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Abstract

Several diseases and accidents can lead to motor impairments, preventing humans from nor-
mal daily life activities. In order to diagnose and treat the population suffering from walking
disabilities, clinicians and physical therapists need tools that help to assess and analyze gait
patterns. Nowadays, the gold standard in motion assessment are systems comprised by infrared
high speed cameras and reflective markers. However, such systems are expensive and require
a dedicated environment, limiting their use to indoors ambients and constrained spaces. Al-
ternatively, new sensor approaches are now shifting the paradigm from the bulk and expensive
systems to wearable and more affordable technologies. Among others, inertial measurement
units (IMU) are being widely used to assess human movements with little interference to user
activities. Moreover, recent studies have demonstrated the feasibility of using optical fiber
based curvature sensors to measure joint angles. Their adaptability, low-cost, light-weight and
electromagnetic immunity are features that make them an interesting alternative technology.
As a first contribution of this Ph.D thesis, we present a novel calibration procedure as a method
to align IMUs to body segments, which, compared to other methods in the literature, is a faster
and simpler sensor placement method, with no need predefined movements at calibration nor
any additional tools. The promising results demonstrate the potential of this IMU-to-body
alignment method to become an alternative to high-cost camera-based systems, allowing the
possibility of performing human gait analysis in external environments, and with clinical ap-
plication in the near future. As a second contribution, we developed a novel IMU-POF sensor
fusion system for knee angle monitoring, which consists of merging signals from two IMUs and
a polymeric optical fiber (POF) curvature sensor. The fusion method relies more on IMUs or
POF curvature sensor data depending on the gait cycle phase, generating a filtered output that
is more accurate than any of the independent sensors. Our proposed system presented better
performance (mean RMSE < 3.3°, LFM coefficients a; = 0.99 +0.04, ay = 0.70 £2.29, R? =
0.98 £0.01 and pc > 0.99) when compared to other methods in the literature. In summary, this
Ph.D. thesis contributes to the state-of-the-art about the use of wearable technologies for mo-
tion analysis by improving the accuracy and usability of new sensors towards in-home motion

monitoring and clinical scenarios.

Keywords: Inertial sensor, polymeric optical fiber curvature sensor, IMU alignment, multi-

plicative extended Kalman filter, gait analysis.
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Chapter 1

Introduction

This Ph.D. thesis introduces a set of novel methods to perform human motion analysis using
wearable technologies. Lower limb motion analysis plays a fundamental role in the diagnosis
and treatment of walking impairment. The use of Inertial Measurement Units (IMUs) for this
purpose represents an ambulatory and ecase-to-handle motion capture solution. Several chal-
lenges and limitations regarding human motion analysis continue latent in the current state of

the art, and through the proposed methods in this thesis some of these drawbacks are overcome.

In this thesis we present a novel IMU-to-body alignment method, with fast and simple sensor
placement, using an inertial sensor network with no need of complex calibration movements.
Additionally, we developed a novel wearable system for joint angle estimation based on two
IMUs and a polymeric optical fiber (POF). With the data from the IMUs and POF we elab-
orated a sensor fusion method based on Multiplicative Extended Kalman Filter, in order to

reach a reliable knee joint angle estimation.

This introductory chapter presents the background and rationale of this work. It gives some
statements concerning to the motivation of this research, the justification and the objectives of

the developed work.



2 Chapter 1. Introduction

1.1 Motivation

About 15% of the world population live with some disability condition, of which 2% to 4%
suffer significant functional problems (WHO, 2011). Different conditions may alter biomechan-
ical characteristics that define a healthy walking pattern. Frequently, these motor impairments
significantly impact a person’s ability to function independently in daily life. For instance,
stroke is the third leading cause of disability in the world (JOHNSON et al., 2016). Stroke is
a brain dysfunction that occurs due to a disturbance in the blood supply flowing to the brain,
that may cause irreversible damages (SIMS; MUYDERMAN, 2010). According to the World
Health Organization (WHO), 15 million people experience stroke annually worldwide, and of
these, 5 million are permanently incapacitated. Stroke consequences depend on which part of
the brain is damaged and how seriously it is affected (WHO, 2014). Some post-stroke motor-
related symptoms include gait and balance disturbance, coordination problems, functional limb
weakness, muscle spasticity and total or partial inability to move the limbs on one side of the

body (GARGANO; WEHNER; REEVES, 2011).

Moreover, road traffic crashes, sport accidents, falls, infections, cancer and tumors can cause
complete or incomplete damage to the spinal cord, disturbing the normal autonomic and
sensory-motor function. Every year, between 250 and 500 thousand persons suffer a spinal
cord injury (SCI) worldwide (WHO, 2013a, 2013b). Paralysis, muscle function deficit, weak-
ness, numbness and sensation loss below the level of the injury are some of the symptoms that

these people may experience (THOMAS; ZIJDEWIND, 2006).

Furthermore, mobility impairments can often be associated with the elderly population. Till
2050, the projection of people aged over 60 years is expected to grow to 2.1 billion (NATIONS;
AFFAIRS, 2017). Diseases are a frequent cause for motor disability in people aged between
65 and 84 years old, such as Alzheimer’s dementia and Parkinson’s discase. Also, stroke, joint
injury, musculoskeletal deformations, and impairments after an orthopedic surgery frequently

result in motor impairments in elderly persons (ALEXANDER; GOLDBERG, 2005). Moreover,
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age is one of the main risk factors for falls, which is a major public health problem (ORGANI-
ZATION; AGEING; UNIT, 2008). In fact, an estimation of 646 thousands individuals’ death
due to falls occurs worldwide each year, of which over 80% are in low- and middle-income

countries.

Although bones, connective tissues and joints may begin to deteriorate in population over the
age of 60, young individuals are also susceptible to conditions such as osteoarthritis and ligament
injuries (AMOAKO; PUJALTE, 2014). Overuse of the joints during very active jobs or high-
impact /contact sports, and obesity are also risk factors (FOUNDATION, 2018). Osteoarthritis
(OA) is one of the most frequent joint diseases, which ranks fifth between all disability con-
ditions worldwide (FOUNDATION, 2018). Joint cartilage wear-and-tear (with eventual loss),
surrounding tissue degeneration and bones rubbing together characterize osteoarthritis. Its
symptoms include pain, tenderness, loss of flexibility and stiffness, which decrease range of
motion (SANTOS et al., 2011; NAKAMURA et al., 2016). Regarding ligament injuries, ante-
rior cruciate ligament (ACL) injury is the most common trauma to the knee, affecting elderly
population and especially young athletes. Complete or near complete tearing of the ACL may
occur with or without contact, producing deep pain, loss of range of motion with difficulty to

straight the affected knee, and instability.

Additionally, motor dysfunction can arise during pregnancy, at birth or after birth up to about
age of three. Cerebral palsy (CP) is the most common motor disability in childhood, which
affects about 1 in 500 neonates, with an estimated prevalence of 17 million people world-
wide (GRAHAM et al., 2016). CP may affect the normal development of infant brain and
cause physical disability mainly in the areas motion-related. The most common symptoms
of this disorder are involuntary movements, spasticity, balance and posture disturbance, and

unsteady gait (ROSENBAUM et al., 2007).

The pervasive presence of the aforementioned prevalent disorders that cause neuromotor impair-
ment demonstrate the need for efficient and objective gait analysis, which plays a fundamental

role in the diagnosis and treatment. Usually, gait performance assessment allows measuring ob-
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jectively the patients’ degree of impairment and health status, evaluate the outcome following
a period of physical therapy, and identify indicators which may lead to further injuries (WRIS-
LEY et al., 2004).

Nowadays, technologies used to analyze lower limb motion are migrating from bulky-fixed,
dedicated and high cost devices to light, compact, wearable and relatively low-cost sensors.
Other issues such as occlusion, controlled environment restrictions, and reduced assessment
volume of the optical motion capture systems are also overcome with the use of these new
sensors. Furthermore, with the rising healthcare revolution, in-home monitoring (ONDER et
al., 2012), telemedicine (ORGANIZATION et al., 2010) and telerchabilitation (HAILEY et al.,
2011) are already a reality. Thus, as traditional 3D camera systems are expensive and need time
consuming procedures for public and even private health systems, in our Center for Assistive
Technology (from Portuguese, Nucleo de Tecnologia Assistiva - NTA), one of the researches
fields is dedicated to develop ambulatory and low-cost wearable technologies for human motion

analysis, including IMU-based as well as optical fiber-based systems.

In addition, some assistive and rehabilitation technologies are also developed in NTA. For in-
stance, smart walkers (VALADAO et al., 2016; JIMENEZ et al., 2018) and an active knee
exoskeleton called ALLOR (Advanced Lower Limb Orthosis for Rehabilitation) (BOTELHO,
2017; VILLA-PARRA et al., 2017) are technologies conceived for gait assistance and rehabil-
itation of patients with cognitive and motor deficits. As a result, it is evident the need of
wireless technologies to measure and estimate human lower-limb motion in order to assess the
patient’s performance and apply corrective measures when needed, offering better solutions in

gait assistance and/or rehabilitation.

In such context, in this Ph.D. thesis we present the development of an inertial motion capture
system devoted to assess ambulatory methods for estimating gait kinematics. Moreover, we
propose a sensory fusion algorithm that combines data from IMUs with a polymeric optical
fiber (POF) curvature sensor, in order to overcome some drawbacks that arise when using only

inertial technologies. Such new methods allow implementing more robust and reliable systems
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to assess gait kinematics. Accordingly, the two main contributions of this Ph.D. thesis are

1. A method based on a correction with the gravity-vector and a known posture to align the
IMU coordinate systems to the anatomically-defined coordinate systems, which may be used

to improve the joint angle estimation in gait kinematic analysis.

2. A sensory fusion algorithm that combines data from two IMUs with data from an intensity
variation-based POF curvature sensor, which may be used to estimate with higher accuracy

the knee joint angle, improving its performance when compared to both systems separately.

1.2 Objectives

This Ph.D. thesis aims mainly to design, implement and validate novel methods for gait analysis
using wearable technologies, in order to provide a reliable system to assess the functional
performance of people with motor impairment. Around this main objective, the following

specific objectives and scientific challenges are proposed and addressed here:

1. To perform a literature study regarding methods and techniques for gait assessment using

IMUs and polymeric optical fiber (POF), as well as data fusion approaches.

2. To develop an IMU-to-body alignment method in order to improve estimation of hip, knee
and ankle joint angles. This method aims to be a new approach to approximate sensor

coordinate systems to anatomically-defined coordinate systems.

3. To develop a novel wearable system based on two IMUs and a polymeric optical fiber (POF)
curvature sensor for knee joint angle estimation. This system should be a portable, adaptable

and flexible device to assess gait towards an in-home mobile motion monitor.

4. To develop a sensor fusion technique to merge inertial data provided by accelerometers and
gyroscopes with data from an intensity variation-based POF curvature sensor in order to

estimate joint angle in an improved way.
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5. To assess and validate the proposed wearable system against a gold standard system used
as a reference. This validation will be a proof of concept of all designed and implemented

systems and algorithms developed in this thesis.

1.3 Justification

Lower-limb motion systematic study is essential for several applications and disciplines, such
as neuro-rehabilitation and physical therapy. The gold standard method for gait analysis is
the optical motion tracking based on infrared multi-camera systems and reflective markers.
Although optical instruments are widely used, these systems present some disadvantages, such
as being bulky, dedicated, volume-limited and high-cost. In addition to these disadvantages,
these optical systems perhaps are not suitable to real-time ambulatory applications, making

them impractical for telerehabilitation (KONG et al., 2013).

For this reason, several research groups currently invest efforts in the development and valida-
tion of mobile motion capture systems to provide reliable tools for therapists and clinicians to
conduct gait assessment either during diagnosis and/or rehabilitation phases. In this context,
IMUs are an in-rising alternative as wearable systems for motion tracking. For gait analysis,
each body segment intended to be tracked should have at least one IMU placed on it. And
each IMU should provide measurements, usually in three dimensions, of the angular velocity,

acceleration, and magnetic field vector in its local sensor frame.

However, the use of inertial sensors for motion analysis still yields many challenges. For in-
stance, some studies have questioned their accuracy (PICERNO; CEREATTI; CAPPOZZO,
2011; BERGAMINI et al., 2014; PASCIUTO et al., 2015; LEBEL et al., 2013; BRENNAN et
al., 2011). Regarding to this matter, when using IMU-based motion capture systems, errors
that compromise data quality and, consequently, kinematic analysis accuracy, can be classified

as follow:

1. Instrumental errors, which include accelerometers, gyroscopes and magnetometers perfor-
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mance, as well as sensory fusion techniques.

2. Misalignment errors, which refer to the alignment between the IMU coordinate system (or

axes) and the anatomically-defined coordinate system (or joint motion axes).

3. Soft-tissue artifacts, which point to the relative motion between the IMU and the underlying

body-segment.

Concerning to the instrumental errors, researches state that appropriate calibration of the indi-
vidual sensors need to be carried out in the manufacturing processes as well as in the applications
conducted by the end-user (BERNOULLI et al., 2010; MARTIN; GROVES; NEWMAN; 2016).
Since the manufacturing process of the sensors are technologically improving, it is expected that
some manufacturing errors will be compensated before commercialization. Such errors include
scale factors, bias offsets, non-linearity and axis misalignment. Some of these errors are sensi-
tive, but not only, to temperature variations. Consequently, internal temperature sensors are
included on-chip by most manufacturers to compensate drifts. An extended explanation of the
aspects and parameters to be considered during characterization of these sensors can be found
in (GREWAL; WEILL; ANDREWS, 2007; MARTIN; GROVES; NEWMAN, 2016). Perhaps,
a pervasive problem is to find commercially available IMUs without these initial compensations
or without informed parameters in their datasheets. For this reason, a proper calibration is a

complex task to be performed before using IMUs.

Moreover, to describe Earth’s magnetic field distortions that lead to magnetometer errors,
hard-iron and soft-iron concepts should also be introduced. Hard-iron distortions occur when
an external component, on the magnetometer board or platform, generates a constant magnetic
field causing superposition of magnetic fields. Soft-iron effects are associated with materials
that do not generate a magnetic field, but affect the magnetic field around themselves. These
effects are highly complex and cannot be easily modeled during in-run unrestrained move-
ments (GEBRE-EGZIABHER et al., 2006). In our research group, a recent work presented

a magnetometer calibration algorithm based on a method of least squares using the algebraic
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distance metric (MUCCIACCIA, 2017).

Additionally, most manufacturers supply sensor fusion algorithms to estimate IMUs orienta-
tion. Some others are available online. For example, a set of them was presented in a recent
work (SCHNEIDER, 2018). In other cases, if a specific algorithm is needed, the end-user should
implement it. A critical factor is that the most modern filters, apparently more robust, do not
have open code access (SCHNEIDER, 2018). This limitation may lead other researchers to
mathematical misinterpretation and long time code development, even prone to make code

mistakes.

In essence, sensor fusion techniques comprise merging information from different sensors. This
data combination goes beyond the potential of each sensor individually, looking for reliability
and higher accuracy. Furthermore, sensor fusion aims to provide a system less susceptible to
fault conditions and can yield new information, that none of the sensors alone can measure

directly (WALTZ; LLINAS et al., 1990).

Regarding IMU motion capture systems, data fusion algorithms aim to minimize the drift of
orientation data, due to the angular velocity integration, by using accelerometers and mag-
netometers measurements (ZHU; ZHOU, 2004). Thus, assuming that gravitational accelera-
tion dominates the accelerometer measurements, tilt drift minimization is possible. Likewise,
azimuth (or heading) drift decreases using the magnetometer measurements (ZHU; ZHOU,
2004). Hence, it remains in evidence that significant dynamic accelerations and magnetic dis-
turbances affect the orientation accuracy (NOGUEIRA et al., 2017; LUINGE; VELTINK, 2005;
ROETENBERG et al., 2005). In cases of significant dynamic accelerations, some researchers
propose a fixed threshold to calculate reliable acceleration time intervals (NOGUEIRA et al.,
2017; VITALI et al., 2017).

Sometimes, other aiding sensors are used to overcome the mentioned drawbacks. On the one
hand, inertial sensors can be used in combination with Global Positioning System (GPS) for

step-length estimation (KAO; CHEN; LIN, 2011) and pedestrian navigation systems (BAN-
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CROFT; LACHAPELLE, 2011). As an example, recently, the integration of IMU and an
ultrasonic sensor was presented in (XIA et al., 2019). On the other hand, IMUs in combination
with a single 3D depth sensor (i.e. Microsoft Kinect) using linear Kalman Filter (KF) and a
complementary filter were presented in (KALKBRENNER et al., 2014) and (GLONEK; WO-
JCIECHOWSKI, 2017), respectively. In (MARCARD et al., 2018), a fusion between a moving
camera (i.e. smartphone camera) and IMUs to recover 3D human pose was proposed, with the
authors solving the fusion problem by optimizing the weighted-variables of an equation that

related IMUs and camera measurements through the gradient-based Levenberg-Marquardt.

Alternatively, Kok, Hol and Schén (2015) presented an indoor 6D position and orientation
pose system using a combination of accelerometers, gyroscopes and time-of-arrival measure-
ments from an ultrawideband (UWB) system. The authors formulated the position-orientation
problem as a maximum a posteriori (MAP) problem, which was solved using an optimization
approach. Similarly, a magnetometer-free algorithm for lower-limb motion capture by fus-
ing signals from accelerometers and gyroscopes with an UWB location system was presented
in (ZIHAJEHZADEH; PARK, 2017), in which the authors proposed a novel Kalman Filter-

based fusion algorithm to track 3D location and posture.

In another research, Lim et al. (2008) used accelerometer and magnetometer measurements to
calibrate a gyroscope and a miniature optical linear encoder through a complementary-approach
data fusion algorithm. The proposed system was used to estimate a single Degree of Freedom
(DOF) elbow joint angle. In a like manner, an arm movement capture system integrating an
optical linear encoder and accelerometer was proposed in (NGUYEN et al., 2011), in which
accelerometer measurements give the link’s orientations, and the encoder provides the joint
angles. Also, some rotations are tracked using the accelerometer. However, it is not clear if a
compensation between measurements exist, so it seems that a properly-said data fusion is not
completed. Otherwise, Tognetti et al. (2015) proposed to combine signals from accelerometers
with a piezoresistive goniometer for knee joint angle measurement. The authors implemented

an indirect Kalman Filter to estimate the calibration parameter errors in order to correct the
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measured angle by the goniometer.

Nevertheless, the aforementioned systems using alternative aiding sensors present some lim-
itations for ambulatory motion capture applications. On the one hand, those GPS-aided
systems (KAO; CHEN; LIN, 2011; BANCROFT; LACHAPELLE, 2011) are mainly used to
navigation, as their performance is widely affected in indoor environments. In contrast, the
effective range of ultrasonic-based systems (XIA et al., 2019) makes them not suitable for use
in open areas. Other systems with fixed sensors such as Microsoft Kinect (KALKBRENNER
et al., 2014; GLONEK; WOJCIECHOWSKI, 2017) are limited to specific closed and controlled
environments. Similarly, UWB-aided systems (KOK; HOL; SCHON, 2015; ZIHAJEHZADEH;
PARK, 2017) are more appropriated to localization problems. Even though these two latter
can improve lower-limb motion capture, both systems require fixed instrumentation and closed

spaces.

On the other hand, the systems presented in (LIM et al., 2008; NGUYEN et al., 2011;
TOGNETTI et al., 2015) are suitable for ambulatory applications. Among these systems,
lightweight, portable, and apparently low-cost and low-power consuming, the assessment and
characterization of the systems in (LIM et al., 2008; NGUYEN et al., 2011) were limited to
upper-limb motion, presenting good correlation when compared to a commercial electrogo-
niometer. Ounly Tognetti et al. (2015) presented lower-limb motion capture, nevertheless, one
difficulty highlighted by the authors was to evaluate their system against the same IMU system
that provide accelerometers data. Another limitation of these three previous studies is that

they can monitor only one degree of freedom per joint.

Alternatively, optical fiber sensors, as an emerging technology, present some advantages that
make them attractive to develop wearable systems. They are lightweight, flexible, compact, and,
unlike some microelectromechanical systems, immune to electromagnetic field. For instance,
POF-based systems have demonstrated its adaptability and accuracy to measure joint angle
in exoskeleton applications (LEAL-JUNIOR et al., 2017, 2018). In addition, this techonology

presents multiplexing features, which allow to measure different parameters with a single sen-
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sor (PETERS, 2010), for example angle and temperature (LEAL-JUNIOR et al., 2018a). The
aforementioned advantages make optical fiber sensors an interesting option to be embedded in
textiles for sensor applications (KREHEL et al., 2014), enabling the fabrication of monitoring
systems with better appearance. Moreover, these promising technologies, when are made of

malleable materials, such polymeric optical fibers, are successfully applied in soft robotics (LI

et al., 2019).

Regarding data fusion methods used to estimate orientation, the state-of-the-art techniques are
based mainly on Kalman Filters (KF). These filters are the most popular probabilistic fusion
algorithm, representing an optimal solution to minimize the mean squared error between the
actual and estimated data (FARAGHER et al., 2012). For non-linear systems and eventually
non-Gaussian noise, several variations of the standard linear KF are presented in the litera-
ture. Many of these algorithms comprise mathematical complex tasks, and some of them are
not clearly described to be replicated by others, as mentioned in (SCHNEIDER, 2018; RANA;
HALIM, 2018; PARISI, 2017; POSTOLACHE et al., 2014). The Extended Kalman Filter
(EKF) is a direct solution mainly implemented in non-linear approaches, e.g. (YUAN et al.,
2019; BAGHDADI; CAVUOTO; CRASSIDIS, 2018; KORTIER et al., 2015; BERGAMINT et
al., 2014). Otherwise, Unscented Kalman Filters (UKF) are used in (KANG; JANG; PARK,
2019; TTAN et al., 2015). A characteristic of these filters is that they allow a more accurate esti-
mation of probability density functions under nonlinear transformations. Further comparisons
between EKF and UKF, and additional comments about other filters can be found in (FIL-
IPPESCHI et al., 2017). Moreover, the Multiplicative Extended Kalman Filter (MEKF), fre-
quently used in aeronautics, including NASA spacecraft (MARKLEY, 2003), and its variations,
e.g. (GHOBADI; SINGLA; ESFAHANI, 2018), have demonstrated superior performance when

compared to standard EKFs. Also, it is attractive by its lower computational cost.

Open-access-code data fusion methods widely used in the literature are based on Mahony’s
and Madgwick’s algorithms (MAHONY; HAMEL; PFLIMLIN, 2008; MADGWICK; HARRI-
SON; VAIDYANATHAN, 2011). Other alternative include complementary (SEEL; RAISCH;
SCHAUER, 2014; ALAM; ZHAIHE; JIA, 2014) or particle filters (PELTOLA; HILL; MOORE,
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2016; ASCHER et al., 2010), fuzzy processing (HONG, 2003), bootstrap attitude, and opti-
mization framework filters (KOK; HOL; SCHON, 2014, 2015).However, most of these filters

are computationally expensive and of complex implementation.

Concerning misalignment errors, a fundamental problem of IMU-based gait analysis is to pro-
vide a sensor-to-body calibration procedure (SEEL; RAISCH; SCHAUER, 2014). Different
approaches in the literature attempt to estimate the IMU frame’s orientation with respect to
the underlying body segment frame (FAVRE et al., 2009; CUTTI et al., 2010; PALERMO et
al., 2014; O’DONOVAN et al., 2007). For instance, a protocol named "Outwalk" was presented
in (CUTTI et al., 2010), where the authors propose a functional calibration based on pure knee
flexion-extension movement to compute distal thigh frame, with pelvis and shank sensors lo-
cated in a certain position. In another research (BRENNAN et al., 2011), the authors used
IMUs (accelerometers and gyroscopes) to quantify 3D joint angle accuracy using an instru-
mented gimbal as reference. To align the axes, they followed a functional calibration where a
predefined movement of a joint in a specific plane is required. Other alignment method was pre-
sented in (TADANO; TAKEDA; MIYAGAWA, 2013), where the authors used accelerometers
and gyroscopes to analyze 3D joint angle using quaternions, and camera images with markers

were used during two static posture to compute the sensor-to-body segment calibration.

Alternatively, Palermo et al. (2014) proposed a two-phases functional calibration procedure,
where the subject was asked to remain initially in a standing upright posture and then sit-
ting with legs stretched or lying on a table. Using the gravity vector measurements (from
all IMUs) during both postures, they computed the body-to-sensor orientation matrices. In
another study, an optimization method to identify the main joint axis was proposed by Seel,
Raisch and Schauer (2014). Exploring kinematic constraints of the joints, the authors esti-
mated the joint axis and the position vectors from the joint center to sensor frame origin by
minimizing a set of equations through least square method, and using Gauss-Newton algorithm

to solve the optimization problem.

In (LEE et al., 2015), a calibration process to calculate the rotation matrix between the sensor
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frames and the limb body frames was addressed. The authors used accelerometer and gyro-
scope measurements during standing posture in combination with movements (i.e. lift up leg
without bending the knee, assuming rotations only around one axis) to compute roll, pitch and

yaw angles in an initial position.

Nevertheless, these mentioned approaches suffer from some limitations, as most of the align-
ment methods rely on precise-predefined user movements in specific planes to define the axis
of joint motion (CUTTI et al., 2010; BRENNAN et al., 2011; TADANO; TAKEDA; MIYA-
GAWA, 2013; PALERMO et al., 2014; LEE et al., 2015), present analysis limited only to
sagittal plane (SEEL; RAISCH; SCHAUER, 2014; LEE et al., 2015), or use supplementary de-
vices as additional tools (FAVRE et al., 2009; TADANO; TAKEDA; MIYAGAWA, 2013). The
need for these additional tools also increases the experiment duration and requires experienced
personnel, which may be impractical in daily clinical routine. Also, the difficulty of predefined
movements may be hard to execute in daily life and complex to perform for motor impaired

subjects.

It is worth mentioning that soft-tissue artifacts, caused by skin and soft-tissue vibrations,
are a common problem to IMU-based and optical active-marker motion capture systems.
These artifacts are highly variable between subjects and difficult to minimize through mod-
eling (FIORENTINO et al., 2017). This error source was not addressed in this thesis because

it is out of the scope of this work.

In addition to these aforementioned error sources that affect human motion capture accuracy,
the lack of standard protocols still restricts the usability of IMU-based motion capture systems
in many clinical applications, as mentioned in recent studies (AL-AMRI et al., 2018; CHO et
al., 2018; CEREATTI; TROJANIELLO; CROCE, 2015).

To conclude, the development and validation of wearable systems that provide a reliable as-
sessment of human motion are still open issues. Thereby, in this work, we propose and validate

an alignment method to perform human motion analysis using wearable technologies based on
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gravity correction. The advantages of the proposed method, in comparison with other meth-
ods described in the literature, include the fast and easy sensor placement, with no need of
special movements performed by the user nor any additional tools, which may decrease setup
time. Additionally, we present a novel sensor fusion system based on IMUs in combination
with a an interesting alternative sensor, namely optical fiber-based curvature sensor, which, as
aforementioned, present characteristics such a compactness, portability and mainly immunity
to magnetic disturbances. In this way, we contribute to the current state-of-the-art, tackling

two error sources when using IMUs for gait analysis.

1.4 Organization

This Ph.D. thesis is organized in five chapters. Chapters 1 is compounded by the motivation
that leaded to the developed work, as well as the scientific issues and justification of this Ph.D.

proposal, including main objectives.

Chapter 2 describes the theoretical background, presenting a literature study regarding meth-
ods and techniques related to inertial measurement sensors, polymer optical fiber curvature
sensor and data fusion algorithms. The chapter presents the state-of-the-art review, including

available approaches towards gait analysis using wearable technology and sensor data fusion.

Chapter 3 presents a novel calibration procedure as a method to align IMU sensors to body
segments, which compared to current state-of-the-art systems, relies on a faster and simpler
sensor placement procedure, with no need for any additional tools. The chapter starts with
the method that includes the calibration algorithm, definition of technical-anatomical frames
and calculation of joint angles. Following, it shows an application of the method on five able-
bodied subjects performing a gait test. Finally, the kinematic data of the lower limb joints are

presented descriptively.

Chapter 4 describes a novel IMU-POF sensor fusion system that merges data from two differ-

ent sources: gyroscopes and accelerometers from two IMUs and a polymer optical fiber (POF)
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sensor. The chapter begins with the hardware concept of the sleeve system for knee angle
monitoring. Then, the mathematical concept of the Multiplicative Extended Kalman Filter
(MEKF) fusion algorithm is detailed. Subsequently, the wearable system is evaluated with
12 subjects during a walk experiment, serving as a proof-of-concept for the proposed method.
Next, the collected data is merged offline using the fusion method and validated against a gold

standard optical camera system.

Chapter 5 concludes this thesis, gathering together the main results and conclusions. Publica-
tions originated from this thesis are also summarized. Finally, future research and development

activities originated in this thesis are proposed to improve the work presented.



Chapter 2

Theoretical Background

This chapter presents an introduction to the concepts about gait cycle and how this is sub-
divided in phases and events, followed by the description of planes and axes of motion, are
presented in Section 2.1. Then, the fundamentals of inertial sensors and intensity variation-
based Polymer Optical Fiber (POF) curvature sensors are presented in Section 2.2. Next, we
briefly review the mathematical representation of attitude and motion dynamics in Section
2.3, with more focus given to the quaternions, which are the orientation representation mainly
used in this research. Finally, principles for some multi-sensor fusion methods are presented in

Section 2.4.

2.1 Human Gait

From biomechanics, human gait is the forward displacement of the center of gravity, and in
non-disability conditions, consists of keeping balance by moving harmonically the trunk and
lower limbs (WHITTLE, 2007). Biomechanical analysis can be accomplished from two perspec-
tives: kinetics and kinematics (HAMILL; KNUTZEN, 2015). The former refers to the study of
accelerations, forces and moments, but without considering the detailed position and orienta-
tion of the bodies involved. Contrary, human body kinematics defines the motion of the body

segments without any detailed knowledge of the forces that cause such motion (WHITTLE,

16
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2007). In the following subsections, we present some basic concepts of kinematics used in gait

analysis.

2.1.1 Gait Cycle

Gait is a chain of successive events that creates a cyclic pattern of movement repeated over
time (VAUGHAN et al., 1999). A gait cycle is the basic unit to characterize the way of
walking, assuming that successive cycles will be reasonably similar, if not the same. This cycle
is subdivided in two main phases, according to Figure 2.1 (WHITTLE, 2007): 1) Stance phase,
approximately 60% of the gait cycle, when the foot is in contact with the ground; and 2)
Swing phase, approximately 40% of the gait cycle, when the same foot is not in contact with
the ground and the leg is moving forward, preparing the next contact. Also, each phase can

be subdivided in periods, including loading response, terminal stance, pre-swing and terminal
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Figure 2.1: Gait phases and events (Source: Adapted from WHITTLE, 2007).
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swing (see also Figure 2.1). Details of these periods can be found in (WHITTLE, 2007; TAO
et al., 2012). Additionally, seven events subdivide the gait cycle in these periods, which are
indicated by arrows in Figure 2.1. For instance, the initial contact or heel strike (HS) is the
instant when the heel contacts with the ground, this event represents the beginning of the
stance phase and the end of the swing phase. Moreover, toe off (TO) is the instant when the

foot leaves the floor, and represents the end of the stance phase and the beginning of swing

phase (WHITTLE, 2007).

2.1.2 Planes and Axes of Human Motion

The description of human movement is based on a system of planes and axes (HAMILL;
KNUTZEN, 2015). Three imaginary planes are positioned at right angles to each other inter-
secting at the center of mass of the human body, as represented in Figure 2.2. Any movement
can be defined in a specific plane, if it actually occurs along that plane or parallel to it. Also,
the movement can be defined about an axis of rotation perpendicular to the plane (see Fig-
ure 2.2) (ANATOMYNOTE, 2019). The sagittal plane divides symmetrically the body through

the vertical, into right and left sides. The frontal plane (or coronal plane) divides the body

Cranial
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Sagittal Transverse Frontal
Plane Plane Plane

Figure 2.2: Human anatomy planes (Source: Adapted from AnatomyNote, 2019).
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into front (anterior) and back (posterior) portions. Finally, the transverse plane (or horizontal
plane) divides the body into superior (cranial) and inferior (caudal) portions. The axes of rota-
tion perpendicular to these planes are: mediolateral, anteroposterior and longitudinal (cranial)

axis, respectively.

2.1.3 Movement Description

Three-dimensional kinematic quantities can be either linear (position, linear velocity, and lin-
ear acceleration) or angular (orientation, angular velocity, and angular acceleration). In gait
analysis, angular displacements of hip, knee and ankle joints are some of the kinematic param-
eters of greatest clinical interest (FAISAL et al., 2019). The directions of the lower limb joint

movements in the three planes are shown in Figure 2.3 (WHITTLE, 2007).

Indices such as joint Range of Motion (ROM), maximum joint flexion or extension in a specific
gait phase are quite required (SOUCIE et al., 2011; MCCLELLAND et al., 2011). In addition,
spatiotemporal parameters are widely used in gait analysis. These parameters can include gait
speed, step-length, stride-length, cadence and temporal parameters such as stance and swing

time. A measurement summary for clinical gait analysis can be found in (CIMOLIN; GALLI,

2014).
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Figure 2.3: Hip, knee and ankle joint motion. (Source: Adapted from WHITTLE, 2007).
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2.2 Fundamentals of Inertial Sensors and Intensity Variation-

based POF Curvature Sensors

Inertial measurement units (IMUs), also called inertial sensors, provide angular velocity, accel-
eration and the magnetic field vector in their own three-dimensional local coordinate system.
With suitable calibration, the local frame axes describe an orthonormal base normally well
aligned with the housing of the sensor. When an IMU is placed on an object, the measure-
ments can be used to estimate the orientation of that object with respect to a fixed (inertial)
coordinate system. In the following, we will review the basic principles of MEMS (Microelec-
tromechanical Systems), such as gyroscopes, accelerometers and magnetometers. Additionally,
we will introduce an overview of the intensity variation-based POF curvature sensor, which is
used in this research as a different aiding sensor to improve accuracy when using inertial sensors

for human gait analysis.

2.2.1 Gyroscopes

Gyroscopes measure the angular rate of rotation with respect to a reference inertial coordinate
system. MEMS gyroscopes are developed using silicon micro-machining techniques. MEMS
inertial sensors are manufactured in bulk, incorporated in miniature chip packages, have low
power consumption and low-cost compared to navigation, industrial, automotive and tactical
grade sensors (ACAR; SHKEL, 2008). MEMS gyroscopes are based on vibrating mass, which
are used to measure angular velocities. A general configuration is composed of two masses
oscillating and moving in opposite directions. If an angular velocity occurs, the Coriolis force
acts on each mass also in opposite directions, changing the capacitance of the sensing element.

This capacitance change is proportional to the angular velocity (XIA; YU; KONG, 2014).

When using gyroscopes to estimate orientation, a parameter that greatly affects the accuracy is
the bias. Gyroscope bias is characterized by the average output when the device is sitting still,

expressed in degrees per second (DPS) or radians per second. In practice, the orientation of
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an IMU with respect to a reference inertial frame is defined by integrating the angular velocity
over time. However, during the integration, small errors accumulate and result in signal drift,

which is mainly due to the bias and its stability.

A typical linear sensor model for gyroscope is given by Equation 2.1,

Yg=w +by +v, (2.1)

where y, is the gyroscope output, w is the angular velocity and b, is the gyro bias, which is
modeled as a random walk process. v, is the measurement noise, modeled as a zero-mean white

Gaussian noise process with standard deviation o, i.e., v, ~ N (0, a,2).

2.2.2 Accelerometers

In its simplest representation, a single-axis MEMS accelerometer can be considered as a spring-
mass system. When the mass is displaced, it means that the device is accelerated. MEMS
accelerometers are based on different technologies, the most common are capacitive accelerom-
eters which comprise two capacitors built by a mobile silicon mass between two fixed electrodes.
Changes in the force lead the mobile mass to moves closer to one of the fixed electrodes, in-
creasing the capacitance in one side and reducing it in the other. The difference in capacitance

is proportional to the acceleration (MAENAKA, 2008).

Concerning error characteristics associated with the accelerometers, the bias is also quite crit-
ical. The bias of MEMS accelerometers, as that of gyroscopes, changes over time even at a
constant temperature. Thus, the results by integrating the accelerometer measurements to
estimate velocity and position suffer cumulative errors as well. Any bias introduced causes
an error in position which grows quadratically with time (WOODMAN, 2007). In practice,
accelerometers measure the local vertical axis by sensing the gravitational acceleration at rest.
Thus, they are used to compensate the orientation drift at least on the vertical axis. However,

during motion, accelerometers measure the sum of this gravitational acceleration, and the ac-



22 Chapter 2. Theoretical Background

celeration that is associated with velocity changes.

An accelerometer can be modeled by Equation 2.2,

Yo = M_l(Q)(a'N - gN) + ba +v, (22)

where ay is the body acceleration and gy is the Earth’s gravitational field, both expressed in
the global (reference) coordinate system. b, is the accelerometer bias and v, is the measurement
noise, modeled as a zero-mean white Gaussian noise process with standard deviation o, v, ~
N(0, 0,%). M(q) is the rotation matrix calculated using the quaternion ¢ as indicated in Section

2.3.3.

2.2.3 Magnetometers

MEMS magnetometers measure the local magnetic field, which consists of the earth magnetic
field along with any induced field by a magnetic source in the environment. Most of mag-
netometers operate based on Hall effect, Lorentz force and Anisotropic Magneto Resistance
(AMR) (LANGFELDER et al., 2013). Lorentz force magnetometers rely on the mechanical
motion of the MEMS structure caused by a force being exerted on the current conductor in
the magnetic field. Output signals from Hall effect sensors are proportional to the magnetic
field density around the device. A typical magneto resistive sensor is a Wheatstone bridge of
four AMR thin-film elements. The differential output voltage is function of both the supply
voltage and the component of the local magnetic field along a given direction (BERTOLDI et
al., 2005).

Currently, 3D Hall effect and magnetoresistive sensors are widely available because of manu-
facturing conveniences by integrating magnetoresistive material or hall plates in silicon (CAI
et al., 2012). If two magnetometers are positioned orthogonally and both are tangential to the
Earth’s surface, the sensor can be used as a compass. Magnetometers may contribute to the

stability in the horizontal plane avoiding heading drifts, however, magnetic disturbances highly



2.2. Fundamentals of Inertial Sensors and Intensity Variation-based POF Curvature Sensors23

affect their performance (ROETENBERG et al., 2005).

A magnetometer can be modeled by Equation 2.3, where my is the total magnetic field, which
comprises the Earth magnetic field and any superimposed field, and b, is the bias. v,, is the

measurement noise, with standard deviation o,,, i.e., v, ~ N(0, 0,,,%).

Y = M (q)(my) + by, + v, (2.3)

2.2.4 Intensity Variation-based POF Curvature Sensors

Polymeric Optical Fibers (POFs) are greatly flexible plastic waveguides built with dielectric
materials. POF technology has the potential for economic bulk manufacturing. Also, they pro-
vide advantages over optical glass, being lightweight, low cost, highly flexible, ease of handling
and with relatively high mechanical resistance. Their circular cross-section generally comprises
of three layers: the core, cladding, and jacket, the last one a mechanical protective cover usually
made of polyethylene. Most of the optical signal propagates through the core, as a result of
surrounding the core with a cladding of a lower refractive index (ZUBIA; ARRUE, 2001).

In (ZUBIA; ARRUE, 2001), a complete explanation about loss mechanisms that contribute
to signal attenuation is presented. Basically, these mechanisms are classified in intrinsic and
extrinsic. For instance, within the intrinsic, are those due to vibration modes and within the
extrinsic, are those due to micro and macrobends among others. Light intensity variation-based
sensors measure the attenuation on a bending fiber. In sensing applications, both micro and

macrobending attenuation are applied (BILRO et al., 2012).

The functional principle consists of putting the fiber to bending, what results in a variation of
power output proportional to the curvature angle. In order to improve sensitivity to macrobend-
ing, commonly, the side polished technique is applied (BILRO et al., 2012). This technique
consists of removing a section of the cladding by polishing the fiber laterally. This lateral sec-

tion is called sensitive zone. Thus, under bending, more light rays escape through the sensitive
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zone, where output signal presents attenuation if compared to the straight fiber. A recent re-
search (LEAL-JUNIOR; FRIZERA; PONTES, 2018b) presented how the sensitive zone length,

deep and surface roughness influence the sensor sensitivity, linearity and hysteresis.

Polymethyl methacrylate (PMMA) is the most common material used in the manufacturing
of POF (BILRO et al., 2012). In this resecarch, a PMMA-POF is used as a curvature sensor.
The main disadvantages of this kind of sensors is the high attenuation when compared to glass
fibers, so, consequently, they do not have long lengths. Moreover, polymers are viscoelastic
materials, what leads to a non constant response under stress or strain. Thus, hysteresis and
non-linearity are other drawbacks of this technology. Added to these limitations, there are

errors due to undesired curvatures and variations of optical power.

A dynamic compensation technique based on the angular velocity of the sensor was proposed
in our research group (LEAL-JUNIOR; FRIZERA; PONTES, 2018a). The authors state that
it is difficult to obtain a single calibration equation that reduces both error and hysteresis in
a wide range of angular velocities. Also, the technique performance is compromised in cases
of hysteresis variability. Another technique was presented in (LEAL-JUNIOR et al., 2018c),

which requires less number of tests and, consequently, is less time-consuming.

In our research, the latter compensation technique is used. Equation 2.4 shows the compen-
sated definition for estimating the curvature angle o, after applying the Prony series with order
2 on the sensor response. Two expressions are required: one for flexion and other for extension
motion. y; and y, are the weights of each exponential of the addition, 7 and 7 are time

constants, £~ is the power attenuation and co is the linear offset.

’ Py
= P + P + (2.4)
QO =1y €xp| Ty j2) Yo - €TP | T2 2 Co .

It is worth to mention that the POF sensor in this configuration can only measure the angle
in one plane. In this research, an application to estimate knee joint angle will be presented,

however, similar configurations can be applied to assess other human joints.
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2.3 Attitude and Motion Dynamics: Mathematical Repre-

sentation

There are several mathematical representations of the object’s attitude in three-dimensional

space. We will review the three main mathematical constructs in the following subsections.

2.3.1 Euler Angles

Perhaps, the most common and intuitive way to represent rotations and orientations in three-
dimensional space is Euler angles, three coordinate rotations in sequence can describe any
rotation. Also, successive rotations cannot be made about the same axis. For notation, angles
«, B0 and 7 can be arranged in a three dimensional vector called the Euler angle vector u,

defined as shown in Equation 2.5.
T

There are twelve possible sequences that satisfy the constraint that no two consecutive numbers
in a valid sequence may be equal (DIEBEL, 2006). For notational brevity, rotations around
X-, y- and z-axis arc numbered 1, 2 and 3, respectively. Thus, the set of possible sequences is

shown in Equation 2.6.

(1,2,3) (2.3,1) (3.1,2)
(ijk)e (1,3,2) (2,1,3) (3,2,1) (2.6)
- (1,2,1) (2,3,2) (3,1,3)

(173,1) (2,1,2) (3,2,3)

Due to the fact that an orientation can be obtained using different sequences of Euler angles,
this representation is subject to ambiguities. Thus, a rotation sequence must be explicitly
known. Also, for any set of Euler angles where the second rotation aligns the axes of the first
and third rotations there is a singularity, what leads to loose one degree of freedom. This
singularity is known as gimbal lock. Because of these drawbacks, we chose not to use this

representation through this research.
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2.3.2 Direction Cosine Matrices (DCM)

A rotation matrix is an entity that when multiplied by a vector, rotates such vector with-
out changing its length. The special orthogonal group of all rotation matrices is denoted by

SO(3) (DIEBEL, 2006). Thus, a proper matrix M has the properties as shown in Equation 2.7.
det(M)=1, M*'=M" (2.7)

Consider an orthogonal reference frame (or global frame), O — xyz, where z, y and z are the
unit vectors of the frame axes. Also, consider an orthogonal frame, called local, attached to a
body O — z'y'2’, where ', ¢/ and 2’ are the unit vectors of the frame axes. Also, consider that
both frames have the same origin. The rotation matrix that express the orientation of the local

frame with respect to the reference frame is shown in Equation 2.8.

Ty Yy % cos (0,2) cos(Oy) cos (6 z)
M= x, Y, Zy| = |cos(Owy) cos(Oy,) cos(0.,) (2.8)
oyl 2 cos (0y,) cos(0y.) cos(0..)

The right side of the expression is called Direction Cosine Matrix (DCM). Another important
construction of the rotation matrix is shown in Equation 2.9. This expression describes any
rotation matrix defined by angle 6 about a vector n (HANSON, 2005), where ny, ny and ng are

the vector n’s elements, ¢ and s denote the cos(f) and sin(6), respectively.

c+(n)?!(1—c) mnna(l—c) —sny ninz(l—c) + sny
M(O,n) = |nyni(1 —c) +sn3 ¢+ (n2)*(1 —¢)  ngns(l —c) — sny) (2.9)

nani(l —c) —sng mang(l—c)+sn; ¢+ (nz)*(1 —c)

2.3.3 Quaternions

Rotations and orientations in a three dimensional space can be represented using quaternions.

Quaternions are four-element vectors as shown in Equation 2.10, with the first element as the
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scalar part and the remaining three as the vector part. The non-commutative multiplication
rule is assigned to these vectors (HANSON, 2005). This representation has some advantages
when compared to Euler angles and DCMs, such as not to be rotation-dependent, not presenting
singularities or suffering from gimbal lock. Also, quaternion representation is more compressed
than DCMs, which allows computationally more efficient transmissions and calculations. How-
ever, quaternions have not a clear physical meaning and are not very intuitive, for this reason,

sometimes it is difficult to apply them (DIEBEL, 2006).

T
7= [QU Q1 qs} =qo + qit + q2J + g3k (2.10)

The algebra of quaternions is often denoted by H or H. Unlike multiplication of real or complex
numbers, multiplication of quaternions is not commutative. Quaternion multiplication (also

called Hamilton product) is defined as shown in Equation 2.11 (HANSON, 2005).

p®@q = (po,p1,p2,P3) @ (Go: 41, G2, G3), (2.11a)

Podo — P1q1 — Pa2g2 — P3qs

P1do + Podi + P2as — Psd
gl | FHRE T RRE R Al (2.11b)

P2qo + Poq2 + P3gi — g3

| P3go + Pogs + P1g2 — P24 |

PRqg=(pogo—P-q,p0q + qop+P % q), (2.11c)

Only quaternions of unit length are used to represent orientations and rotations. These obey

the proprieties expressed in Equation 2.12.

q-q="(q)+ @)+ (@)’ +(®B)’=(0)’+q-a=1, (2.12a)

g=q, (2.12b)

According to the Euler’s rotation theorem, any rotation can be described using a unit-vector

n (called also Euler axis) and an angle 6, which describes a rotation around the mentioned
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vector (HANSON;, 2005). Its corresponding quaternion is shown in Equation 2.13.

00 = (s () s (2)) o1

T
Let py = [px Dy pz] be an arbitrary vector defined in a reference coordinate system XY 7,

T
which results in a new vector ply = [PQ v, . } after a rotation. This operation is expressed
using quaternion as described by Equation 2.14. Also, Equation 2.14 can be rewritten in the
matrix form as shown in Equation 2.15, where M (q) is the rotation matrix, which is function

of the quaternion g and can be expressed by Equation 2.16.
Py =q@pyeq (2.14)

Py = M(q)pn (2.15)

B+HE+E e — o a0+ oe
M(q) =2 |qqg+qoa5 @3 +¢3— T a3 — qoq (2.16)
Og3 — Qo2 293 + Qod 45 + 45 — %
The time derivative of the unit quaternion is the vector of quaternion rates. The rate of chailrlge
¢ is related to the angular velocity w as shown in Equation 2.17, where w = [wl Wo UJS] is
the instantaneous angular velocity expressed in the body frame. The matrix-form expression

equivalent is shown in Equation 2.18, where [w x| is outer product tensor of the vector w, which

is defined by Equation 2.19.

1
§= 3599w, (2.17)
1 0 —w’
i=30w)0 W)= , (215)
w —[wx]
0 —Ws3 [03))
wx]=1w 0 —wl; (2.19)
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2.4 Human Gait Multi-sensor Fusion Methods

Assessment of human’s performance based on functional activity monitoring is of great interest
in pervasive healthcare (MARSCHOLLEK et al., 2012). Currently, IMUs are very used for
motion monitoring, although these technologies have some limitations as previously mentioned.
For overcoming the sensing device limitations, researchers follow the strategy of combining data

provided by multiple sensors through sensor fusion approaches.

The use of inertial sensors to estimate the attitude of an object, i.e., position and orientation,
is very common in robotics, automotive and aerial vehicles industry, navigation applications
and aerospace research. Many methods have been proposed with regards to multi-sensor fusion
in these areas. In this section, we briefly outline some of these approaches that have been used

specifically for gait analysis.

2.4.1 Variations of Non-linear Kalman Filters

Kalman Filter (KF) and its non-linear variation, Extended Kalman Filter (EKF), are the most
widespread filter used to estimate orientation in IMU-based gait analysis, see e.g. (NOGUEIRA
ct al., 2017: BAGHDADI; CAVUOTO: CRASSIDIS, 2018: BERGAMINT et al., 2014; YUAN et
al., 2019; SABATINI, 2011). Unscented Kalman Filter (UKF), other of its variations, seems to
be less used (KANG; JANG; PARK, 2019; OKITA; SOMMER, 2012), maybe because EKF has
demonstrated to be greatly (about 10x) more computationally efficient than UKF (WAEGLI,
SKALOUD, 2009; GROSS et al., 2012; RHUDY et al., 2013).

KF addresses the multi-sensor fusion with a probabilistic approach. Knowledge about the sys-
tem dynamics (i.e. the model) is needed in order to correctly estimate the internal states. The
relation between the measurements (or observations) and the system states (i.e. the measure-
ment model) is also required. Since the state representation is described as a stochastic model,

additive noise with known covariance matrix, for both process and measurement models are
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also needed. Initial state values, process, and measurement noise covariance are critical param-
eters for the correct filter performance (SCHNEIDER; GEORGAKIS, 2013). EKF handles the
nonlinearity by using an analytical linearization around the best current estimation, which is

done using Jacobian matrices (SABATINI, 2011).

EKF is described for nonlinear systems with additive noise by Equation 2.20, where w;_; and
v are the additive noises, modeled as a zero-mean white Gaussian noise process with known
covariance matrices Qy_1 and Ry, respectively.

T, = fre1 (Te-1) + Wi (2.20)

2 = hk (lL'k) + v

The local linearization requires the computation of the Jacobians of fi (1) (i.e. dynamic

model) and hy(z) (i.c. measurement model) with current predicted states (SABATINI, 2011).

The Multiplicative Extended Kalman Filter (MEKF) is an indirect KF frequently used in aero-
nautics (MARKLEY, 2003), and recently applied for motion analysis (GHOBADI; ESFAHANTI,
2017a; KORTIER et al., 2015). Basically, the unconstrained and non-singular error in MEKF
(8q) is defined as the multiplication of the (actual best) estimated quaternion inverse (§~') and
the true quaternion (¢q) as shown in Equation 2.21, where dq is parametrized by a three-element

vector a. The resulting filter obeys the quaternion norm constraint (MARKLEY, 2003).

ogla) =4 ®q (2.21)

2.4.2 Other Fusion Methods

Methods with open-access code presented by Madgwick et al. (2011) and Mahony et al. (2008)
have been used for gait analysis, see e.g. (KIM; KIM; KIM, 2015; TO; MAHFOUZ, 2013). These
methods are limited to solve the orientation problem for each IMU and do not take into account

joint kinematics. Other filters with similar approaches are complementary (BERGAMINI et
al., 2014) and particle filters (PELTOLA; HILL; MOORE, 2016). Alternatively, filters based
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on optimization (KOK; HOL; SCHON, 2014) can also include information from biomechanical

constrains, however, they are computationally expensive.

2.5 Preliminary Conclusions

In this chapter, a description about the main concepts of human gait and some parameters for
its analysis were presented. Such parameters are of great importance in clinical scenarios and
can be useful from diagnosis to assessing recovery process. In this Ph.D. thesis, we analyzed

the joint angles in different approaches.

Moreover, a variety of methods to align IMUs coordinate system to the anatomically-defined
have been presented in the literature, however, most of them require additional tools or per-
forming movements which can be difficult for people with some motor disability. Thus, an
alignment method based on fast and easy sensor placement, without the need of predefined-

motion is addressed in this Ph.D. thesis.

In addition, the most common IMUs models were introduced, that along with a recent POF
curvature sensor model, allow designing a novel multi-sensor fusion method. So far, several
methods in the literature for gait analysis using IMUs and polymer optical fiber (POF) sensors
were presented. Regarding the IMU-based joint angle estimation methods, few researches use
aiding sensors other than magnetometers, such as electrogoniometers, aiming to improve the
accuracy of the systems in different environments. This has determined the fact of address-
ing a novel IMU-POF sensor fusion system in this Ph.D. thesis to assess knee joint angle in

ambulatory applications.



Chapter 3

An IMU-to-Body Alignment Method

Applied to Human Gait Analysis!

A fundamental problem of the IMU-based gait analysis is how to define an appropriate measure-
ment protocol and provide a sensor-to-body calibration procedure (SEEL; RAISCH; SCHAUER,
2014). Because IMUs’ local frames are not aligned with anatomically defined frames, different
approaches in the literature have presented different methods to determine the sensor frame’s
orientation with respect to the body segment frame (FAVRE et al., 2009; CUTTTI et al., 2010;
PALERMO et al., 2014; O’DONOVAN et al., 2007). However, those approaches suffer from
some limitations. One main problem with algorithms based only on data from accelerometers
and gyroscopes (LUINGE; VELTINK; BATEN, 2007; FAVRE et al., 2009; KAVANAGH et al.,
2006; TADANO; TAKEDA; MIYAGAWA, 2013) is the difficulty to define a common reference
frame and, consequently, measure 3D angles. To accurately measure 3D angles, a second global
reference axis is necessary along with the gravity vector. This second reference axis is commonly
the magnetic field vector, measured by sensor units that include magnetometers. Since heading
drift remains a problem within systems that involve only accelerometers and gyroscopes, the

anatomical calibration techniques that use such systems rely on predefined user movements

IThis chapter is mainly based on the following manuscript:
L. Vargas-Valencia, A. Elias, E. Rocon, T. Bastos-Filho, and A. Frizera (2016). An IMU-to-body alignment
method applied to human gait analysis. Sensors, 16(12), 2090.
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to define the axis of joint motion (LUINGE; VELTINK; BATEN, 2007), or use supplemen-
tary devices such as cameras (TADANO; TAKEDA; MIYAGAWA, 2013), anatomical landmark
pointers (PICERNO; CEREATTI; CAPPOZZO, 2008) or exoskeleton harnesses (FAVRE et al.,
2009). The need for these additional tools also increases the experiment duration and requires

experienced personnel, which may be impractical in daily clinical routine.

Other works are based on performing complex movements while keeping some specific pos-
tures (FAVRE et al., 2009; CUTTI et al., 2010; O’'DONOVAN et al., 2007), or maintaining
the same orientation or joint angle between two postures (PALERMO et al., 2014; TADANO;
TAKEDA; MIYAGAWA, 2013), which may not be simple tasks to be performed by subjects
with motor disabilities. Even for subjects without disability, performing these tasks requires
the assistance of examiners. Hence, these mentioned methods may be more prone to calibration

errors.

The objective of this chapter is to present a novel calibration procedure as a method to align
IMU sensors to body segments, which compared to the aforementioned methods, is based on
fast and simple sensor placement procedures, with no need for movements performed by the
user nor any additional tools. Initially, we propose a validation protocol of the procedure using
a simplified rigid-body joint that comprises two semi-spheres. A universal goniometer is used
as the gold standard measure in order to ensure controlled angular movements. Additionally,
we present an application of the method on five able-bodied subjects performing a gait test.

The kinematic data of the lower limb joints is presented descriptively.

This chapter is organized as follows. Section 3.1 describes the proposed IMU-to-body alignment
method that includes the calibration algorithm, definition of technical-anatomical frames and
calculation of joint angles. Then, in Section 3.2 we present the motion acquisition system and
the validation protocol using the simplified joint, along with an evaluation procedure to quan-
tify the accuracy and repeatability of the technique. Following, a sensor placement protocol
and an estimation of kinematic data on subjects without functional disability are introduced

in Section 3.3. Finally, we provide the results and discussion of the experiments that validate
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the proposed method (Section 3.4), followed by preliminary conclusions (Section 3.5).

3.1 IMU-to-Body Alignment Method

To estimate the lower limb joint angles, it is necessary to measure the orientation of two
adjacent body segments forming the joint. We propose a method to estimates hip, knee and
ankle joint angles. To simplify the mathematical explanation, here we only present the data
for the right leg, although the same concept may be obviously applied to both legs. In this
method, four IMUs sensors are used: one is placed on the pelvis (body segment named PV'),
one on the right thigh (T'H), one on the right shank (SH), and another on the right foot
(FT). Each body segment also has an associated coordinate system (B), which is called,
in this work, a techmical-anatomical frame. Note that the technical-anatomical frame is an
estimate and it is also different from the anatomical bone-embedded frame as defined by the
International Society of Biomechanics (ISB) recommendations (GROOD; SUNTAY, 1983; WU
et al., 2002). The reason is that the axes of body segments’ Cartesian coordinate systems, within
ISB recommendations, are defined based on bony landmarks that are palpable or identifiable

from X-rays.

3.1.1 Calibration Algorithm and Definition of Technical-Anatomical

Frames

During five seconds of static acquisition (initial upright posture), the orientation data is used
to define the sensor-to-body alignment. The first stage consists of correcting the sensor frame
placed on the pelvis (called /MU — PV coordinate system). This correction procedure aims
to align the x-axis of IMU — PV with the gravity. Let “qyu_py, be the quaternion of the
IMU placed on the pelvis, in the initial posture computed by averaging the orientation data
(as in (PRENTICE, 1986)) acquired over 5 s interval, where G is the global reference frame.
Since the orientation data is obtained in quaternion format, the operations to align the sensor

quaternion “qy_py, with the gravity are performed as follows:
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1. Obtain x-axis (Xrpu—py,) of the coordinate system referred to the IMU orientation measured
by the quaternion “qryp_py, associated with the initial posture, and using Equation 3.1
to convert from unit quaternions to direction cosine matrix, x;p—py, defined as shown in

Equation 3.2:

B+ -4 2qge — qas) 2(q1q3 + qoq2)
Ma)=| 2qe+apep) G-E+6E -G 2ee—on) |- (3.1)

2(¢1q5 — qog2) 2(q2q3 + qo1) a5 — 45 — a3 + 43

Xinu-pv, = M (GCIIMUfPVn) i, (3.2)
where i is the unit vector in direction of the x-axis.
2. Define the angle 6 between x;y7—py, and the gravity vector ZG. The angle 6 is calculated

using Equation 3.3:

0 = arccos 2(q1q3 — qoq2), (3.3)
where o, ¢1, ¢2 and g3 are the components of the quaternion “qa— PV -

3. Define the vector n; orthonormal to the mentioned vectors x;y-py, and ZG. Around this
vector a rotation 6 is made according to Euler’s rotation theorem. The orthonormal and
unit vector n; is defined as shown in Equation 3.4. The correction quaternion qc(#,n) is

calculated using Equation 3.5:

T
n; = [ 201g2 + qoas) B+ -3 —qt 0 ] ; (3.4a)
n;
n = 2% (3.4b)
| ny |2
0 0
qc(f,n;) = <COS 3 sin 5) , (3.5)

The technical-anatomical frame of the pelvis (B — PVj) calculated with respect to the global

frame (G), during the initial posture, is defined as shown in Equation 3.6:

GQlepvo =qc(f,n;) ®° AIMU—PVy, (3.6)
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Other initial technical-anatomical frames (B) using quaternions are defined during the calibra-
tion procedure as shown in Table 3.1. Once the initial technical-anatomical quaternions are
defined, the sensor-to-body orientation ®q;up_p is determined for each sensor using Equa-
tion 3.7. Please note that subscripts 0 was omitted, because the sensor-to-body orientation is
supposed to be constant once each sensor does not change its orientation with respect to the
body segment.

P X daimv-x =% df_x, ©% drmv-xo, (3.7)

where X denotes the body segment, namely PV, TH, SH and F'T, and * denotes the complex
conjugate of the quaternion. Once we have the relative orientation of the sensor to the body
segment, the orientation of each segment at any instant of time can be determined, using
Equation 3.8, as “qp_pv, “as_r#, “qs_sx and “qp_pr, for the pelvis, thigh, shank and foot,

respectively.

“ap_x =7 qrur_x 7 A vo-x (3.8)

Then, the hip, knee and ankle joint rotations are defined by relating the orientation of the distal
body segment with respect to the proximal body segment. The technical-anatomical frames
are presented in Figure 3.1 for each body segment. During the initial posture the joint angles
are assumed to be zero, since the corresponding body segments are aligned. The proposed

algorithm is also conceived in such a way that the IMUs can be placed in any arbitrary position

Table 3.1: Definition of technical-anatomical quater-
nions obtained during calibration posture (straight up-
right posture).

Segment Initial Quaternion Definition
Pelvis (PV) “qp-pv,
Thigh (TH)  “qp-7m, =7 4PV, ® qrOT(90°,1)!
Shank (SH) “ap-su, = AB-TH,

Foot (FT)  “ap_rr, = as—_prv, ® qroT(180°, nz)?

1i=[100"2n2=[vV2 0 \/ﬂT. Let qroT(f,n) be the
quaternion of rotation calculated using Equation 3.5 for
0 = 90° or 180° and n = i or ng. B refers to body-frame
and G refers to global frame.
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Technical-anatomical frames

X‘Z
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Pelvis . 57

o 1
]hlgh < <8 <0
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Figure 3.1: Technical-anatomical frames (B) of the pelvis, thigh, shank and foot. Axes X, Y
and Z in color red, green and blue, respectively.

on the body segments. This means that the user does not have to be concerned about placing
the IMUs in an exact position. The algorithm to extract the joint angles is presented in detail in
the next section. A flowchart that summarizes the IMU-to-Body alignment method is presented

in Appendix A.1.

3.1.2 Joint Angles Calculation

The last general reporting standard for joint kinematics based on Joint Coordinate System
(JCS) was presented by the International Society of Biomechanics (ISB) (WU et al., 2002).
The concept of JCS was first presented by Grood and Suntay (1983) only for the knee joint,
but this approach has been adopted to define the kinematics of other human joints. This
concept uses the description of Cartesian coordinate systems and vector algebra to define the
knee joint. In this work, we present the equivalent algebra using quaternions to define hip, knee
and ankle joints. Following the method proposed by Grood and Suntay (1983), we compute the
body fixed axes and the reference axes of the JCS in Table 3.2 according to the frames shown
in Figure 3.1. Table 3.3 summarizes the sign convention used on defining the clinical rotations,

where flexion, abduction and internal rotation movements are positives. Now, let “qg_py,
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Table 3.2: Body fixed, floating and references axes of each joint.

Joint Joint Coordinate System Body Fixed and Floating Axes References Axes

Pelvis axis (flexion- o — e — —g
HIP! extension) 1="¥pv 1= 74PV
Femoral axis  (internal- o — ol —
external rotation) 3= oTH 3= “YTH
Floating axis (abduction- ey — ermx(—ypy)
adduction) [zr % (—ypv)l
Femoral  axis  (flexion- -
: €1 = —2rH €1 = ~Yru
KNEE2 extension)
Tibial axis (internal-external on = 2 o —
rotation) 3 = sl 3= TYsH
Floating axis (abduction- ey = Tsnxern
adduction) lzsuxzrH]
Tibial axis (dorsiflexion- o — 2 o —
ANKLE! plantar-flexion) L= esH 1= ~YsH
Calcancal (internal-external .
. €3 = ZFT €3 = —TfT
rotation)
Floating axis (inversion- ey — ZETXEZSH
eversion) lerr>zsmH]

1 JCS proposed by Wu et al. (2002) and ? JCS proposed by Grood and Suntay (1983). PV pelvis,
TH thigh, SH shank, FT foot.

Table 3.3: Rotations of the hip, knee and ankle joint of the right leg.

Joint Flexion-Extension Abduction-Adduction Internal-External Rot
HIP a=asin(ez_yg -xpy) [ =acos(~ypy -rrH)—% v =asin(ea_n - 2rH)
KNEE  a= —asin(eza_x -xrg) [ = acos(zry -xsm) — 5 v = asin(ea—k - 2sH)
ANKLE! o =asin(es_a - TsH) B = acos(zsy - 2rT) — 5

L Ankle rotations are dorsiflexion-plantar flexion and inversion-eversion. «, 8 and v are the
joint angles on sagittal, frontal and transverse planes, respectively. PV pelvis, TH thigh, SH
shank, F'T foot.

“qp_7rm, “ds_su, and “qp_pr, be the orientation quaternions that represent the frames fixed
in each bone. Each body fixed, floating and reference axes, in Table 3.2, is computed as function
of quaternions. Let es_g, €3_g, and e;_ 4, be the floating axis of the hip, knee and ankle joint,
respectively. The corresponding equations are shown in Equation 3.9, where | - | indicates that
the vector must be normalized, and i, j, and k denote the unit vectors in direction of the x, y

and z axes, respectively. Then, the equivalent equations in quaternions for calculating the joint
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rotations are presented in Table 3.4.

(M(“gp_ru)i) x (=M (“gp_pv)j)

€ =
7 ’
A (M(“qp_su)i) x (—M(“qp_rn)k)
2—-K — | . ‘ )
(M(“gp_rr)k) X (=M (“qp_sn)k)

Table 3.4: Joint rotations as functions of quaternions.

Joint Angles
a = asin(es—p - M(“qp_py)i)
HIP g R :
B =acos(—M(“qp_py)i - M(“qp_ry)i) — 5
v = asin(ea—n - M(“qp_7p)k)
o = —asin(es_g - M(%qp_rp)i)
KNEE G G )
B =acos(M(“qg_rr)k - M(“qp_sg)?)
v = asin(es—x - M(“qp_gp)k)
o = asin(es—a - M(“qp_g)i)
ANKLE

B = acos(M(“qp_sp)k - M(%qp_pr)k)

«, B and ~ are the joint angles on sagittal, frontal and
transverse planes, respectively. es_p, ea_i and es_y4 are
the floating axes of the hip, knee and ankle, respectively.
M(%qp_y) is the equivalent direction-cosine matrix of the
“q5_x quaternion of X body-segment. Body segments: PV
pelvis, TH thigh, SH shank, F'T foot.

(3.9a)
(3.9b)

(3.9¢)
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3.2 Validation Protocol of Calibration Procedure Using a

Simplified Rigid-Body Joint

3.2.1 Motion Acquisition System

The motion capture system Tech MCS (Technaid, Madrid, Spain) was used in the experimental
procedure. The device was connected via Bluetooth to a laptop. In this study four Tech-IMU
V 3.0 sensors were used to obtain orientation data in real-time. Each IMU integrates three
different types of three-axial sensors: accelerometers, gyroscopes and magnetometers. Data
were acquired using Tech MCS Studio software, which provides orientation (based on Kalman
filtering) in quaternion format at 50 Hz. MATLAB software (The MathWorks Inc., Natick,

MA, USA) was used to analyze and process the orientation data.

3.2.2 Experimental Procedure

A set-up (Figure 3.2a) was built with two semi-spheres and the joint angles were measured by
an expert physiotherapist using a universal goniometer (360°, 20 cm clear plastic goniometer).
Each semi-sphere is used to represent body segments, and the universal goniometer is used to

represent an articulation with one degree of freedom.

Using the universal goniometer as reference for measurements, angular movements can be
performed in a controlled approach. The rigid semi-spheres are named as S1 and S2 (upper
and bottom respectively, see Figure 3.2a). The joint represented by the goniometer is denoted
as J. Rotations from 0° to £80° with steps of +20° about z-axis of J were performed. These
angles correspond to rotations of S2 with respect to S1, which was kept static. The rotation

range reaches (or even exceeds) a complete range of motion in lower limbs during walking.

One sensor (IMU 1) was placed on the goniometer, and the three others (IMUs 2, 3 and 4)

were placed on two semi-spheres. The IMU 1 is used as the reference, in the same way as the
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S1

n\{u 2 .

Figure 3.2: Scheme of a simplified joint comprising two semi-spheres. (a) Adjacent segments
S1 and S2, and a universal goniometer (a controlled joint .J); (b) representations of the joint
J and (c) rigid plastic piece (green) to fit the sensors in a fixed position on the semi-sphere.

sensor placed on the pelvis for the experiments with human subjects. This sensor also remained
static. For each semi-sphere, technical frames were defined as described in Section 3.1.1 and
the equations applied are analogous to those for calculating knee joint angles as described in
Section 3.1.2. Observe that the segment S2 has two sensors (IMUs 3 and 4), that means the
technical frame of S2 can be determined using both sensors. Also, these sensors were fixed
to the semi-sphere using a rigid plastic pieces manufactured using the 3D printer model S3
(Sethi3D, Brazil) as shown in Figure 3.2c, which were glued fitting on the semi-sphere surface.

These pieces ensure that the sensors have the same posture when they are exchanged.

The proposed procedure is conceived in such way that there is no concern about placing the sen-
sors in an exact position. Moreover, considering that significant differences may be presented
between any pair of IMU sensors, this setup allows the analysis of two different approaches
when estimating the joint angles: (a) using the same sensor (IMU 3 or IMU 4) in different

postures; and (b) using different sensors in the same posture.

The orientation of cach semi-sphere frame at any instant of time can be determined as “qgy,
Q52,005 a0d “Qsa,,,.- The joint J (Figure 3.2b) can be represented in a total of four differ-

ent ways, as shown in Table 3.5. A simulation run in MATLAB under ideal conditions (IMU
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Table 3.5: Representations of the
J joint formed by S1 and S2 seg-
ments.

Joint S1 S2 Posture
J1 IMU2 IMU3 POS-1
Ja IMU 2 IMU3 POS-2
Js IMU2 IMU4 POS-1
Jy IMU2 IMU4 POS-2

POS-1 and POS-2 are the S2 posi-
tions on the left and right side of the
semi-sphere, respectively, as shown in
Fig 3.2a

misalignment error, bias and noise equal to zero) is also presented to demonstrate that, the-
oretically, different orientations of IMUs do not affect the angle measures using the proposed
method (assuming that IMUs 3 and 4 are ideally equal devices). In simulation, the initial

orientation of the sensors was set to the initial values obtained during experimental validation.

3.2.3 Data Reduction and Statistical Analysis

A 20 min warm-up of the IMU sensors was carried out before the experiments, in an attempt
to stabilize the gyroscope measurements (PICERNO; CEREATTI; CAPPOZZO, 2011). After
each rotation, the semi-sphere S2 was kept stationary approximately for 15 s. Only the last
10 s of collected data, for each orientation, were used. Quaternion for each rotation is resulted
from averaging quaternion data over the 10 s intervals. Once data were reduced for each sensor
and orientation, the IMU-to-body alignment method was applied to estimate the joint angles.
Data were collected on two occasions, one day apart, and a total of twenty trials were acquired
for each session. From trial to trial, IMUs 3 and 4 were exchanged of posture. These following

approaches were statistically analyzed:

1. In order to evaluate repeatability, understood as the consistency of measures of the IMU

system under stated conditions on two days apart, a test-retest (intra-rater) study was
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performed. The angles o, 8 and ~ were calculated for each representation of the joint
and Intra-Class Correlation (ICC) was calculated. ICC (ICC(2,1), absolute agreement) was

calculated using the software IBM SPSS Statistics 20 (o = 0.05).

2. In order to evaluate validity, Root Mean Square Error (RMSE) and Concordance Correlation
Coefficient (CCC, 95% IC) (LAWRENCE; LIN, 1989) between first-day measured joint an-
gles (using IMU system) and reference values (using the gold-standard universal goniometer)
were computed. Two scenarios were analyzed: (a) the differences of joint angles measures
changing the postures (POS-1 and POS-2) of the sensors and (b) the differences of joint
angles measures using different groups of sensors, i.e., IMU 3 relative to IMU 2 or IMU 4

relative to IMU 2, where IMUs 3 and 4 having the same posture in different occasions.

3.3 Application of the Calibration Procedure on Able-Bodied

Subjects

3.3.1 Sensor Placement on Human Lower Limb

Four sensors were positioned from the pelvis through the right lower limb (thigh, shank and
foot segments, see Figure 3.3). The pelvis sensor was placed on the sacrum at the S2 spinous
process in the middle point between two posterior superior iliac spines. The IMU describes
a coordinate system defined as x-axis pointing cranially and z-axis pointing posteriorly. The
thigh sensor was placed on the iliotibial tract approximately 5 cm above the patella. The shank
sensor was positioned on the lower one-third of lateral shank 5 cm above of the lateral malleolus

of the fibula.

The sensors on thigh and shank were positioned with x-axis pointing cranially and z-axis point-
ing laterally. The foot sensor was fixed with double sided tape on the dorsal region of the
foot over the 3rd and 4th metatarsal bones, 3 cm above to the corresponding metatarsopha-

langeal joints, with z-axis pointing cranially and x-axis pointing posteriorly. These sensors
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Figure 3.3: Sensor placement on the human lower limb.

were attached with double-sided tape on an acrylic plate, which was glued to elastic band with
Velero®. Similar positions have been suggested by different authors (TAO et al., 2012; CUTTI
et al., 2010; FERRARI et al., 2010).

3.3.2 Discrete Parameters of the Joint Angles

Discrete angular kinematic parameters shown in Table 3.6 were estimated. Discrete parameters
allow making a parametric analysis, which is demonstrated to be a reliable and practical method
analyzing gait data, and it is a useful tool to assess data reliability (BENEDETTI et al., 1998).
These kinematic parameters were computed for each gait cycle. To determine them, there is a
need to identify the two main phases of gait, stance and swing. This procedure of segmentation
consists of determining the two events that indicate the start of each phase, which are heel
strike (HS) and toe off (TO). Sabatini et al. (2005) propose to determine HS and TO using
the angular velocity sensed by a gyroscope on the foot. In our work, the orientation data of
the foot were collected using quaternions. Fach trial is divided in gait cycles to extract the

kinematics parameters posteriorly. To determine the HS and TO, the angular velocity, as a
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Table 3.6: Joint angles parameters for gait analysis.

Hip Knee Ankle

Name Variable Name Variable Name Variable

HFE1 Maximum hip flexion KFE1 Maximum knee flex- AFEl Maximum ankle plan-
angle stance ion angle stance tarflexion angle stance

HFE2 Maximum hip exten- KFE2 Maximum knee exten- AFE2 Maximum ankle dorsi-

sion angle stance sion angle stance flexion angle stance
HFE3 Maximum hip flexion KFE3 Maximum knee flex- AFE3 Maximum ankle plan-
angle swing ion angle swing tarflexion angle swing

function on quaternion, is computed as shown in Equation 3.10:

Q= 2qu*BF_FT ®% ABF-FT, (3.10)

where ¢ pzp_pr is the vector of quaternion rates (or the time derivate of the unit quaternion)
of the foot, €; = (0,w,,w,,w,)T is the quaternion representation of the angular velocity w;.
Using the component of the angular velocity on the sagittal plane (w, for IMU placed on
the foot), the HS and TO events are determined using a minimum detection algorithm. In
addition, with these two estimated events, the gait cycle is divided in the two main phases.
Thus, it is possible to estimate the mentioned discrete kinematic parameters using maximum

and minimum detection algorithm.

3.3.3 Experimental Protocol for Gait Analysis

Five volunteers without gait disabilities (two male and three female, 25 +4 years old) were
enrolled in the validation procedure of this study. The IMU sensors were placed on pelvis and
on right lower limb (thigh, shank and foot segments) by a trained physiotherapist as previously
described in Section 3.3.1. The sensor placed on the pelvis was aligned with the walking
direction. The subjects were asked to keep a straight upright posture during 5 s, and then
walk 10 m in a straight line. Each subject performed three trials and five middle gait cycles
were extracted for analysis. This methodology was applied to ensure that only complete gait

cycles were selected, excluding motion at the beginning and at the end of the walking process.
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Therefore, fifteen gait cycles were acquired for each subject. This research was approved by

the Ethical Committee of UFES (Research Project 214/10).

3.4 Results and Discussion

This section presents the results of three approaches applying the proposed method: (1) a simu-
lation that evidences the method performance regardless of drift errors and other perturbations
associated with the IMU sensors (considering the limitations of the systems and applications
that involve IMU sensors (PICERNO; CEREATTI; CAPPOZZO, 2008; FAVRE et al., 2009;
CUTTT et al., 2010; PALERMO et al., 2014; PICERNO; CEREATTI; CAPPOZZO, 2011;
O’DONOVAN et al., 2007; CUTTI et al., 2008)); (2) a practical validation using an experi-
mental simplified rigid-body joint and four IMU sensors; and (3) an application in human gait

analysis.

3.4.1 Simulation of the Proposed Method Applied to a Simplified

Rigid-Body Joint

The IMUs’ initial orientations were set to the initial values obtained during practical validation,
in order to run the simulation as close as possible to the real experiment. The models of the
joint and the IMUs are shown in Figure 3.4. Movements from 0° to +80° with steps of £20°
(called Postures 1 to 9) about z-axis of J were performed. Note that the simplified joint is

analogous to a two-dimensional knee joint with one degree of freedom.

Figures 3.5a to 3.5¢ show the angular components («, 5 and ) of the representations J; and
Jy (refer to Table 3.5) without applying the proposed method. Other representations of joint
J present the same results. Because the proposed method was not yet applied, the angular
components «, [ and «y presented differences with the expected values. The maximum errors
can be observed for J;: « (Posture 5) —67.26°, § (Posture 1) —48.96°, v (Posture 1) 38.77°, and
for Jy: o (Posture 2) —11.69°, 5 (Posture 5) —57.09°, v (Posture 9) —42.15°.  After applying the
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Figure 3.4: Simulation of the simplified joint. Scale models of the rigid-body joint and IMUs

in MATLAB.

Value ( °)

Value ( °)

. a angle of J1 and J 4 representation - Not applying IMU-to-body method
80 .J1
60 I I lJ ‘
40 I - Expected angle
20

o AN _ I

I !
-40
-60 -

4 5 6 7 8 9 10
Posture

(a)
7 angle of J1 and J A representation - Not applying IMU-to-body method

0
-4
5

| 3

B

o

L]
(=}

w
L=

o

(=]

-60

4
-70 * Expected angle

0 1 2 3 4 5 6 7 8 g9 10
Posture

(b)



48 Chapter 3. An IMU-to-Body Alignment Method Applied to Human Gait Analysis
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Figure 3.5: Comparison between the joint angles without applying the proposed procedure
(a—c) and applying the procedure (d). Angular components «, 3 and ~y are significant in the
first case (a—c), which are different of the expected values. In the last case, only « is significant
and equal to the expected values. [ and 7 are both equal to zero throughout the entire
simulation, as expected. J; and J, are two representations of the simulated joint J represented
by the goniometer.

proposed method, only « is significant under ideal conditions understanding that the rotations
were applied exclusively around z-axis. Then, angular components 3 and  are equal to zero.
The angles a obtained by applying the IMU-to-body method are shown in Figure 3.5d. Notice
that, as the angles § and = are equal to zero, they are not graphically presented. Also, please
observe that the values of « for J; and J; are equal to the expected values imposed by the
simulation. In summary, through this simulation, we aim to demonstrate that applying the

proposed method the estimated angles are equal to the expected values and consistent with the
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rotations applied. In addition, we also show that the proposed method produces the correct and

consistent values when the IMU sensors are placed in different positions on the body segments.

3.4.2 Practical Validation of the Proposed Method Applied to a Sim-

plified Rigid-Body Joint

Table 3.7 shows the data from ICC coefficients and its respective confidence intervals (95% IC)
to evaluate the consistency of repeated measures of the IMU system under stated condition
on two different days. ICC values were greater than 0.90 for all angular components and the
different representations of the joint J. Movements associated with angles a;, which correspond
to flexion-extension angles on sagittal plane, produced the highest ICC values of the joint
(ICC = 1.00). Observe that the angular component v presented the lowest ICC values and
the confidence intervals were wider (e.g., 0.60-0.97). We believe that such values are caused
by limitations of the current IMU technology and fusion algorithms. The movements asso-
ciated with + angles correspond to external-internal rotation angles, which are performed on
transversal plane, perpendicular to the gravity vector. In accordance with the literature, these
movements around to the gravity vector present heading drift, which cannot be corrected using
the accelerometer data. Therefore, this drift error may be associated with the performance of
the magnetometer, gyroscope, and data fusion algorithm. Also, it has been mentioned that the

heading drift is mainly due to the accuracy of the IMU sensors and, on a lesser extent, to the

Table 3.7: Test-Retest study on two days apart: Consistency of
measures of the IMU system.

Single Rater ICC Value
Joint a B ¥
Value 95% IC Value 95% IC Value 95% IC

J1 1.00  1.00-1.00 099 0.98-0.99 0.95 0.83-0.99
J2 1.00  1.00-1.00 099 0.99-0.99 096 0.88-0.95
J3 1.00 1.00-1.00 098 0.96-099 090 0.60-0.97
Ja 1.00 1.00-1.00 0.99 0.98-0.99 0.99 0.98-0.99
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complexity of the task (LUINGE; VELTINK, 2005).

Tables 3.8 and 3.9 report the Root Mean Square Error (RMSE) and Concordance Correlation
Coefficient (CCC) obtained between first-day measured joint angles (using IMU system) and
reference values (using the gold-standard universal goniometer) to evaluate validity, respec-

tively.

The agreement between measures from IMU system and the universal goniometer applying the
calibration procedure was excellent (CCC > 0.98) for the angular component «. Note that for
this angular component the maximum RMSE was 1.70° for the J; representation on posture 2
(60°). Also, observe that the maximum RMSE (15.61°) is in correspondence with the angle ~.
Again, these error drifts may be associated with the quality of the IMU data. In a previous val-
idation study (VALENCIA, 2015), the IMU sensors used here presented errors approximately

up to 7° across 12 explored orientations, following the self-IMU consistency (SC) test.

Table 3.8: RMSE between the measurements from IMU system and the reference universal
goniometer. Maximum RMSE values of each angular component are highlighted on orange
color, and the acceptable values for angular components 8 and ~ are highlighted on green
color.

Joint - Angle —g—a—75 2(? MS(])E (O)-zo 20 60 -so Max RMSE ()
a 067 064 049 030 007 048 0.74 090 0.93 0.93
S B 451 412 272 083 077 177 210 067 2.36 451
v 025 079 158 1.39 0.04 222 514 802 9.73 9.73
a 060 047 016 022 004 049 1.03 131 121 1.31
2 B 196 009 096 084 004 057 1.00 150 2.38 2.38
~ 836 621 381 160 001 1.02 178 281 4.44 8.36
a 141 113 068 043 002 024 0338 039 023 1.41
% B 311 016 108 020 1.77 421 7.68 878 6.75 8.78
~ 811 744 462 170 0.01 017 223 626 10.07 10.07
a 142 170 094 055 008 027 063 090 0.60 1.70
Ja B 036 3.83 500 334 012 3.63 582 612 5.00 6.12
N 1561 13.04 753 269 0.04 009 1.74 3.96 5.50 15.61
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Table 3.9: CCC between the measurements from IMU system and the reference universal
goniometer. Minimum CCC values of each angular component are highlighted on orange
color, and the acceptable values for angular components J and  are highlighted on green

color.

CCC (pc)

Joint - Angle —g———6— 20 0 =20 .40 60 -so M CCC
a 0.99 0.99
Ji B 025* 028 0491 094 090 0.67 067 099 0.497 0.25°
~ 087 072 058 069 099 048" 0.16* 007 0.05 0.05*
a 0.99 0.99
T B 053 088 066 077 099 087 067 0.51F 0.407 0.30°
4005 0.09* 020 060 099 081 061 040" 0.24* 0.05*
o 0.99 0.99
J3 B 031* 099 097 099 097 028 0.12° 0.10* 0.16* 0.107
Y 0.06* 0.08* 0.24* 099 099 099 048" 017 0.04* 0.04*
o 0.98 0.99
Ja B 007 0.30° 0.19% 0.35° 099 0.32° 0.16* 0.14* 0.18* 0.14°
N 0.02° 0.04* 0.11* 049" 099 099 068 0.29* 0.17* 0.02*

" Less than 0.40: agreement between measure poor. T Between 0.40 and 0.59: agreement fair.
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Errors were found up to 15°, following the Inter-IMU consistency (IC) test. These mentioned

tests, with similar results, were proposed by Picerno et al. (2011).

Note that the representations of J associated with IMU 3 (J; and .J,) presented the lowest RMSE
and the highest CCC values broadly. It is possible to observe that for the angular component
«, the measurements are not significantly different when using IMU 3 or IMU 4. However, for
the angular components 3 and v, the measurements using IMU 3 are lower than those using
IMU 4. Additionally, using IMU 3 (the best case), RMSE values of § and « apparently have
similar magnitudes. Nevertheless, note that the magnitudes are not correlated with the same
sense of rotation, it means that, for J; representation (IMU 3: POS-1), errors are higher from
0 to —80°. On the other hand, for .J; representation (IMU 3: POS-2), errors are higher from 0
to 80°. Contrary to that demonstrated in simulation, the RMSE data suggest that the position
of real IMU sensors is an important factor to consider in analyzes that involve the secondary

planes of motion (coronal and transverse planes).

Besides, it is worth noting that the RMSE values mostly increase and CCC values decrease
as the angle increases. This can be observed for the angular components 5 and v of the Jy
representation. The angular component 7 presented the lowest CCC values (0.02 < CCC <
0.05), however, note that for punctual cases, the CCC values were presented into acceptable to
excellent interval. For example, for J; representation between 80° to —20° (as highlighted in
green color), the CCC values were from 0.48 to 0.99, corresponding with RMSE values smaller
than 2.5°. This behavior may indicate that pairs of IMU sensors can be used on specific joints,
according to their range of motion in gait analysis and, even in other applications that define
limits of motion within the range of acceptable performance of the sensors. According to the
results obtained using the simplified joint, we present in the next section the hip, knee and

ankle joint angles in the sagittal plane through motion analysis using the proposed method.
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3.4.3 Experimental Validation for Gait Analysis

Figure 3.6 reports the discrete angular parameters (see Table 3.6) proposed for gait analysis of
Subject 2, as an example, over one cycle of gait, to show graphically the kinematic parameters
selected in the angular series. Figure 3.7 reports the mean and standard deviation of the joint
angles in sagittal plane of the five volunteers. Table 3.10 shows the discrete angular parameters
calculated using the mean of fifteen gait cycles for the five volunteers.

Mean and standard deviation of the joint angles of the five volunteers are within the normal
range during a gait cycle for free walking. Interestingly, the results obtained with the developed
algorithm presented low standard deviations, which means that estimated measures were con-
sistent across trials. The maximum values of standard deviation were presented for the ankle

joint angles of the five volunteers (Maximum SD = 3.99, AFE3, Subject 5). According to the
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Figure 3.6: Discrete angular parameters on joint angles of Subject 2.

Table 3.10: Mean (SD) of the discrete parameters reported for five volunteers.

MEAN (SD)(°)

Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
HFE1 25.44 (2.62) 25.14 (2.78)  26.19 (2.18) 23.18 (2.54)  20.75 (2.73)
HFE2 -13.52 (3.97) -9.62 (2.81) -13.39 (2.00) -9.39 (2.67) -9.66 (2.86)
HFE3 28.87 (2.51)  27.96 (2.57) 29.38 (1.83) 24.63 (2.44) 20.28 (2.73)
KFE1 16.24 (3.10)  16.29 (2.75) 14.08 (3.12) 10.79 (2.65)  9.99 (0.63)
KFE2 4.63 (2.98) 9.62 (2.92) 7.58 (2.98) 2.98 (3.20) 5.23 (0.23)
KFE3 59.35 (1.70)  66.24 (2.82)  65.59 (2.88) 55.01 (2.80) 55.93 (1.55)
AFE1 -1.42 (3.93)  -4.16 (1.56) -6.08 (2.51) -6.76 (3.42) -2.93 (3.98)
AFE2 16.95 (2.51) 19.43 (1.21) 10.55 (3.74)  9.53 (2.63) 8.48 (1.64)
AFE3 -10.32 (3.52) -17.80 (3.46) -21.52 (2.02) -30.51 (2.49) -25.15 (3.99)
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Figure 3.7: Joint angular kinematics in stride percentage (from HS to HS) of five able-body
subjects. Fifteen gait cycles were summarized by black curve (MEAN) and orange stripe (SD).

results of each subject, it is possible to identify characteristics of each individual. By comparing
the results obtained using the proposed method with the literature (PICERNO; CEREATTI,
CAPPOZZO, 2008; PALERMO et al., 2014; FERRARI et al., 2010; BENEDETTT et al., 1998)
it is clear that the angular patterns are coherent and within the intervals established by mean
and standard deviations. It is important to highlight that these experiments were performed

with the intention of proving a practical application of the proposed method.

Notice that technical-anatomical frames, used to calculate the joint angles, are an estimate and

may present a misalignment with the anatomical frame defined using bony landmarks. This
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means that joint angle curves may present an offset from values estimated using stereopho-

togrammetry, preserving the same angular patterns and range of motion.

3.5 Preliminary Conclusions

In this work we have presented a novel calibration method to place and align inertial sensors
with human body segments, with the goal of measuring joint angles. The advantages of the
proposed method, in comparison with other methods described in the literature, include the
fast and easy sensor placement, with no need of special movements performed by the user nor
any additional tools, which may decrease setup time. The characteristics of this new method

may make it more attractive for daily clinical routine.

The results from the computational simulation demonstrate that, when applying the proposed
method, the estimated angles are equal to the expected values and consistent with the joint’s
rotations. Also, two real experiments have been carried out to evaluate the simulated proce-
dure. Results indicate that the method is suitable to measure tridimensional angles of the hip,
knee and ankle of the humans’ joints during free walking. However, some limitations mainly
associated with the accuracy of the sensors used in the real experiments for practical validation

gave rise to some estimation errors, mainly in movements around the gravity vector.

In conclusion, the proposed method is an interesting option to solve the alignment problem of
human gait analysis based on inertial sensors. The discussed method is especially attractive
for its simplicity and easy donning and doffing of the sensors. In applications such as gait
rehabilitation, that requires motion analysis of impaired persons, the method can be of great

help for its simplicity and accurate results.



Chapter 4

Sleeve for Knee Angle Monitoring: A
Novel IMU-POF Sensor Fusion System

The knee flexion-extension angle is an important variable to monitor rehabilitation progress,
for instance, after a knee replacement. This chapter presents the development and evaluation of
a novel IMU-POF sensor fusion system based on a knee sleeve for monitoring physical therapy.
The system consists of merging data from two inertial measurement units (IMUs) and a Poly-
mer Optical Fiber (POF) curvature sensor using a quaternion-based Multiplicative Extended
Kalman Filter (MEKF). The proposed fusion method is magnetometer-free and deals with
sensors uncertainties through reliability intervals defined during gait. We tested the developed
system and methods on twelve healthy young adults in a number of comparison scenarios, when
using single-sensor or multi-sensor-fusion methods and when using other methods recently pre-
sented in the literature. All measurements obtained by the proposed system were validated

using an optical motion capture system.

4.1 Introduction

A pathological gait pattern may occur after an injury, illness or accident. Within non-pharmacological

treatments to effectively manage a joint disease is the physical therapy. As well, in this context,

56
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motion analysis is an essential field, which allows understanding the characteristics of different
musculoskeletal disorders during the rehabilitation process. Therefore, developing smart wear-
able monitoring systems could be highly useful to frequently assess the mobility state. Also,
such devices could record gait-related parameters and monitoring joint movements during activ-
ities of daily living (MURO-DE-LA-HERRAN; GARCIA-ZAPIRAIN; MENDEZ-ZORRILLA,
2014).

Recent studies in the literature (SEEL; RAISCH; SCHAUER, 2014; VITALI et al., 2017; MC-
GRATH; FINEMAN; STIRLING, 2018; ALLSEITS et al., 2018) have proposed devices and
methods for knee motion monitoring by using IMUs, and even in combination with other
sensors (TOGNETTT et al., 2015). Perhaps, IMUs have become the most popular wearable
systems for motion tracking and are now being increasingly used to measure joint angles when
compared to other technologies (FAISAL et al., 2019). In (SEEL; RAISCH; SCHAUER, 2014),
the authors proposed a method to calculate the joint angles using gyroscopes and accelerome-
ters merged by a complementary filter, and no-assumption about sensors orientations is made.
Such method consists of estimating the 1-DOF joint angle by identifying the joint axis and
positions. Therefore, the analyzed joints (knee and ankle) are assumed as hinge joint. For this,
the authors used a Gauss-Newton method to solve the nonlinear problem of finding the joint
axis and positions by means of least squares. RMSE about 3° was reported for knee flexion-
extension angle, however, the method was evaluated with a single participant performing six

walking trials.

In a recent research (MCGRATH; FINEMAN; STIRLING, 2018), the authors used Principal
Component Analysis (PCA) to estimate the knee flexion-extension axis using the relative an-
gular velocity between two IMUs. An Unscented Kalman Filter (UKF) implemented by the
manufacturer provided the orientation measurements, and the knee joint is also assumed as a
hinge joint. In addition, the authors presented results using simulated IMUs. Fifteen subjects

performed the test, and a zero-mean RMSE of 9.4° was reported for data from real IMUs, being
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the worst case a RMSE of 16.97°, when compared against an optical motion capture system.

Another recent study (ALLSEITS et al., 2018) presented a novel method for knee angle esti-
mation using two leg-mounted gyroscopes. The authors used the method introduced by Seel,
Raisch and Schauer (2014) to compute the knee joint axis. Then, they calculated the knee angle
from integration of a gyroscope-derived knee angular velocity signal. In order to eliminate the
drift due to integration, a zero-angle update deduced from a characteristic point in the knee
angular velocity is applied every stride. Six subjects participated in the experiments and a
comparison to a camera-based system (Vicon) was presented. A mean difference of 5° for peak

knee angle at swing flexion was reported, but RMSE for whole gait cycle was not evaluated.

Unlike the previously mentioned researches, a fusion between signals from a wearable goniome-
ter and accelerometers was presented by Tognetti et al. (2015). The electrogoniometer was
developed by coupling two piczoresistive layers, made of knitted piezoresistive fabric (KPF),
through an electrically-insulating layer. The fusion algorithmm was a Kalman Filter where mea-
surements were updated using the accelerometers data. The system was worn by five healthy
subjects and trials of standing movements and walking, in four non-measured gait speed, were
analyzed. The reference measurement was the knee angle estimated by the same IMU-based
system using the procedure provided by Xsens (Xsens, Netherlands). Regarding walking trials,
a mean RMSE of up to 2.5° was reported. Nevertheless, one limitation, highlighted by the
authors, was to evaluate their system against an IMU-based system, since the gold standard in

biomechanics are marker-based optical motion capture systems.

From the literature review and to the author’s knowledge, few studies combine IMU measure-
ments with other wearable aiding sensors different of magnetometers in order to improve the
accuracy for joint angle estimation. As aforementioned, Tognetti et al. (2015) presented a fusion
of accelerometer signals with signals from a piezoresistive-based electrogoniometer. However,
unlike other works (PALERMO et al., 2014; SEEL; RAISCH; SCHAUER, 2014; MCGRATH,;
FINEMAN; STIRLING, 2018; ALLSEITS et al., 2018), the reference system was not an opti-

cal motion capture system, instead, an IMU motion capture system was used, the same that
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provided the acceleration measurements, adding the fact that the description of the reference

measurements processing was limited.

Furthermore, different works in the literature (PASCIUTO et al., 2015; BERGAMINI et al.,
2014; PICERNO; CEREATTI; CAPPOZZO, 2011) have questioned the accuracy of IMU-based
systems, since high errors, mainly associated with the use of magnetometers and the drift pro-
duced by integrating gyroscope measurements, are presented. In the literature, different algo-
rithms have been proposed to decrease orientations errors due to magnetic distortion (LAIDIG;
SCHAUER; SEEL, 2017; LIGORIO; SABATINI, 2016) and still use magnetometers to estimate
heading movements. However, most of algorithms are based on the assumption of a homoge-
neous magnetic field (WITTMANN; LAMBERCY; GASSERT, 2019) in a calibration stage or
at rest, but when the assumption is violated often in indoor environments and during move-
ment, magnetometer measurements becomes unreliable (TEUFL et al., 2018; SEEL; RAISCH,
SCHAUER, 2014). Also, although a magnetic distortion compensation technique is used, elec-
tromagnetic disturbances are not completely eliminated since magnetometer measurements are
involved in the estimation process (LEE; JEON, 2018). Thus, methods that omit magnetome-
ter data have been also developed and generally exploiting kinematic constraints (LEE; JEON,
2018; TEUFL et al., 2018; MOLNAR et al., 2018; FASEL et al., 2017). These findings show
different issues and challenges related to the reliability of IMU-based systems used in ambula-
tory applications, which encourage to explore other wearable technologies. Also, further studies
should be conducted aiming to evaluate the validity of such a wearable systems and considering,

if possible, a greater number of participants.

Additionally, it was discussed that EKF takes time to recover from false measurements (SABA-
TINI, 2011). In this way, different approaches seek to prevent the filter from processing data
considered unreliable. Many EKF designs in the literature (GHOBADI; ESFAHANI, 2017a;
SABATINI, 2011; SUH, 2010) propose different ways to deal with anomalous measurements.
However, in these applications, the filters are conceived to improve accuracy of a single sensor
unit. In (NOGUEIRA et al., 2013) the authors proposed to use Force Sensitive Resistor (FSR)

and accelerometer to identify gait intervals of reliable accelerations. Then, in (NOGUEIRA et
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al., 2017), the authors used only accelerometers and defined as many thresholds as used single
sensor units in order to correct the estimation error in the update step of a matricial global

Kalman Filter.

In this research, we evaluated the validity of knee flexion-extension angle measurements as
being an important tool in clinical applications. Motivated by the still open challenges in
the literature, we developed and evaluated a novel IMU-POF sensor fusion system based on
a knee sleeve for monitoring physical therapy. The system consists of merging data from two
IMUs and one POF curvature sensor using a quaternion-based Multiplicative Extended Kalman
Filter (MEKF) exploiting kinematic constrains. In addition, the proposed fusion method is

magnetometer-free seeking for avoiding inaccuracies related to electromagnetic disturbances.

Moreover, we proposed to deal with sensors uncertainties using reliability intervals defined dur-
ing specific gait phases. For this purpose, a rule-based algorithm for gait phases identification
was implemented. Finally, we analyzed and compared whole knee angle curves on the sagittal
plane in two different scenarios: i) comparisons between single-sensor and multi-sensor fusion

methods and ii) comparisons of the IMU-POF based MEKF to others methods in the literature.

This chapter is divided as follows. Section 4.2 introduces the novel IMU-POF based knee sleeve
system. Section 4.3 describes the methods for computing the knee joint axis and positions, and
the gait phases identification using IMUs, along with the procedure for POF sensor charac-
terization and the IMU-POF based MEKF for estimating knee flexion-extension angle. The
experimental protocol, data and statistical analyses are described in Section 4.4. Results and
discussions about the performance of our system are presented in Section 4.5. Preliminary

conclusions and final considerations are presented in Section 4.6.

4.2 A Novel IMU-POF Based Knee Sleeve System

The knee sleeve system depicted in Figure 4.1 (a) consists of two 3D printed sensor enclo-

sures integrated into a commercial knee sleeve via velcro and elastic straps. The adjustable
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Figure 4.1: IMU-POF based knee sleeve system. (a) Knee sleeve system placed on a participant.
Instrumented part: (b) main hardware unit and (c) second unit

knee sleeve is made of neoprene and has a reinforced hole that keeps the patella centralized
and protected, and also has velcro closure (3 adjustments sizes) for greater compression. The
instrumented part is shown in Figure 4.1 (b-c). In the main unit (Figure 4.1 (b)), one IMU
BNOO055 sensor (Bosh Sensortec, Germany) with 3D accelerometer, 3D gyroscope, 3D magne-
tometer, is embedded (SCHNEIDER, 2018), which is connected to a 32-bit Atmel Cortex M0
SAMC21E18A microcontroller via Inter-Integrated Circuit (I2C) protocol. An optoelectronic
receiver module, placed on an additional printed circuit board (PCB), comprises a photodiode
IF-D91 (Industrial Fiber Optics, USA) and an operational amplifier (MCP6021) to deal with
the signal provided by the POF sensor. An HC-05 Bluetooth module was used to communi-
cate data wirelessly with a personal computer. A 3.7 V rechargeable lithium polymer battery
supplies power to all units. In the second unit (Figure 4.1 (¢)), another IMU BNOO055 sen-

sor was included along with the optoelectronic transmitter module, comprising a LED IF-E97

(Industrial Fiber Optics, USA). A sampling frequency of 100 Hz was used.
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We used in this work a multimode HFBR-EUS100Z POF (Broadcom Limited, Singapore), with
a Polymethyl Methacrylate (PMMA) core and a cladding of 980 pum and 10 pm of thickness,
respectively. Additionally, it has a polyethylene coating for mechanical protection, which re-
sults in a total diameter of 2.2 mm for this fiber. The sensitive zone (as explained in Section
2.2.4) was made through abrasive removal of material, with a depth and length of about 14 mm
and 0.6 mm, respectively. The orientation of the removed lateral section was chosen in order

to have convex curvature during the knee flexion movement.

4.3 Methods for IMU-POF based Knee Joint Angle Mea-

surement

As previously mentioned, a challenge related to the use of IMU systems in human joint tracking
is that the alignment of sensor-to-body axes is unknown. In this chapter, we present a new
system based on the fusion of signals from two IMUs and a POF curvature sensor to measure
knee kinematics. Since there is not a sensor that could be used as reference (as in Chapter 3),
another alignment method is introduced. Therefore, in order to align the IMU sensors to the
joint, we first estimate the knee joint axis and position. Next, we present a method to identify
gait phases, which allows defining time intervals of more reliable measurements provided by
the accelerometers and POF sensors. Motivated by improving the accuracy of the system, we
proposed a magnetometer-free multi-sensor fusion algorithm based on a MEKF with kinematics

constraints.

4.3.1 Estimation of Knee Flexion-Extension Axis and Position Using

IMUs

Because it is imperative that the POF sensor is aligned to the joint and the implemented system
is fixed, the orientation of the IMU sensors on the thigh and shank may vary highly among

users. Accordingly, no assumption about the IMU sensors mounting can be made. The method
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presented here avoids this assumption and requires no predefined posture or movements.

Anatomically, the knee is the largest synovial joint in the body (SAAVEDRA et al., 2012). It is
formed between four bones, the patella, fibula, femur and tibia, comprising three separate ar-
ticulations, namely, patellofemoral, medial and lateral tibiofemoral (NETTER; THOMPSON,
2002), which together form a complex hinge joint. Similarly, some authors describe that the
knee contains two joints: tibiofemoral and patellofemoral (YANG; JAIN, 2017; STARKEY;
JOHNSON;, 2006), where tibiofemoral consists of two compartments, medial and lateral. Thus,
the tibiofemoral joint is commonly modeled as a hinge joint (DOOLEY et al., 2019; MC-
GRATH; FINEMAN; STIRLING, 2018), considering flexion-extension axis as the main axis
of rotation. Nevertheless, external-internal rotation and abduction-adduction movements oc-
cur, although in minimal proportion, rarely exceeding a range of + 10° (FAVRE et al., 2008).
Also, soft-tissue artifacts highly affect the movements in secondary planes (STAGNI et al.,
2005). Knee kinematics is hard to be described unequivocally and mathematically correct,
since this joint consists of rotation around different axes, in addition to translations (VICTOR,
2017). Nonetheless, the finite helical axis is an effective approach to describe knee joint mo-
tion (BISHOP et al., 2018; COLLE et al., 2016). Because of this, using a hinge joint model has
been suitable in some kinematic applications (DOOLEY et al., 2019; MCGRATH; FINEMAN;
STIRLING, 2018; ALLSEITS et al., 2018; TEAGUE et al., 2016; SEEL; RAISCH; SCHAUER,
2014). However, this assumption could provide inaccurate results, for instance, to estimate
muscle forces (MAROUANE; SHIRAZI-ADL; ADOUNTI, 2017). For practical purposes, in our
research, the human knee is modeled as a single degree of freedom (1-DOF) hinge joint (MC-

GRATH; FINEMAN; STIRLING, 2018; ALLSEITS et al., 2018).

We implemented an algorithm based on a method initially introduced by Seel, Raisch and
Schauer (2014). Some posterior researches (GRAUROCK; SCHAUER; SEEL, 2016) found
that the method is highly influenced by soft-tissue effects. In order to reduce these effects, in

our research three criteria were implemented in order to filter undesirable samples.

The method to estimate the knee main axis and position consists of three stages: (1) Apply the
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three criteria filter (named here as 3CRTF) with the objective of rejecting mainly the samples
of movements no associated with flexion-extension motion; (2) Use the thigh and shank filtered
gyroscope measurements and kinematic constraints in order to estimate the joint axis during
gait, and (3) Use the thigh and shank filtered accelerometer measurements to estimate the
joint center position in the local coordinates of the sensors. Finally, the angular velocities and
accelerations associated only with flexion-extension movements are estimated. These outcomes

feed the multi-sensor fusion filter.

Stage 1: First, the angular velocities and accelerations collected during each trial of gait were
low pass filtered using a 4th order Butterworth filter with a 10 Hz cutoff. Also, we removed
the static gyroscope output (bias) by subtracting the average of 2 seconds static measurements.
Next, we applied a filter 3CRTF to reject samples of both the gyroscopes and the accelerome-

ters, which satisfy the three following criteria:

1. The sum of the magnitudes (Euclidean norm) of the angular velocities vectors is below a

threshold (< 30 °/s).

2. The movements mainly around the longitudinal axis of the thigh sensor exceed a small

threshold (> &,).

3. The movements mainly around the longitudinal axis of the shank sensor exceed a small

threshold (> &,).

The threshold values in criteria 2 and 3 were chosen empirically by data examination to be
equal to 0.2. According to the method presented by Woltring (1990) to define the joint in-
stantaneous helical axis (IHA) in photogrammetry applications, the angular velocity must be
sufficiently large to overcome the effect of noise. Therefore, rejecting angular velocities lower
than 10% of the maximum velocity could be adopted (CUTTI et al., 2008; BESIER et al., 2003;
STOKDIJK et al., 1999). The maximum relative angular velocities presented in this work are

between 300 and 400 °/s. Therefore, we chose a threshold value of 30 °/s for criteria 1.

The longitudinal axis is computed for each local coordinate sensor by averaging the 3D acceler-
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ation measurements over 3 seconds during gait. To estimate the movement around longitudinal
axis, the scalar product of the gyroscope measurements (normalized) and the calculated longi-
tudinal axis is applied. This 3CRTF filter is summarized in the Algorithm 1 (Appendix A.1).
Consider the 3D angular velocities and accelerations of thigh (w1 = |wy, wy, w.|, @1 = [as, ay,

a,]) and shank (wg = |w,, wy, W], @2 = |a,, a,, a.|) sensors provided by the low pass filtering.

Stage 2: The knee main axis expressed with respect to the local coordinate system of the thigh
sensor is denoted as j;, and for shank sensor as jo. Note that j; and jo are supposed to be
the same vector in a global coordinate system (see Figure 4.2). Assuming a hinge joint, the
projections of the angular velocities into the joint plane have the same length for each instant
in time. Because of this fact, the non-linear problem to find the vectors j; and js that ful-
fill Equation 4.1, in a least-squares sense, can be solved using a Gauss-Newton optimization
algorithm (SEEL; RAISCH; SCHAUER, 2014). Since the joint axis estimates are expected
to be unit length, the estimation problem is reduced to find four parameters using spherical

coordinates.

lwa(t) X gall, = lwr(t) x gall, =0, V¢ (4.1)

||-||, denotes the Euclidean norm. The implementation of this method is presented in Algorithm

2 (Appendix A.2). To simplify the notation, the angular velocities resulting of the stage 1 are

Figure 4.2: Human knee as a single degree of freedom (1-DOF) hinge joint. j is the knee
main axis in a global coordinate system, and j; and js are the same axis in the local coordinate
systems of the thigh’s and shank’s sensors, respectively.
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denoted as wy and we. The initial value of 9,5 can be any value (see Appendix A.2).

Stage 3: The center of knee joint position with respect to the local coordinate system of thigh
and shank sensors is denoted as 0, and 09, respectively. 0; and og are defined pointing from
the origin of each sensor to the joint center. Exploiting the kinematic constraints of two links
connected by a spheroidal joint, the accelerometer measurements are used to compute these
vectors (SEEL; RAISCH; SCHAUER, 2014). Again, Gauss-Newton optimization procedure is

applied in order to find the vectors 0, and oy that fulfill Equation 4.2.

llar(t) — o1 x wi(t) —wi(t) x 01 x wi(t)]|,—||ag(t) — 02 X wa(t) —wa(t) X 02 X wa(t)||, =0, WVt
(4.2)
where wy and ws are the first derivative of wy and ws, respectively. When the relative motion
between two segments is restrict to a single plane, which is the case of a hinge joint, Equation 4.2
is met for all points along the joint axis (SEEL; RAISCH; SCHAUER, 2014). Also, it is worth to
point that 0; x w;(t) +w;(t) X 0; X wj is typically small compared to the gravitational component.
Thus, at normal and slow gait speed, almost the same accuracy is yielded when using 0; = 09
= [0, 0, 0]F. The implementation of this method is presented in Algorithm 3 (Appendix A.3).
To simplify the notation, the 3D angular velocities and accelerations outcomes of the stage 1
are denoted as wy, we, a1 and ay. The initial value of 9,,s can be any value (see Appendix A.3).
Next, by using the projection of the thigh and shank angular velocities about j; and jg, and
calculating the accelerations using 0, and o0z, the joint angle calculation problem is reduced to
a single plane. Therefore, without loss of generality, the knee angular velocity vector can be
expressed in the local coordinate system of the shank sensor, as shown in Equation 4.3.
ws(t) = w(t) -~ wi (1) "

S _ wa(t)j2 g2 wi(t):d1_j2
TS( ) [l721l {72l el g2l

where w? and wg are the 3D angular velocity vectors of thigh and shank sensors expressed
with respect to the shank sensor’s coordinate frame, respectively. Note that w7 is the vector
projection of the relative angular velocity onto the joint axis. We should recall that j; and

j2 are supposed to be the same vector in a global coordinate system and that they are also
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unit vectors. In practice, this remains true if just some (ideally small) errors due to soft-tissue
artifacts and other perturbations of the IMUs occur. Now, in order to shift the acceleration

measurements to the joint axis, Equations 4.4 and 4.5 are used.

&1 (t) = (t) — 01 X d)T(t) — wT(t) X 01 X wT(t)

(4.4)
a(1) = az(t) — 03 x s (t) — ws(t) x 03 X ws(1)
ar(t) = @ (1) - |“| B (45)
as(t) = Ga(t) — O

where @, (¢) and ap(t) are the same acceleration estimated in two different local frames, which
rotate with respect to each other around the joint principal axis (SEEL; RAISCH; SCHAUER,
2014), and wr and wg are the first derivative of wr and wg, respectively. Moreover, ar(t) and
as(t) are the projections of @, () and @g(¢) into the joint plane. ar(t) and ag(t) were calculated

based on kinematic constraints and feed the multi-sensor fusion filter.

4.3.2 Gait Detection Phases Using IMUs

In the MEKF presented in Section 4.3.4, we used time intervals where the accelerometers and
POF sensor measurements are expected to be more reliable. This is done through of the iden-
tification of specific gait phases using a rule-based method. Generally, regarding acceleration,
the more reliable instants are defined as those in which the measured acceleration vector is
almost the gravity vector. We applied this fact for the relative acceleration, where the absolute
value of the difference of the acceleration magnitudes should be below a threshold &,, as shown

in Equation 4.6.

llazl, = llall,| < &, (4.6)

where a; and ag are the low pass filtered accelerations. However, as can be observed in Figure 4.3
(a-b), this condition may be fulfilled close to impacts, between peaks of accelerations, as the
initial contact and push off. Therefore, we propose to use this condition in static conditions and

during the end of loading response and terminal-stance (T'St) phases (approximately around
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Figure 4.3: Reliability intervals of the accelerometers and POF curvature sensor for each gait
cycle. (a) Angular velocity of the shank’s gyroscope medio-lateral axis, ws,,, (blue curve), knee
angular velocity, KAV (orange curve), absolute value of the difference of the acceleration mag-
nitudes (yellow curve), heel strike (HS) events (green dot mark), toe off (TO) events (blue dot
mark), toe strike (aTS) events (red square mark), heel off (aHO) events (purple square mark),
the end of the mid-swing (eMSw) phase (orange triangle mark), points where the difference of
the acceleration magnitudes is below a threshold 7, (black dot mark). (b) Accelerometers-based
joint angle (light blue curve), reference (Vicon) angle (blue curve), RI-ACC (blue stripe). (c)
POF curvature sensor-based joint angle (light blue curve), RI-POF (blue stripe).

10 - 40% of gait cycle), when the foot remains in full contact with the ground. We called this
interval as RI-ACC.

As for POF curvature sensor measurements, the more reliable instants are defined after the
maximum flexion at stance phase to the end of mid-swing phase. This interval was identified
by previous examination of data. Basically, due to limitations related to the gait dynamics,
attachment, and alignment of the experimental-setup with the joint, we observed that during
terminal swing, close to the initial contact, the POF curvature sensor output does not track
closely the knee movement. This fact will be further discussed in Section 4.5. Note that this

interval comprises the gait phases from the end of loading response to complete mid-swing
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phase (approximately around 10 - 85% of gait cycle, see Figure 4.3 (c)). We called this interval
as RI-POF.

To detect the gait phases of interest, we first implemented a method to identify the two main
gait’s phases, i.e., stance and swing phases. The method consists of finding the events that indi-
cate the start of cach phase, which are heel strike (HS) and toc-off (TO), respectively. For this
purpose, we used the angular velocity of the shank’s gyroscope medio-lateral axis, and a dual
minima method was implemented (LEE; PARK, 2011; KOTIADIS; HERMENS; VELTINK,
2010). Then, by using the knee angular velocity and identifying two zero-crossing (one ascend-
ing and other descending) between HS and TO instants of each gait cycle, the RI-ACC interval
is defined. To identify approximately the end of the mid-swing (MSw) phase, we used the max-
imum peak in the knee angular velocity located after the TO instant. Therefore, the RI-POF
interval is defined between the first zero-crossing, after HS instant, and the maximum peak,
after TO instant, of the knee angular velocity signal. The RI-ACC and RI-POF intervals are
graphically explained in Figure 4.3. The implementation of the rule-based method is presented

in Algorithm 4 (Appendix A.4).

4.3.3 POF Curvature Sensor

In our research, the POF curvature sensor works based on the intensity variations principle as
mentioned in Section 2.2.4. This principle consists of measuring the light power variation on the
POF output when it undergoes curvature. Such power variation is proportional to the curvature
angle. By removing a section of the fiber cladding and part of its core, a so-called sensitive
zone is created (BILRO et al., 2012). This is done aiming to increase the sensor sensitivity
and linearity as well as hysteresis reduction. Therefore, this zone is more sensitive to curvature
variations. We performed a previous calibration stage of the POF curvature sensor as suggested
in (LEAL-JUNIOR et al., 2018b). To fulfill this task, we positioned the POF sensor on the
experimental setup shown in Figure 4.4. This setup comprises of a DC servomotor with angular
position/velocity closed-loop control, a precision potentiometer and a 3D-printed mechanical

structure. Using the control unit, flexion-extension movements were generated on a range of
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Figure 4.4: Experimental setup for POF curvature sensor characterization

motion of 0 - 90°. The POF curvature sensor output is then compared to the angle measured
by the potentiometer. Afterwards, a regression is applied in order to obtain the coefficients

Y2, 71 and 1 of Equation 4.7 as explained in Section 2.2.4.

o (n (2)) e moenn (o (£)) e o

It should be recalled that two equations are needed, one for flexion and one for extension. When
the sensor is positioned on the user’s knee joint, the new mounting conditions can influence the
sensor response, as discussed in (LEAL-JUNIOR; FRIZERA; PONTES, 2018b). Therefore, a
calibration movement was required to adjust the characterization parameters. In Section 4.5.1
the results of POF curvature sensor characterization are presented. Now, let Oppor be the

resulting angle of the POF curvature sensor. In order to express it in quaternion format, which
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feeds the multi-sensor fusion filter in the observation model, Equation 4.8 is used.

. 0 .. [0
qror(Bpor, J2) = (COS ( PQOF) ,J2 sin ( P20F>) ; (4.8)

where gpor is the rotation quaternion around the joint main axis in the shank sensor’s local

coordinate frame. Here, we are assuming that the POF curvature sensor is aligned with the

knee joint main axis.

4.3.4 IMU-POF Based Multiplicative Extended Kalman Filter (MEKF)

We propose a multi-sensor fusion filter based on MEKF, first introduced by Lefferts, Markley
and Shuster (1982), as a method to estimate spacecraft attitude using quaternions. Recently,
Ghobadi et al. (2017a) used this formulation to propose a single IMU-based gait monitoring
system (GHOBADI; ESFAHANI, 2017b). A MEKF consists of estimating a non-singular and
unconstrained orientation error (08), which is the vector part of the multiplicative error quater-
nion, dq, that is defined as the multiplication between the estimated quaternion conjugate, §—*,

and the true orientation quaternion, q, as expressed in Equation 4.9.
=4 "'®q, (4.9)

where the multiplicative error quaternion can be approximated as 6q = [1 50} T. The main
advantage of MEKF with relation to the ordinary EKF is that the error, dq, between the es-
timated and the true orientation, is supposed to be much smaller than the differences with
the actual orientation, which eventually leads to a smaller linearization error. As the ordinary
EKF, MEKF also works in a two step process: Prediction and Update step, which are explained

below.

For nonlinear system, MEKF is described by a state space model for dynamics ., and mea-
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surement z; as shown in Equation 4.10.

Ty = [ (@h) +w (4.10)

zp = h(xy) + v,
where f (z)) and h (z) are the state transition and measurement functions, respectively. And
w and v are the additive noises, modeled as a zero-mean white Gaussian noise process with

known covariance matrices @ and R, respectively.

Joint Kinematics

The relative orientation between the shank and thigh body segments can be obtained by inte-
grating Equation 4.11.

) 1
qrs = 54qrs ® wh, (4.11)

where qrs is the unit quaternion expressing the orientation of the shank frame with respect
to the thigh frame, and w3g is the angular velocity of the shank with respect to the thigh
coordinate system expressed in the shank coordinate system (KORTIER et al., 2015). Moreover,
this relative angular velocity, w7, is calculated by subtracting the angular velocities of two
adjacent bodies forming a joint. Recall the angular velocity of a single body is measured by
using a 3D gyroscope, whose sensor output, y,,, can be modeled as shown in Equation 4.12.

For more details, refer to Section 2.2.1.
Yo = w;i + by, +w,,, (4.12)

where i refers to the shank (S) or thigh (7') body segments, w; is the angular velocity of the
i-th body with respect to a global coordinate system expressed in the body local coordinate
system, b,,, is the gyro sensor bias of the i-th body and w,, is a zero-mean white Gaussian noise
process with standard deviation o,,,. Then, the relative angular velocity w3.g can be modeled

exploiting the kinematic constraints as shown in Equation 4.13.

w%s = [(yws - bws - wws) ‘j2 - (wa - bwT - wa) 'jl]j2v (413)
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where j; and jg are the knee joint axis computed in Section 4.3.1. For simplifying notation and

because their values are unitary, the Fuclidean norms of j; and js were omitted in Equation 4.13.

State Space Model and Prediction Step

As already discussed, the filter computes the error state, therefore, the state vector is defined

as shown in Equation 4.14.

€= 605 Ob,, b,/ (4.14)

where 607 is the orientation error of the shank with respect to thigh body segments, and b,
and 6b,,, are the error bias estimates of the thigh and shank gyroscopes sensors, respectively.
It is needed to estimate the gyroscopes bias due to the fact that these sensors have a low bias
stability, as previously discussed in Section 2.2.1, which may lead to high inaccuracy orientation

estimates by integrating the gyroscopes output over long periods.

Now, let §rg be the expected value of grg, which can be also estimated by integrating Equa-

tion 4.15.

% L, .
qrs = 54rs ® D7, (4.15)

where §rs and @7 4 are the estimated relative orientation quaternion and relative angular veloc-
ity between the shank and the thigh body segments, respectively. Assuming a zero-order-hold

of @3¢ with a sampling time 7', its discretization is shown in Equation 4.16.

. 14, a .
qrsk = €xp (§Q(W§S)T> ®4qrsk-1 (4.16)

where k is the actual sample and Q(@7.) is a matrix as shown in Equation 4.17.

Qw) = wx]=1w, 0 —w (4.17)
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Also, @7 can be expressed as shown in Equation 4.18 by using the single gyroscope model and

the estimated knee joint axis.

s = (s —bus) G2 — (Yor —bur ) 5] 22 (4.18)
Next, by taking the derivative of Equation 4.9 and replacing ¢rs and éTS from Equations 4.11
and 4.15, we can deduce Equation 4.19 to describe the state transition equation. The gyro bias
b., (for i — T or S) is modeled as a random walk process, b, — wy,, , where wy,, 1s a zero-mean

white Gaussian noise process with standard deviation b, -

69TS = — [(:1‘7915 X] 50TS -+ %(Sw‘%s
0b3 = wy, (4.19)
6bUSJT = w;,wT

[-x] is the skew symmetric matrix operator computed using the right side of Equation 4.17. By
using Equations 4.13 and 4.18, the difference angular velocity, dw?.g, is computed as shown in

Equation 4.20. For ||dwfs|| <<

@fs|| and ||b, || << 1, Equation 4.20 was simplified neglecting

the projections of the biases and recalling that such biases are estimated in each iteration.

5“?“3 = w%g - ‘2’%
Swiy = b — b —wS (420)
b5 =b5 — b5

w = (W - 2 — We, - J1)J2

Before measurement update, error states are set to zero (KORTIER et al., 2015; GHOBADI,
ESFAHANI, 2017a) and the error covariance matrix, P, is propagated using the discretization
process model, Fy;, and process noise, (4, similar to those proposed in (GHOBADI; ESFAHANI,

2017a), as shown in Equation 4.21, where the minus sign indicates the a-priori estimate.

P = Fd,kpk—leT,k + Qa, (4.21)
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Observation Model and Update Step

During the update step, as proposed in (GHOBADI; ESFAHANI, 2017a), the error covariance,
P, and filter states, x, are corrected twice, first using the accelerometers’ outputs and then
the POF curvature sensor’s. For the accelerometers, consider two vectors, ar and ag, which
are the acceleration vectors computed in Section 4.3.1. Now, the estimate of ar in the local
coordinate S is given by Equation 4.22. Note that the two vectors are related by qrg, which is

the orientation quaternion that represents the knee joint angle.
as = (drs)” ®ar ®drs (4.22)
We can also express Equation 4.22 in matrix form using Equation 4.23.
as = M(grs)ar, (4.23)

where M(q) is computed using Equation 4.24. In addition, note that M(q) is the inverse

rotation.

BHE+E ae+wos aa— e
M@) =2 g —qe @+3—% e+ on (4.24)

N3+ Qo2 s — Qoo 94+ a5 — %
Moreover, Equation 4.9 can be expressed in matrix form by Equation 4.25. M(dq) can be
approximated as shown in Equation 4.26 (GHOBADI; ESFAHANI, 2017a), where I is the

identity matrix.

M(q) = M(dq)M(q) (4.25)
M(5q) = T — 2[66x] (4.26)

Then, the difference between the observed, ag, and the estimated vector, ag, should be related
to the error state, 38rg, as shown in Equation 4.27. Note that the observed vector is augmented

by a measurement error, v,, which is a zero-mean white Gaussian noise process with standard
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deviation o,.
(52(,, =as — &5
(4.27)
0z, = 2[asx] 00715 + v,
Consequently, the observation model corresponding to the correction by the accelerometers is

expressed in Equation 4.28.

Had,k: 2[asx] 0O3x3 Osx3 (4.28)

Regarding the correction by the POF curvature sensor, we proposed to use Equation 4.9,
where the orientation quaternion, gpor, computed in Section 4.3.3, is assumed to be the true

orientation quaternion. Then, we can express the error quaternion as shown in Equation 4.29.

0qp = (Grs)” ©qror (4.29)

Because dqp is supposed to be small, the difference between the observed quaternion, gpor,
and the estimated quaternion §rg is the vector part of dgp, which is defined as 66@por. This

should be related to the error state as shown in Equation 4.30.

dzpor = 60por (4.30)

dzpor = 00rs +vpor,

where vpor is the POF curvature sensor’s measurement noise, which is modeled as a zero-mean
white Gaussian noise process with standard deviation oppor. Subsequently, the observation

model corresponding to the correction by POF curvature sensor is expressed in Equation 4.31.

HPOFd,k = |:I3><3 O3x3 03><3:| (4'31)

The update step is also applied twice using Kalman filter equations, in which the Kalman gain,

K, is computed and the state x; along with its covariance P, are also updated as shown in
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Equation 4.32.

Ky = Py HE, [Hiy P HE, + Ry

Pl =[I - KuH,,,] Py (4.32)

& =&, + Ky [0z; — H;, &;],

where i refer to a or POF. The plus and minus signs indicate the a-posteriori and a-priori
estimate, respectively. Before each update step, the reliability of the accelerometers and POF
curvature sensor signals is assessed as explained in Section 4.3.2. In this way, the measurement
covariance matrices, R; j, are adapted such that their scale considering the intervals RI-ACC and
RI-POF as previously defined. We considered to adapt these covariances matrices as suggested

by Sabatini (2011), where measurement vectors are discarded by setting the variances to some

large values.

A

Finally, the filter updates the orientation quaternion, §rsyx, and the biases, b,, , by using
Equation 4.33, where 6qrg — [1 0075
d;s =475 ® 0qrs, qrs= ‘qT_“

(4.33)

A

gwi,k - bwi,k‘fl + 5bwi

Then, the knee angle is computed using Equation 4.34, with s =

qu—SZ and ¢ = qrg,, where z

and w refer to the element vector.
s
Oknee = 2 - atan (—) (4.34)
c

The implementation of the IMU-POF based MEKF is summarized in Algorithm 5 (Appendix

A.5). A flowchart is also presented in Appendix A.7.

4.4 Experiments

This section presents the experimental evaluation and validation of the knee sleeve system.

Ground truth data from experiments with healthy subjects was provided by an optical gait
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analysis system, enabling the validation of the proposed system and algorithms. Experimental
protocol, data and statistical analyzes are presented using different metrics in order to assess

reliability and repeatability.

4.4.1 Participants

Twelve healthy young adults (males) without history of neuromuscular or physical disability
participated in this study (23.08 4+ 2.31 years old; 1.72 £ 0.05 m; 71.32 £+ 9.91 kg). Prior to
participating in this study, all subjects (S1 to S12) were informed about the study protocol and
gave their informed consent. The ethics committee of the Colombian School of Engineering

Julio Garavito approved all study procedures (02-2019).

4.4.2 Protocol

An 8-camera optical motion capture system (Vantage V5-Wide, Vicon, USA) was used as a
gold-standard, with a sampling rate of 100 Hz. We placed a total of fifteen passive reflective
markers on anatomical landmarks (pelvis, thigh, leg and foot for both sides) according to the
Plug-in-Gait Lower Body specifications (VICON, 2016). A single sacral marker was used for
the pelvis. Additionally, marker clusters were placed on pelvis, right thigh and leg, and both
feet in order to improve tracking and estimates. Next, the instrumented part of the knee sleeve
system was placed on the participant’s joint (see Figure 4.5). This was done in such a way that
the sensitive zone of the optical fiber was carefully aligned with the knee flexion rotation axis.
Textile knee sleeve was not used seeking to avoid any marker misplacement errors by this fact.
Two 3D-printed supports were used mimicking the seams on the knee sleecve. To synchronize

the systems, a trigger signal was sent by the commercial system to the proposed system.

Before each test, anthropometric measurements (weight, height, inter-ASIS distance, leg length,
knee width, and ankle width) were collected from each subject. A calibration trial was per-
formed at the beginning of the test in order to verify if the optical system was working appro-

priately. This capture was also needed for data processing. Thus, participants were asked to
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Figure 4.5: Marker set (Plug-in Gait lower body model), additional marker clusters and IMU-
POF system placed on a participant.

keep a static upright posture for approximately 5 seconds in the middle of the room. After-
ward, they were addressed to perform a passive knee flexion-extension movement in a standing

posture in order to collect data to characterize the POF curvature sensor.

Participants performed eight walking trials at self-selected speed along an 8.5 meters walkway
of which approximately 4 meters into the zone captured by the optical system. The number of

trials was chosen in order to obtain at least 20 gait cycles for each participant.

The start and the end of the walkway was indicated through marks on the floor using crepe
tape. In addition, all participants were asked to start walking with their right leg in each trial.
We used Nexus 2.8 software (Vicon, USA) for data processing from the optical system. MAT-
LAB software (version 2018a; The MathWorks Inc., USA) was used to develop the algorithms,

analyze and process the orientation data from the knee sleeve system.
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4.4.3 Data Analysis

We analyzed and compared whole knee flexion-extension angle curves. For each participant, 20
gait cycles were collected with each system. A total of 240 knee flexion-extension angle signals

was processed for each system.

First, the Conventional Gait Model 1 (CGM1, Vicon) was adjusted to include the marker
clusters. Next, marker trajectories’ reconstruction and auto-labelling were carried out in Nexus
software (Vicon). Then, each trial was visually examined in order to verify the consistency of
the assigned labels. Gaps, due to markers occlusion, were interpolated according to the gap
sizes: (i) gaps in trajectories not greater than 10 samples were estimated using a Woltring
filter, (ii) gaps in trajectories of up to 25 samples were estimated by means of the rigid body
property, and the not-occluded markers associated with the segment representing the rigid body
under evaluation. Greater gaps were not allowed. Kinematics (joint angles and positions) were
calculated using the Plug-in Gait pipeline and exported in a c3d file. The identification of the

gait events, heel strike and toe off, were realized manually.

Data from the knee sleeve system were filtered with a 4" order Butterworth filter with a 10
Hz cutoff. Initial gyroscope offsets were removed by subtracting the average value of the static
sensor outputs at the beginning of each trial. Accelerometer signals were also normalized during
static posture. Then, all methods presented in Section 4.3 were applied to estimate the knee
joint angles. Each gait cycle was extracted using two consecutive heel strike (HS) events, as

explained in Section 4.3.2.

4.4.4 Statistical Analyses

We evaluated the proposed methods and system in two scenarios:

1. Comparing the knee angles estimated when (i) using the gyroscopes, accelerometers and POF

curvature sensors separately, (il) merging signals from gyroscopes and accelerometers, and
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(iii) using the proposed IMU-POF based MEKF. A 4th-order Runge-Kutta (RK4) algorithm

was used for numerical time-integration when using only gyroscopes.

2. Comparing the obtained results with three methods in the literature (SEEL; RAISCH,
SCHAUER, 2014; MCGRATH; FINEMAN; STIRLING, 2018; ALLSEITS et al., 2018).

In the first method (SEEL; RAISCH; SCHAUER, 2014), the authors used a complementary fil-
ter (CF) to fusion data from gyroscopes and accelerometer using the joint axis and positions, as
explained in Section 4.3.1. The second method consists of estimating the knee flexion-extension
axis using Principal Component Analysis (PCA) (MCGRATH; FINEMAN; STIRLING, 2018).
In the third method, the authors proposed to estimate the knee angle using the integration of
the knee angular velocity based on a gyroscope only (GO) algorithm, along with a zero angle
update (Zero Knee Angle, ZKA) for eliminating the drift due to integration (ALLSEITS et al.,
2018).

Three metrics were calculated aiming to describe the performance of the proposed meth-
ods and system when compared to the gold-standard system: (i) Root Mean Square Error
(RMSE) (BERGAMINT et al., 2014), (ii) Lincar Fit Method (LFM) coefficients (IOSA et al.,
2014), and (iii) Concordance Correlation Coefficient (CCC) (LAWRENCE; LIN, 1989). They
were used in order to express reliability and repeatability of the obtained patterns along whole

gait cycles.

The LFM consists of three coefficients: a; represents the amplitude scaling factor between the
comparing curves, greater similarity is presented when a; is closer to 1; ag predicts the scalar
addition (shift) between curves, corresponding to the offset, when a; tends to 1, ideally ag is
equal to zero; and R? measures the strength of the linear relationship between curves, and co-
incides with the square of the Pearson’s correlation coefficient R. In addition, CCC (p,) is the
relation between (, the bias correction factor that measures how far the best-fit line deviates

from the 45° line, which measures accuracy; and R, which measures precision.

Moreover, the normal distribution of the indices was verified using the Shapiro-Wilk test of



82 Chapter 4. Sleeve for Knee Angle Monitoring: A Novel IMU-POF Sensor Fusion System

normality. The distribution of all indices was found to be normal. Then, we carried out a
repeated measures one-way ANOVA for each dependent variable. The Maunchly test was used
to check sphericity assumption, if this assumption was not confirmed, the Greenhouse-Geisser
adjustment was used. If significant p-value was found, we used a pairwise comparison post-hoc
test. We also computed the effect size, partial n squared (n?) parameter, for each dependent
variable. The level of significance was set at o < 0.05. We used IBM SPSS Statistics software
(IMB SPSS Statistics 20, SPSS IBM, New York, NY, USA) to perform statistical analysis.

4.5 Results and Discussion

4.5.1 POF Curvature Sensor Characterization

The average of twenty flexion-extension movements was used to characterize the POF curvature
sensor with an angular velocity of approximately 1.5 rad/s. Figure 4.6 (a) depicts the angle
estimated by the POF curvature sensor after a characterization using a compensation technique
(Equation 4.7) and the experimental setup shown in Figure 4.4. The comparison between the
compensated and uncompensated responses is presented in Figure 4.6 (c-d). The mean hystere-
sis, when the compensation technique is applied, decreased from 1.88% to 0.74%. In addition,
note that the mean RMSE obtained when compared the POF response to the potentiometer
output decreased from 4.36° to 2.57°. After the POF curvature sensor is positioned on the
participants’s knee joint, the characterization parameters are adjusted during the calibration
trial. The results of one gait trial are presented in Figure 4.6 (b) for the participant S9. The

mean RMSE obtained for these three gait cycles was 6.11°.

Additionally, it is possible to observe that the difference between the POF response and the
reference system increased around the initial contact with a value of up to 18°. This response
pattern of the POF curvature sensor was repeatable for all participants, in some cases more
critical than others. After the maximum knee flexion, which also represents the maximum

deformation of the POF sensor, the knee undergoes a rapid extension during mid and terminal
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Figure 4.6: POF curvature sensor characterization. (a) Estimated angle by POF curvature
sensor in three sequential flexion/extension cycles compared to the reference potentiometer.
(b) POF curvature sensor-based knee joint angle compared with the reference camera-based
system during walking. POF sensor response before (¢) and after (d) applying the compensation
technique using the experimental setup.

swing. The angular velocity in this interval is directly proportional to the gait velocity and
can vary from 3 to 6.5 rad/s (MENTIPLAY et al., 2018). Thus, the POF sensor suffers a
high angular variation in a reduced time interval, which influences the viscoclastic response of
the polymer (LEAL-JUNIOR et al., 2018¢), explaining one of the possible causes of why the
POF sensor response does not track closely the knee movements after the maximum flexion.
In addition, the experimental setup conditions, such as the bending radius and a misalignment
between the POF sensor and knee joint, can also affect the sensor output (LEAL-JUNIOR;

FRIZERA; PONTES, 2018b).

The results expose an evidence that the POF sensor performance decreases when used alone
to assess knee joint movements without rigid structures. However, similar sensors have demon-
strated high accuracy (RMSE < 4°) as well as a good repeatability for robotic exoskeleton

applications (LEAL-JUNIOR et al., 2017, 2018) and soft-robotics (LUNNI et al., 2018). More-
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over, advantages such as low-cost, lightweight, multiplexing systems and electromagnetic field

immunity make POF sensors attractive for these applications.

For wearable sensors, side rigid structures bounding the POF sensor should be used to prevent
sideways stress, or include the sensor as part of the textile, which should ideally be adhered well
to the skin. Moreover, an alternative to improve the system performance is to fusion the POF
sensor output with IMU sensors data, benefiting from both technologies. This last approach is

proposed and implemented in this work.

4.5.2 Comparison of Single-sensor and Multi-sensor Fusion Methods

This subsection aims to evaluate the repeatability and reproducibility of five methods based on
single-sensor or multi-sensor-fusion measurements when used to estimate the knee joint angle.
In addition, a statistical comparison between them is presented. Each knee flexion-extension
angle estimated by the wearable system was compared with that obtained by the optical system.
Parameters of process and measurement noise distributions are given in Table 4.1. These values
were determined empirically and following suggestions from other studies (XING; GEBRE-
EGZIABHER, 2008). Knee angle signals from twelve healthy young adults (S1 to S12) were
processed and analyzed. The accuracy of each method was expressed using the Root Mean
Square Error (RMSE) and the obtained results are shown in Table 4.2. The three first columns
correspond to the single-sensor methods: gyroscope-based, accelerometer-based and POF-based
methods. The fourth column refers to the gyroscopes and accelerometers fusion method using
our MEKF, and the last one corresponds to the fusion of signals from IMUs and POF curvature
sensor through MEKF. The smallest mean RMSE value for each subject is highlighted in bold.

Table 4.1:  Standard deviation values of gyroscopes, gyro biases, accelerometers and POF
curvature sensor noise.

, Va (m/s?) wy, (rad/s) Wy, (rad/s) vpor (degrees)

5x 107t 5% 1073 1x 1073 5x 1073

These parameters were empirically found.
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Table 4.2: Methods vs. gold standard, accuracy expressed in terms of Root Mean Square Error
(RMSE).

RMSE: Mean (SD) (Degrees)

Participant RK4 INT Accelerometer- POF-based Gyro + Acc Gyro + Acc +
Method based Method Fusion POF Fusion
(Gyroscope) Method (MEKF (MEKF
Method) Method)
S1 5.00 (1.20) 19.35 (0.98) 7.52 (1.15) 4.30 (0.72) 3.46 (0.62)
S2 9.98 (3.36) 14.14 (1.69) 7.62 (0.89) 4.12 (0.61) 3.56 (0.48)
S3 6.40 (2.27) 21.49 (1.61) 6.80 (0.67) 3.93 (1.15) 2.49 (0.75)
S4 7.19 (3.06) 13.46 (1.47) 6.19 (0.43) 3.80 (1.07) 1.89 (0.54)
S5 11.56 (2.18) 16.82 (0.94) 8.53 (1.49) 3.42 (1.45) 3.21 (1.53)
S6 8.74 (6.04) 16.80 (1.03) 8.19 (0.55) 4.17 (1.43) 2.94 (0.98)
ST 11.62 (4.00) 11.69 (1.25) 8.23 (0.73) 5.90 (0.99) 3.63 (0.98)
S8 6.01 (1.34) 15.40 (1.04) 6.17 (0.45) 4.02 (0.62) 2.98 (0.64)
S9 14.30 (4.49) 12.72 (0.92) 5.82 (0.71) 5.53 (1.17) 4.16 (0.68)
S10 4.46 (2.17) 12.53 (1.12) 9.48 (1.27) 3.84 (0.68) 1.83 (0.47)
S11 4.80 (1.20) 18.06 (1.86) 6.53 (0.41) 6.46 (1.04) 4.40 (0.90)
S12 6.61 (1.87) 14.53 (0.93) 8.71 (0.60) 9.92 (0.90) 3.80 (0.76)
Mean 8.87 15.45 7.59 5.12 3.28
SE 0.92 0.86 0.34 0.46 0.24

For each participant values are presented as Mean (SD); SD, standard deviation; SE, standard error; RK4
INT, Runge-Kutta 4th-Ord time-integration method; POF, polymeric optical fiber; Gyro, gyroscope; Acc,
accelerometer; MEKF, multiplicative extended kalman filter.

In general, for our IMU+POF based system, a mean RMSE smaller than 4.5° was obtained for
each participant. In Figure 4.7 the worst case for each method is shown. A significant difference
between methods was observed for RMSE values (Fh29 = 52.65, p < 0.0005, n* = 0.83). Post-
hoc tests revealed significant difference between accelerometer-based and the other single-sensor
and multi-sensors fusion methods (p < 0.0005), whereas no difference was found between Gyro-
based (RK4-INT) and POF-based methods. Also, mean RMSE of our IMU+POF based sensor
fusion (mean RMSE < 3.3° for all participants) was significant smaller than the other methods

(p < 0.001) (see Figure 4.8 (a)).
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Figure 4.7: The worst case among 12 subjects (S1-S12) for each method when comparing with
the reference system. (a) S9, (b) S3, (c) S10, (d) S12 and (e) S11.
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Figure 4.8: Performance of single-sensor and multi-sensor fusion methods. Mean and standard
deviation of (a) RMSE, and LEM coefficients (b) a; and (c) ag. n.s, non-significant p-value >
0.05,*p < 0.05, **p < 0.01, ***p < 0.001.
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The repeatability and reproducibility of each method were evaluated using the LFM and the
CCC coefficients (see Table 4.3 and 4.4). For a; (LFM) coefficient, a significant difference
between methods was found (Fy 16 = 26.09, p < 0.0005, n* = 0.70). According to the post-
hoc comparisons, non-significant difference was found for two pairwise: Accelerometer-based
and POF-based; and Gyro+Acc and IMU+POF MEKF methods. For the others pairwise,

significant difference was found (p < 0.001) (see Figure 4.8 (b)).

Table 4.3: Methods vs. gold standard, repeatability and reproducibility expressed in terms of
the Linear Fit Method (LFM).

Linear Fit Method (LFM) coefficients: Mean (SD)

RK4 INT Accelerometer- POF-based Gyro + Acc Gyro + Acc +
Method based Method Fusion (MEKF POF Fusion
(Gyroscope) Method Method) (MEKF Method)
Participant ay ao(°®) R? a1 ao(°) R? ay ao(°) R? a1 ao(°) R? ay ao(®) R?
S1 0.99 -041  0.96 1.13 6.55 0.64 093  -0.54  0.87 0.98 441 0.99 0.97 3.63 0.99

(0.02) (3.04) (0.01) (0.04) (L51) (0.04) (0.04) (1.55) (0.03) (0.02) (0.81) (0.01) (0.02) (0.69) (0.01)

S2 114 402 097 071 1051 053 089 248 087 112 -1.95 098 105 -3.06 098
(0.03) (3.66) (0.01) (0.08) (2.62) (0.09) (0.09) (473) (0.02) (0.03) (1.24) (0.00) (0.03) (1.27) (0.00)

S3 110 -524 098 064 1153 024 085 516 08 104 183 099 097 205  0.99
0.03) (477) (0.01) (0.07) (2.32) (0.06) (0.03) (2.04) (0.02) (0.03) (1.84) (0.00) (0.04) (2.08) (0.00)
S4 1.03 478 099 065 1205 049 089 412 088 097 403 099 099 -043  0.99

(0.02) (4.01) (0.00) (0.05) (1.32) (0.06) (0.04) (1.50) (0.02) (0.02) (L.31) (0.00) (0.02) (1.21) (0.00)

S5 107 -1241 097 068 1123 040 083 705 081 097 060 098 098 08  0.99
(0.05) (2.96) (0.05) (0.08) (1.90) (0.05) (0.05) (2.15) (0.05) (0.04) (2.07) (0.03) (0.04) (1.87) (0.04)

S6 105 -3.64 099 083 665 054 084 343 085 099 337 099 100 146  0.99
(0.02) (7.99) (0.01) (0.09) (1.12) (0.07) (0.04) (2.08) (0.02) (0.02) (1.79) (0.01) (0.02) (1.66) (0.01)

S7 100 -10.71 099 083 239 071 089 013 087 094 -377 099 098 -1.99  0.99
(0.03) (4.08) (0.01) (0.04) (1.08) (0.06) (0.05) (1.91) (0.04) (0.03) (1.09) (0.01) (0.03) (1.21) (0.01)

S8 121 -894 097 0.8 488 045 0.85 320 087 116 -3.82 098 1.03 211 098
(0.03) (2.81) (0.01) (0.09) (3.15) (0.08) (0.04) (2.49) (0.02) (0.03) (1.39) (0.01) (0.04) (1.42) (0.01)

S9 1.04 -1286 088 066 9.03 047 093 246 088 106 -53%8 095 093 264 095
(0.04) (4.93) (0.02) (0.08) (2.20) (0.06) (0.06) (2.91) (0.03) (0.04) (2.03) (0.01) (0.05) (2.55) (0.02)

S10 104 413 099 055 1461 042 078 1015 071 099 -325 099 099 -050 0.99
(0.02) (2.88) (0.01) (0.07) (1.72) (0.08) (0.04) (1.74) (0.06) (0.02) (1.03) (0.00) (0.02) (1.16) (0.00)

S11 112 014 098 085 1116 046 089 268 0.8 1.08 404 098 106 210 098
(0.02) (230) (0.01) (0.06) (0.95) (0.05) (0.03) (1.74) (0.01) (0.02) (1.56) (0.00) (0.02) (1.68) (0.00)

S12 107  -446 096 096 539 065 085 710 08 103 754 098 096 3.68 008
0.03) (5.01) (0.02) (0.05) (L40) (0.04) (0.03) (1.87) (0.02) (0.04) (1.83) (0.01) (0.02) (1.78) (0.00)

Mean 1.07  -449 097 078 883 052 087 39 085 103 064 098 0.99 0.70 0.98

SD 006 595 003 016 362 013 004 304 005 007 417 00l 0.04 2.29 0.01
Mean (abs(ag)) - 5.98 - - 8.83 - - 1.05 - - 3.66 - - 204 -
SD (abs(ag)) - 1.28 - - 3.62 - - 2.91 - - 1,78 - - .10 -

For each participant values are presented as Mean (SD); SD, standard deviation; abs, absolute value; RK4 INT, Runge-Kutta 4th-Ord time-
integration method; POF, polymeric optical fiber; Gyro, gyroscope; Acc, accelerometer; MEKF, multiplicative extended kalman filter; a;, angular
coefficient, which represents the amplitude scaling factor; ag, intercept of the fitting line, which represents the scalar addition (shift); R?, coefficient
of determination, which coincides with the square of the Pearson’s correlation coefficient R. Ideal values of LEM parameters are a; = 1, ag = 0,
R? =1
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Table 4.4: Methods vs. gold standard, reproducibility expressed in terms of the Concordance
Correlation Coefficient (CCC).

CCC (p;): Mean (SD)
Participant RK4 INT Accelerometer- POF-based Gyro + Acc Gyro + Acc +

Method based Method Fusion POF Fusion

(Gyroscope) Method (MEKF (MEKF

Method) Method)

S1 0.97 (0.02) 0.70 (0.03) 0.93 (0.02) 0.98 (0.01) 0.98 (0.00)
S2 0.89 (0.06) 0.72 (0.06) 0.91 (0.02) 0.98 (0.00) 0.98 (0.00)
S3 0.94 (0.04) 0.48 (0.06) 0.92 (0.01) 0.98 (0.01) 0.99 (0.01)
S4 0.93 (0.06) 0.64 (0.09) 0.93 (0,01) 0.97 (0.01) 0.99 (0.00)
S5 0.84 (0.05) 0.62 (0.04) 0.88 (0.04) 0.98 (0.02) 0.98 (0.02)
S6 0.91 (0.11) 0.71 (0.06) 0.92 (0.02) 0.98 (0.01) 0.99 (0.01)
S7 0.86 (0.07) 0.80 (0.09) 0.92 (0.02) 0.96 (0.02) 0.98 (0.01)
S8 0.92 (0.05) 0.64 (0.06) 0.92 (0.01) 0.97 (0.01) 0.98 (0.01)
S9 0.73 (0.12) 0.68 (0.05) 0.94 (0.02) 0.95 (0.02) 0.97 (0.01)
S10 0.96 (0.05) 0.64 (0.06) 0.81 (0.04) 0.97 (0.01) 0.99 (0.00)
S11 0.95 (0.05) 0.61 (0,04) 0.90 (0.06) 0.94 (0.02) 0.98 (0.02)
S12 0.94 (0.05) 0.77 (0,08) 0.88 (0.05) 0.92 (0.03) 0.98 (0.01)

For each participant, values are presented as Mean (SD); p., concordance correlation coefficient (Lin’s in-
dex); SD, standard deviation; RK4 INT, Runge-Kutta 4th-Ord time-integration method; POF, polymeric
optical fiber; Gyro, gyroscope; Acc, accelerometer; MEKF, multiplicative extended kalman filter.

Furthermore, for ag (LFM) coefficient, a significant difference between methods was found (£ 96
= 22.18, p < 0.0005, n? = 0.67). Post-hoc tests revealed non-significant difference between
Gyro+Acc and IMU + POF methods, for the others pairwise, significant difference was found
(p < 0.05) (see Figure 4.8 (c)).

The coefficient of determination, R? (LFM) and pc (CCC), are summarized for all participants
in Figure 4.9. Also, we used Z-transform for describing the confidence interval (95%) of pc.
Mean 2% values were higher than 0.85 for almost all methods, except for accelerometer-based

method (R? = 0.52), suggesting that 3D accelerometers presented poor performance when
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Figure 4.9: Repeatability and reproducibility of (a) Gyro-based method, (b) Accelerometer-
based method, (c) POF-based method, (d) Gyro+Acc fusion (MEKF) method and (e)
IMU+POF fusion (MEKF) method. Mean R? and pc for all participants. Specific Method

versus reference system.

used alone for assessing knee angle during walking in this research. Non-significant difference

between multi-sensor fusion methods was found. Controversially, significant difference between

Gyro-based and both multi-sensors methods was presented (p < 0.05). Moreover, po values

were higher than 0.90 for almost all methods, except for accelerometer-based methods (pc =

0.82). Values of this parameter are highly influenced by the number of samples of signals to

compare (LAWRENCE; LIN, 1989). Excellent agreement between both multi-sensor fusion

methods and the gold-standard was found (pc = 0.99).

Methods Comparison

In this comparison scenario, three single-sensor and two multi-sensors fusion methods were used

to assess the knee flexion-extension angle. The five methods were compared by analyzing their

level of accuracy (RMSE), repeatability and reproducibility (LFM coefficients and CCC) using
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a camera-based motion capture system (Vicon) as gold-standard.

Average of the knee flexion-extension angle errors were lower than 5.2° for both multi-sensor
fusion methods (Gyro+Acc and IMU+POF based MEKF), however, for our IMU+POF based
MEKF, the mean RMSE was significant lower (< 3.3° for all participants), which reveals a
performance improvement, once the POF curvature sensor is used. Moreover, these findings
demonstrate the potential of using complementary sensors, since their mean RMSE values in-

dividually were higher than 7.5°.

An approximated mean RMSE was obtained by using a similar system during walking (about
4°) (LEAL-JUNIOR et al., 2018), however, rigid structures (exoskeletons) were positioned on
the participants, and the reference measurements were provided by an encoder. In another
study (BILRO et al., 2011), the authors presented the knee angle measured by a similar single
POF curvature sensor when compared to a video-based system, in which they stated that major
differences occur in the descent stage. The authors concluded that the errors were due to the
video system limitations, but given our findings, this fact may be related to the viscoelasticity

feature of the polymers, as discussed in Section 4.5.1.

Regarding repeatability and reproducibility, both multi-sensor fusion methods presented sub-
stantial relation for the a; and R? LFM coefficients (0.93 < a; < 1.16, R* > 0.98), and excellent
reproducibility trial-to-trial within-subject (pc > 0.99). Moreover, concerning the ag LFM co-
efficient, the standard deviation (SD) of Gyro+Acc-based method was slightly higher (about
1.9°) than IMU+POF-based method. Along the RMSE values, our IMU+POF-based MEKF

method exhibits the best performance when compared to the other methods.

In contrast, the accelerometer-based method presented the lowest performance (mean R? —
0.52), and according to Iosa et al. (2014), the associated ag and a; could not be considered
meaningful. In corresponding with these LFM coefficients, a pc < 0.90 should be considered
as poor reproducibility in this study (AKOGLU, 2018). In concordance, the interval 0.90 < p¢

< 0.95 is considered as moderate, 0.95 < pc < 0.99 as substantial, and pc > 0.99 as almost
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perfect (AKOGLU, 2018). For POF-based sensor, a mean R? of 0.85 was found (about 12%
lower than Gyro-based and both multi-sensor fusion methods). This is probably related to the
conditions explained in Section 4.5.1 and errors associated (RMSE), but it still shows a good

repeatability.

Moreover, it is worth to note that the mean values of a; (1.07) and R? (0.97) presented by
Gyro-based methods demonstrate that gyroscope sensors track well the movement pattern, but
shift of the signals, when associated with the aqy coefficient (-4.59 £ 5.95), compromises their
performance. Additionally, it is clear the high variability of this coefficient between-subjects
(see Table 4.3 and Figure 4.8 (b)). This behaviour is probably related to the gyroscope bias
instability and its associated drift. In (PASCIUTO et al., 2015; BERGAMINI et al., 2014), the
findings demonstrate that the drift are related not only to the variance of the noise inherent to
the gyroscope signals and the time of working, but also to the amplitude of the movement /task

itself.

4.5.3 Comparison of the IMU-POF Based MEKF with Other Meth-

ods in the Literature

In this subsection we aim to compare our IMU-POF based MEKF with three methods pre-
sented in the literature. To accomplished that, we implemented a Complementary Filter (CF)
which uses the axis estimation method proposed by Seel, Raisch and Schauer (2014), as shown
in Algorithms 2 and 3 (Appendices A.2 and A.3). Recall that CF requires a single parameter

to be tuned, and we used here the same as proposed by the authors.

In the method proposed by Allseits et al. (2018), the authors used the same axis estima-
tion method, but only the gyroscope-related part (as shown in Algorithm 2). Additionally,
they used a zero knee angle (ZKA) update in a specific point identified by using a noise zero-
crossing (NZC) (ALLSEITS et al., 2017). It is worth to mention that neither of both previous

methods state to have performed a filter to reduce the effects of movements around the longi-
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tudinal axis (made here applying a 3CRT Filter, as shown in Algorithm 1).

For the PCA-based method (MCGRATH; FINEMAN; STIRLING, 2018), another axis esti-
mator was proposed. The authors computed the knee angular velocity using the gyroscopes
measurements and the orientation data provided by the manufacturer. Then, by using the
complete signal of the knee angular velocity during each walking trial, a PCA was applied in

order to calculate the knee joint axis. This axis was associated with the principal component

of the PCA.

As in the previous section, we evaluated the repeatability and reproducibility of all methods
for the same data set. Each knee flexion-extension angle estimated by specific method was
compared to that obtained by the optical system. In Table 4.5, the RMSE values are shown for
all participants. In the last column, we presented again the results obtained using our method.
In Figure 4.10, we presented the worst case of cach method. LFM and pe (CCC) cocfficients
are presented in Table 4.6 and Table 4.7.
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Figure 4.10: The worst case among 12 subjects (S1-S12) for each method when comparing to
the reference system. (a) S11 (b) S9 (c¢) S9 (d) S11.
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Table 4.5: Comparing the proposed method to the literature. Accuracy expressed in terms of
the Root Mean Square Error (RMSE).

RMSE: Mean (SD) (Degrees)

Participant CF Algorithm PCA-based axis Gyroscope Only Proposed

(Gyro + Acc) estimator Algorithm (with  Method (Gyro
[Seel-2014] Algorithm ZKA) + Acc + POF)
[McGrath-2018 | [Allseits-2018]
S1 8.98 (0.01) 4.94 (2.19) 4.05 (1.44) 3.46 (0.62)
S2 7.11 (1.05) 12.65 (1.68) 5.60 (0.94) 3.56 (0.48)
S3 3.76 (1.17) 4.96 (1.74) 10.16 (1.05) 2.49 (0.75)
S4 4.47 (0.92) 6.38 (1.97) 5.78 (1.84) 1.89 (0.54)
S5 3.90 (1.67) 12.42 (4.89) 6.69 (1.57) 3.21 (1.53)
S6 4.56 (1.44) 6.01 (1.84) 3.58 (1.00) 2.94 (0.98)
S7 4.46 (0.73) 9.23 (1.48) 5.87 (1.49) 3.63 (0.98)
S8 3.90 (0.51) 7.74 (1.64) 11.21 (2.01) 2.98 (0.64)
S9 6.35 (3.00) 13.92 (3.68) 12.10 (2.67) 4.16 (0.68)
S10 2.76 (0.68) 8.12 (2.16) 11.90 (1.87) 1.83 (0.47)
S11 9.05 (0.92) 4.57 (1.61) 3.55 (0.76) 4.40 (0.90)
S12 7.24 (1.02) 11.20 (2.03) 9.69 (1.04) 3.80 (0.76)
Mean 5.70 8.60 7.70 3.28
SE 0.61 0.96 0.95 0.24

For each participant, values are presented as Mean (SD); SD, standard deviation; SE, standard error;

CF, complementary filter; PCA, principal component analysis; ZKA, zero knee angle update.
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Table 4.6: Comparing the proposed method to the literature. Repeatability and reproducibility
expressed in terms of the Linear Fit Method (LFM) coefficients.

Linear Fit Method (LFM) coefficients: Mean (SD)

CF PCA-based axis Gyroscope Only Proposed
Algorithm estimator Algorithm Method
(Gyro + Acc) Algorithm (with ZKA) (Gyro + Acc
[Seel-2014] [McGrath-2018] [Allseits-2018] + POF)
Participant aa a®) R? a a(®) R? a ap(®) R? ay a®) R?
S1 0.95 946 097 098 2.86 0.97 1.00 -0.72 096 097 3.63 0.99
(0.02) (0.56) (0.03) (0.03) (2.90) (0.04) (0.04) (1.57) (0.03) (0.02) (0.69) (0.01)
S2 1.08 404 098 1.06 -14.03 0.99 112 -6.62 097 1.05 -3.06 0.98
(0.03) (1.30) (0.00) (0.02) (1.67) (0.00) (0.06) (1.93) (0.01) (0.03) (1.27) (0.00)
S3 1.04 162 099 1.07 -561 0.99 1.07 -11.60 098 097 2.05 0.99
(0.03) (1.66) (0.00) (0.03) (3.30) (0.00) (0.06) (2.70) (0.02) (0.04) (2.08) (0.00)
S4 0.99 446 099 1.02  -5.02 0.98 1.03  -535 097 099 -043 0.99
(0.02) (1.07) (0.00) (0.04) (3.99) (0.02) (0.03) (2.26) (0.03) (0.02) (1.21) (0.00)
S5 1.03 083 097 099 -10.76 0.98 1.06 -6.83 097 098 088 0.99
(0.05) (1.91) (0.04) (0.05) (5.66) (0.05) (0,06) (2.36) (0.05) (0.04) (1.87) (0.04)
S6 1.01 358 099 1.04 -6.16 0.99 1.04 045 099 1.00 146 0.99
(0.02) (1.69) (0.01) (0.02) (2.32) (0.00) (0.03) (1.80) (0.01) (0.02) (1.66) (0.01)
S7 096 -273 099 1.01 -9.07 0.99 1.00 -498 098 098 -1.99 0.99
(0.03) (1.17) (0.01) (0.03) (1.18) (0.00) (0.03) (1.07) (0.02) (0.03) (1.21) (0.01)
S8 117 -3.96 098 1.12 -10.74 0.99 116 -13.62 0.90 103 -211 0.98
(0.03) (1.38) (0.01) (0.02) (1.97) (0.00) (0.06) (2.39) (0.09) (0.04) (1.42) (0.01)
S9 1.00 048 088 096 -11.38 0.90 1.04 -11.11 087 093 264 095
(0.11) (2.86) (0.16) (0.09) (3.36) (0.15) (0.10) (2.56) (0.14) (0.05) (2.55) (0.02)
S10 098 262 099 1.08 -9.75 0.99 1.03 -1255 099 099 -0.50 0.99
(0.02) (0.91) (0.00) (0.02) (2.49) (0.00) (0.03) (1.96) (0.01) (0.02) (1.16) (0.00)
S11 1.08 698 098 098 435 0.99 1.10  -278 098 1.06 210 0.98
(0.02) (1.16) (0.00) (0.02) (1.88) (0.00) (0.02) (1.68) (0.01) (0.02) (1.68) (0.00)
S12 1.02 5.59  0.98 1.03  -11.60 0.98 1.06 -10.25 097 096 3.68 0.98
(0.03) (1.96) (0.01) (0.02) (2.25) (0.02) (0.05) (2.31) (0.02) (0.02) (1.78) (0.00)
Mean 1.03 275 097 1.03  -724 098 1.06 -7.16 096 0.99 0.70 0.98
SD 0.06 3.83 0.03 0.05 5.74 0.02 0.05 4.70 0.04 0.04 2.29 0.01
Mean (abs(ap)) - 3.86 - - 8.45 - - 7.24 - - 2.04 -
SD (abs(ap)) - 2.58 - - 3.51 - - 4.57 - - 1.10 -

For each participant, values are presented as Mean (SD); SD, standard deviation; SE, standard error; CF, com-
plementary filter, PCA, principal component analysis; ZKA, zero knee angle update; a;, angular coefficient, which
represents the amplitude scaling factor; ag, intercept of the fitting line, which represents the scalar addition (shift);
R2, coefficient of determination, which coincides with the square of the Pearson’s correlation coefficient R. Ideal
values of LFM parameters are a; = 1, ag = 0, R? = 1.
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Table 4.7: Comparing the proposed method to the literature. Reproducibility expressed in
terms of the Concordance Correlation Coeflicient (CCC).

CCC (p.): Mean (SD)

Participant CF Algorithm PCA-based axis Gyroscope Only Proposed
(Gyro + Acc) estimator Algorithm (with  Method (Gyro
[Seel-2014] Algorithm ZKA) 4+ Acc + POF)
[McGrath-2018 |  [Allseits-2018]
S1 0.90 (0.01) 0.97 (0.03) 0.98 (0.02) 0.98 (0.00)
S2 0.94 (0.02) 0.82 (0.04) 0.96 (0.01) 0.98 (0.00)
S3 0.98 (0.01) 0.96 (0.02) 0.87 (0.02) 0.99 (0.01)
S4 0.97 (0.01) 0.94 (0.04) 0.95 (0.04) 0.99 (0.00)
S5 0.98 (0.02) 0.81 (0.12) 0.94 (0.03) 0.98 (0.02)
S6 0.98 (0.01) 0.96 (0.02) 0.99 (0.01) 0.99 (0.01)
S7 0.98 (0.01) 0.91 (0.03) 0.96 (0.02) 0.98 (0.01)
S8 0.98 (0.01) 0.90 (0.04) 0.82 (0.06) 0.98 (0.01)
S9 0.93 (0.11) 0.72 (0.12) 0.79 (0.10) 0.97 (0.01)
S10 0.98 (0.00) 0.89 (0.06) 0.78 (0.07) 0.99 (0.00)
S11 0.88 (0.02) 0.96 (0.02) 0.98 (0.01) 0.97 (0.01)
S12 0.94 (0.02) 0.86 (0.04) 0.90 (0.02) 0.98 (0.01)

For each participant values are presented as Mean (SD); p., concordance correlation coefficient (Lin’s
index); SD, standard deviation; CF, complementary filter; PCA, principal component analysis; ZKA,
zero knee angle update.
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A significant difference between methods was observed for RMSE values (F52; = 10.29, p <
0.001, n? = 0.48). Post-hoc tests revealed significant difference between our IMU-POF based
MEKF and the other three methods (p < 0.01). Non-significant difference was found among
the other methods (see Figure 4.11 (a)). The results show that in terms of accuracy our
method is better than the other ones (mean RMSE < 3.3° for all participants). According
to the mean RMSE values, PCA-based method presented the worst performance. Regarding
repeatability and reproducibility, a significant difference between methods was found for a;
(LFM) coefficient (Fya9 = 9.75, p < 0.001, n? = 0.47). According to the post-hoc comparisons,
a significant difference was revealed between the GO+ZKA and the other methods (p < 0.01).

Non-Significant difference was found for the others pairwise (see Figure 4.11 (b)).

Moreover, for ag (LFM) coefficient, a significant difference between methods was found (Fj 33
= 32.99, p < 0.0005, n? = 0.75). Post-hoc tests revealed non-significant difference between
our method and CF, and for PCA-based and GO+ZKA methods. Significant difference was
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Figure 4.11: Performance of CF, PCA-based, GO+ZKA and our IM+POF (MEK) methods.
Mean and standard deviation of (a) RMSE, and LFM coefficients (b) a; and (c) ap. n.s,
non-significant p-value > 0.05, **p < 0.01, ***p < 0.001.
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found between our proposed method and both PCA-based and GO+ZKA (p < 0.001), the same
condition was found when comparing CF to both PCA-based and GO | ZKA (see Figure 4.11

().

In addition, mean R? values were higher than 0.96 for almost all methods (see Figure 4.12).
Significant difference was found between GO+ZKA and the other methods (p < 0.01). However,
all methods presented a substantial repeatability. Interestingly, for pc values and its associated

Z-transformation, our proposed method was significant different of the other ones (p < 0.05).

Methods Comparison

In this second comparison scenario, we evaluated our method and three methods presented
in the literature when used to assess the knee flexion-extension angle. The level of accuracy

(RMSE), repeatability and reproducibility (LFM coefficients and CCC) using a camera-based
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Figure 4.12: Repeatability and reproducibility of (a) Complementary Filter (CF), (b) PCA-
based, (¢) GO+ZKA based and (d) Our IMU+POF based MEKF method. Mean R? and pc
for all participants. Specific Method versus Reference system.
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motion capture system (Vicon) as gold-standard was analyzed.

The mean RMSE value presented for our method was smaller than the other methods. For ay
(LFM) coefficient, we can observe that all methods presented substantial values, although sig-
nificant differences were presented between GO | ZKA and the other methods. This means that
all methods have a good performance when assessing the range of motion (ROM). Certainly, R?
(LFM) coefficient also confirms a good repeatability of the all methods. However, according to
ag (LFM) coefficient and in concordance with mean RMSE values, PCA-based and GO+ZKA
methods presented higher shift (offset) of the signals. This fact can also be observed with the
greater dislocation and scale shift (with respect to the 45° line) (LAWRENCE; LIN, 1989))
shown by its models in Figure 4.12. Also, CF method presented a slighter shift if compared
with PCA-based and GO+ZKA methods.

In (MCGRATH; FINEMAN; STIRLING, 2018) (PCA-based method), the authors reported a
zero-mean RMSE of 9.69° for fifteen participants, attributing the errors to the IMU location
and soft-tissue noise, mainly related to the thigh sensor and subjects’ fatty tissue. However, we
point out other possible error sources: (i) the use of IMU orientation measurements in indoor
environments, which are highly compromised by the magnetic disturbances, and (ii) a wrong
orientation estimation after IMU alignment. This last condition also applies for the work pre-
sented in (ALLSEITS et al., 2018). It is worth noting that, unlike simulated IMU data, they
did not report the absolute RMSE using IMU real data. Additionally, McGrath, Fineman and
Stirling (2018) carried out a comparison with the method proposed by Seel, Raisch and Schauer
(2014), contrarily to our findings, the PCA-based method presented better performance than

CF method in simulated conditions.

In addition, in (SEEL; RAISCH; SCHAUER, 2014) (CF method), the authors reported the
results for six walking trials performed by one transfemoral amputee participant, assessing the
prosthesis and the human leg. The mean RMSE values for knee flexion/extension angles were
0.71° and 3.30° for the prosthesis and the contralateral side, respectively. In our findings, at

least three participants presented results approximated to those reported by Seel, Raisch and
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Schauer (2014) for the human leg. However, it is difficult to make comparisons once that our

participants are within normal gait pattern.

On the other hand, Allseits et al. (2018) did not reported the error of the whole gait cycle
when comparing GO+ ZKA to the camera-based measurements. They did present a mean dif-
ference of approximately 5° for the peak swing flexion, with a range of values approximately
from -5° to 15°. They also stated that the camera-based and IMU-based systems operate with
different underlying assumptions of joint biomechanical features, which limit their accuracy. In
addition, another research demonstrated that the market set choice significantly influences the

estimation of gait parameters (MANTOVANI; LAMONTAGNE, 2017).

We attempt to accomplish these comparisons under similar conditions. To the best of our
knowledge, barely the research in (TOGNETTI et al., 2015) proposed a fusion of signals from
accelerometers and a goniometer. Thus, we accomplished the comparison task against IMU-
based systems. In this way, we used the same data set when comparing our system and
methods to other three methods presented in the literature. However, other conditions could
generate different results. For instance, in (SEEL; RAISCH; SCHAUER, 2014; MCGRATH,;
FINEMAN; STIRLING, 2018), the authors used commercial IMU-based systems, MTw IMUs
(Xsens, Netherlands) and Opal IMUs (APDM, Inc., USA), respectively. Contrarily, in (ALL-
SEITS et al., 2018) and our study, non-commercial systems were used. Also, different marker
placement protocols and camera-based system were used. In summary, these conditions could

explain some differences in the reported results.

As previously mentioned, a similar system was presented by Tognetti et al. (2015), where unlike
an optical fiber, the authors used a goniometer based on two layers of knitted piezoresistive
fabrics. They also used a Kalman Filter to fusion signals from accelerometers with that from
the proposed goniometer. The mean RMSE values for five participants range from 1.07° for
the slowest to 2.5° for the fastest speed during walking when comparing the system to the
commercial IMU system used as reference. In addition, the mean RMSE values obtained by

using the sensors separately range from 4.6° to 5.7° and 5.8° to 8.2° for the goniometer and
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accelerometers, respectively. Nevertheless, given the different conditions between the studies,

a direct comparison with this research is not easy.

Finally, the fact of our system and methods present the best performance (mean RMSE < 3.3°,
LFM coefficients, a; = 0.99 40.04, ag = 0.70 £2.29, R? = 0.98 4-0.01 and pc > 0.99) may be
directly related not only to the use of a different aiding sensor, the POF curvature sensor, but

also to the proposed multi-sensor fusion method.

Limitations and Future Work

Further experiments should be performed aiming to analyze the performance of our proposed
system and methods in long time. It is well known that IMU sensors decrease their perfor-
mance as work-time increases. In that cases, the POF curvature sensor measurements will be
more exploited, again highlighting the advantage of our system. It is worth noting that little
treatment of the accelerometers measurements was performed, in this way, other methods could
be explored in order to remove the artifacts due to impacts and significant accelerations. Also,
increasing the number of participants, including patients with pathological gait pattern will be
taken in account for future works. Additionally, little adaptations of the algorithms need be

done to use the proposed system in online applications.

Moreover, better conditions for POF curvature sensor could be found, in sense of improving
its mechanical conditioning and alignment with real human joints. Include the fiber (without
its coating) as part of the textile and more adjusted clothes could be an option. In addition,

auto-calibration procedures could be provided in order to facilitate its use by ordinary people.

4.6 Preliminary Conclusions

To conclude, this chapter presented a novel IMU-POF sensor fusion system based on a knee
sleeve for estimating knee flexion-extension angle. The advantages of the proposed method

include the fast and easy knee sleeve placement and simple movements for the POF curvature
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sensor calibration once placed in the user. The improvement gained in accuracy make this
proposed system more attractive for daily clinical routine. Also, its portability and adaptability
make it suitable for future online applications including in-home mobile motion monitoring in
rehabilitation processes. Also, this system could be potentially benefit for exoskeletons and

soft-robotics applications.

According to the results, our IMU-POF based MEKF method presented the best performance
when compared with other methods in the literature, presenting a mean RMSE significant
smaller (< 3.3° for twelve participants). The similarity indices (LFM coefficient and CCC)
also showed its improvement in terms of repeatability and reproducibility. Further experiments

including participants with pathological gait pattern should be made.



Chapter 5

Conclusion

Through this Ph.D. thesis, we introduced a set of novel methods to perform human motion
analysis by means of lightweight and easy to use systems. It also describes the implementation
of a robust multi-sensor fusion filter that combines inertial measurements and optical fiber data

in order to create a more accurate output from wearable sensors.

This last chapter brings together the main conclusions of the work presented in this thesis.
It also summarises the technical and scientific contributions of the developed work, and also

includes the scientific papers published during the research conducted in this Ph.D. thesis.

Several contribution of this thesis were introduced in Chapters 2 to 4. The first contribution
was to perform a literature study regarding methods and techniques for gait assessment using
inertial sensors and optical fiber sensors, as well as data fusion approaches. This contribution
was achieved in Chapter 2, which describes the fundamental knowledge, which allows a better
comprehension of the analysis and the novel methods developed. It also presents the state-
of-the-art fundamentals of inertial sensors, intensity variation-based Polymer Optical Fiber

curvature sensors, and multi-sensor fusion methods.

The contribution number two was to develop an IMU-to-body alignment method that improves

the estimation of human joint angles, aiming to reach a new approach to approximate sensor

102
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coordinate system to anatomically-defined coordinate system. Chapter 3 describes the work
that fulfil this contribution. Results from computational simulation demonstrate that, when
applying the proposed method, the estimated angles are nearly equal to the expected values
and consistent with the human joint’s rotations. Moreover, experiment results indicate that the
method is suitable to measure tridimensional angles of the hip, knee and ankle of the humans’
joints during free walking. In conclusion, the proposed method is an interesting option to solve
the alignment problem of human gait analysis based on inertial sensors, and is especially at-
tractive for its simplicity, easy donning and doffing, and accurate results. It is worth to note
that our method has been successfully applied and was the basis of researches in our group and

different research papers were published.

The contribution number three was the implementation of a novel wearable system based on
IMU sensors and a POF curvature sensor for knee joint angle estimation. The first part of
Chapter 4 describes the implementation of such system, conceived as a knee sleeve device. As
intended, the system is very lightweight, portable, adaptable and flexible, allowing to assess
gait in a mobile way. Furthermore, the device provides very little to no disturbance in the gait
pattern, is low voltage and battery operated, and transmits all data wirelessly. Those charac-
teristics bring great freedom to the user and very little interference in the gait experience, if

any.

The contribution number four was the development of a sensor fusion algorithm to merge mea-
surements provided by accelerometers and gyroscopes with data from an optical fiber sensor.
The final goal here was to improve the estimation accuracy of the human joint angles. The mid-
dle part of the Chapter 4 detailed the algorithm fulfilling this contribution. The algorithm is a
Multiplicative Extended Kalman Filter (MEKF), that combines data from accelerometers, gy-
roscopes, and an optical fiber sensor based on kinematic constraints. In addition, the proposed
fusion method is magnetometer-free seeking to avoid inaccuracies related to electromagnetic
disturbances. Moreover, we proposed to deal with sensors uncertainties using reliability inter-

vals defined during specific gait phases. For this purpose, a rule-based algorithm for gait phases
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identification was also implemented.

The final contribution was to validate the proposed wearable system and the implemented data
fusion algorithm against a gold standard, using a camera-based system as a reference. This
validation was presented in the final part of Chapter 4, and served as a proof of concept of
the whole system. Twelve subjects participated in a walking trial, in that way a total of 240
whole knee flexion-extension gait cycles were collected and analyzed. The final data from the
proposed system was compared to the gold standard and other methods recently published
in the state-of-the-art literature. Our proposed methods and system presented a significant
better performance (mean RMSE < 3.3°, LFM coefficients, a; = 0.99 +0.04, ay = 0.70 +2.29,
R?* = 0.98 £0.01 and pc > 0.99) when compared to other methods in the literature. Further

experiments, including participants with pathological gait pattern, should be conducted.

In conclusion, in this Ph.D. thesis we present the development of a novel IMU-POF sensor fu-
sion system and methods needed for motion analysis using wearables technologies, all the way
from research, design, implementation and validation with human subjects. Through this, we
contribute with the state-of-the-art of wearable systems and their use for assessing functional

performance.

Nevertheless, our research has limitations that motivate future works. For instance, a further
investigation on the reliability of the proposed methods and internal/external validity of the
results involving more healthy participants and patients with altered gait pattern. Also, we
have a particular interest in exploring other processing techniques aiming to identify and clas-

sify different gait disorders automatically.

Further experiments should be carried out in order to analyze the performance of our proposed
system and methods in long time. Additionally, modifications of the algorithms should be made
to use the proposed system in online applications. In addition, other ways of mechanical con-
ditioning and alignment with real human joints should be explored for better POF curvature

sensor adjustment.
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5.1 Publications

We present here the papers published during the research conducted in this Ph.D. thesis as a

consequence of the interaction with other researchers in our group:

1. (Journal paper) Laura Susana Vargas-Valencia, Arlindo Elias, Eduardo Rocon, Teodiano
Bastos-Filho, Anselmo Frizera. An IMU-to-Body Alignment Method Applied to Human

Gait Analysis. Sensors 2016.

2. (Journal paper) Arnaldo G. Leal-Junior, Laura Vargas-Valencia, Willian M. Dos Santos,
Felipe B.A. Schneider, Adriano A.G. Siqueira, Maria José Pontes, Anselmo Frizera. POF-
IMU sensor system: A fusion between inertial measurement units and POF sensors for

low-cost and highly reliable systems. Optical Fiber Technology, 43, 82-89, 2018.

3. (Journal paper) Arnaldo G. Leal-Junior, Anselmo Frizera, Laura Vargas-Valencia, Willian
M. Dos Santos, Anténio P.L. B6, Adriano A.G. Siqueira, Maria José Pontes. Polymer
Optical Fiber Sensors in Wearable Devices: Toward Novel Instrumentation Approaches for

Gait, Assistance Devices. IEEE Sensors Journal, 7085-7092, 2018.

4. (Journal paper) Nicolas Valencia-Jimenez, Arnaldo Leal-Junior, Leticia Avellar, Laura Vargas-
Valencia, Pablo Caicedo-Rodriguez, Andrés Ramirez-Duque, Mariana Lyra, Carlos Marques,
Teodiano Bastos-Filho, Anselmo Frizera. A Comparative Study of Markerless Systems Based
on Color-Depth Cameras, Polymer Optical Fiber Curvature Sensors, and Inertial Measure-
ment Units: Towards Increasing the Accuracy in Joint Angle Estimation. Electronics, 8,

173, 2019.

ot

(Journal paper) Ana Cecilia Villa-Parra, Jessica Souza-Lima, Denis Delisle-Rodriguez, Laura
Vargas-Valencia, Anselmo Frizera, Teodiano Bastos. Assessment of an Assistive Control
Approach Applied in an Active Knee Orthosis for Post-Stroke Gait Rehabilitation. IEEE

Transactions on Neural System and Rehabilitation Engineering. Submitted, 2019.

6. (Conference Proceedings) Laura S. Vargas-Valencia, Anselmo Frizera-Neto, Teodiano Bastos-

Filho. Assessment of Inertial Measurement Units’ Orientation Accuracy in Static Conditions.
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A.2 Three Criteria Filter (3CRTF)

Algorithm 1: Store samples that pass the filter.

© W N O A W N

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

Input: W1, W2, a1, Qs
Criteria 1:

Set N = length(wy), k = 1,
for t = 1 to N do

)
as.cri (k) = as(t)
nem (k) =1 // store time instants of significant motion
E=k+1
end

end
Calculate longitudinal axes, l; and la, by averaging 3D accelerations over 3 seconds (¢35
= [ncr1(1), ner(t) + 300]) during gait.
Criteria 2 and 3:
Set N = longth(wliom), k= 1,
for t = 1 to N do
if \(wl,cm/le’CRlHQ) . l1’ < 0.2 and |((4J2’CRl/Hw2,CR1H2) . l2‘ < 0.2 then
wi,crr(k) — wicm
wa,crr (k) = wacm

aicrr(k) = ai,cm
ascrr(k) = ascm
k=k+1

end

end
Output: wycrr, Wa,cRT, G1,CRT: G2,CRT
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A.3 Estimation of Knee Main Axis of Motion

Algorithm 2: Estimation of knee principal axis of motion (SEEL; RAISCH; SCHAUER,

2014).

Input: wy, wy

1 Initialize oz = (@1, 01, @2, 6], N = length(w)
2 for ¢ = 1 to 20 do

3 Calculate j; and jg from 9q.is

4 | g1 = |cos(¢1)cos(0y), cos(p1)sin(0y), sin(p)|T
5 | Ja = |cos(p2)cos(6s), cos(ps)sin(Bs), sin(pa)|”
6 for t =1 to N do

7

8

Eoyis(t) = [lwa(t) X gall, — llwr(t) x gl

) Juwis(t) = Gl
-1
10 Update Naxis by Naxis — (J;{msjams) ng'sE
11 end
12 end

Output: j;, jo

aris

Calculate the error vector E,.;; € RV*! and the Jacobian J ;s € RYV*!

A.4 Estimation of Knee Joint Position

Algorithm 3: Estimation of knee joint position (SEEL; RAISCH; SCHAUER, 2014).

Inpl‘It: ay, a2, W, W, j17 j2

o . . T
Initialize 9y0s = [011, 012, 013, 021, 022, 023]", N = length(a,)

1
2 for i = 1 to 20 do

3 Calculate 0, and 0g from 1,0,
4 0; = [Oila 0;2, Oi3]

5 fort =1 to N do

6
7

|aa(t) — 02 X Wa(t) — wa(t) x 02 X wa(t)]],

dE pos(t
8 pos(t) = Ceel)

9 end

-1
10 | Update Npos by Mpos — (S osTpos) I posEpos
11 end
12 Shift 0; and 05 as close as possible to the sensors
13 0; = 0; - ji—(ol 'ﬁ;"z’"’)
Output: 01, 09

// i

Calculate the error vector E,ps € RY*! and the Jacobian J,,s € RY*¢
Epos(t) = llar(t) — o1 x dn(t) —wi(t) x or x wi(t)ll, -

// i

1 or 2

1 or 2
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A.5 RI-ACC and RI-POF Intervals Definition

Algorithm 4: Rule-based method to define RI-ACC and RI-POF intervals (offline detec-
tion using findpeaks function from MATLAB).

Input: wepsr, shank angular velocity, medio-lateral axis KAV, knee angular
velocity

1 Initialize tumae — 60, tumin — 40, thmae — 1 rad/s, thpi, — 1.4 rad/s

2 Calculate the local maxima of wsyy,r,, separated by more than ¢.,,., samples and
’C‘JQ]\/IL‘ > thmaw

3 |lmazs loes1| = findpeaks(waprr, ‘MinPeakDistance’, tymaz, ‘MinPeakHeight’, thmaz)

a Calculate the local minima of wsqyyr, separated by more than t,,,;, samples and
lwarrr| > thmin

5 |lmin, loes2] = findpeaks(waprr, ‘MinPeakDistance’, ¢ min, ‘MinPeakHeight’, tpmin)

6 Identify HS and TO instants. Each HS is located only after a local maxima. TO is
located only after a HS

7 Set h =1,k = 1, Npae = length(loes1), Nomin = length(lpes2)

8 for i = 1 to N,,,, do

while (b + 1) < Ny, do
10 if loes1(2) < loes2(h) and |wonrr (loes2(R))| < |wonrr (loes2(h + 1))| then
11 HS(k) = loes2(h)
12 TO(k) = loes2(h + 1)
13 else
14 TO(k) — loes2(h)
15 HS(k) = loes2(h + 1)
16 end
17 k=k+1
18 h=h-+2
19 end
20 end

21 Identify two zero crossings between HS and TO events of each gait cycle. The first
zero-crossing (ascending) is identified as aTS (~ toe strike) and the second one
(descending) as aHO (~ heel Off)

22 Identify the maximum of KAV between TO and next HS events. This event is identified
as eMSW (approximately the end of mid-swing phase)

Output: HS, TO, aTS, aHO, eMSW
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A.6 IMU-POF based MEKF

Algorithm 5: IMU-POF based MEKEF.

1

(= I, B VU M

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

Input: Yur, Yus, j1, j2, ar, as, gror
Initialize qATs,l = [1, 0, 0, 0], P = diag(a(;gRS, Odbgs UébT,), T = [0 0, 0] bwb [0 0, 0]

T - 0.01, N = lenght(Y,r)
for k = 2 to N do

(a) Prediction step
Calculate @rpg ) using Equation 4.18
Compute the estimated quaternion using Equation 4.16
Calculate |0 ,, X] using Equation 4.17

v, v, ¥
Compute Fyp = |03x3 Isxg Osxs
ded O3x3  I3x3

with ¥ = e~ @fs X = 1 [T e @R Xligy Wy — L [T 075 Xty
Set to zero X,
Compute P, using Equation 4.21

(b) Measurement update

(bl) Accelerometer update
Calculate a, using Equation 4.23
Compute §z, using Equation 4.27
Calculate H,q ), using Equation 4.28
Compute/adapt R,
if k € RI-ACC then

| Rap = ars - Isxs
else

| Rop = A-I3x3
end
Calculate K}, (Kalman gain) and apply the update using Equation 4.32
(b2) POF curvature sensor
Calculate the difference quaternion dgq, using Equation 4.29
Calculate Hpopgay using Equation 4.31
Compute/adapt Rporx
if k € RI-POF then

| Rpork = opor - I3x3
else

| Rpork = P+ I3x3
end
Calculate K and apply again the update using Equation 4.32

Update orientation quaternion Q}_S and biases IA)wT,k and i)ws,k using Equation 4.33
end

Output: §rg, IA)ws, i)wT
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A.7 Flowchart: IMU-POF based MEKF

ag  ar Yoo Yor /1 )2 @or Input

v

. . . . Update step
Joint Kinematic Constrains

a) Accelerometer

A S _ _ A
D75 4por oz, = ag — g

* 6za=2[ﬁsx]56Ts+Va
Initialize Prediction step A
s H, = [2 [as X] 0353 03><3]
s. . fenin -
b Arsx = €xp (EQ(Q;%)T) ® Qg x-1 b) POF
wp > " 6Zpor = 66por
b, =0 0Zpor = 0075+ Vpor
. ~ #
P, Py = FgpPr1Fap+ Q4 Hpor,, = [Bxs O3z O3]
Update G, f)w,,_, f)ws Calculate Kalman Gain
At A— A _ QTS _ vl T - il
475 = Q75 ® 5qTS’ Ars = lléiysll Ky = Py Hf};_k [Hfd.kpf’f Hf}:,k s Rf‘k]
ba),-,k = ba),-,k—l + 5ba),- Pf' = [1— KkH ] P
Tk k
f

Output x = [00r5 b, ob,]| « X =% +K[oz—H, |

Lk
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