indonésia, para o período de 1998 a 2002. Também foi observado tendência a superestimar os TA. Li et al. (2012) em seu trabalho, observaram, nos 6 anos analisados, que o TRMM subestimou nos 3 primeiros anos e superestimou nos outros três. Isso demonstra que o TRMM não tem um padrão, apresentando resultados diferentes em cada bacia. O que confirma a importância da validação dos dados do TRMM em cada região.

O 3B43-v7 responde a sazonalidades do clima da região onde a precipitação na estação seca é baixa e chuvosa, é alta, acompanhando as variações dos postos, conforme pode ser observado na Figura 2.3a. Um padrão de sazonalidade também foi observado por As-Syakur et al. (2013) no arquipélago da Indonésia. De acordo com Silva (2013) e Cupolillo et. al. (2008), o período chuvoso na região da BHRD são os meses de outubro a abril e o mais seco, julho, concordando com este estudo.

Comparando os totais acumulados de precipitação de 1998 a 2012, os resultados também são bons. Observou-se tendência do satélite de superestimar a precipitação total, resultando na diferença de 8% (1375 mm) do total precipitado (TRMM = 19846 mm e OBS = 18471 mm). Essa diferença é da mesma ordem verificada por Collischonn et al. (2007) na bacia superior do rio Paraguai – Brasil. Danelichen et al. (2013) observaram resultados semelhantes na região centro oeste do Brasil, onde o TRMM estimou adequadamente precipitação, de acordo com os autores.

3.2 ANÁLISE PONTO A PONTO DA PRECIPITAÇÃO PARA A BACIA HIDROGRÁFICA DO RIO DOCE

Os resultados da análise ponto-a-ponto podem ser observados na Figura 2.5, onde tem-se a dispersão dos dados de precipitação do 3B43-v7 e dos postos meteorológicos correspondentes, apresentando boa correlação entre os dados. Os resultados das estatísticas realizadas estão descritas na figura a seguir, sendo, r (0,92; 0,99; 0,81), RMSE (47; 19 e 213), Erro/Viés (8; 8 e 93) e EMA (90; 74 e 250) para a SHM, MTM e TA, respectivamente.

Figura 2.5 - Gráfico de dispersão dos dados de precipitação do satélite 3B43-v7 e dos postos meteorológicos do período de 1998 a 2012. a. Série histórica - SHM (R= 0,91; n= 15120); b. Média do Total Mensal - MTM (R= 0,98; n= 1008); c. Total Anual - MTA (R= 0,81; n= 1260).

Na Tabela 2.1, está o resumo da comparação estatística entre a precipitação do 3B43v7 e os postos dos 84 pontos analisados, sendo o r, R², RMSE, Erro, EMA, RMSE relativo, precipitação máxima, mínima e média dos postos e do TRMM.

O Erro observado foi menor que 25 mm (média de 8 mm) no conjunto de dados da SHM e MTM. Já os TA, apresentaram média de P de 99 mm, entre -226 a 279 m.

Existe alta correlação entre os postos e o satélite nas três análises, obtendo média de 0,92, 0,99 e 0,82 para a SHM, MTM e MTA, respectivamente. Os menores coeficientes de correlação para a SHM e para a MTM foram observados na região litorânea, onde

se encontra os postos de Povoação/Linhares, Barra Nova/São Mateus, Linhares/Incaper, Ponte Nova/Linhares e São Mateus/Incaper, como pode ser observado na Figura 2.6a e 2.6b.

Tabela 2.1 - Comparações estatísticas entre a precipitação estimada pelo produto 3B43-v7 e as observadas pelos postos meteorológicos para a bacia hidrográfica do rio Doce

SÉRIE HISTÓRICA MENSAL (SHM)												
	r	R²	RMSE	Erro	EMA	RMSE relativo	máx. prec. OBS	máx. prec. TRMM	mín. prec. OBS	mín. prec. TRMM	méd. prec. OBS	méd. prec. TRMM
max	0,95	0,91	68	23	115	66	748	591	2	7	144	139
min	0,80	0,63	35	-19	70	31	334	380	0,0	0,0	72	90
média	0,92	0,84	46	8	88	46	494	465	0,1	0,3	102	110
MÉDIA DOS TOTAIS MENSAIS (MTM)												
max	0,99	0,99	27	23	104	32	378	348	52	48	144	139
min	0,92	0,85	5	-20	43	5	186	204	3	5	72	90
média	0,99	0,98	18	8	75	18	261	271	13	17	102	110
TOTAIS ANUAIS (TA)												
max	0,93	0,87	326	279	313	32	2323	2276	1296	1216	1732	1673
min	0,54	0,29	110	-226	175	8	1122	1480	455	618	864	1074
média	0,82	0,68	207	99	237	18	1681	1781	820	891	1225	1323

r= coeficiente de correlação; R²= coeficiente de determinação; RMSE= raiz quadrada do erro médio; Erro = viés, desvio, bias; EMA= erro médio absoluto; Max= máximo; min.= mínimo; méd. = médio; OBS= postos meteorológicos, observado; TRMM= precipitação por satélite TRMM

c. r (TA)

b. r (MTM)

a.r (SHM)

Figura 2.6 - Análises estatísticas entre os dados do TRMM 3B43-v7 e os postos meteorológicos (1998 a 2012). Primeira coluna (**a., d., g., j**.) Série histórica mensal - SHM, segunda (**b., e., h., l**.) Média do total mensal - MTM e terceira (**c., f., i.; m**.) Total anual - TA. (**a, b e c**) Coeficiente de correlação de Pearson; (**d., e., f**.) Erro/Viés (mm); (**g., h., i**.) RMSE (mm); (**j., l., m**.) MAE (mm).

As estimativas do TRMM em cada estação responde a sazonalidade do clima da região, como pode ser observada por Danelichen et al. (2013) na região Centro Oeste do Brasil e Silva et al. (2013) no Vale do Médio Paranapanema. No entanto, para essa bacia, apresenta tendência a superestimar a precipitação em 83% das comparações (em 70 pontos). Os 14 pontos que subestimaram estão localizados em regiões distintas da bacia, tanto em áreas de alta altitude quanto de baixa, tanto no litoral quanto no interior (Figura 2.7), embora de acordo com Melo et al. (2015), a quantidade de precipitação e sua ocorrência tende a ser subestimado em algumas zonas costeiras, o que não foi observado nesta bacia.

Figura 2.7 - Mapa de Hipsometria (altitudes) da bacia hidrográfica do rio Doce, baseado nas imagens digitais do SRTM com os 14 pontos que subestimaram em relação ao Observado (postos).

No Brasil, há uma tendência do TRMM de superestimar a precipitação, conforme observado por Danelichen et al. (2013), em que constataram a superestimação na precipitação anual entre 0,6 e 37,4%. No entanto, em outros países como em Bali, esse satélite subestimou a precipitação (AS-SYAKUR et al., 2011), que pode ter tido influência do oceano, por ser esta uma ilha. Observa-se também, uma tendência do TRMM a subestimar a precipitação máxima e superestimar a precipitação mínima, no entanto, a média da precipitação entre os pontos é similar.

Os menores valores de EMA nos dados mensais foram encontrados na região do Espírito Santo, aumentando em direção a divisa da bacia em Minas Gerais (FIGURA 2.6j e 2.6l).

Dentre os pontos analisados do TRMM, dez apresentam dois postos em sua área de abrangência/pixel e cinco apresentam três postos. Esperava-se que nas comparações de dados do TRMM onde possuía mais de uma estação, os resultados fossem melhores, devido à utilização da média dos postos. No entanto, os resultados não apresentaram diferença em relação aos outros, que possuem apenas uma estação.

O valor médio de RMSE relativo da MTM e dos TA ficou em 18%, entre 5 e 32% e entre 8 e 32% respectivamente, demonstrando que esses dados apresentam estimativas confiáveis para a região, sendo que nenhuma das amostras apresentou valor de RMSE relativo superior a 50% conforme orienta Adeyewa & Nakamura (2003), apresentando 62% dos pontos na classe de 0 a 20% e 38% na classe de 20 a 33%. Já os dados para a SHM, 27% (23 pontos) apresentaram RMSE relativo maior que 50%.

Considerando a média dos pontos para cada mês, os valores são considerados bons, principalmente, para a estação chuvosa, como pode ser observado nas Figuras 2.8 e 2.9, que apresenta a distribuição espacial do ERVP. A Tabela 2.2 apresenta a média entre as comparações de cada mês. Os menores erros relativos estão compreendidos na classe de -25 a 25%, representados pelos pixels na cor azul escuro e azul claro, significando que o satélite subestimou e superestimou em 25%, respectivamente, a precipitação na célula. Já as cores verde escuro e verde claro, representam erro entre 25 e 50% e as cores laranja e vermelho representam os erros maiores, superestimou entre 50 e 100 % e acima de 100%, respectivamente.

Figura 2.8 - Gráfico de dispersão dos dados da média da precipitação mensal para o período de 1998 a 2012 estimada pelo satélite TRMM-3B43 e postos meteorológicos na bacia hidrográfica do rio Doce, com seus respectivos coeficientes de correlação.

Figura 2.9 - Distribuição espacial do erro relativo do volume precipitado (ERVP) da média dos totais mensais (MTM) entre o 3B43-v7 e os postos meteorológicos da bacia hidrográfica do rio Doce, de janeiro a dezembro.

Tabela 2.2 - Resumo das médias das comparações estatísticas entre a precipitação estimada pelo TRMM 3B43.v7 e as observadas pelos postos meteorológicos referentes a cada mês para a bacia hidrográfica do rio Doce

Média	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
r	0,86	0,88	0,86	0,75	0,83	0,81	0,71	0,76	0,89	0,77	0,62	0,80
R²	0,75	0,77	0,74	0,58	0,70	0,66	0,55	0,61	0,79	0,77	0,42	0,66
RMSE*	59,3	46,5	51,9	38,5	20,9	14,3	12,9	16,1	20,8	39,0	84,7	67,4
Erro*	10,0	16,9	16,1	10,7	3,9	4,8	3,1	3,0	2,9	3,3	6,9	16,9
EMA*	79,5	66,6	70,9	36,6	25,0	15,0	11,2	17,2	31,7	53,2	86,1	76,1
ERVP*	6,5	16,7	12,6	19,1	14,8	34,4	40,7	26,6	8,2	4,9	4,2	7,7
* .'												

* unidade= mm

Grande diferença é observada na estação seca, entre maio e agosto, principalmente no mês de julho. Apenas 16 pontos apresentaram ERVP de 50% a 100% e 13 pontos, superestimaram mais de 100% a precipitação.

No estudo de Danelichen et al. (2013), também ocorreu maior superestimativa nesse período de seca. Semire et al. (2012) observaram maior ERVP nesse período (jun. a

ago.), no entanto uma estação meteorológica apresentou erro semelhante no período chuvoso.

Os maiores valores de EMA ocorreram nos meses de novembro a março, sendo os maiores valores em novembro e janeiro, 86,07 mm e 79,54 mm respectivamente. Esse fato pode ser explicado devido às chuvas convectivas, geralmente de forte intensidade e que ocorrem de forma pontual. Nos meses de inverno, os valores de EMA foram mais baixos, sendo o menor valor observado no mês de junho (11,18 mm). Nessa estação do ano, as precipitações pluviais são mais generalizadas, de baixa intensidade, frequentemente causadas por entrada de massas de ar frio, que cobrem uma grande região. Resultados semelhantes foram encontrados por Camparotto et al. (2013), para o estado de São Paulo.

Os erros nos meses do inverno, principalmente em julho, podem estar relacionados com a massa de ar fria que vem do sul que nesse período tem grande influência na região, que provoca a sombra de chuva. Observou-se que os postos próximos a uma região montanhosa o erro foi maior. Isso ocorreu na região de Baixo Guandu, assinalada no mapa de hipsometria da BHRD na Figura 2.10, em que o 3B43-v7 superestimou em mais de 100%. Nesse pixel em particular, que possui 3 estações em sua área de abrangência onde estão localizadas em altitude média de 80 m, estão a sotavento de uma montanha que chega a altitude de 1.000 m aproximadamente. Essa montanha representa uma barreira para o deslocamento das massas de ar que carregam a umidade. O ar a barlavento é forçado a subir e condensa-se, podendo causar chuva, e passando pela montanha já não possui umidade. Isso pode interferir na estimativa da precipitação do satélite.

Essa situação também foi observada com a maioria dos pontos analisados como pode ser observado na Figura 2.10, onde a estação está em altitude inferior à região montanhosa que está próxima.

Observaram-se que as estimativas de precipitação do 3B43-v7 são consistentes, porém alguns erros ainda existem podendo ocorrer. De acordo com Collischonn et al. (2007), Karaseva et al. (2012) e Camparotto et al. (2013), este erro é devido ao fato de o satélite abranger uma área aproximada de 27 x 27 km (0,25° x 0,25°), enquanto o posto meteorológica mede de forma pontual.

Figura 2.10 - Mapa de Hipsometria (altitudes) da bacia hidrográfica do rio Doce, baseado nas imagens digitais do SRTM com os pontos de análises das comparações entre os dados estimados pelo 3B43-v7 e o orbservado (postos). O círculo preto assinala a região de Baixo Guandu-ES.

Conforme Semire et al. (2012), a discrepância analisada nas comparações pode ser atribuída também ao campo de visada não-uniforme do sensor do satélite, a incertezas na frequência de amostragem nos algoritmos de estimativa da precipitação e a topografia do local.

Collischonn et al. (2008) relatam que também pode estar relacionado com erro na manipulação e leitura dos pluviômetros e fatores que afetam a captura da precipitação. Nessa bacia, 90% dos postos utilizados são manuais.

O 3B43-v7 é uma alternativa eficiente para aquisição de informações da precipitação para a BHRD, onde ocorrem falhas e escassez dos mesmos, podendo ser estudada para aplicação em atividades agrometeorológicas.

3.3 PRECIPITAÇÃO ESTIMADA PELO TRMM

A espacialização da precipitação estimada pelo satélite TRMM produto 3B43-v7 para a Bacia Hidrográfica do Rio Doce (BHRD) pode ser observado na Figura 2.11.

Figura 2.11 – Precipitação estimada pelo satélite TRMM produto 3B43-v7 para a bacia do rio Doce. a. Precipitação mensal; b. Precipitação anual.

O regime pluvial apresenta dois períodos bem definidos: chuvoso, de outubro a abril, e seco, de maio a setembro, observado também por Cupolillo et al. (2008), quando analisaram a bacia com 52 estações meteorológicos.

A precipitação (P) caracteriza-se por apresentar sentido oeste-leste no período chuvoso, ou seja, um escoamento com sentido das regiões serranas do Espinhaço e Mantiqueira para o litoral, sendo influenciada pela massa de ar Equatorial Continental. Já na período seco se inverte, sendo a P maior de Leste para oeste, influenciado pela massa de ar que vem do sul, massa de ar Tropical Atlântica (mTa) e Polar Atlântica (mPa).

De acordo com Cupolillo et al. (2008), a chuva nos fundos de vale da bacia é relativamente pouca, em torno de 1.000 a 1.200 mm. Isso pode ser percebido também por este estudo. As chuvas do interior da bacia, chuvas convectivas, estão concentradas progressivamente para o interior no verão e as maiores altitudes do relevo, como zonas de condensação.

Na região litorânea (Linhares), o maior total de precipitação encontra-se associado aos sistemas oceânicos derivados do Atlântico Sul, favorecendo o aumento de umidade na região, conforme observado também por Cupolillo & Abreu (2009) e Cupolillo et al. (2008). As chuvas no litoral do estado do ES em julho, época do ano com mínimo pluviométrico, têm sua origem pelas Correntes de Circulação Perturbadas de Leste, vindas do Oceano Atlântico (NIMER, 1989).

4 CONCLUSÕES

De acordo com as condições experimentais, pode se concluir o seguinte a respeito do produto 3B43-v7:

- 1- Apresentou bom desempenho.
- 2- O 3B43-v7 responde à sazonalidade do clima da região.
- 3- Superestima a precipitação mensal e anual nesta bacia hidrográfica.

4- Quando analisado cada mês separadamente, observou-se que apresenta melhores resultados na estação chuvosa, em relação ao erro relativo, e menores erros, na estação seca.

5- É uma alternativa eficiente para aquisição de informações da precipitação para a bacia hidrográfica do rio Doce.

5 REFERÊNCIAS

ADEYEWA, Z. D.; NAKAMURA, K. Validation of TRMM Radar Rainfall Data over Major Climatic Regions in Africa. **Hydrospheric Atmospheric Research Center**, v. 42, p. 331-347, Fev., 2003.

AS-SYAKUR, A. R.; TANAKA, T.; PRASETIA, R.; SWARDIKA, I. K.; KASA, I. W. Comparison of TRMM multisatellite precipitation analysis (TMPA) products and dailymonthly gauge data over Bali. **International Journal of Remote Sensing**, v. 32:24, p. 8969-8982, 2011.

AS-SYAKUR, A.; TANAKA, T.; OSAWA, T.; MAHENDRA, M. Indonesian rainfall variability observation using TRMM multi-satellite data. **International Journal of Remote Sensing**, v. 34, n. 21, 7723–7738, 2013.

BERTONI, J. C.; TUCCI, C. E. Precipitação. Hidrologia: ciências e aplicação. Porto Alegre: Editora da UFRGS/ABRH, ed. 3, p. 174, 2004.

CAMPAROTTO, L. B.; BLAIN, G. C.; GIAROLLA, A.; ADAMI, M.; CAMARGO, M. B. Validação de dados termopluviométricos obtidos via sensoriamento remoto para o Estado de São Paulo. **Revista Brasileira de Engenharia Agrícola e Ambienta**l, v. 17, n. 6, p. 665-671, Jun., 2013.

CBH-RIO DOCE - Comitê de bacias hidrográficas do rio Doce, 2013. Disponível em: http://www.riodoce.cbh.gov.br/bacia_caracterizacao.asp. Acesso em: 23 de maio de 2013.

COELHO, A. L. Modelagem hidrológica da bacia do rio Doce (MG/ES) com base em imagens SRTM (Shuttle Radar Topography Mission). **Caminhos de Geografia**, v. 8, n. 22, p.116-131, set., 2007.

COLLISCHONN, B.; ALLASIA, D.; COLLISCHONN, W.; TUCCI, C. E. Desempenho do satélite TRMM na estimativa de precipitação sobre a bacia do Paraguai superior. **Revista Brasileira de Cartografia**, v. 59, n. 1, p. 93-99, abr., 2007.

COLLISCHONN, B.; COLLISCHONN, W.; TUCCI, C. E. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. **Journal of Hydrology**, v. 360, p. 207-216, 2008.

CUPOLILLO, F.; ABREU, M. L. Bacia do Rio Doce: Balanço Hídrico Decendial (1980-2002). **Anais**. XVI Congresso Brasileiro de Agrometeorologia. 22-25 de set., 2009.

CUPOLILLO, F.; ABREU, M. L.; VIANELLO, R. L. Climatologia da bacia do rio Doce e sua relação com a topografia local. **GEOgrafias**, v. 04, n. 1, p. 45-60, Jul.-Dez., 2008.

DANELICHEN, V. H.; MACHADO, N. D.; SOUZA, M. C.; BIUDES, M. S. TRMM satellite performance in estimating rainfall over the midwest region of Brazil. **Revista Brasileira de Climatologia**, v. 12, n. 9, p. 22-31, Jan.-Jul., 2013.

DINKU, T.; CECCATO, P.; GROVER-KOPEC, E.; LEMMA, M.; CONNOR, S.; ROPELEWSKI, C. Validation of satellite rainfall products over East Africa's complex topography. **International Journal of Remote Sensing**, v. 28, p. 1503-1526, 2007.

FEIDAS, H. Validation of satellite rainfall products over Greece. **Theoretical and applied climatology**, v. 99, p. 193 -216, 2010.

JONSON, S. R; GROSS, M. Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. **J. Orthop Sports Phys Ther**, v. 25, ed.4, p. 253-263, 1997.

KARASEVA, M. O.; PRAKASH, S.; GAIROLA, R. M. Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan. **Theoretical Applied Climatology**, v. 108, p. 147-157, 2012.

LI, X.-H.; ZHANG, Q.; XU, C.-Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. **Journal of Hydrology**, v. 426-427, p. 28-38, 2012.

MARANHÃO, N. Termo de referência para elaboração do plano de recursos hídricos da bacia hidrográfica do rio Doce. Anexo 1 - Diagnóstico consolidade da Bacia, versão final. Dez., 2005. Disponível em: < http://www.riodoce.cbh.gov.br/Diagnostico 2005/diagnostico.pdf>. Acesso em: 25 de julho de 2013.

MELO, D. C.; XAVIER, A. C.; BIANCHI, T.; OLIVEIRA, P. T.; SCANLON, B. R.; LUCAS, M. C.; WENDLAND, E. Performance evaluation of rainfall estimates by TRMM Multisatellite Precipitation Analysis 3B42V6 and V7 over Brazil. **Journal of Geophysical Research: Atmospheres**, v. 120, p. 1-11, 28 Ago., 2015.

NASA, N. A.. Landsat Data Continuity Mission: Continuously Observing Your World. 2013. Disponível em: http://ldcm.gsfc.nasa.gov/mission_details.html. Acesso em: 02 de julho de 2014.

NIMER, E. Climatologia do Brasil. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e estatística, 1989.

PRASETIA, R.; AS-SYAKUR, A. R.; OSAWA, T. Validation of TRMM Precipitation Radar satellite data over Indonesian region. **Theor Appl Climatol**, v. 112, p. 575-587, 2013.

SEMIRE, F. A.; Mohd-Mokhtar, R.; Ismail, W.; Mohamad, N.; Mandeep, J. S. Ground validation of space-borne satellite rainfall products in Malaysia. **Advances in Space Research**, v. 50, n. 9, p. 1241-1249, nov., 2012.

SILVA, E. D. Estudo da Precipitação no Estado de Minas Gerais-MG. **Revista Brasileira de Climatologia**, 13, 120-136, julho/dezembro, 2013.

SOUZA, P. I.; CARVALHO, A.; KOTZIAN, H. B.; MARCIEL JUNIOR. Plano integrado de recursos hídricos da bacia hidrográfica do rio Doce: Relatório final. Consórcio Ecoplan - LUME, v. 1, 2010.

VIANA, D. R.; FERREIRA, N. J.; CONFORTE, J. C. Avaliação das estimativas de precipitação 3B42 e 3B43 do satélite TRMM na Região Sul do Brasil. In: XVI Congresso Brasileiro De Meteorologia. A Amazônia e o clima global, v. 1, n. 1, p. 1-5, 2010.

XUE, X.; HONG, Y.; LIMAYE, A. S.; GOURLEY, J. J.; HUFFMAN, G. J. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? **Journal of Hydrology**, p. 91-99, 2013.

CAPÍTULO 3 - BALANÇO HÍDRICO CLIMATOLÓGICO COM DADOS DE PRECIPITAÇÃO ESTIMADOS PELO SATÉLITE TRMM PARA A BACIA HIDROGRÁFICA DO RIO DOCE

RESUMO

O Balanço hídrico climatológico é muito importante como, por exemplo, no zoneamento agroclimático, na caracterização climática, na demanda de água das culturas irrigadas e no conhecimento do regime hidrológico de uma região. Para isso, são necessários dados confiáveis e com boa cobertura espacial. O satélite Tropical Rainfall Measuring Mission – TRMM, produto 3B43-v7, estima dados de precipitação para a região dos trópicos com resolução espacial de 0,25° x 0,25°. O objetivo deste estudo é comparar o balanço hídrico climatológico pelo método de Thornthwaite e Mather (1955), com os dados de precipitação estimados pelo 3B43-v7 versus os gerados com os dados dos postos meteorológicos e mapear a disponibilidade hídrica pixel-a-pixel com boa cobertura espacial e com potencial para aplicação na agrometeorologia para a bacia hirdográfica do rio Doce. O balanço hídrico climatológico com o 3B43-v7 apresentou boa correlação com o observado. Os melhores resultados foram encontrados na estação chuvosa e os piores na estação seca, que pode ter tido influência das massas de ar fria que predominam neste período. Os maiores erros percentuais foram encontrados em alguns postos na região Sudeste e Nordeste da bacia (no Baixo Doce e Médio Doce). Os dados do 3B43-v7 caracterizou o balanço hídrico climatológico de forma semelhante aos dados observados pelos postos meteorológicos. A precipitação estimada pelo 3B43-v7 proporcionou a realização do balanço hídrico climatológico desta bacia com boa cobertura. A utilização dos dados de precipitação estimados pelo 3B43-v7 pode ser uma ferramenta importante na caracterização de disponibilidade hídrica regional, contribuindo para o planejamento e manejo agrícolas, principalmente por preencher as lacunas deixadas devido à ausência de postos meteorológicos, disponibilizando um produto com boa cobertura espacial

Palavras-Chave: dados orbitais, chuva, deficiencia hídrica, disponibilidade hídrica.

1 INTRODUÇÃO

A bacia hidrográfica do rio Doce (BHRD) é uma bacia de grande importância que cobre uma área de 86.711 km² e contribui na geração de divisas pelas exportações de café (MG e ES) e polpa de frutas (ES), assim como a silvicultura e a pecuária.

A BHRD possui demandas de água para irrigação, sendo a agricultura irrigada mais presente no estado do Espírito Santo, com as monoculturas irrigadas em Colatina e Linhares, sendo estas com as maiores áreas irrigadas mapeadas pela ANA (2005). Isso é devido as suas características naturais de relevo e solos existentes (COELHO, 2009). Os municípios capixabas possuem demandas entre 0,5 e 1,0 L/s/km² são: Linhares, Colatina, Governador Lindenberg e Itaguaçu. Já os que possuem demandas inferiores, estimadas entre 0,25 e 0,5 L/s/km², são: Rio Bananal, São Domingos do Norte, João Neiva e Afonso Cláudio (ANA, 2005).

A precipitação tem um papel importante. Os postos meteorológicos estão distribuídos na superfície terrestre e coletam informações somente para uma pequena área localizada em seu entorno. Observa-se que os postos da BHRD estão mal distribuídos e com baixa densidade, gerando um problema de representatividade em algumas áreas.

Vários trabalhos vêm estudando outras formas de monitoramento da precipitação, como os desenvolvidos com produtos do satélite *Tropical Rainfall Measuring Mission*-TRMM, aplicando-os em diversas áreas como monitoramento de seca (LI et al., 2013; HONGWEI et al., 2012; RHEE et al. 2010; DU et al., 2013; ZHANG & JIA, 2013) geada (LAZARIM & ZULLO JUNIOR, 2009; RAFAELLI & MOREIRA, 2007), produtividade (SILVA, 2011), previsão de tempo (FERREIRA et al. 2012), além de abastecer modelos hidrológicos (COLLISCHONN et al., 2008; LI et al., 2012).

O referido satélite tem como objetivo principal monitorar e estudar a precipitação nos trópicos, além de verificar como a mesma influencia o clima global. O TRMM é uma parceria entre a NASA (*National Aeronautics and Space Administration*) e a Agência Japonesa de Exploração Aeroespacial (JAXA) (Kummerow et al., 2000).

No entanto, há falta de estudo em que se utilizam dados de precipitação estimados por esse satélite como entrada no Balanço hídrico climatológico (Bhclim),

principalmente, com o método de Thornthwaite e Mather, como o trabalho de MAHMUD (2014) e QUIRINO et al. (2015). MAHMUD (2014) utilizou dados de precipitação do satélite TRMM e a evapotranspiração estimada pelo algoritimo SatDAET (*Satellite-based Daily Evapotranspiration*), desenvolvido por Jiang et al. (2010), para calcular a disponibilidade de água na Penínsola da Malásia. QUIRINO et al. (2015) analisaram a resposta do Bhclim proposto por Thornthwainte & Math com dados do TRMM em três regiões do estado de Goiás.

O Bhclim permite quantificar as entradas e saídas de água de uma determinada região. Isso pode auxiliar em várias áreas da agricultura como para caracterização de períodos secos, irrigação, zoneamento agroclimático e caracterização climática.

As principais saídas para o Bhclim são: evapotranspiração (ET); drenagem profunda; escoamento superficial; e escoamento subsuperficial. As entradas são: orvalho; precipitação (P); escoamento superficial; escoamento subsuperficial; e ascensão capilar. Com esses elementos podemos verificar as entradas e saídas de água do sistema, obtendo a variação de armazenamento de água no solo (ΔARM). No entanto, para efeito de entrada e saída, leva-se em consideração apenas a P e a ET.

Diante do exposto, este estudo propôs comparar os balanços hídricos climatológicos pelo método de Thornthwaite e Mather (1955), com os dados de precipitação estimados pelo 3B43-v7 *versus* os dados dos postos meteorológicos e gerar o mapeamento da disponibilidade hídrica pixel-a-pixel com boa cobertura espacial e com potencial para aplicação na agrometeorologia para a bacia hirdográfica do rio Doce.

2 MATERIAL E MÉTODOS

A bacia hidrográfica do rio Doce (BHRD) está localizada nos estados de Minas Gerais - MG e Espírito Santo - ES. O limite da bacia adotado para este estudo segue o Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do rio Doce (Souza et al., 2010), que engloba a bacia do rio Barra Seca para efeito de gestão. Possui área aproximada de 86.711 km², 82% pertencem ao Estado de MG (71.432 km²) e 18% ao Estado do ES (15.279 km²) (Figura 3.1).

Figura 3.1 - Localização da bacia hidrográfica do rio Doce; Postos Meteorológicos representadas na cor AZUL e o ponto central dos pixels do satélite 3B43-v7 em vermelho.

O Balanço hídrico climatológico (Bhcim) utiliza parâmetros de fácil obtenção, como a Temperatura do ar (Ta), Precipitação (P) e Latitude (Lat.) do local: Ta estimada por equações de regressão linear múltipla, descritos no ponto a seguir; P mensais e anuais estimados pelo satélite TRMM provenientes do produto 3B43-v7 com grade regular de pontos (grid-point) no formato ASCII no site da NASA (NASA, 2013); dados de P observados (OBS) pelos postos meteorológicos (Agencia Nacional das Águas – ANA; Instituto Nacional de Meteorologia – INMET e Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural - INCAPER).

Uma visão geral dos processos realizados pode ser obtida por no fluxograma na Figura 3.2.

Figura 3.2. Fluxograma com visão geral dos procedimentos desenvolvidos no trabalho.

2.1 DADOS MENSAIS DE PRECIPITAÇÃO OBSERVADOS

Os dados dos 80 postos meteorológicos, localizadas no interior da bacia e 25 limítrofes, totalizando 105, para análise preliminar, conforme orienta Bertoni & Tucci (2004), pois as medições *in situ* se encaixam na categoria de erro de amostragem, que vão desde erros no manuseio do equipamento por pessoal de campo aos impactos climáticos sobre as medidas (BERTONI & TUCCI, 2004; FRANCHITO et al., 2009). Portanto, foi realizado o processo de preenchimento de falhas por meio do

método da ponderação regional e análise de consistência pelo método da Dupla Massa desenvolvido pelo *Geological Survey* (USA) (BERTONI & TUCCI, 2004).

Para o método da ponderação regional, foram selecionados três postos vizinhos daquele que apresenta falha, utilizando-se a Equação 1 (BERTONI & TUCCI, 2004). Os autores recomendam que os postos vizinhos possuam série histórica mínima de dez anos de dados. Neste estudo, foi utilizada série de 30 anos, conforme recomenda a Organização Meteorológica Mundial (OMM), que escolheu esse período com base em princípios estatísticos de tendência do valor médio (PEREIRA et al., 2002), portanto, foi utilizada série histórica de 1983 a 2012 para o preenchimento de falhas.

$$Y_{C} = \frac{1}{3} \left[\frac{X_{1}}{Xm_{1}} + \frac{X_{2}}{Xm_{2}} + \frac{X_{3}}{Xm_{3}} \right] * Ym$$
 (Eq.1)

Em que: Yc = P do posto a ser estimada; X₁, X₂ e X₃ = P correspondentes ao mês (ou ano) que se deseja preencher, observadas em três estações vizinhas; Xm₁, Xm₂ e Xm₃ = P média nas três estações circunvizinhas; e Ym = P média do posto a ser estimado.

Esse é um método simplificado e normalmente o mais utilizado para o preenchimento de séries mensais ou anuais de precipitações (BERTONI & TUCCI, 2004) e de acordo com estudos de Caldeira et al. (2011), esse método implica em resultados similares ao método da ponderação regional com base em regressões lineares.

2.2 DADOS MENSAIS DE PRECIPITAÇÃO ESTIMADOS PELO SATÉLITE TRMM

Os dados mensais de precipitação estimados pelo satélite TRMM provenientes do produto 3B43 *and other sources of monthly precipitation products,* versão 7 (V7) (3B43-v7), adquiridos como parte das atividades da Diretoria de Missões Científicas da NASA, usando a GES-DISC Visualização Interativa Online e análise de Infraestrutura (Giovanni) (*GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure*) e são arquivados e distribuídos pelo Goddard Ciências da Terra (GES) de Dados e Serviços de Informação Center (DISC). O 3B43-v7 combina dois produtos, a estimativa a cada 3 horas do algoritmo 3B42-v7 e a precipitação observada por

pluviômetros do projeto Global Precipitation Climatology Centre (GPCC) e CAMS (Climate Assessment and Monitoring System) em escala mensal.

Os dados são disponibilizados gratuitamente pelo endereço eletrônico http://disc2.nascom.nasa.gov/Giovanni/tovas/TRMM_V7.3B43.2.shtml com resolução de 0,25° x 0,25°, aproximadamente 27 km x 27 km. Foram adquiridos dados referentes ao quadrante que cobre todo o limite da BHRD e posteriormente excluídos os externos a esse limite, com total de 150 pontos centrais dos pixels (Figura 3.1). Destes, foram utilizados apenas os pixels que haviam postos meteorológicos em sua área de abrangência, totalizando 84 pixels.

2.3 ANÁLISE DE REGRESSÃO PARA A TEMPERATURA DO AR

A temperatura do ar (Ta) foi estimada aplicando-se equações de regressão linerar múltipla tendo como variáveis independentes a altitude (Alt.), a latitude (Lat.) e a longitude (Long.) dos postos e como variável dependente a Ta (Equação 2). Foram utilizadas 9 estações dentro da BHRD e 18, ao redor do limite da mesma, sendo 12 em MG, 1 no RJ e 14 no ES com série histórica de 30 anos (1983-2012). Esse método é muito utilizado, como pode ser observado por Sedyama e Melo Junior (1998), Pereira et al. (2002), Medeiros et al. (2005) e Pezzopane et al. (2012). Castro et al. (2010) verificaram ótimo coeficiente de determinação para Ta, de 0,94 a 0,97.

$$\gamma_i = \beta_0 + \beta_1 A lt + \beta_2 Lat + \beta_3 Long + \varepsilon_i$$
(Eq.2)

Em que: γ_i = temperaturas normais (médias) mensais (i=1, 2,..., 12) e anual (i=13) estimadas em °C; Alt = altitude (m); Lat = latitude, em graus e décimos (entrada com valores negativos); Long = longitude em graus e décimos (entrada com valores negativos) e; = $\beta_0 \beta_1 \beta_2 \beta_3$ parâmetros de regressão.

A Ta é em função da Lat., Alt. e às vezes a Long. por isso são utilizados. A Lat. é devido à relação entre esta e a irradiância global, a Alt. devido ao efeito da variação de pressão e a Long. devido ao efeito da localização próxima ao litoral ou no interior do continente (PEREIRA et al., 2002).

As análises de regressão foram realizadas para todos os meses, obtendo-se doze equações de estimativa para temperatura média mensal e uma anual. Foi avaliado o coeficiente de determinação ajustado (R²) e a significância dos coeficientes de regressão por meio do teste "t" de Student a 5 % de probabilidade.

2.4 BALANÇO HÍDRICO CLIMATOLÓGICO

A determinação do Bhclim para a BHRD foi realizada conforme metodologia proposta por Thornthwaite & Mather (1955). Uma com dados de entrada de P dos postos (OBS) e outra com P do 3B43-v7. A média da série histórica da precipitação mensal foi de 15 anos (1998 a 2012), devido à disponibilidade dos dados da P do 3B43-v7, a partir de 1998.

O método de Thornthwaite & Mather foi desenvolvido para determinar o regime hídrico de um determinado local, sem precisar de medidas diretas das condições do solo. Para sua elaboração, é necessário definir algumas variáveis. São elas: precipitação (P, suprimento natural de água), evapotranspiração potencial (ETP, demanda atmosférica) e capacidade de água disponível (CAD) no solo. Estas, resultam na evapotranspiração real (ETR), deficiência hídrica (DEH), excedente hídrico (EXC) e armazenamento de água no solo (ARM) e disponibilidade hídrica (ETR/ETP).

O Bhclim foi realizado utilizando o programa "BHnorm", elaborado em planilha EXCEL de Rolim et al. (1998). A capacidade máxima de armazenamento de água no solo (CAD) adotado foi de 125 mm, conforme é indicado para culturas perenes por Pereira et al. (2002), pois essa região é grande produtora de café, fruticultura e silvicultura.

O Bhclim iniciou-se com a estimativa da evapotranspiração potencial (ETP) pelo método de Thornthwaite (1948), recomendados por Sentelhas & Angelocci (2012), Coelho Filho et al. (2011) e Silva et al. (2013). Este representa a perda potencial de água por uma extensa superfície vegetada com grama, em crescimento ativo e sem falta de água. Esse método foi escolhido por necessitar apenas da Ta como dado de entrada e também por apresentar pequenos desvios de estimativa, em comparação ao método-padrão de Penman-Monteith, como observado por Sentelhas et al. (2008).
2.4.1 Comparação dos Bhclim com os dois tipos de dados de precipitação

Após a realização do Bhclim para os 105 postos meteorológicos (OBS) da BHRD com dados de P dos postos, foram realizados para a mesma localidade dos postos o Bhclim com dados de P do 3B43-v7. O valor da P para o ponto central do pixel é para uma área de aproximadamente 27 X 27 km. Portanto, a análise foi realizada com os dados da estação que se encontram na área de abrangência do pixel e o valor do ponto central do mesmo.

A comparação entre os Bhclim foi por meio do cálculo de Erro (Viés), em que foram subtraídas as variáveis geradas pelo Bhclim com os postos das variáveis geradas pelo Bhclim com o 3B43-v7 (3B43-v7 - OBS). O erro relativo foi calculado para verificar a porcentagem de quanto os valores subestimaram ou superestimaram em relação ao observado, em que o Erro relativo foi calculado pela expressão (ER) = 100*Erro/OBS. Foram utilizados também os seguintes índices estatísticos para cada variável do Bhclim: correlação de Person (r) e raiz quadrática do erro médio (RMSE), conforme utilizado por Quirino et al. (2015) e, também, erro médio absoluto (EMA).

2.4.2 Balanço hídrico climatológico, pixel a pixel, com dados do TRMM

Com o objetivo de mapear a disponibilidade hídrica da BHRD com boa cobertura espacial e com potencial para aplicação na agrometeorologia, foi realizado um Bhclim pixel a pixel, com dados da precipitação estimados pelo 3B43-v7 e Ta estimada pelas equações de regressão linear.

O Bhclim pixel a pixel foi realizado por meio de uma rotina computacional baseada na metodologia de Thornthwaite & Mather (1955). Foi utilizado a Lat., Long. e Alt. da BHRD e a CAD de 125 mm. Para os dados de Alt., foi utilizado um modelo digital de elevação (MDE), obtido por meio de dados do radar SRTM (*Shuttle Radar Topography Mission*). O MDE gerado forneceu as coordenadas geográficas e as Alt. necessárias para estimar a Ta. A resolução espacial de saída foi de 0,02°, equivalente a 2,2 km, aproximadamente.

O SRTM é proveniente da missão de mapeamento do relevo terrestre com resolução espacial de 90m e formato GEOTIFF (16 bits), adquirido pela Empresa Brasileira de Pesquisa Agropecuária – Embrapa, na unidade de monitoramento por satélite, disponível no site www.relevobr.cnpm.embrapa.br/download (MIRANDA, 2005). As 15 cenas que abrangem a bacia em estudo foram mosaicadas e submetidas a um processo de refinamento, com o objetivo de eliminar os sumidouros (depressões espúrias/falsas).

3 RESULTADOS E DISCUSSÃO

3.1 ANÁLISE DE REGRESSÃO PARA TEMPERATURA DO AR

A temperatura média do ar para a BHRD foi estimada com as equações de regressão múltipla, podendo ser observados os coeficientes de ajuste para a Temperatura (Ta) média mensal e anual na Tabela 3.1, juntamente com os coeficientes de determinação múltipla ajustados.

Tabela 3.1- Coeficientes das equações de regressão para estimativa dos valores mensais e anual de temperatura média do ar, com seus respectivos coeficientes de determinação ajustados para a bacia hidrográfica do rio Doce

Mês	Coeficiente (β ₀)	Altitude (β1)	Latitude (β2)	Longitude (β3)	R ² ajust.
JAN	12,6319	-0,0064	0,2121	-0,4729	0,94
FEV	8,8135	-0,0068	ns	-0,4771	0,92
MAR	15,0014	-0,0066	0,3031	-0,4581	0,93
ABR	12,4583	-0,0066	0,3751	-0,5210	0,92
MAI	20,7141	-0,0064	0,5264	-0,3421	0,91
JUN	16,2024	-0,0065	0,4877	-0,3994	0,88
JUL	11,3522	-0,0066	0,4506	-0,4916	0,87
AGO	4,4766	-0,0067	0,4722	-0,6848	0,85
SET	-1,9198	-0,0068	0,6425	-0,9482	0,87
OUT	-1,3236	-0,0067	0,6025	-0,9502	0,90
NOV	5,5728	-0,0065	0,4020	-0,6975	0,93
DEZ	8,8315	-0,0063	0,2567	-0,5687	0,95
Anual	9,7206	-0,0066	0,4127	-0,5854	0,92

ns= não significativo a 5% de probabilidade pelo teste "t" de Student (p<0,05), os outros foram significativos.

Os coeficientes de determinação múltipla (R₂) variaram entre os meses do ano, sendo o maior em dezembro, 0,95, e o menor, no mês de agosto, 0,85. O modelo linear representou a realidade da Ta para os locais onde esta não é medida, conforme observado também por Pezzopane et al. (2012).

Todas as equações para a Ta, a Lat., a Long. e a Alt. apresentaram significância, com exceção do mês de fevereiro, em que a Lat. não apresentou interação significativa (p <0,5). Nessa bacia, a irradiância global, a variação de pressão e a localização próxima ao litoral ou no interior do continente influencia a Ta (PEREIRA et al., 2002) praticamente em todos os meses do ano.

De acordo com Cupolillo et al. (2008), a região sofre influência da oceanidade, provocando temperaturas mais elevadas em Baixo Guandu, no Espírito Santo, e em Aimorés, Governador Valadares e na região do Vale do Aço (Timóteo, Coronel Fabriciano e Ipatinga), em Minas Gerais.

A espacialização das Ta médias anuais e mensais estimadas pelas equações desenvolvidas por meio de análises de regressão linear (Tabela 3.1) estão representadas na Figura 3.3 para a BHRD.

Observou-se a variabilidade espacial e sazonal da Ta na BHRD. A maior área da BHRD apresenta Ta anuais entre 20 e 26°C. O período mais quente é encontrado nos meses de dezembro a março, sendo registradas as maiores Ta no baixo rio Doce, região do estado do Espírito Santo.

Na parte oeste da BHRD, a maior parte do alto rio Doce, mesmo no verão, a Ta média não ultrapassa 26°C, sendo, portanto, a região com a temperatura mais amena, corroborando com o estudo de Cupolillo et al. (2008).

Nas regiões limítrofes da bacia, especialmente nas áreas montanhosas, Serra do Caparaó a sudeste, Serra da Mantiqueira a sudoeste e Serra do Espinhaço a oeste, a Ta chega em 5°C no mês mais frio do ano, julho. As penetrações de ar frio do sul não são possíveis pela disposição do relevo conforme Cupolillo et al. (2008). De acordo com Strauch (1955), citado por Cupolillo et al. (2008), tão logo aumentam as altitudes ao longo dos vales principais, caem as temperaturas médias do mês mais frio.

Figura 3.3 - Temperatura Média mensais (a) e anual (b) para a bacia hidrográfica do Rio Doce, estimadas por meio de equações múltiplas lineares e modelo digital de elevação (MDE).

Os resultados das análises estatíticas entre o Bhclim com os dados estimados pelo produto 3B43-v7 do satélite TRMM *versus* dados observados (OBS) dos postos meteorológicos para a BHRD encontram-se na Tabela 3.2 (variável: ETR, DEF, EXC e ETR/ETP), juntamente com os valores máximos e mínimos de cada variável. Os sinais positivos no erro (E) e erro relativo (ER) indicam que o satélite superestimou e os negativos, subestimou. Foram realizadas 105 comparações.

Tabela 3.2 - Análises estatísticas das comparações anuais entre as variáveis do Bhclim gerados com dados de precipitação estimados pelo TRMM e com os postos meteorológicos para a bacia hidrográfica do rio Doce

	- 3									
		DMSE	E	EMA	E	ER (%)	TR	MM (mm)	O	3S (mm)
	r	(mm)	(Viés) (mm)	(mm)	Méd.	Máx. Mín.	Méd.	Máx. Mín.	Méd.	Máx. Mín.
ETR	0,82	88	54	102	6	41 a -6,2	1046	1297 a 764	993	1327 a 754
DEF	0,88	87	-54	90	-22	74 a -99,9	174	433 a 0	228	573 a 23
EXC	0,94	92	54	195			288	813 a 0	238	1073 a 0
ETR/ETP	0,84	0,06	0,04	0,06	6	41 a -6,2	0,9	1 a 0,7	0,8	1 a 0,6

ETR = evapotranspiração real; DEF= deficiência hídrica; EXC= excedente hídrico; ETR/ETP= disponibilidade hídrica; r= coeficiente de correlação; R²= coeficiente de determinação; E(Viés)= erro médio; EMA= erro médio absoluto; ER= erro relativo; TRMM= com a precipitação estimada pelo satélite *Tropical Rainfall Measuring Mission*; OBS= com a prec. observada pelos postos meteorológicos.

Os valores de correlação são altos e muito altos, acima de 0,82. Valores de r próximos desse valor foram encontrados por Quirino et al. (2015) para três cidades de Goiás (Aragarças, Catalão e Formosa) para valores mensais de 2013. Os autores também avaliaram valores decendiais com outro produto do TRMM, o *Real Time* -RT diário. De acordo com os autores, este último produto apresentou ótimo desempenho, porém inferior ao mensal, e mostrou ser útil para monitoramento do balanço hídrico em tempo quase-real.

As análises para as variáveis ETR, DEF, EXC foram: o RMSE com 88 e 92 mm; Erro de 54 mm, superestimando as variáveis, menos para a DEF, onde o 3B43-v7 subestimou. Isso ocorreu devido à influência da P, que nessa bacia possui tendência a superestimar, como pode ser observado em análise prévia dos dados, descritos no capítulo 2 deste trabalho; o EMA foi de 90 a 195 mm, mostrando valor maior no EXC. Quirino et al. (2015) observaram esse padrão em seu estudo em GO, em que dois

terços das comparações superestimaram. O erro relativo mostra que o satélite superestimou em média 6% para o ETR e ETR/ETP, porém o DEF foi subestimado, 22%.

O EMA para ETR/ETP é de 0,06 mm, valor semelhante foi encontrado por Castro et al. (2010), quando avaliaram diferentes interpoladores para essa variável no estado do Espírito Santo. É um valor baixo, sendo o posto com maior erro absoluto 0,25 e o menor 0,01. Esses valores baixos se justificam devido os valores de ETR/ETP variarem entre 0 e 1. Quanto mais próximo de 1, menor será o risco climático de não atendimento hídrico.

O produto 3B43-v7 subestimou a ETR em 15% das comparações. Dentre os 85% que superestimaram, 14% estão na classe de 10 e 20% e 4% na classe de 20 e 40%. Portanto, 84% apresentam erro dentre ±10% do valor do OBS.

As regiões que obtiveram maiores erros na ETR anual, acima de 10%, foram as regiões de Baixo Guandu (ER= 40%) e Aimorés (ER= 35%) seguido de Colatina, Santa Tereza, Conselheiro Pena, Laranja da Terra, Itaguaçu, Tarumirim e Tumiritinga. A localização desses pontos pode ser observado na Figura 3.4b onde está demarcado com um círculo na cor preta. Observou-se, nessa região, que o satélite superestimou a P. Como o valor da P-ETP < 0, a ETR foi estimada somando a P mais a Alt, causando essa diferença.

É importante salientar que os valores negativos para P-ETP representam perda potencial de água nos meses analisados, indicando, nesses casos, meses secos e solo com armazenamento restrito de água, enquanto os positivos indicam chuva em excesso (PEREIRA et al. 2002).

De acordo com Cecílio et al. (2012), existe uma tendência de ocorrer os maiores valores de ETR nas proximidades do litoral, com consequente redução em direção ao oeste do estado, o que denota influência marcante da longitude, oceanidade e, principalmente, do relevo. Também foi observado que os erros, tanto da ETR quanto do DEF, EXC e ETR/ETP foram maiores na região próxima ao litoral, no Baixo Doce (ES) e parte do Médio Doce (MG).

Figura 3.4: Espacialização dos Erros relativos (ER) da disponibilidade hídrica (ETR/ETP) realizada com as duas fontes de dados de precipitação, satélite (3B43-v7) e estações meteorológicas (OBS). **a.** ER mensais; **b.** ER anual. Círculo preto: área com maior erro relativo da ETR. Círculos vermelhos são: os pontos que serão discutidos mais a frente (Baixo Guandu, Jaguaré e Desterro de Melo).

A DEF e o EXC são variáveis muito importante, o déficit pode gerar problemas para a agricultura e o EXC pode aumentar a recarga nos aquíferos e também gerar problemas na agricultura. De acordo com as comparações, o satélite subestimou o DEF em 85% das comparações. Como o 3B43-v7 superestimou a P, ele subestimou o DEF e superestimou o EXC. A maior porcentagem de erro do DEF está na classe de -29 a 0% e apenas 33% apresentaram erros acima da classe de 30%. Essas classes estão na região do litoral, em Jaguaré e Linhares, e também em Afonso Cláudio, Baixo Guandu e Laranja da Terra.

Devido a importância da relação ETR/ETP, na qual se pode conhecer o risco climático de não atendimento hídrico de uma região, optou-se por espacializar os erros relativos mensais e anuais (Figura 3.4a e 3.4b, respectivamente) para verificar onde e quando ocorreram os maior erros.

Nos meses chuvosos ocorreram erros relativos menores, entre novembro a março, entre -10% e +10%, praticamente em toda a bacia. Entretanto, de janeiro em diante, observou-se a presença de erros entre 10 e 50%. Ficou evidente que nos meses de novembro e dezembro o satélite subestimou (em até 10%) em toda a bacia e em janeiro superestimou (em até 10%). Já nos meses de fevereiro e março subestimou (em até 10%) na região do Alto Doce e superestimou (em até 10%) no Médio e Baixo Doce.

Nos meses secos, ocorreram os maiores erros relativos em grande parte da bacia, como pode ser observado na Figura 3.4a, com maior porcentagem no mês de julho, em que superestimou acima de 100%. A região onde ocorreu maiores erros foram entre o Médio Doce e Baixo Doce. Nessa região também ocorreu maiores erros em relação a P do 3B43-v7 e o OBS, mostrando a influência da superestimava da P do satélite que pode estar relacionado com a entrada de massas de ar frio, que atinge a região e influencia na estimativa da precipitação devido à sombra de chuva.

As figuras a seguir são alguns exemplos de gráficos da comparação dos Bhclim estimados para a BHRD, mostrando a diferença entre as duas fontes de dados. Foram escolhidos três pontos: Baixo Guandu – ES com Alt. de 160 m (pixel 54.3 e OBS 1941009); Jaguaré – ES, Leste da bacia com Alt. de 47 m (pixel 103 e OBS 1840008) – litoral e; Desterro do Melo – MG, Sul da bacia, com Alt. de 780 m (pixel 02 e OBS 2143003). A localização desses pontos pode ser observada na Figura 3.4b nos destaques com círculos vermelhos.

A Figura 3.5 mostra a comparação dos extratos simples dos balanços hídricos, onde há a DEF e/ou EXC no decorrer do ano e os dados de P dos postos meteorológicos e dos dados de P, ETP e ETR.

Na interpretação gráfica das comparações dos pontos localizados nas cidades de Desterro do Melo – MG e Jaguaré – ES (Figura 3.5b e 3.5c), pode-se perceber que os dados do 3B43-v7 apresentaram homogeneidade em relação ao OBS corroborando com o estudo de Quirino et al. (2015), que também observaram homogeneidade em seus gráficos.

A cidade de Baixo Guandu (Figura 3.5a) foi a que apresentou maior discrepância nos resultados do Bhclim entre as 105 análises. O 3B43-v7 subestimou o DEF, menos para os meses de novembro e dezembro, como pode ser observado na Figura 3.5a. Apesar do satélite superestimar a P em todos os meses, a ETR de nov. e dez. foi igual. Isso é devido a P ser maior que a ETP em ambos os meses e, portanto, a ETR é igual a ETP.

A comparação dos componentes do balanço hídrico anual mostra que as diferentes fontes de dados de *P* podem mudar o valor dos componentes do balanço hídrico em certa extensão, mas, geralmente, atendem às necessidades da aplicação prática, levando em consideração que no inverno ocorre menor ETR e menor necessidade hídrica.

Getirana et al. (2011) utilizaram o TRMM como entrada no modelo hidrológico para grandes bacias (MGB-IPH) para a bacia hidrográfica do rio Negro e observaram que pode reproduzir o ciclo hidrológico razoavelmente bem, embora tenha subestimado a precipitação.

Li et al. (2012) avaliaram a P do TRMM como entrada no modelo hidrológico distribuído para uma bacia da China (Xinjiang). Observaram que são viáveis a sua utilização para simulação de descargas e tem potencial para ser uma fonte de dados apropriada para as bacias pobres de dados ou sem estações, particularmente para as grandes bacias em países em desenvolvimento ou locais remotos. MAHMUD (2014) utilizou dados de P do satélite TRMM e a evapotranspiração estimada pelo algoritimo SatDAET (*Satellite-based Daily Evapotranspiration*) para calcular a disponibilidade de água na Penínsola da Malásia.

Figura 3.5: Comparação entre o extrato do balanço hídrico climatológico com dados de precipitação (P) estimada pelo satélite TRMM – 3B43-v7 e o Bhclim com os dados de P dos postos meteorológicos (DEF e EXC) e os dados de ETP e ETR. **a.** Baixo Guandu – ES (pixel 54.3 e OBS 1941009); **b.** Jaguaré – ES, leste da bacia (pixel 103 e OBS 1840008) – litoral; **c.** Desterro do Melo – MG, sul da bacia (pixel 02 e OBS 2143003).

3.2.1 VARIÁVEIS DO BALANÇO HÍDRICO CLIMATOLÓGICO PIXEL A PIXEL COM DADOS DO TRMM

Os resultados do Bhclim pixel a pixel para a BHRD estão representados nas Figuras 3.5 a 3.9, sendo a ETP, ETR, DEF, EXC e a relação ETR/ETP conhecida como disponibilidade hídrica, em escala anual, respectivamente.

Por ser a ETP (Figura 3.6) dependente da Ta (Figura 3.3), as regiões que estão localizadas no Baixo Doce, próximas ao Litoral, e no Médio Doce região de baixadas, apresentaram os maiores valores, entre 1.300 a 1.500 mm. Já a região ao Sul e a Oeste da bacia, no Alto Doce, os valores anuais que predominam permanecem em torno de 1.000 a 1.200 mm.

Figura 3.6 – Evapotranspiração potencial (ETP) anual acumulada na bacia hidrográfica do rio Doce.

Os valores de ETR, inferiores a 900 mm anuais, em sua maioria, ocorrem nas áreas mais altas do Estado, em que a Ta e a disponibilidade de energia são menores, o que causa a baixa ETP, e por isso reduz os valores de ETR (Figura 3.7). Isso pode ser constatado pelos valores elevados de ETR/ETP (Figura 3.8), superiores a 0,9.

Figura 3.7 – Evapotranspiração real (ETR) anual acumulada na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43v7)

Figura 3.8 – Disponibilidade hídrica anual (ETR/ETP) na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7).

Como pode ser observado na Figura 3.7, existe uma tendência de ocorrer os maiores valores de ETR quanto mais próximo do litoral, que vai reduzindo em direção ao oeste da bacia, o que demonstra influência marcante da longitude, oceanidade e, principalmente, do relevo. Cecílio et al. (2012) também observaram essa caraterística no estado do Espírito Santo.

A relação ETR/ETP (Figura 3.8) apresenta tendência semelhante a DEF (Figura 3.9), com menor disponibilidade hídrica na região Central-norte da bacia, com valores entre 0,60 e 0,80 mm e DEF chegando a 450 mm. Esse valor de DEF é resultante da baixa disponibilidade hídrica e alta demanda evaporativa. Na região limítrofe ao Sul e Sudeste e divisa entre os estados do ES e MG, a relação ETR/ETP encontra-se com valores superiores a 0,90 mm, indicando que essa região tem baixo risco de não atendimento hídrico. Na porção Sudeste, onde encontra-se a Serra do Caparaó os valores são acima de 0,95 mm. Resultados semelhantes na região do Baixo Doce foram encontrados por Pezzopane et al. (2006).

Figura 3.9 – Deficiência hídrica anual (DEF) na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7).

O EXC anual para a BHRD está representada na Figura 3.9, onde é possível observar a grande diferença na área da bacia. A parte superior da bacia, Leste (litoral) e Norte, apresenta 0-100 mm, indicando pouco volume de água abastecendo o lençol freático durante o ano. Isso também foi observado por Castro et al. (2010) na parte do Baixo Doce – no estado do Espírito Santo. Na parte inferior da bacia, Sul-Sudoeste, obtiveram-se elevados excedentes chegando a 800-900 mm. Isso é devido a disponibilidade hídrica ser maior e a demanda evaporativa menor. Fica evidente que à montante da bacia ocorre maior excedente hídrico em relação à jusante.

Figura 3.10 – Excedente hídrico anual na bacia hidrográfica do rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7).

A Figura 3.11 apresenta a disponibilidade hídrica (ETR/ETP) mensal. Os meses de novembro a março apresentaram os menores riscos climáticos de não atendimento hídrico, com valores acima de 0,9 mm. No mês de abril, começa a apresentar maiores riscos na região Nordeste. Conforme passam os meses, a área com maiores riscos aumenta, alcançando praticamente toda a bacia nos meses de julho e agosto. Na

estação seca, a região Litorânea e Sudeste possui menor risco climático de não atendimento hídrico em relação ao restante da bacia.

A utilização dos dados de precipitação estimados pelo satélite TRMM produto 3B43v7 pode ser tomada como uma ferramenta importante na caracterização de disponibilidade hídrica regional, contribuindo assim para o planejamento e manejo agrícola, principalmente por preencher as lacunas deixadas devido à ausência de postos meteorológicos nessa bacia.

Figura 3.11 – Disponibilidade hídrica mensal na bacia hidrográfica do Rio Doce, utilizando os dados de precipitação estimados pelo satélite TRMM (3B43-v7).

4 CONCLUSÃO

De acordo com os resultados obtidos, pode-se concluir que:

- As equações de regressão múltipla com ajuste linear considerando a latitude, longitude e altitude e com o auxílio do modelo digital de elevação (MDE) obtidos a partir de dados do radar SRTM foram satisfatórios para estimar as temperaturas médias do ar mensal e anual para a bacia hidrográfica do rio Doce.
- O balanço hídrico climatológico com o 3B43-v7 apresentou correlação com valor acima de 0,82.
- Os maiores erros percentuais foram encontrados em alguns postos na região Sudeste e Nordeste da bacia (no Baixo Doce e Médio Doce).
- Os dados do produto 3B43-v7 caracterizaram o balanço hídrico climatológico de forma semelhante aos dados observados pelos postos meteorológicos.
- A precipitação estimada pelo 3B43-v7 proporcionou a realização do balanço hídrico climatológico da bacia hidrográfica do rio Doce com boa cobertura.

5 REFERÊNCIAS

AGUILAR, D., KRUKER, J., CALHEIROS, R. D., & SILVA, C. Determinação da evapotranspiração potencial e balanço hídrico climático da região da Grande Dourados, MS. Dourados: EMBRAPA-UEPAE Dourados, 1986.

ANA - Agência Nacional das Águas. Disponibilidades e Demandas Hídricas no Brasil, Brasília: ANA, 2005.

BERTONI, J. C.; TUCCI, C. E. M. PRECIPITAÇÃO. In: TUCCI, C. E. M. **Hidrologia:** ciências e aplicação. 3.ed. ed. Porto Alegre: Editora da UFRGS/ABRH, p. 174, 2004.

CALDEIRA, T. L., ARAÚJO, M. M., & BESKOW, S.. Análise de série hidrológica de precipitação no sul do Rio Grande do Sul para aplicação na gestão e monitoramento de recursos hídricos. Pelotas: RS, abril, 2011. **Anais**.: IV Encontro Sul-brasileiro de Meteorologia: A atmosfera e a sua influência na sociedade. Disponível em: http://wp.ufpel.edu.br/meteoro/files/2011/05/tamara_ caldeira_1.pdf. Acesso em 10 de agosto de 2012.

CASTRO, F. S.; PEZZOPANE, J. E.; CECÍLIO, R. A.; PEZZOPANE, J. R.; XAVIER, A. C. Avaliação do desempenho dos diferentes métodos de interpoladores para parâmetros do balanço hídrico climatológico. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 14, p. 871–880, 2010.

CECÍLIO, R. A., SILVA, K. R., XAVIER, A. C., & PEZZOPANE, J. R.. Método para a espacialização dos elementos do balanço hídrico climatológico. **Pesquisa** agropecuária brasileira, v. 47, n.4, p. 478-488, abr., 2012.

COELHO FILHO, M. A.; PEREIRA, F. A.; ANGELOCCI, L. R.; COELHO, F. E.; Irrigação e Fertirrigação em Fruteiras e Hortaliças- O Processo de Evapotranspiração. Brasília- Distrito Federal: Embrapa Informação Tecnológica. 2011. Disponível em: <http://ainfo.cnptia.embrapa.br/digital/bitstream/item/55930/1/IRRIGACAO-e-FERTIRRIGACAO-cap2.pdf>. Acesso em: 12 de jan., 2016.

COELHO, A. L. Bacia hidrográfica do rio Doce (MG/ES): uma análise socioambiental integrada. **GEOGRAFARES**, v. 4, p. 131-146, 2009.

COLLISCHONN, B.; COLLISCHONN, W.; TUCCI, C. E. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. **Journal of Hydrology**, p. 207-216, 2008.

CUPOLILLO, F.; ABREU, M. L.; VIANELLO, R. L. Climatologia da bacia do rio Doce e sua relação com a topografia local. **GEOgrafias**, v. 04, n. 1, p. 45-60, jul.-dez., 2008.

DU, L.; TIAN, Q.; YU, T.; MENG, Q.; JANCSO, T.; UDVARDY, P.; HUANG, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. **International Journal of Applied Earth Observation and Geoinformation**, v. 23, p. 245-253, ago. 2013.

FERREIRA, S. P.; VARONE, F.; ALVES, R. C. M. Uso do trmm para a correção estatística da chuva prevista pelo modelo brams. **ANAIS. IV Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação**, Recife - PE, p. 001-009, 06 a 09 maio, 2012.

FRANCHITO, S. H.; RAO, V.; VASQUES, A.; SANTO, C.; CONFORTE, J. C. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. **J. Geophys. Res.**, v. 114, p. 1-9, 2009.

GETIRANA, A., ESPINOZA, J., & RONCHAILE, J. R. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. **Journal of Hydrology**, v. 204, n. 3-4, p. 304-322, 11 de julho, 2011.

HONGWEI, Z.; LIJUAN, L.; JIUYI, L. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang River Basin. **Journal of Geographical Sciences**, v. 22, n. 2, p. 273-282, 2012.

KUMMEROW, C.; SIMPSON, J.; THIELE, O.; BARNES, W.; CHANG, A. S.; ADLER, R.; OLSON, W. S. The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. **Journal of Applied Meteorology**, p. 1965-1982. Dez., 2000.

LAZARIM, C.; ZULLO JUNIOR, J. Estimativa da temperatura da superfície terrestre, através de imagens do satélite AVHRR/NOAA, destinada ao monitoramento agrometeorológico. **Anais**, p. 6943-6949, 25-30 abr., 2009.

Li, X.-H.; Zhang, Q.; Xu, C. Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. **Journal of Hydrology**, v. 426-427, p. 28-38, 2012.

LI, X., ZHANG, Q.; YE, X. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China. **Water**, v.5, 1848-1864, 2013.

MAHMUD, M. Space based observations: a state of the art solution for spatial monitoring tropical forested watershed productivity at regional scale in developing countries. 8th International Symposium of the Digital Earth (ISDE8). IOP Conf. Series: Earth and Environmental Science, v. 18, p. 1-6, 2014.

MARANHÃO, N. Termo de referência para elaboração do plano de recursos hídricos da bacia hidrográfica do rio Doce. Anexo 1 - Diagnóstico consolidade da Bacia, versão final. Dez., 2005. Disponível em: < http://www.riodoce.cbh.gov.br/Diagnostico 2005/diagnostico.pdf>. Acesso em: 25 de julho de 2013.

MIRANDA, E. E.. *Brasil em Relevo*. Campinas: Embrapa Monitoramento por Satélite, 2005. Disponível em: http://www.relevobr.cnpm.embrapa.br. Acesso em 20 de mar. de 2013.

NASA, N. A.. Landsat Data Continuity Mission: Continuously Observing Your World. 2013. Disponível em: http://ldcm.gsfc.nasa.gov/mission_details.html. Acesso em: 02 de julho de 2014.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. Agrometeorologia: fundamentos e aplicações práticas, v. 1, Guaibá, RS: Livraria e Editora Agropecuária Ltd, 2002.

PEZZOPANE, J. E., CASTRO, F. d., PEZZOPANE, J. R., & CECÍLIO, R. A. Agrometeorologia: aplicações para o Espírito Santo. Alegre, ES: CAUFES, 2012.

PEZZOPANE, J. E. et al. Delimitação de zonas agroclimáticas no estado do Espírito Santo. **Revista Brasileira de Agrometeorologia**, v. 14, n. 2, 2006.

QUIRINO, D. T.; CASAROLI, D.; PEREIRA, R. M.; OLIVEIRA, R. A.; ALMEIDA, R. T.. Avaliação das estimativas de precipitação do satélite TRMM (algoritmo 3B42 Versão 7 e Real Time) utilizadas no balanço hídrico climatológico no Estado de Goiás. **Anais**: XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, p. 5094 – 5101, 25 a 29 de Abr. de 2015.

RAFAELLI, D. R.; MOREIRA, M. Detecção de geada em lavouras de café. Cap.11. In: RUDORFF, B. F. T.; SHIMABUKURO, Y. E.; CEBALLOS, J. C. **O sensor MODIS e suas aplicações ambientais no Brasil**. São José dos Campos,SP: Parêntese, p. 145-151, 2007.

RHEE, J.; IM, J.; CARBONE, G. J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. **Remote Sensing of Environment**, v. 114, p. 2875-2887, 2010.

ROLIM, G., SENTELHAS, P., & BARBIERI, V.. Planilhas no ambiente EXCEL para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. **Brasileira de Agrometeorologia**, v. 6, p. 133-137, 1998.

SENTELHAS, P. C., & ANGELOCCI, L. R. Evapotranpiração. Notas de aula da disciplina Meteorologia Agrícola. ESALQ/USP, 2012. Disponível em: http://www.leb.esalq.usp.br/aulas/lce306/Aula8_2012.pdf>. Acesso em: 20 de out de 2013.

SENTELHAS, P., SANTOS, D. d., & MACHADO, R.. Water deficit and water surplus maps for Brazil, based on FAO Penman-Monteith potential evapotranspiration. **Revista Ambiente e Água**, *v*. 3, n. 3, p. 28-42, 2008.

SILVA, D. F. Uso de modelos agrometeorológicos de estimativa de produtividade e de risco climático para a soja no Vale do Médio Paranapanema, SP. 2011. Dissertação (Mestrado em Agricultura Tropical e Subtropial) - Programa de Pós-Graduação do Instituto Agronômico, Campinas-SP, 2011.

SILVA, K. R., CECÍLIO, R. A., XAVIER, A. C., PEZZOPANE, J. R., & GARCIA, G. Zoneamento edafoclimático para a cultura da seringueira no Espírito Santo. **IRRIGA**, v. 8, *n*.1, p. 1-12, jan.-mar., 2013.

SOUZA, P. I.; CARVALHO, A.; KOTZIAN, H. B.; MARCIEL JUNIOR. Plano integrado de recursos hídricos da bacia hidrográfica do rio Doce: Relatório final. Consórcio Ecoplan - LUME, v. 1, 2010.

THORNTHWAITE, C. W. An approach towards a rational classification of climate. **Geographycal Review London**, v. 38, p. 55-94, 1948.

ZHANG, A.; JIA, G. Monitoring meteorological drought in semiarid regions using multisensor microwave remote sensing data. **Remote Sensing of Environment**, v. 134, p. 12-23, 2013. ANEXOS

Pixel TRMM	Long. TRMM (graus)	Lat. TRMM (graus)	Estações OBS	Long. OBS	Lat. OBS	Alt. OBS
1	-43.7	-21.05	2043018	-43.80	-20.96	1057
2	-43.45	-21.05	2143003	-43.52	-21.15	780
7	-43.2	-20.8	2043026	-43.24	-20.85	632
			2043010	-43.30	-20.69	620
8	-42.95	-20.8	83642	-42.86	-20.76	712
9	-42.7	-20.8	2042016	-42.81	-20.68	583
11	-43.7	-20.55	2043005	-43.78	-20.67	970
13	-43.2	-20.55	2043014	-43.09	-20.67	598
14	-42.95	-20.55	2043025	-43.02	-20.52	529
18	-41.95	-20.55	83639	-41.90	-20.51	843
19	-43.7	-20.3	2043056	-43.62	-20.31	965
21	-43.2	-20.3	2043011	-43.18	-20.39	477
			2043009	-43.14	-20.36	423
			2043027	-43.10	-20.29	462
22	-42.95	-20.3	2042018	-42.90	-20.38	350
23	-42.7	-20.3	2042011	-42.65	-20.23	330
24	-42.45	-20.3	2042010	-42.48	-20.30	532
			2042017	-42.33	-20.28	595
26	-41.95	-20.3	2041048	-41.96	-20.18	524
27	-41.7	-20.3	2041017	-41.70	-20.32	920
28	-41.45	-20.3	2041013	-41.54	-20.35	615
			2041018	-41.41	-20.37	580
29	-41.2	-20.3	2041011	-41.24	-20.35	600
30	-40.95	-20.3	2041020	-41.06	-20.37	1075
			SÃO RAFAEL	-40.93	-20.30	836
32	-43.45	-20.05	2043059	-43.49	-20.10	1300
			1943007	-43.40	-19.95	748
35	-42.7	-20.05	2042031	-42.67	-20.01	279
36	-42.45	-20.05	2042008	-42.44	-20.10	305
			1942006	-42.35	-20.00	420
39	-41.7	-20.05	2041008	-41.73	-20.11	458
41	-41.2	-20.05	2041023	-41.12	-20.08	300
42	-40.95	-20.05	2040008	-40.98	-20.14	940
43	-40.7	-20.05	1940020	-40.74	-19.96	750
			2040007	-40.74	-20.03	710
			2040018	-40.61	-20.08	438
44	-43.45	-19.8	1943027	-43.37	-19.88	1110
45	-43.2	-19.8	1943001	-43.18	-19.92	623
48	-42.45	-19.8	1942031	-42.48	-19.82	270
49	-42.2	-19.8	1942002	-42.32	-19.83	505
			83592	-42.13	-19.73	610

ANEXO 1 – Tabela dos postos meteorológicos (OBS) e os pixels do satélite TRMM, produto 3B43-v7 com suas coordenadas geográficas

	-					
50	-41.95	-19.8	1941011	-41.84	-19.68	290
51	-41.7	-19.8	1941000	-41.71	-19.80	260
52	-41.45	-19.8	1941019	-41.44	-19.81	220
54	-40.95	-19.8	1941008	-41.06	-19.90	250
			1940000	-40.87	-19.87	165
			1941009	-41.02	-19.69	160
55	-40.7	-19.8	1940001	-40.68	-19.81	149
56	-40.45	-19.8	SANTA TEREZA	-40.56	-19.91	648
			1940005	-40.40	-19.69	50
58	-43.2	-19.55	1943008	-43.12	-19.44	538
60	-42.7	-19.55	1942029	-42.64	-19.52	232
65	-41.45	-19.55	1941006	-41.46	-19.59	172
66	-41.2	-19.55	1941010	-41.16	-19.49	115
67	-40.95	-19.55	1941003	-41.01	-19.52	70
			1940012	-40.84	-19.66	70
			83595	-41.07	-19.49	83
68	-40.7	-19.55	1940006	-40.62	-19.53	40
70	-40.2	-19.55	1940022	-40.20	-19.59	50
72	-39.7	-19.55	1939002	-39.79	-19.58	3
73	-43.45	-19.3	1943025	-43.37	-19.22	560
75	-42.95	-19.3	1943003	-43.01	-19.25	470
77	-42.45	-19.3	1942030	-42.40	-19.32	231
			1942032	-42.42	-19.19	240
78	-42.2	-19.3	1942008	-42.11	-19.37	355
79	-41.95	-19.3	1941018	-41.87	-19.18	255
80	-41.7	-19.3	1941021	-41.73	-19.42	412
82	-41.2	-19.3	1941004	-41.25	-19.34	130
83	-40.95	-19.3	1940009	-40.85	-19.22	135
84	-40.7	-19.3	1940013	-40.59	-19.24	170
85	-40.45	-19.3	MARILÂNDIA	-40.54	-19.41	104
86	-40.2	-19.3	1940023	-40.32	-19.27	95
87	-39.95	-19.3	LINHARES	-40.07	-19.40	28
89	-43.45	-19.05	1943002	-43.44	-19.02	675
			83589	-43.43	-19.01	652
96	-41.7	-19.05	1841011	-41.64	-18.98	135
97	-41.45	-19.05	1941005	-41.53	-19.06	162
99	-40.95	-19.05	1941012	-41.03	-19.06	500
100	-40.7	-19.05	1840000	-40.75	-18.99	180
101	-40.45	-19.05	1940016	-40.52	-19.06	70
			S. GABR. PALHA	-40.53	-18.99	120
103	-39.95	-19.05	1840008	-39.99	-18.98	47
104	-39.7	-19.05	1839006	-39.76	-18.95	7
107	-42.95	-18.8	1842007	-42.93	-18.77	808

ANEXO 1 – Continuação...

	-					
111	-41.95	-18.8	1841020	-41.95	-18.88	150
113	-41.45	-18.8	1841019	-41.48	-18.78	535
114	-41.2	-18.8	1841018	-41.31	-18.76	290
			1841006	-41.20	-18.68	230
			1841009	-41.11	-18.84	466
115	-40.95	-18.8	1840004	-40.89	-18.75	192
116	-40.7	-18.8	1840010	-40.69	-18.81	300
117	-40.45	-18.8	1840019	-40.44	-18.70	80
119	-39.95	-18.8	SÃO MATEUS	-39.83	-18.70	25
121	-43.45	-18.55	1843011	-43.41	-18.59	940
124	-42.7	-18.55	1842020	-42.76	-18.55	532
126	-42.2	-18.55	1842005	-42.28	-18.61	530
127	-41.95	-18.55	1841001	-41.92	-18.57	174
129	-41.45	-18.55	1841021	-41.39	-18.49	358
132	-42.95	-18.3	1843012	-43.00	-18.28	720
133	-42.7	-18.3	1842004	-42.60	-18.36	498
134	-42.45	-18.3	1842008	-42.46	-18.20	420
137	-41.7	-18.3	1841003	-41.75	-18.24	240
141	-42.45	-18.05	1742019	-42.39	-17.99	600
145	-42.45	-17.8	1742014	-42.53	-17.69	890
146	-42.2	-17.8	1742017	-42.08	-17.85	709

ANEXO 1 – Continuação...

Pixel TRMM	Long (graus)	Lat (graus)	r	R²	RMSE	Viés	MAE	máx. prec. OBS	máx. prec. TRMM	mín. prec. OBS	mín. prec. TRMM	méd. prec. OBS	méd. prec. TRMM
1	-43.7	-21.05	0,94	0,88	49	13	111	626	529	0	0	127	139
2	-43.45	-21.05	0,95	0,9	47	-1	113	702	561	0	0	140	139
7	-43.2	-20.8	0,95	0,9	41	10	104	508	490	0	0	121	131
8	-42.95	-20.8	0,92	0,85	50	16	101	606	484	0	0	111	126
9	-42.7	-20.8	0,92	0,84	52	20	99	539	476	0	0	105	125
11	-43.7	-20.55	0,94	0,88	47	12	108	681	513	0	0	121	133
13	-43.2	-20.55	0,94	0,88	45	11	103	561	497	0	0	118	129
14	-42.95	-20.55	0,93	0,86	47	11	100	576	501	0	0	112	124
18	-41.95	-20.55	0,93	0,86	49	17	94	630	506	0	0	112	128
19	-43.7	-20.3	0,95	0,9	47	19	107	495	517	0	0	112	131
21	-43.2	-20.3	0,95	0,9	41	10	106	493	495	0	0	119	128
22	-42.95	-20.3	0,93	0,87	47	17	99	490	508	0	0	104	121
23	-42.7	-20.3	0,9	0,81	58	8	98	676	508	0	0	111	119
24	-42.45	-20.3	0,94	0,88	43	6	96	567	501	0	0	111	117
26	-41.95	-20.3	0,91	0,83	53	14	93	574	512	0	0	111	124
27	-41.7	-20.3	0,94	0,88	52	-8	96	582	500	1	0	132	125
28	-41.45	-20.3	0,95	0,91	35	9	89	437	469	0	0	114	123
29	-41.2	-20.3	0,88	0,77	53	10	84	440	465	0	1	112	122
30	-40.95	-20.3	0,89	0,79	50	14	80	435	517	0	1	111	125
32	-43.45	-20.05	0,95	0,9	57	-15	115	748	516	0	0	144	130
35	-42.7	-20.05	0,93	0,87	45	8	98	571	507	0	0	109	117
36	-42.45	-20.05	0,95	0,9	38	4	97	552	494	0	0	112	116
39	-41.7	-20.05	0,92	0,84	48	14	89	492	469	0	0	104	117
41	-41.2	-20.05	0,88	0,77	55	14	81	479	397	0	0	102	115
42	-40.95	-20.05	0,89	0,79	50	19	77	429	445	0	1	99	118
43	-40.7	-20.05	0,9	0,81	46	6	77	495	499	0	1	111	117
44	-43.45	-19.8	0,94	0,88	49	5	111	653	591	0	0	121	127
45	-43.2	-19.8	0,94	0,88	46	3	109	477	575	0	0	122	126
48	-42.45	-19.8	0,94	0,88	46	17	97	529	509	0	0	100	116
49	-42.2	-19.8	0,95	0,9	39	11	94	469	472	0	0	102	114
50	-41.95	-19.8	0,92	0,85	48	5	91	561	504	0	0	101	107
51	-41.7	-19.8	0,93	0,86	44	-3	90	432	461	0	0	106	104
52	-41.45	-19.8	0,93	0,86	41	10	82	451	427	0	0	90	100
54	-40.95	-19.8	0,93	0,87	41	22	75	373	403	0	0	84	106
55	-40.7	-19.8	0,9	0,82	46	21	73	397	420	0	0	85	106
56	-40.45	-19.8	0,91	0,82	50	-19	78	511	431	0	0	122	103
58	-43.2	-19.55	0,95	0,9	45	14	107	669	590	0	0	110	124
60	-42.7	-19.55	0,92	0,85	51	10	103	475	524	0	0	109	119
65	-41.45	-19.55	0,93	0,87	39	5	82	473	460	0	0	91	95
66	-41.2	-19.55	0,93	0,86	41	16	77	359	419	0	0	79	95
67	-40.95	-19.55	0,95	0,89	40	23	74	334	418	0	0	79	102

ANEXO 2 - Tabela da análise estatística da série histórica mensal (SHM), referente aos totais mensais ao longo do período entre janeiro de 1998 e dezembro de 2012

ANEXO 2 – Continuação...

68	-40.7	-19.55	0,91	0,83	45	20	75	336	425	0	0	84	103
70	-40.2	-19.55	0,9	0,8	41	4	72	459	450	0	0	98	101
72	-39.7	-19.55	0,8	0,63	68	-12	75	622	465	0	5	119	108
73	-43.45	-19.3	0,95	0,91	49	-11	113	620	588	0	0	133	122
75	-42.95	-19.3	0,94	0,88	47	14	103	521	516	0	0	105	119
77	-42.45	-19.3	0,94	0,88	44	12	99	516	488	0	0	103	115
78	-42.2	-19.3	0,93	0,86	45	10	94	511	477	0	0	99	109
79	-41.95	-19.3	0,91	0,82	49	19	83	482	425	0	0	79	98
80	-41.7	-19.3	0,92	0,85	43	1	84	474	444	0	0	92	93
82	-41.2	-19.3	0,94	0,88	36	10	77	464	380	0	0	82	92
83	-40.95	-19.3	0,93	0,87	36	-2	80	452	402	0	0	102	100
84	-40.7	-19.3	0,92	0,84	41	10	77	431	422	0	0	92	102
85	-40.45	-19.3	0,9	0,81	44	8	76	379	440	0	0	97	103
86	-40.2	-19.3	0,9	0,8	44	2	74	456	445	0	0	100	102
87	-39.95	-19.3	0,85	0,72	54	-5	72	593	484	2	2	109	103
89	-43.45	-19.05	0,94	0,89	45	1	107	529	523	0	0	119	120
96	-41.7	-19.05	0,91	0,82	46	15	79	370	463	0	0	76	91
97	-41.45	-19.05	0,92	0,84	43	18	76	369	413	0	0	72	90
99	-40.95	-19.05	0,93	0,86	39	16	75	419	390	0	0	83	100
100	-40.7	-19.05	0,88	0,78	48	5	79	410	406	0	0	97	102
101	-40.45	-19.05	0,89	0,8	46	8	77	450	420	0	0	95	104
103	-39.95	-19.05	0,82	0,67	68	-15	74	506	439	0	2	116	102
104	-39.7	-19.05	0,86	0,73	50	12	70	497	449	0	7	97	109
107	-42.95	-18.8	0,93	0,86	47	10	99	450	448	0	0	103	113
111	-41.95	-18.8	0,91	0,83	44	12	80	479	433	0	0	82	94
113	-41.45	-18.8	0,87	0,76	50	16	74	442	458	0	0	77	92
114	-41.2	-18.8	0,93	0,87	37	14	73	358	409	0	0	79	93
115	-40.95	-18.8	0,91	0,83	43	13	77	469	416	0	0	88	101
116	-40.7	-18.8	0,89	0,8	46	5	79	395	420	0	0	98	103
117	-40.45	-18.8	0,91	0,83	43	18	74	380	395	1	0	85	104
119	-39.95	-18.8	0,87	0,75	54	-10	74	576	444	2	5	115	105
121	-43.45	-18.55	0,93	0,87	46	-2	103	555	409	0	0	118	116
124	-42.7	-18.55	0,91	0,83	50	9	94	507	418	0	0	98	107
126	-42.2	-18.55	0,93	0,86	46	-6	91	626	436	0	0	106	100
127	-41.95	-18.55	0,91	0,82	45	13	79	426	442	0	0	80	93
129	-41.45	-18.55	0,9	0,8	45	14	75	363	431	0	0	78	92
132	-42.95	-18.3	0,92	0,85	46	5	96	421	503	0	0	102	106
133	-42.7	-18.3	0,9	0,82	51	17	89	372	421	0	0	85	102
134	-42.45	-18.3	0,87	0,76	54	6	87	451	416	0	0	93	99
137	-41.7	-18.3	0,9	0,81	43	9	75	419	437	0	0	82	91
141	-42.45	-18.05	0,88	0,77	52	/ -	85	496	415	0	0	91	97
145	-42.45	-17.8	0,92	0,85	41	(82	402	424	0	0	88	94
146	-42.2	-17.8	0,92	0,84	41	-1	81	540	449	0	0	94	93

Pixel TRMM	Long (graus)	Lat (graus)	r	R²	RMSE	Viés	MAE	máx. OBS	máx. TRMM	mín. OBS	mín. TRMM	méd. OBS
1	-43.7	-21.05	0,997	0,995	19	13	104	326	348	9	12	127
2	-43.45	-21.05	0,995	0,99	14	-1	104	360	342	12	11	140
7	-43.2	-20.8	0,997	0,99	14	10	95	301	319	7	8	121
8	-42.95	-20.8	0,999	0,998	20	16	93	267	309	8	10	111
9	-42.7	-20.8	0,995	0,99	25	20	91	277	305	6	10	105
11	-43.7	-20.55	0,995	0,99	19	13	98	316	329	8	7	120
13	-43.2	-20.55	0,995	0,99	16	11	93	300	315	7	7	118
14	-42.95	-20.55	0,99	0,99	17	11	90	280	307	8	8	112
18	-41.95	-20.55	0,999	0,997	19	17	86	276	306	8	17	112
19	-43.7	-20.3	0,996	0,99	26	19	97	297	330	7	5	112
21	-43.2	-20.3	0,997	0,99	15	10	95	289	326	6	6	119
22	-42.95	-20.3	0,99	0,99	26	17	89	265	307	8	7	104
23	-42.7	-20.3	0,99	0,98	18	8	87	320	298	4	8	111
24	-42.45	-20.3	0,995	0,99	12	6	85	302	291	3	9	111
26	-41.95	-20.3	0,98	0,96	25	14	84	341	307	6	14	111
27	-41.7	-20.3	0,99	0,98	27	-8	85	369	297	9	16	132
28	-41.45	-20.3	0,997	0,99	11	9	78	277	283	16	21	114
29	-41.2	-20.3	0,99	0,98	19	12	72	248	267	19	28	110
30	-40.95	-20.3	0,99	0,98	19	14	63	269	255	20	42	111
32	-43.45	-20.05	0,998	0,995	27	-15	102	378	334	8	5	144
35	-42.7	-20.05	0,997	0,99	12	8	87	304	303	5	7	109
36	-42.45	-20.05	0,998	1,00	8	4	87	298	301	4	8	112
39	-41.7	-20.05	0,99	0,97	21	14	79	310	288	7	15	104
41	-41.2	-20.05	0,99	0,99	16	14	69	245	260	15	25	102
42	-40.95	-20.05	0,98	0,97	23	19	62	250	244	16	37	99
43	-40.7	-20.05	0,99	0,98	13	6	54	248	241	30	44	111
44	-43.45	-19.8	0,99	0,99	14	5	98	310	339	5	6	121
45	-43.2	-19.8	0,99	0,99	14	3	97	294	338	6	6	122
48	-42.45	-19.8	0,99	0,99	24	17	87	292	314	5	6	100
49	-42.2	-19.8	0,997	0,99	15	11	84	276	304	4	7	102
50	-41.95	-19.8	0,997	0,99	10	5	79	282	290	7	8	101
51	-41.7	-19.8	0,99	0,99	11	-3	76	265	272	6	9	106
52	-41.45	-19.8	0,999	0,997	12	10	69	243	257	5	11	90
54	-40.95	-19.8	0,99	0,99	24	22	61	214	223	8	27	84
55	-40.7	-19.8	0,99	0,98	23	21	57	199	222	10	31	85
56	-40.45	-19.8	0,99	0,98	24	-20	56	252	209	49	36	123
58	-43.2	-19.55	0,997	0,99	20	14	96	315	342	7	6	110
60	-42.7	-19.55	0,995	0,99	19	10	94	296	326	4	5	109
65	-41.45	-19.55	0,99	0,99	11	5	68	241	255	9	9	91
66	-41.2	-19.55	0,99	0,99	20	16	62	203	242	9	13	79
67	-40.95	-19.55	0,995	0,99	25	23	61	198	224	8	24	79

ANEXO 3 - Tabela da análise estatística da média do total mensal, referente a média de cada mês no período entre 1998 e 2012

ANEXO 3 – Continuação...

			5									
68	-40.7	-19.55	0,98	0,96	25	20	59	201	219	18	29	84
70	-40.2	-19.55	0,98	0,96	12	4	49	222	208	38	36	98
72	-39.7	-19.55	0,93	0,86	26	-12	49	263	216	52	42	119
73	-43.45	-19.3	0,99	0,99	22	-11	100	352	341	6	6	133
75	-42.95	-19.3	0,995	0,99	22	14	93	300	328	7	6	105
77	-42.45	-19.3	0,995	0,99	18	12	89	289	313	8	6	103
78	-42.2	-19.3	0,996	0,99	15	10	83	286	304	5	6	99
79	-41.95	-19.3	0,99	0,99	26	19	73	234	275	6	7	79
80	-41.7	-19.3	0,999	0,997	5	1	71	253	255	7	9	92
82	-41.2	-19.3	0,99	0,98	15	10	62	215	236	6	12	82
83	-40.95	-19.3	0,995	0,99	7	-2	62	218	224	26	23	102
84	-40.7	-19.3	0,98	0,96	16	10	58	220	216	21	27	92
85	-40.45	-19.3	0,99	0,97	13	6	55	210	217	29	33	97
86	-40.2	-19.3	0,99	0,98	11	2	51	218	207	29	36	100
87	-39.95	-19.3	0,96	0,92	20	-6	49	252	204	40	39	109
89	-43.45	-19.05	0,999	0,998	6	1	96	342	338	6	6	119
96	-41.7	-19.05	0,99	0,99	24	15	67	188	247	6	9	76
97	-41.45	-19.05	0,997	0,995	23	18	63	186	237	6	10	72
99	-40.95	-19.05	0,99	0,98	20	16	60	201	223	15	23	83
100	-40.7	-19.05	0,997	0,995	8	5	58	224	220	19	28	97
101	-40.45	-19.05	0,99	0,98	12	7	56	215	216	27	34	97
103	-39.95	-19.05	0,96	0,92	27	-14	48	270	208	38	40	116
104	-39.7	-19.05	0,94	0,88	22	12	43	230	215	43	46	97
107	-42.95	-18.8	0,998	0,995	15	10	88	287	322	6	11	103
111	-41.95	-18.8	0,997	0,99	16	12	70	216	252	5	13	82
113	-41.45	-18.8	0,99	0,99	19	16	62	193	228	8	16	77
114	-41.2	-18.8	0,99	0,99	17	14	60	196	219	14	20	79
115	-40.95	-18.8	0,99	0,98	18	13	63	224	229	18	24	88
116	-40.7	-18.8	0,99	0,99	9	5	61	226	230	27	29	98
117	-40.45	-18.8	0,99	0,99	20	18	58	199	222	22	35	85
119	-39.95	-18.8	0,96	0,92	19	-10	48	269	222	51	48	115
121	-43.45	-18.55	0,99	0,99	12	-2	91	301	325	8	8	118
124	-42.7	-18.55	0,99	0,98	20	9	83	258	309	9	12	98
126	-42.2	-18.55	0,99	0,99	12	-6	77	271	279	16	12	106
127	-41.95	-18.55	0,99	0,98	21	13	68	198	247	6	14	80
129	-41.45	-18.55	0,997	0,995	17	14	63	190	221	9	17	78
132	-42.95	-18.3	0,97	0,95	24	5	83	266	313	9	10	102
133	-42.7	-18.3	0,99	0,98	27	17	78	234	298	6	10	85
134	-42.45	-18.3	0,98	0,96	22	6	76	228	282	10	11	93
137	-41.7	-18.3	0,97	0,95	19	9	63	223	217	10	17	82
141	-42.45	-18.05	0,98	0,97	19	7	74	245	266	9	10	91
145	-42.45	-17.8	0,99	0,98	14	7	74	245	248	6	10	88
146	-42.2	-17.8	0,98	0,96	16	-1	72	251	238	16	13	94

Pixel TRMM	Long (graus)	Lat (graus)	r	R²	RMSE	Viés	MAE	max. OBS	max. TRMM	min. OBS	min. TRMM	méd. OBS	Média TRMM
1	-43.7	-21.05	0,79	0,63	235	154	227	2049	2276	1112	1216	1519	1673
2	-43.45	-21.05	0,89	0,78	128	-6	216	2232	2269	1296	1183	1676	1669
7	-43.2	-20.8	0,79	0,62	216	124	222	1745	2087	1200	1088	1452	1576
8	-42.95	-20.8	0,83	0,68	231	188	233	1798	1914	1010	1056	1328	1516
9	-42.7	-20.8	0,83	0,69	273	240	270	1650	1877	949	1037	1264	1504
11	-43.7	-20.55	0,87	0,75	204	144	253	2077	2130	1153	1104	1453	1597
13	-43.2	-20.55	0,82	0,68	200	136	225	1814	2002	1118	1063	1411	1548
14	-42.95	-20.55	0,85	0,72	193	134	217	1866	1887	900	1036	1348	1482
18	-41.95	-20.55	0,87	0,76	239	198	241	1793	1943	900	1113	1338	1535
19	-43.7	-20.3	0,82	0,68	275	226	287	1683	2055	1112	1075	1343	1569
21	-43.2	-20.3	0,84	0,7	190	117	235	1831	2012	1015	1040	1422	1539
22	-42.95	-20.3	0,9	0,81	232	204	265	1619	1873	795	1015	1253	1456
23	-42.7	-20.3	0,76	0,58	192	90	206	1576	1882	791	998	1336	1426
24	-42.45	-20.3	0,83	0,69	161	74	200	1666	1887	1006	995	1331	1405
26	-41.95	-20.3	0,84	0,7	208	162	224	1700	1937	1028	1093	1331	1492
27	-41.7	-20.3	0,9	0,82	143	-95	213	1969	1942	1193	1113	1589	1494
28	-41.45	-20.3	0,9	0,81	147	107	193	1752	1948	1053	1142	1365	1472
29	-41.2	-20.3	0,69	0,48	244	124	195	2032	1949	916	1090	1340	1464
30	-40.95	-20.3	0,81	0,66	224	167	221	1761	1987	1002	1070	1328	1494
32	-43.45	-20.05	0,79	0,62	272	-176	279	2323	2126	1295	1041	1732	1556
35	-42.7	-20.05	0,83	0,68	192	97	203	2188	1863	871	983	1310	1408
36	-42.45	-20.05	0,93	0,87	110	50	192	1951	1862	876	975	1344	1394
39	-41.7	-20.05	0,86	0,74	200	162	209	1641	1856	940	1045	1246	1408
41	-41.2	-20.05	0,6	0,36	288	163	207	2074	1863	867	1055	1220	1382
42	-40.95	-20.05	0,8	0,64	274	226	260	1696	1917	863	960	1186	1412
43	-40.7	-20.05	0,81	0,66	192	73	210	2042	1940	772	849	1328	1401
44	-43.45	-19.8	0,83	0,69	178	63	213	1952	2136	928	1035	1456	1519
45	-43.2	-19.8	0,8	0,64	165	40	201	1957	1938	1031	1024	1469	1509
48	-42.45	-19.8	0,84	0,7	236	201	245	1655	1838	890	983	1194	1395
49	-42.2	-19.8	0,87	0,76	176	137	209	1629	1792	937	970	1228	1365
50	-41.95	-19.8	0,89	0,79	170	65	195	1891	1665	730	900	1215	1279
51	-41.7	-19.8	0,88	0,77	150	-34	186	1913	1619	767	884	1276	1242
52	-41.45	-19.8	0,86	0,73	164	117	188	1447	1641	731	824	1079	1196
54	-40.95	-19.8	0,88	0,77	292	264	295	1351	1744	685	800	1004	1267
55	-40.7	-19.8	0,81	0,65	300	252	297	1372	1811	605	759	1020	1272
56	-40.45	-19.8	0,77	0,6	326	-226	313	2146	1777	828	676	1466	1240
58	-43.2	-19.55	0,77	0,6	237	172	252	1694	1909	828	1012	1314	1485
60	-42.7	-19.55	0,76	0,58	220	115	214	1950	1824	770	994	1311	1426
65	-41.45	-19.55	0,83	0,7	146	56	175	1553	1598	820	732	1088	1144
66	-41.2	-19.55	0,9	0,81	221	196	248	1387	1615	496	707	945	1141
67	-40.95	-19.55	0,89	0,79	304	279	312	1418	1684	628	770	945	1224
68	-40.7	-19.55	0,8	0,65	290	236	308	1450	1727	612	709	1005	1241

ANEXO 4 - Tabela das relações estatísticas do total anual, referente ao acúmulo de precipitação em cada ano no período entre 1998 e 2012

ANEXO 4 – Continuação...

	70	-40.2	-19.55	0,79	0,63	184	42	237	1511	1721	673	726	1170	1212
	72	-39.7	-19.55	0,65	0,42	320	-142	265	2076	1780	871	844	1433	1291
	73	-43.45	-19.3	0,89	0,79	184	-136	208	2045	1819	1176	1018	1601	1465
	75	-42.95	-19.3	0,84	0,71	227	169	248	1890	1769	835	980	1262	1431
	77	-42.45	-19.3	0,84	0,7	204	140	228	1771	1740	754	942	1237	1377
	78	-42.2	-19.3	0,79	0,62	190	120	209	1599	1674	806	912	1189	1309
	79	-41.95	-19.3	0,81	0,66	256	224	262	1239	1528	590	774	946	1170
	80	-41.7	-19.3	0,84	0,71	118	10	176	1485	1542	813	741	1108	1118
	82	-41.2	-19.3	0,84	0,7	175	119	206	1295	1602	563	707	980	1100
	83	-40.95	-19.3	0,88	0,77	133	-25	212	1556	1689	857	721	1227	1203
	84	-40.7	-19.3	0,88	0,77	184	120	268	1421	1684	706	713	1098	1218
	85	-40.45	-19.3	0,88	0,78	167	92	265	1671	1709	760	784	1163	1240
	86	-40.2	-19.3	0,84	0,7	166	28	254	1621	1709	767	773	1200	1227
	87	-39.95	-19.3	0,65	0,42	264	-58	270	1956	1780	816	797	1306	1231
	89	-43.45	-19.05	0,86	0,74	144	12	207	1983	1815	941	990	1423	1435
	96	-41.7	-19.05	0,8	0,64	228	184	236	1187	1480	644	638	906	1090
	97	-41.45	-19.05	0,72	0,52	262	210	253	1122	1501	551	618	864	1074
	99	-40.95	-19.05	0,91	0,84	222	195	275	1415	1666	659	795	1001	1195
	100	-40.7	-19.05	0,8	0,64	180	58	249	1576	1647	714	801	1168	1227
	101	-40.45	-19.05	0,78	0,62	208	100	269	1682	1663	763	779	1145	1244
	103	-39.95	-19.05	0,87	0,75	241	-170	295	1952	1739	809	805	1388	1218
	104	-39.7	-19.05	0,85	0,73	212	143	254	1577	1785	455	914	1161	1305
	107	-42.95	-18.8	0,71	0,5	221	120	240	1529	1736	683	896	1230	1350
	111	-41.95	-18.8	0,78	0,61	202	144	219	1279	1573	733	745	984	1128
	113	-41.45	-18.8	0,54	0,29	283	186	251	1274	1530	530	705	918	1104
	114	-41.2	-18.8	0,78	0,61	222	166	245	1346	1567	668	691	949	1114
	115	-40.95	-18.8	0,73	0,53	242	158	260	1377	1670	587	804	1056	1214
	116	-40.7	-18.8	0,78	0,6	178	57	235	1407	1630	852	798	1177	1234
	117	-40.45	-18.8	0,89	0,8	253	218	280	1304	1651	615	807	1024	1242
	119	-39.95	-18.8	0,9	0,81	183	-116	308	2066	1874	840	932	1379	1263
	121	-43.45	-18.55	0,91	0,82	126	-29	201	1799	1716	908	1017	1419	1391
	124	-42.7	-18.55	0,79	0,63	201	110	253	1672	1727	810	847	1175	1285
	126	-42.2	-18.55	0,92	0,84	188	-76	221	1972	1699	676	801	1276	1201
	127	-41.95	-18.55	0,83	0,68	204	155	229	1326	1583	558	752	962	1116
	129	-41.45	-18.55	0,76	0,58	225	168	238	1206	1560	697	700	935	1103
	132	-42.95	-18.3	0,91	0,83	129	56	254	1652	1739	765	811	1218	1274
	133	-42.7	-18.3	0,82	0,68	257	205	266	1688	1700	587	821	1021	1226
	134	-42.45	-18.3	0,86	0,73	152	69	227	1570	1724	694	801	1118	1188
	137	-41.7	-18.3	0,84	0,7	172	105	227	1283	1581	648	648	982	1088
	141	-42.45	-18.05	0,82	0,67	167	80	224	1489	1680	766	779	1088	1168
	145	-42.45	-17.8	0,77	0,59	173	80	214	1431	1502	727	749	1052	1132
_	146	-42.2	-17.8	0,85	0,73	146	-13	206	1583	1481	731	749	1133	1120
-														

r	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez
Máximo entre os postos	0,98	0,98	0,95	0,95	0,97	0,96	0,97	0,96	0,97	0,98	0,92	0,97
Mínimo entre os postos	0,66	0,63	0,69	0,35	0,49	0,24	0,08	0,28	0,55	0,63	0,1	0,25
Media	0,86	0,88	0,86	0,75	0,83	0,81	0,71	0,76	0,89	0,77	0,62	0,8
R ²												
Máximo	0,95	0,95	0,91	0,9	0,94	0,92	0,94	0,92	0,95	0,97	0,86	0,93
Mínimo	0,44	0,4	0,47	0,12	0,24	0,06	0,01	0,08	0,31	0,4	0,01	0,06
Media	0,75	0,77	0,74	0,58	0,7	0,66	0,55	0,61	0,79	0,77	0,42	0,66
RMSE												
Máximo	101	83	76	72	61	46	42	41	39	105	137	111
Mínimo	30	29	29	16	9	4	3	5	9	20	38	37
Média	59	46	52	39	21	14	13	16	21	39	85	67
ERRO												
Máximo	58	50	53	44	24	18	22	22	21	32	50	67
Mínimo	-61	-23	-37	-35	-29	-18	-18	-22	-17	-41	-62	-72
Média	10	17	16	11	4	5	3	3	3	3	7	17
MAE												
Máximo	102	84	97	75	49	37	34	35	48	80	124	99
Mínimo	62	51	55	25	13	5	5	8	19	38	47	58
Média	80	67	71	37	25	15	11	17	32	53	86	76

ANEXO 5 - Tabela do resumo das análises estatísticas em cada mês para o período entre 1998 e 2012 em cada posto

Pixel TRMM	OBS	T Mé- dia	P TRMM	P OBS	ETP	ETR TRMM	ETR OBS	DEF TRMM	DEF OBS	EXC TRMM	EXC OBS	ETR/ ETP TRMM	ETR/ ETP OBS
1	2043018	19,8	1673	1519	909	860	855	49	55	813	664	0,9	0,9
2	2143003	21,4	1669	1676	1015	946	939	70	77	724	737	0,9	0,9
7	2043026	22,3	1576	1387	1092	999	958	93	135	577	429	0,9	0,9
7.2	2043010	22,5	1576	1518	1108	1010	987	98	121	566	531	0,9	0,9
8	83642	21,6	1516	1328	1031	943	916	88	115	573	412	0,9	0,9
9	2042016	22,4	1504	1264	1104	997	963	107	141	506	301	0,9	0,9
11	2043005	20,5	1597	1441	950	889	867	61	83	707	574	0,9	0,9
13	2043014	22,5	1548	1411	1111	1013	986	97	124	534	425	0,9	0,9
14	2043025	23	1482	1348	1157	1032	1003	125	154	450	345	0,9	0,9
18	83639	20,3	1535	1338	936	897	864	39	72	638	473	1	0,9
19	2043056	20,5	1569	1343	954	884	872	70	82	684	471	0,9	0,9
21	2043011	23,5	1539	1482	1210	1072	1057	137	152	467	424	0,9	0,9
21.2	2043009	23,8	1539	1368	1251	1101	1077	150	174	439	291	0,9	0,9
21.3	2043027	23,5	1539	1417	1220	1079	1051	141	169	460	366	0,9	0,9
22	2042018	24,1	1456	1253	1293	1115	1068	177	224	341	185	0,9	0,8
23	2042011	24,2	1426	1336	1298	1116	1054	181	243	309	282	0,9	0,8
24	2042010	22,7	1405	1373	1131	1004	989	127	142	401	384	0,9	0,9
24.2	2042017	22,2	1405	1290	1084	970	940	114	144	435	350	0,9	0,9
26	2041048	22,5	1492	1331	1111	1028	972	82	138	464	359	0,9	0,9
27	2041017	19,7	1494	1589	903	870	854	33	49	624	734	1	0,9
28	2041013	21,6	1472	1338	1032	988	940	43	92	484	398	1	0,9
28.2	2041018	21,8	1472	1400	1044	998	990	45	53	474	409	1	0,9
29	2041011	21,5	1464	1316	1026	995	973	31	52	469	343	1	0,9
30	2041020	18,3	1494	1366	832	832	799	0	33	663	567	1	1
30.2	São Rafael D. Martins	19,8	1494	1289	910	909	880	1	29	586	409	1	1
32	2043059	18,3	1556	1862	834	787	789	47	45	770	1073	0,9	0,9
32.2	1943007	22	1556	1602	1062	958	931	103	131	598	672	0,9	0,9
35	2042031	24,6	1408	1310	1358	1137	1106	221	251	271	204	0,8	0,8
36	2042008	24,3	1394	1317	1309	1109	1084	200	225	285	232	0,8	0,8
36.2	1942006	23,5	1394	1370	1213	1049	1044	164	168	345	326	0,9	0,9
39	2041008	22,8	1408	1246	1142	1044	973	98	169	364	273	0,9	0,9
41	2041023	23,5	1382	1220	1218	1133	1047	85	171	249	173	0,9	0,9
42	2040008	19,2	1412	1186	876	874	842	3	34	538	343	1	1
43	1940020	20,4	1401	1201	945	944	889	1	56	457	312	1	0,9
43.2	2040007	20,6	1401	1282	960	959	937	1	23	442	345	1	1
43.3	2040018	22,3	1401	1497	1093	1083	1092	10	1	317	405	1	0,9
44	1943027	19,6	1519	1456	897	828	808	68	89	691	648	0,9	0,9
45	1943001	22,7	1509	1469	1126	997	1002	128	123	512	467	0,9	0,9
48	1942031	24,6	1395	1194	1359	1121	1046	238	313	274	148	0,8	0,8

ANEXO 6 – Resultados dos balanços hídricos realizados com o TRMM 3B43-v7 e com os postos meteorológicos para cada ponto analisado na bacia hidrográfica do rio Doce

ANEXO 6 – Continuação...

49	1942002	23	1365	1266	1156	1005	976	151	180	360	290	0,9	0,8
49.2	83592	22,2	1365	1191	1083	958	915	124	167	407	275	0,9	0,8
50	1941011	24,2	1279	1215	1295	1066	998	230	298	214	217	0,8	0,8
51	1941000	24,3	1242	1276	1306	1064	1080	242	225	178	195	0,8	0,8
52	1941019	24,4	1196	1079	1320	1061	1005	258	315	135	74	0,8	0,8
54	1941008	23,9	1267	1089	1261	1143	1010	118	250	124	79	0,9	0,8
54.2	1940000	24,4	1267	1085	1321	1169	1025	153	296	99	60	0,9	0,8
54.3	1941009	24,6	1267	837	1347	1178	837	169	510	89	0	0,9	0,6
55	1940001	24,4	1272	1020	1323	1195	1002	129	321	77	18	0,9	0,8
56	SANTA TEREZA	21	1240	1649	984	966	984	18	0	274	665	1	1
56.2	1940005	24,9	1240	1302	1401	1232	1246	168	155	8	56	0,9	0,9
58	1943008	23,4	1485	1314	1199	1021	997	177	202	464	317	0,9	0,8
60	1942029	25,1	1426	1311	1428	1144	1134	284	294	282	177	0,8	0,8
65	1941006	24,8	1144	1088	1378	1041	987	337	391	103	101	0,8	0,7
66	1941010	25	1141	945	1414	1079	945	336	469	62	0	0,8	0,7
67	1941003	25,2	1224	873	1446	1181	873	265	573	43	0	0,8	0,6
67.2	1940012	25	1224	1021	1421	1173	1021	248	401	51	0	0,8	0,7
67.3	83595	25,2	1224	941	1440	1179	941	261	499	45	0	0,8	0,7
68	1940006	25,2	1241	1005	1441	1213	1005	228	436	28	0	0,8	0,7
70	1940022	24,8	1212	1170	1388	1212	1169	176	220	0	2	0,9	0,8
72	1939002	24,9	1291	1433	1395	1280	1327	115	73	11	105	0,9	0,9
73	1943025	23,5	1465	1601	1209	1016	1038	193	170	450	563	0,8	0,9
75	1943003	23,9	1431	1262	1252	1039	1029	214	223	393	233	0,8	0,8
77	1942030	25	1377	1201	1418	1134	1060	284	358	243	141	0,8	0,7
77.2	1942032	25	1377	1272	1418	1133	1082	286	336	244	191	0,8	0,8
78	1942008	24	1309	1189	1275	1049	992	225	283	260	197	0,8	0,8
79	1941018	24,6	1170	946	1355	1025	908	330	447	145	38	0,8	0,7
80	1941021	23,4	1118	1108	1201	953	934	249	267	165	174	0,8	0,8
82	1941004	25	1100	980	1415	1049	954	366	461	51	26	0,7	0,7
83	1940009	24,8	1203	1227	1381	1141	1156	240	226	61	72	0,8	0,8
84	1940013	24,4	1218	1098	1325	1157	1057	169	268	62	41	0,9	0,8
85	Marilândia	24,8	1240	1156	1374	1206	1147	168	227	34	9	0,9	0,8
86	1940023	24,7	1227	1200	1372	1218	1178	154	194	10	22	0,9	0,9
87	Linhares	25	1231	1296	1410	1239	1246	171	164	0	50	0,9	0,9
89	1943002	18,3	1435	1442	833	764	754	68	79	671	688	0,9	0,9
89.2	83589	23	1435	1404	1155	976	949	178	206	459	455	0,8	0,8
96	1841011	25,4	1090	906	1469	1036	906	433	563	54	0	0,7	0,6
97	1941005	25,1	1074	864	1424	1028	864	396	560	46	0	0,7	0,6
99	1941012	22,6	1195	1001	1112	1019	933	93	179	177	68	0,9	0,8
100	1840000	24,5	1227	1168	1341	1163	1103	179	238	64	65	0,9	0,8
101	1940016	25,1	1244	1141	1426	1226	1117	201	309	19	24	0,9	0,8
101.2	S. GABR. PALHA	24,8	1244	1175	1380	1209	1141	171	239	35	34	0,9	0,8
103	1840008	25	1218	1388	1406	1218	1298	189	109	0	90	0,9	0,9

ANEXO 6 – Continuação...

			`										
104	1839006	25,1	1305	1163	1430	1297	1163	133	267	7	0	0,9	0,8
107	1842007	21,8	1350	1230	1041	898	876	143	165	452	354	0,9	0,8
111	1841020	25,5	1128	984	1488	1072	984	417	505	56	0	0,7	0,7
113	1841019	22,9	1104	918	1147	969	849	178	276	135	69	0,8	0,8
114	1841018	24,2	1114	897	1298	1050	897	248	401	64	0	0,8	0,7
114.2	1841006	24,6	1114	975	1348	1067	975	281	373	47	0	0,8	0,7
114.3	1841009	22,9	1114	974	1147	989	903	158	244	126	71	0,9	0,8
115	1840004	24,6	1214	1056	1354	1139	1036	215	318	75	20	0,8	0,8
116	1840010	23,8	1234	1177	1242	1114	1078	128	164	120	99	0,9	0,9
117	1840019	25,1	1242	1024	1429	1213	1024	216	405	29	0	0,8	0,7
119	São Mateus	25,1	1263	1379	1430	1252	1321	178	109	11	58	0,9	0,9
121	1843011	21,3	1391	1419	1001	875	898	126	102	516	521	0,9	0,9
124	1842020	23,6	1285	1175	1216	994	993	222	223	291	181	0,8	0,8
126	1842005	23,3	1201	1276	1183	976	1023	207	160	225	253	0,8	0,9
127	1841001	25,4	1116	962	1477	1062	962	415	516	54	0	0,7	0,7
129	1841021	23,9	1103	935	1260	1016	930	244	330	88	6	0,8	0,7
132	1843012	22,6	1274	1218	1111	924	938	188	173	350	280	0,8	0,8
133	1842004	23,8	1226	1021	1239	994	926	245	313	232	95	0,8	0,7
134	1842008	24,3	1188	1118	1301	1027	1016	274	285	161	102	0,8	0,8
137	1841003	25	1088	982	1410	1058	982	352	428	30	0	0,8	0,7
141	1742019	23,1	1168	1088	1165	945	961	220	204	223	127	0,8	0,8
145	1742014	21,4	1132	1052	1011	838	820	173	191	294	232	0,8	0,8
146	1742017	22,3	1120	1133	1082	894	947	188	136	226	187	0,8	0,9

Pixel TRMM = número do ponto central do pixel do TRMM; OBS = número ou nomes dos postos meteorológicos que estão na área de abrangência do pixel; T. Méd. = temperatura média do ar; P TRMM = precipitação estimada pelo TRMM; P OBS = Precipitação do OBS; ETP = evapotranspiração potencial; ETR TRMM = Evapotranspiração real com o TRMM; ETR OBS = Evapotranspiração real com o OBS; DEF TRMM = Deficiência hídrica com o TRMM; DEF OBS= Deficiência hídrica com o OBS; EXC TRMM = Excedente hídrico com o TRMM; EXC OBS = Excedente hídrico com o OBS ETR/ETP TRMM = relação entre ETR e ETP representa a disponibilidade hídrica com o TRMM; ETR/ETP OBS = disponibilidade hídrica com o OBS.