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Abstract
In X-ray tomography image reconstruction, one of the most successful approaches involves
a statistical modeling with l2 norm function for fidelity regularized by a functional with lp
norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational
performance, a technique that reconstructs an image by alternating minimization for (i)
solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique
(SART) and (ii) constraining the regularization term, defined by a Discrete Gradient
Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This
work proposes an improvement to the reconstruction process by adding a Bilateral Edge-
preserving (BEP) regularization term to the objective function, resulting in a three-step
method. BEP is a noise reduction framework and has the purpose of adaptively eliminating
noise in the initial phase of reconstruction process. BEP improves optimization of the
fidelity term and, as a consequence, improves the result of DGT minimization by total
variation. Regular dosage experiments shown favorable results compared to classical
methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm
optimization by using SART, and the l2 norm SART solution regularized by l1 norm
TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index
Measurement (SSIM) metric. Although not so prominent in the case of regular dosing
reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of
SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is
markedly lower for the FBP and SART methods. In this context of limited number of
projections (low dosage), the reconstructions with the method here proposed presents
better defined edges, in addition to better contrast and less artifacts in surfaces of regular
intensity (low intensity variation). These results are generally obtained with a smaller
number of steps compared to the other iterative methods implemented in this Thesis.
However, this behavior (of the proposed method) depends on the parameterization of the
lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the
norm during the reconstruction process it is possible to keep the proposed method stable
over a sufficiently large number of iteractions. It is also graphically shown that the method
converge, meaning that the SSIM and PSNR metrics can be continuously improved by
a sufficiently large number of iteractions. For reconstructions with a limited number of
projections (low-dose reconstruction), the proposed method can achieve higher PSNR and
SSIM results because it can better control the noise in the initial processing phase.

Keywords: Signal processing, Biomedical engineering, X-ray computed tomography,
Image reconstruction, Optimization techniques, Bilateral edge preservation





Resumo

Em reconstrução de imagem de tomografica de raios-X, uma das abordagens mais bem
sucedidas envolve a modelagem estatística de uma função fidelidade de norma l2 combinada
com algum tipo de regularização de norma lp, 1 < p < 2, onde p ∈ R. Entre elas, se destaca
por seus resultados e desempenho computacional uma técnica que envolve minimização
alternada entre (i) a solução da função fidelidade de norma l2 pela técnica de reconstrução
algébrica simultânea (SART, simultaneous algebraic reconstruction technique) e (ii) a
solução de um termo regularizador que usa transformação gradiente discreta (DGT,
discrete gradient transform) minimizada por variação total (TV, total variation). O
presente trabalho propõe a melhoria desse processo de reconstrução através da adição à
função objetivo de um termo baseado em preservação bilateral de bordas (BEP, bilateral
edge preservation), resultando em um método de três etapas. BEP é uma metodologia de
redução de ruído e tem o propósito de eliminar de forma adaptativa o ruído na fase inicial
do processo de reconstrução. Como consequência, a adição de BEP melhora a otimização do
termo de fidelidade e o resultado da minimização da DGT por variação total. Experimentos
com dosagem regular mostram resultados favoráveis em comparação com métodos clássicos,
tais como Retroprojeção com Filtragem (Filtered Backprojection, ou FBP) e outros mais
modernos, tais como solução por otimização de norma l2 por SART, especialmente para
a métrica SSIM. Embora não sejam proemintes no caso de reconstrução com dosagem
regular, os resultados com PSNR são coerentes com os do SSIM. Para baixa dosagem,
a qualidade da rescontrução piora para todos os métodos, mas é notadamente inferior
para FBP e SART. Neste contexto de número limitado de projeções (baixa dosagem), o
método proposto apresenta reconstruções com bordas mais bem definidas, além de melhor
constraste e menos artefatos em superfícies regulares (pouca variação de intensidade). Esses
resultados são obtidos geralmente com um menor número de iterações em comparação com
os demais métodos implementados nesta Tese. É experimentalmente mostrado que variando
a norma no decorrer do processo de reconstrução é possível manter o método proposto
estável ao longo de um número suficientemente grande de iterações. Para reconstruções
com um número limitado de projeções (reconstrução de baixa dosagem), o método proposto
pode alcançar resultados consideráveis em termos de PSNR e SSIM devido à possibilidade
de controlar melhor o ruído na fase inicial do processo de reconstrução.

Palavras-chave: Processamento de sinal, Engenharia biomédica, Tomografia computado-
rizada de raios-X, Reconstrução de imagem, Técnicas de otimização, Preservação bilateral
de bordas
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1 Introduction

X-ray computer tomography (CT) measures the attenuation of X-ray beams passing
through an object, generating projections. Such projections are processed, resulting in an
image (slice) of the examined object. This is known as CT image reconstruction. The CT
scan, formed by concatenating a large number of adjacent reconstructed images, has been
proven to have great value in delivering rapid and accurate diagnoses for many diseases in
modern medicine. The central theme of this work is the reconstruction of images generated
by the CT equipment, where the X-ray dosage is a concern. In this chapter we will reinforce
the importance of low dosage in X-ray CT, to develop in the reader the fundamental
concepts of acquisition and mathematical modeling of CT image reconstruction. In addition,
we will present the most important classical, iterative, statistical techniques and understand
how CT image reconstruction has evolved to the current state of the art.

1.1 The “as-low-as-reasonably-achievable” – ALARA – principle

Although CT scanning has evolved considerably since its creation in 1972 by
Godfrey Hounsfield, the risk associated with the long-term effects of radiation exposure
during CT exams is still of great concern to the medical community, especially in children
(BRODY et al., 2007; PEARCE et al., 2012; MIGLIORETTI et al., 2013). Reinforcing
this view, CT scans accounts for a considerable portion of radiation exposure related
to medical imaging, and medical professionals should have a working knowledge of the
benefits and risks of medical radiation (COSTELLO et al., 2013). Radiation doses for CT
vary significantly between patients, institutions, and countries. CT scans uses ionizing
radiation, a known carcinogen, and, for this reason, is associated with increased cancer
incidence. In addition, absorbed radiation in tissues from CT is among the highest observed
from diagnostic radiology, and, to reinforce the concern, participation in CT scans has
doubled in the last two decades (SMITH-BINDMAN et al., 2019). Despite this, radiation
doses in CT scans have not decreased as it has happened in conventional radiography
(KIM et al., 2016).

General concern about radiation levels in radiological examinations led to the “as-
low-as-reasonably-achievable” principle (known as the ALARA principle), which states that
only the minimum amount of radiation should be applied to the patient. For this reason,
ALARA is widely accepted in the medical CT community (NEWMAN; CALLAHAN, 2011;
PEARCE et al., 2012; MAYO-SMITH et al., 2014; SODHI et al., 2015; YEUNG, 2019).
To reduce the X-ray dose of the patient during the CT scan, there are two possibilities:
(1) reduce the amount of projections (the quantity of X-rays emitted) during the CT scan
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or (2) reduce the power of the X-ray source during the image acquisition. Both cases
generally lead to low-quality reconstructed CT images. Then, a state-of-the-art problem is
to propose a method that allows good-quality CT image reconstruction with a low-dose
X-ray source. Before discussing CT image reconstruction approaches with low-dose X-rays,
we present in the next section the signal aquisition model for CT.

1.2 CT aquisition model and modeling considerations
Tomography, from the Greek thomos (slice, section) and graphos (pictorial repre-

sentation), consists of indirectly obtaining a graphic representation (image) of a transverse
slice in an object. More specifically, the data is acquired by beams (bundles of rays) that
run through lines on a slice in the object at different angles, such as θ1 and θ2, (see Figure
1). Part of the beams is absorbed by the material and part survives to reach the detectors,
generating projections, such as p(r, θ1) and p(r, θ2), as ilustrated in Figure 1.

Figure 1 – Projections at differente view-angles.

On X-ray computed tomography (X-ray CT), these beams are composed of X-ray
photons. The process of X-ray emission is in the field of physics. X-ray photons are
produced when a substance is bombarded by high-speed electrons. X-ray photon emission
is a rare event and up to 99% of the input energy is converted to heat. The diagnostic
X-rays varies wavelength from 0.1 nm to 0.01 nm, corresponding to an energy range of
12.4 keV to 124 keV. The energy, E, of an X-ray photon is proportional to its frequency, f ,
and is expressed as

E = hf = hc

λ
, (1.1)

where h is Planck’s constant (6.63× 10−34 Js), c is the light speed (3× 108 m/s), and λ is
the wavelength of the X-ray (HSIEH, 2009a).

Before embarking on the details of data acquisition on CT equipment, it is briefly
presented the most popular CT sampling geometries, commonly known as CT architectures.
Figure 2a,b,c shows, respectively, the parallel beam, fan beam and cone beam architectures
(HSIEH, 2009a). It is wise to have several detectors for a few (or even one) emitters (sources).
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This is related to the cost of CT equipment. Therefore, cone beam-type equipment is
widely used in the real world. However, for the sake of simplicity, without losing the
generality, this work will use parallel architecture for mathematical simplicity.

Figure 2 – (a) Parallel beam, (b) fan beam, and (c) cone beam architectures for CT scanners.

Most modern CT scanners uses energy integration detectors whose photon counts
are proportional to the total energy incident on them. Energy, in turn, is proportional to
the number of X-ray photons that affect the detectors (sensors) of the tomograph. X-ray
beams passing through any material may be partially or totally retained, an effect known
as attenuation. Each material has properties that influence the amount of photons it can
hold or let pass. Such properties can be expressed as the material attenuation coefficient,
µ. Let Ii be the intensity of the incident (detected) X-rays in a line Li, I0 the intensity
transmitted (generated), ∆L the (constant) thickness of each slice of the material and µ1 ,
µ2 , ... , µN , the specific attenuation coefficients of each material, as ilustrated in Figure 3.

Figure 3 – X-ray attenuation through different materials.

Then, the relation between the detected, Ii, and generated I0 beams, known as the
Beer-Lambert law (SWINEHART, 1962), is given by:

Ii = I0exp (− (µ1 + µ2 + ...+ µN) ∆L) = I0exp

−∑
Li

µLi
∆L

 , (1.2)

where Li is the path of the X-ray beam through the material. When we make ∆L very
small (making the slices of the scanned object very thin), tending to zero, we have

Ii = I0exp

− ∫
Li

µ (x, y) dL

 . (1.3)

It is straightforward to observe that the intensity, Ii, is inversely proportional to the
sum of the attenuations, µ (x, y), on the integration line, Li, where the pair (x, y) denotes
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coordinates inside de scanned area, as shown in Figure 4. Through simple manipulations
of Equation (1.3), we have

pi = −ln
(
Ii
I0

)
=
∫
Li

µ (x, y) dL, (1.4)

where pi, is the projection resulting from the CT acquisition process over the integral line,
Li.

Up to this point, we have modeled the process of obtaining the signal, Ii, in Equation
(1.3), in a detector, as well as its projection, pi, in Equation (1.4). Now we can explore
the model of signal acquisition in an ideal CT equipment using as an inspiration Figure 4.
First, we use parallel architecture, in which the relation between emitters (X-ray source)
and detectors is one-to-one. However, the modeling developed here can easily be adapted
to other architectures such as fan beam and cone beam (HSIEH, 2009a; SUETENS, 2009).
The section area (Figure 4) corresponds to the scanned region and, after reconstruction,
will result in an image of 512× 512 pixels. The X-ray source has np = 300 emitters that
cast parallel beams over the section area, reaching the detectors on the other side of the
scanned object, generating projections p(r, θ) = {pi}, with i = 1, ..., np, i ∈ N+, and
(r, θ) being the polar coordenates of any projection in relation to (x, y) coordinate system.
In detail, each beam traverses a line of integration, Li (the red line, for instance), resulting
in a projection pi (shown as a blue line). The projection, pi, as indicated by Equation
(1.4), is directly proportional to the sum of the attenuation coefficients, µ (x, y), of the
materials reached on the integration line, as ilustrated in Figure 4.

Figure 4 – Aquisition model. In red it is represented the integral line composed of all the intensities,
µ (x, y), that generate the projection, pi.

The generation of the array of projections p(r, θ) should be done for all the angles,
θ = {θi}, with i = 1, ..., nθ, i ∈ N+, and nθ = 180, assuming that a complete (180◦) scan
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will be performed. In the next section we discretize the aquisition problem and derive the
Maximum a Posteriori (MAP) model.

1.3 Acquisition problem discretization and Bayesian model deriva-
tion

The key aspect of the modeling process is that reconstruction estimates the discrete
attenuation, µ (x, y) for each j pixel of the image, with j = 1, ..., NJ . Thus, the integral
over the line, pi =

∫
Li

µ (x, y) dL, Equation (1.4), can be discretized as

pi ≈
NJ∑
j=1

aijµj = [Aµ]i , i = 1, ..., NI , (1.5)

where A = {aij}NI×NJ
is the matrix representing the system geometry, NI = npnθ is the

total number of projections acquired (np projections for each nθ angles), [µ = µ1...µNJ
]T is

the linear attenuation coefficient vector with µj representing the j-th pixel. In this model,
every aij is defined as the normalized length of the intersection between the i-th projection
beam and the j-th rectangular pixel centered in (x, y), as ilustrated in Figure 5.

Figure 5 – Representation of an element aij of the system matrix A. For instance, element a35 represents
the size of intersection between projection p (3, 135), in line 3, and the area of pixel x5.

As a didactic effort, we present in Figure 6 a sequence of 5 scans separated from
each other by angles of 45◦, with each scan presenting 4 projection lines on an image (to
be reconstructed) of dimensions 3× 3.



34 Chapter 1. Introduction

Figure 6 – Didactic representation of a sequence of 5 scans separated by angles of 45◦, with 4 projections
each, on an image of dimensions 3× 3.

Therefore, from the example of Figure 6, we have the projection vector PNI1 with
dimensions 20× 1 (see Figure 7), where each of the 5 scans of Figure 6 contributes with 4
projection values. The vector µNJ 1, in Figure 7, represents the image to be reconstructed,
with dimensions 9×1. Like the projection vector, µNJ 1 is represented lexicographically1. The
system matrix ANINJ

, as ilustrated in Figure 7, has dimensions NINJ , and its coeficientes
aij are obtained as previously explained in Figure 5. Finally, the vector eNJ 1 represents
the error in the reconstruction processes. It is noteworthy that each projection illustrated
in Figure 6 is represented as an equation in the system of Figure 7 with coefficients in
each row of matrix A and unknowns in the vector µ.

Figure 7 – Didactic representation of the inverse problem of CT image reconstruction, where PNI 1 is
the projection vector, µNJ 1 is the image to be reconstructed, ANI NJ

is the system matrix,
and eNJ 1 is the error inherent in the process.

1 To represent lexicographically a matrix consists of stacking the columns of the matrix with dimensions
(m,n) from the first to the last column, forming a column vector of dimensions (mn, 1).
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The emission of X-ray photons is a rare event, so a Poisson distribution is usually
adopted to describe the probabilistic model (HSIEH, 2009b), expressed as

yi ∼ Poisson
{
ȳi = I0e

−pi

}
, i = 1, ..., NI (1.6)

where yi is the projection (measurement) along the i-th X-rays beam and ȳi is its expected
value. Because the X-rays beams are independent one from each other, taking into account
Equation (1.6) the joint probability of y = {y1, y2, ..., yNI

} given µ, P (y|µ), observing yi
countable events, may be expressed as

P (y|µ) =
NI∏
i=1

P (yi|µ) =
NI∏
i=1

(
(ȳi)yi

yi!
e−ȳi

)
. (1.7)

Applying the ln operator to Equation (1.7), we have

L (y|µ) = lnP (y|µ) =
NI∑
i=1

(
yiln

(
I0e
−pi

)
− I0e

−pi − lnyi!
)
, (1.8)

and, by eliminating the constant terms, using Equation (1.5), we obtain

L (y|µ) = −
NI∑
i=1

(
yipi + I0e

−pi

)
= −

NI∑
i=1

(
yi [Aµ]i + I0e

−[Aµ]i
)
. (1.9)

Applying the Bayesian rule to CT reconstruction (ELBAKRI; FESSLER, 2002;
YU; WANG, 2009; XU et al., 2011), we have

P (µ|y) = P (y|µ)P (µ)
P (y) , (1.10)

and the original image, µ, can be reconstructed obtaining the Maximum a Posteriori
(MAP) of function P (µ|y). The natural logarithm is monotonically increasing, so the
maximization of a posterior P (µ|y) can be obtained by maximizing its logarithm. Applying
the ln (.) operator to Equation (1.10), we have

Φ̂ (µ) = L (y|µ) + ln (P (µ))− ln (P (y)) , (1.11)

where L (y|µ) is defined in Equation (1.9), and the term related to P (y) can be disregarded
for the optimization problem, since it is a known value, adding only offset to Φ̂ (µ). In the
optimization problem the term L (y|µ) is known as the fidelity term, and its optimization
corresponds to the Maximum Likelihood (ML) problem. The term ln (P (µ)) expresses the
prior knowledge on the problem and aim to restrict the solutions to a set that approaches
the ideal solution. Therefore, ln (P (µ)) is a regularizing term and, by rewriting −ln (P (µ))
as R (µ) we have

Φ̂ (µ) = −
NI∑
i=1

(
yi [Aµ]i + I0e

−[Aµ]i
)
−R (µ) . (1.12)
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Maximize Equation (1.12) is the same as minimize

Φ (µ) =
NI∑
i=1

(
yi [Aµ]i + I0e

−[Aµ]i
)

+R (µ) . (1.13)

However, working with Equation (1.13) is uncomfortable, since it presents an
exponecial term, difficult to manipulate. Applying a second-order Taylor’s expansion to
hi (pi) = yipi + I0e

−pi , and p̂i = ln
(
I0
yi

)
, we have

hi (pi) ≈ hi (p̂i) + ḣi (pi) (pi − p̂i) + ḧi (pi)
2 (pi − p̂i)2 =

= yiln
(
I0

yi

)
+ yi + 1

2yi (pi − p̂i)
2 . (1.14)

Eliminating the irrelevant terms to the optimization process and using the expansion
promoted by Equation (1.14), we have the fidelity (or discrepancy) term, F (µ), defined
as

F (µ) =
NI∑
i=1

yi
2 ([Aµ]i − p̂i)

2 , (1.15)

and Equation (1.13) becomes

Φ (µ) = F (µ) +R (µ)

=
NI∑
i=1

yi
2 ([Aµ]i − p̂i)

2 +R (µ) . (1.16)

Obtaining µ from F (µ) is an inverse problem. According to Daubechies et al.
(2004), such problems can be solved using a generalized inverse operator. However, this
type of operator may be unbounded (ill-posed problem) or present very large norm (ill-
conditioned problem). In such cases, the generalized inverse operator has to be replaced
by a bounded or with smaller norm approximants, so that numerically stable solutions
can be defined and used as approximations of the true solution correspondig to the exact
data. This is known as regularization, and is performed by optimizing the term R (µ)
in Equation (1.16) with a lp norm, 1 ≤ p < 2. Next, we present a discussion on norm
regularization and optimization and relate norm with sparsity.

1.4 Norm optimization considerations
Solving the inverse problem of Equation (1.15) implies a l2 norm optimization. Func-

tions that minimize F (µ) are called pseudosolutions of the inverse problem (DAUBECHIES
et al., 2004). Such solutions generally produces blurred images with poorly defined edges,
since the l2 norm solution behaves like a low-pass filter. In addition, the CT reconstruction
problem is considered as ill-posed, sparse and presents systems of large dimensions, as
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discussed in Section 1.3. Just for the sake of illustration, the optimization problem proposed
in Equation (1.15) can be represented by Figure 8. The goal is to find the global minimum,
f∞, starting from a initial condition, f 0, through the minimization of ||Kf − g||2, where K
represents the system description, f is the unknown, and g is a projection of the system’s
solution. In such systems there are several solutions, corresponding to the lower region
of Figure 8 (the valley region). One can expect intuitively that a good solution starts
from a good initial condition, and this is usually true. However, in real CT reconstruction
problems it is not easy to define a good initial condition. These difficulties lead to the need
of adding a constraining function in order to mitigate the unboundness (ill-poseness) of
the optimization problem, as proposed in Equation (1.16). The constraint of the objective
function limits the possible solutions to a set that is physically possible. As an example,
the intensity of a pixel must be within a finite range, a pixel cannot assume negative
values, or the difference between neighboring pixels should not be greater than a given
value. An interesting point of arguement is that if for a simple solution like that of Figure
8 there is a well-established dependence between the solution and the initial conditions, a
relationship that tends to become more intricate for real and more complex problems such
as CT reconstruction.

Figure 8 – Exemplifying the problem of limitating solutions of an overdeterminated system.

Daubechies et al. (2004) proposed a penalization term that is a weighted lp norm,
1 ≤ p ≤ 2, of the coefficients of µ with respect to a orthonormal basis of H, where H is
a Hilbert space2. Formally, given an orthogonal basis (ϕγ)γ∈Γ in the domain of H and a
sequence of positive real weights w = (wγ)γ∈Γ, the functional Φw,p can be defined as

Φw,p (µ) = F (µ) +
∑
γ∈Γ

wγ |〈µ, ϕγ〉|p , (1.17)

2 A Hilbert space generalizes the notion of Euclidean space to multidimensional spaces and is usually
defined as an abstract vector space structured as an inner product that allows length and angle
measurements.
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where F (µ) is defined in Equation (1.15), and µ is the image we intend to unveil.

For the particular case of p = 2 and wγ = β (constant) for all γ ∈ Γ, we have

Φw,p=2 (µ) = F (µ) + β ||5µ||22 , (1.18)

where ||5µ||22 denotes a l2 norm regularization functional to Φw,p=2 (µ). The penalty func-
tion in Equation (1.18) is suitable when we know previously the image to be reconstructed
should be smooth, that is, the constraining function ||5µ||22 suppresses the significant
differences and preserves the smooth transitions between pixels. Thinking now to the other
extreme, when p = 1, the objective function of Equation (1.17) can be rewritten as

Φw,p=1 (µ) = F (µ) + β ||5µ||1 , (1.19)

where, in analogy to Equation (1.18), ||5µ||1 denotes a l1 norm regularization functional
to Φw,p=1 (µ). In this case, the penalty function ||5µ||1 tends to preserve the significant
differences between pixels, but smooth areas may suffer some disturbance. Indeed, regular-
ization with l1 norm often leads to the piecewise constant result and hence will produce
artificial edges on the smooth areas (CHARBONNIER et al., 1997; ZENG; YANG, 2010;
ZENG; YANG, 2013).

At this point, we make a didactic effort to illustrate how the constraint function
knows which is the edge we intended to preserve and which is the noise we want to smooth.
Generally, we assume that the noise consists of small jumps, while edges corresponds to
large jumps (ZENG, 2010). We can address this problem by comparing functions s2 and
|s|, as shown in Figure 9, where C (r) is the cost function of a generic penalty function,
F (S) = ∑

i,j
wi,jC (si − sj), with S been the all image and s been any pixel of it. When the

difference r = si − sj is such that r ∈ (−rk,+rk), we have |s| > s2 and, thus |s| promotes
heavier penalization than s2. Indeed, for this case the cost function for |s|, is greather
than the cost function for the s2, that is, C|s| (r) > Cs2 (r), as it can be observed in Figure
9. On the other hand, for r > |rk|, we have C|s| (r) < Cs2 (r), meaning that s2 promotes
heavier penalization than |s|.

Finally, returning to Equation (1.17), making w = βw0, with β constant and
w0 = [1, 1, ..., 1] (a large enough vector of ones), and making p decreasing from p = 2
to p = 1, we have the effect of gradually increasing the penalization of coefficients with
low projections (small coefficients) on the basis (ϕγ)γ∈Γ (meaning that |〈µ, ϕγ〉| < 1),
while simultaniously decreasing the penalization of coefficients with higher projections on
(ϕγ)γ∈Γ (meaning |〈µ, ϕγ〉| > 1). Then, following this line of thought, as we move from
the l2 to l1 norm we are penalizing less and less the µ functions with large projections
but with few components with respect to basis (ϕγ)γ∈Γ, and, at the same time, increasing
the penalization on smaller (but more frequent) µ components, in comparison with the
classical l2 norm regularization presented in Equation (1.18). This effect becomes more
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Figure 9 – Explanation of how the constraint function acts to eliminate noise while preserving edges.

evident for lower values of p, and, as a consequence, taking p < 2, and especially for p =1,
the minimization procedure indeed promotes sparsity on the expansion of µ with respect
to the basis (ϕγ)γ∈Γ. With these concepts in mind we write a generic objective function of
lp norm as

Φw,p (µ) = F (µ) + β ||5µ||p , (1.20)

where β is a constant to balance between fidelity and restriction terms, and 1 ≤ p ≤ 2
with p ∈ R.

As will be suitably detailed in Section 1.8, this Thesis explores iterative CT image
reconstruction in a Bayesian framework with regularization term on lp norm, 1 ≤ p ≤ 2.
In the next section, the reader is introduced to the most relevant classical and iterative
CT image reconstruction approaches.

1.5 Classical and iterative CT image reconstrucion approaches

The first approach to become popular, especially for its performance, was the
Filtered Backprojection (FBP) reconstruction technique (SHEPP; LOGAN, 1973; HORN,
1979). FBP is a classic method based on the Fourier central slice theorem and is imple-
mented with the Fast Fourier Transform (FFT). Although exhibiting good performance,
FBP requires high-dose radiation, in comparison to modern methods, and, for this reason,
is not consistent with the ALARA principle (YEUNG, 2019). FBP works with a simplified
CT system model, as described in Section 1.2, that results in a more manageable math-
ematical model. As a consequence, equations in analytical closed-form can be derived,
enabling an efficient reconstruction of CT images. However, the simplification of the CT
system model comes at a price. It becomes quite challenging to incorporate new CT system
geometries, such as cone-beam and multislice, in FBP implementation, and, threfore, it is
difficulty to adapt FBP to new CT scanner architectures (HSIEH, 2009c).
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An alternative to the lack of flexibility of the classical approach is to consider the
reconstruction problem as a linear system, y = Ax + e , where A describes the process
of obtaining the image, y describes the projections captured by CT scanner sensors, x is
the image to be reconstructed, and e is the error in the process. Therefore, for iterative
reconstruction, it is natural that numerical linear algebra methods have been proposed.
Along this line, the Algebraic Reconstruction Technique (ART) was proposed as an
alternative to FBP (GORDON et al., 1970). Among the main advantages of ART are the
easiness for introducing prior knowledge regarding CT scanner geometry, the possibility of
processing truncated projections, and better performance in CT scans with limited angles
(HSIEH, 2009c). However, the use of ART implies that the computational cost increases
dramatically with the number of projections. To handle this, the Simultaneous Algebraic
Reconstruction Technique (SART) was proposed by Andersen and Kak (1984). The main
advantage over the ART method is that SART generates a complete reconstruction of
the image at each iteration. Variations of the SART have been proposed in combination
with other methods. OS-SART (Ordered-subset SART) presented gains over the original
method by decomposing and processing data in chunks called “ordered subsets” (GE;
MING, 2004); VW-OS-SART (Variable Weighted OS-SART) also showed greater potential
compared to SART or OS-SART by assigning weights to the OS-SART subsets (PAN
et al., 2006); sparsity properties combined with SART were used to reconstruct images
with limited number of projections (YU; WANG, 2010a); the SART method was adapted
to a half-threshold filtering algorithm by (YU; WANG, 2014) with great potential to
improve the quality of the image reconstructed from a small number of projections in
the presence of noise; the Least Square QR (from QR factorization) method was adapted
with soft threshold filtering technique for few-view image reconstruction, resulting in the
LSQR-STF algorithm, implemented using SART (FLORES et al., 2015); and a few-view
CT reconstruction method based on SART and group-sparsity regularization, named
as GSR-SART, was proposed using the concept of a group as the basic unit of sparse
representation, instead of a patch, so that the image domain prior regularization term
aims to eliminate the over-smoothing effect caused by the classical TV based methods
(BAO et al., 2018). These are the most relevant contributions to the SART method.

For real systems, however, matrix A can be determined based on many system
parameters, such as detector response, focal spot shape, scattering of X-ray beams, and
other physical and/or geometrical parameters (HSIEH, 2009c). The measurement of each
of these parameters is subject to the uncertainty principle (HEISENBERG, 1927), making
the deterministic model generate noisy reconstructions. To deal with the uncertainty
inherent in the CT image reconstruction process, statistical methods have been developed.
Next, the reader is presented to CT image reconstruction statistical approaches.
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1.6 Statistical CT image reconstruction approaches

The classical approaches, while successful, do not favour the incorporation of
physical-statistical phenomena in the CT framework. For example, photon emission is a
rare event and may be well described by the Poisson distribution, as mentioned in Section
1.3; beam behaviour is best described by a response function that models the shadows cast
onto detectors using a Gaussian model (HSIEH, 2009c); the beam hardening phenomenon
(lines and shadows adjacent to high-density reconstructed areas) that appears due to the
polyenergetic nature of X-ray emissions can be statistically corrected (LANGE et al., 1987);
the loss of photons by sensors, known as photon read-out, is a Gaussian phenomenon
(SNYDER et al., 1995); data acquisition electronic noise and energy-dependent signals
can be modeled as compound Poisson plus Gaussian noise (WHITING, 2002).

In this context, a statistical approach means adding to the mathematical model
elements that describe physical-statistical phenomena present in the CT image recon-
struction process. As a consequence, the incorporation of detailed statistical models into
CT reconstruction is not straightforward. In this sense, many solutions for the CT image
reconstruction problem use some form of statistical approach (CARSON; LANGE, 1984;
MAN et al., 2000; MAN et al., 2001; ELBAKRI; FESSLER, 2002; YU; WANG, 2009; YU;
WANG, 2010b; XU et al., 2011; DEáK et al., 2013; YU; WANG, 2014; CHOUDHARY et
al., 2014; FLORES et al., 2015; BAO et al., 2018; ZHU; PANG, 2018). Adaptive statistical
iterative reconstruction techniques have shown significant results compared to non-adaptive
techniques (DEáK et al., 2013; CHOUDHARY et al., 2014; KIM et al., 2016; Zhang et al.,
2018). In general, although the models incorporate part of the statistical phenomena, most
of these phenomena are not modeled since the practical effects are relatively insignificant
and result in high-cost computational solutions.

An important method is proposed by Clark et al. (2015), which consists of using
rank-sparse kernel regression filtering with Bilateral Total Variation (BTV) to map the
reconstructed image into spectral and temporal contrast images. In this work, the authors
strictly constrain the regularization problem while separating temporal and spectral
dimensions, resulting in a highly compressed representation and enabling substantial
undersampling of acquired signals. The method (5D CT data acquisition and reconstruction
protocol) efficiently exploits the rank-sparse nature of spectral and temporal CT data to
provide high-fidelity reconstruction results without increased radiation dose or sampling
time. However, a remark should be made regarding the use of BTV (regularization based
on l1 norm). This often leads to the piecewise constant result and hence tends to produce
artificial edges on the smooth areas. In order to mitigate this counterpoint of l1 norm
regularization, Charbonnier et al. (1997) developed an edge-preserving regularization
scheme known as Bilateral Edge Preservation (BEP), which allows the used of a lp norm,
1 < p < 2, and is applied in this work.
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Sreehari et al. (2016) proposed a plug-and-play (P&P) priors framework with a
Maximum a Posteriori (MAP) estimate approach used to design an algorithm for electron
tomographic reconstruction and sparse image interpolation that exploits the non-local
redundancy in images. The power of the P&P approach is that it allows a wide array
of modern denoising algorithms to be used as a prior model for tomography and image
interpolation. Perelli et al. (2016) propose the denoising CT generalized approximate
message passing algorithm (DCT-GAMP), an adaptation of approximate message passing
(AMP) technique that represents the state of the art for solving undersampling compressed
sensing problems with random linear measurements. In contrast, this approach uses
minimum mean square error (MMSE) instead of MAP, and the authors show that using
MMSE favors decoupling between the noise conditioning effects and the system models.

The statistical approach, most notably based on the Bayesian framework, is widely
applied to the reconstruction of X-ray tomography, with some variations, (YU; WANG,
2009; YU; WANG, 2010b; XU et al., 2011; CAMPONEZ et al., 2012; ZENG; YANG, 2013;
CHOUDHARY et al., 2014; ZHU; PANG, 2018; SUN et al., 2019; GU et al., 2019), and
make possible the insertion of prior knowledge into the CT system model. This approach
promises two advantages.

First, it provides the search with more satisfactory solutions (noiseless ones) through
the limitation of the searchable set of solutions using an a priori function (known as
restriction). In the context of computed tomography, this means that large differences
in intensity between neighbor pixels tend to be interpreted as an outlier, and therefore,
such a solution should be disregarded (HSIEH, 2009c). For example, it is strongly unlikely
that a small part of a human tissue, represented in the image by a single pixel, has
a characteristic of intensity totally different from its surroundings. In this sense, such
a pixel should be discarded and replaced with some version more compatible with its
neighborhood. Moreover, solving the CT reconstruction system, y = Ax + e, is an inverse
and ill-posed problem, and prior knowledge often ensures the stability of the solution.

Second, we can adopt a simplified mathematical model for tomographic image
reconstruction and compensate its inefficiency (instability and noisy reconstruction) by
adding the statistical component (prior knowledge) to the objective function. However, the
model simplification has its limitations and should be used accordingly (HSIEH, 2009c).
As a consequence of prior knowledge introduction, more satisfactory solutions – low noise
level – can be found. Maximum a Posteriori (MAP) is a useful statistical framework for
CT reconstruction and favors the incorporation of the regularization term with prior
knowledge into the model.

The MAP strategy, as developed in Section 1.3, provides an objective function
composed by the sum of the probability (also known as fidelity) and the regularization
function that establishes the optimization restriction criteria, also known as a prior (or
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priori function). In the next section, we present a signal model and discuss the error issues.

1.7 Signal modeling and error considerations in CT image recon-
struction
As previously discussed, the statistical approaches can reduce deficiencies caused by

classical mathematical modeling without having to literally incorporate the complexity of
a real-world model. However, before proposing a statistical (non-deterministic) model that
results in a lower noise reconstruction, it is necessary to establish the process as a whole.
As shown in Figure 10, the process begins with a synthetic image, µ. In this work we use

Figure 10 – From acquisition to reconstruction and measurement of error.

different synthetic images as pointed in Section 1.9. The synthetic image is submitted to
the Radon transform, R (.), generating the ideal (free of noise) signal of the CT scan.

Despite the ideal scenario illustrated above, X-rays are generated in CT scanners
by accelerating electrons through an electrical potential field into a target. This process
produces quanta (energy packages) with a range of energies up to the maximum tube
potential in kVp (Kilovoltage peak)3. The generated quanta passes through the scanned
object, interacting with the material. In the interaction process, they can either be removed
from the beam (absorption), or they can arrive at the detector (detection). Arriving at the
detector, the quanta packages have a probability of being measured by the scanner sensor.
Indeed, there is a remote probability that the quanta package will not be read by the
detector, and this is known as photon read-out, as mentioned in Section 1.6. Each of these
processes is an independent event and, as a consquence, the statistics of the interaction of
3 Kilovoltage peak (kVp) is the peak voltage applied to the X-ray tube. It defines the maximum energy

of X-ray photon being responsible for the acceleration of electrons from the cathode to the anode of a
vacuum tube.
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quanta with the CT scanner are governed by Poisson statistics. Then, the mean number of
detected quanta at any energy level can be defined as λ (E) = N (E)T (E)A (E), where
E is the energy level, N (E) is the number of created quanta at a particular energy level,
T (E) is the survival probability of these quanta through the scanned object, and A (E)
is the probability of measurement in the detector. The probability of measuring a finite
number of quanta Q for a process with a mean, λ, is defined by the Poisson distribution,
P (Q, λ) = λQ

Q! e
−λ (WHITING, 2002). Once photon detection problem in CT exams is a

particle countable process, well described by Poisson statistics, it is used in the model in
Figure 10, represented by the Np random variable.

However, if we assume a high number of photons is detected at each sensor of the
CT equipment, the acquisition process can be modeled as Gaussian due to the central
limit theorem. In addition, the Gaussian model leads to additive algorithms, whereas
the Poisson model leads to multiplicative, and therefore less efficient, algorithms – as
argumented by Charbonnier et al. (1997). In this work, we assume that the signal arriving
at the CT equipment detectors is influenced by Gaussian additive noise and, from the
dosage reduction methods presented in Section 1.1, we chose to emulate the low radiation
dosage by reducing the number of projection angles processed. This means we assume that
each detector absorbs an amount of photons that allows modeling the noise as a Gaussian
additive one and the low dosage occurs by reducing the number of projections captured
by the detectors (by reducing scanning angles). Accordingly, even with the process having
a Poissonian nature, Gaussian additive noise can be added to the process, as

yN = R (µ) +Ng, (1.21)

where yN is the resulting signal that approximates a tomography signal, R (µ) is the
result of applying the Radon transform on the synthetic image, µ, and Ng is the Gaussian
additive noise.

The remainder of this work is dedicated to the reconstruction of the CT image,
µN , from the signal, yN , and the reduction of the global error, i.e., the reduction of the
difference between synthetic and reconstructed images. As a criterion for measuring the
quality of image reconstruction, we use Peak Signal-to-noise Ration (PSNR) and Structural
Similarity, known as SSIM (WANG et al., 2004). Next we formally present the proposal of
this Thesis.

1.8 The contribution of the Thesis
The present work is based on the Bayesian iterative CT image reconstruction

model presented in Sections 1.2 and 1.3. In addition, as presented in Section 1.4, Ingrid
Daubechies and colleagues (2004) proposed a generalist discussion of constraint functions
with norm lp, 1 ≤ p ≤ 2, where sparsity of data can be promoted with respect to an
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ortogonal basis on Hilbert space (H), and (sparsity can rather be) intensified as we move
the lp norm of constrainging function from p = 2 to p = 1.

As discussed in Section 1.1, the radiation dose applied to the patient in CT scans
is of great concern to the medical community. Thus, as argumented in the same section
and supported by the literature reviewed in Sections 1.5 and 1.6, the reconstruction of CT
images with low-dose radiation (meaning a small number of scanning angles) is a state
of the art problem (BAO et al., 2018; ZHU; PANG, 2018; GU et al., 2019; SUN et al.,
2019; SMITH-BINDMAN et al., 2019; YEUNG, 2019). Section 1.6 presents a variety of
iterative solutions to the problem of X-ray CT image reconstruction, including some for
low-dose. Among the most successful one has the solutions that explore the sparsity of
the constraint function in l1 norm. Nevertheless, although these solutions are effective,
they usually converge quite slowly (DAUBECHIES et al., 2004; YU; WANG, 2010a; YU;
WANG, 2014).

1.8.1 Our Hypothesis

As a hypothesis, we argue in this work that it is possible to propose a method
to reconstruct tomographic images that obtaining good results for both regular and low
dosage tomographies, able to reduce noise, preserve borders and generate few artifacts in
the reconstructed images.

1.8.2 Objectives of the work

Generally speaking, our proposal is to apply a lp norm, 1 ≤ p ≤ 2, constraining
function to accelerate the convergence of the proposed algorithms considering Peak Signal-
to-noise Ration (PSNR) metric. We also make some measurements using the Structural
Similarity (SSIM) metric. More specifically,

• we have developed a three-stage objective function to address the CT image re-
construction problem, our main contribution. The first stage is characterized by a
standard fidelity l2 norm function, whereas the second one is a noise reduction stage
defined by a lp norm function, 1 ≤ p ≤ 2. As for the third one, it is characterized
by a l1 norm function constraint. The three-stage objective function is alternately
minimized by a three-step algorithm given by (i) the minimization of the fidelity func-
tion using the Simultaneous Algebraic Reconstruction Technique (SART) algorithm,
(ii) gradient descent minimization of a Biletaral Edge Preservation (BEP) function
for noise reduction, and (iii) total variation minimization of a Discret Gradient
Transform (DGT) function by soft-threshold non-linear filtering. We experimentally
show a gain in terms of PSNR and SSIM metrics in the first steps of the iterative
reconstruction, in comparison with the well-established two-stage approach using
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l2 norm for fidelity with l1 norm for restriction, for both normal and low dosage
(emulated by a limited number of projections).

• we show experimentally that by varying the lp norm of the noise reduction function
(step 2 of the proposed objetive function) appropriately, it is possible to keep
the solution stable in terms of the PSNR and SSIM metrics, which is our second
contribution. In other words, the difference between the PSNR values of subsequent
reconstructions in the iterative process tends to decrease in a global perspective. The
same behavior is observed for SSIM values.

In summary, we propose a three-stage method that alternates (i) minimization of a
l2 norm fidelity function by Simultaneous Algebraic Reconstruction Technique (SART),
(ii) adaptive regularization of the fidelity function by a lp norm using Bilateral Edge
Preservation (BEP), and (iii) regularization of the resulting function with the sparse
operator Discrete Gradient Transform (DGT) term by Total Variation (TV). The resulting
image is continuously used to feed back the step (i) of the algorithm until reaching a
stopping criterion.

1.9 Materials and methods
The objective of this section is to describe materials and methods used in the work.

In the image reconstruction process we start from a signal originated from a synthetic
image, known as phantom, as explained in Section 1.7. We used four image phantoms,
namelly:

• Shepp-logan head phantom, from Matlab® documentation (MathWorks®, 1994) and
(SHEPP; LOGAN, 1973);

• FORBILD head phantom, as defined by Lauritsch and Bruder (2016) and Yu et al.
(2012);

• FORBILD abdomen phantom, defined by Schaller (2016);

• Checkerboard image, from Matlab® documentation (MathWorks®, 1998).

The first three images are known as digital phantoms and are widely used in medical
imaging reconstruction literature. The last image is used as counterpoint and helps in the
analysis of characteristics of the methods here studied.

We used the software Matlab® as development and simulation platform, mainly the
Image Processing and Digital Signal Processing (DSP) toolboxes. The AIR Tool Matlab®
package (HANSEN; SAXILD-HANSEN, 2012) was used to generate the system matrix A
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form the input synthetic image, the phantom. In the sequel we list the main scripts used
in this, with the correspondent scripts descriptions. They are:

• signalModel.m, to introduce gaussian noise to the generated signal, produced by
the author;

• parallelTomo.m, to generate the system matrix from the input synthetic image,
from AIR Tool Matlab® package;

• imageGenerator.m, to generate the image matrix, produced by the author;

• mainProcess.m, script used to perform the reconstruction processes with all the
methods studied in this work, produced by the author;

• mainLoop.m, to repeat the main processing a certain number of times, produced by
the author;

• psnr.m, implementating the PSNR metric, produced by the author;

• coreSART.m, implementating the SART method, produced by the author;

• coreBEP.m, implementating the BEP method, produced by the author;

• coreDGT.m, to implement the DGT method, produced by the author;

• coreSTNF.m, core implementation of soft-threshold non-linear filtering, produced by
the author;

• coreFBP.m, implementation of the Filtered Backprojection reconstruction technique,
produced by the author, and

• utils.m, auxiliary functions to produce graphs, table data, and analyze processed
data, produced by the author.

To evaluate results of reconstruction methods in this work we use Peak Signal-
to-noise Ration (PSNR) and Structural Simiralirity Method (SSIM). As there is noise
injection in the input signal, according to Section 1.7, some procedures are executed many
times – generally 101 times (HINES et al., 2003) – and the mean values of each step (PSNR
and SSIM) is calculated, presented and discussed in the graphs of Chapter 4. We reinforce
that average values of the pixels are not calculated. Instead, we calculate the average
values of the PSNR and SSIM indices in each iteration of the reconstruction process.
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2 Modeling the objective function

First in this chapter we present the Bayesian MAP framework, whose theoretical
basis was presented in Section 1.3, and which is widely used in medical image reconstruction
problems, including X-ray CT, as well as superresolution problems (YU; WANG, 2009;
YU; WANG, 2010b; XU et al., 2011; CAMPONEZ et al., 2012; CHOUDHARY et al., 2014;
ZHU; PANG, 2018; SUN et al., 2019; GU et al., 2019). This framework, as dicussed in
Section 1.3, generally consists of a fidelity function (discrepancy) minimazed by a l2 norm
operator an a constranining function (restriction) minimized by a l1 norm sparse operator.
Some solutions present a l2 norm restriction (not sparse). The implications of each type of
restriction (related to the norm) was discussed in Section 1.4. After presenting the classic
MAP solution with l1 norm restriction, we present our approach consisting of a three-step
solution with the novelty of introducing an adaptive noise reduction stage between the
minimization of the fidelity function and the restriction function of the classical model. We
also present a new two-steps solution consisting of minimizing a l2 norm fidelity function
concatenated with an adaptive lp norm restriction function, with 1 ≤ p ≤ 2.

2.1 CT image reconstruction objective function modeling with l2
norm functional for fidelity and l1 norm for restriction
This method consists of minimizing an objective function with a l2 norm fidelity

function and a prior function, as presented in Equation (1.16). The regularization is
performed by minimizing the total variation (TV), a l1 norm operator. TV is the sum of
the absolute coefficients of the discrete gradient transform (DGT) of the reconstructed
image. The DGT function is defined as

Djµ = Dm,nµ =
√

(µm,n − µm+1,n)2 + (µm,n − µm,n+1)2, (2.1)

where j = (m− 1) × W + n, m = 1, 2, ..., H, n = 1, 2, ...,W , with W and H being,
respectively, the width and height of the matrix representing the image, µ , with NJ =
W ×H pixels.

Rewriting Equation (1.16), assuming the regularizaton term as based on DGT
function, we have the objective function as follows

Φ (µ) =
NI∑
i=1

yi
2 ([Aµ]i − p̂i)

2 + βRDGT (µ) , (2.2)

where
NI∑
i=1

yi

2 ([Aµ]i − p̂i)
2 is the fidelity term, with p̂i being an estimate of pi, β being a

positive adjustment parameter to balance the terms of fidelity and TV (usually set to 1),
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and RDGT (µ) is defined as

RDGT (µ) = TV (µ) = ‖Dµ‖1, (2.3)

with Dµ = (D1µ, ..., DNJµ)T .

In order to make our notation more readable, let C(µi) = yi

2 ([Aµ]i − p̂i)
2 be the

cost function in Equation (2.2). Then we can write C (µi) =
(√

yi

2 ([Aµ]i − p̂i)
)2
, and, in

order to incorporate
√

yi

2 into A and p̂, we define the operator Λ = diag(
√

yi

2 ) ∈ RNI ×RNI

as a diagonal matrix with all the (diagonal) elements described as aΛi
=
√

yi

2 . Therefore,
we can apply the transformation

ΛA = AΛ = {aΛi
} ,Λp̂ = p̂Λ, p̂ = (p̂1, p̂2, ..., p̂NI) , (2.4)

and, introducing the auxiliary variable ν = Dµ, the objective function in Equation (2.2)
can be written in compact form as

Φ (µ) = F (µ) + β‖ν‖1 = ‖AΛµ− p̂Λ‖2
2 + β‖ν‖1. (2.5)

The ultimate goal is to minimize the objective function Φ (µ), obtaining µ̂ as

µ̂ = argmin
µ

{F (µ)− βR (µ)} , (2.6)

where the fidelity term, F (µ), represented both in the expanded version of Equation
(1.16), and in the compact version of Equation (2.5), is

F (µ) =
NI∑
i=1

yi
2 ([Aµ]i − p̂i)

2 = ‖AΛµ− p̂Λ‖2
2, (2.7)

and R (µ) is the restriction that drives the solution according to certain criteria (l1 norm
in the case of DGT function). The optimization of F (µ), although simple, is an important
concept and can be defined as

µ̃ = argmin
µ

{F (µ)} , (2.8)

with µ̃ been the estimate of original image, µ. The optimization problem described by
Equation (2.8) can be solved by the Simultaneous Algebraic Reconstruction Technique
(SART) (ANDERSEN; KAK, 1984), and consists of replacing the cost function of Equation
(2.5) by a surogate function that makes the cost function separable, so that all pixels can
be updated simultaneously (ELBAKRI; FESSLER, 2002; XU et al., 2011).

Optimization of Equation (2.6) can be solved by performing alternating minimiza-
tion between (i) optimization of the fidelity term by SART, and (ii) minimizing the total
variaton of regularization term, R (µ), by performing a pseudo-inverse of the DGT with
soft-threshold filtering algorithm whose convergence and efficiency have been theoretically
proven in (DAUBECHIES et al., 2004). In the next section we develop de model for our
first contribution.
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2.2 Three-stage objective function modeling for CT image recon-
struction with adaptive lp norm for noise reduction
As discussed in Section 1.4, the regularization based on the l1 norm often introduces

artificial edges in smooth transition areas. Moreover, a good regularization strategy should
simultaneously perform noise suppression and edge preservation. With this motivation,
Charbonnier et al. (1997) proposed the bilateral edge preserving (BEP) regularization
function. In addition, Daubechies et al. (2004) proposed regularization by nonquadratic
constraint functions that promote sparsity with a lp norm, 1 ≤ p ≤ 2. Inspired by the
bilateral total variation (BTV) regularization (FARSIU et al., 2004), a l1 norm technique,
we propose a BEP scheme adapted for CT reconstruction, which uses a lp norm, 1 ≤ p ≤ 2.
BTV regularization is defined by

RBTV (X) =
q∑

l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|‖X− SlxSmy X‖1, (2.9)

where q is a positive number, Slx and Smy are displacements by l and m pixels in the hori-
zontal and vertical directions, respectively, X is the image in reconstruction/regularization,
and α, 0 < α < 1, is applied to create a spatial decay effect for the sum of terms in BTV
regularization. The BEP regulation uses the same principle of BTV but with an adaptive
norm (instead of the l1 norm) defined by

ρ (s, a) = ρa (s) = a
√
a2 + s2 − a2, (2.10)

where a is a positive value and s is the difference that one wants to minimize. This
function was initially proposed by Charbonnier et al. (1997) to preserve edges in the image
regularization process. The parameter a is used to specify the error value for which the
regularization becomes linear (growing with the error) to constant (saturated, regardless
of the error). The same adaptive norm definition is also used in super-resolution problems
(ZENG; YANG, 2013). The ρ (s, a) function is a M-estimator, since it corresponds to the
LM (maximum likelihood) type estimation (RABIE, 2005), and has its influence function
given by

ψ (s, a) = ψa (s) = ∂ρ (s, a)
∂s

= as√
a2 + s2

. (2.11)

The influence function indicates how much a particular measure contributes to the
solution (ZENG; YANG, 2013). We illustrate in the graphs of Figure 11a the behavior
of ρ (s, a) (the error norm function), and in Figure 11b, its influence function. It can be
observed that as parameter a evolves from 0 to 1, the function changes its behavior from l1

to l2 norm. Thus, as mentioned in (ZENG; YANG, 2010; ZENG; YANG, 2013), Equation
(2.10) behaves adaptively with respect to the norm that it implements.
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Figure 11 – (a) Error norm function, Equation (2.10), and (b) influence function, Equation (2.11).

Therefore, combining Equations (2.9) and (2.10), for the particular case of CT
image reconstruction, we propose an adaptive operator defined as

RBEP (µ̃) =
q∑

l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

Nj∑
j=1

α|l|+|m|ρa
((
µ̃− SlxSmy µ̃

)
[j]
)
. (2.12)

It is important to note that s in Equation (2.10) is the same as
(
µ̃− SlxSmy µ̃

)
[j] in

Equation (2.12), that is, s =
(
µ̃− SlxSmy µ̃

)
[j], and j is the index of the pixel µ̃j of image

µ̃, with j = 1, ..., Nj. The values q, α, Slx and Smy are the same as in Equation (2.9); and
µ̃, defined in Equation (2.8), is the estimated image obtained in the i-th iteraction by
l2 minimization of the objective function in Equation (2.7). It is noteworthy that the
term RBEP (µ̃) imposes an lp regularization norm, 1 ≤ p ≤ 2, on the image µ̃. Thus, we
can rewrite the objective function of Equation (2.5), Φ (µ), so that a new regularization
term, RBEP (µ̃), is introduced between the l2 norm minimization and TV minimization.
As a consequence, the objective function proposed in this work incorporates adaptive
regularization to the objective function, and defining an auxiliary variable σ = RBEP (µ̃),
we have

Φ (µ) = ‖AΛµ− p̂Λ‖2
2 + γ‖σ‖p + β‖ν‖1, (2.13)

where γ is a positive adjustment parameter to balance the terms of fidelity and adaptive
regularization, and AΛ and p̂Λ are defined in Equation (2.4). The other parameters are
the same as in Equation (2.5), and p, 1 ≤ p ≤ 2, is the norm BEP method imposed on the
regularization process.
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2.3 Two-stage CT image reconstruction objective function model-
ing with l2 norm functional for fidelity and lp norm for restric-
tion
In this section we present a new two-stage objective function with l2 norm for

fidelity and lp norm for restriction, with 1 ≤ p ≤ 2. The arguments for proposing such a
solution are formally explained in Sections 1.4 and 2.2. However, we reinforce that l2 norm
constraining functions tends to be austere with large differences between pixels, which
are generally interpreted as edges; and to smooth out small differences, which can be
interpreted as noise. In contrast, l1 norm constraining functions tends to create artifacts in
regions with low variation between pixels and preserve differences in regions with relatively
large gaps.

The proposal is to minimize an objective function with a l2 norm fidelity function
and a lp norm prior function, as presented in Equation (1.20). We borrowed the concept of
total variation of the DGT to propose the regularization by minimizing the total variation
of the lp norm using the adaptive norm presented in Equation (2.10). In this case, TV is
the sum of the absolute coefficients of the bilateral edge preservation (BEP) function of
the reconstructed image. The BEP fucntion is defined as

Dajµ = Dam,nµ = a
√
a2 + (µm,n − µm+1,n)2 + (µm,n − µm,n+1)2 − a2, (2.14)

where j, m and n are already defined in Equation (2.1), and a is the parameter that makes
the BEP function walks from l1 to l2 norm, as a goes from a = 0+ (meaning that a it is
infinitesimally greater than 0) to a = 1, with a ∈ R. This behavior is well illustrated in
Figure 11.

In analogy with Equation (2.3), we define the adaptive total variation Ra (µ) as

Ra (µ) = TV a (µ) = ‖Daµ‖p=a+1, (2.15)

with Daµ = (Da1µ, ..., DaNJµ)T and p = a + 1 is the norm of ‖Daµ‖, a ∈ (0, 1], and
a ∈ R. Therefore, introducing the auxiliary variable ϑa = Daµ, the objective function in
Equation (1.20) can be written in compact form as

Φa (µ) = F (µ) + β‖ϑa‖a+1 = ‖AΛµ− p̂Λ‖2
2 + β‖ϑa‖a+1, (2.16)

with AΛ and p̂Λ defined in Equation (2.4). The ultimate goal is to minimize the objective
function Φa (µ), obtaining µ̂, as shown below

µ̂ = argmin
µ

{F (µ)− βRa (µ)} , (2.17)

where the fidelity term, F (µ), is represented in Equation (2.5), and Ra (µ) is the restriction
that drives the solution according to lp norm , 1 ≤ p ≤ 2, which is the case of the BEP
function.
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Optimization problem of Equation (2.16) can be solved by performing alternating
minimization between (i) optimization of the fidelity term by SART, and (ii) minimizing
the total variaton of regularization term, Ra (µ), by performing a pseudo-inverse of
the BEP with soft-threshold filtering algorithm, whose convergence has been proved in
(DAUBECHIES et al., 2004).
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3 Tree-stage objective function optimization

In this chapter the algorithm that minimizes Equation (2.13) is developed. The
optimization stages are minimized sequentially, that is, the output of the first stage is
used as input to the second one. The output of the second stage serves as input to the
third one, and the resulting image is used to re-feed the first stage. The three stages are
repeated iteratively until a satisfactory result is obtained or a certain number of steps
is reached. Thus, for the proposed method, three stages are necessary: (i) minimizing
F (µ) with SART, (ii) applying the gradient descent (GD) method to the result of the
first stage, using RBEP (µ) = γ‖σ‖p as a regularization term, and (iii) applying DGT
regularization to the previous result, minimizing β‖ν‖1 with soft-threshold filtering. For a
better understanding, each one of the three stages is presented in the sequence.

3.1 First stage - minimization of the fidelity term with Simultane-
ous Algebraic Reconstruction Technique (SART )

The first step is to solve the optimization problem described by Equation (2.13).
A popular solution was proposed by Ge and Ming (2004), which can be computationally
expressed by the iterative equation

µ̃kj = µ̃k−1
j + λk 1

a+j

NI∑
i=1

ai,j

a+i

(
p̂i − Aiµ

k−1
)
, (3.1)

where a+j = ∑NI
i=1 aij > 0, a+i = ∑NJ

j=1 aij > 0, Ai is the i-th line of A, k is the iteration
index, and 0 < λk < 2 is an arbitrary relaxation parameter (HANSEN; SAXILD-HANSEN,
2012; YU; WANG, 2014). To simplify the notation, one can establish Λ+NJ ∈ RNJ × RNJ

as a diagonal matrix with Λ+NJ
jj = 1

a+j
, and Λ+NI ∈ RNI × RNI also as a diagonal matrix

with Λ+NI
ii = 1

a+i
. Then, Equation (3.1) can be rewritten as

µ̃k = µ̃k−1 + λkΛ+NJ AT
ΛΛNI+

(
pΛ −AΛµ̃

k−1
)
, (3.2)

where the term λk is usually constant and equal to 1. The method described in Equation
(3.1) is commonly known as SART. This method produces a relatively noisy reconstruction,
as can be observed in Chapter 4. Now µ̃ is the inputted to the second stage in the
reconstruction process.
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3.2 Second stage - bilateral edge-preserving with a gradient de-
scent method
In the second stage, the goal is to solve the optimization problem defined by

µ̂ = argmin
µ

{µ̃− γRBEP (µ̃)} , (3.3)

where γ is a parameter that weights the contribution of the constraint RBEP (see Equation
(2.12)). The gradient descent method can be applied to solve this problem as

µk = µk−1 − γ 5RBEP

(
µk−1

)
, (3.4)

resulting in an optimization problem written in detail as follows

µ̂ = argmin
µ


Nj∑
j=1

ρa (µ̃) +
q∑

l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

Nj∑
j=1

α|l|+|m|ρc
(
µ̃− SlxSmy µ̃

)
[j]


. (3.5)

In Equation (3.5), µ̃ is the result of first-stage minimization, as defined in Equation (2.8),
ρa (s) = ρ (s, a) is as in Equation (2.10), but with s = µ̃, and ρc (s) = ρ (s, c) is the same
as in Equation (2.10), but with a constant c instead of a constant a and s = µ̃− SlxSmy µ̃
where Slx and Smy are the same as in Equation (2.9). Now we derive a computable matrix
form from Equation (3.5).

With Equation (3.4) in mind and substituting Equation (2.10) into the core (within
the braces) of Equation (3.5), we have

5RBEP (µ̃) = ∂

∂µ̃

a
√
a2 + µ̃2 + ϕ

q∑
l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|c

√
c2 +

(
µ̃− SlxSmy µ̃

)2

 , (3.6)

and performing the differentiation with respact to µ̃ results in

5RBEP (µ̃) = aµ̃√
a2 + µ̃2

+ ϕ
q∑

l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|
c
(
I − SlxSmy

) (
µ̃− µ̃SlxSmy

)
√
c2 +

(
µ̃− SlxSmy µ̃

)2
. (3.7)

Assuming the same considerations and notation presented in Section 3.2, Equation
(3.6) can be rewritten as

5RBEP (µ̃) = Ha (µ̃)� µ̃+ ϕ
q∑

l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|
[
I − S−lx S−my

]
�Hc (M)�M, (3.8)
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where � is the element-by-element product of two matrices of compatible dimensions, ϕ is
an adjustment parameter to balance terms inside gradient descent, and I is the identity
matrix. The matrix M = µ̃k−SlxSmy µ̃k is the difference between µ̃k and its version shifted
by SlxSmy , and the operators Ha (.) and Hc (.) are defined, respectively, as

Ha (x) = a√
a2 + x2

, Hc (x) = c√
c2 + x2

, (3.9)

and Ha

(
µ̃k
)
� µ̃k and Hc (M)�M are influence functions, as defined in Equation (2.11),

resulting from the application of the gradient descent method.

Equation (3.5) can be written in compact form as

µ̂k = µ̃k − γ 5RBEP

(
µ̃k
)
, (3.10)

and, finally, Equation (3.10) is presented in a expanded form as

µ̂k = µ̃k − γk

Ha

(
µ̃k
)
� µ̃k + ϕ

q∑
l=−q

q∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|
[
I − SlxSmy

]
�Hc (M)�M

, (3.11)

where γk is an adjustment parameter to balance the k-th value of µ̃k with the gradient
descent contribution, 5RBEP

(
µ̃k−1

)
, as defined in Equation (3.8).

It is important to clarify that, in Equation (3.4), µ appears with the upper index
k − 1 instead of k because the previous result of the gradient descent, µk−1, feeds the
calculation of the current value, µk, and this is the manner in which gradient descent
works. In contrast, Equation (3.11) shows µ̃ with upper index k (as in µ̂) rather than
k − 1 because µ̃ is obtained in the same interaction step, k, as µ̂, but in a previous stage
denoted by the upper mark “tilde” (̃.), while the current stage is denoted by the upper
mark “hat” (̂.).

3.3 Third stage - Total Variation (TV ) minimization by Soft-threshold
Non-linear Filtering
The third stage, total variation (TV) optimization of the Discret Gradient Transform

(DGT), is to solve the problem ν = Dµ, where D is not invertible, as proposed by Yu and
Wang (2010b), which is written as

µkm,n = 1
4
(
2µk,am,n + µk,bm,n + µk,cm,n

)
, (3.12)

with

µk,am,n =


2µ̃k

m,n+µ̃k
m+1,n+µ̃k

m,n+1
4 , Dm,nµ̃

k < ω

µ̃km,n −
ω(2µ̃k

m,n−µ̃k
m+1,n−µ̃

k
m,n+1)

4Dm,nµ̃
k , Dm,nµ̃

k ≥ ω
(3.13)
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µk,bm,n =


µ̃k

m,n+µ̃k
m−1,n

2 , Dm−1,nµ̃
k < ω

µ̃km,n −
ω(µ̃k

m,n−µ̃k
m−1,n)

2Dm−1,nµ̃
k , Dm−1,nµ̃

k ≥ ω
(3.14)

and

µk,cm,n =


µ̃k

m,n+µ̃k
m,n−1

2 , Dm,n−1µ̃
k < ω

µ̃km,n −
ω(µ̃k

m,n−µ̃k
m,n−1)

2Dm,n−1µ̃
k , Dm,n−1µ̃

k ≥ ω,
(3.15)

where ω is a pre-established threshold; µ̃k =
[
µ̃k
]
mn

, with m = 1, 2, ..., H and n =
1, 2, ...,W , with W e H the width and height of the reconstructed image, respectively, and
Dm,nµ̃

k is the DGT matrix, as defined in Equation (2.1).

As explained in detail in (YU; WANG, 2010b) and observing Equation (3.13), when
Dm,nµ̃

k < ω, the values of µ̃km,n, µ̃km+1,n e µ̃km,n+1 must be adjusted so that Dm,nµ̃
k = 0.

This means that if neighbouring pixels in the reconstructed image are very close in value, it
is likely that they have equal (or very close) values in the “real image”. Then, the method
smooths the region around the pixel so that they look alike. Alternately, when Dm,nµ̃

k ≥ ω,
the goal is to reduce

(
µ̃km,n − µ̃km+1,n

)2
and

(
µ̃km,n − µ̃km,n+1

)2
, but not cancel them. In this

case, the method “recognizes” the differences between values of neighbouring pixels as
quite meaningful to be totally eliminated. Instead, the differences are just softened.
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4 Experiments and results

In the experiments, we used the synthetic images presented in Section 1.7, that
is, FORBILD head phantom, Shepp-Logan head phantom, FORBILD abdomen phantom
and a Checkerboard synthetic image, as ilustrated in Figure 12. The signal from the CT
equipment is simulated according to the model in Equation (1.21) addressing two scenarios:
(1) regular dosage with a regular number of projection (180 scanning angles), and (2)
low dosage, considering a limited number of projections (meaning a limited number of
scanning angles). On the image reconstruction side, we use the model y = Ax + e, which,
as discussed in Sections 1.4 and 1.7, denotes an inverse and ill-posed problem, where A
(NI × NJ) is the matrix that describes the capture system, x (NJ × 1) is the phantom
represented lexicographically and e (NJ × 1) is the error, whose features were presented
in Section 1.7. It is worth remembering that y is the input noisy signal from the CT
scan process, x is the image we intend to reconstruct from the input signal, which was
represented as µ in Chapters 1, 2 and 3.

Figure 12 – The original images: (a) FORBILD head phantom, (b) Shepp-Logan head phantom (c)
FORBILD abdomen phantom, and (d) Checkerboard.

By improving the system description, NI = nlnθ is the number of projections,
where nl is the number of projection lines (i.e., the number of detectors) for each scan
angle, and nθ is the total number of scan angles. nθ is the parameter whose value should
be changed when the intention is to set a new dosage value, i. e., when we want to define
a different (lower) number of projections, NI . The image has dimensions d × d, where
d =
√
NJ . In the tests with regular dosage, we used nl = 300, Θ = {0◦, ..., 180◦} (meaning

nθ = 181 ), d = 512, and therefore, NI (= nlnθ) = 54, 300 and NJ (= d2) = 262, 144. Thus,
A has dimensions 54, 300× 262, 144, which are compatible with the dimensions of y and µ,
respectively, i.e., 54, 300× 1 and 262, 144× 1. For low dosage we maintain all parameters
as defined above, except the number of scanning angles, nθ. Thus, we consider subsets of
Θ, i.e., equally spaced sets of integer values between 0 and 180 degrees named Θg. For
example, Θg=5 = {0, 45, 90, 135, 180} would be a possible subset, in which the g = 5 angles
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are equally spaced at 45 degrees1. Using this notation, Θ is equivalent to Θ180, meaning
that there are g = 180 scan angles equally spaced by 1 degree. In the experiments with
low dosage the sets Θg, with g in {15, 30} will be used. A was obtained for a parallel
architecture scanner.

Although the focus of this Thesis is the reconstruction of X-rays CT images of
low-dose, we dedicate a section of tests to reconstruction with regular dosage. As discussed
in Section 1.1 and again in the begining of this chapter, we promote regular dosage by
scanning fully through 180 degrees, generating a set of projections every 1 degree scanned.
For both normal and low dosages we will perform tests using the SART, SART+DGT,
SART+BEP+DGT – which is our proposal – and FPB techniques. The latter is a non-
iterative technique, or a direct reconstruction technique, but is considered here because
it is still used as a basis for comparison in current works (CUI et al., 2014; KIM et
al., 2016; BAO et al., 2018). For each of the iterative methods tested, it was arbitrarily
established that the iterator, k, ranges from 1 to limit, L, with 350 ≤ L ≤ 5000. In order
to compress the notation, especially in tables and graphs, we call the SART method as
“A”, SART+DGT as “B”, SART+BEP+DGT as “C” and FBP as “D”.

Because Gaussian noise and Poisson process are random, each experiment is
performed a considerable number of times2, defined arbitrarily as 101 executions by
experiment, according to Hines et al. (2003). The result of each execution is presented
both as a SSIM and a PSNR value, and the results of the experiment are presented as
the mean of the 101 SSIM and PSNR values. Following are the tests for regular and low
dosages3.

4.1 Regular dosage tests and results

In the batch of tests with regular dosage, as already mentioned, we consider nθ = 180
scanning angles, which represents, in our model, a normal amount of photon emission
(which can be understood as a normal radiation dosage), and the main results appear in
Tables 1 and 2. Although the photon detection process is Poissonian, we consider that
the amount of photons detected is sufficient for the signal to be influenced by Gaussian
additive noise. Thus, the input signal can be written as yN = R (I) +Ng, as in Eq. (1.21).

1 However, this should not be used because the number of projection lines, NI = nlg, is insufficient for a
reasonable reconstruction.

2 The idea of using the average of a considerable number of iterations is based on the central limit theorem,
which states that the arithmetic mean of a sufficiently large number of iterations of independent random
variables will be approximately normally distributed, regardless of the underlying distribution, provided
that each iteration has a finite expected value.

3 It is important to note that the result presented for each experiment (with a particular additive Gaussian
noise, or a certain number of projections) is the mean of 101 executions performed. Each execution
produces a particular SSIM and the PSNR result. We do not average pixels in any reconstructed image,
but the SSIM an PSNR of the 101 executions performed for each testing case.
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Table 1 – Comparison of CT reconstruction methods A (for SART), B (for SART+DGT), C (for
SART+BEP+DGT) and D (for FBP) applied to reconstruction of the FORBILD abdomen
phantom, Shepp-Logan phantom, FORBILD head phantom and Checkerboard images using
PSNR metric. Higher values are highlighted.

Image Method SNR (dB) Regular dosage
60 46 40 32 26 20

FORBILD abd.

A 73.6756 73.4856 72.9461 70.3194 66.1661 60.7454
B 82.9253 82.7136 82.1934 79.9417 76.4433 71.7315
C 82.1618 82.0177 81.6321 79.5944 76.1299 71.2977
D 61.6066 61.5032 61.3771 61.0078 60.3821 58.9827

Shepp-Logan

A 68.5743 68.5547 68.4941 68.0870 66.8950 63.9715
B 76.5842 76.5662 76.5114 76.2250 75.3923 73.2920
C 76.7768 76.7664 76.7161 76.4297 75.5958 73.3809
D 63.4764 63.4045 63.2907 63.0066 62.5260 61.4253

FORBILD head

A 67.3267 67.1976 66.8216 64.8104 61.1696 56.0221
B 73.2859 73.1754 72.9275 71.7489 69.6805 66.3748
C 73.1939 73.1036 72.8559 71.7029 69.5673 65.9970
D 57.5840 57.4722 57.3508 56.9422 56.2399 54.9444

Checkerboard

A 62.9987 62.9021 62.6139 60.9975 57.7587 52.8747
B 72.5736 72.5045 72.2997 70.9555 68.1817 64.2046
C 72.1864 72.1481 71.9838 70.9159 68.2774 64.1873
D 55.6984 55.5890 55.4443 55.0544 54.1965 53.2041

A careful discussion of this model was conducted in Section 1.7. The means (of 101 SSIM
and PSNR executions) of the results for each testing combination are shown in Table 1
for PSNR metric, and Table 2 for SSIM metric, both comparing the reconstructed image
with the FORBILD head phantom, Shepp-Logan phantom, FORBILD abdomen phantom
and Checkerboard synthetic images, respectively, for k = 350 iterations. The number
of iterations was chosen for presenting a good cost-benefit relation between result and
processing time. Tests were performed for the following signal-to-noise ratios (SNR): 20
dB, 26 dB, 32 dB, 40 dB, 46 dB and 60 dB. The SART implementation used λ = 1, such
as in (XU et al., 2011; HANSEN; SAXILD-HANSEN, 2012). The DGT implementation
maintained β = 1, as discussed in Section 2.1, and used as a threshold, ω, the average of
the DGT for each k iteration. The BEP implementation used γ = 0.001, q = 3, α = 0.6,
a = 0.1 and c = 0.5, as in (CHARBONNIER et al., 1997; ZENG; YANG, 2010; ZENG;
YANG, 2013). In more detail, the parameter γ, as explained in Section 3.2, is a weighting
factor for the constraint RBEP . The parameter α, as explained in Section 2.2, is a weighting
factor that attenuates the contribution of ρa according to the distance |l|+ |m| related
to pixel j, and the parameter q is the limiter of l and m, as described in Section 2.2.
Parameters are used with the same values for all methods where they apply and for all
reconstructed images.

By definition, PSNR is the ratio between the maximum possible signal power and
the noise power that affects the fidelity of its representation, and it is straightforward that
the PSNR value decreases as Gaussian noise increases. Thus, the reader can observe in Table
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Table 2 – Comparison of CT reconstruction methods A (for SART), B (for SART+DGT), C (for
SART+BEP+DGT) and D (for FBP) applied to reconstruction of the FORBILD abdomen
phantom, Shepp-Logan phantom, FORBILD head phantom and Checkerboard images using
SSIM metric. Higher values are highlighted.

Image Method SNR (dB) Regular dosage
60 46 40 32 26 20

FORBILD abd.

A 0.3874 0.3631 0.3067 0.1567 0.0639 0.0207
B 0.9803 0.9781 0.9719 0.9264 0.8095 0.6359
C 0.9807 0.9794 0.9756 0.9372 0.8226 0.6471
D 0.7181 0.6503 0.5825 0.5120 0.4417 0.3201

Shepp-Logan

A 0.3500 0.3419 0.3197 0.2278 0.1307 0.0636
B 0.9662 0.9656 0.9639 0.9529 0.9208 0.8156
C 0.9755 0.9751 0.9741 0.9674 0.9448 0.8473
D 0.6365 0.5966 0.5322 0.4732 0.4279 0.3403

FORBILD head

A 0.2547 0.2361 0.1979 0.1133 0.0608 0.0272
B 0.9511 0.9468 0.9349 0.8692 0.7102 0.4771
C 0.9579 0.9549 0.9463 0.8935 0.7395 0.4971
D 0.6365 0.5966 0.5322 0.4732 0.4279 0.3403

Checkerboard

A 0.1153 0.1124 0.1079 0.0919 0.0689 0.0390
B 0.8838 0.8783 0.8608 0.7745 0.6220 0.4118
C 0.9424 0.9394 0.9310 0.8776 0.7367 0.4861
D 0.4086 0.3587 0.3437 0.3153 0.2604 0.1933

1 that methods B (SART+DGT) and C (SART+BEP+DGT) present near PSNR values,
while methods A (SART) and D (FBP) presents the lower ones, considering that the same
level of Gaussian noise is added. The FBP method has the worst performance regardless
of the signal-to-noise ratio in dB (SNR dB) of the input signal or the reconstructed image.

From the point of view of the SSIM metric, for all reconstructed images, the
proposed method (C) presents significantly better results as the SNR dB decreases (noise
increases), as shown in Table 2. In more detail, as the SNR dB decreases, the SSIM results
diverge more clearly between the methods C (SART+BEP+DGT) and B (SART+DGT)
for all the results observed in Table 2. It is noteworthy that the SSIM and PSNR metrics
are consistent with each other and this reinforces the assumption that the SSIM metric
works as a quality indicator for the reconstruction of CT images. The SSIM metric tends to
consider more effectively the structural features of the image(WANG et al., 2004). PSNR
result, in turn, compares the overall power of the reconstructed image without taking into
account its structural characteristics.

Figure 13 shows one of the reconstructed FORBILD head phantom images (among
101 executions) for methods A (SART), B (SART+DGT), C (SART+BEP+DGT) and
D (FBP) with SNR = 40 dB. The image of Figure 13a, and its detailed region in Figure
13e, represents the SART reconstruction. Images in Figure 13b and Figure 13f represents
the reconstruction for the SART+DGT method. Figures 13c and 13g represents the
reconstruction for SART+BEP+DGT method, and Figures 13d and 13h, the reconstruction
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using the FBP method. The arrows in the images show relevant elements of comparison
and the visual results are coherent with Table 2. Figure 13g shows more clearly defined
details compared to Figure 13f. Figure 13h, result of FBP reconstruction, shows clearly
defined details, but also shows stripes and marks common in the FPB reconstruction
process. As it can be seen in Table 2, SSIM results are favorable to the proposed method,
SART+BEP+DGT, compared to the iterative methods SART, without any regularization,
and SART+DGT, which regularizes the solution using l1 norm. We assign this difference
to the ability of the proposed method to remove noisy signal from the SART step and
deliver a better quality signal for the DGT step, which applies the minimization by total
variation in l1 norm.

Figure 13 – Comparison of images reconstructed with (a) SART, (b) SART+DGT, (c)
SART+BEP+DGT, and (d) FBP methods, and their respective details in (e), (f), (g) and
(h) for the FORBILD head phantom input signal with Gaussian additive noise of 40 dB.
This plot represents one single aleatory reconstruction experiment.

Figure 14 shows the results for methods A, B, C and D for the Shepp-Logan
head phantom with SNR= 60 dB. As can be seen, method B (SART+DGT) and C
(SART+BEP+DGT), repectively, Figures 14f and 14g, shows consistent edges and relatively
low noise, if in comparison with metods A (SART) and D (FBP), Figures 14e and 14h.
In addition, we can observe that, as discussed in Section 1.4, the restriction by l1 norm
tends to produce artificial edges on the smooth areas, as highlighted in Figure 14f. Note
that these artifacts do not appear in the reconstruction shown in Figure 14g, performed
by the proposed method (SART+BEP+DGT), while preserving the edges with certain
quality. We attribute this behavior to the introduction of BEP in the process, as discussed
in Section 3.2. In more detail, the lp norm imposed by BEP smoothes the relatively small
differences between neighbor pixels, minimizing the impact of the later applied l1 norm.
The proposed method presents SSIM results subtly superior to the other methods, as
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shown in Table 2. Methos B and C present similar noise level according to PSNR metric,
as shown in Table 1. It is noteworthy that methods A and D visually produce better
defined edges, but with a large amount of noise, as indicated in Table 1.

Figure 14 – Comparison of images reconstructed with (a) SART, (b) SART+DGT, (c)
SART+BEP+DGT, and (d) FBP methods, and their respective details in (e), (f), (g) and
(h) for the Shepp-Logan head phantom input signal with Gaussian additive noise of 60 dB.
This plot represents one single aleatory reconstruction experiment.

Figure 15 shows the reconstruction of the FORBILD abdomen phantom for SNR
46 dB. As usual, the A (SART) and D (FBP) methods deliver the noisiest reconstructions.
However, this time, SART+DGT and SART+BEP+DGT reconstructions present visually
very close results, and PSNR and SSIM values in Tables 1 and 2 support this observation.

Figure 15 – Comparison of images reconstructed with (a) SART, (b) SART+DGT, (c)
SART+BEP+DGT, and (d) FBP methods for the FORBILD abdomen phantom input
signal with Gaussian additive noise of 46 dB. This plot represents one single aleatory
reconstruction experiment.

Next, Figure 16 shows the reconstruction of the synthetic Checkerboard image.
This is not a typical image for CT, but serves as a counterpoint for the analysis of the
methods. The A (SART) and D (FBP) methods present characteristic noise from their
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reconstruction processes. Methods B (SART+DGT) and C (SART+BEP+DGT) present
visually similar results. However, when checking the data in Table 2, as well as the graphs
of Figures 17j,k,l, we observe that their SSIM values are markedly different. This difference
is associated with the distance between the gray level of each pixel of the reconstructed
image and its original pair. As an example, we chose two boxes within the checkerboard,
named 1 and 2. Then, we calculated the mean intensity of the pixels in boxes 1 and 2 in the
reconstructed SART+DGT image and in SART+BEP+DGT image, as well as with the
correspondent boxes in the original Checkerboard image. For boxes 1 and 2 in Figure 17b,
the average of pixel intensities is, respectively, 0.9465 and 0.6579. In Figure 17c, the same
calculation results in 0.9696 and 0.6693. Finally, the mean intensities of the pixels in boxes
1 and 2 of the orignal image are, respectively, 1 and 0.7. Therefore, the differences between
the boxes 1 and 2 of the reconstructed images in relation to the original image favor (are
smaller for) the reconstruction using the SART+BEP+DGT method. Consequently, the
average pixels intensities for the reconstruction with the proposed method are closer to
original image in comparison to the other methods. This is the working principle of the
SSIM metric. Indeed, structural similarity compares luminance, contrast and structure
between images (WANG et al., 2004).

Figure 16 – Comparison of images reconstructed with (a) SART, (b) SART+DGT, (c)
SART+BEP+DGT, and (d) FBP methods for the Cherckerboard synthetic input signal
with Gaussian additive noise of 32 dB. This plot represents one single aleatory reconstruction
experiment.

In spite of the results obtained so far, by analyzing the reconstruction process more
closely (step by step), as shown in Figure 17, it is clear that, the lower the SNR value of
(the higher the noise in) the input signal, the earlier the proposed method reaches the
final result obtained by the reference method. For example, in the graph of Figure 17a
that shows the results for the FORBILD head phantom image, with an SNR of 60 dB,
the result of method B (with k = 350 steps) is matched by the proposed method, C, in
step k = 239; in the graph of Figure 17b, with an SNR of 40 dB, the result is matched
in step k = 196; and in the graph of Figure 17c, with an SNR of 32 dB, the result is
reached earlier, in step k = 118. SART+BEP+DGT method presents a better response to
Gaussian noise in comparison to SART+DGT method with respect to the SSIM metric.

The same behavior can be observed for the Shepp-Logan head phantom. As shown
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Figure 17 – Comparing reconstruction methods measured by SSIM with SNR values of (a) 60 db, (b)
40 db, and (c) 32 db for the FORBILD head phantom; SNR values of (d) 40 db, (e) 32
db, and (f) 26 db for the Shepp-Logan head phantom; SNR values of (g) 46 db, (h) 40 db,
and (i) 32 db for the FORBILD abdomen phantom; and SNR values of (j) 46 db, (k) 40
db, and (l) 32 db for the Checkerboard image. This plot represents a single reconstruction
experiment, ramdomly selected.

in Figure 17d, for a Gaussian noise of 40 dB, the result of SART+BEP+DGT method is
reached with k = 181 steps; for 32 dB, with k = 162 steps; and for 26 dB, the result of
SART+DGT method is equated with k = 121 steps in SART+BEP+DGT method. Figures
17g, 17h and 17i present the evolution of SSIM values for reconstruction methods B and
C for the FORBILD abdomen phantom. Figures 17j, 17k and 17l present the same for the



4.1. Regular dosage tests and results 67

Checkerboard image. In both cases, the behavior is maintained, that is, the SSIM values
show greater dissociation between methods B and C (in favor of method C) as the SNR
dB decreases (or noise increases). An observation should be made to the graph of Figure
17g. In this case there is no gain of the proposed method compared to the SART+DGT
method, since both reach practically the same value for step k = 350. Regarding to the
SART method, it is not represented step by step in the graphs of Figure 17 because of its
low performance when compared with SART+DGT and SART+BEP+DGT values.

In more accurate analysis, Figure 18 shows box plot graphs comparing the recon-
struction methods SART+DGT and SART+BEP+DGT for all the phantoms studied in
this work, for k = 350 iteractions.

Figure 18 – Box plots of the (a) FORBILD head phantom, (b) Shepp-Logan head phantom, (c)
FORBILD abdomen phantom and (d) Checkerboard image reconstructions, both with
SNR = 32, SNR = 40, SNR = 46 and SNR = 60 dBs for both SART+DGT (left side) and
SART+BEP+DGT (right side) for k = 350 iteractions. Each box plot is obtained by a
sequence of 101 executions of a particular testing case.

Each graph of Figure 18 shows two groups of box plots, one on the left and one
on the right, separated by a vertical line in the middle. The left one represents the 101
reconstructions performed for the 32, 40, 46 and 60 dB SNR bands using the SART+DGT
method; and the one on the right reproduces the box plots of the proposed method,
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SART+BEP+DGT under the same conditions.

It is noteworthy that the results of the proposed method outperform the SART+DGT
method in terms of the SSIM metric. For example, for the reconstruction of the FORBILD
head phantom signal, Figure 18a, the result of the proposed method with SNR = 46 dB
overcomes the SART+DGT method result for 60 dB. For reconstruction with Shepp-Logan
signal, Figure 18(b), the results are even more prominent. Note that in this case the result
of the proposed method with SNR = 32 dB Gaussian noise overlaps the reference method
result to 60 dB. The same results holds for FORBILD abdomen phantom and Checkerboard
image. All these results are also presented in Table 2. In Appendix A.1, Table 3 shows the
mean, median, standard deviation, maximum and minimum for reconstruction methods
B (SART+DGT) and C (SART+BEP+DGT) for the FORBILD head, Shepp-Logan,
FORBILD abdomen and Checkerboard phamtons for the SNR válues in Figure 18. Each
box plot in Figure 18 corresponds to a row in Table 3. It is important to note that there
is no overlap between the minimum and maximum values of each experiment.

4.2 Low dosage tests and results

As recommended by the ALARA principle, an alternative to reduce the total amount
of radiation applied to a patient is decreasing the number of projections in the acquisition of
the CT signal. According to the signal model proposed in Equation (1.21), we will consider
the projections as individually influenced by Gaussian additive noise, and the low dosage
signal is provided by reducing the number of scanning angles. In the batch of tests with
low dosage projections, we consider using the sets of angles Θg, with g in {15, 30}, where
g is the amount of angles in Θg. This means Θg=15 = {0o, 12o, 24o, 36o, ..., 168o, 180o} and
Θg=30 = {0o, 6o, 12o, 18o, ..., 174o, 180o}. In our model, these limited number of projections
represent a reduced amount of photon emission, which can be understood as a low radiation
dosage, as discussed in Section 1.1. All low dosage presented in this section is performed
with signal-to-noise ratio (SNR) = 32, 46, and 60 dB. The SART stage used λ = 1, as in
(XU et al., 2011; HANSEN; SAXILD-HANSEN, 2012). The DGT stage maintained β = 1,
as discussed in Section 2.1, and used as a threshold, ω, the average of the DGT for each k
iteration. The BEP stage used γ = 0.001, ϕ = 0.150 (Section 3.2), a = 0.5, q = 3, α = 0.6,
and c = 0.1 (Section 2.2). All parameters were empirically set.

A batch of experiments using the set Θg, with g in {15, 30}, of projections for
SART (A), SART+DGT (B), SART+BEP+DGT (C) and FBP (D) for PSNR and SSIM
metrics are shown in Appendix A.2, Table 4, for the FORBILD head phantom (FH) and
Shepp–Logan head phantoms (SL); and, in Appendix A.3, Table 5, for the FORBILD
abdomen phantom (FA) and Checkerboard (CH) synthetic images. Analyzing the results
for the PSNR metric with 15 and 30 projections, it is observed that for k = 350 steps, the
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results of the SART+BEP+DGT method present a higher PSNR value in general. The
exceptions are the FA and FH images, with an SNR of 32 dB. For k = 700 and 1000 steps
and 30 projections, the results suggest a balance between methods B and C according to
the PSNR metric. Again with the PSNR metric, of 15 projections, results for k = 700 steps
favor the SART+BEP+DGT method in most tests performed. For the SSIM metric, the
proposed method presents interesting results when compared to the SART, SART+DGT
and FBP methods.

For the reconstruction of Shepp–Logan head phantom with 15 angles of projection,
Figure 19 shows the evolution of the SSIM and PSNR values for SART+BEP+DGT
(proposed), SART+DGT, and pure SART methods for SNR = 60 dB. In this particular
experiment, marker 1 in Figure 19a indicates the highest SSIM value, 0.9240, reached by
the proposed method and corresponding to the highest PSNR value, 72.7103, indicated by
marker 1 in Figure 19b. Marker 2 shows in Figures 19a and 19b, respectively, the SSIM
(0.8819) and PSNR (71.7521) values obtained in step k = 551. Marker 3 in Figure 19b
highlights the point at which the SART+DGT method reaches the same PSNR value as
the proposed method, in step k = 1015, approximately, and the graphs in Figure 19 agree
with Table 4, Appendix A.2.

Figure 19 – Evolution of (a) SSIM and (b) PSNR values for the reconstruction of the Shepp–Logan
phantom with 15 projections for pure SART, SART+DGT, and SART+BEP+DGT methods
with SNR = 60 dB..

Looking closely at Figures 20b,c, it is possible to note the presence of random
noise (indicated by the white arrows) that manifests as small white dots in Figure 20b,
while in Figure 20c this phenomenon is not easily perceived. This is because the BEP
regularization used in the proposed method (Figure 20c) tends to eliminate noise faster.
For reconstructed images with such a small number of projections (15 projections), the
noise level in the initial steps of the process is relatively high, and the application of the lp
norm, 1 < p < 2, through BEP restriction tends to eliminate relatively large differences in
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comparison to the l1 norm restriction with DGT. Even so, reconstruction performed by
the SART+DGT method produces a more homogeneous image, as shown in Figure 20b,
but images in Figure 20b,c reaches the same PSNR value, 72.7103, in different k steps,
respectively, k = 1015 and k = 551. Thus, method C is, in this sense, more efficent them
the other iterative methods presented. This is also related to the elimination of random
noise by the introduction of BEP regularization in the reconstruction process. Figures
20a,d presents, respectively, the results of SART and FBP reconstructions. It is important
to note that for the FBP reconstruction, in cases of low dosage (few projection angles
or limited number of projections), the results are unsatisfactory when compared with
iterative methods.

Figure 20 – (a) The pure SART reconstruction with k = 553 steps, PSNR: 63.4625, SSIM: 0.1662, (b)
the SART+DGT reconstruction with k = 1015 steps, PSNR: 72.7103, SSIM: 0.8920, (c) the
SART+BEP+DGT reconstruction with k = 553 steps, PSNR: 72.7103, SSIM: 0.9240, and
(d) the FBP reconstruction with PSNR: 62.2881 and SSIM: 0.1480. All with SNR = 60 dB
with 15 projections for the Shepp–Logan head phantom.

For the reconstruction of the FORBILD head phantom with 30 projections with
SNR = 46 dB, shown in Figure 21, we observe that the best PSNR (70.7700) obtained
by the SART+BEP+DGT (proposed) method in step k = 550 (Figure 21b, marker 1)
is reached by the SART+DGT method in step k = 650 (Figure 21b, marker 3). Marker
2 shows, in Figure 21a,b, respectively, the SSIM (0.8728) and PSNR (70.6901) values
obtained in step k = 550 for SART+DGT method. Note that these values are smaller
than those of marker 1, from method SART+BEP+DGT, for both metrics. The SSIM
values remain higher for the proposed method, according the graph of Figure 21a. We
show the evolution of the pure SART method in terms of SSIM and PSNR for comparison
purposes only, since its performance is evidently worse than those of methods B and C.

Observing the reconstructions of methods B and C, shown, respectively, in Figure
22b (with k = 650 steps, PSNR = 70.7706, SSIM = 0.8774) and 22c (with k = 550 steps,
PSNR = 70.7700, SSIM = 0.9015), despite the slight advantage in index, k, and metrics,
SSIM and PSNR in favor of SART+BEP+DGT, the images practically do not present a
difference, except for a better contrast level presented by Figure 22c. This visual perception
regarding contrast has support in the results of structural similarity presented in the graph
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of Figure 21a. In fact, for the SSIM metric, the proposed method, SART+BEP+DGT,
is supeior to SART, SART+DGT and FBP methods. The pure SART reconstruction is
shown in Figure 22a, the FBP reconstruction is shown in Figure 22d, and, in both cases,
results are not competitive.

Figure 21 – Evolution of (a) SSIM and (b) PSNR values for a particular reconstruction of the
FORBILD head phantom with 30 projections using the pure SART, SART+DGT, and
SART+BEP+DGT methods with SNR = 46 dB.

Figure 22 – (a) The pure SART reconstruction with k = 550 steps, PSNR: 62.8476, SSIM: 0.1332, (b)
the SART+DGT reconstruction with k = 650 steps, PSNR: 70.7706, SSIM: 0.8774, (c) the
SART+BEP+DGT reconstruction with k = 550 steps, PSNR: 70.7700, SSIM: 0.9015, and
(d) the FBP reconstruction with PSNR: 57.1816 and SSIM: 0.0955. All with SNR = 46 dB
with 30 projections for the FORBILD head phantom.

We can argue that the introduction of the BEP stage in CT reconstruction, as
theorized in Section 2.3, contributes not only to contrast enhancement but also to improve
edge definition, as can be seen in the comparison already made between the images in the
Figures 22b,c. In fact, optimization by the lp norm through the BEP function has the
property of preserving both the homogeneous surfaces and the edges, allowing the next
step (soft-threshold filtration with DGT) to work with a less noisy image. In this sense,
in the third step of the process, presented in Section 3.3, the soft-threshold algorithm
has better conditions to separate what can be maintained (approximately homogeneous
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surfaces) from what must be filtered and smoothed (relevant differences that can be noise
or edge).

Figure 23 shows the evolution of the SSIM and PSNR values for the reconstruction
with 15 angles of projection with SNR = 60 dB for the FORBILD abdomen phantom using
the SART, SART+DGT and SART+BEP+DGT methods. In this particular experiment,
marker 1 in Figure 23a indicates the highest SSIM value, 0.9419, reached by the proposed
method and corresponding to the highest PSNR value, 77.7180, indicated by marker
1 in Figure 23b, both obtained in step k = 685, approximately. Marker 2 shows, in
Figures 23a,b, respectively, the SSIM (0.9327) and PSNR (77.2279) values obtained in
step k = 685 by method SART+DGT. Marker 3 in Figure 23b highlights the point at
which the SART+DGT method reaches the same PSNR value of the proposed method, in
step k = 920, approximately. This means SART+BEP+DGT reaches the PSNR value of
77.7180 at about 235 steps earlier than SART+DGT method.

Figure 23 – Evolution of (a) SSIM and (b) PSNR values for a particular reconstruction of the FORBILD
abdomen phantom with 15 projections for pure SART, SART+DGT, and SART+BEP+DGT
methods with SNR = 60 dB.

Looking at the images of Figure 24a,b,c,d, representing, respectively, reconstructions
with SART, SART+BEP, SART+BEP+DGT and FBP, we can make a few comments.
Firstly, the reconstruction with pure SART, Figure 24a, presents itself quite noisy and
with edge definition consequently impaired by this noise. However, it tends to present
a good contrast, especially with respect to the black background. This, as can be seen
so far, is a positive feature of iterative methods in general (HSIEH, 2009c; ANDERSEN;
KAK, 1984; KIM et al., 2016; DEáK et al., 2013). Second, the reconstruction using
the non-iterative FBP method suffers greatly with the low sampling of the input signal.
This poor response to low dosage input is a hallmark of non-iterative methods (SHEPP;
LOGAN, 1973; HORN, 1979). Finally, when comparing the methods SART+DGT and
SART+BEP+DGT, we observed that the proposed method delivers an image that tends to
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Figure 24 – (a) The pure SART reconstruction with k = 685 steps, PSNR: 66.0972, SSIM: 0.0946, (b)
the SART+DGT reconstruction with k = 920 steps, PSNR: 77.7197, SSIM: 0.9397, (c) the
SART+BEP+DGT reconstruction with k = 685 steps, PSNR: 77.7180, SSIM: 0.9419, and
(d) the FBP reconstruction with PSNR: 61.3600 and SSIM: 0.2157. All with SNR = 60 dB
with 15 projections for the FORBILD abdomen phantom.

eliminate the prominent radial lines and bands, characteristic of low-dose reconstructions.
We attribute this result to the relaxed behavior of the lp norm, 1 ≤ p ≤ 2, with respect to
edge preservation in comparison to the l1 norm. This result is predicted by Daubechies et
al. 2004 and is discussed in Section 1.4.

Finally, an example of reconstruction for the Checkerboard image with 30 projections
and SNR 46 dB is analyzed in Figures 25 and 26. Note that although the proposed method
(SART+BEP+DGT) is overcame by the SART+DGT method in terms of PSNR values,
around k = 450, as indicated by markings 1 and 2 of Figure 25b, it remains superior in
terms of SSIM metrics, as shown in the graph of Figure 25a.

Figure 25 – Evolution of (a) SSIM and (b) PSNR values for a particular reconstruction of the Checker-
board image with 30 projections for pure SART, SART+DGT, and SART+BEP+DGT
methods with SNR = 46 dB.

It is worth noting that the SSIM result presented in Figure 25 implies that, among
the reconstructions presented in Figure 26, comparing the average of the gray levels for
the same region, the results that are closest to the original image, Figure 12d, are those
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of the proposed method. In other words, the average gray level of boxes 1, 2 and 3 of
Figure 26b, obtained by the SART+DGT method, are, respectively, 0.9439, 0.0555 and
0.6544. For Figure 26c, obtained by the SART+BEP+DGT method, are 0.9640, 0.0205
and 0.6655. It is important to note that although Figure 26 is the representation of a
single reconstruction event out of 101 experiments, the average of the intesities of pixels
in boxes 1, 2 and 3 is calculated for all the experiments performed. This means that the
proposed method produces average gray levels closer to the original values of Figure 12d,
which are respectively 1, 0, 0.7.

Figure 26 – (a) The pure SART reconstruction with k = 450 steps, PSNR: 58.4894, SSIM: 0.0371, (b)
the SART+DGT reconstruction with k = 450 steps, PSNR: 68.7222, SSIM: 0.7440, (c) the
SART+BEP+DGT reconstruction with k = 450 steps, PSNR: 68.6883, SSIM: 0.8439, and
(d) the FBP reconstruction with PSNR: 55.3843 and SSIM: 0.0678. All with SNR = 46 dB
with 30 projections for the Checkerboard image.

As previously explained, the experiments are performed 101 times for each combi-
nation of composite image experiment, SNR and number of projections and metrics (PSNR
and SSIM). Each experiment combination then generates an array of 101× k values (SSIM
or PSNR), where k is the number of steps and each row of the array is an experiment
event. Therefore, each value of the SSIM and PSNR charts shown so far is the average
of 101 different experiment events. In Figure 27, we show in boxplot the values of some
experiments. More specifically, Figure 27a shows the boxplot distribution of the PSNR
values for the Shepp-Logan image reconstruction with SNR of 46 and 60 dBs, with 15
projections only for the SART+DGT and SART+BEP+DGT methods for step k = 600.
Note that this graphs are consistent with the evolution of the PSNR values shown for
this specific case in Figure 19b. Figure 27b shows the boxplot distribution of the PSNR
values for the FORBILD head phantom image reconstruction with SNR of 46 and 60 dBs,
with 30 projections only for the SART+DGT and SART+BEP+DGT methods for step
k = 400. This graphs are consistent with the evolution of the PSNR values shown for this
specific case in Figure 21b. Figure 27c shows the boxplot distribution of the PSNR values
for the FORBILD abdomen phantom image reconstruction with SNR of 46 and 60 dBs,
with 15 projections only for the SART+DGT and SART+BEP+DGT methods for step
k = 600. Also this graphs are consistent with the evolution of the PSNR values shown
for this specific case in Figure 23b. Finally, Figure 27b shows the boxplot distribution of



4.3. Low-dose reconstruction with variation of parameter p in lp norm 75

the PSNR values for the Checkerboard image reconstruction with SNR of 46 and 60 dBs,
with 30 projections only for the SART+DGT and SART+BEP+DGT methods for step
k = 300, and the graphs are consistent with the evolution of the PSNR values shown for
this specific case in Figure 25b.

Figure 27 – Box plots of reconstructions for (a) Shepp-Logan head phantom (15 projections), (b)
FORBILD head phantom (30 projections), (c) FORBILD abdomen phantom (30 projections)
and (d) Checkerboard image (15 projections), both with SNR = 46 and SNR = 60 dBs,
and for both SART+DGT (left side) and SART+BEP+DGT (right side) for different k
iteraction values. Each box plot is obtained by a sequence of 101 executions of a particular
testing case.

4.3 Low-dose reconstruction with variation of parameter p in lp
norm
So far, the model proposed in Section 2.2 has been tested with different dosage

levels. In these tests it was observed that with fixed norm parameters applied to Equation
(3.10) (a = 1 for normal dosage, as described in Section 4.1, or a = 5 for low dosage,
as described at the beginning of Section 4.2), the results are relatively favorable to the
proposed method, at least up to a certain number of iterations, k. From there, the PSNR
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and SSIM results generally worsen together for the reconstructions performed, as can be
seen in the graphs of Figures 19,21,23,25. The graphs below, Figure 28, exemplify the
SSIM evolution of a particular reconstruction for the FORBILD head phantom, Figure 28a,
and Shepp-Logan head phantom, Figure 28b; and PSNR evolution for the same images,
shown in Figures 28c and 28d. The number of iteraction is k = 10000 steps, with 21
scan angles and no gaussian noise added. The parameter a started from a = 0.5, growing
linearly up to a = 1. The evolution of parameter a started at about step k = 100 and
ended up to k = 600 in both exemples. Explaining in more detail, the BEP stage had
norm ranging from p = 1.5 to p = 2, and, as soon as the norm p = 2 is reached, the BEP
step is smoothed by gradually decreasing (linearly) the γ coefficient, Equation (3.10), until
it reaches 0 at the end of iteractions in step k = 10000.

Figure 28 – Values for reconstruction of (a) FORBILD head phantom (SSIM values), (b) FORBILD
head phantom (PSNR values), (c) Shepp-Logan head phantom (SSIM values), and (d)
Shepp-Logan head phantom (PSNR values), for both Adaptive SART+BEP+DGT (show
in the grapha as Adaptive), SART+BEP+DGT, SART+DGT and SART for k = 10000
iteraction values and 21 projections.

At the beginning of the reconstruction process with low dosage, there are many
discrepancies between neighboring pixels that should not be treated as edges. Thus, the
BEP stage begins to operate using the standard p = 1.5, contributing to the early reduction
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of such large discrepancies. As the iterations evolve, the large differences tend to be more
penalized as p approaches limit value 2. The DGT stage performs the shrinkage of the
large differences, contributing to their relative smoothing. The BEP stage with p = 2
works as a softener for the soft-threshold filtration algorithm of step 3. With the passage
of the iterations, the effect of the BEP stage is mitigated by linear reduction of the γ
parameter, until the process is finalized.

With this in mind, it is reasonably acceptable to infer that might exist some kind of
adjustment that can be made in parameter a, which defines the norm, so that the process
continues to gain in terms of PSNR and SSIM. Therefore, it is important to know how this
model behaves in long-term processing. In Figures 29, for the SSIM metric, and, in Figure
30, for PSNR metric, it can be observed that the Adaptive version of SART+BEP+DGT
method is consistent with respect to convergence and presents better error reduction in
terms of the PSNR and SSIM metrics in comparison to SART and SART+DGT methods.

Figure 29 – Structural similarity (SSIM) difference along k iterations, 1 < k ≤ 5000, for pure SART,
SART+DGT, and SART+BEP+DGT reconstructions for (a) Shepp–Logan head phantom
and (b) FORBILD head phantom.

In Figure 30, the PSNR value of the k–th iteration is obtained in relation to the
previous reconstruction, k − 1. In this sense, it is important to note that the SART +
DGT method promotes some instability in relation to the PSNR metric. It can be inferred
that this behavior is related to the restriction by the l1 norm, since neither SART, nor
SART+BEP+DGT present such behavior.
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Figure 30 – Peak signal-to-noise ratio (PSNR) difference along k iterations, 1 < k ≤ 5000, for the SART,
SART+DGT, and SART+BEP+DGT reconstructions for (a) Shepp–Logan head phantom
and (b) FORBILD head phantom.
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5 Conclusion and future works

The proposed method consists of the steps (i) SART reconstruction, (ii) BEP
adaptive minimization and (iii) TV minimization via DGT, synthetized in equation (2.13).
It presents, in the first steps of the processing, better results for both the SSIM and PSNR
metrics, as it can be seen in Chapter 4. These results may indicate reconstructed images
with better visual quality, better contrast and edge definition, according to the hypothesis
in Subsection 1.8.1.

As mentioned in Section 1.4, regularization with l1 norm usually leads to the
piecewise constant result and hence will produce artificial edges on the smooth areas. The
reconstruction with the proposed method tends to mitigate this problem, as highlighted
in Figure12g. In that example of Section 4.1, the reduction of artifacts in constant
reconstructed areas is attributed to the application of the lp norm imposed by BEP which
smoothes relatively small differences between neighboring pixels, minimizing the impact of
the later applied l1 norm.

In the study performed in Section 4.1, summarized in Figure 15, it is straightforward
to note that the lower the SNR value of the input signal, the earlier the proposed method
reaches the final result obtained by the reference method. This result is confirmed for
practically all the reconstructions, with k = 350 steps, presented in Figure 15 with the
proposed method in comparison to the SART+DGT method, which applies l1 norm
constraint to the reconstrucion process.

It is important to emphasize also the result presented by the proposed method
in relation to the contrast, in comparison with the other methods studied in this work,
both for regular dosage and for low dosage, as it can be observed, respectively, in Section
4.1, Figure 14, and Section 4.2, Figure 24. It is reinforced here that, in both cases, the
average of the intesities of pixels in boxes 1, 2 and 3 is calculated for all the experiments
performed. This means that this result is not a casuality, but represents a standard for
the entire set of 101 experiments performed.

At some point the proposed method reaches its maximum PSNR value. From this
point forward, the reference method gives higher values of PSNR and, consequently, a less
noisy reconstruction (from the point of view of the PSNR metric). Even after the apex of
the proposed method with regard to the value of PSNR, the value of SSIM remains, in
many of the cases studied, above when compared to the result of the reference method. Best
values for SSIM generally result in images with better contrast, as discussed in previous
paragraphs, and this is very important for artifact viewing and contour distinction in the
reconstructed image. Structural similarity works considering morphological features in the
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evaluation of reconstruction results and, for this reason presents results more suitable to
human standards, when compared with the PSNR metric.

Since we injected noise into the signal used to perform the reconstruction, as
discussed in Section 1.7, in all the tests performed in Sections 4.1 and 4.2, it is important
to note that the experiments are performed 101 times for each combination of composite
image experiment, SNR and number of projections for SSIM and PSNR metrics. This
procedure is based on the Central Limit Theorem, which states that the arithmetic
mean of a sufficiently large number of iterations of independent random variables will be
approximately normally distributed, regardless of the underlying distribution, provided
that each iteration has a finite expected value. However, it is observed that we do not
average pixels in any reconstructed image, but the SSIM an PSNR of the 101 executions
performed for each testing case shown in the graphs of Chapter 4.

In Section 4.3 it is argued whether PSNR and SSIM levels can be mantained for
a recosnctruction (without considering addition of Gaussian noise) with the proposed
method. As it can be seen in the graphs in Figure 26, both the PSNR and SSIM values
remain close (sometimes above) to the corresponding values for the SART+DGT method.
For low dosage, the BEP stage begins to operate with p = 1.5. This suggests that at
the beginning of the reconstruction there are both large and small differences, with no
predominance of one over the other. As the edges become better defined, the lp norm can
go to p = 2, smoothing the small differences. This is, in fact, an inference and further
study should be performed on this topic as future work.

Finally, in Section 2.3 we proposed a new two-stage model with fidelity of l2 norm
and restriction of adaptive lp norm, 1 ≤ p ≤ 2. Initial tests were conducted with promising
results. Therefore, we suggest as future work the optimization and implementation of an
algorithm, possibly using soft threshold filtering, that promotes the reconstruction of CT
images benefiting from the adaptive norm lp, as suggested by the proposed method, but
with two stages.
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APPENDIX A – Statistical data

A.1 SART+DGT and SART+BEP+DGT regular dosage recon-
struction data
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Table 3 – Maximum, minimum, mean, median and standard deviation for reconstructions with methods
B (SART+DGT) and C (SART+BEP+DGT) according to box plot graphs in Figure 15.

Image Method SNR dB Max Min Mean Median Standard
deviation

FORBILD head

B 32 0.90288 0.90065 0.90168 0.90168 0.000490
B 40 0.91026 0.90939 0.90987 0.90988 0.000165
B 46 0.91129 0.91080 0.91108 0.91109 0.000094
B 60 0.91152 0.91143 0.91148 0.91147 0.000018
C 32 0.91824 0.91683 0.91751 0.91749 0.000287
C 40 0.92325 0.92276 0.92298 0.92297 0.000115
C 46 0.92394 0.92366 0.92379 0.92379 0.000056
C 60 0.92411 0.92405 0.92408 0.92408 0.000012

Shepp-Logan

B 32 0.83690 0.83116 0.83370 0.83368 0.001144
B 40 0.88843 0.88644 0.88748 0.88749 0.000422
B 46 0.89714 0.89605 0.89656 0.89656 0.000192
B 60 0.89974 0.89956 0.89964 0.89964 0.000036
C 32 0.85839 0.85383 0.85615 0.85616 0.000925
C 40 0.90113 0.89952 0.90038 0.90037 0.000325
C 46 0.90793 0.90690 0.90730 0.90730 0.000152
C 60 0.90975 0.90961 0.90968 0.90968 0.000028

FORBILD
abdomen

B 32 0.92845 0.92496 0.92628 0.92595 0.001111
B 40 0.97272 0.97142 0.97210 0.97209 0.000408
B 46 0.97839 0.97792 0.97815 0.97816 0.000155
B 60 0.98035 0.98025 0.98029 0.98029 0.000032
C 32 0.93845 0.93640 0.93740 0.93757 0.000690
C 40 0.97597 0.97522 0.97564 0.97564 0.000195
C 46 0.97959 0.97928 0.97944 0.97946 0.000086
C 60 0.98073 0.98067 0.98070 0.98070 0.000023

Checkerboard

B 32 0.77589 0.77138 0.77375 0.77420 0.001383
B 40 0.86223 0.85968 0.86104 0.86113 0.000993
B 46 0.87908 0.87775 0.87836 0.87838 0.000390
B 60 0.88383 0.88369 0.88376 0.88376 0.000047
C 32 0.86959 0.86622 0.86797 0.86791 0.001101
C 40 0.92380 0.92282 0.92330 0.92328 0.000383
C 46 0.93265 0.93205 0.93230 0.93227 0.000179
C 60 0.93530 0.93520 0.93527 0.93529 0.000036



A.2. SART (A), SART+DGT (B), SART+BEP+DGT (C) and FBP (D) low dose reconstructions for
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A.2 SART (A), SART+DGT (B), SART+BEP+DGT (C) and
FBP (D) low dose reconstructions for FORBILD Head (FH)
phantom and Shepp-Logan Head (SL) phantom
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96 APPENDIX A. Statistical data

Table 6 – Maximum, minimum, mean, median and standard deviation for reconstructions with methods
B (SART+DGT) and C (SART+BEP+DGT) according to box plot graphs in Figure 15.

Image Method SNR dB Max Min Mean Median Standard
deviation

Shepp-Logan

B 46 71.90717 71.88161 71.89587 71.89771 0.008409
B 60 71.91477 71.91034 71.91222 71.91198 0.001509
C 46 72.52158 72.47905 72.50213 72.50002 0.012305
C 60 72.52684 72.51747 72.52046 72.52013 0.002728

FORBILD
head

B 46 70.50175 70.46123 70.48382 70.48602 0.013098
B 60 70.58128 70.57247 70.57714 70.57710 0.002610
C 46 70.70697 70.64906 70.67387 70.67692 0.017415
C 60 70.79360 70.78239 70.78839 70.78918 0.003182

FORBILD
abdomen

B 46 77.06331 76.97629 77.03127 77.03865 0.027104
B 60 77.25636 77.24148 77.24695 77.24677 0.004781
C 46 77.53407 77.39273 77.46855 77.46626 0.041331
C 60 77.72815 77.71099 77.72098 77.72212 0.005621

Checkerboard

B 46 68.11085 68.08280 68.09738 68.09688 0.007917
B 60 68.15683 68.15127 68.15474 68.15496 0.001678
C 46 68.52148 68.47624 68.50018 68.49863 0.013743
C 60 68.56514 68.55833 68.56222 68.56244 0.002284
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